1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565
|
<pre>Network Working Group D. Harrington
Request for Comments: 5591 Huawei Technologies (USA)
Category: Standards Track W. Hardaker
Cobham Analytic Solutions
June 2009
<span class="h1">Transport Security Model for the</span>
<span class="h1">Simple Network Management Protocol (SNMP)</span>
Status of This Memo
This document specifies an Internet standards track protocol for the
Internet community, and requests discussion and suggestions for
improvements. Please refer to the current edition of the "Internet
Official Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this memo is unlimited.
Copyright Notice
Copyright (c) 2009 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to <a href="https://www.rfc-editor.org/bcp/bcp78">BCP 78</a> and the IETF Trust's Legal
Provisions Relating to IETF Documents in effect on the date of
publication of this document (<a href="http://trustee.ietf.org/license-info">http://trustee.ietf.org/license-info</a>).
Please review these documents carefully, as they describe your rights
and restrictions with respect to this document.
This document may contain material from IETF Documents or IETF
Contributions published or made publicly available before November
10, 2008. The person(s) controlling the copyright in some of this
material may not have granted the IETF Trust the right to allow
modifications of such material outside the IETF Standards Process.
Without obtaining an adequate license from the person(s) controlling
the copyright in such materials, this document may not be modified
outside the IETF Standards Process, and derivative works of it may
not be created outside the IETF Standards Process, except to format
it for publication as an RFC or to translate it into languages other
than English.
<span class="grey">Harrington & Hardaker Standards Track [Page 1]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-2" ></span>
<span class="grey"><a href="./rfc5591">RFC 5591</a> Transport Security Model for SNMP June 2009</span>
Abstract
This memo describes a Transport Security Model for the Simple Network
Management Protocol (SNMP).
This memo also defines a portion of the Management Information Base
(MIB) for monitoring and managing the Transport Security Model for
SNMP.
Table of Contents
<a href="#section-1">1</a>. Introduction ....................................................<a href="#page-3">3</a>
<a href="#section-1.1">1.1</a>. The Internet-Standard Management Framework .................<a href="#page-3">3</a>
<a href="#section-1.2">1.2</a>. Conventions ................................................<a href="#page-3">3</a>
<a href="#section-1.3">1.3</a>. Modularity .................................................<a href="#page-4">4</a>
<a href="#section-1.4">1.4</a>. Motivation .................................................<a href="#page-5">5</a>
<a href="#section-1.5">1.5</a>. Constraints ................................................<a href="#page-5">5</a>
<a href="#section-2">2</a>. How the Transport Security Model Fits in the Architecture .......<a href="#page-6">6</a>
<a href="#section-2.1">2.1</a>. Security Capabilities of this Model ........................<a href="#page-6">6</a>
<a href="#section-2.1.1">2.1.1</a>. Threats .............................................<a href="#page-6">6</a>
<a href="#section-2.1.2">2.1.2</a>. Security Levels .....................................<a href="#page-7">7</a>
<a href="#section-2.2">2.2</a>. Transport Sessions .........................................<a href="#page-7">7</a>
<a href="#section-2.3">2.3</a>. Coexistence ................................................<a href="#page-7">7</a>
<a href="#section-2.3.1">2.3.1</a>. Coexistence with Message Processing Models ..........<a href="#page-7">7</a>
<a href="#section-2.3.2">2.3.2</a>. Coexistence with Other Security Models ..............<a href="#page-8">8</a>
<a href="#section-2.3.3">2.3.3</a>. Coexistence with Transport Models ...................<a href="#page-8">8</a>
<a href="#section-3">3</a>. Cached Information and References ...............................<a href="#page-8">8</a>
<a href="#section-3.1">3.1</a>. Transport Security Model Cached Information ................<a href="#page-9">9</a>
<a href="#section-3.1.1">3.1.1</a>. securityStateReference ..............................<a href="#page-9">9</a>
<a href="#section-3.1.2">3.1.2</a>. tmStateReference ....................................<a href="#page-9">9</a>
<a href="#section-3.1.3">3.1.3</a>. Prefixes and securityNames ..........................<a href="#page-9">9</a>
<a href="#section-4">4</a>. Processing an Outgoing Message .................................<a href="#page-10">10</a>
<a href="#section-4.1">4.1</a>. Security Processing for an Outgoing Message ...............<a href="#page-10">10</a>
<a href="#section-4.2">4.2</a>. Elements of Procedure for Outgoing Messages ...............<a href="#page-11">11</a>
<a href="#section-5">5</a>. Processing an Incoming SNMP Message ............................<a href="#page-12">12</a>
<a href="#section-5.1">5.1</a>. Security Processing for an Incoming Message ...............<a href="#page-12">12</a>
<a href="#section-5.2">5.2</a>. Elements of Procedure for Incoming Messages ...............<a href="#page-13">13</a>
<a href="#section-6">6</a>. MIB Module Overview ............................................<a href="#page-14">14</a>
<a href="#section-6.1">6.1</a>. Structure of the MIB Module ...............................<a href="#page-14">14</a>
<a href="#section-6.1.1">6.1.1</a>. The snmpTsmStats Subtree ...........................<a href="#page-14">14</a>
<a href="#section-6.1.2">6.1.2</a>. The snmpTsmConfiguration Subtree ...................<a href="#page-14">14</a>
<a href="#section-6.2">6.2</a>. Relationship to Other MIB Modules .........................<a href="#page-14">14</a>
<a href="#section-6.2.1">6.2.1</a>. MIB Modules Required for IMPORTS ...................<a href="#page-15">15</a>
<a href="#section-7">7</a>. MIB Module Definition ..........................................<a href="#page-15">15</a>
<a href="#section-8">8</a>. Security Considerations ........................................<a href="#page-20">20</a>
<a href="#section-8.1">8.1</a>. MIB Module Security .......................................<a href="#page-20">20</a>
<a href="#section-9">9</a>. IANA Considerations ............................................<a href="#page-21">21</a>
<a href="#section-10">10</a>. Acknowledgments ...............................................<a href="#page-22">22</a>
<span class="grey">Harrington & Hardaker Standards Track [Page 2]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-3" ></span>
<span class="grey"><a href="./rfc5591">RFC 5591</a> Transport Security Model for SNMP June 2009</span>
<a href="#section-11">11</a>. References ....................................................<a href="#page-22">22</a>
<a href="#section-11.1">11.1</a>. Normative References .....................................<a href="#page-22">22</a>
<a href="#section-11.2">11.2</a>. Informative References ...................................<a href="#page-23">23</a>
<a href="#appendix-A">Appendix A</a>. Notification Tables Configuration ....................<a href="#page-24">24</a>
<a href="#appendix-A.1">A.1</a>. Transport Security Model Processing for Notifications .....<a href="#page-25">25</a>
<a href="#appendix-B">Appendix B</a>. Processing Differences between USM and Secure
Transport ............................................<a href="#page-26">26</a>
<a href="#appendix-B.1">B.1</a>. USM and the <a href="./rfc3411">RFC 3411</a> Architecture .........................<a href="#page-26">26</a>
<a href="#appendix-B.2">B.2</a>. Transport Subsystem and the <a href="./rfc3411">RFC 3411</a> Architecture .........<a href="#page-27">27</a>
<span class="h2"><a class="selflink" id="section-1" href="#section-1">1</a>. Introduction</span>
This memo describes a Transport Security Model for the Simple Network
Management Protocol for use with secure Transport Models in the
Transport Subsystem [<a href="./rfc5590" title=""Transport Subsystem for the Simple Network Management Protocol (SNMP)"">RFC5590</a>].
This memo also defines a portion of the Management Information Base
(MIB) for monitoring and managing the Transport Security Model for
SNMP.
It is important to understand the SNMP architecture and the
terminology of the architecture to understand where the Transport
Security Model described in this memo fits into the architecture and
interacts with other subsystems and models within the architecture.
