1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133
|
<pre>Network Working Group R. Housley
Request for Comments: 5652 Vigil Security
Obsoletes: <a href="./rfc3852">3852</a> September 2009
Category: Standards Track
<span class="h1">Cryptographic Message Syntax (CMS)</span>
Abstract
This document describes the Cryptographic Message Syntax (CMS). This
syntax is used to digitally sign, digest, authenticate, or encrypt
arbitrary message content.
Status of This Memo
This document specifies an Internet standards track protocol for the
Internet community, and requests discussion and suggestions for
improvements. Please refer to the current edition of the "Internet
Official Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this memo is unlimited.
Copyright and License Notice
Copyright (c) 2009 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to <a href="https://www.rfc-editor.org/bcp/bcp78">BCP 78</a> and the IETF Trust's Legal
Provisions Relating to IETF Documents
(<a href="http://trustee.ietf.org/license-info">http://trustee.ietf.org/license-info</a>) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the BSD License.
This document may contain material from IETF Documents or IETF
Contributions published or made publicly available before November
10, 2008. The person(s) controlling the copyright in some of this
material may not have granted the IETF Trust the right to allow
modifications of such material outside the IETF Standards Process.
Without obtaining an adequate license from the person(s) controlling
the copyright in such materials, this document may not be modified
outside the IETF Standards Process, and derivative works of it may
not be created outside the IETF Standards Process, except to format
it for publication as an RFC or to translate it into languages other
than English.
<span class="grey">Housley Standards Track [Page 1]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-2" ></span>
<span class="grey"><a href="./rfc5652">RFC 5652</a> Cryptographic Message Syntax September 2009</span>
Table of Contents
<a href="#section-1">1</a>. Introduction ....................................................<a href="#page-3">3</a>
<a href="#section-1.1">1.1</a>. Evolution of the CMS .......................................<a href="#page-4">4</a>
<a href="#section-1.1.1">1.1.1</a>. Changes Since PKCS #7 Version 1.5 ...................<a href="#page-4">4</a>
<a href="#section-1.1.2">1.1.2</a>. Changes Since <a href="./rfc2630">RFC 2630</a> ..............................<a href="#page-4">4</a>
<a href="#section-1.1.3">1.1.3</a>. Changes Since <a href="./rfc3369">RFC 3369</a> ..............................<a href="#page-5">5</a>
<a href="#section-1.1.4">1.1.4</a>. Changes Since <a href="./rfc3852">RFC 3852</a> ..............................<a href="#page-5">5</a>
<a href="#section-1.2">1.2</a>. Terminology ................................................<a href="#page-5">5</a>
<a href="#section-1.3">1.3</a>. Version Numbers ............................................<a href="#page-6">6</a>
<a href="#section-2">2</a>. General Overview ................................................<a href="#page-6">6</a>
<a href="#section-3">3</a>. General Syntax ..................................................<a href="#page-7">7</a>
<a href="#section-4">4</a>. Data Content Type ...............................................<a href="#page-7">7</a>
<a href="#section-5">5</a>. Signed-data Content Type ........................................<a href="#page-8">8</a>
<a href="#section-5.1">5.1</a>. SignedData Type ............................................<a href="#page-9">9</a>
<a href="#section-5.2">5.2</a>. EncapsulatedContentInfo Type ..............................<a href="#page-11">11</a>
<a href="#section-5.2.1">5.2.1</a>. Compatibility with PKCS #7 .........................<a href="#page-12">12</a>
<a href="#section-5.3">5.3</a>. SignerInfo Type ...........................................<a href="#page-13">13</a>
<a href="#section-5.4">5.4</a>. Message Digest Calculation Process ........................<a href="#page-16">16</a>
<a href="#section-5.5">5.5</a>. Signature Generation Process ..............................<a href="#page-16">16</a>
<a href="#section-5.6">5.6</a>. Signature Verification Process ............................<a href="#page-17">17</a>
<a href="#section-6">6</a>. Enveloped-Data Content Type ....................................<a href="#page-17">17</a>
<a href="#section-6.1">6.1</a>. EnvelopedData Type ........................................<a href="#page-18">18</a>
<a href="#section-6.2">6.2</a>. RecipientInfo Type ........................................<a href="#page-21">21</a>
<a href="#section-6.2.1">6.2.1</a>. KeyTransRecipientInfo Type .........................<a href="#page-22">22</a>
<a href="#section-6.2.2">6.2.2</a>. KeyAgreeRecipientInfo Type .........................<a href="#page-23">23</a>
<a href="#section-6.2.3">6.2.3</a>. KEKRecipientInfo Type ..............................<a href="#page-25">25</a>
<a href="#section-6.2.4">6.2.4</a>. PasswordRecipientInfo Type .........................<a href="#page-26">26</a>
<a href="#section-6.2.5">6.2.5</a>. OtherRecipientInfo Type ............................<a href="#page-27">27</a>
<a href="#section-6.3">6.3</a>. Content-encryption Process ................................<a href="#page-27">27</a>
<a href="#section-6.4">6.4</a>. Key-Encryption Process ....................................<a href="#page-28">28</a>
<a href="#section-7">7</a>. Digested-Data Content Type .....................................<a href="#page-28">28</a>
<a href="#section-8">8</a>. Encrypted-Data Content Type ....................................<a href="#page-29">29</a>
<a href="#section-9">9</a>. Authenticated-Data Content Type ................................<a href="#page-30">30</a>
<a href="#section-9.1">9.1</a>. AuthenticatedData Type ....................................<a href="#page-31">31</a>
<a href="#section-9.2">9.2</a>. MAC Generation ............................................<a href="#page-33">33</a>
<a href="#section-9.3">9.3</a>. MAC Verification ..........................................<a href="#page-34">34</a>
<a href="#section-10">10</a>. Useful Types ..................................................<a href="#page-34">34</a>
<a href="#section-10.1">10.1</a>. Algorithm Identifier Types ...............................<a href="#page-35">35</a>
<a href="#section-10.1.1">10.1.1</a>. DigestAlgorithmIdentifier .........................<a href="#page-35">35</a>
<a href="#section-10.1.2">10.1.2</a>. SignatureAlgorithmIdentifier ......................<a href="#page-35">35</a>
<a href="#section-10.1.3">10.1.3</a>. KeyEncryptionAlgorithmIdentifier ..................<a href="#page-35">35</a>
<a href="#section-10.1.4">10.1.4</a>. ContentEncryptionAlgorithmIdentifier ..............<a href="#page-36">36</a>
<a href="#section-10.1.5">10.1.5</a>. MessageAuthenticationCodeAlgorithm ................<a href="#page-36">36</a>
<a href="#section-10.1.6">10.1.6</a>. KeyDerivationAlgorithmIdentifier ..................<a href="#page-36">36</a>
<a href="#section-10.2">10.2</a>. Other Useful Types .......................................<a href="#page-36">36</a>
<a href="#section-10.2.1">10.2.1</a>. RevocationInfoChoices .............................<a href="#page-36">36</a>
<a href="#section-10.2.2">10.2.2</a>. CertificateChoices ................................<a href="#page-37">37</a>
<span class="grey">Housley Standards Track [Page 2]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-3" ></span>
<span class="grey"><a href="./rfc5652">RFC 5652</a> Cryptographic Message Syntax September 2009</span>
<a href="#section-10.2.3">10.2.3</a>. CertificateSet ....................................<a href="#page-38">38</a>
<a href="#section-10.2.4">10.2.4</a>. IssuerAndSerialNumber .............................<a href="#page-38">38</a>
<a href="#section-10.2.5">10.2.5</a>. CMSVersion ........................................<a href="#page-39">39</a>
<a href="#section-10.2.6">10.2.6</a>. UserKeyingMaterial ................................<a href="#page-39">39</a>
<a href="#section-10.2.7">10.2.7</a>. OtherKeyAttribute .................................<a href="#page-39">39</a>
<a href="#section-11">11</a>. Useful Attributes .............................................<a href="#page-39">39</a>
<a href="#section-11.1">11.1</a>. Content Type .............................................<a href="#page-40">40</a>
<a href="#section-11.2">11.2</a>. Message Digest ...........................................<a href="#page-40">40</a>
<a href="#section-11.3">11.3</a>. Signing Time .............................................<a href="#page-41">41</a>
<a href="#section-11.4">11.4</a>. Countersignature .........................................<a href="#page-42">42</a>
<a href="#section-12">12</a>. ASN.1 Modules .................................................<a href="#page-43">43</a>
<a href="#section-12.1">12.1</a>. CMS ASN.1 Module .........................................<a href="#page-44">44</a>
<a href="#section-12.2">12.2</a>. Version 1 Attribute Certificate ASN.1 Module .............<a href="#page-51">51</a>
<a href="#section-13">13</a>. References ....................................................<a href="#page-52">52</a>
<a href="#section-13.1">13.1</a>. Normative References .....................................<a href="#page-52">52</a>
<a href="#section-13.2">13.2</a>. Informative References ...................................<a href="#page-53">53</a>
<a href="#section-14">14</a>. Security Considerations .......................................<a href="#page-54">54</a>
<a href="#section-15">15</a>. Acknowledgments ...............................................<a href="#page-56">56</a>
<span class="h2"><a class="selflink" id="section-1" href="#section-1">1</a>. Introduction</span>
This document describes the Cryptographic Message Syntax (CMS). This
syntax is used to digitally sign, digest, authenticate, or encrypt
arbitrary message content.
The CMS describes an encapsulation syntax for data protection. It
supports digital signatures and encryption. The syntax allows
multiple encapsulations; one encapsulation envelope can be nested
inside another. Likewise, one party can digitally sign some
previously encapsulated data. It also allows arbitrary attributes,
such as signing time, to be signed along with the message content,
and it provides for other attributes such as countersignatures to be
associated with a signature.
The CMS can support a variety of architectures for certificate-based
key management, such as the one defined by the PKIX (Public Key
Infrastructure using X.509) working group [<a href="#ref-PROFILE" title=""Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile"">PROFILE</a>].
The CMS values are generated using ASN.1 [<a href="#ref-X.208-88">X.208-88</a>], using BER-
encoding (Basic Encoding Rules) [<a href="#ref-X.209-88">X.209-88</a>]. Values are typically
represented as octet strings. While many systems are capable of
transmitting arbitrary octet strings reliably, it is well known that
many electronic mail systems are not. This document does not address
mechanisms for encoding octet strings for reliable transmission in
such environments.
<span class="grey">Housley Standards Track [Page 3]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-4" ></span>
<span class="grey"><a href="./rfc5652">RFC 5652</a> Cryptographic Message Syntax September 2009</span>
<span class="h3"><a class="selflink" id="section-1.1" href="#section-1.1">1.1</a>. Evolution of the CMS</span>
The CMS is derived from PKCS #7 version 1.5, which is documented in
<a href="./rfc2315">RFC 2315</a> [PKCS#7]. PKCS #7 version 1.5 was developed outside of the
IETF; it was originally published as an RSA Laboratories Technical
Note in November 1993. Since that time, the IETF has taken
responsibility for the development and maintenance of the CMS.
Today, several important IETF Standards-Track protocols make use of
the CMS.
This section describes that changes that the IETF has made to the CMS
in each of the published versions.
<span class="h4"><a class="selflink" id="section-1.1.1" href="#section-1.1.1">1.1.1</a>. Changes Since PKCS #7 Version 1.5</span>
<a href="./rfc2630">RFC 2630</a> [<a href="#ref-CMS1" title=""Cryptographic Message Syntax"">CMS1</a>] was the first version of the CMS on the IETF
Standards Track. Wherever possible, backward compatibility with PKCS
#7 version 1.5 is preserved; however, changes were made to
accommodate version 1 attribute certificate transfer and to support
algorithm-independent key management. PKCS #7 version 1.5 included
support only for key transport. <a href="./rfc2630">RFC 2630</a> adds support for key
agreement and previously distributed symmetric key-encryption key
techniques.
<span class="h4"><a class="selflink" id="section-1.1.2" href="#section-1.1.2">1.1.2</a>. Changes Since <a href="./rfc2630">RFC 2630</a></span>
<a href="./rfc3369">RFC 3369</a> [<a href="#ref-CMS2" title=""Cryptographic Message Syntax (CMS)"">CMS2</a>] obsoletes <a href="./rfc2630">RFC 2630</a> [<a href="#ref-CMS1" title=""Cryptographic Message Syntax"">CMS1</a>] and <a href="./rfc3211">RFC 3211</a> [<a href="#ref-PWRI" title=""Password-based Encryption for CMS"">PWRI</a>].
Password-based key management is included in the CMS specification,
and an extension mechanism to support new key management schemes
without further changes to the CMS is specified. Backward
compatibility with <a href="./rfc2630">RFC 2630</a> and <a href="./rfc3211">RFC 3211</a> is preserved; however,
version 2 attribute certificate transfer is added, and the use of
version 1 attribute certificates is deprecated.
Secure/Multipurpose Internet Mail Extensions (S/MIME) v2 signatures
[<a href="#ref-MSG2" title=""S/MIME Version 2 Message Specification"">MSG2</a>], which are based on PKCS #7 version 1.5, are compatible with
S/MIME v3 signatures [<a href="#ref-MSG3" title=""S/MIME Version 3 Message Specification"">MSG3</a>]and S/MIME v3.1 signatures [<a href="#ref-MSG3.1" title=""Secure/Multipurpose Internet Mail Extensions (S/MIME) Version 3.1 Message Specification"">MSG3.1</a>].
However, there are some subtle compatibility issues with signatures
based on PKCS #7 version 1.5. These issues are discussed in <a href="#section-5.2.1">Section</a>
<a href="#section-5.2.1">5.2.1</a>. These issues remain with the current version of the CMS.
Specific cryptographic algorithms are not discussed in this document,
but they were discussed in <a href="./rfc2630">RFC 2630</a>. The discussion of specific
cryptographic algorithms has been moved to a separate document
[<a href="#ref-CMSALG" title=""Cryptographic Message Syntax (CMS) Algorithms"">CMSALG</a>]. Separation of the protocol and algorithm specifications
allows the IETF to update each document independently. This
specification does not require the implementation of any particular
<span class="grey">Housley Standards Track [Page 4]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-5" ></span>
<span class="grey"><a href="./rfc5652">RFC 5652</a> Cryptographic Message Syntax September 2009</span>
algorithms. Rather, protocols that rely on the CMS are expected to
choose appropriate algorithms for their environment. The algorithms
may be selected from [<a href="#ref-CMSALG" title=""Cryptographic Message Syntax (CMS) Algorithms"">CMSALG</a>] or elsewhere.
<span class="h4"><a class="selflink" id="section-1.1.3" href="#section-1.1.3">1.1.3</a>. Changes Since <a href="./rfc3369">RFC 3369</a></span>
<a href="./rfc3852">RFC 3852</a> [<a href="#ref-CMS3" title=""Cryptographic Message Syntax (CMS)"">CMS3</a>] obsoletes <a href="./rfc3369">RFC 3369</a> [<a href="#ref-CMS2" title=""Cryptographic Message Syntax (CMS)"">CMS2</a>]. As discussed in the
previous section, <a href="./rfc3369">RFC 3369</a> introduced an extension mechanism to
support new key management schemes without further changes to the
CMS. <a href="./rfc3852">RFC 3852</a> introduces a similar extension mechanism to support
additional certificate formats and revocation status information
formats without further changes to the CMS. These extensions are
primarily documented in Sections <a href="#section-10.2.1">10.2.1</a> and <a href="#section-10.2.2">10.2.2</a>. Backward
compatibility with earlier versions of the CMS is preserved.
The use of version numbers is described in <a href="#section-1.3">Section 1.3</a>.
Since the publication of <a href="./rfc3369">RFC 3369</a>, a few errata have been noted.
These errata are posted on the RFC Editor web site. These errors
have been corrected in this document.
The text in <a href="#section-11.4">Section 11.4</a> that describes the counter signature
unsigned attribute is clarified. Hopefully, the revised text is
clearer about the portion of the SignerInfo signature that is covered
by a countersignature.
