1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
|
<pre>Internet Engineering Task Force (IETF) K. Kumaki, Ed.
Request for Comments: 5824 KDDI Corporation
Category: Informational R. Zhang
ISSN: 2070-1721 BT
Y. Kamite
NTT Communications Corporation
April 2010
<span class="h1">Requirements for Supporting</span>
<span class="h1">Customer Resource ReSerVation Protocol (RSVP)</span>
<span class="h1">and RSVP Traffic Engineering (RSVP-TE) over a BGP/MPLS IP-VPN</span>
Abstract
Today, customers expect to run triple-play services through BGP/MPLS
IP-VPNs. Some service providers will deploy services that request
Quality of Service (QoS) guarantees from a local Customer Edge (CE)
to a remote CE across the network. As a result, the application
(e.g., voice, video, bandwidth-guaranteed data pipe, etc.)
requirements for an end-to-end QoS and reserving an adequate
bandwidth continue to increase.
Service providers can use both an MPLS and an MPLS Traffic
Engineering (MPLS-TE) Label Switched Path (LSP) to meet their service
objectives. This document describes service-provider requirements
for supporting a customer Resource ReSerVation Protocol (RSVP) and
RSVP-TE over a BGP/MPLS IP-VPN.
Status of This Memo
This document is not an Internet Standards Track specification; it is
published for informational purposes.
This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Not all documents
approved by the IESG are a candidate for any level of Internet
Standard; see <a href="./rfc5741#section-2">Section 2 of RFC 5741</a>.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
<a href="http://www.rfc-editor.org/info/rfc5824">http://www.rfc-editor.org/info/rfc5824</a>.
<span class="grey">Kumaki, et al. Informational [Page 1]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-2" ></span>
<span class="grey"><a href="./rfc5824">RFC 5824</a> Supporting RSVP/RSVP-TE over BGP/MPLS IP-VPN April 2010</span>
Copyright Notice
Copyright (c) 2010 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to <a href="https://www.rfc-editor.org/bcp/bcp78">BCP 78</a> and the IETF Trust's Legal
Provisions Relating to IETF Documents
(<a href="http://trustee.ietf.org/license-info">http://trustee.ietf.org/license-info</a>) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
This document may contain material from IETF Documents or IETF
Contributions published or made publicly available before November
10, 2008. The person(s) controlling the copyright in some of this
material may not have granted the IETF Trust the right to allow
modifications of such material outside the IETF Standards Process.
Without obtaining an adequate license from the person(s) controlling
the copyright in such materials, this document may not be modified
outside the IETF Standards Process, and derivative works of it may
not be created outside the IETF Standards Process, except to format
it for publication as an RFC or to translate it into languages other
than English.
<span class="grey">Kumaki, et al. Informational [Page 2]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-3" ></span>
<span class="grey"><a href="./rfc5824">RFC 5824</a> Supporting RSVP/RSVP-TE over BGP/MPLS IP-VPN April 2010</span>
Table of Contents
<a href="#section-1">1</a>. Introduction ....................................................<a href="#page-4">4</a>
<a href="#section-2">2</a>. Requirements Language ...........................................<a href="#page-4">4</a>
<a href="#section-3">3</a>. Terminology .....................................................<a href="#page-5">5</a>
<a href="#section-4">4</a>. Problem Statement ...............................................<a href="#page-5">5</a>
<a href="#section-5">5</a>. Application Scenarios ...........................................<a href="#page-7">7</a>
<a href="#section-5.1">5.1</a>. Scenario I: Fast Recovery over BGP/MPLS IP-VPNs ............<a href="#page-8">8</a>
<a href="#section-5.2">5.2</a>. Scenario II: Strict C-TE LSP QoS Guarantees ................<a href="#page-8">8</a>
<a href="#section-5.3">5.3</a>. Scenario III: Load Balance of CE-to-CE Traffic .............<a href="#page-9">9</a>
<a href="#section-5.4">5.4</a>. Scenario IV: RSVP Aggregation over MPLS-TE Tunnels ........<a href="#page-11">11</a>
<a href="#section-5.5">5.5</a>. Scenario V: RSVP over Non-TE LSPs .........................<a href="#page-12">12</a>
<a href="#section-5.6">5.6</a>. Scenario VI: RSVP-TE over Non-TE LSPs .....................<a href="#page-13">13</a>