It is expected that readers will have also read and understood
[<a href="./rfc3411" title=""An Architecture for Describing Simple Network Management Protocol (SNMP) Management Frameworks"">RFC3411</a>], [<a href="./rfc3412" title=""Message Processing and Dispatching for the Simple Network Management Protocol (SNMP)"">RFC3412</a>], [<a href="./rfc3413" title=""Simple Network Management Protocol (SNMP) Applications"">RFC3413</a>], and [<a href="./rfc3418" title=""Management Information Base (MIB) for the Simple Network Management Protocol (SNMP)"">RFC3418</a>].
<span class="h3"><a class="selflink" id="section-1.1" href="#section-1.1">1.1</a>. The Internet-Standard Management Framework</span>
For a detailed overview of the documents that describe the current
Internet-Standard Management Framework, please refer to <a href="./rfc3410#section-7">section 7 of
RFC 3410</a> [<a href="./rfc3410" title=""Introduction and Applicability Statements for Internet- Standard Management Framework"">RFC3410</a>].
Managed objects are accessed via a virtual information store, termed
the Management Information Base or MIB. MIB objects are generally
accessed through the Simple Network Management Protocol (SNMP).
Objects in the MIB are defined using the mechanisms defined in the
Structure of Management Information (SMI). This memo specifies a MIB
module that is compliant to the SMIv2, which is described in STD 58,
<a href="./rfc2578">RFC 2578</a> [<a href="./rfc2578" title=""Structure of Management Information Version 2 (SMIv2)"">RFC2578</a>], STD 58, <a href="./rfc2579">RFC 2579</a> [<a href="./rfc2579" title=""Textual Conventions for SMIv2"">RFC2579</a>] and STD 58, <a href="./rfc2580">RFC 2580</a>
[<a href="./rfc2580" title=""Conformance Statements for SMIv2"">RFC2580</a>].
<span class="h3"><a class="selflink" id="section-1.2" href="#section-1.2">1.2</a>. Conventions</span>
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [<a href="./rfc2119" title=""Key words for use in RFCs to Indicate Requirement Levels"">RFC2119</a>].
<span class="grey">Harrington & Hardaker Standards Track [Page 3]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-4" ></span>
<span class="grey"><a href="./rfc5591">RFC 5591</a> Transport Security Model for SNMP June 2009</span>
Lowercase versions of the keywords should be read as in normal
English. They will usually, but not always, be used in a context
that relates to compatibility with the <a href="./rfc3411">RFC 3411</a> architecture or the
subsystem defined here but that might have no impact on on-the-wire
compatibility. These terms are used as guidance for designers of
proposed IETF models to make the designs compatible with <a href="./rfc3411">RFC 3411</a>
subsystems and Abstract Service Interfaces (ASIs). Implementers are
free to implement differently. Some usages of these lowercase terms
are simply normal English usage.
For consistency with SNMP-related specifications, this document
favors terminology as defined in STD 62, rather than favoring
terminology that is consistent with non-SNMP specifications that use
different variations of the same terminology. This is consistent
with the IESG decision to not require the SNMPv3 terminology be
modified to match the usage of other non-SNMP specifications when
SNMPv3 was advanced to Full Standard.
Authentication in this document typically refers to the English
meaning of "serving to prove the authenticity of" the message, not
data source authentication or peer identity authentication.
The terms "manager" and "agent" are not used in this document
because, in the <a href="./rfc3411">RFC 3411</a> architecture, all SNMP entities have the
capability of acting as manager, agent, or both depending on the SNMP
applications included in the engine. Where distinction is needed,
the application names of command generator, command responder,
notification originator, notification receiver, and proxy forwarder
are used. See "Simple Network Management Protocol (SNMP)
Applications" [<a href="./rfc3413" title=""Simple Network Management Protocol (SNMP) Applications"">RFC3413</a>] for further information.
While security protocols frequently refer to a user, the terminology
used in [<a href="./rfc3411" title=""An Architecture for Describing Simple Network Management Protocol (SNMP) Management Frameworks"">RFC3411</a>] and in this memo is "principal". A principal is
the "who" on whose behalf services are provided or processing takes
place. A principal can be, among other things, an individual acting
in a particular role, a set of individuals each acting in a
particular role, an application or a set of applications, or a
combination of these within an administrative domain.
<span class="h3"><a class="selflink" id="section-1.3" href="#section-1.3">1.3</a>. Modularity</span>
The reader is expected to have read and understood the description of
the SNMP architecture, as defined in [<a href="./rfc3411" title=""An Architecture for Describing Simple Network Management Protocol (SNMP) Management Frameworks"">RFC3411</a>], and the architecture
extension specified in "Transport Subsystem for the Simple Network
Management Protocol (SNMP)" [<a href="./rfc5590" title=""Transport Subsystem for the Simple Network Management Protocol (SNMP)"">RFC5590</a>], which enables the use of
external "lower-layer transport" protocols to provide message
<span class="grey">Harrington & Hardaker Standards Track [Page 4]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-5" ></span>
<span class="grey"><a href="./rfc5591">RFC 5591</a> Transport Security Model for SNMP June 2009</span>
security. Transport Models are tied into the SNMP architecture
through the Transport Subsystem. The Transport Security Model is
designed to work with such lower-layer, secure Transport Models.
In keeping with the <a href="./rfc3411">RFC 3411</a> design decisions to use self-contained
documents, this memo includes the elements of procedure plus
associated MIB objects that are needed for processing the Transport
Security Model for SNMP. These MIB objects SHOULD NOT be referenced
in other documents. This allows the Transport Security Model to be
designed and documented as independent and self-contained, having no
direct impact on other modules. It also allows this module to be
upgraded and supplemented as the need arises, and to move along the
standards track on different time-lines from other modules.
This modularity of specification is not meant to be interpreted as
imposing any specific requirements on implementation.
<span class="h3"><a class="selflink" id="section-1.4" href="#section-1.4">1.4</a>. Motivation</span>
This memo describes a Security Model to make use of Transport Models
that use lower-layer, secure transports and existing and commonly
deployed security infrastructures. This Security Model is designed
to meet the security and operational needs of network administrators,
maximize usability in operational environments to achieve high
deployment success, and at the same time minimize implementation and
deployment costs to minimize the time until deployment is possible.
<span class="h3"><a class="selflink" id="section-1.5" href="#section-1.5">1.5</a>. Constraints</span>
The design of this SNMP Security Model is also influenced by the
following constraints:
1. In times of network stress, the security protocol and its
underlying security mechanisms SHOULD NOT depend solely upon the
ready availability of other network services (e.g., Network Time
Protocol (NTP) or Authentication, Authorization, and Accounting
(AAA) protocols).
2. When the network is not under stress, the Security Model and its
underlying security mechanisms MAY depend upon the ready
availability of other network services.
3. It might not be possible for the Security Model to determine when
the network is under stress.
4. A Security Model SHOULD NOT require changes to the SNMP
architecture.
<span class="grey">Harrington & Hardaker Standards Track [Page 5]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-6" ></span>
<span class="grey"><a href="./rfc5591">RFC 5591</a> Transport Security Model for SNMP June 2009</span>
5. A Security Model SHOULD NOT require changes to the underlying
security protocol.
<span class="h2"><a class="selflink" id="section-2" href="#section-2">2</a>. How the Transport Security Model Fits in the Architecture</span>
The Transport Security Model is designed to fit into the <a href="./rfc3411">RFC 3411</a>
architecture as a Security Model in the Security Subsystem and to
utilize the services of a secure Transport Model.