<span class="h4"><a class="selflink" id="section-1.1.4" href="#section-1.1.4">1.1.4</a>. Changes Since <a href="./rfc3852">RFC 3852</a></span>
This document obsoletes <a href="./rfc3852">RFC 3852</a> [<a href="#ref-CMS3" title=""Cryptographic Message Syntax (CMS)"">CMS3</a>]. The primary reason for the
publication of this document is to advance the CMS along the
standards maturity ladder.
This document includes the clarifications that were originally
published in <a href="./rfc4853">RFC 4853</a> [<a href="#ref-CMSMSIG" title=""Cryptographic Message Syntax (CMS) Multiple Signer Clarification"">CMSMSIG</a>] regarding the proper handling of the
SignedData protected content type when more than one digital
signature is present.
Since the publication of <a href="./rfc3852">RFC 3852</a>, a few errata have been noted.
These errata are posted on the RFC Editor web site. These errors
have been corrected in this document.
<span class="h3"><a class="selflink" id="section-1.2" href="#section-1.2">1.2</a>. Terminology</span>
In this document, the key words MUST, MUST NOT, REQUIRED, SHOULD,
SHOULD NOT, RECOMMENDED, MAY, and OPTIONAL are to be interpreted as
described in [<a href="#ref-STDWORDS" title=""Key words for use in RFCs to Indicate Requirement Levels"">STDWORDS</a>].
<span class="grey">Housley Standards Track [Page 5]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-6" ></span>
<span class="grey"><a href="./rfc5652">RFC 5652</a> Cryptographic Message Syntax September 2009</span>
<span class="h3"><a class="selflink" id="section-1.3" href="#section-1.3">1.3</a>. Version Numbers</span>
Each of the major data structures includes a version number as the
first item in the data structure. The version numbers are intended
to avoid ASN.1 decode errors. Some implementations do not check the
version number prior to attempting a decode, and if a decode error
occurs, then the version number is checked as part of the error
handling routine. This is a reasonable approach; it places error
processing outside of the fast path. This approach is also forgiving
when an incorrect version number is used by the sender.
Most of the initial version numbers were assigned in PKCS #7 version
1.5. Others were assigned when the structure was initially created.
Whenever a structure is updated, a higher version number is assigned.
However, to ensure maximum interoperability, the higher version
number is only used when the new syntax feature is employed. That
is, the lowest version number that supports the generated syntax is
used.
<span class="h2"><a class="selflink" id="section-2" href="#section-2">2</a>. General Overview</span>
The CMS is general enough to support many different content types.
This document defines one protection content, ContentInfo.
ContentInfo encapsulates a single identified content type, and the
identified type may provide further encapsulation. This document
defines six content types: data, signed-data, enveloped-data,
digested-data, encrypted-data, and authenticated-data. Additional
content types can be defined outside this document.
An implementation that conforms to this specification MUST implement
the protection content, ContentInfo, and MUST implement the data,
signed-data, and enveloped-data content types. The other content
types MAY be implemented.
As a general design philosophy, each content type permits single pass
processing using indefinite-length Basic Encoding Rules (BER)
encoding. Single-pass operation is especially helpful if content is
large, stored on tapes, or is "piped" from another process. Single-
pass operation has one significant drawback: it is difficult to
perform encode operations using the Distinguished Encoding Rules
(DER) [<a href="#ref-X.509-88">X.509-88</a>] encoding in a single pass since the lengths of the
various components may not be known in advance. However, signed
attributes within the signed-data content type and authenticated
attributes within the authenticated-data content type need to be
transmitted in DER form to ensure that recipients can verify a
content that contains one or more unrecognized attributes. Signed
attributes and authenticated attributes are the only data types used
in the CMS that require DER encoding.
<span class="grey">Housley Standards Track [Page 6]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-7" ></span>
<span class="grey"><a href="./rfc5652">RFC 5652</a> Cryptographic Message Syntax September 2009</span>
<span class="h2"><a class="selflink" id="section-3" href="#section-3">3</a>. General Syntax</span>
The following object identifier identifies the content information
type:
id-ct-contentInfo OBJECT IDENTIFIER ::= { iso(1) member-body(2)
us(840) rsadsi(113549) pkcs(1) pkcs9(9) smime(16) ct(1) 6 }
The CMS associates a content type identifier with a content. The
syntax MUST have ASN.1 type ContentInfo:
ContentInfo ::= SEQUENCE {
contentType ContentType,
content [0] EXPLICIT ANY DEFINED BY contentType }
ContentType ::= OBJECT IDENTIFIER
The fields of ContentInfo have the following meanings:
contentType indicates the type of the associated content. It is
an object identifier; it is a unique string of integers assigned
by an authority that defines the content type.
content is the associated content. The type of content can be
determined uniquely by contentType. Content types for data,
signed-data, enveloped-data, digested-data, encrypted-data, and
authenticated-data are defined in this document. If additional
content types are defined in other documents, the ASN.1 type
defined SHOULD NOT be a CHOICE type.
<span class="h2"><a class="selflink" id="section-4" href="#section-4">4</a>. Data Content Type</span>
The following object identifier identifies the data content type:
id-data OBJECT IDENTIFIER ::= { iso(1) member-body(2)
us(840) rsadsi(113549) pkcs(1) pkcs7(7) 1 }
The data content type is intended to refer to arbitrary octet
strings, such as ASCII text files; the interpretation is left to the
application. Such strings need not have any internal structure
(although they could have their own ASN.1 definition or other
structure).
S/MIME uses id-data to identify MIME-encoded content. The use of
this content identifier is specified in <a href="./rfc2311">RFC 2311</a> for S/MIME v2
[<a href="#ref-MSG2" title=""S/MIME Version 2 Message Specification"">MSG2</a>], <a href="./rfc2633">RFC 2633</a> for S/MIME v3 [<a href="#ref-MSG3" title=""S/MIME Version 3 Message Specification"">MSG3</a>], and <a href="./rfc3851">RFC 3851</a> for S/MIME v3.1
[<a href="#ref-MSG3.1" title=""Secure/Multipurpose Internet Mail Extensions (S/MIME) Version 3.1 Message Specification"">MSG3.1</a>].
<span class="grey">Housley Standards Track [Page 7]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-8" ></span>
<span class="grey"><a href="./rfc5652">RFC 5652</a> Cryptographic Message Syntax September 2009</span>
The data content type is generally encapsulated in the signed-data,
enveloped-data, digested-data, encrypted-data, or authenticated-data
content type.
<span class="h2"><a class="selflink" id="section-5" href="#section-5">5</a>. Signed-data Content Type</span>
The signed-data content type consists of a content of any type and
zero or more signature values. Any number of signers in parallel can
sign any type of content.
The typical application of the signed-data content type represents
one signer's digital signature on content of the data content type.
Another typical application disseminates certificates and certificate
revocation lists (CRLs).
The process by which signed-data is constructed involves the
following steps:
1. For each signer, a message digest, or hash value, is computed on
the content with a signer-specific message-digest algorithm. If
the signer is signing any information other than the content, the
message digest of the content and the other information are
digested with the signer's message digest algorithm (see <a href="#section-5.4">Section</a>
<a href="#section-5.4">5.4</a>), and the result becomes the "message digest."
2. For each signer, the message digest is digitally signed using the
signer's private key.
3. For each signer, the signature value and other signer-specific
information are collected into a SignerInfo value, as defined in
<a href="#section-5.3">Section 5.3</a>. Certificates and CRLs for each signer, and those
not corresponding to any signer, are collected in this step.
4. The message digest algorithms for all the signers and the
SignerInfo values for all the signers are collected together with
the content into a SignedData value, as defined in <a href="#section-5.1">Section 5.1</a>.
A recipient independently computes the message digest. This message
digest and the signer's public key are used to verify the signature
value. The signer's public key is referenced in one of two ways. It
can be referenced by an issuer distinguished name along with an
issuer-specific serial number to uniquely identify the certificate
that contains the public key. Alternatively, it can be referenced by
a subject key identifier, which accommodates both certified and
uncertified public keys. While not required, the signer's
certificate can be included in the SignedData certificates field.
<span class="grey">Housley Standards Track [Page 8]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-9" ></span>
<span class="grey"><a href="./rfc5652">RFC 5652</a> Cryptographic Message Syntax September 2009</span>
When more than one signature is present, the successful validation of
one signature associated with a given signer is usually treated as a
successful signature by that signer. However, there are some
application environments where other rules are needed. An
application that employs a rule other than one valid signature for
each signer must specify those rules. Also, where simple matching of
the signer identifier is not sufficient to determine whether the
signatures were generated by the same signer, the application
specification must describe how to determine which signatures were
generated by the same signer. Support of different communities of
recipients is the primary reason that signers choose to include more
than one signature. For example, the signed-data content type might
include signatures generated with the RSA signature algorithm and
with the Elliptic Curve Digital Signature Algorithm (ECDSA) signature
algorithm. This allows recipients to verify the signature associated
with one algorithm or the other.
This section is divided into six parts. The first part describes the
top-level type SignedData, the second part describes
EncapsulatedContentInfo, the third part describes the per-signer
information type SignerInfo, and the fourth, fifth, and sixth parts
describe the message digest calculation, signature generation, and
signature verification processes, respectively.
<span class="h3"><a class="selflink" id="section-5.1" href="#section-5.1">5.1</a>. SignedData Type</span>
The following object identifier identifies the signed-data content
type:
id-signedData OBJECT IDENTIFIER ::= { iso(1) member-body(2)
us(840) rsadsi(113549) pkcs(1) pkcs7(7) 2 }
The signed-data content type shall have ASN.1 type SignedData:
SignedData ::= SEQUENCE {
version CMSVersion,
digestAlgorithms DigestAlgorithmIdentifiers,
encapContentInfo EncapsulatedContentInfo,
certificates [0] IMPLICIT CertificateSet OPTIONAL,
crls [1] IMPLICIT RevocationInfoChoices OPTIONAL,
signerInfos SignerInfos }
DigestAlgorithmIdentifiers ::= SET OF DigestAlgorithmIdentifier
SignerInfos ::= SET OF SignerInfo
<span class="grey">Housley Standards Track [Page 9]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-10" ></span>
<span class="grey"><a href="./rfc5652">RFC 5652</a> Cryptographic Message Syntax September 2009</span>
The fields of type SignedData have the following meanings:
version is the syntax version number. The appropriate value
depends on certificates, eContentType, and SignerInfo. The
version MUST be assigned as follows:
IF ((certificates is present) AND
(any certificates with a type of other are present)) OR
((crls is present) AND
(any crls with a type of other are present))
THEN version MUST be 5
ELSE
IF (certificates is present) AND
(any version 2 attribute certificates are present)
THEN version MUST be 4
ELSE
IF ((certificates is present) AND
(any version 1 attribute certificates are present)) OR
(any SignerInfo structures are version 3) OR
(encapContentInfo eContentType is other than id-data)
THEN version MUST be 3
ELSE version MUST be 1
digestAlgorithms is a collection of message digest algorithm
identifiers. There MAY be any number of elements in the
collection, including zero. Each element identifies the message
digest algorithm, along with any associated parameters, used by
one or more signer. The collection is intended to list the
message digest algorithms employed by all of the signers, in any
order, to facilitate one-pass signature verification.
Implementations MAY fail to validate signatures that use a digest
algorithm that is not included in this set. The message digesting
process is described in <a href="#section-5.4">Section 5.4</a>.
encapContentInfo is the signed content, consisting of a content
type identifier and the content itself. Details of the
EncapsulatedContentInfo type are discussed in <a href="#section-5.2">Section 5.2</a>.
certificates is a collection of certificates. It is intended that
the set of certificates be sufficient to contain certification
paths from a recognized "root" or "top-level certification
authority" to all of the signers in the signerInfos field. There
may be more certificates than necessary, and there may be
certificates sufficient to contain certification paths from two or
more independent top-level certification authorities. There may
also be fewer certificates than necessary, if it is expected that
recipients have an alternate means of obtaining necessary
<span class="grey">Housley Standards Track [Page 10]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-11" ></span>
<span class="grey"><a href="./rfc5652">RFC 5652</a> Cryptographic Message Syntax September 2009</span>
certificates (e.g., from a previous set of certificates). The
signer's certificate MAY be included. The use of version 1
attribute certificates is strongly discouraged.
crls is a collection of revocation status information. It is
intended that the collection contain information sufficient to
determine whether the certificates in the certificates field are
valid, but such correspondence is not necessary. Certificate
revocation lists (CRLs) are the primary source of revocation
status information. There MAY be more CRLs than necessary, and
there MAY also be fewer CRLs than necessary.
signerInfos is a collection of per-signer information. There MAY
be any number of elements in the collection, including zero. When
the collection represents more than one signature, the successful
validation of one of signature from a given signer ought to be
treated as a successful signature by that signer. However, there
are some application environments where other rules are needed.
The details of the SignerInfo type are discussed in <a href="#section-5.3">Section 5.3</a>.
Since each signer can employ a different digital signature
technique, and future specifications could update the syntax, all
implementations MUST gracefully handle unimplemented versions of
SignerInfo. Further, since all implementations will not support
every possible signature algorithm, all implementations MUST
gracefully handle unimplemented signature algorithms when they are
encountered.
<span class="h3"><a class="selflink" id="section-5.2" href="#section-5.2">5.2</a>. EncapsulatedContentInfo Type</span>
The content is represented in the type EncapsulatedContentInfo:
EncapsulatedContentInfo ::= SEQUENCE {
eContentType ContentType,
eContent [0] EXPLICIT OCTET STRING OPTIONAL }
ContentType ::= OBJECT IDENTIFIER
The fields of type EncapsulatedContentInfo have the following
meanings:
eContentType is an object identifier. The object identifier
uniquely specifies the content type.
eContent is the content itself, carried as an octet string. The
eContent need not be DER encoded.
<span class="grey">Housley Standards Track [Page 11]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-12" ></span>
<span class="grey"><a href="./rfc5652">RFC 5652</a> Cryptographic Message Syntax September 2009</span>
The optional omission of the eContent within the
EncapsulatedContentInfo field makes it possible to construct
"external signatures". In the case of external signatures, the
content being signed is absent from the EncapsulatedContentInfo value
included in the signed-data content type. If the eContent value
within EncapsulatedContentInfo is absent, then the signatureValue is
calculated and the eContentType is assigned as though the eContent
value was present.
In the degenerate case where there are no signers, the
EncapsulatedContentInfo value being "signed" is irrelevant. In this
case, the content type within the EncapsulatedContentInfo value being
"signed" MUST be id-data (as defined in <a href="#section-4">Section 4</a>), and the content
field of the EncapsulatedContentInfo value MUST be omitted.
<span class="h4"><a class="selflink" id="section-5.2.1" href="#section-5.2.1">5.2.1</a>. Compatibility with PKCS #7</span>
This section contains a word of warning to implementers that wish to
support both the CMS and PKCS #7 [PKCS#7] SignedData content types.
Both the CMS and PKCS #7 identify the type of the encapsulated
content with an object identifier, but the ASN.1 type of the content
itself is variable in PKCS #7 SignedData content type.
PKCS #7 defines content as:
content [0] EXPLICIT ANY DEFINED BY contentType OPTIONAL
The CMS defines eContent as:
eContent [0] EXPLICIT OCTET STRING OPTIONAL
The CMS definition is much easier to use in most applications, and it
is compatible with both S/MIME v2 and S/MIME v3. S/MIME signed
messages using the CMS and PKCS #7 are compatible because identical
signed message formats are specified in <a href="./rfc2311">RFC 2311</a> for S/MIME v2
[<a href="#ref-MSG2" title=""S/MIME Version 2 Message Specification"">MSG2</a>], <a href="./rfc2633">RFC 2633</a> for S/MIME v3 [<a href="#ref-MSG3" title=""S/MIME Version 3 Message Specification"">MSG3</a>], and <a href="./rfc3851">RFC 3851</a> for S/MIME v3.1
[<a href="#ref-MSG3.1" title=""Secure/Multipurpose Internet Mail Extensions (S/MIME) Version 3.1 Message Specification"">MSG3.1</a>]. S/MIME v2 encapsulates the MIME content in a Data type
(that is, an OCTET STRING) carried in the SignedData contentInfo
content ANY field, and S/MIME v3 carries the MIME content in the
SignedData encapContentInfo eContent OCTET STRING. Therefore, in
S/MIME v2, S/MIME v3, and S/MIME v3.1, the MIME content is placed in
an OCTET STRING and the message digest is computed over the identical
portions of the content. That is, the message digest is computed
over the octets comprising the value of the OCTET STRING, neither the
tag nor length octets are included.