<a href="#section-6">6</a>. Detailed Requirements for C-TE LSP Model .......................<a href="#page-14">14</a>
<a href="#section-6.1">6.1</a>. Selective P-TE LSPs .......................................<a href="#page-14">14</a>
<a href="#section-6.2">6.2</a>. Graceful Restart Support for C-TE LSPs ....................<a href="#page-14">14</a>
<a href="#section-6.3">6.3</a>. Rerouting Support for C-TE LSPs ...........................<a href="#page-15">15</a>
<a href="#section-6.4">6.4</a>. FRR Support for C-TE LSPs .................................<a href="#page-15">15</a>
<a href="#section-6.5">6.5</a>. Admission Control Support on P-TE LSP Head-Ends ...........<a href="#page-15">15</a>
6.6. Admission Control Support for C-TE LSPs in
LDP-Based Core Networks ...................................<a href="#page-16">16</a>
<a href="#section-6.7">6.7</a>. Policy Control Support for C-TE LSPs ......................<a href="#page-16">16</a>
<a href="#section-6.8">6.8</a>. PCE Features Support for C-TE LSPs ........................<a href="#page-16">16</a>
<a href="#section-6.9">6.9</a>. Diversely Routed C-TE LSP Support .........................<a href="#page-16">16</a>
<a href="#section-6.10">6.10</a>. Optimal Path Support for C-TE LSPs .......................<a href="#page-17">17</a>
<a href="#section-6.11">6.11</a>. Reoptimization Support for C-TE LSPs .....................<a href="#page-17">17</a>
<a href="#section-6.12">6.12</a>. DS-TE Support for C-TE LSPs ..............................<a href="#page-17">17</a>
<a href="#section-7">7</a>. Detailed Requirements for C-RSVP Path Model ....................<a href="#page-18">18</a>
<a href="#section-7.1">7.1</a>. Admission Control between PE-CE for C-RSVP Paths ..........<a href="#page-18">18</a>
<a href="#section-7.2">7.2</a>. Aggregation of C-RSVP Paths by P-TE LSPs ..................<a href="#page-18">18</a>
<a href="#section-7.3">7.3</a>. Non-TE LSP Support for C-RSVP Paths .......................<a href="#page-18">18</a>
<a href="#section-7.4">7.4</a>. Transparency of C-RSVP Paths ..............................<a href="#page-18">18</a>
<a href="#section-8">8</a>. Commonly Detailed Requirements for Two Models ..................<a href="#page-18">18</a>
<a href="#section-8.1">8.1</a>. CE-PE Routing .............................................<a href="#page-18">18</a>
<a href="#section-8.2">8.2</a>. Complexity and Risks ......................................<a href="#page-19">19</a>
<a href="#section-8.3">8.3</a>. Backward Compatibility ....................................<a href="#page-19">19</a>
<a href="#section-8.4">8.4</a>. Scalability Considerations ................................<a href="#page-19">19</a>
<a href="#section-8.5">8.5</a>. Performance Considerations ................................<a href="#page-19">19</a>
<a href="#section-8.6">8.6</a>. Management Considerations .................................<a href="#page-20">20</a>
<a href="#section-9">9</a>. Security Considerations ........................................<a href="#page-20">20</a>
<a href="#section-10">10</a>. References ....................................................<a href="#page-21">21</a>
<a href="#section-10.1">10.1</a>. Normative References .....................................<a href="#page-21">21</a>
<a href="#section-10.2">10.2</a>. Informative References ...................................<a href="#page-22">22</a>
Acknowledgments....................................................<a href="#page-23">23</a>
<a href="#appendix-A">Appendix A</a>. Reference Model........................................<a href="#page-24">24</a>
<a href="#appendix-A.1">A.1</a> End-to-End C-RSVP Path Model................................<a href="#page-24">24</a>
<a href="#appendix-A.2">A.2</a> End-to-End C-TE LSP Model...................................<a href="#page-25">25</a>
<span class="grey">Kumaki, et al. Informational [Page 3]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-4" ></span>
<span class="grey"><a href="./rfc5824">RFC 5824</a> Supporting RSVP/RSVP-TE over BGP/MPLS IP-VPN April 2010</span>
<span class="h2"><a class="selflink" id="section-1" href="#section-1">1</a>. Introduction</span>
Some service providers want to build a service that guarantees
Quality of Service (QoS) and a bandwidth from a local Customer Edge
(CE) to a remote CE through the network. A CE includes the network
client equipment owned and operated by the service provider.
However, the CE may not be part of the MPLS provider network.
