1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
|
<pre>Independent Submission J. Lee
Request for Comments: 5794 J. Lee
Category: Informational J. Kim
ISSN: 2070-1721 D. Kwon
C. Kim
NSRI
March 2010
<span class="h1">A Description of the ARIA Encryption Algorithm</span>
Abstract
This document describes the ARIA encryption algorithm. ARIA is a
128-bit block cipher with 128-, 192-, and 256-bit keys. The
algorithm consists of a key scheduling part and data randomizing
part.
Status of This Memo
This document is not an Internet Standards Track specification; it is
published for informational purposes.
This is a contribution to the RFC Series, independently of any other
RFC stream. The RFC Editor has chosen to publish this document at
its discretion and makes no statement about its value for
implementation or deployment. Documents approved for publication by
the RFC Editor are not a candidate for any level of Internet
Standard; see <a href="./rfc5741#section-2">Section 2 of RFC 5741</a>.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
<a href="http://www.rfc-editor.org/info/rfc5794">http://www.rfc-editor.org/info/rfc5794</a>.
Copyright Notice
Copyright (c) 2010 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to <a href="https://www.rfc-editor.org/bcp/bcp78">BCP 78</a> and the IETF Trust's Legal
Provisions Relating to IETF Documents
(<a href="http://trustee.ietf.org/license-info">http://trustee.ietf.org/license-info</a>) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document.
<span class="grey">Lee, et al. Informational [Page 1]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-2" ></span>
<span class="grey"><a href="./rfc5794">RFC 5794</a> The ARIA Encryption Algorithm March 2010</span>
<span class="h2"><a class="selflink" id="section-1" href="#section-1">1</a>. Introduction</span>
<span class="h3"><a class="selflink" id="section-1.1" href="#section-1.1">1.1</a>. ARIA Overview</span>
ARIA is a general-purpose block cipher algorithm developed by Korean
cryptographers in 2003. It is an iterated block cipher with 128-,
192-, and 256-bit keys and encrypts 128-bit blocks in 12, 14, and 16
rounds, depending on the key size. It is secure and suitable for
most software and hardware implementations on 32-bit and 8-bit
processors. It was established as a Korean standard block cipher
algorithm in 2004 [<a href="#ref-ARIAKS" title=""128 bit block encryption algorithm ARIA"">ARIAKS</a>] and has been widely used in Korea,
especially for government-to-public services. It was included in
PKCS #11 in 2007 [<a href="#ref-ARIAPKCS" title="PKCS #11 v2.20 Amendment 3 Revision 1: Additional PKCS #11 Mechanisms">ARIAPKCS</a>].
<span class="h2"><a class="selflink" id="section-2" href="#section-2">2</a>. Algorithm Description</span>
The algorithm consists of a key scheduling part and data randomizing
part.
<span class="h3"><a class="selflink" id="section-2.1" href="#section-2.1">2.1</a>. Notations</span>
The following notations are used in this document to describe the
algorithm.
^ bitwise XOR operation
<<< left circular rotation
>>> right circular rotation
|| concatenation of bit strings
0x hexadecimal representation
<span class="h3"><a class="selflink" id="section-2.2" href="#section-2.2">2.2</a>. Key Scheduling Part</span>
Let K denote a master key of 128, 192, or 256 bits. Given the master
key K, we first define 128-bit values KL and KR as follows.
KL || KR = K || 0 ... 0,
where the number of zeros is 128, 64, or 0, depending on the size of
K. That is, KL is set to the leftmost 128 bits of K and KR is set to
the remaining bits of K (if any), right-padded with zeros to a
128-bit value. Then, we define four 128-bit values (W0, W1, W2, and
W3) as the intermediate round values appearing in the encryption of
KL || KR by a 3-round, 256-bit Feistel cipher.
W0 = KL,
W1 = FO(W0, CK1) ^ KR,
W2 = FE(W1, CK2) ^ W0,
W3 = FO(W2, CK3) ^ W1.
<span class="grey">Lee, et al. Informational [Page 2]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-3" ></span>
<span class="grey"><a href="./rfc5794">RFC 5794</a> The ARIA Encryption Algorithm March 2010</span>
Here, FO and FE, respectively called odd and even round functions,
are defined in <a href="#section-2.4.1">Section 2.4.1</a>. CK1, CK2, and CK3 are 128-bit
constants, taking one of the following values.
C1 = 0x517cc1b727220a94fe13abe8fa9a6ee0
C2 = 0x6db14acc9e21c820ff28b1d5ef5de2b0
C3 = 0xdb92371d2126e9700324977504e8c90e
These values are obtained from the first 128*3 bits of the fractional
part of 1/PI, where PI is the circle ratio. Now the constants CK1,
CK2, and CK3 are defined by the following table.
Key size CK1 CK2 CK3
128 C1 C2 C3
192 C2 C3 C1
256 C3 C1 C2
For example, if the key size is 192 bits, CK1 = C2, CK2 = C3, and
CK3 = C1.