<span class="grey">Housley Standards Track [Page 12]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-13" ></span>
<span class="grey"><a href="./rfc5652">RFC 5652</a> Cryptographic Message Syntax September 2009</span>
There are incompatibilities between the CMS and PKCS #7 SignedData
types when the encapsulated content is not formatted using the Data
type. For example, when an <a href="./rfc2634">RFC 2634</a> signed receipt [<a href="#ref-ESS" title=""Enhanced Security Services for S/MIME"">ESS</a>] is
encapsulated in the CMS SignedData type, then the Receipt SEQUENCE is
encoded in the SignedData encapContentInfo eContent OCTET STRING and
the message digest is computed using the entire Receipt SEQUENCE
encoding (including tag, length and value octets). However, if an
<a href="./rfc2634">RFC 2634</a> signed receipt is encapsulated in the PKCS #7 SignedData
type, then the Receipt SEQUENCE is DER encoded [<a href="#ref-X.509-88">X.509-88</a>] in the
SignedData contentInfo content ANY field (a SEQUENCE, not an OCTET
STRING). Therefore, the message digest is computed using only the
value octets of the Receipt SEQUENCE encoding.
The following strategy can be used to achieve backward compatibility
with PKCS #7 when processing SignedData content types. If the
implementation is unable to ASN.1 decode the SignedData type using
the CMS SignedData encapContentInfo eContent OCTET STRING syntax,
then the implementation MAY attempt to decode the SignedData type
using the PKCS #7 SignedData contentInfo content ANY syntax and
compute the message digest accordingly.
The following strategy can be used to achieve backward compatibility
with PKCS #7 when creating a SignedData content type in which the
encapsulated content is not formatted using the Data type.
Implementations MAY examine the value of the eContentType, and then
adjust the expected DER encoding of eContent based on the object
identifier value. For example, to support Microsoft Authenticode
[<a href="#ref-MSAC" title=""Authenticode"">MSAC</a>], the following information MAY be included:
eContentType Object Identifier is set to { 1 3 6 1 4 1 311 2 1 4 }
eContent contains DER-encoded Authenticode signing information
<span class="h3"><a class="selflink" id="section-5.3" href="#section-5.3">5.3</a>. SignerInfo Type</span>
Per-signer information is represented in the type SignerInfo:
SignerInfo ::= SEQUENCE {
version CMSVersion,
sid SignerIdentifier,
digestAlgorithm DigestAlgorithmIdentifier,
signedAttrs [0] IMPLICIT SignedAttributes OPTIONAL,
signatureAlgorithm SignatureAlgorithmIdentifier,
signature SignatureValue,
unsignedAttrs [1] IMPLICIT UnsignedAttributes OPTIONAL }
<span class="grey">Housley Standards Track [Page 13]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-14" ></span>
<span class="grey"><a href="./rfc5652">RFC 5652</a> Cryptographic Message Syntax September 2009</span>
SignerIdentifier ::= CHOICE {
issuerAndSerialNumber IssuerAndSerialNumber,
subjectKeyIdentifier [0] SubjectKeyIdentifier }
SignedAttributes ::= SET SIZE (1..MAX) OF Attribute
UnsignedAttributes ::= SET SIZE (1..MAX) OF Attribute
Attribute ::= SEQUENCE {
attrType OBJECT IDENTIFIER,
attrValues SET OF AttributeValue }
AttributeValue ::= ANY
SignatureValue ::= OCTET STRING
The fields of type SignerInfo have the following meanings:
version is the syntax version number. If the SignerIdentifier is
the CHOICE issuerAndSerialNumber, then the version MUST be 1. If
the SignerIdentifier is subjectKeyIdentifier, then the version
MUST be 3.
sid specifies the signer's certificate (and thereby the signer's
public key). The signer's public key is needed by the recipient
to verify the signature. SignerIdentifier provides two
alternatives for specifying the signer's public key. The
issuerAndSerialNumber alternative identifies the signer's
certificate by the issuer's distinguished name and the certificate
serial number; the subjectKeyIdentifier identifies the signer's
certificate by a key identifier. When an X.509 certificate is
referenced, the key identifier matches the X.509
subjectKeyIdentifier extension value. When other certificate
formats are referenced, the documents that specify the certificate
format and their use with the CMS must include details on matching
the key identifier to the appropriate certificate field.
Implementations MUST support the reception of the
issuerAndSerialNumber and subjectKeyIdentifier forms of
SignerIdentifier. When generating a SignerIdentifier,
implementations MAY support one of the forms (either
issuerAndSerialNumber or subjectKeyIdentifier) and always use it,
or implementations MAY arbitrarily mix the two forms. However,
subjectKeyIdentifier MUST be used to refer to a public key
contained in a non-X.509 certificate.
digestAlgorithm identifies the message digest algorithm, and any
associated parameters, used by the signer. The message digest is
computed on either the content being signed or the content
<span class="grey">Housley Standards Track [Page 14]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-15" ></span>
<span class="grey"><a href="./rfc5652">RFC 5652</a> Cryptographic Message Syntax September 2009</span>
together with the signed attributes using the process described in
<a href="#section-5.4">Section 5.4</a>. The message digest algorithm SHOULD be among those
listed in the digestAlgorithms field of the associated SignerData.
Implementations MAY fail to validate signatures that use a digest
algorithm that is not included in the SignedData digestAlgorithms
set.
signedAttrs is a collection of attributes that are signed. The
field is optional, but it MUST be present if the content type of
the EncapsulatedContentInfo value being signed is not id-data.
SignedAttributes MUST be DER encoded, even if the rest of the
structure is BER encoded. Useful attribute types, such as signing
time, are defined in <a href="#section-11">Section 11</a>. If the field is present, it MUST
contain, at a minimum, the following two attributes:
A content-type attribute having as its value the content type
of the EncapsulatedContentInfo value being signed. <a href="#section-11.1">Section</a>
<a href="#section-11.1">11.1</a> defines the content-type attribute. However, the
content-type attribute MUST NOT be used as part of a
countersignature unsigned attribute as defined in <a href="#section-11.4">Section 11.4</a>.
A message-digest attribute, having as its value the message
digest of the content. <a href="#section-11.2">Section 11.2</a> defines the message-digest
attribute.
signatureAlgorithm identifies the signature algorithm, and any
associated parameters, used by the signer to generate the digital
signature.
signature is the result of digital signature generation, using the
message digest and the signer's private key. The details of the
signature depend on the signature algorithm employed.
unsignedAttrs is a collection of attributes that are not signed.
The field is optional. Useful attribute types, such as
countersignatures, are defined in <a href="#section-11">Section 11</a>.
The fields of type SignedAttribute and UnsignedAttribute have the
following meanings:
attrType indicates the type of attribute. It is an object
identifier.
attrValues is a set of values that comprise the attribute. The
type of each value in the set can be determined uniquely by
attrType. The attrType can impose restrictions on the number of
items in the set.
<span class="grey">Housley Standards Track [Page 15]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-16" ></span>
<span class="grey"><a href="./rfc5652">RFC 5652</a> Cryptographic Message Syntax September 2009</span>
<span class="h3"><a class="selflink" id="section-5.4" href="#section-5.4">5.4</a>. Message Digest Calculation Process</span>
The message digest calculation process computes a message digest on
either the content being signed or the content together with the
signed attributes. In either case, the initial input to the message
digest calculation process is the "value" of the encapsulated content
being signed. Specifically, the initial input is the
encapContentInfo eContent OCTET STRING to which the signing process
is applied. Only the octets comprising the value of the eContent
OCTET STRING are input to the message digest algorithm, not the tag
or the length octets.
The result of the message digest calculation process depends on
whether the signedAttrs field is present. When the field is absent,
the result is just the message digest of the content as described
above. When the field is present, however, the result is the message
digest of the complete DER encoding of the SignedAttrs value
contained in the signedAttrs field. Since the SignedAttrs value,
when present, must contain the content-type and the message-digest
attributes, those values are indirectly included in the result. The
content-type attribute MUST NOT be included in a countersignature
unsigned attribute as defined in <a href="#section-11.4">Section 11.4</a>. A separate encoding
of the signedAttrs field is performed for message digest calculation.
The IMPLICIT [0] tag in the signedAttrs is not used for the DER
encoding, rather an EXPLICIT SET OF tag is used. That is, the DER
encoding of the EXPLICIT SET OF tag, rather than of the IMPLICIT [0]
tag, MUST be included in the message digest calculation along with
the length and content octets of the SignedAttributes value.
When the signedAttrs field is absent, only the octets comprising the
value of the SignedData encapContentInfo eContent OCTET STRING (e.g.,
the contents of a file) are input to the message digest calculation.
This has the advantage that the length of the content being signed
need not be known in advance of the signature generation process.
Although the encapContentInfo eContent OCTET STRING tag and length
octets are not included in the message digest calculation, they are
protected by other means. The length octets are protected by the
nature of the message digest algorithm since it is computationally
infeasible to find any two distinct message contents of any length
that have the same message digest.
<span class="h3"><a class="selflink" id="section-5.5" href="#section-5.5">5.5</a>. Signature Generation Process</span>
The input to the signature generation process includes the result of
the message digest calculation process and the signer's private key.
The details of the signature generation depend on the signature
algorithm employed. The object identifier, along with any
<span class="grey">Housley Standards Track [Page 16]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-17" ></span>
<span class="grey"><a href="./rfc5652">RFC 5652</a> Cryptographic Message Syntax September 2009</span>
parameters, that specifies the signature algorithm employed by the
signer is carried in the signatureAlgorithm field. The signature
value generated by the signer MUST be encoded as an OCTET STRING and
carried in the signature field.
<span class="h3"><a class="selflink" id="section-5.6" href="#section-5.6">5.6</a>. Signature Verification Process</span>
The input to the signature verification process includes the result
of the message digest calculation process and the signer's public
key. The recipient MAY obtain the correct public key for the signer
by any means, but the preferred method is from a certificate obtained
from the SignedData certificates field. The selection and validation
of the signer's public key MAY be based on certification path
validation (see [<a href="#ref-PROFILE" title=""Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile"">PROFILE</a>]) as well as other external context, but is
beyond the scope of this document. The details of the signature
verification depend on the signature algorithm employed.
The recipient MUST NOT rely on any message digest values computed by
the originator. If the SignedData signerInfo includes
signedAttributes, then the content message digest MUST be calculated
as described in <a href="#section-5.4">Section 5.4</a>. For the signature to be valid, the
message digest value calculated by the recipient MUST be the same as
the value of the messageDigest attribute included in the
signedAttributes of the SignedData signerInfo.
If the SignedData signerInfo includes signedAttributes, then the
content-type attribute value MUST match the SignedData
encapContentInfo eContentType value.
<span class="h2"><a class="selflink" id="section-6" href="#section-6">6</a>. Enveloped-data Content Type</span>
The enveloped-data content type consists of an encrypted content of
any type and encrypted content-encryption keys for one or more
recipients. The combination of the encrypted content and one
encrypted content-encryption key for a recipient is a "digital
envelope" for that recipient. Any type of content can be enveloped
for an arbitrary number of recipients using any of the supported key
management techniques for each recipient.
The typical application of the enveloped-data content type will
represent one or more recipients' digital envelopes on content of the
data or signed-data content types.
Enveloped-data is constructed by the following steps:
1. A content-encryption key for a particular content-encryption
algorithm is generated at random.
<span class="grey">Housley Standards Track [Page 17]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-18" ></span>
<span class="grey"><a href="./rfc5652">RFC 5652</a> Cryptographic Message Syntax September 2009</span>
2. The content-encryption key is encrypted for each recipient. The
details of this encryption depend on the key management algorithm
used, but four general techniques are supported:
key transport: the content-encryption key is encrypted in the
recipient's public key;
key agreement: the recipient's public key and the sender's
private key are used to generate a pairwise symmetric key, then
the content-encryption key is encrypted in the pairwise
symmetric key;
symmetric key-encryption keys: the content-encryption key is
encrypted in a previously distributed symmetric key-encryption
key; and
passwords: the content-encryption key is encrypted in a key-
encryption key that is derived from a password or other shared
secret value.
3. For each recipient, the encrypted content-encryption key and
other recipient-specific information are collected into a
RecipientInfo value, defined in <a href="#section-6.2">Section 6.2</a>.
4. The content is encrypted with the content-encryption key.
Content encryption may require that the content be padded to a
multiple of some block size; see <a href="#section-6.3">Section 6.3</a>.
5. The RecipientInfo values for all the recipients are collected
together with the encrypted content to form an EnvelopedData
value as defined in <a href="#section-6.1">Section 6.1</a>.
A recipient opens the digital envelope by decrypting one of the
encrypted content-encryption keys and then decrypting the encrypted
content with the recovered content-encryption key.
This section is divided into four parts. The first part describes
the top-level type EnvelopedData, the second part describes the per-
recipient information type RecipientInfo, and the third and fourth
parts describe the content-encryption and key-encryption processes.
<span class="h3"><a class="selflink" id="section-6.1" href="#section-6.1">6.1</a>. EnvelopedData Type</span>
The following object identifier identifies the enveloped-data content
type:
id-envelopedData OBJECT IDENTIFIER ::= { iso(1) member-body(2)
us(840) rsadsi(113549) pkcs(1) pkcs7(7) 3 }
<span class="grey">Housley Standards Track [Page 18]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-19" ></span>
<span class="grey"><a href="./rfc5652">RFC 5652</a> Cryptographic Message Syntax September 2009</span>
The enveloped-data content type shall have ASN.1 type EnvelopedData:
EnvelopedData ::= SEQUENCE {
version CMSVersion,
originatorInfo [0] IMPLICIT OriginatorInfo OPTIONAL,
recipientInfos RecipientInfos,
encryptedContentInfo EncryptedContentInfo,
unprotectedAttrs [1] IMPLICIT UnprotectedAttributes OPTIONAL }
OriginatorInfo ::= SEQUENCE {
certs [0] IMPLICIT CertificateSet OPTIONAL,
crls [1] IMPLICIT RevocationInfoChoices OPTIONAL }
RecipientInfos ::= SET SIZE (1..MAX) OF RecipientInfo
EncryptedContentInfo ::= SEQUENCE {
contentType ContentType,
contentEncryptionAlgorithm ContentEncryptionAlgorithmIdentifier,
encryptedContent [0] IMPLICIT EncryptedContent OPTIONAL }
EncryptedContent ::= OCTET STRING
UnprotectedAttributes ::= SET SIZE (1..MAX) OF Attribute
The fields of type EnvelopedData have the following meanings:
version is the syntax version number. The appropriate value
depends on originatorInfo, RecipientInfo, and unprotectedAttrs.
The version MUST be assigned as follows:
IF (originatorInfo is present) AND
((any certificates with a type of other are present) OR
(any crls with a type of other are present))
THEN version is 4
ELSE
IF ((originatorInfo is present) AND
(any version 2 attribute certificates are present)) OR
(any RecipientInfo structures include pwri) OR
(any RecipientInfo structures include ori)
THEN version is 3
ELSE
IF (originatorInfo is absent) AND
(unprotectedAttrs is absent) AND
(all RecipientInfo structures are version 0)
THEN version is 0
ELSE version is 2
<span class="grey">Housley Standards Track [Page 19]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-20" ></span>
<span class="grey"><a href="./rfc5652">RFC 5652</a> Cryptographic Message Syntax September 2009</span>
originatorInfo optionally provides information about the
originator. It is present only if required by the key management
algorithm. It may contain certificates and CRLs:
certs is a collection of certificates. certs may contain
originator certificates associated with several different key
management algorithms. certs may also contain attribute
certificates associated with the originator. The certificates
contained in certs are intended to be sufficient for all
recipients to build certification paths from a recognized
"root" or "top-level certification authority". However, certs
may contain more certificates than necessary, and there may be
certificates sufficient to make certification paths from two or
more independent top-level certification authorities.