For incoming messages, a secure Transport Model will pass a
tmStateReference cache, described in [<a href="./rfc5590" title=""Transport Subsystem for the Simple Network Management Protocol (SNMP)"">RFC5590</a>]. To maintain <a href="./rfc3411">RFC 3411</a>
modularity, the Transport Model will not know which securityModel
will process the incoming message; the Message Processing Model will
determine this. If the Transport Security Model is used with a non-
secure Transport Model, then the cache will not exist or will not be
populated with security parameters, which will cause the Transport
Security Model to return an error (see <a href="#section-5.2">Section 5.2</a>).
The Transport Security Model will create the securityName and
securityLevel to be passed to applications, and will verify that the
tmTransportSecurityLevel reported by the Transport Model is at least
as strong as the securityLevel requested by the Message Processing
Model.
For outgoing messages, the Transport Security Model will create a
tmStateReference cache (or use an existing one), and will pass the
tmStateReference to the specified Transport Model.
<span class="h3"><a class="selflink" id="section-2.1" href="#section-2.1">2.1</a>. Security Capabilities of this Model</span>
<span class="h4"><a class="selflink" id="section-2.1.1" href="#section-2.1.1">2.1.1</a>. Threats</span>
The Transport Security Model is compatible with the <a href="./rfc3411">RFC 3411</a>
architecture and provides protection against the threats identified
by the <a href="./rfc3411">RFC 3411</a> architecture. However, the Transport Security Model
does not provide security mechanisms such as authentication and
encryption itself. Which threats are addressed and how they are
mitigated depends on the Transport Model used. To avoid creating
potential security vulnerabilities, operators should configure their
system so this Security Model is always used with a Transport Model
that provides appropriate security, where "appropriate" for a
particular deployment is an administrative decision.
<span class="grey">Harrington & Hardaker Standards Track [Page 6]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-7" ></span>
<span class="grey"><a href="./rfc5591">RFC 5591</a> Transport Security Model for SNMP June 2009</span>
<span class="h4"><a class="selflink" id="section-2.1.2" href="#section-2.1.2">2.1.2</a>. Security Levels</span>
The <a href="./rfc3411">RFC 3411</a> architecture recognizes three levels of security:
- without authentication and without privacy (noAuthNoPriv)
- with authentication but without privacy (authNoPriv)
- with authentication and with privacy (authPriv)
The model-independent securityLevel parameter is used to request
specific levels of security for outgoing messages and to assert that
specific levels of security were applied during the transport and
processing of incoming messages.
The transport-layer algorithms used to provide security should not be
exposed to the Transport Security Model, as the Transport Security
Model has no mechanisms by which it can test whether an assertion
made by a Transport Model is accurate.
The Transport Security Model trusts that the underlying secure
transport connection has been properly configured to support security
characteristics at least as strong as reported in
tmTransportSecurityLevel.
<span class="h3"><a class="selflink" id="section-2.2" href="#section-2.2">2.2</a>. Transport Sessions</span>
The Transport Security Model does not work with transport sessions
directly. Instead the transport-related state is associated with a
unique combination of transportDomain, transportAddress,
securityName, and securityLevel, and is referenced via the
tmStateReference parameter. How and if this is mapped to a
particular transport or channel is the responsibility of the
Transport Subsystem.
<span class="h3"><a class="selflink" id="section-2.3" href="#section-2.3">2.3</a>. Coexistence</span>
In the <a href="./rfc3411">RFC 3411</a> architecture, a Message Processing Model determines
which Security Model SHALL be called. As of this writing, IANA has
registered four Message Processing Models (SNMPv1, SNMPv2c, SNMPv2u/
SNMPv2*, and SNMPv3) and three other Security Models (SNMPv1,
SNMPv2c, and the User-based Security Model).
<span class="h4"><a class="selflink" id="section-2.3.1" href="#section-2.3.1">2.3.1</a>. Coexistence with Message Processing Models</span>
The SNMPv1 and SNMPv2c message processing described in <a href="https://www.rfc-editor.org/bcp/bcp74">BCP 74</a>
[<a href="./rfc3584" title=""Coexistence between Version 1, Version 2, and Version 3 of the Internet-standard Network Management Framework"">RFC3584</a>] always selects the SNMPv1(1) and SNMPv2c(2) Security
Models. Since there is no mechanism defined in <a href="./rfc3584">RFC 3584</a> to select an
<span class="grey">Harrington & Hardaker Standards Track [Page 7]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-8" ></span>
<span class="grey"><a href="./rfc5591">RFC 5591</a> Transport Security Model for SNMP June 2009</span>
alternative Security Model, SNMPv1 and SNMPv2c messages cannot use
the Transport Security Model. Messages might still be able to be
conveyed over a secure transport protocol, but the Transport Security
Model will not be invoked.
The SNMPv2u/SNMPv2* Message Processing Model is an historic artifact
for which there is no existing IETF specification.
The SNMPv3 message processing defined in [<a href="./rfc3412" title=""Message Processing and Dispatching for the Simple Network Management Protocol (SNMP)"">RFC3412</a>] extracts the
securityModel from the msgSecurityModel field of an incoming
SNMPv3Message. When this value is transportSecurityModel(4),
security processing is directed to the Transport Security Model. For
an outgoing message to be secured using the Transport Security Model,
the application MUST specify a securityModel parameter value of
transportSecurityModel(4) in the sendPdu Abstract Service Interface
(ASI).
<span class="h4"><a class="selflink" id="section-2.3.2" href="#section-2.3.2">2.3.2</a>. Coexistence with Other Security Models</span>
The Transport Security Model uses its own MIB module for processing
to maintain independence from other Security Models. This allows the
Transport Security Model to coexist with other Security Models, such
as the User-based Security Model (USM) [<a href="./rfc3414" title=""User-based Security Model (USM) for version 3 of the Simple Network Management Protocol (SNMPv3)"">RFC3414</a>].
<span class="h4"><a class="selflink" id="section-2.3.3" href="#section-2.3.3">2.3.3</a>. Coexistence with Transport Models</span>
The Transport Security Model (TSM) MAY work with multiple Transport
Models, but the <a href="./rfc3411">RFC 3411</a> Abstract Service Interfaces (ASIs) do not
carry a value for the Transport Model. The MIB module defined in
this memo allows an administrator to configure whether or not TSM
prepends a Transport Model prefix to the securityName. This will
allow SNMP applications to consider Transport Model as a factor when
making decisions, such as access control, notification generation,
and proxy forwarding.
To have SNMP properly utilize the security services coordinated by
the Transport Security Model, this Security Model MUST only be used
with Transport Models that know how to process a tmStateReference,
such as the Secure Shell Transport Model [<a href="./rfc5592" title=""Secure Shell Transport Model for the Simple Network Management Protocol (SNMP)"">RFC5592</a>].
<span class="h2"><a class="selflink" id="section-3" href="#section-3">3</a>. Cached Information and References</span>
When performing SNMP processing, there are two levels of state
information that might need to be retained: the immediate state
linking a request-response pair and a potentially longer-term state
relating to transport and security. "Transport Subsystem for the
Simple Network Management Protocol (SNMP)" [<a href="./rfc5590" title=""Transport Subsystem for the Simple Network Management Protocol (SNMP)"">RFC5590</a>] defines general
requirements for caches and references.
<span class="grey">Harrington & Hardaker Standards Track [Page 8]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-9" ></span>
<span class="grey"><a href="./rfc5591">RFC 5591</a> Transport Security Model for SNMP June 2009</span>
This document defines additional cache requirements related to the
Transport Security Model.
<span class="h3"><a class="selflink" id="section-3.1" href="#section-3.1">3.1</a>. Transport Security Model Cached Information</span>
The Transport Security Model has specific responsibilities regarding
the cached information.
<span class="h4"><a class="selflink" id="section-3.1.1" href="#section-3.1.1">3.1.1</a>. securityStateReference</span>
The Transport Security Model adds the tmStateReference received from
the processIncomingMsg ASI to the securityStateReference. This
tmStateReference can then be retrieved during the generateResponseMsg
ASI so that it can be passed back to the Transport Model.