Once W0, W1, W2, and W3 are determined, we compute encryption round
keys ek1, ..., ek17 as follows.
ek1 = W0 ^(W1 >>> 19),
ek2 = W1 ^(W2 >>> 19),
ek3 = W2 ^(W3 >>> 19),
ek4 = (W0 >>> 19) ^ W3,
ek5 = W0 ^ (W1 >>> 31),
ek6 = W1 ^ (W2 >>> 31),
ek7 = W2 ^ (W3 >>> 31),
ek8 = (W0 >>> 31) ^ W3,
ek9 = W0 ^ (W1 <<< 61),
ek10 = W1 ^ (W2 <<< 61),
ek11 = W2 ^ (W3 <<< 61),
ek12 = (W0 <<< 61) ^ W3,
ek13 = W0 ^ (W1 <<< 31),
ek14 = W1 ^ (W2 <<< 31),
ek15 = W2 ^ (W3 <<< 31),
ek16 = (W0 <<< 31) ^ W3,
ek17 = W0 ^ (W1 <<< 19).
The number of rounds depends on the size of the master key as
follows.
Key size Number of Rounds
128 12
192 14
256 16
<span class="grey">Lee, et al. Informational [Page 3]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-4" ></span>
<span class="grey"><a href="./rfc5794">RFC 5794</a> The ARIA Encryption Algorithm March 2010</span>
Due to an extra key addition layer in the last round, 12-, 14-, and
16-round algorithms require 13, 15, and 17 round keys, respectively.
Decryption round keys are derived from the encryption round keys.
dk1 = ek{n+1},
dk2 = A(ek{n}),
dk3 = A(ek{n-1}),
...,
dk{n}= A(ek2),
dk{n+1}= ek1.
Here, A and n denote the diffusion layer of ARIA and the number of
rounds, respectively. The diffusion layer A is defined in <a href="#section-2.4.3">Section</a>
<a href="#section-2.4.3">2.4.3</a>.
<span class="h3"><a class="selflink" id="section-2.3" href="#section-2.3">2.3</a>. Data Randomizing Part</span>
The data randomizing part of the ARIA algorithm consists of the
encryption and decryption processes. The encryption and decryption
processes use functions FO, FE, A, SL1, and SL2. These functions are
defined in <a href="#section-2.4">Section 2.4</a>.
<span class="h4"><a class="selflink" id="section-2.3.1" href="#section-2.3.1">2.3.1</a>. Encryption Process</span>
<span class="h5"><a class="selflink" id="section-2.3.1.1" href="#section-2.3.1.1">2.3.1.1</a>. Encryption for 128-Bit Keys</span>
Let P be a 128-bit plaintext and K be a 128-bit master key. Let ek1,
..., ek13 be the encryption round keys defined by K. Then the
ciphertext C is computed by the following algorithm.
P1 = FO(P , ek1 ); // Round 1
P2 = FE(P1 , ek2 ); // Round 2
P3 = FO(P2 , ek3 ); // Round 3
P4 = FE(P3 , ek4 ); // Round 4
P5 = FO(P4 , ek5 ); // Round 5
P6 = FE(P5 , ek6 ); // Round 6
P7 = FO(P6 , ek7 ); // Round 7
P8 = FE(P7 , ek8 ); // Round 8
P9 = FO(P8 , ek9 ); // Round 9
P10 = FE(P9 , ek10); // Round 10
P11 = FO(P10, ek11); // Round 11
C = SL2(P11 ^ ek12) ^ ek13; // Round 12
<span class="grey">Lee, et al. Informational [Page 4]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-5" ></span>
<span class="grey"><a href="./rfc5794">RFC 5794</a> The ARIA Encryption Algorithm March 2010</span>
<span class="h5"><a class="selflink" id="section-2.3.1.2" href="#section-2.3.1.2">2.3.1.2</a>. Encryption for 192-Bit Keys</span>
Let P be a 128-bit plaintext and K be a 192-bit master key. Let ek1,
..., ek15 be the encryption round keys defined by K. Then the
ciphertext C is computed by the following algorithm.
P1 = FO(P , ek1 ); // Round 1
P2 = FE(P1 , ek2 ); // Round 2
P3 = FO(P2 , ek3 ); // Round 3
P4 = FE(P3 , ek4 ); // Round 4
P5 = FO(P4 , ek5 ); // Round 5
P6 = FE(P5 , ek6 ); // Round 6
P7 = FO(P6 , ek7 ); // Round 7
P8 = FE(P7 , ek8 ); // Round 8
P9 = FO(P8 , ek9 ); // Round 9
P10 = FE(P9 , ek10); // Round 10
P11 = FO(P10, ek11); // Round 11
P12 = FE(P11, ek12); // Round 12
P13 = FO(P12, ek13); // Round 13
C = SL2(P13 ^ ek14) ^ ek15; // Round 14
<span class="h5"><a class="selflink" id="section-2.3.1.3" href="#section-2.3.1.3">2.3.1.3</a>. Encryption for 256-Bit Keys</span>
Let P be a 128-bit plaintext and K be a 256-bit master key. Let ek1,
..., ek17 be the encryption round keys defined by K. Then the
ciphertext C is computed by the following algorithm.