Alternatively, certs may contain fewer certificates than
necessary, if it is expected that recipients have an alternate
means of obtaining necessary certificates (e.g., from a
previous set of certificates).
crls is a collection of CRLs. It is intended that the set
contain information sufficient to determine whether or not the
certificates in the certs field are valid, but such
correspondence is not necessary. There MAY be more CRLs than
necessary, and there MAY also be fewer CRLs than necessary.
recipientInfos is a collection of per-recipient information.
There MUST be at least one element in the collection.
encryptedContentInfo is the encrypted content information.
unprotectedAttrs is a collection of attributes that are not
encrypted. The field is optional. Useful attribute types are
defined in <a href="#section-11">Section 11</a>.
The fields of type EncryptedContentInfo have the following meanings:
contentType indicates the type of content.
contentEncryptionAlgorithm identifies the content-encryption
algorithm, and any associated parameters, used to encrypt the
content. The content-encryption process is described in <a href="#section-6.3">Section</a>
<a href="#section-6.3">6.3</a>. The same content-encryption algorithm and content-encryption
key are used for all recipients.
encryptedContent is the result of encrypting the content. The
field is optional, and if the field is not present, its intended
value must be supplied by other means.
<span class="grey">Housley Standards Track [Page 20]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-21" ></span>
<span class="grey"><a href="./rfc5652">RFC 5652</a> Cryptographic Message Syntax September 2009</span>
The recipientInfos field comes before the encryptedContentInfo field
so that an EnvelopedData value may be processed in a single pass.
<span class="h3"><a class="selflink" id="section-6.2" href="#section-6.2">6.2</a>. RecipientInfo Type</span>
Per-recipient information is represented in the type RecipientInfo.
RecipientInfo has a different format for each of the supported key
management techniques. Any of the key management techniques can be
used for each recipient of the same encrypted content. In all cases,
the encrypted content-encryption key is transferred to one or more
recipients.
Since all implementations will not support every possible key
management algorithm, all implementations MUST gracefully handle
unimplemented algorithms when they are encountered. For example, if
a recipient receives a content-encryption key encrypted in their RSA
public key using RSA-OAEP (Optimal Asymmetric Encryption Padding) and
the implementation only supports RSA PKCS #1 v1.5, then a graceful
failure must be implemented.
Implementations MUST support key transport, key agreement, and
previously distributed symmetric key-encryption keys, as represented
by ktri, kari, and kekri, respectively. Implementations MAY support
the password-based key management as represented by pwri.
Implementations MAY support any other key management technique as
represented by ori. Since each recipient can employ a different key
management technique and future specifications could define
additional key management techniques, all implementations MUST
gracefully handle unimplemented alternatives within the RecipientInfo
CHOICE, all implementations MUST gracefully handle unimplemented
versions of otherwise supported alternatives within the RecipientInfo
CHOICE, and all implementations MUST gracefully handle unimplemented
or unknown ori alternatives.
RecipientInfo ::= CHOICE {
ktri KeyTransRecipientInfo,
kari [1] KeyAgreeRecipientInfo,
kekri [2] KEKRecipientInfo,
pwri [3] PasswordRecipientinfo,
ori [4] OtherRecipientInfo }
EncryptedKey ::= OCTET STRING
<span class="grey">Housley Standards Track [Page 21]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-22" ></span>
<span class="grey"><a href="./rfc5652">RFC 5652</a> Cryptographic Message Syntax September 2009</span>
<span class="h4"><a class="selflink" id="section-6.2.1" href="#section-6.2.1">6.2.1</a>. KeyTransRecipientInfo Type</span>
Per-recipient information using key transport is represented in the
type KeyTransRecipientInfo. Each instance of KeyTransRecipientInfo
transfers the content-encryption key to one recipient.
KeyTransRecipientInfo ::= SEQUENCE {
version CMSVersion, -- always set to 0 or 2
rid RecipientIdentifier,
keyEncryptionAlgorithm KeyEncryptionAlgorithmIdentifier,
encryptedKey EncryptedKey }
RecipientIdentifier ::= CHOICE {
issuerAndSerialNumber IssuerAndSerialNumber,
subjectKeyIdentifier [0] SubjectKeyIdentifier }
The fields of type KeyTransRecipientInfo have the following meanings:
version is the syntax version number. If the RecipientIdentifier
is the CHOICE issuerAndSerialNumber, then the version MUST be 0.
If the RecipientIdentifier is subjectKeyIdentifier, then the
version MUST be 2.
rid specifies the recipient's certificate or key that was used by
the sender to protect the content-encryption key. The content-
encryption key is encrypted with the recipient's public key. The
RecipientIdentifier provides two alternatives for specifying the
recipient's certificate, and thereby the recipient's public key.
The recipient's certificate must contain a key transport public
key. Therefore, a recipient X.509 version 3 certificate that
contains a key usage extension MUST assert the keyEncipherment
bit. The issuerAndSerialNumber alternative identifies the
recipient's certificate by the issuer's distinguished name and the
certificate serial number; the subjectKeyIdentifier identifies the
recipient's certificate by a key identifier. When an X.509
certificate is referenced, the key identifier matches the X.509
subjectKeyIdentifier extension value. When other certificate
formats are referenced, the documents that specify the certificate
format and their use with the CMS must include details on matching
the key identifier to the appropriate certificate field. For
recipient processing, implementations MUST support both of these
alternatives for specifying the recipient's certificate. For
sender processing, implementations MUST support at least one of
these alternatives.
<span class="grey">Housley Standards Track [Page 22]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-23" ></span>
<span class="grey"><a href="./rfc5652">RFC 5652</a> Cryptographic Message Syntax September 2009</span>
keyEncryptionAlgorithm identifies the key-encryption algorithm,
and any associated parameters, used to encrypt the content-
encryption key for the recipient. The key-encryption process is
described in <a href="#section-6.4">Section 6.4</a>.
encryptedKey is the result of encrypting the content-encryption
key for the recipient.
<span class="h4"><a class="selflink" id="section-6.2.2" href="#section-6.2.2">6.2.2</a>. KeyAgreeRecipientInfo Type</span>
Recipient information using key agreement is represented in the type
KeyAgreeRecipientInfo. Each instance of KeyAgreeRecipientInfo will
transfer the content-encryption key to one or more recipients that
use the same key agreement algorithm and domain parameters for that
algorithm.
KeyAgreeRecipientInfo ::= SEQUENCE {
version CMSVersion, -- always set to 3
originator [0] EXPLICIT OriginatorIdentifierOrKey,
ukm [1] EXPLICIT UserKeyingMaterial OPTIONAL,
keyEncryptionAlgorithm KeyEncryptionAlgorithmIdentifier,
recipientEncryptedKeys RecipientEncryptedKeys }
OriginatorIdentifierOrKey ::= CHOICE {
issuerAndSerialNumber IssuerAndSerialNumber,
subjectKeyIdentifier [0] SubjectKeyIdentifier,
originatorKey [1] OriginatorPublicKey }
OriginatorPublicKey ::= SEQUENCE {
algorithm AlgorithmIdentifier,
publicKey BIT STRING }
RecipientEncryptedKeys ::= SEQUENCE OF RecipientEncryptedKey
RecipientEncryptedKey ::= SEQUENCE {
rid KeyAgreeRecipientIdentifier,
encryptedKey EncryptedKey }
KeyAgreeRecipientIdentifier ::= CHOICE {
issuerAndSerialNumber IssuerAndSerialNumber,
rKeyId [0] IMPLICIT RecipientKeyIdentifier }
RecipientKeyIdentifier ::= SEQUENCE {
subjectKeyIdentifier SubjectKeyIdentifier,
date GeneralizedTime OPTIONAL,
other OtherKeyAttribute OPTIONAL }
SubjectKeyIdentifier ::= OCTET STRING
<span class="grey">Housley Standards Track [Page 23]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-24" ></span>
<span class="grey"><a href="./rfc5652">RFC 5652</a> Cryptographic Message Syntax September 2009</span>
The fields of type KeyAgreeRecipientInfo have the following meanings:
version is the syntax version number. It MUST always be 3.
originator is a CHOICE with three alternatives specifying the
sender's key agreement public key. The sender uses the
corresponding private key and the recipient's public key to
generate a pairwise key. The content-encryption key is encrypted
in the pairwise key. The issuerAndSerialNumber alternative
identifies the sender's certificate, and thereby the sender's
public key, by the issuer's distinguished name and the certificate
serial number. The subjectKeyIdentifier alternative identifies
the sender's certificate, and thereby the sender's public key, by
a key identifier. When an X.509 certificate is referenced, the
key identifier matches the X.509 subjectKeyIdentifier extension
value. When other certificate formats are referenced, the
documents that specify the certificate format and their use with
the CMS must include details on matching the key identifier to the
appropriate certificate field. The originatorKey alternative
includes the algorithm identifier and sender's key agreement
public key. This alternative permits originator anonymity since
the public key is not certified. Implementations MUST support all
three alternatives for specifying the sender's public key.
ukm is optional. With some key agreement algorithms, the sender
provides a User Keying Material (UKM) to ensure that a different
key is generated each time the same two parties generate a
pairwise key. Implementations MUST accept a KeyAgreeRecipientInfo
SEQUENCE that includes a ukm field. Implementations that do not
support key agreement algorithms that make use of UKMs MUST
gracefully handle the presence of UKMs.
keyEncryptionAlgorithm identifies the key-encryption algorithm,
and any associated parameters, used to encrypt the content-
encryption key with the key-encryption key. The key-encryption
process is described in <a href="#section-6.4">Section 6.4</a>.
recipientEncryptedKeys includes a recipient identifier and
encrypted key for one or more recipients. The
KeyAgreeRecipientIdentifier is a CHOICE with two alternatives
specifying the recipient's certificate, and thereby the
recipient's public key, that was used by the sender to generate a
pairwise key-encryption key. The recipient's certificate must
contain a key agreement public key. Therefore, a recipient X.509
version 3 certificate that contains a key usage extension MUST
assert the keyAgreement bit. The content-encryption key is
encrypted in the pairwise key-encryption key. The
issuerAndSerialNumber alternative identifies the recipient's
<span class="grey">Housley Standards Track [Page 24]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-25" ></span>
<span class="grey"><a href="./rfc5652">RFC 5652</a> Cryptographic Message Syntax September 2009</span>
certificate by the issuer's distinguished name and the certificate
serial number; the RecipientKeyIdentifier is described below. The
encryptedKey is the result of encrypting the content-encryption
key in the pairwise key-encryption key generated using the key
agreement algorithm. Implementations MUST support both
alternatives for specifying the recipient's certificate.
The fields of type RecipientKeyIdentifier have the following
meanings:
subjectKeyIdentifier identifies the recipient's certificate by a
key identifier. When an X.509 certificate is referenced, the key
identifier matches the X.509 subjectKeyIdentifier extension value.
When other certificate formats are referenced, the documents that
specify the certificate format and their use with the CMS must
include details on matching the key identifier to the appropriate
certificate field.
date is optional. When present, the date specifies which of the
recipient's previously distributed UKMs was used by the sender.
other is optional. When present, this field contains additional
information used by the recipient to locate the public keying
material used by the sender.
<span class="h4"><a class="selflink" id="section-6.2.3" href="#section-6.2.3">6.2.3</a>. KEKRecipientInfo Type</span>
Recipient information using previously distributed symmetric keys is
represented in the type KEKRecipientInfo. Each instance of
KEKRecipientInfo will transfer the content-encryption key to one or
more recipients who have the previously distributed key-encryption
key.
KEKRecipientInfo ::= SEQUENCE {
version CMSVersion, -- always set to 4
kekid KEKIdentifier,
keyEncryptionAlgorithm KeyEncryptionAlgorithmIdentifier,
encryptedKey EncryptedKey }
KEKIdentifier ::= SEQUENCE {
keyIdentifier OCTET STRING,
date GeneralizedTime OPTIONAL,
other OtherKeyAttribute OPTIONAL }
<span class="grey">Housley Standards Track [Page 25]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-26" ></span>
<span class="grey"><a href="./rfc5652">RFC 5652</a> Cryptographic Message Syntax September 2009</span>
The fields of type KEKRecipientInfo have the following meanings:
version is the syntax version number. It MUST always be 4.
kekid specifies a symmetric key-encryption key that was previously
distributed to the sender and one or more recipients.
keyEncryptionAlgorithm identifies the key-encryption algorithm,
and any associated parameters, used to encrypt the content-
encryption key with the key-encryption key. The key-encryption
process is described in <a href="#section-6.4">Section 6.4</a>.
encryptedKey is the result of encrypting the content-encryption
key in the key-encryption key.
The fields of type KEKIdentifier have the following meanings:
keyIdentifier identifies the key-encryption key that was
previously distributed to the sender and one or more recipients.
date is optional. When present, the date specifies a single key-
encryption key from a set that was previously distributed.
other is optional. When present, this field contains additional
information used by the recipient to determine the key-encryption
key used by the sender.
<span class="h4"><a class="selflink" id="section-6.2.4" href="#section-6.2.4">6.2.4</a>. PasswordRecipientInfo Type</span>
Recipient information using a password or shared secret value is
represented in the type PasswordRecipientInfo. Each instance of
PasswordRecipientInfo will transfer the content-encryption key to one
or more recipients who possess the password or shared secret value.
The PasswordRecipientInfo Type is specified in <a href="./rfc3211">RFC 3211</a> [<a href="#ref-PWRI" title=""Password-based Encryption for CMS"">PWRI</a>]. The
PasswordRecipientInfo structure is repeated here for completeness.
PasswordRecipientInfo ::= SEQUENCE {
version CMSVersion, -- Always set to 0
keyDerivationAlgorithm [0] KeyDerivationAlgorithmIdentifier
OPTIONAL,
keyEncryptionAlgorithm KeyEncryptionAlgorithmIdentifier,
encryptedKey EncryptedKey }
<span class="grey">Housley Standards Track [Page 26]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-27" ></span>
<span class="grey"><a href="./rfc5652">RFC 5652</a> Cryptographic Message Syntax September 2009</span>
The fields of type PasswordRecipientInfo have the following meanings:
version is the syntax version number. It MUST always be 0.
keyDerivationAlgorithm identifies the key-derivation algorithm,
and any associated parameters, used to derive the key-encryption
key from the password or shared secret value. If this field is
absent, the key-encryption key is supplied from an external
source, for example a hardware crypto token such as a smart card.
keyEncryptionAlgorithm identifies the encryption algorithm, and
any associated parameters, used to encrypt the content-encryption
key with the key-encryption key.
encryptedKey is the result of encrypting the content-encryption
key with the key-encryption key.
<span class="h4"><a class="selflink" id="section-6.2.5" href="#section-6.2.5">6.2.5</a>. OtherRecipientInfo Type</span>
Recipient information for additional key management techniques are
represented in the type OtherRecipientInfo. The OtherRecipientInfo
type allows key management techniques beyond key transport, key
agreement, previously distributed symmetric key-encryption keys, and
password-based key management to be specified in future documents.
An object identifier uniquely identifies such key management
techniques.
OtherRecipientInfo ::= SEQUENCE {
oriType OBJECT IDENTIFIER,
oriValue ANY DEFINED BY oriType }
The fields of type OtherRecipientInfo have the following meanings:
oriType identifies the key management technique.
oriValue contains the protocol data elements needed by a recipient
using the identified key management technique.
<span class="h3"><a class="selflink" id="section-6.3" href="#section-6.3">6.3</a>. Content-encryption Process</span>
The content-encryption key for the desired content-encryption
algorithm is randomly generated. The data to be protected is padded
as described below, then the padded data is encrypted using the
content-encryption key. The encryption operation maps an arbitrary
string of octets (the data) to another string of octets (the
ciphertext) under control of a content-encryption key. The encrypted
data is included in the EnvelopedData encryptedContentInfo
encryptedContent OCTET STRING.