Today, customers expect to run triple-play services such as Internet
access, telephone, and television through BGP/MPLS IP-VPNs [<a href="./rfc4364" title=""BGP/MPLS IP Virtual Private Networks (VPNs)"">RFC4364</a>].
As these services evolve, the requirements for an end-to-end QoS to
meet the application requirements also continue to grow. Depending
on the application (e.g., voice, video, bandwidth-guaranteed data
pipe, etc.), a native IP using an RSVP and/or an end-to-end
constrained MPLS Traffic Engineering (MPLS-TE) Label Switched Path
(LSP) may be required. The RSVP path may be used to provide QoS
guarantees and reserve an adequate bandwidth for the data. An end-
to-end MPLS-TE LSP may also be used to guarantee a bandwidth, and
provide extended functionality like MPLS fast reroute (FRR) [<a href="./rfc4090" title=""Fast Reroute Extensions to RSVP-TE for LSP Tunnels"">RFC4090</a>]
for maintaining the service continuity around node and link,
including the CE-PE link, failures. It should be noted that an RSVP
session between two CEs may also be mapped and tunneled into an MPLS-
TE LSP across an MPLS provider network.
A number of advantages exist for deploying the model previously
mentioned. The first is that customers can use these network
services while being able to use both private addresses and global
addresses. The second advantage is that the traffic is tunneled
through the service-provider backbone so that customer traffic and
route confidentiality are maintained.
This document defines a reference model, example application
scenarios, and detailed requirements for a solution supporting a
customer RSVP and RSVP-TE over a BGP/MPLS IP-VPN.
A specification for a solution is out of scope in this document.
<span class="h2"><a class="selflink" id="section-2" href="#section-2">2</a>. Requirements Language</span>
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [<a href="./rfc2119" title=""Key words for use in RFCs to Indicate Requirement Levels"">RFC2119</a>].
<span class="grey">Kumaki, et al. Informational [Page 4]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-5" ></span>
<span class="grey"><a href="./rfc5824">RFC 5824</a> Supporting RSVP/RSVP-TE over BGP/MPLS IP-VPN April 2010</span>
<span class="h2"><a class="selflink" id="section-3" href="#section-3">3</a>. Terminology</span>
This document uses the BGP/MPLS IP-VPN terminology defined in
[<a href="./rfc4364" title=""BGP/MPLS IP Virtual Private Networks (VPNs)"">RFC4364</a>] and also uses Path Computation Element (PCE) terms defined
in [<a href="./rfc4655" title=""A Path Computation Element (PCE)-Based Architecture"">RFC4655</a>].
TE LSP: Traffic Engineering Label Switched Path
MPLS-TE LSP: Multiprotocol Label Switching TE LSP
C-RSVP path: Customer RSVP path: a native RSVP path with the
bandwidth reservation of X for customers
C-TE LSP: Customer Traffic Engineering Label Switched Path: an end-
to-end MPLS-TE LSP for customers
P-TE LSP: Provider Traffic Engineering Label Switched Path: a
transport TE LSP between two Provider Edges (PEs)
LSR: a Label Switched Router
Head-end LSR: an ingress LSR
Tail-end LSR: an egress LSR
<span class="h2"><a class="selflink" id="section-4" href="#section-4">4</a>. Problem Statement</span>
Service providers want to deliver triple-play services with QoS
guarantees to their customers. Various techniques are available to
achieve this. Some service providers will wish to offer advanced
services using an RSVP signaling for native IP flows (C-RSVP) or an
RSVP-TE signaling for Customer TE LSPs (C-TE LSPs) over BGP/MPLS
IP-VPNs.
The following examples outline each method:
A C-RSVP path with the bandwidth reservation of X can be used to
transport voice traffic. In order to achieve recovery in under 50 ms
during link, node, and Shared Risk Link Group (SRLG) failures, and to
provide strict QoS guarantees, a C-TE LSP with bandwidth X between
data centers or customer sites can be used to carry voice and video
traffic. Thus, service providers or customers can choose a C-RSVP
path or a C-TE LSP to meet their requirements.