P1 = FO(P , ek1 ); // Round 1
P2 = FE(P1 , ek2 ); // Round 2
P3 = FO(P2 , ek3 ); // Round 3
P4 = FE(P3 , ek4 ); // Round 4
P5 = FO(P4 , ek5 ); // Round 5
P6 = FE(P5 , ek6 ); // Round 6
P7 = FO(P6 , ek7 ); // Round 7
P8 = FE(P7 , ek8 ); // Round 8
P9 = FO(P8 , ek9 ); // Round 9
P10= FE(P9 , ek10); // Round 10
P11= FO(P10, ek11); // Round 11
P12= FE(P11, ek12); // Round 12
P13= FO(P12, ek13); // Round 13
P14= FE(P13, ek14); // Round 14
P15= FO(P14, ek15); // Round 15
C = SL2(P15 ^ ek16) ^ ek17; // Round 16
<span class="grey">Lee, et al. Informational [Page 5]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-6" ></span>
<span class="grey"><a href="./rfc5794">RFC 5794</a> The ARIA Encryption Algorithm March 2010</span>
<span class="h4"><a class="selflink" id="section-2.3.2" href="#section-2.3.2">2.3.2</a>. Decryption Process</span>
The decryption process of ARIA is the same as the encryption process
except that encryption round keys are replaced by decryption round
keys. For example, encryption round keys ek1, ..., ek13 of the
12-round ARIA algorithm are replaced by decryption round keys dk1,
..., dk13, respectively.
<span class="h3"><a class="selflink" id="section-2.4" href="#section-2.4">2.4</a>. Components of ARIA</span>
<span class="h4"><a class="selflink" id="section-2.4.1" href="#section-2.4.1">2.4.1</a>. Round Functions</span>
There are two types of round functions for ARIA. One is called an
odd round function and is denoted by FO. It takes as input a pair
(D,RK) of two 128-bit strings and outputs
FO(D,RK) = A(SL1(D ^ RK)).
The other is called an even round function and is denoted by FE. It
takes as input a pair (D,RK) of two 128-bit strings and outputs
FE(D,RK) = A(SL2(D ^ RK)).
Functions SL1 and SL2, called substitution layers, are described in
<a href="#section-2.4.2">Section 2.4.2</a>. Function A, called a diffusion layer, is described in
<a href="#section-2.4.3">Section 2.4.3</a>.
<span class="h4"><a class="selflink" id="section-2.4.2" href="#section-2.4.2">2.4.2</a>. Substitution Layers</span>
ARIA has two types of substitution layers that alternate between
rounds. Type 1 is used in the odd rounds, and type 2 is used in the
even rounds.
Type 1 substitution layer SL1 is an algorithm that takes a 16-byte
string x0 || x1 ||...|| x15 as input and outputs a 16-byte string
y0 || y1 ||...|| y15 as follows.
y0 = SB1(x0), y1 = SB2(x1), y2 = SB3(x2), y3 = SB4(x3),
y4 = SB1(x4), y5 = SB2(x5), y6 = SB3(x6), y7 = SB4(x7),
y8 = SB1(x8), y9 = SB2(x9), y10= SB3(x10), y11= SB4(x11),
y12= SB1(x12), y13= SB2(x13), y14= SB3(x14), y15= SB4(x15).
Type 2 substitution layer SL2 is an algorithm that takes a 16-byte
string x0 || x1 ||...|| x15 as input and outputs a 16-byte string
y0 || y1 ||...|| y15 as follows.
<span class="grey">Lee, et al. Informational [Page 6]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-7" ></span>
<span class="grey"><a href="./rfc5794">RFC 5794</a> The ARIA Encryption Algorithm March 2010</span>
y0 = SB3(x0), y1 = SB4(x1), y2 = SB1(x2), y3 = SB2(x3),
y4 = SB3(x4), y5 = SB4(x5), y6 = SB1(x6), y7 = SB2(x7),
y8 = SB3(x8), y9 = SB4(x9), y10= SB1(x10), y11= SB2(x11),
y12= SB3(x12), y13= SB4(x13), y14= SB1(x14), y15= SB2(x15).
Here, SB1, SB2, SB3, and SB4 are S-boxes that take an 8-bit string as
input and output an 8-bit string. These S-boxes are defined by the
following look-up tables.
SB1:
0 1 2 3 4 5 6 7 8 9 a b c d e f
00 63 7c 77 7b f2 6b 6f c5 30 01 67 2b fe d7 ab 76
10 ca 82 c9 7d fa 59 47 f0 ad d4 a2 af 9c a4 72 c0
20 b7 fd 93 26 36 3f f7 cc 34 a5 e5 f1 71 d8 31 15
30 04 c7 23 c3 18 96 05 9a 07 12 80 e2 eb 27 b2 75