<span class="grey">Housley Standards Track [Page 27]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-28" ></span>
<span class="grey"><a href="./rfc5652">RFC 5652</a> Cryptographic Message Syntax September 2009</span>
Some content-encryption algorithms assume the input length is a
multiple of k octets, where k is greater than one. For such
algorithms, the input shall be padded at the trailing end with
k-(lth mod k) octets all having value k-(lth mod k), where lth is
the length of the input. In other words, the input is padded at
the trailing end with one of the following strings:
01 -- if lth mod k = k-1
02 02 -- if lth mod k = k-2
.
.
.
k k ... k k -- if lth mod k = 0
The padding can be removed unambiguously since all input is padded,
including input values that are already a multiple of the block size,
and no padding string is a suffix of another. This padding method is
well defined if and only if k is less than 256.
<span class="h3"><a class="selflink" id="section-6.4" href="#section-6.4">6.4</a>. Key-encryption Process</span>
The input to the key-encryption process -- the value supplied to the
recipient's key-encryption algorithm -- is just the "value" of the
content-encryption key.
Any of the aforementioned key management techniques can be used for
each recipient of the same encrypted content.
<span class="h2"><a class="selflink" id="section-7" href="#section-7">7</a>. Digested-data Content Type</span>
The digested-data content type consists of content of any type and a
message digest of the content.
Typically, the digested-data content type is used to provide content
integrity, and the result generally becomes an input to the
enveloped-data content type.
The following steps construct digested-data:
1. A message digest is computed on the content with a message-digest
algorithm.
2. The message-digest algorithm and the message digest are collected
together with the content into a DigestedData value.
A recipient verifies the message digest by comparing the message
digest to an independently computed message digest.
<span class="grey">Housley Standards Track [Page 28]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-29" ></span>
<span class="grey"><a href="./rfc5652">RFC 5652</a> Cryptographic Message Syntax September 2009</span>
The following object identifier identifies the digested-data content
type:
id-digestedData OBJECT IDENTIFIER ::= { iso(1) member-body(2)
us(840) rsadsi(113549) pkcs(1) pkcs7(7) 5 }
The digested-data content type shall have ASN.1 type DigestedData:
DigestedData ::= SEQUENCE {
version CMSVersion,
digestAlgorithm DigestAlgorithmIdentifier,
encapContentInfo EncapsulatedContentInfo,
digest Digest }
Digest ::= OCTET STRING
The fields of type DigestedData have the following meanings:
version is the syntax version number. If the encapsulated content
type is id-data, then the value of version MUST be 0; however, if
the encapsulated content type is other than id-data, then the
value of version MUST be 2.
digestAlgorithm identifies the message digest algorithm, and any
associated parameters, under which the content is digested. The
message-digesting process is the same as in <a href="#section-5.4">Section 5.4</a> in the
case when there are no signed attributes.
encapContentInfo is the content that is digested, as defined in
<a href="#section-5.2">Section 5.2</a>.
digest is the result of the message-digesting process.
The ordering of the digestAlgorithm field, the encapContentInfo
field, and the digest field makes it possible to process a
DigestedData value in a single pass.
<span class="h2"><a class="selflink" id="section-8" href="#section-8">8</a>. Encrypted-data Content Type</span>
The encrypted-data content type consists of encrypted content of any
type. Unlike the enveloped-data content type, the encrypted-data
content type has neither recipients nor encrypted content-encryption
keys. Keys MUST be managed by other means.
The typical application of the encrypted-data content type will be to
encrypt the content of the data content type for local storage,
perhaps where the encryption key is derived from a password.
<span class="grey">Housley Standards Track [Page 29]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-30" ></span>
<span class="grey"><a href="./rfc5652">RFC 5652</a> Cryptographic Message Syntax September 2009</span>
The following object identifier identifies the encrypted-data content
type:
id-encryptedData OBJECT IDENTIFIER ::= { iso(1) member-body(2)
us(840) rsadsi(113549) pkcs(1) pkcs7(7) 6 }
The encrypted-data content type shall have ASN.1 type EncryptedData:
EncryptedData ::= SEQUENCE {
version CMSVersion,
encryptedContentInfo EncryptedContentInfo,
unprotectedAttrs [1] IMPLICIT UnprotectedAttributes OPTIONAL }
The fields of type EncryptedData have the following meanings:
version is the syntax version number. If unprotectedAttrs is
present, then the version MUST be 2. If unprotectedAttrs is
absent, then version MUST be 0.
encryptedContentInfo is the encrypted content information, as
defined in <a href="#section-6.1">Section 6.1</a>.
unprotectedAttrs is a collection of attributes that are not
encrypted. The field is optional. Useful attribute types are
defined in <a href="#section-11">Section 11</a>.
<span class="h2"><a class="selflink" id="section-9" href="#section-9">9</a>. Authenticated-data Content Type</span>
The authenticated-data content type consists of content of any type,
a message authentication code (MAC), and encrypted authentication
keys for one or more recipients. The combination of the MAC and one
encrypted authentication key for a recipient is necessary for that
recipient to verify the integrity of the content. Any type of
content can be integrity protected for an arbitrary number of
recipients.
The process by which authenticated-data is constructed involves the
following steps:
1. A message-authentication key for a particular message-
authentication algorithm is generated at random.
2. The message-authentication key is encrypted for each recipient.
The details of this encryption depend on the key management
algorithm used.
<span class="grey">Housley Standards Track [Page 30]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-31" ></span>
<span class="grey"><a href="./rfc5652">RFC 5652</a> Cryptographic Message Syntax September 2009</span>
3. For each recipient, the encrypted message-authentication key and
other recipient-specific information are collected into a
RecipientInfo value, defined in <a href="#section-6.2">Section 6.2</a>.
4. Using the message-authentication key, the originator computes a
MAC value on the content. If the originator is authenticating
any information in addition to the content (see <a href="#section-9.2">Section 9.2</a>), a
message digest is calculated on the content, the message digest
of the content and the other information are authenticated using
the message-authentication key, and the result becomes the "MAC
value".
<span class="h3"><a class="selflink" id="section-9.1" href="#section-9.1">9.1</a>. AuthenticatedData Type</span>
The following object identifier identifies the authenticated-data
content type:
id-ct-authData OBJECT IDENTIFIER ::= { iso(1) member-body(2)
us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16)
ct(1) 2 }
The authenticated-data content type shall have ASN.1 type
AuthenticatedData:
AuthenticatedData ::= SEQUENCE {
version CMSVersion,
originatorInfo [0] IMPLICIT OriginatorInfo OPTIONAL,
recipientInfos RecipientInfos,
macAlgorithm MessageAuthenticationCodeAlgorithm,
digestAlgorithm [1] DigestAlgorithmIdentifier OPTIONAL,
encapContentInfo EncapsulatedContentInfo,
authAttrs [2] IMPLICIT AuthAttributes OPTIONAL,
mac MessageAuthenticationCode,
unauthAttrs [3] IMPLICIT UnauthAttributes OPTIONAL }
AuthAttributes ::= SET SIZE (1..MAX) OF Attribute
UnauthAttributes ::= SET SIZE (1..MAX) OF Attribute
MessageAuthenticationCode ::= OCTET STRING
The fields of type AuthenticatedData have the following meanings:
version is the syntax version number. The version MUST be
assigned as follows:
<span class="grey">Housley Standards Track [Page 31]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-32" ></span>
<span class="grey"><a href="./rfc5652">RFC 5652</a> Cryptographic Message Syntax September 2009</span>
IF (originatorInfo is present) AND
((any certificates with a type of other are present) OR
(any crls with a type of other are present))
THEN version is 3
ELSE
IF ((originatorInfo is present) AND
(any version 2 attribute certificates are present))
THEN version is 1
ELSE version is 0
originatorInfo optionally provides information about the
originator. It is present only if required by the key management
algorithm. It MAY contain certificates, attribute certificates,
and CRLs, as defined in <a href="#section-6.1">Section 6.1</a>.
recipientInfos is a collection of per-recipient information, as
defined in <a href="#section-6.1">Section 6.1</a>. There MUST be at least one element in the
collection.
macAlgorithm is a message authentication code (MAC) algorithm
identifier. It identifies the MAC algorithm, along with any
associated parameters, used by the originator. Placement of the
macAlgorithm field facilitates one-pass processing by the
recipient.
digestAlgorithm identifies the message digest algorithm, and any
associated parameters, used to compute a message digest on the
encapsulated content if authenticated attributes are present. The
message digesting process is described in <a href="#section-9.2">Section 9.2</a>. Placement
of the digestAlgorithm field facilitates one-pass processing by
the recipient. If the digestAlgorithm field is present, then the
authAttrs field MUST also be present.
encapContentInfo is the content that is authenticated, as defined
in <a href="#section-5.2">Section 5.2</a>.
authAttrs is a collection of authenticated attributes. The
authAttrs structure is optional, but it MUST be present if the
content type of the EncapsulatedContentInfo value being
authenticated is not id-data. If the authAttrs field is present,
then the digestAlgorithm field MUST also be present. The
AuthAttributes structure MUST be DER encoded, even if the rest of
the structure is BER encoded. Useful attribute types are defined
in <a href="#section-11">Section 11</a>. If the authAttrs field is present, it MUST
contain, at a minimum, the following two attributes:
<span class="grey">Housley Standards Track [Page 32]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-33" ></span>
<span class="grey"><a href="./rfc5652">RFC 5652</a> Cryptographic Message Syntax September 2009</span>
A content-type attribute having as its value the content type
of the EncapsulatedContentInfo value being authenticated.
<a href="#section-11.1">Section 11.1</a> defines the content-type attribute.
A message-digest attribute, having as its value the message
digest of the content. <a href="#section-11.2">Section 11.2</a> defines the message-digest
attribute.
mac is the message authentication code.
unauthAttrs is a collection of attributes that are not
authenticated. The field is optional. To date, no attributes
have been defined for use as unauthenticated attributes, but other
useful attribute types are defined in <a href="#section-11">Section 11</a>.
<span class="h3"><a class="selflink" id="section-9.2" href="#section-9.2">9.2</a>. MAC Generation</span>
The MAC calculation process computes a message authentication code
(MAC) on either the content being authenticated or a message digest
of content being authenticated together with the originator's
authenticated attributes.
If the authAttrs field is absent, the input to the MAC calculation
process is the value of the encapContentInfo eContent OCTET STRING.
Only the octets comprising the value of the eContent OCTET STRING are
input to the MAC algorithm; the tag and the length octets are
omitted. This has the advantage that the length of the content being
authenticated need not be known in advance of the MAC generation
process.
If the authAttrs field is present, the content-type attribute (as
described in <a href="#section-11.1">Section 11.1</a>) and the message-digest attribute (as
described in <a href="#section-11.2">Section 11.2</a>) MUST be included, and the input to the MAC
calculation process is the DER encoding of authAttrs. A separate
encoding of the authAttrs field is performed for message digest
calculation. The IMPLICIT [2] tag in the authAttrs field is not used
for the DER encoding, rather an EXPLICIT SET OF tag is used. That
is, the DER encoding of the SET OF tag, rather than of the IMPLICIT
[2] tag, is to be included in the message digest calculation along
with the length and content octets of the authAttrs value.
The message digest calculation process computes a message digest on
the content being authenticated. The initial input to the message
digest calculation process is the "value" of the encapsulated content
being authenticated. Specifically, the input is the encapContentInfo
eContent OCTET STRING to which the authentication process is applied.
Only the octets comprising the value of the encapContentInfo eContent
OCTET STRING are input to the message digest algorithm, not the tag
<span class="grey">Housley Standards Track [Page 33]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-34" ></span>
<span class="grey"><a href="./rfc5652">RFC 5652</a> Cryptographic Message Syntax September 2009</span>
or the length octets. This has the advantage that the length of the
content being authenticated need not be known in advance. Although
the encapContentInfo eContent OCTET STRING tag and length octets are
not included in the message digest calculation, they are still
protected by other means. The length octets are protected by the
nature of the message digest algorithm since it is computationally
infeasible to find any two distinct contents of any length that have
the same message digest.
The input to the MAC calculation process includes the MAC input data,
defined above, and an authentication key conveyed in a recipientInfo
structure. The details of MAC calculation depend on the MAC
algorithm employed (e.g., Hashed Message Authentication Code (HMAC)).
The object identifier, along with any parameters, that specifies the
MAC algorithm employed by the originator is carried in the
macAlgorithm field. The MAC value generated by the originator is
encoded as an OCTET STRING and carried in the mac field.
<span class="h3"><a class="selflink" id="section-9.3" href="#section-9.3">9.3</a>. MAC Verification</span>
The input to the MAC verification process includes the input data
(determined based on the presence or absence of the authAttrs field,
as defined in 9.2), and the authentication key conveyed in
recipientInfo. The details of the MAC verification process depend on
the MAC algorithm employed.
The recipient MUST NOT rely on any MAC values or message digest
values computed by the originator. The content is authenticated as
described in <a href="#section-9.2">Section 9.2</a>. If the originator includes authenticated
attributes, then the content of the authAttrs is authenticated as
described in <a href="#section-9.2">Section 9.2</a>. For authentication to succeed, the MAC
value calculated by the recipient MUST be the same as the value of
the mac field. Similarly, for authentication to succeed when the
authAttrs field is present, the content message digest value
calculated by the recipient MUST be the same as the message digest
value included in the authAttrs message-digest attribute.
If the AuthenticatedData includes authAttrs, then the content-type
attribute value MUST match the AuthenticatedData encapContentInfo
eContentType value.
<span class="h2"><a class="selflink" id="section-10" href="#section-10">10</a>. Useful Types</span>
This section is divided into two parts. The first part defines
algorithm identifiers, and the second part defines other useful
types.
<span class="grey">Housley Standards Track [Page 34]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-35" ></span>
<span class="grey"><a href="./rfc5652">RFC 5652</a> Cryptographic Message Syntax September 2009</span>
<span class="h3"><a class="selflink" id="section-10.1" href="#section-10.1">10.1</a>. Algorithm Identifier Types</span>
All of the algorithm identifiers have the same type:
AlgorithmIdentifier. The definition of AlgorithmIdentifier is taken
from X.509 [<a href="#ref-X.509-88">X.509-88</a>].
There are many alternatives for each algorithm type.
<span class="h4"><a class="selflink" id="section-10.1.1" href="#section-10.1.1">10.1.1</a>. DigestAlgorithmIdentifier</span>
The DigestAlgorithmIdentifier type identifies a message-digest
algorithm. Examples include SHA-1, MD2, and MD5. A message-digest
algorithm maps an octet string (the content) to another octet string
(the message digest).
DigestAlgorithmIdentifier ::= AlgorithmIdentifier
<span class="h4"><a class="selflink" id="section-10.1.2" href="#section-10.1.2">10.1.2</a>. SignatureAlgorithmIdentifier</span>
The SignatureAlgorithmIdentifier type identifies a signature
algorithm, and it can also identify a message digest algorithm.
Examples include RSA, DSA, DSA with SHA-1, ECDSA, and ECDSA with
SHA-256. A signature algorithm supports signature generation and
verification operations. The signature generation operation uses the
message digest and the signer's private key to generate a signature
value. The signature verification operation uses the message digest
and the signer's public key to determine whether or not a signature
value is valid. Context determines which operation is intended.
SignatureAlgorithmIdentifier ::= AlgorithmIdentifier
<span class="h4"><a class="selflink" id="section-10.1.3" href="#section-10.1.3">10.1.3</a>. KeyEncryptionAlgorithmIdentifier</span>
The KeyEncryptionAlgorithmIdentifier type identifies a key-encryption
algorithm used to encrypt a content-encryption key. The encryption
operation maps an octet string (the key) to another octet string (the
encrypted key) under control of a key-encryption key. The decryption
operation is the inverse of the encryption operation. Context
determines which operation is intended.
The details of encryption and decryption depend on the key management
algorithm used. Key transport, key agreement, previously distributed
symmetric key-encrypting keys, and symmetric key-encrypting keys
derived from passwords are supported.