<span class="h4"><a class="selflink" id="section-3.1.2" href="#section-3.1.2">3.1.2</a>. tmStateReference</span>
For outgoing messages, the Transport Security Model uses parameters
provided by the SNMP application to look up or create a
tmStateReference.
For the Transport Security Model, the security parameters used for a
response MUST be the same as those used for the corresponding
request. This Security Model uses the tmStateReference stored as
part of the securityStateReference when appropriate. For responses
and reports, this Security Model sets the tmSameSecurity flag to true
in the tmStateReference before passing it to a Transport Model.
For incoming messages, the Transport Security Model uses parameters
provided in the tmStateReference cache to establish a securityName,
and to verify adequate security levels.
<span class="h4"><a class="selflink" id="section-3.1.3" href="#section-3.1.3">3.1.3</a>. Prefixes and securityNames</span>
The SNMP-VIEW-BASED-ACM-MIB module [<a href="./rfc3415" title=""View-based Access Control Model (VACM) for the Simple Network Management Protocol (SNMP)"">RFC3415</a>], the SNMP-TARGET-MIB
module [<a href="./rfc3413" title=""Simple Network Management Protocol (SNMP) Applications"">RFC3413</a>], and other MIB modules contain objects to configure
security parameters for use by applications such as access control,
notification generation, and proxy forwarding.
Transport domains and their corresponding prefixes are coordinated
via the IANA registry "SNMP Transport Domains".
If snmpTsmConfigurationUsePrefix is set to true, then all
securityNames provided by, or provided to, the Transport Security
Model MUST include a valid transport domain prefix.
<span class="grey">Harrington & Hardaker Standards Track [Page 9]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-10" ></span>
<span class="grey"><a href="./rfc5591">RFC 5591</a> Transport Security Model for SNMP June 2009</span>
If snmpTsmConfigurationUsePrefix is set to false, then all
securityNames provided by, or provided to, the Transport Security
Model MUST NOT include a transport domain prefix.
The tmSecurityName in the tmStateReference stored as part of the
securityStateReference does not contain a prefix.
<span class="h2"><a class="selflink" id="section-4" href="#section-4">4</a>. Processing an Outgoing Message</span>
An error indication might return an Object Identifier (OID) and value
for an incremented counter, a value for securityLevel, values for
contextEngineID and contextName for the counter, and the
securityStateReference, if this information is available at the point
where the error is detected.
<span class="h3"><a class="selflink" id="section-4.1" href="#section-4.1">4.1</a>. Security Processing for an Outgoing Message</span>
This section describes the procedure followed by the Transport
Security Model.
The parameters needed for generating a message are supplied to the
Security Model by the Message Processing Model via the
generateRequestMsg() or the generateResponseMsg() ASI. The Transport
Subsystem architectural extension has added the transportDomain,
transportAddress, and tmStateReference parameters to the original <a href="./rfc3411">RFC</a>
<a href="./rfc3411">3411</a> ASIs.
statusInformation = -- success or errorIndication
generateRequestMsg(
IN messageProcessingModel -- typically, SNMP version
IN globalData -- message header, admin data
IN maxMessageSize -- of the sending SNMP entity
IN transportDomain -- (NEW) specified by application
IN transportAddress -- (NEW) specified by application
IN securityModel -- for the outgoing message
IN securityEngineID -- authoritative SNMP entity
IN securityName -- on behalf of this principal
IN securityLevel -- Level of Security requested
IN scopedPDU -- message (plaintext) payload
OUT securityParameters -- filled in by Security Module
OUT wholeMsg -- complete generated message
OUT wholeMsgLength -- length of generated message
OUT tmStateReference -- (NEW) transport info
)
statusInformation = -- success or errorIndication
generateResponseMsg(
IN messageProcessingModel -- typically, SNMP version
<span class="grey">Harrington & Hardaker Standards Track [Page 10]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-11" ></span>
<span class="grey"><a href="./rfc5591">RFC 5591</a> Transport Security Model for SNMP June 2009</span>
IN globalData -- message header, admin data
IN maxMessageSize -- of the sending SNMP entity
IN transportDomain -- (NEW) specified by application
IN transportAddress -- (NEW) specified by application
IN securityModel -- for the outgoing message
IN securityEngineID -- authoritative SNMP entity
IN securityName -- on behalf of this principal
IN securityLevel -- Level of Security requested
IN scopedPDU -- message (plaintext) payload
IN securityStateReference -- reference to security state
-- information from original
-- request
OUT securityParameters -- filled in by Security Module
OUT wholeMsg -- complete generated message
OUT wholeMsgLength -- length of generated message
OUT tmStateReference -- (NEW) transport info
)
<span class="h3"><a class="selflink" id="section-4.2" href="#section-4.2">4.2</a>. Elements of Procedure for Outgoing Messages</span>
1. If there is a securityStateReference (Response or Report
message), then this Security Model uses the cached information
rather than the information provided by the ASI. Extract the
tmStateReference from the securityStateReference cache. Set the
tmRequestedSecurityLevel to the value of the extracted
tmTransportSecurityLevel. Set the tmSameSecurity parameter in
the tmStateReference cache to true. The cachedSecurityData for
this message can now be discarded.
2. If there is no securityStateReference (e.g., a Request-type or
Notification message), then create a tmStateReference cache. Set
tmTransportDomain to the value of transportDomain,
tmTransportAddress to the value of transportAddress, and
tmRequestedSecurityLevel to the value of securityLevel.
(Implementers might optimize by pointing to saved copies of these
session-specific values.) Set the transaction-specific
tmSameSecurity parameter to false.
If the snmpTsmConfigurationUsePrefix object is set to false, then
set tmSecurityName to the value of securityName.
If the snmpTsmConfigurationUsePrefix object is set to true, then
use the transportDomain to look up the corresponding prefix.
(Since the securityStateReference stores the tmStateReference
with the tmSecurityName for the incoming message, and since
tmSecurityName never has a prefix, the prefix-stripping step only
occurs when we are not using the securityStateReference).
<span class="grey">Harrington & Hardaker Standards Track [Page 11]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-12" ></span>
<span class="grey"><a href="./rfc5591">RFC 5591</a> Transport Security Model for SNMP June 2009</span>
If the prefix lookup fails for any reason, then the
snmpTsmUnknownPrefixes counter is incremented, an error
indication is returned to the calling module, and message
processing stops.
If the lookup succeeds, but there is no prefix in the
securityName, or the prefix returned does not match the prefix
in the securityName, or the length of the prefix is less than
1 or greater than 4 US-ASCII alpha-numeric characters, then
the snmpTsmInvalidPrefixes counter is incremented, an error
indication is returned to the calling module, and message
processing stops.
Strip the transport-specific prefix and trailing ':' character
(US-ASCII 0x3a) from the securityName. Set tmSecurityName to
the value of securityName.
3. Set securityParameters to a zero-length OCTET STRING ('0400').
4. Combine the message parts into a wholeMsg and calculate
wholeMsgLength.
5. The wholeMsg, wholeMsgLength, securityParameters, and
tmStateReference are returned to the calling Message Processing
Model with the statusInformation set to success.
<span class="h2"><a class="selflink" id="section-5" href="#section-5">5</a>. Processing an Incoming SNMP Message</span>
An error indication might return an OID and value for an incremented
counter, a value for securityLevel, values for contextEngineID and
contextName for the counter, and the securityStateReference, if this
information is available at the point where the error is detected.