40 09 83 2c 1a 1b 6e 5a a0 52 3b d6 b3 29 e3 2f 84
50 53 d1 00 ed 20 fc b1 5b 6a cb be 39 4a 4c 58 cf
60 d0 ef aa fb 43 4d 33 85 45 f9 02 7f 50 3c 9f a8
70 51 a3 40 8f 92 9d 38 f5 bc b6 da 21 10 ff f3 d2
80 cd 0c 13 ec 5f 97 44 17 c4 a7 7e 3d 64 5d 19 73
90 60 81 4f dc 22 2a 90 88 46 ee b8 14 de 5e 0b db
a0 e0 32 3a 0a 49 06 24 5c c2 d3 ac 62 91 95 e4 79
b0 e7 c8 37 6d 8d d5 4e a9 6c 56 f4 ea 65 7a ae 08
c0 ba 78 25 2e 1c a6 b4 c6 e8 dd 74 1f 4b bd 8b 8a
d0 70 3e b5 66 48 03 f6 0e 61 35 57 b9 86 c1 1d 9e
e0 e1 f8 98 11 69 d9 8e 94 9b 1e 87 e9 ce 55 28 df
f0 8c a1 89 0d bf e6 42 68 41 99 2d 0f b0 54 bb 16
SB2:
0 1 2 3 4 5 6 7 8 9 a b c d e f
00 e2 4e 54 fc 94 c2 4a cc 62 0d 6a 46 3c 4d 8b d1
10 5e fa 64 cb b4 97 be 2b bc 77 2e 03 d3 19 59 c1
20 1d 06 41 6b 55 f0 99 69 ea 9c 18 ae 63 df e7 bb
30 00 73 66 fb 96 4c 85 e4 3a 09 45 aa 0f ee 10 eb
40 2d 7f f4 29 ac cf ad 91 8d 78 c8 95 f9 2f ce cd
50 08 7a 88 38 5c 83 2a 28 47 db b8 c7 93 a4 12 53
60 ff 87 0e 31 36 21 58 48 01 8e 37 74 32 ca e9 b1
70 b7 ab 0c d7 c4 56 42 26 07 98 60 d9 b6 b9 11 40
80 ec 20 8c bd a0 c9 84 04 49 23 f1 4f 50 1f 13 dc
90 d8 c0 9e 57 e3 c3 7b 65 3b 02 8f 3e e8 25 92 e5
a0 15 dd fd 17 a9 bf d4 9a 7e c5 39 67 fe 76 9d 43
b0 a7 e1 d0 f5 68 f2 1b 34 70 05 a3 8a d5 79 86 a8
c0 30 c6 51 4b 1e a6 27 f6 35 d2 6e 24 16 82 5f da
d0 e6 75 a2 ef 2c b2 1c 9f 5d 6f 80 0a 72 44 9b 6c
e0 90 0b 5b 33 7d 5a 52 f3 61 a1 f7 b0 d6 3f 7c 6d
f0 ed 14 e0 a5 3d 22 b3 f8 89 de 71 1a af ba b5 81
<span class="grey">Lee, et al. Informational [Page 7]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-8" ></span>
<span class="grey"><a href="./rfc5794">RFC 5794</a> The ARIA Encryption Algorithm March 2010</span>
SB3:
0 1 2 3 4 5 6 7 8 9 a b c d e f
00 52 09 6a d5 30 36 a5 38 bf 40 a3 9e 81 f3 d7 fb
10 7c e3 39 82 9b 2f ff 87 34 8e 43 44 c4 de e9 cb
20 54 7b 94 32 a6 c2 23 3d ee 4c 95 0b 42 fa c3 4e
30 08 2e a1 66 28 d9 24 b2 76 5b a2 49 6d 8b d1 25
40 72 f8 f6 64 86 68 98 16 d4 a4 5c cc 5d 65 b6 92
50 6c 70 48 50 fd ed b9 da 5e 15 46 57 a7 8d 9d 84
60 90 d8 ab 00 8c bc d3 0a f7 e4 58 05 b8 b3 45 06
70 d0 2c 1e 8f ca 3f 0f 02 c1 af bd 03 01 13 8a 6b
80 3a 91 11 41 4f 67 dc ea 97 f2 cf ce f0 b4 e6 73
90 96 ac 74 22 e7 ad 35 85 e2 f9 37 e8 1c 75 df 6e
a0 47 f1 1a 71 1d 29 c5 89 6f b7 62 0e aa 18 be 1b
b0 fc 56 3e 4b c6 d2 79 20 9a db c0 fe 78 cd 5a f4
c0 1f dd a8 33 88 07 c7 31 b1 12 10 59 27 80 ec 5f
d0 60 51 7f a9 19 b5 4a 0d 2d e5 7a 9f 93 c9 9c ef
e0 a0 e0 3b 4d ae 2a f5 b0 c8 eb bb 3c 83 53 99 61
f0 17 2b 04 7e ba 77 d6 26 e1 69 14 63 55 21 0c 7d
SB4:
0 1 2 3 4 5 6 7 8 9 a b c d e f
00 30 68 99 1b 87 b9 21 78 50 39 db e1 72 9 62 3c
10 3e 7e 5e 8e f1 a0 cc a3 2a 1d fb b6 d6 20 c4 8d
20 81 65 f5 89 cb 9d 77 c6 57 43 56 17 d4 40 1a 4d
30 c0 63 6c e3 b7 c8 64 6a 53 aa 38 98 0c f4 9b ed
40 7f 22 76 af dd 3a 0b 58 67 88 06 c3 35 0d 01 8b
50 8c c2 e6 5f 02 24 75 93 66 1e e5 e2 54 d8 10 ce
60 7a e8 08 2c 12 97 32 ab b4 27 0a 23 df ef ca d9
70 b8 fa dc 31 6b d1 ad 19 49 bd 51 96 ee e4 a8 41
80 da ff cd 55 86 36 be 61 52 f8 bb 0e 82 48 69 9a
90 e0 47 9e 5c 04 4b 34 15 79 26 a7 de 29 ae 92 d7
a0 84 e9 d2 ba 5d f3 c5 b0 bf a4 3b 71 44 46 2b fc
b0 eb 6f d5 f6 14 fe 7c 70 5a 7d fd 2f 18 83 16 a5
c0 91 1f 05 95 74 a9 c1 5b 4a 85 6d 13 07 4f 4e 45
d0 b2 0f c9 1c a6 bc ec 73 90 7b cf 59 8f a1 f9 2d
e0 f2 b1 00 94 37 9f d0 2e 9c 6e 28 3f 80 f0 3d d3
f0 25 8a b5 e7 42 b3 c7 ea f7 4c 11 33 03 a2 ac 60
For example, SB1(0x23) = 0x26 and SB4(0xef) = 0xd3. Note that SB3
and SB4 are the inverse functions of SB1 and SB2, respectively, and
accordingly SL2 is the inverse of SL1.