KeyEncryptionAlgorithmIdentifier ::= AlgorithmIdentifier
<span class="grey">Housley Standards Track [Page 35]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-36" ></span>
<span class="grey"><a href="./rfc5652">RFC 5652</a> Cryptographic Message Syntax September 2009</span>
<span class="h4"><a class="selflink" id="section-10.1.4" href="#section-10.1.4">10.1.4</a>. ContentEncryptionAlgorithmIdentifier</span>
The ContentEncryptionAlgorithmIdentifier type identifies a content-
encryption algorithm. Examples include Triple-DES and RC2. A
content-encryption algorithm supports encryption and decryption
operations. The encryption operation maps an octet string (the
plaintext) to another octet string (the ciphertext) under control of
a content-encryption key. The decryption operation is the inverse of
the encryption operation. Context determines which operation is
intended.
ContentEncryptionAlgorithmIdentifier ::= AlgorithmIdentifier
<span class="h4"><a class="selflink" id="section-10.1.5" href="#section-10.1.5">10.1.5</a>. MessageAuthenticationCodeAlgorithm</span>
The MessageAuthenticationCodeAlgorithm type identifies a message
authentication code (MAC) algorithm. Examples include DES-MAC and
HMAC-SHA-1. A MAC algorithm supports generation and verification
operations. The MAC generation and verification operations use the
same symmetric key. Context determines which operation is intended.
MessageAuthenticationCodeAlgorithm ::= AlgorithmIdentifier
<span class="h4"><a class="selflink" id="section-10.1.6" href="#section-10.1.6">10.1.6</a>. KeyDerivationAlgorithmIdentifier</span>
The KeyDerivationAlgorithmIdentifier type is specified in <a href="./rfc3211">RFC 3211</a>
[<a href="#ref-PWRI" title=""Password-based Encryption for CMS"">PWRI</a>]. The KeyDerivationAlgorithmIdentifier definition is repeated
here for completeness.
Key derivation algorithms convert a password or shared secret value
into a key-encryption key.
KeyDerivationAlgorithmIdentifier ::= AlgorithmIdentifier
<span class="h3"><a class="selflink" id="section-10.2" href="#section-10.2">10.2</a>. Other Useful Types</span>
This section defines types that are used other places in the
document. The types are not listed in any particular order.
<span class="h4"><a class="selflink" id="section-10.2.1" href="#section-10.2.1">10.2.1</a>. RevocationInfoChoices</span>
The RevocationInfoChoices type gives a set of revocation status
information alternatives. It is intended that the set contain
information sufficient to determine whether the certificates and
attribute certificates with which the set is associated are revoked.
However, there MAY be more revocation status information than
necessary or there MAY be less revocation status information than
necessary. X.509 Certificate revocation lists (CRLs) [<a href="#ref-X.509-97">X.509-97</a>] are
<span class="grey">Housley Standards Track [Page 36]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-37" ></span>
<span class="grey"><a href="./rfc5652">RFC 5652</a> Cryptographic Message Syntax September 2009</span>
the primary source of revocation status information, but any other
revocation information format can be supported. The
OtherRevocationInfoFormat alternative is provided to support any
other revocation information format without further modifications to
the CMS. For example, Online Certificate Status Protocol (OCSP)
Responses [<a href="#ref-OCSP" title=""X.509 Internet Public Key Infrastructure Online Certificate Status Protocol - OCSP"">OCSP</a>] can be supported using the
OtherRevocationInfoFormat.
The CertificateList may contain a CRL, an Authority Revocation List
(ARL), a Delta CRL, or an Attribute Certificate Revocation List. All
of these lists share a common syntax.
The CertificateList type gives a certificate revocation list (CRL).
CRLs are specified in X.509 [<a href="#ref-X.509-97">X.509-97</a>], and they are profiled for use
in the Internet in <a href="./rfc5280">RFC 5280</a> [<a href="#ref-PROFILE" title=""Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile"">PROFILE</a>].
The definition of CertificateList is taken from X.509.
RevocationInfoChoices ::= SET OF RevocationInfoChoice
RevocationInfoChoice ::= CHOICE {
crl CertificateList,
other [1] IMPLICIT OtherRevocationInfoFormat }
OtherRevocationInfoFormat ::= SEQUENCE {
otherRevInfoFormat OBJECT IDENTIFIER,
otherRevInfo ANY DEFINED BY otherRevInfoFormat }
<span class="h4"><a class="selflink" id="section-10.2.2" href="#section-10.2.2">10.2.2</a>. CertificateChoices</span>
The CertificateChoices type gives either a PKCS #6 extended
certificate [PKCS#6], an X.509 certificate, a version 1 X.509
attribute certificate (ACv1) [<a href="#ref-X.509-97">X.509-97</a>], a version 2 X.509 attribute
certificate (ACv2) [<a href="#ref-X.509-00">X.509-00</a>], or any other certificate format. The
PKCS #6 extended certificate is obsolete. The PKCS #6 certificate is
included for backward compatibility, and PKCS #6 certificates SHOULD
NOT be used. The ACv1 is also obsolete. ACv1 is included for
backward compatibility, and ACv1 SHOULD NOT be used. The Internet
profile of X.509 certificates is specified in the "Internet X.509
Public Key Infrastructure: Certificate and CRL Profile" [<a href="#ref-PROFILE" title=""Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile"">PROFILE</a>].
The Internet profile of ACv2 is specified in the "An Internet
Attribute Certificate Profile for Authorization" [<a href="#ref-ACPROFILE" title=""An Internet Attribute Certificate Profile for Authorization"">ACPROFILE</a>]. The
OtherCertificateFormat alternative is provided to support any other
certificate format without further modifications to the CMS.
The definition of Certificate is taken from X.509.
<span class="grey">Housley Standards Track [Page 37]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-38" ></span>
<span class="grey"><a href="./rfc5652">RFC 5652</a> Cryptographic Message Syntax September 2009</span>
The definitions of AttributeCertificate are taken from X.509-1997 and
X.509-2000. The definition from X.509-1997 is assigned to
AttributeCertificateV1 (see <a href="#section-12.2">Section 12.2</a>), and the definition from
X.509-2000 is assigned to AttributeCertificateV2.
CertificateChoices ::= CHOICE {
certificate Certificate,
extendedCertificate [0] IMPLICIT ExtendedCertificate, -- Obsolete
v1AttrCert [1] IMPLICIT AttributeCertificateV1, -- Obsolete
v2AttrCert [2] IMPLICIT AttributeCertificateV2,
other [3] IMPLICIT OtherCertificateFormat }
OtherCertificateFormat ::= SEQUENCE {
otherCertFormat OBJECT IDENTIFIER,
otherCert ANY DEFINED BY otherCertFormat }
<span class="h4"><a class="selflink" id="section-10.2.3" href="#section-10.2.3">10.2.3</a>. CertificateSet</span>
The CertificateSet type provides a set of certificates. It is
intended that the set be sufficient to contain certification paths
from a recognized "root" or "top-level certification authority" to
all of the sender certificates with which the set is associated.
However, there may be more certificates than necessary, or there MAY
be fewer than necessary.
The precise meaning of a "certification path" is outside the scope of
this document. However, [<a href="#ref-PROFILE" title=""Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile"">PROFILE</a>] provides a definition for X.509
certificates. Some applications may impose upper limits on the
length of a certification path; others may enforce certain
relationships between the subjects and issuers of certificates within
a certification path.
CertificateSet ::= SET OF CertificateChoices
<span class="h4"><a class="selflink" id="section-10.2.4" href="#section-10.2.4">10.2.4</a>. IssuerAndSerialNumber</span>
The IssuerAndSerialNumber type identifies a certificate, and thereby
an entity and a public key, by the distinguished name of the
certificate issuer and an issuer-specific certificate serial number.
The definition of Name is taken from X.501 [<a href="#ref-X.501-88">X.501-88</a>], and the
definition of CertificateSerialNumber is taken from X.509 [<a href="#ref-X.509-97">X.509-97</a>].
IssuerAndSerialNumber ::= SEQUENCE {
issuer Name,
serialNumber CertificateSerialNumber }
CertificateSerialNumber ::= INTEGER
<span class="grey">Housley Standards Track [Page 38]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-39" ></span>
<span class="grey"><a href="./rfc5652">RFC 5652</a> Cryptographic Message Syntax September 2009</span>
<span class="h4"><a class="selflink" id="section-10.2.5" href="#section-10.2.5">10.2.5</a>. CMSVersion</span>
The CMSVersion type gives a syntax version number, for compatibility
with future revisions of this specification.
CMSVersion ::= INTEGER
{ v0(0), v1(1), v2(2), v3(3), v4(4), v5(5) }
<span class="h4"><a class="selflink" id="section-10.2.6" href="#section-10.2.6">10.2.6</a>. UserKeyingMaterial</span>
The UserKeyingMaterial type gives a syntax for user keying material
(UKM). Some key agreement algorithms require UKMs to ensure that a
different key is generated each time the same two parties generate a
pairwise key. The sender provides a UKM for use with a specific key
agreement algorithm.
UserKeyingMaterial ::= OCTET STRING
<span class="h4"><a class="selflink" id="section-10.2.7" href="#section-10.2.7">10.2.7</a>. OtherKeyAttribute</span>
The OtherKeyAttribute type gives a syntax for the inclusion of other
key attributes that permit the recipient to select the key used by
the sender. The attribute object identifier must be registered along
with the syntax of the attribute itself. Use of this structure
should be avoided since it might impede interoperability.
OtherKeyAttribute ::= SEQUENCE {
keyAttrId OBJECT IDENTIFIER,
keyAttr ANY DEFINED BY keyAttrId OPTIONAL }
<span class="h2"><a class="selflink" id="section-11" href="#section-11">11</a>. Useful Attributes</span>
This section defines attributes that may be used with signed-data,
enveloped-data, encrypted-data, or authenticated-data. The syntax of
Attribute is compatible with X.501 [<a href="#ref-X.501-88">X.501-88</a>] and <a href="./rfc5280">RFC 5280</a> [<a href="#ref-PROFILE" title=""Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile"">PROFILE</a>].
Some of the attributes defined in this section were originally
defined in PKCS #9 [PKCS#9]; others were originally defined in a
previous version of this specification [<a href="#ref-CMS1" title=""Cryptographic Message Syntax"">CMS1</a>]. The attributes are
not listed in any particular order.
Additional attributes are defined in many places, notably the S/MIME
Version 3.1 Message Specification [<a href="#ref-MSG3.1" title=""Secure/Multipurpose Internet Mail Extensions (S/MIME) Version 3.1 Message Specification"">MSG3.1</a>] and the Enhanced Security
Services for S/MIME [<a href="#ref-ESS" title=""Enhanced Security Services for S/MIME"">ESS</a>], which also include recommendations on the
placement of these attributes.
<span class="grey">Housley Standards Track [Page 39]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-40" ></span>
<span class="grey"><a href="./rfc5652">RFC 5652</a> Cryptographic Message Syntax September 2009</span>
<span class="h3"><a class="selflink" id="section-11.1" href="#section-11.1">11.1</a>. Content Type</span>
The content-type attribute type specifies the content type of the
ContentInfo within signed-data or authenticated-data. The content-
type attribute type MUST be present whenever signed attributes are
present in signed-data or authenticated attributes present in
authenticated-data. The content-type attribute value MUST match the
encapContentInfo eContentType value in the signed-data or
authenticated-data.
The content-type attribute MUST be a signed attribute or an
authenticated attribute; it MUST NOT be an unsigned attribute,
unauthenticated attribute, or unprotected attribute.
The following object identifier identifies the content-type
attribute:
id-contentType OBJECT IDENTIFIER ::= { iso(1) member-body(2)
us(840) rsadsi(113549) pkcs(1) pkcs9(9) 3 }
Content-type attribute values have ASN.1 type ContentType:
ContentType ::= OBJECT IDENTIFIER
Even though the syntax is defined as a SET OF AttributeValue, a
content-type attribute MUST have a single attribute value; zero or
multiple instances of AttributeValue are not permitted.
The SignedAttributes and AuthAttributes syntaxes are each defined as
a SET OF Attributes. The SignedAttributes in a signerInfo MUST NOT
include multiple instances of the content-type attribute. Similarly,
the AuthAttributes in an AuthenticatedData MUST NOT include multiple
instances of the content-type attribute.
<span class="h3"><a class="selflink" id="section-11.2" href="#section-11.2">11.2</a>. Message Digest</span>
The message-digest attribute type specifies the message digest of the
encapContentInfo eContent OCTET STRING being signed in signed-data
(see <a href="#section-5.4">Section 5.4</a>) or authenticated in authenticated-data (see <a href="#section-9.2">Section</a>
<a href="#section-9.2">9.2</a>). For signed-data, the message digest is computed using the
signer's message digest algorithm. For authenticated-data, the
message digest is computed using the originator's message digest
algorithm.
Within signed-data, the message-digest signed attribute type MUST be
present when there are any signed attributes present. Within
authenticated-data, the message-digest authenticated attribute type
MUST be present when there are any authenticated attributes present.
<span class="grey">Housley Standards Track [Page 40]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-41" ></span>
<span class="grey"><a href="./rfc5652">RFC 5652</a> Cryptographic Message Syntax September 2009</span>
The message-digest attribute MUST be a signed attribute or an
authenticated attribute; it MUST NOT be an unsigned attribute,
unauthenticated attribute, or unprotected attribute.
The following object identifier identifies the message-digest
attribute:
id-messageDigest OBJECT IDENTIFIER ::= { iso(1) member-body(2)
us(840) rsadsi(113549) pkcs(1) pkcs9(9) 4 }
Message-digest attribute values have ASN.1 type MessageDigest:
MessageDigest ::= OCTET STRING
A message-digest attribute MUST have a single attribute value, even
though the syntax is defined as a SET OF AttributeValue. There MUST
NOT be zero or multiple instances of AttributeValue present.
The SignedAttributes syntax and AuthAttributes syntax are each
defined as a SET OF Attributes. The SignedAttributes in a signerInfo
MUST include only one instance of the message-digest attribute.
Similarly, the AuthAttributes in an AuthenticatedData MUST include
only one instance of the message-digest attribute.
<span class="h3"><a class="selflink" id="section-11.3" href="#section-11.3">11.3</a>. Signing Time</span>
The signing-time attribute type specifies the time at which the
signer (purportedly) performed the signing process. The signing-time
attribute type is intended for use in signed-data.
The signing-time attribute MUST be a signed attribute or an
authenticated attribute; it MUST NOT be an unsigned attribute,
unauthenticated attribute, or unprotected attribute.
The following object identifier identifies the signing-time
attribute:
id-signingTime OBJECT IDENTIFIER ::= { iso(1) member-body(2)
us(840) rsadsi(113549) pkcs(1) pkcs9(9) 5 }
Signing-time attribute values have ASN.1 type SigningTime:
SigningTime ::= Time
Time ::= CHOICE {
utcTime UTCTime,
generalizedTime GeneralizedTime }
<span class="grey">Housley Standards Track [Page 41]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-42" ></span>
<span class="grey"><a href="./rfc5652">RFC 5652</a> Cryptographic Message Syntax September 2009</span>
Note: The definition of Time matches the one specified in the 1997
version of X.509 [<a href="#ref-X.509-97">X.509-97</a>].
Dates between 1 January 1950 and 31 December 2049 (inclusive) MUST be
encoded as UTCTime. Any dates with year values before 1950 or after
2049 MUST be encoded as GeneralizedTime.
UTCTime values MUST be expressed in Coordinated Universal Time
(formerly known as Greenwich Mean Time (GMT) and Zulu clock time) and
MUST include seconds (i.e., times are YYMMDDHHMMSSZ), even where the
number of seconds is zero. Midnight MUST be represented as
"YYMMDD000000Z". Century information is implicit, and the century
MUST be determined as follows:
Where YY is greater than or equal to 50, the year MUST be
interpreted as 19YY; and
Where YY is less than 50, the year MUST be interpreted as 20YY.
GeneralizedTime values MUST be expressed in Coordinated Universal
Time and MUST include seconds (i.e., times are YYYYMMDDHHMMSSZ), even
where the number of seconds is zero. GeneralizedTime values MUST NOT
include fractional seconds.
A signing-time attribute MUST have a single attribute value, even
though the syntax is defined as a SET OF AttributeValue. There MUST
NOT be zero or multiple instances of AttributeValue present.