When service providers offer a C-RSVP path between hosts or CEs over
BGP/MPLS IP-VPNs, the CE/host requests an end-to-end C-RSVP path with
the bandwidth reservation of X to the remote CE/host. However, if a
C-RSVP signaling is to send within a VPN, the service-provider
<span class="grey">Kumaki, et al. Informational [Page 5]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-6" ></span>
<span class="grey"><a href="./rfc5824">RFC 5824</a> Supporting RSVP/RSVP-TE over BGP/MPLS IP-VPN April 2010</span>
network will face scalability issues because routers need to retain
the RSVP state per a customer. Therefore, in order to solve
scalability issues, multiple C-RSVP reservations can be aggregated at
a PE, where a P-TE LSP head-end can perform admission control using
the aggregated C-RSVP reservations. The method that is described in
[<a href="./rfc4804" title=""Aggregation of Resource ReSerVation Protocol (RSVP) Reservations over MPLS TE/DS-TE Tunnels"">RFC4804</a>] can be considered as a useful approach. In this case, a
reservation request from within the context of a Virtual Routing and
Forwarding (VRF) instance can get aggregated onto a P-TE LSP. The
P-TE LSP can be pre-established, resized based on the request, or
triggered by the request. Service providers, however, cannot provide
a C-RSVP path over the VRF instance as defined in [<a href="./rfc4364" title=""BGP/MPLS IP Virtual Private Networks (VPNs)"">RFC4364</a>]. The
current BGP/MPLS IP-VPN architecture also does not support an RSVP
instance running in the context of a VRF to process RSVP messages and
integrated services (int-serv) ([<a href="./rfc1633" title=""Integrated Services in the Internet Architecture: an Overview"">RFC1633</a>], [<a href="./rfc2210" title=""The Use of RSVP with IETF Integrated Services"">RFC2210</a>]). One solution
is described in [<a href="#ref-RSVP-L3VPN" title=""Support for RSVP in Layer 3 VPNs"">RSVP-L3VPN</a>].
If service providers offer a C-TE LSP from a CE to a CE over the
BGP/MPLS IP-VPN, they require that an MPLS-TE LSP from a local CE to
a remote CE be established. However, if a C-TE LSP signaling is to
send within the VPN, the service-provider network may face the
following scalability issues:
- A C-TE LSP can be aggregated by a P-TE LSP at a PE (i.e.,
hierarchical LSPs). In this case, only a PE maintains the state of
customer RSVP sessions.
- A C-TE LSP cannot be aggregated by a P-TE LSP at a PE, depending on
some policies (i.e., continuous LSPs). In this case, both Ps and
PEs maintain the state of customer RSVP sessions.
- A C-TE LSP can be aggregated by the non-TE LSP (i.e., LDP).
In this case, only a PE maintains the state of customer RSVP-TE
sessions. Note that it is assumed that there is always enough
bandwidth available in the service-provider core network.
Furthermore, if service providers provide the C-TE LSP over the
BGP/MPLS IP-VPN, they currently cannot provide it over the VRF
instance as defined in [<a href="./rfc4364" title=""BGP/MPLS IP Virtual Private Networks (VPNs)"">RFC4364</a>]. Specifically, the current BGP/MPLS
IP-VPN architecture does not support the RSVP-TE instance running in
the context of a VRF to process RSVP messages and trigger the
establishment of the C-TE LSP over the service-provider core network.
If every C-TE LSP is to trigger the establishment or resizing of a
P-TE LSP, the service-provider network will also face scalability
issues that arise from maintaining a large number of P-TE LSPs and/or
<span class="grey">Kumaki, et al. Informational [Page 6]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-7" ></span>
<span class="grey"><a href="./rfc5824">RFC 5824</a> Supporting RSVP/RSVP-TE over BGP/MPLS IP-VPN April 2010</span>
the dynamic signaling of these P-TE LSPs. <a href="#section-8.4">Section 8.4</a> of this
document, "Scalability Considerations", provides detailed scalability
requirements.
Two different models have been described above. The differences
between C-RSVP paths and C-TE LSPs are as follows:
- C-RSVP path model: data packets among CEs are forwarded by "native
IP packets" (i.e., not labeled packets).
- C-TE LSP model: data packets among CEs are forwarded by "labeled IP
packets".
Depending on the service level and the need to meet specific
requirements, service providers should be able to choose P-TE LSPs or
non-TE LSPs in the backbone network. The selection may be dependent
on the service provider's policy and the node's capability to support
the mechanisms described.
The items listed below are selectively required to support C-RSVP
paths and C-TE LSPs over BGP/MPLS IP-VPNs based on the service level.
For example, some service providers need all of the following items
to provide a service, and some service providers need only some of
them to provide the service. It depends on the service level and
policy of service providers. Detailed requirements are described in
Sections <a href="#section-6">6</a>, <a href="#section-7">7</a>, and <a href="#section-8">8</a>.