<span class="h4"><a class="selflink" id="section-2.4.3" href="#section-2.4.3">2.4.3</a>. Diffusion Layer</span>
Diffusion layer A is an algorithm that takes a 16-byte string x0 ||
x1 || ... || x15 as input and outputs a 16-byte string
y0 || y1 ||...|| y15 by the following equations.
<span class="grey">Lee, et al. Informational [Page 8]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-9" ></span>
<span class="grey"><a href="./rfc5794">RFC 5794</a> The ARIA Encryption Algorithm March 2010</span>
y0 = x3 ^ x4 ^ x6 ^ x8 ^ x9 ^ x13 ^ x14,
y1 = x2 ^ x5 ^ x7 ^ x8 ^ x9 ^ x12 ^ x15,
y2 = x1 ^ x4 ^ x6 ^ x10 ^ x11 ^ x12 ^ x15,
y3 = x0 ^ x5 ^ x7 ^ x10 ^ x11 ^ x13 ^ x14,
y4 = x0 ^ x2 ^ x5 ^ x8 ^ x11 ^ x14 ^ x15,
y5 = x1 ^ x3 ^ x4 ^ x9 ^ x10 ^ x14 ^ x15,
y6 = x0 ^ x2 ^ x7 ^ x9 ^ x10 ^ x12 ^ x13,
y7 = x1 ^ x3 ^ x6 ^ x8 ^ x11 ^ x12 ^ x13,
y8 = x0 ^ x1 ^ x4 ^ x7 ^ x10 ^ x13 ^ x15,
y9 = x0 ^ x1 ^ x5 ^ x6 ^ x11 ^ x12 ^ x14,
y10 = x2 ^ x3 ^ x5 ^ x6 ^ x8 ^ x13 ^ x15,
y11 = x2 ^ x3 ^ x4 ^ x7 ^ x9 ^ x12 ^ x14,
y12 = x1 ^ x2 ^ x6 ^ x7 ^ x9 ^ x11 ^ x12,
y13 = x0 ^ x3 ^ x6 ^ x7 ^ x8 ^ x10 ^ x13,
y14 = x0 ^ x3 ^ x4 ^ x5 ^ x9 ^ x11 ^ x14,
y15 = x1 ^ x2 ^ x4 ^ x5 ^ x8 ^ x10 ^ x15.
Note that A is an involution. That is, for any 16-byte input string
x, x = A(A(x)) holds.
<span class="h2"><a class="selflink" id="section-3" href="#section-3">3</a>. Security Considerations</span>
ARIA is designed to be resistant to all known attacks on block
ciphers [<a href="#ref-ARIA03" title=""New Block Cipher: ARIA"">ARIA03</a>]. Its security was analyzed by the COSIC group of
K.U.Leuven in Belgium [<a href="#ref-ARIAEVAL" title=""Security and Performance Analysis of ARIA"">ARIAEVAL</a>] and no security flaw has been found.
<span class="h2"><a class="selflink" id="section-4" href="#section-4">4</a>. Informative References</span>
[<a id="ref-ARIAEVAL">ARIAEVAL</a>] Biryukov, A., et al., "Security and Performance Analysis
of ARIA", K.U.Leuven (2003), available at
<a href="http://www.cosic.esat.kuleuven.be/publications/article-500.pdf">http://www.cosic.esat.kuleuven.be/publications/</a>
<a href="http://www.cosic.esat.kuleuven.be/publications/article-500.pdf">article-500.pdf</a>
[<a id="ref-ARIA03">ARIA03</a>] Kwon, D., et al., "New Block Cipher: ARIA", ICISC 2003,
pp. 432-445.
[<a id="ref-ARIAKS">ARIAKS</a>] Korean Agency for Technology and Standards (KATS), "128
bit block encryption algorithm ARIA", KS X 1213:2004,
December 2004 (In Korean).
[<a id="ref-ARIAPKCS">ARIAPKCS</a>] RSA Laboratories, PKCS #11 v2.20 Amendment 3 Revision 1:
Additional PKCS #11 Mechanisms, January 2007.
[<a id="ref-X.680">X.680</a>] ITU-T Recommendation X.680 (2002) | ISO/IEC 8824-1:2002,
Information technology - Abstract Syntax Notation One
(ASN.1): Specification of basic notation.
<span class="grey">Lee, et al. Informational [Page 9]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-10" ></span>
<span class="grey"><a href="./rfc5794">RFC 5794</a> The ARIA Encryption Algorithm March 2010</span>
[<a id="ref-X.681">X.681</a>] ITU-T Recommendation X.681 (2002) | ISO/IEC 8824-2:2002,
Information technology - Abstract Syntax Notation One
(ASN.1): Information object specification.
[<a id="ref-X.682">X.682</a>] ITU-T Recommendation X.682 (2002) | ISO/IEC 8824-3:2002,
Information technology - Abstract Syntax Notation One
(ASN.1): Constraint specification.
[<a id="ref-X.683">X.683</a>] ITU-T Recommendation X.683 (2002) | ISO/IEC 8824-4:2002,
Information technology - Abstract Syntax Notation One
(ASN.1): Parameterization of ASN.1 specifications.