The SignedAttributes syntax and the AuthAttributes syntax are each
defined as a SET OF Attributes. The SignedAttributes in a signerInfo
MUST NOT include multiple instances of the signing-time attribute.
Similarly, the AuthAttributes in an AuthenticatedData MUST NOT
include multiple instances of the signing-time attribute.
No requirement is imposed concerning the correctness of the signing
time, and acceptance of a purported signing time is a matter of a
recipient's discretion. It is expected, however, that some signers,
such as time-stamp servers, will be trusted implicitly.
<span class="h3"><a class="selflink" id="section-11.4" href="#section-11.4">11.4</a>. Countersignature</span>
The countersignature attribute type specifies one or more signatures
on the contents octets of the signature OCTET STRING in a SignerInfo
value of the signed-data. That is, the message digest is computed
over the octets comprising the value of the OCTET STRING, neither the
tag nor length octets are included. Thus, the countersignature
attribute type countersigns (signs in serial) another signature.
<span class="grey">Housley Standards Track [Page 42]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-43" ></span>
<span class="grey"><a href="./rfc5652">RFC 5652</a> Cryptographic Message Syntax September 2009</span>
The countersignature attribute MUST be an unsigned attribute; it MUST
NOT be a signed attribute, an authenticated attribute, an
unauthenticated attribute, or an unprotected attribute.
The following object identifier identifies the countersignature
attribute:
id-countersignature OBJECT IDENTIFIER ::= { iso(1) member-body(2)
us(840) rsadsi(113549) pkcs(1) pkcs9(9) 6 }
Countersignature attribute values have ASN.1 type Countersignature:
Countersignature ::= SignerInfo
Countersignature values have the same meaning as SignerInfo values
for ordinary signatures, except that:
1. The signedAttributes field MUST NOT contain a content-type
attribute; there is no content type for countersignatures.
2. The signedAttributes field MUST contain a message-digest
attribute if it contains any other attributes.
3. The input to the message-digesting process is the contents octets
of the DER encoding of the signatureValue field of the SignerInfo
value with which the attribute is associated.
A countersignature attribute can have multiple attribute values. The
syntax is defined as a SET OF AttributeValue, and there MUST be one
or more instances of AttributeValue present.
The UnsignedAttributes syntax is defined as a SET OF Attributes. The
UnsignedAttributes in a signerInfo may include multiple instances of
the countersignature attribute.
A countersignature, since it has type SignerInfo, can itself contain
a countersignature attribute. Thus, it is possible to construct an
arbitrarily long series of countersignatures.
<span class="h2"><a class="selflink" id="section-12" href="#section-12">12</a>. ASN.1 Modules</span>
<a href="#section-12.1">Section 12.1</a> contains the ASN.1 module for the CMS, and <a href="#section-12.2">Section 12.2</a>
contains the ASN.1 module for the Version 1 Attribute Certificate.
<span class="grey">Housley Standards Track [Page 43]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-44" ></span>
<span class="grey"><a href="./rfc5652">RFC 5652</a> Cryptographic Message Syntax September 2009</span>
<span class="h3"><a class="selflink" id="section-12.1" href="#section-12.1">12.1</a>. CMS ASN.1 Module</span>
CryptographicMessageSyntax2004
{ iso(1) member-body(2) us(840) rsadsi(113549)
pkcs(1) pkcs-9(9) smime(16) modules(0) cms-2004(24) }
DEFINITIONS IMPLICIT TAGS ::=
BEGIN
-- EXPORTS All
-- The types and values defined in this module are exported for use
-- in the other ASN.1 modules. Other applications may use them for
-- their own purposes.
IMPORTS
-- Imports from <a href="./rfc5280">RFC 5280</a> [<a href="#ref-PROFILE" title=""Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile"">PROFILE</a>], <a href="#appendix-A.1">Appendix A.1</a>
AlgorithmIdentifier, Certificate, CertificateList,
CertificateSerialNumber, Name
FROM PKIX1Explicit88
{ iso(1) identified-organization(3) dod(6)
internet(1) security(5) mechanisms(5) pkix(7)
mod(0) pkix1-explicit(18) }
-- Imports from <a href="./rfc3281">RFC 3281</a> [<a href="#ref-ACPROFILE" title=""An Internet Attribute Certificate Profile for Authorization"">ACPROFILE</a>], <a href="#appendix-B">Appendix B</a>
AttributeCertificate
FROM PKIXAttributeCertificate
{ iso(1) identified-organization(3) dod(6)
internet(1) security(5) mechanisms(5) pkix(7)
mod(0) attribute-cert(12) }
-- Imports from <a href="#appendix-B">Appendix B</a> of this document
AttributeCertificateV1
FROM AttributeCertificateVersion1
{ iso(1) member-body(2) us(840) rsadsi(113549)
pkcs(1) pkcs-9(9) smime(16) modules(0)
v1AttrCert(15) } ;
-- Cryptographic Message Syntax
ContentInfo ::= SEQUENCE {
contentType ContentType,
content [0] EXPLICIT ANY DEFINED BY contentType }
ContentType ::= OBJECT IDENTIFIER
<span class="grey">Housley Standards Track [Page 44]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-45" ></span>
<span class="grey"><a href="./rfc5652">RFC 5652</a> Cryptographic Message Syntax September 2009</span>
SignedData ::= SEQUENCE {
version CMSVersion,
digestAlgorithms DigestAlgorithmIdentifiers,
encapContentInfo EncapsulatedContentInfo,
certificates [0] IMPLICIT CertificateSet OPTIONAL,
crls [1] IMPLICIT RevocationInfoChoices OPTIONAL,
signerInfos SignerInfos }
DigestAlgorithmIdentifiers ::= SET OF DigestAlgorithmIdentifier
SignerInfos ::= SET OF SignerInfo
EncapsulatedContentInfo ::= SEQUENCE {
eContentType ContentType,
eContent [0] EXPLICIT OCTET STRING OPTIONAL }
SignerInfo ::= SEQUENCE {
version CMSVersion,
sid SignerIdentifier,
digestAlgorithm DigestAlgorithmIdentifier,
signedAttrs [0] IMPLICIT SignedAttributes OPTIONAL,
signatureAlgorithm SignatureAlgorithmIdentifier,
signature SignatureValue,
unsignedAttrs [1] IMPLICIT UnsignedAttributes OPTIONAL }
SignerIdentifier ::= CHOICE {
issuerAndSerialNumber IssuerAndSerialNumber,
subjectKeyIdentifier [0] SubjectKeyIdentifier }
SignedAttributes ::= SET SIZE (1..MAX) OF Attribute
UnsignedAttributes ::= SET SIZE (1..MAX) OF Attribute
Attribute ::= SEQUENCE {
attrType OBJECT IDENTIFIER,
attrValues SET OF AttributeValue }
AttributeValue ::= ANY
SignatureValue ::= OCTET STRING
EnvelopedData ::= SEQUENCE {
version CMSVersion,
originatorInfo [0] IMPLICIT OriginatorInfo OPTIONAL,
recipientInfos RecipientInfos,
encryptedContentInfo EncryptedContentInfo,
unprotectedAttrs [1] IMPLICIT UnprotectedAttributes OPTIONAL }
<span class="grey">Housley Standards Track [Page 45]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-46" ></span>
<span class="grey"><a href="./rfc5652">RFC 5652</a> Cryptographic Message Syntax September 2009</span>
OriginatorInfo ::= SEQUENCE {
certs [0] IMPLICIT CertificateSet OPTIONAL,
crls [1] IMPLICIT RevocationInfoChoices OPTIONAL }
RecipientInfos ::= SET SIZE (1..MAX) OF RecipientInfo
EncryptedContentInfo ::= SEQUENCE {
contentType ContentType,
contentEncryptionAlgorithm ContentEncryptionAlgorithmIdentifier,
encryptedContent [0] IMPLICIT EncryptedContent OPTIONAL }
EncryptedContent ::= OCTET STRING
UnprotectedAttributes ::= SET SIZE (1..MAX) OF Attribute
RecipientInfo ::= CHOICE {
ktri KeyTransRecipientInfo,
kari [1] KeyAgreeRecipientInfo,
kekri [2] KEKRecipientInfo,
pwri [3] PasswordRecipientInfo,
ori [4] OtherRecipientInfo }
EncryptedKey ::= OCTET STRING
KeyTransRecipientInfo ::= SEQUENCE {
version CMSVersion, -- always set to 0 or 2
rid RecipientIdentifier,
keyEncryptionAlgorithm KeyEncryptionAlgorithmIdentifier,
encryptedKey EncryptedKey }
RecipientIdentifier ::= CHOICE {
issuerAndSerialNumber IssuerAndSerialNumber,
subjectKeyIdentifier [0] SubjectKeyIdentifier }
KeyAgreeRecipientInfo ::= SEQUENCE {
version CMSVersion, -- always set to 3
originator [0] EXPLICIT OriginatorIdentifierOrKey,
ukm [1] EXPLICIT UserKeyingMaterial OPTIONAL,
keyEncryptionAlgorithm KeyEncryptionAlgorithmIdentifier,
recipientEncryptedKeys RecipientEncryptedKeys }
OriginatorIdentifierOrKey ::= CHOICE {
issuerAndSerialNumber IssuerAndSerialNumber,
subjectKeyIdentifier [0] SubjectKeyIdentifier,
originatorKey [1] OriginatorPublicKey }
<span class="grey">Housley Standards Track [Page 46]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-47" ></span>
<span class="grey"><a href="./rfc5652">RFC 5652</a> Cryptographic Message Syntax September 2009</span>
OriginatorPublicKey ::= SEQUENCE {
algorithm AlgorithmIdentifier,
publicKey BIT STRING }
RecipientEncryptedKeys ::= SEQUENCE OF RecipientEncryptedKey
RecipientEncryptedKey ::= SEQUENCE {
rid KeyAgreeRecipientIdentifier,
encryptedKey EncryptedKey }
KeyAgreeRecipientIdentifier ::= CHOICE {
issuerAndSerialNumber IssuerAndSerialNumber,
rKeyId [0] IMPLICIT RecipientKeyIdentifier }
RecipientKeyIdentifier ::= SEQUENCE {
subjectKeyIdentifier SubjectKeyIdentifier,
date GeneralizedTime OPTIONAL,
other OtherKeyAttribute OPTIONAL }
SubjectKeyIdentifier ::= OCTET STRING
KEKRecipientInfo ::= SEQUENCE {
version CMSVersion, -- always set to 4
kekid KEKIdentifier,
keyEncryptionAlgorithm KeyEncryptionAlgorithmIdentifier,
encryptedKey EncryptedKey }
KEKIdentifier ::= SEQUENCE {
keyIdentifier OCTET STRING,
date GeneralizedTime OPTIONAL,
other OtherKeyAttribute OPTIONAL }
PasswordRecipientInfo ::= SEQUENCE {
version CMSVersion, -- always set to 0
keyDerivationAlgorithm [0] KeyDerivationAlgorithmIdentifier
OPTIONAL,
keyEncryptionAlgorithm KeyEncryptionAlgorithmIdentifier,
encryptedKey EncryptedKey }
OtherRecipientInfo ::= SEQUENCE {
oriType OBJECT IDENTIFIER,
oriValue ANY DEFINED BY oriType }
DigestedData ::= SEQUENCE {
version CMSVersion,
digestAlgorithm DigestAlgorithmIdentifier,
encapContentInfo EncapsulatedContentInfo,
digest Digest }
<span class="grey">Housley Standards Track [Page 47]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-48" ></span>
<span class="grey"><a href="./rfc5652">RFC 5652</a> Cryptographic Message Syntax September 2009</span>
Digest ::= OCTET STRING
EncryptedData ::= SEQUENCE {
version CMSVersion,
encryptedContentInfo EncryptedContentInfo,
unprotectedAttrs [1] IMPLICIT UnprotectedAttributes OPTIONAL }
AuthenticatedData ::= SEQUENCE {
version CMSVersion,
originatorInfo [0] IMPLICIT OriginatorInfo OPTIONAL,
recipientInfos RecipientInfos,
macAlgorithm MessageAuthenticationCodeAlgorithm,
digestAlgorithm [1] DigestAlgorithmIdentifier OPTIONAL,
encapContentInfo EncapsulatedContentInfo,
authAttrs [2] IMPLICIT AuthAttributes OPTIONAL,
mac MessageAuthenticationCode,
unauthAttrs [3] IMPLICIT UnauthAttributes OPTIONAL }
AuthAttributes ::= SET SIZE (1..MAX) OF Attribute
UnauthAttributes ::= SET SIZE (1..MAX) OF Attribute
MessageAuthenticationCode ::= OCTET STRING
DigestAlgorithmIdentifier ::= AlgorithmIdentifier
SignatureAlgorithmIdentifier ::= AlgorithmIdentifier
KeyEncryptionAlgorithmIdentifier ::= AlgorithmIdentifier
ContentEncryptionAlgorithmIdentifier ::= AlgorithmIdentifier
MessageAuthenticationCodeAlgorithm ::= AlgorithmIdentifier
KeyDerivationAlgorithmIdentifier ::= AlgorithmIdentifier
RevocationInfoChoices ::= SET OF RevocationInfoChoice
RevocationInfoChoice ::= CHOICE {
crl CertificateList,
other [1] IMPLICIT OtherRevocationInfoFormat }
OtherRevocationInfoFormat ::= SEQUENCE {
otherRevInfoFormat OBJECT IDENTIFIER,
otherRevInfo ANY DEFINED BY otherRevInfoFormat }
<span class="grey">Housley Standards Track [Page 48]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-49" ></span>
<span class="grey"><a href="./rfc5652">RFC 5652</a> Cryptographic Message Syntax September 2009</span>
CertificateChoices ::= CHOICE {
certificate Certificate,
extendedCertificate [0] IMPLICIT ExtendedCertificate, -- Obsolete
v1AttrCert [1] IMPLICIT AttributeCertificateV1, -- Obsolete
v2AttrCert [2] IMPLICIT AttributeCertificateV2,
other [3] IMPLICIT OtherCertificateFormat }
AttributeCertificateV2 ::= AttributeCertificate
OtherCertificateFormat ::= SEQUENCE {
otherCertFormat OBJECT IDENTIFIER,
otherCert ANY DEFINED BY otherCertFormat }
CertificateSet ::= SET OF CertificateChoices
IssuerAndSerialNumber ::= SEQUENCE {
issuer Name,
serialNumber CertificateSerialNumber }
CMSVersion ::= INTEGER { v0(0), v1(1), v2(2), v3(3), v4(4), v5(5) }
UserKeyingMaterial ::= OCTET STRING
OtherKeyAttribute ::= SEQUENCE {
keyAttrId OBJECT IDENTIFIER,
keyAttr ANY DEFINED BY keyAttrId OPTIONAL }
-- Content Type Object Identifiers
id-ct-contentInfo OBJECT IDENTIFIER ::= { iso(1) member-body(2)
us(840) rsadsi(113549) pkcs(1) pkcs9(9) smime(16) ct(1) 6 }
id-data OBJECT IDENTIFIER ::= { iso(1) member-body(2)
us(840) rsadsi(113549) pkcs(1) pkcs7(7) 1 }
id-signedData OBJECT IDENTIFIER ::= { iso(1) member-body(2)
us(840) rsadsi(113549) pkcs(1) pkcs7(7) 2 }
id-envelopedData OBJECT IDENTIFIER ::= { iso(1) member-body(2)
us(840) rsadsi(113549) pkcs(1) pkcs7(7) 3 }
id-digestedData OBJECT IDENTIFIER ::= { iso(1) member-body(2)
us(840) rsadsi(113549) pkcs(1) pkcs7(7) 5 }
id-encryptedData OBJECT IDENTIFIER ::= { iso(1) member-body(2)
us(840) rsadsi(113549) pkcs(1) pkcs7(7) 6 }
<span class="grey">Housley Standards Track [Page 49]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-50" ></span>
<span class="grey"><a href="./rfc5652">RFC 5652</a> Cryptographic Message Syntax September 2009</span>
id-ct-authData OBJECT IDENTIFIER ::= { iso(1) member-body(2)
us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) ct(1) 2 }
-- The CMS Attributes
MessageDigest ::= OCTET STRING
SigningTime ::= Time
Time ::= CHOICE {
utcTime UTCTime,
generalTime GeneralizedTime }
Countersignature ::= SignerInfo
-- Attribute Object Identifiers
id-contentType OBJECT IDENTIFIER ::= { iso(1) member-body(2)
us(840) rsadsi(113549) pkcs(1) pkcs9(9) 3 }
id-messageDigest OBJECT IDENTIFIER ::= { iso(1) member-body(2)
us(840) rsadsi(113549) pkcs(1) pkcs9(9) 4 }
id-signingTime OBJECT IDENTIFIER ::= { iso(1) member-body(2)
us(840) rsadsi(113549) pkcs(1) pkcs9(9) 5 }
id-countersignature OBJECT IDENTIFIER ::= { iso(1) member-body(2)
us(840) rsadsi(113549) pkcs(1) pkcs9(9) 6 }
-- Obsolete Extended Certificate syntax from PKCS #6
ExtendedCertificateOrCertificate ::= CHOICE {
certificate Certificate,
extendedCertificate [0] IMPLICIT ExtendedCertificate }
ExtendedCertificate ::= SEQUENCE {
extendedCertificateInfo ExtendedCertificateInfo,
signatureAlgorithm SignatureAlgorithmIdentifier,
signature Signature }
ExtendedCertificateInfo ::= SEQUENCE {
version CMSVersion,
certificate Certificate,
attributes UnauthAttributes }
Signature ::= BIT STRING
END -- of CryptographicMessageSyntax2004
<span class="grey">Housley Standards Track [Page 50]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-51" ></span>
<span class="grey"><a href="./rfc5652">RFC 5652</a> Cryptographic Message Syntax September 2009</span>
<span class="h3"><a class="selflink" id="section-12.2" href="#section-12.2">12.2</a>. Version 1 Attribute Certificate ASN.1 Module</span>
AttributeCertificateVersion1
{ iso(1) member-body(2) us(840) rsadsi(113549)
pkcs(1) pkcs-9(9) smime(16) modules(0) v1AttrCert(15) }
DEFINITIONS EXPLICIT TAGS ::=
BEGIN
-- EXPORTS All
IMPORTS
-- Imports from <a href="./rfc5280">RFC 5280</a> [<a href="#ref-PROFILE" title=""Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile"">PROFILE</a>], <a href="#appendix-A.1">Appendix A.1</a>
AlgorithmIdentifier, Attribute, CertificateSerialNumber,
Extensions, UniqueIdentifier
FROM PKIX1Explicit88
{ iso(1) identified-organization(3) dod(6)
internet(1) security(5) mechanisms(5) pkix(7)
mod(0) pkix1-explicit(18) }
-- Imports from <a href="./rfc5280">RFC 5280</a> [<a href="#ref-PROFILE" title=""Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile"">PROFILE</a>], <a href="#appendix-A.2">Appendix A.2</a>
GeneralNames
FROM PKIX1Implicit88
{ iso(1) identified-organization(3) dod(6)
internet(1) security(5) mechanisms(5) pkix(7)
mod(0) pkix1-implicit(19) }
-- Imports from <a href="./rfc3281">RFC 3281</a> [<a href="#ref-ACPROFILE" title=""An Internet Attribute Certificate Profile for Authorization"">ACPROFILE</a>], <a href="#appendix-B">Appendix B</a>
AttCertValidityPeriod, IssuerSerial
FROM PKIXAttributeCertificate
{ iso(1) identified-organization(3) dod(6)
internet(1) security(5) mechanisms(5) pkix(7)
mod(0) attribute-cert(12) } ;
-- Definition extracted from X.509-1997 [<a href="#ref-X.509-97">X.509-97</a>], but
-- different type names are used to avoid collisions.