<span class="h3"><a class="selflink" id="section-5.1" href="#section-5.1">5.1</a>. Security Processing for an Incoming Message</span>
This section describes the procedure followed by the Transport
Security Model whenever it receives an incoming message from a
Message Processing Model. The ASI from a Message Processing Model to
the Security Subsystem for a received message is:
statusInformation = -- errorIndication or success
-- error counter OID/value if error
processIncomingMsg(
IN messageProcessingModel -- typically, SNMP version
IN maxMessageSize -- from the received message
IN securityParameters -- from the received message
IN securityModel -- from the received message
IN securityLevel -- from the received message
<span class="grey">Harrington & Hardaker Standards Track [Page 12]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-13" ></span>
<span class="grey"><a href="./rfc5591">RFC 5591</a> Transport Security Model for SNMP June 2009</span>
IN wholeMsg -- as received on the wire
IN wholeMsgLength -- length as received on the wire
IN tmStateReference -- (NEW) from the Transport Model
OUT securityEngineID -- authoritative SNMP entity
OUT securityName -- identification of the principal
OUT scopedPDU, -- message (plaintext) payload
OUT maxSizeResponseScopedPDU -- maximum size sender can handle
OUT securityStateReference -- reference to security state
) -- information, needed for response
<span class="h3"><a class="selflink" id="section-5.2" href="#section-5.2">5.2</a>. Elements of Procedure for Incoming Messages</span>
1. Set the securityEngineID to the local snmpEngineID.
2. If tmStateReference does not refer to a cache containing values
for tmTransportDomain, tmTransportAddress, tmSecurityName, and
tmTransportSecurityLevel, then the snmpTsmInvalidCaches counter
is incremented, an error indication is returned to the calling
module, and Security Model processing stops for this message.
3. Copy the tmSecurityName to securityName.
If the snmpTsmConfigurationUsePrefix object is set to true, then
use the tmTransportDomain to look up the corresponding prefix.
If the prefix lookup fails for any reason, then the
snmpTsmUnknownPrefixes counter is incremented, an error
indication is returned to the calling module, and message
processing stops.
If the lookup succeeds but the prefix length is less than 1 or
greater than 4 octets, then the snmpTsmInvalidPrefixes counter
is incremented, an error indication is returned to the calling
module, and message processing stops.
Set the securityName to be the concatenation of the prefix, a
':' character (US-ASCII 0x3a), and the tmSecurityName.
4. Compare the value of tmTransportSecurityLevel in the
tmStateReference cache to the value of the securityLevel
parameter passed in the processIncomingMsg ASI. If securityLevel
specifies privacy (Priv) and tmTransportSecurityLevel specifies
no privacy (noPriv), or if securityLevel specifies authentication
(auth) and tmTransportSecurityLevel specifies no authentication
(noAuth) was provided by the Transport Model, then the
snmpTsmInadequateSecurityLevels counter is incremented, an error
indication (unsupportedSecurityLevel) together with the OID and
<span class="grey">Harrington & Hardaker Standards Track [Page 13]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-14" ></span>
<span class="grey"><a href="./rfc5591">RFC 5591</a> Transport Security Model for SNMP June 2009</span>
value of the incremented counter is returned to the calling
module, and Transport Security Model processing stops for this
message.
5. The tmStateReference is cached as cachedSecurityData so that a
possible response to this message will use the same security
parameters. Then securityStateReference is set for subsequent
references to this cached data.
6. The scopedPDU component is extracted from the wholeMsg.
7. The maxSizeResponseScopedPDU is calculated. This is the maximum
size allowed for a scopedPDU for a possible Response message.
8. The statusInformation is set to success and a return is made to
the calling module passing back the OUT parameters as specified
in the processIncomingMsg ASI.
<span class="h2"><a class="selflink" id="section-6" href="#section-6">6</a>. MIB Module Overview</span>
This MIB module provides objects for use only by the Transport
Security Model. It defines a configuration scalar and related error
counters.
<span class="h3"><a class="selflink" id="section-6.1" href="#section-6.1">6.1</a>. Structure of the MIB Module</span>
Objects in this MIB module are arranged into subtrees. Each subtree
is organized as a set of related objects. The overall structure and
assignment of objects to their subtrees, and the intended purpose of
each subtree, is shown below.
<span class="h4"><a class="selflink" id="section-6.1.1" href="#section-6.1.1">6.1.1</a>. The snmpTsmStats Subtree</span>
This subtree contains error counters specific to the Transport
Security Model.
<span class="h4"><a class="selflink" id="section-6.1.2" href="#section-6.1.2">6.1.2</a>. The snmpTsmConfiguration Subtree</span>
This subtree contains a configuration object that enables
administrators to specify if they want a transport domain prefix
prepended to securityNames for use by applications.
<span class="h3"><a class="selflink" id="section-6.2" href="#section-6.2">6.2</a>. Relationship to Other MIB Modules</span>
Some management objects defined in other MIB modules are applicable
to an entity implementing the Transport Security Model. In
particular, it is assumed that an entity implementing the Transport
Security Model will implement the SNMP-FRAMEWORK-MIB [<a href="./rfc3411" title=""An Architecture for Describing Simple Network Management Protocol (SNMP) Management Frameworks"">RFC3411</a>], the
<span class="grey">Harrington & Hardaker Standards Track [Page 14]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-15" ></span>
<span class="grey"><a href="./rfc5591">RFC 5591</a> Transport Security Model for SNMP June 2009</span>
SNMP-TARGET-MIB [<a href="./rfc3413" title=""Simple Network Management Protocol (SNMP) Applications"">RFC3413</a>], the SNMP-VIEW-BASED-ACM-MIB [<a href="./rfc3415" title=""View-based Access Control Model (VACM) for the Simple Network Management Protocol (SNMP)"">RFC3415</a>], and
the SNMPv2-MIB [<a href="./rfc3418" title=""Management Information Base (MIB) for the Simple Network Management Protocol (SNMP)"">RFC3418</a>]. These are not needed to implement the
SNMP-TSM-MIB.
<span class="h4"><a class="selflink" id="section-6.2.1" href="#section-6.2.1">6.2.1</a>. MIB Modules Required for IMPORTS</span>
The following MIB module imports items from [<a href="./rfc2578" title=""Structure of Management Information Version 2 (SMIv2)"">RFC2578</a>], [<a href="./rfc2579" title=""Textual Conventions for SMIv2"">RFC2579</a>], and
[<a href="./rfc2580" title=""Conformance Statements for SMIv2"">RFC2580</a>].
<span class="h2"><a class="selflink" id="section-7" href="#section-7">7</a>. MIB Module Definition</span>
SNMP-TSM-MIB DEFINITIONS ::= BEGIN
IMPORTS
MODULE-IDENTITY, OBJECT-TYPE,
mib-2, Counter32
FROM SNMPv2-SMI -- <a href="./rfc2578">RFC2578</a>
MODULE-COMPLIANCE, OBJECT-GROUP
FROM SNMPv2-CONF -- <a href="./rfc2580">RFC2580</a>
TruthValue
FROM SNMPv2-TC -- <a href="./rfc2579">RFC2579</a>
;
snmpTsmMIB MODULE-IDENTITY
LAST-UPDATED "200906090000Z"
ORGANIZATION "ISMS Working Group"
CONTACT-INFO "WG-EMail: isms@lists.ietf.org
Subscribe: isms-request@lists.ietf.org
Chairs:
Juergen Quittek
NEC Europe Ltd.
Network Laboratories
Kurfuersten-Anlage 36
69115 Heidelberg
Germany
+49 6221 90511-15
quittek@netlab.nec.de
Juergen Schoenwaelder
Jacobs University Bremen
Campus Ring 1
28725 Bremen
Germany
+49 421 200-3587
j.schoenwaelder@jacobs-university.de
<span class="grey">Harrington & Hardaker Standards Track [Page 15]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-16" ></span>
<span class="grey"><a href="./rfc5591">RFC 5591</a> Transport Security Model for SNMP June 2009</span>
Editor:
David Harrington
Huawei Technologies USA
1700 Alma Dr.
Plano TX 75075
USA
+1 603-436-8634
ietfdbh@comcast.net
Wes Hardaker
Cobham Analytic Solutions
P.O. Box 382
Davis, CA 95617
USA
+1 530 792 1913
ietf@hardakers.net
"
DESCRIPTION
"The Transport Security Model MIB.