<span class="grey">Lee, et al. Informational [Page 10]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-11" ></span>
<span class="grey"><a href="./rfc5794">RFC 5794</a> The ARIA Encryption Algorithm March 2010</span>
<span class="h2"><a class="selflink" id="appendix-A" href="#appendix-A">Appendix A</a>. Example Data of ARIA</span>
Here are test data for ARIA in hexadecimal form.
<span class="h3"><a class="selflink" id="appendix-A.1" href="#appendix-A.1">A.1</a>. 128-Bit Key</span>
- Key : 000102030405060708090a0b0c0d0e0f
- Plaintext : 00112233445566778899aabbccddeeff
- Ciphertext: d718fbd6ab644c739da95f3be6451778
- Round key generators
W0: 000102030405060708090a0b0c0d0e0f
W1: 2afbea741e1746dd55c63ba1afcea0a5
W2: 7c8578018bb127e02dfe4e78c288e33c
W3: 6785b52b74da46bf181054082763ff6d
- Encryption round keys
e1: d415a75c794b85c5e0d2a0b3cb793bf6
e2: 369c65e4b11777ab713a3e1e6601b8f4
e3: 0368d4f13d14497b6529ad7ac809e7d0
e4: c644552b549a263fb8d0b50906229eec
e5: 5f9c434951f2d2ef342787b1a781794c
e6: afea2c0ce71db6de42a47461f4323c54
e7: 324286db44ba4db6c44ac306f2a84b2c
e8: 7f9fa93574d842b9101a58063771eb7b
e9: aab9c57731fcd213ad5677458fcfe6d4
e10: 2f4423bb06465abada5694a19eb88459
e11: 9f8772808f5d580d810ef8ddac13abeb
e12: 8684946a155be77ef810744847e35fad
e13: 0f0aa16daee61bd7dfee5a599970fb35
- Intermediate round values
P1: 7fc7f12befd0a0791de87fa96b469f52
P2: ac8de17e49f7c5117618993162b189e9
P3: c3e8d59ec2e62d5249ca2741653cb7dd
P4: 5d4aebb165e141ff759f669e1e85cc45
P5: 7806e469f68874c5004b5f4a046bbcfa
P6: 110f93c9a630cdd51f97d2202413345a
P7: e054428ef088fef97928241cd3be499e
P8: 5734f38ea1ca3ddd102e71f95e1d5f97
P9: 4903325be3e500cccd52fba4354a39ae
P10: cb8c508e2c4f87880639dc896d25ec9d
P11: e7e0d2457ed73d23d481424095afdca0
<span class="grey">Lee, et al. Informational [Page 11]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-12" ></span>
<span class="grey"><a href="./rfc5794">RFC 5794</a> The ARIA Encryption Algorithm March 2010</span>
<span class="h3"><a class="selflink" id="appendix-A.2" href="#appendix-A.2">A.2</a>. 192-Bit Key</span>
Key : 000102030405060708090a0b0c0d0e0f
1011121314151617
Plaintext : 00112233445566778899aabbccddeeff
Ciphertext: 26449c1805dbe7aa25a468ce263a9e79
<span class="h3"><a class="selflink" id="appendix-A.3" href="#appendix-A.3">A.3</a>. 256-Bit Key</span>
Key : 000102030405060708090a0b0c0d0e0f
101112131415161718191a1b1c1d1e1f
Plaintext : 00112233445566778899aabbccddeeff
Ciphertext: f92bd7c79fb72e2f2b8f80c1972d24fc
<span class="h2"><a class="selflink" id="appendix-B" href="#appendix-B">Appendix B</a>. OIDs</span>
Here is an ASN.1 module conforming to the 2002 version of ASN.1
[<a href="#ref-X.680">X.680</a>][X.681][<a href="#ref-X.682">X.682</a>][X.683].
AriaModesOfOperation {
iso(1) member-body(2) korea(400) nsri(200046) algorithm (1)
symmetric-encryption-algorithm(1) asn1-module(0) alg-oids(0) }
DEFINITIONS IMPLICIT TAGS ::=
BEGIN
OID ::= OBJECT IDENTIFIER
-- Synonyms --
id-algorithm OID ::= { iso(1) member-body(2) korea(410) nsri(200046)
algorithm(1)}
id-sea OID ::= { id-algorithm symmetric-encryption-algorithm(1)}
id-pad OID ::= { id-algorithm pad(2)}
id-pad-null RELATIVE-OID ::= {0} -- no padding algorithms identified
id-pad-1 RELATIVE-OID ::= {1}
-- padding method 2 of ISO/IEC 9797-1:1999
-- confidentiality modes:
-- ECB, CBC, CFB, OFB, CTR
id-aria128-ecb OID ::= { id-sea aria128-ecb(1)}
id-aria128-cbc OID ::= { id-sea aria128-cbc(2)}
id-aria128-cfb OID ::= { id-sea aria128-cfb(3)}
id-aria128-ofb OID ::= { id-sea aria128-ofb(4)}
id-aria128-ctr OID ::= { id-sea aria128-ctr(5)}
<span class="grey">Lee, et al. Informational [Page 12]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-13" ></span>
<span class="grey"><a href="./rfc5794">RFC 5794</a> The ARIA Encryption Algorithm March 2010</span>
id-aria192-ecb OID ::= { id-sea aria192-ecb(6)}