AttributeCertificateV1 ::= SEQUENCE {
acInfo AttributeCertificateInfoV1,
signatureAlgorithm AlgorithmIdentifier,
signature BIT STRING }
<span class="grey">Housley Standards Track [Page 51]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-52" ></span>
<span class="grey"><a href="./rfc5652">RFC 5652</a> Cryptographic Message Syntax September 2009</span>
AttributeCertificateInfoV1 ::= SEQUENCE {
version AttCertVersionV1 DEFAULT v1,
subject CHOICE {
baseCertificateID [0] IssuerSerial,
-- associated with a Public Key Certificate
subjectName [1] GeneralNames },
-- associated with a name
issuer GeneralNames,
signature AlgorithmIdentifier,
serialNumber CertificateSerialNumber,
attCertValidityPeriod AttCertValidityPeriod,
attributes SEQUENCE OF Attribute,
issuerUniqueID UniqueIdentifier OPTIONAL,
extensions Extensions OPTIONAL }
AttCertVersionV1 ::= INTEGER { v1(0) }
END -- of AttributeCertificateVersion1
<span class="h2"><a class="selflink" id="section-13" href="#section-13">13</a>. References</span>
<span class="h3"><a class="selflink" id="section-13.1" href="#section-13.1">13.1</a>. Normative References</span>
[<a id="ref-ACPROFILE">ACPROFILE</a>] Farrell, S. and R. Housley, "An Internet Attribute
Certificate Profile for Authorization", <a href="./rfc3281">RFC 3281</a>, April
2002.
[<a id="ref-PROFILE">PROFILE</a>] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
Housley, R., and W. Polk, "Internet X.509 Public Key
Infrastructure Certificate and Certificate Revocation
List (CRL) Profile", <a href="./rfc5280">RFC 5280</a>, May 2008.
[<a id="ref-STDWORDS">STDWORDS</a>] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", <a href="https://www.rfc-editor.org/bcp/bcp14">BCP 14</a>, <a href="./rfc2119">RFC 2119</a>, March 1997.
[<a id="ref-X.208-88">X.208-88</a>] CCITT. Recommendation X.208: Specification of Abstract
Syntax Notation One (ASN.1), 1988.
[<a id="ref-X.209-88">X.209-88</a>] CCITT. Recommendation X.209: Specification of Basic
Encoding Rules for Abstract Syntax Notation One
(ASN.1), 1988.
[<a id="ref-X.501-88">X.501-88</a>] CCITT. Recommendation X.501: The Directory - Models,
1988.
[<a id="ref-X.509-88">X.509-88</a>] CCITT. Recommendation X.509: The Directory -
Authentication Framework, 1988.
<span class="grey">Housley Standards Track [Page 52]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-53" ></span>
<span class="grey"><a href="./rfc5652">RFC 5652</a> Cryptographic Message Syntax September 2009</span>
[<a id="ref-X.509-97">X.509-97</a>] ITU-T. Recommendation X.509: The Directory -
Authentication Framework, 1997.
[<a id="ref-X.509-00">X.509-00</a>] ITU-T. Recommendation X.509: The Directory -
Authentication Framework, 2000.
<span class="h3"><a class="selflink" id="section-13.2" href="#section-13.2">13.2</a>. Informative References</span>
[<a id="ref-CMS1">CMS1</a>] Housley, R., "Cryptographic Message Syntax", <a href="./rfc2630">RFC 2630</a>,
June 1999.
[<a id="ref-CMS2">CMS2</a>] Housley, R., "Cryptographic Message Syntax (CMS)", <a href="./rfc3369">RFC</a>
<a href="./rfc3369">3369</a>, August 2002.
[<a id="ref-CMS3">CMS3</a>] Housley, R., "Cryptographic Message Syntax (CMS)", <a href="./rfc3852">RFC</a>
<a href="./rfc3852">3852</a>, July 2004.
[<a id="ref-CMSALG">CMSALG</a>] Housley, R., "Cryptographic Message Syntax (CMS)
Algorithms", <a href="./rfc3370">RFC 3370</a>, August 2002.
[<a id="ref-CMSMSIG">CMSMSIG</a>] Housley, R., "Cryptographic Message Syntax (CMS)
Multiple Signer Clarification", <a href="./rfc4853">RFC 4853</a>, April 2007.
[<a id="ref-DH-X9.42">DH-X9.42</a>] Rescorla, E., "Diffie-Hellman Key Agreement Method",
<a href="./rfc2631">RFC 2631</a>, June 1999.
[<a id="ref-ESS">ESS</a>] Hoffman, P., Ed., "Enhanced Security Services for
S/MIME", <a href="./rfc2634">RFC 2634</a>, June 1999.
[<a id="ref-MSAC">MSAC</a>] Microsoft Development Network (MSDN) Library,
"Authenticode", April 2004 Release.
[<a id="ref-MSG2">MSG2</a>] Dusse, S., Hoffman, P., Ramsdell, B., Lundblade, L.,
and L. Repka, "S/MIME Version 2 Message Specification",
<a href="./rfc2311">RFC 2311</a>, March 1998.
[<a id="ref-MSG3">MSG3</a>] Ramsdell, B., Ed., "S/MIME Version 3 Message
Specification", <a href="./rfc2633">RFC 2633</a>, June 1999.
[<a id="ref-MSG3.1">MSG3.1</a>] Ramsdell, B., Ed., "Secure/Multipurpose Internet Mail
Extensions (S/MIME) Version 3.1 Message Specification",
<a href="./rfc3851">RFC 3851</a>, July 2004.
[NEWPKCS#1] Kaliski, B. and J. Staddon, "PKCS #1: RSA Cryptography
Specifications Version 2.0", <a href="./rfc2437">RFC 2437</a>, October 1998.
<span class="grey">Housley Standards Track [Page 53]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-54" ></span>
<span class="grey"><a href="./rfc5652">RFC 5652</a> Cryptographic Message Syntax September 2009</span>
[<a id="ref-OCSP">OCSP</a>] Myers, M., Ankney, R., Malpani, A., Galperin, S., and
C. Adams, "X.509 Internet Public Key Infrastructure
Online Certificate Status Protocol - OCSP", <a href="./rfc2560">RFC 2560</a>,
June 1999.
[PKCS#1] Kaliski, B., "PKCS #1: RSA Encryption Version 1.5", <a href="./rfc2313">RFC</a>
<a href="./rfc2313">2313</a>, March 1998.
[PKCS#6] RSA Laboratories. PKCS #6: Extended-Certificate Syntax
Standard, Version 1.5. November 1993.
[PKCS#7] Kaliski, B., "PKCS #7: Cryptographic Message Syntax
Version 1.5", <a href="./rfc2315">RFC 2315</a>, March 1998.
[PKCS#9] RSA Laboratories. PKCS #9: Selected Attribute Types,
Version 1.1. November 1993.
[<a id="ref-PWRI">PWRI</a>] Gutmann, P., "Password-based Encryption for CMS", <a href="./rfc3211">RFC</a>
<a href="./rfc3211">3211</a>, December 2001.
[<a id="ref-RANDOM">RANDOM</a>] Eastlake, D., 3rd, Schiller, J., and S. Crocker,
"Randomness Requirements for Security", <a href="https://www.rfc-editor.org/bcp/bcp106">BCP 106</a>, <a href="./rfc4086">RFC</a>
<a href="./rfc4086">4086</a>, June 2005.
<span class="h2"><a class="selflink" id="section-14" href="#section-14">14</a>. Security Considerations</span>
The Cryptographic Message Syntax provides a method for digitally
signing data, digesting data, encrypting data, and authenticating
data.
Implementations must protect the signer's private key. Compromise of
the signer's private key permits masquerade.
Implementations must protect the key management private key, the
key-encryption key, and the content-encryption key. Compromise of
the key management private key or the key-encryption key may result
in the disclosure of all contents protected with that key.
Similarly, compromise of the content-encryption key may result in
disclosure of the associated encrypted content.
Implementations must protect the key management private key and the
message-authentication key. Compromise of the key management private
key permits masquerade of authenticated data. Similarly, compromise
of the message-authentication key may result in undetectable
modification of the authenticated content.
<span class="grey">Housley Standards Track [Page 54]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-55" ></span>
<span class="grey"><a href="./rfc5652">RFC 5652</a> Cryptographic Message Syntax September 2009</span>
The key management technique employed to distribute message-
authentication keys must itself provide data origin authentication;
otherwise, the contents are delivered with integrity from an unknown
source. Neither RSA [PKCS#1] [NEWPKCS#1] nor Ephemeral-Static
Diffie-Hellman [<a href="#ref-DH-X9.42" title=""Diffie-Hellman Key Agreement Method"">DH-X9.42</a>] provide the necessary data origin
authentication. Static-Static Diffie-Hellman [<a href="#ref-DH-X9.42" title=""Diffie-Hellman Key Agreement Method"">DH-X9.42</a>] does provide
the necessary data origin authentication when both the originator and
recipient public keys are bound to appropriate identities in X.509
certificates.
When more than two parties share the same message-authentication key,
data origin authentication is not provided. Any party that knows the
message-authentication key can compute a valid MAC; therefore, the
contents could originate from any one of the parties.
Implementations must randomly generate content-encryption keys,
message-authentication keys, initialization vectors (IVs), and
padding. Also, the generation of public/private key pairs relies on
random numbers. The use of inadequate pseudo-random number
generators (PRNGs) to generate cryptographic keys can result in
little or no security. An attacker may find it much easier to
reproduce the PRNG environment that produced the keys, searching the
resulting small set of possibilities, rather than brute force
searching the whole key space. The generation of quality random
numbers is difficult. <a href="./rfc4086">RFC 4086</a> [<a href="#ref-RANDOM" title=""Randomness Requirements for Security"">RANDOM</a>] offers important guidance in
this area.
When using key-agreement algorithms or previously distributed
symmetric key-encryption keys, a key-encryption key is used to
encrypt the content-encryption key. If the key-encryption and
content-encryption algorithms are different, the effective security
is determined by the weaker of the two algorithms. If, for example,
content is encrypted with Triple-DES using a 168-bit Triple-DES
content-encryption key, and the content-encryption key is wrapped
with RC2 using a 40-bit RC2 key-encryption key, then at most 40 bits
of protection is provided. A trivial search to determine the value
of the 40-bit RC2 key can recover the Triple-DES key, and then the
Triple-DES key can be used to decrypt the content. Therefore,
implementers must ensure that key-encryption algorithms are as strong
or stronger than content-encryption algorithms.
Implementers should be aware that cryptographic algorithms become
weaker with time. As new cryptoanalysis techniques are developed and
computing performance improves, the work factor to break a particular
cryptographic algorithm will be reduced. Therefore, cryptographic
algorithm implementations should be modular, allowing new algorithms
to be readily inserted. That is, implementers should be prepared for
the set of algorithms that must be supported to change over time.
<span class="grey">Housley Standards Track [Page 55]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-56" ></span>
<span class="grey"><a href="./rfc5652">RFC 5652</a> Cryptographic Message Syntax September 2009</span>
The countersignature unsigned attribute includes a digital signature
that is computed on the content signature value; thus, the
countersigning process need not know the original signed content.
This structure permits implementation efficiency advantages; however,
this structure may also permit the countersigning of an inappropriate
signature value. Therefore, implementations that perform
countersignatures should either verify the original signature value
prior to countersigning it (this verification requires processing of
the original content), or implementations should perform
countersigning in a context that ensures that only appropriate
signature values are countersigned.
<span class="h2"><a class="selflink" id="section-15" href="#section-15">15</a>. Acknowledgments</span>
This document is the result of contributions from many professionals.
I appreciate the hard work of all members of the IETF S/MIME Working
Group. I extend a special thanks to Rich Ankney, Simon Blake-Wilson,
Tim Dean, Steve Dusse, Carl Ellison, Peter Gutmann, Bob Jueneman,
Stephen Henson, Paul Hoffman, Scott Hollenbeck, Don Johnson, Burt
Kaliski, John Linn, John Pawling, Blake Ramsdell, Francois Rousseau,
Jim Schaad, Dave Solo, Paul Timmel, and Sean Turner for their efforts
and support.
I thank Tim Polk for his encouragement in advancing this
specification along the standards maturity ladder. In addition, I
thank Jan Vilhuber for the careful reading that resulted in RFC
Errata 1744.
Author's Address
Russell Housley
Vigil Security, LLC
918 Spring Knoll Drive
Herndon, VA 20170
USA
EMail: housley@vigilsec.com
Housley Standards Track [Page 56]
</pre>
|