In keeping with the <a href="./rfc3411">RFC 3411</a> design decisions to use
self-contained documents, the RFC that contains the definition
of this MIB module also includes the elements of procedure
that are needed for processing the Transport Security Model
for SNMP. These MIB objects SHOULD NOT be modified via other
subsystems or models defined in other documents. This allows
the Transport Security Model for SNMP to be designed and
documented as independent and self-contained, having no direct
impact on other modules, and this allows this module to be
upgraded and supplemented as the need arises, and to move
along the standards track on different time-lines from other
modules.
Copyright (c) 2009 IETF Trust and the persons
identified as authors of the code. All rights reserved.
Redistribution and use in source and binary forms, with or
without modification, are permitted provided that the
following conditions are met:
- Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials
provided with the distribution.
<span class="grey">Harrington & Hardaker Standards Track [Page 16]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-17" ></span>
<span class="grey"><a href="./rfc5591">RFC 5591</a> Transport Security Model for SNMP June 2009</span>
- Neither the name of Internet Society, IETF or IETF Trust,
nor the names of specific contributors, may be used to endorse
or promote products derived from this software without
specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS 'AS IS' AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
This version of this MIB module is part of <a href="./rfc5591">RFC 5591</a>;
see the RFC itself for full legal notices."
REVISION "200906090000Z"
DESCRIPTION "The initial version, published in <a href="./rfc5591">RFC 5591</a>."
::= { mib-2 190 }
-- ---------------------------------------------------------- --
-- subtrees in the SNMP-TSM-MIB
-- ---------------------------------------------------------- --
snmpTsmNotifications OBJECT IDENTIFIER ::= { snmpTsmMIB 0 }
snmpTsmMIBObjects OBJECT IDENTIFIER ::= { snmpTsmMIB 1 }
snmpTsmConformance OBJECT IDENTIFIER ::= { snmpTsmMIB 2 }
-- -------------------------------------------------------------
-- Objects
-- -------------------------------------------------------------
-- Statistics for the Transport Security Model
snmpTsmStats OBJECT IDENTIFIER ::= { snmpTsmMIBObjects 1 }
snmpTsmInvalidCaches OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION "The number of incoming messages dropped because the
<span class="grey">Harrington & Hardaker Standards Track [Page 17]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-18" ></span>
<span class="grey"><a href="./rfc5591">RFC 5591</a> Transport Security Model for SNMP June 2009</span>
tmStateReference referred to an invalid cache.
"
::= { snmpTsmStats 1 }
snmpTsmInadequateSecurityLevels OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION "The number of incoming messages dropped because
the securityLevel asserted by the Transport Model was
less than the securityLevel requested by the
application.
"
::= { snmpTsmStats 2 }
snmpTsmUnknownPrefixes OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION "The number of messages dropped because
snmpTsmConfigurationUsePrefix was set to true and
there is no known prefix for the specified transport
domain.
"
::= { snmpTsmStats 3 }
snmpTsmInvalidPrefixes OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION "The number of messages dropped because
the securityName associated with an outgoing message
did not contain a valid transport domain prefix.
"
::= { snmpTsmStats 4 }
-- -------------------------------------------------------------
-- Configuration
-- -------------------------------------------------------------
-- Configuration for the Transport Security Model
snmpTsmConfiguration OBJECT IDENTIFIER ::= { snmpTsmMIBObjects 2 }
snmpTsmConfigurationUsePrefix OBJECT-TYPE
SYNTAX TruthValue
MAX-ACCESS read-write
STATUS current
<span class="grey">Harrington & Hardaker Standards Track [Page 18]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-19" ></span>
<span class="grey"><a href="./rfc5591">RFC 5591</a> Transport Security Model for SNMP June 2009</span>
DESCRIPTION "If this object is set to true, then securityNames
passing to and from the application are expected to
contain a transport-domain-specific prefix. If this
object is set to true, then a domain-specific prefix
will be added by the TSM to the securityName for
incoming messages and removed from the securityName
when processing outgoing messages. Transport domains
and prefixes are maintained in a registry by IANA.
This object SHOULD persist across system reboots.
"
DEFVAL { false }
::= { snmpTsmConfiguration 1 }
-- -------------------------------------------------------------
-- snmpTsmMIB - Conformance Information
-- -------------------------------------------------------------
snmpTsmCompliances OBJECT IDENTIFIER ::= { snmpTsmConformance 1 }
snmpTsmGroups OBJECT IDENTIFIER ::= { snmpTsmConformance 2 }
-- -------------------------------------------------------------
-- Compliance statements
-- -------------------------------------------------------------
snmpTsmCompliance MODULE-COMPLIANCE
STATUS current
DESCRIPTION "The compliance statement for SNMP engines that support
the SNMP-TSM-MIB.
"
MODULE
MANDATORY-GROUPS { snmpTsmGroup }
::= { snmpTsmCompliances 1 }
-- -------------------------------------------------------------
-- Units of conformance
-- -------------------------------------------------------------
snmpTsmGroup OBJECT-GROUP
OBJECTS {
snmpTsmInvalidCaches,
snmpTsmInadequateSecurityLevels,
snmpTsmUnknownPrefixes,
snmpTsmInvalidPrefixes,
snmpTsmConfigurationUsePrefix
}
STATUS current
DESCRIPTION "A collection of objects for maintaining
information of an SNMP engine that implements
<span class="grey">Harrington & Hardaker Standards Track [Page 19]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-20" ></span>
<span class="grey"><a href="./rfc5591">RFC 5591</a> Transport Security Model for SNMP June 2009</span>
the SNMP Transport Security Model.
"
::= { snmpTsmGroups 2 }
END
<span class="h2"><a class="selflink" id="section-8" href="#section-8">8</a>. Security Considerations</span>
This document describes a Security Model, compatible with the <a href="./rfc3411">RFC</a>
<a href="./rfc3411">3411</a> architecture, that permits SNMP to utilize security services
provided through an SNMP Transport Model. The Transport Security
Model relies on Transport Models for mutual authentication, binding
of keys, confidentiality, and integrity.
The Transport Security Model relies on secure Transport Models to
provide an authenticated principal identifier and an assertion of
whether authentication and privacy are used during transport. This
Security Model SHOULD always be used with Transport Models that
provide adequate security, but "adequate security" is a configuration
and/or run-time decision of the operator or management application.
The security threats and how these threats are mitigated should be
covered in detail in the specifications of the Transport Models and
the underlying secure transports.
An authenticated principal identifier (securityName) is used in SNMP
applications for purposes such as access control, notification
generation, and proxy forwarding. This Security Model supports
multiple Transport Models. Operators might judge some transports to
be more secure than others, so this Security Model can be configured
to prepend a prefix to the securityName to indicate the Transport
Model used to authenticate the principal. Operators can use the
prefixed securityName when making application decisions about levels
of access.
<span class="h3"><a class="selflink" id="section-8.1" href="#section-8.1">8.1</a>. MIB Module Security</span>
There are a number of management objects defined in this MIB module
with a MAX-ACCESS clause of read-write and/or read-create. Such
objects may be considered sensitive or vulnerable in some network
environments. The support for SET operations in a non-secure
environment without proper protection can have a negative effect on
network operations. These are the tables and objects and their
sensitivity/vulnerability:
<span class="grey">Harrington & Hardaker Standards Track [Page 20]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-21" ></span>
<span class="grey"><a href="./rfc5591">RFC 5591</a> Transport Security Model for SNMP June 2009</span>
o The snmpTsmConfigurationUsePrefix object could be modified,
creating a denial of service or authorizing SNMP messages that
would not have previously been authorized by an Access Control
Model (e.g., the View-based Access Control Model (VACM)).