id-aria192-cbc OID ::= { id-sea aria192-cbc(7)}
id-aria192-cfb OID ::= { id-sea aria192-cfb(8)}
id-aria192-ofb OID ::= { id-sea aria192-ofb(9)}
id-aria192-ctr OID ::= { id-sea aria192-ctr(10)}
id-aria256-ecb OID ::= { id-sea aria256-ecb(11)}
id-aria256-cbc OID ::= { id-sea aria256-cbc(12)}
id-aria256-cfb OID ::= { id-sea aria256-cfb(13)}
id-aria256-ofb OID ::= { id-sea aria256-ofb(14)}
id-aria256-ctr OID ::= { id-sea aria256-ctr(15)}
-- authentication modes: CMAC
id-aria128-cmac OID ::= { id-sea aria128-cmac(21)}
id-aria192-cmac OID ::= { id-sea aria192-cmac(22)}
id-aria256-cmac OID ::= { id-sea aria256-cmac(23)}
-- modes for both confidentiality and authentication
-- OCB 2.0, GCM, CCM, Key Wrap
id-aria128-ocb2 OID ::= { id-sea aria128-ocb2(31)}
id-aria192-ocb2 OID ::= { id-sea aria192-ocb2(32)}
id-aria256-ocb2 OID ::= { id-sea aria256-ocb2(33)}
id-aria128-gcm OID ::= { id-sea aria128-gcm(34)}
id-aria192-gcm OID ::= { id-sea aria192-gcm(35)}
id-aria256-gcm OID ::= { id-sea aria256-gcm(36)}
id-aria128-ccm OID ::= { id-sea aria128-ccm(37)}
id-aria192-ccm OID ::= { id-sea aria192-ccm(38)}
id-aria256-ccm OID ::= { id-sea aria256-ccm(39)}
id-aria128-kw OID ::= { id-sea aria128-kw(40)}
id-aria192-kw OID ::= { id-sea aria192-kw(41)}
id-aria256-kw OID ::= { id-sea aria256-kw(42)}
-- ARIA Key-Wrap with Padding Algorithm (AES version: <a href="./rfc5649">RFC 5649</a>)
id-aria128-kwp OID ::= { id-sea aria128-kwp(43)}
id-aria192-kwp OID ::= { id-sea aria192-kwp(44)}
id-aria256-kwp OID ::= { id-sea aria256-kwp(45)}
<span class="grey">Lee, et al. Informational [Page 13]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-14" ></span>
<span class="grey"><a href="./rfc5794">RFC 5794</a> The ARIA Encryption Algorithm March 2010</span>
AriaModeOfOperation ::= AlgorithmIdentifier
{ {AriaModeOfOperationAlgorithms} }
AriaModeOfOperationAlgorithms ALGORITHM ::= {
aria128ecb |aria128cbc |aria128cfb |aria128ofb |aria128ctr |
aria192ecb |aria192cbc |aria192cfb |aria192ofb |aria192ctr |
aria256ecb |aria256cbc |aria256cfb |aria256ofb |aria256ctr |
aria128cmac |aria192cmac |aria256cmac |
aria128ocb2 |aria192ocb2 |aria256ocb2 |
aria128gcm |aria192gcm |aria256gcm |
aria128ccm |aria192ccm |aria256ccm |
aria128kw |aria192kw |aria256kw |
aria128kwp |aria192kwp |aria256kwp ,
... --Extensible
}
aria128ecb ALGORITHM ::=
{ OID id-aria128-ecb PARAMS AriaEcbParameters }
aria128cbc ALGORITHM ::=
{ OID id-aria128-cbc PARAMS AriaCbcParameters }
aria128cfb ALGORITHM ::=
{ OID id-aria128-cfb PARAMS AriaCfbParameters }
aria128ofb ALGORITHM ::=
{ OID id-aria128-ofb PARAMS AriaOfbParameters }
aria128ctr ALGORITHM ::=
{ OID id-aria128-ctr PARAMS AriaCtrParameters }
aria192ecb ALGORITHM ::=
{ OID id-aria192-ecb PARAMS AriaEcbParameters }
aria192cbc ALGORITHM ::=
{ OID id-aria192-cbc PARAMS AriaCbcParameters }
aria192cfb ALGORITHM ::=
{ OID id-aria192-cfb PARAMS AriaCfbParameters }
aria192ofb ALGORITHM ::=
{ OID id-aria192-ofb PARAMS AriaOfbParameters }
aria192ctr ALGORITHM ::=
{ OID id-aria192-ctr PARAMS AriaCtrParameters }
<span class="grey">Lee, et al. Informational [Page 14]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-15" ></span>
<span class="grey"><a href="./rfc5794">RFC 5794</a> The ARIA Encryption Algorithm March 2010</span>
aria256ecb ALGORITHM ::=
{ OID id-aria256-ecb PARAMS AriaEcbParameters }
aria256cbc ALGORITHM ::=
{ OID id-aria256-cbc PARAMS AriaCbcParameters }
aria256cfb ALGORITHM ::=
{ OID id-aria256-cfb PARAMS AriaCfbParameters }
aria256ofb ALGORITHM ::=
{ OID id-aria256-ofb PARAMS AriaOfbParameters }
aria256ctr ALGORITHM ::=
{ OID id-aria256-ctr PARAMS AriaCtrParameters }
aria128cmac ALGORITHM ::=
{ OID id-aria128-cmac PARAMS AriaCmacParameters }
aria192cmac ALGORITHM ::=
{ OID id-aria192-cmac PARAMS AriaCmacParameters }
aria256cmac ALGORITHM ::=
{ OID id-aria256-cmac PARAMS AriaCmacParameters }
aria128ocb2 ALGORITHM ::=