Some of the readable objects in this MIB module (i.e., objects with a
MAX-ACCESS other than not-accessible) may be considered sensitive or
vulnerable in some network environments. It is thus important to
control even GET and/or NOTIFY access to these objects and possibly
to even encrypt the values of these objects when sending them over
the network via SNMP. These are the tables and objects and their
sensitivity/vulnerability:
o All the counters in this module refer to configuration errors and
do not expose sensitive information.
SNMP versions prior to SNMPv3 did not include adequate security.
Even if the network itself is secure (for example by using IPsec),
even then, there is no control as to who on the secure network is
allowed to access and GET/SET (read/change/create/delete) the objects
in this MIB module.
It is RECOMMENDED that implementers consider the security features as
provided by the SNMPv3 framework (see <a href="./rfc3410#section-8">[RFC3410], section 8</a>),
including full support for the USM and Transport Security Model
cryptographic mechanisms (for authentication and privacy).
Further, deployment of SNMP versions prior to SNMPv3 is NOT
RECOMMENDED. Instead, it is RECOMMENDED to deploy SNMPv3 and to
enable cryptographic security. It is then a customer/operator
responsibility to ensure that the SNMP entity giving access to an
instance of this MIB module is properly configured to give access to
the objects only to those principals (users) that have legitimate
rights to indeed GET or SET (change/create/delete) them.
<span class="h2"><a class="selflink" id="section-9" href="#section-9">9</a>. IANA Considerations</span>
IANA has assigned:
1. An SMI number (190) with a prefix of mib-2 in the MIB module
registry for the MIB module in this document.
2. A value (4) to identify the Transport Security Model, in the
Security Models registry of the SNMP Number Spaces registry.
This results in the following table of values:
<span class="grey">Harrington & Hardaker Standards Track [Page 21]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-22" ></span>
<span class="grey"><a href="./rfc5591">RFC 5591</a> Transport Security Model for SNMP June 2009</span>
Value Description References
----- ----------- ----------
0 reserved for 'any' [<a href="./rfc3411" title=""An Architecture for Describing Simple Network Management Protocol (SNMP) Management Frameworks"">RFC3411</a>]
1 reserved for SNMPv1 [<a href="./rfc3411" title=""An Architecture for Describing Simple Network Management Protocol (SNMP) Management Frameworks"">RFC3411</a>]
2 reserved for SNMPv2c [<a href="./rfc3411" title=""An Architecture for Describing Simple Network Management Protocol (SNMP) Management Frameworks"">RFC3411</a>]
3 User-Based Security Model (USM) [<a href="./rfc3411" title=""An Architecture for Describing Simple Network Management Protocol (SNMP) Management Frameworks"">RFC3411</a>]
4 Transport Security Model (TSM) [<a href="./rfc5591">RFC5591</a>]
<span class="h2"><a class="selflink" id="section-10" href="#section-10">10</a>. Acknowledgments</span>
The editors would like to thank Jeffrey Hutzelman for sharing his SSH
insights and Dave Shield for an outstanding job wordsmithing the
existing document to improve organization and clarity.
Additionally, helpful document reviews were received from Juergen
Schoenwaelder.
<span class="h2"><a class="selflink" id="section-11" href="#section-11">11</a>. References</span>
<span class="h3"><a class="selflink" id="section-11.1" href="#section-11.1">11.1</a>. Normative References</span>
[<a id="ref-RFC2119">RFC2119</a>] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", <a href="https://www.rfc-editor.org/bcp/bcp14">BCP 14</a>, <a href="./rfc2119">RFC 2119</a>, March 1997.
[<a id="ref-RFC2578">RFC2578</a>] McCloghrie, K., Ed., Perkins, D., Ed., and J.
Schoenwaelder, Ed., "Structure of Management Information
Version 2 (SMIv2)", STD 58, <a href="./rfc2578">RFC 2578</a>, April 1999.
[<a id="ref-RFC2579">RFC2579</a>] McCloghrie, K., Ed., Perkins, D., Ed., and J.
Schoenwaelder, Ed., "Textual Conventions for SMIv2",
STD 58, <a href="./rfc2579">RFC 2579</a>, April 1999.
[<a id="ref-RFC2580">RFC2580</a>] McCloghrie, K., Perkins, D., and J. Schoenwaelder,
"Conformance Statements for SMIv2", STD 58, <a href="./rfc2580">RFC 2580</a>,
April 1999.
[<a id="ref-RFC3411">RFC3411</a>] Harrington, D., Presuhn, R., and B. Wijnen, "An
Architecture for Describing Simple Network Management
Protocol (SNMP) Management Frameworks", STD 62, <a href="./rfc3411">RFC 3411</a>,
December 2002.
[<a id="ref-RFC3412">RFC3412</a>] Case, J., Harrington, D., Presuhn, R., and B. Wijnen,
"Message Processing and Dispatching for the Simple Network
Management Protocol (SNMP)", STD 62, <a href="./rfc3412">RFC 3412</a>,
December 2002.
<span class="grey">Harrington & Hardaker Standards Track [Page 22]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-23" ></span>
<span class="grey"><a href="./rfc5591">RFC 5591</a> Transport Security Model for SNMP June 2009</span>
[<a id="ref-RFC3413">RFC3413</a>] Levi, D., Meyer, P., and B. Stewart, "Simple Network
Management Protocol (SNMP) Applications", STD 62,
<a href="./rfc3413">RFC 3413</a>, December 2002.
[<a id="ref-RFC3414">RFC3414</a>] Blumenthal, U. and B. Wijnen, "User-based Security Model
(USM) for version 3 of the Simple Network Management
Protocol (SNMPv3)", STD 62, <a href="./rfc3414">RFC 3414</a>, December 2002.
[<a id="ref-RFC5590">RFC5590</a>] Harrington, D. and J. Schoenwaelder, "Transport Subsystem
for the Simple Network Management Protocol (SNMP)",
<a href="./rfc5590">RFC 5590</a>, June 2009.
<span class="h3"><a class="selflink" id="section-11.2" href="#section-11.2">11.2</a>. Informative References</span>
[<a id="ref-RFC3410">RFC3410</a>] Case, J., Mundy, R., Partain, D., and B. Stewart,
"Introduction and Applicability Statements for Internet-
Standard Management Framework", <a href="./rfc3410">RFC 3410</a>, December 2002.
[<a id="ref-RFC3415">RFC3415</a>] Wijnen, B., Presuhn, R., and K. McCloghrie, "View-based
Access Control Model (VACM) for the Simple Network
Management Protocol (SNMP)", STD 62, <a href="./rfc3415">RFC 3415</a>,
December 2002.
[<a id="ref-RFC3418">RFC3418</a>] Presuhn, R., "Management Information Base (MIB) for the
Simple Network Management Protocol (SNMP)", STD 62,
<a href="./rfc3418">RFC 3418</a>, December 2002.
[<a id="ref-RFC3584">RFC3584</a>] Frye, R., Levi, D., Routhier, S., and B. Wijnen,
"Coexistence between Version 1, Version 2, and Version 3
of the Internet-standard Network Management Framework",
<a href="https://www.rfc-editor.org/bcp/bcp74">BCP 74</a>, <a href="./rfc3584">RFC 3584</a>, August 2003.
[<a id="ref-RFC5592">RFC5592</a>] Harrington, D., Salowey, J., and W. Hardaker, "Secure
Shell Transport Model for the Simple Network Management
Protocol (SNMP)", <a href="./rfc5592">RFC 5592</a>, June 2009.
<span class="grey">Harrington & Hardaker Standards Track [Page 23]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-24" ></span>
<span class="grey"><a href="./rfc5591">RFC 5591</a> Transport Security Model for SNMP June 2009</span>
<span class="h2"><a class="selflink" id="appendix-A" href="#appendix-A">Appendix A</a>. Notification Tables Configuration</span>
The SNMP-TARGET-MIB and SNMP-NOTIFICATION-MIB [<a href="./rfc3413" title=""Simple Network Management Protocol (SNMP) Applications"">RFC3413</a>] are used to
configure notification originators with the destinations to which
notifications should be sent.