{ OID id-aria128-ocb2 PARAMS AriaOcb2Parameters }
aria192ocb2 ALGORITHM ::=
{ OID id-aria192-ocb2 PARAMS AriaOcb2Parameters }
aria256ocb2 ALGORITHM ::=
{ OID id-aria256-ocb2 PARAMS AriaOcb2Parameters }
aria128gcm ALGORITHM ::=
{ OID id-aria128-gcm PARAMS AriaGcmParameters }
aria192gcm ALGORITHM ::=
{ OID id-aria192-gcm PARAMS AriaGcmParameters }
aria256gcm ALGORITHM ::=
{ OID id-aria256-gcm PARAMS AriaGcmParameters }
aria128ccm ALGORITHM ::=
{ OID id-aria128-ccm PARAMS AriaCcmParameters }
aria192ccm ALGORITHM ::=
{ OID id-aria192-ccm PARAMS AriaCcmParameters }
aria256ccm ALGORITHM ::=
{ OID id-aria256-ccm PARAMS AriaCcmParameters }
aria128kw ALGORITHM ::= { OID id-aria128-kw }
aria192kw ALGORITHM ::= { OID id-aria192-kw }
aria256kw ALGORITHM ::= { OID id-aria256-kw }
aria128kwp ALGORITHM ::= { OID id-aria128-kwp }
aria192kwp ALGORITHM ::= { OID id-aria192-kwp }
aria256kwp ALGORITHM ::= { OID id-aria256-kwp }
<span class="grey">Lee, et al. Informational [Page 15]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-16" ></span>
<span class="grey"><a href="./rfc5794">RFC 5794</a> The ARIA Encryption Algorithm March 2010</span>
AriaPadAlgo ::= CHOICE {
specifiedPadAlgo RELATIVE-OID,
generalPadAlgo OID
}
AriaEcbParameters ::= SEQUENCE {
padAlgo AriaPadAlgo DEFAULT specifiedPadAlgo:id-pad-null
}
AriaCbcParameters ::= SEQUENCE {
m INTEGER DEFAULT 1,
-- number of stored ciphertext blocks
padAlgo AriaPadAlgo DEFAULT specifiedPadAlgo:id-pad-1
}
AriaCfbParameters ::= SEQUENCE {
r INTEGER,
-- bit-length of feedback buffer, 128<=r<=128*1024
k INTEGER,
-- bit-length of feedback variable, 1<=k<=128
j INTEGER,
-- bit-length of plaintext/ciphertext block, 1<=j<=k
padAlgo AriaPadAlgo DEFAULT specifiedPadAlgo:id-pad-null
}
AriaOfbParameters ::= SEQUENCE {
j INTEGER,
-- bit-length of plaintext/ciphertext block, 1<=j<=128
padAlgo AriaPadAlgo DEFAULT specifiedPadAlgo:id-pad-null
}
AriaCtrParameters ::= SEQUENCE {
j INTEGER,
-- bit-length of plaintext/ciphertext block, 1<=j<=128
padAlgo AriaPadAlgo DEFAULT specifiedPadAlgo:id-pad-null
}
AriaCmacParameters ::= INTEGER -- bit-length of authentication tag
AriaOcb2Parameters ::= INTEGER -- bit-length of authentication tag
AriaGcmParameters ::= SEQUENCE {
s INTEGER, -- bit-length of starting variable
t INTEGER -- bit-length of authentication tag
}
<span class="grey">Lee, et al. Informational [Page 16]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-17" ></span>
<span class="grey"><a href="./rfc5794">RFC 5794</a> The ARIA Encryption Algorithm March 2010</span>
AriaCcmParameters ::= SEQUENCE {
w INTEGER (2|3|4|5|6|7|8),
-- length of message length field in octets
t INTEGER (32|48|64|80|96|112|128)
-- bit-length of authentication tag
}
ALGORITHM ::= CLASS {
&id OBJECT IDENTIFIER UNIQUE,
&Type OPTIONAL
}
WITH SYNTAX { OID &id [PARAMS &Type] }
AlgorithmIdentifier { ALGORITHM:AlgoSet } ::= SEQUENCE {
algorithm ALGORITHM.&id( {AlgoSet} ),
parameters ALGORITHM.&Type( {AlgoSet}{@algorithm} ) OPTIONAL
}
END
<span class="grey">Lee, et al. Informational [Page 17]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-18" ></span>
<span class="grey"><a href="./rfc5794">RFC 5794</a> The ARIA Encryption Algorithm March 2010</span>
Authors' Addresses
Jungkeun Lee
National Security Research Institute
P.O.Box 1, Yuseong, Daejeon, 305-350, Korea
EMail: jklee@ensec.re.kr
Jooyoung Lee
National Security Research Institute
P.O.Box 1, Yuseong, Daejeon, 305-350, Korea
EMail: jlee05@ensec.re.kr
Jaeheon Kim
National Security Research Institute
P.O.Box 1, Yuseong, Daejeon, 305-350, Korea
EMail: jaeheon@ensec.re.kr
Daesung Kwon
National Security Research Institute
P.O.Box 1, Yuseong, Daejeon, 305-350, Korea
EMail: ds_kwon@ensec.re.kr
Choonsoo Kim
National Security Research Institute
P.O.Box 1, Yuseong, Daejeon, 305-350, Korea
EMail: jbr@ensec.re.kr
Lee, et al. Informational [Page 18]
</pre>
|