Most of the configuration is Security-Model-independent and
Transport-Model-independent.
The values we will use in the examples for the five model-independent
security and transport parameters are:
transportDomain = snmpSSHDomain
transportAddress = 192.0.2.1:5162
securityModel = Transport Security Model
securityName = alice
securityLevel = authPriv
The following example will configure the notification originator to
send informs to a notification receiver at 192.0.2.1:5162 using the
securityName "alice". "alice" is the name for the recipient from the
standpoint of the notification originator and is used for processing
access controls before sending a notification.
The columns marked with an "*" are the items that are Security-Model-
specific or Transport-Model-specific.
The configuration for the "alice" settings in the SNMP-VIEW-BASED-
ACM-MIB objects are not shown here for brevity. First, we configure
which type of notification will be sent for this taglist (toCRTag).
In this example, we choose to send an Inform.
snmpNotifyTable row:
snmpNotifyName CRNotif
snmpNotifyTag toCRTag
snmpNotifyType inform
snmpNotifyStorageType nonVolatile
snmpNotifyColumnStatus createAndGo
Then we configure a transport address to which notifications
associated with this taglist will be sent, and we specify which
snmpTargetParamsEntry will be used (toCR) when sending to this
transport address.
<span class="grey">Harrington & Hardaker Standards Track [Page 24]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-25" ></span>
<span class="grey"><a href="./rfc5591">RFC 5591</a> Transport Security Model for SNMP June 2009</span>
snmpTargetAddrTable row:
snmpTargetAddrName toCRAddr
* snmpTargetAddrTDomain snmpSSHDomain
* snmpTargetAddrTAddress 192.0.2.1:5162
snmpTargetAddrTimeout 1500
snmpTargetAddrRetryCount 3
snmpTargetAddrTagList toCRTag
snmpTargetAddrParams toCR (MUST match below)
snmpTargetAddrStorageType nonVolatile
snmpTargetAddrColumnStatus createAndGo
Then we configure which principal at the host will receive the
notifications associated with this taglist. Here, we choose "alice",
who uses the Transport Security Model.
snmpTargetParamsTable row:
snmpTargetParamsName toCR
snmpTargetParamsMPModel SNMPv3
* snmpTargetParamsSecurityModel TransportSecurityModel
snmpTargetParamsSecurityName "alice"
snmpTargetParamsSecurityLevel authPriv
snmpTargetParamsStorageType nonVolatile
snmpTargetParamsRowStatus createAndGo
<span class="h3"><a class="selflink" id="appendix-A.1" href="#appendix-A.1">A.1</a>. Transport Security Model Processing for Notifications</span>
The Transport Security Model is called using the generateRequestMsg()
ASI, with the following parameters (those with an * are from the
above tables):
statusInformation = -- success or errorIndication
generateRequestMsg(
IN messageProcessingModel -- *snmpTargetParamsMPModel
IN globalData -- message header, admin data
IN maxMessageSize -- of the sending SNMP entity
IN transportDomain -- *snmpTargetAddrTDomain
IN transportAddress -- *snmpTargetAddrTAddress
IN securityModel -- *snmpTargetParamsSecurityModel
IN securityEngineID -- immaterial; TSM will ignore.
IN securityName -- snmpTargetParamsSecurityName
IN securityLevel -- *snmpTargetParamsSecurityLevel
IN scopedPDU -- message (plaintext) payload
OUT securityParameters -- filled in by Security Module
OUT wholeMsg -- complete generated message
OUT wholeMsgLength -- length of generated message
OUT tmStateReference -- reference to transport info
)
<span class="grey">Harrington & Hardaker Standards Track [Page 25]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-26" ></span>
<span class="grey"><a href="./rfc5591">RFC 5591</a> Transport Security Model for SNMP June 2009</span>
The Transport Security Model will determine the Transport Model based
on the snmpTargetAddrTDomain. The selected Transport Model will
select the appropriate transport connection using the
tmStateReference cache created from the values of
snmpTargetAddrTAddress, snmpTargetParamsSecurityName, and
snmpTargetParamsSecurityLevel.
<span class="h2"><a class="selflink" id="appendix-B" href="#appendix-B">Appendix B</a>. Processing Differences between USM and Secure Transport</span>
USM and secure transports differ in the processing order and
responsibilities within the <a href="./rfc3411">RFC 3411</a> architecture. While the steps
are the same, they occur in a different order and might be done by
different subsystems. The following lists illustrate the difference
in the flow and the responsibility for different processing steps for
incoming messages when using USM and when using a secure transport.
(These lists are simplified for illustrative purposes, and do not
represent all details of processing. Transport Models MUST provide
the detailed elements of procedure.)
With USM, SNMPv1, and SNMPv2c Security Models, security processing
starts when the Message Processing Model decodes portions of the
ASN.1 message to extract header fields that are used to determine
which Security Model will process the message to perform
authentication, decryption, timeliness checking, integrity checking,
and translation of parameters to model-independent parameters. By
comparison, a secure transport performs those security functions on
the message, before the ASN.1 is decoded.
Step 6 cannot occur until after decryption occurs. Steps 6 and
beyond are the same for USM and a secure transport.
<span class="h3"><a class="selflink" id="appendix-B.1" href="#appendix-B.1">B.1</a>. USM and the <a href="./rfc3411">RFC 3411</a> Architecture</span>
1) Decode the ASN.1 header (Message Processing Model).
2) Determine the SNMP Security Model and parameters (Message
Processing Model).
3) Verify securityLevel (Security Model).
4) Translate parameters to model-independent parameters (Security
Model).
5) Authenticate the principal, check message integrity and
timeliness, and decrypt the message (Security Model).
<span class="grey">Harrington & Hardaker Standards Track [Page 26]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-27" ></span>
<span class="grey"><a href="./rfc5591">RFC 5591</a> Transport Security Model for SNMP June 2009</span>
6) Determine the pduType in the decrypted portions (Message
Processing Model).
7) Pass on the decrypted portions with model-independent parameters.
<span class="h3"><a class="selflink" id="appendix-B.2" href="#appendix-B.2">B.2</a>. Transport Subsystem and the <a href="./rfc3411">RFC 3411</a> Architecture</span>
1) Authenticate the principal, check integrity and timeliness of the
message, and decrypt the message (Transport Model).
2) Translate parameters to model-independent parameters (Transport
Model).
3) Decode the ASN.1 header (Message Processing Model).
4) Determine the SNMP Security Model and parameters (Message
Processing Model).
5) Verify securityLevel (Security Model).
6) Determine the pduType in the decrypted portions (Message
Processing Model).
7) Pass on the decrypted portions with model-independent security
parameters.
If a message is secured using a secure transport layer, then the
Transport Model will provide the translation from the authenticated
identity (e.g., an SSH user name) to a human-friendly identifier
(tmSecurityName) in step 2. The Security Model will provide a
mapping from that identifier to a model-independent securityName.
<span class="grey">Harrington & Hardaker Standards Track [Page 27]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-28" ></span>
<span class="grey"><a href="./rfc5591">RFC 5591</a> Transport Security Model for SNMP June 2009</span>
Authors' Addresses
David Harrington
Huawei Technologies (USA)
1700 Alma Dr. Suite 100
Plano, TX 75075
USA
Phone: +1 603 436 8634
EMail: ietfdbh@comcast.net
Wes Hardaker
Cobham Analytic Solutions
P.O. Box 382
Davis, CA 95617
US
Phone: +1 530 792 1913
EMail: ietf@hardakers.net
Harrington & Hardaker Standards Track [Page 28]
</pre>
|