- C-RSVP path QoS guarantees.
- Fast recovery over the BGP/MPLS IP-VPN to protect traffic for the
C-TE LSP against CE-PE link failure and PE node failure.
- Strict C-TE LSP bandwidth and QoS guarantees.
- Resource optimization for C-RSVP paths and C-TE LSPs.
- Scalability for C-RSVP paths and C-TE LSPs.
<span class="h2"><a class="selflink" id="section-5" href="#section-5">5</a>. Application Scenarios</span>
The following sections present a few application scenarios for C-RSVP
paths and C-TE LSPs in BGP/MPLS IP-VPN environments. <a href="#appendix-A">Appendix A</a>,
"Reference Model", describes a C-RSVP path, a C-TE LSP, and a
P-TE LSP.
In all scenarios, it is the responsibility of the service provider to
ensure that enough bandwidth is available to meet the customers'
application requirements.
<span class="grey">Kumaki, et al. Informational [Page 7]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-8" ></span>
<span class="grey"><a href="./rfc5824">RFC 5824</a> Supporting RSVP/RSVP-TE over BGP/MPLS IP-VPN April 2010</span>
<span class="h3"><a class="selflink" id="section-5.1" href="#section-5.1">5.1</a>. Scenario I: Fast Recovery over BGP/MPLS IP-VPNs</span>
In this scenario, as shown in Figure 1, a customer uses a VoIP
application between its sites (i.e., between CE1 and CE2). H0 and H1
represent voice equipment.
In this case, the customer establishes C-TE LSP1 as a primary path
and C-TE LSP2 as a backup path. If the link between PE1 and CE1 or
the node of PE1 fails, C-TE LSP1 needs C-TE LSP2 as a path
protection.
Generally speaking, C-RSVP paths are used by customers, and P-TE LSPs
are used by service providers.
C-TE LSP1
<---------------------------------------------->
P-TE LSP1
<--------------------------->
............. .............
. --- --- . --- --- --- --- . --- --- .
.|H0 | |CE1|-----|PE1|----|P1 |-----|P2 |----|PE2|-----|CE2| |H1 |.
. --- --- . --- --- --- --- . --- --- .
.........|... --- --- --- --- ...|.........
+-------|PE3|----|P3 |-----|P4 |----|PE4|-------+
--- --- --- ---
<--------------------------->
P-TE LSP2
<---------------------------------------------->
C-TE LSP2
<--customer--> <--------BGP/MPLS IP-VPN-------> <--customer->
network network
Figure 1. Scenario I
<span class="h3"><a class="selflink" id="section-5.2" href="#section-5.2">5.2</a>. Scenario II: Strict C-TE LSP QoS Guarantees</span>
In this scenario, as shown in Figure 2, service provider B (SP B)
transports voice and video traffic between its sites (i.e., between
CE1 and CE2). In this case, service provider B establishes C-TE LSP1
with preemption priority 0 and 100-Mbps bandwidth for the voice
traffic, and C-TE LSP2 with preemption priority 1 and 200-Mbps
bandwidth for the unicast video traffic. On the other hand, service
provider A (SP A) also pre-establishes P-TE LSP1 with preemption
priority 0 and 1-Gbps bandwidth for the voice traffic, and P-TE LSP2
with preemption priority 1 and 2-Gbps bandwidth for the video
<span class="grey">Kumaki, et al. Informational [Page 8]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-9" ></span>
<span class="grey"><a href="./rfc5824">RFC 5824</a> Supporting RSVP/RSVP-TE over BGP/MPLS IP-VPN April 2010</span>
traffic. In this scenario, P-TE LSP1 and P-TE LSP2 should support
Diffserv-aware MPLS Traffic Engineering (DS-TE) [<a href="./rfc4124" title=""Protocol Extensions for Support of Diffserv-aware MPLS Traffic Engineering"">RFC4124</a>].
PE1 and PE3 should choose an appropriate P-TE LSP based on the
preemption priority. In this case, C-TE LSP1 must be associated with
P-TE LSP1 at PE1, and C-TE LSP2 must be associated with P-TE LSP2 at
PE3.
Furthermore, PE1 and PE3 head-ends should control the bandwidth of
C-TE LSPs. In this case, PE1 and PE3 can choose C-TE LSPs by the
amount of maximum available bandwidth for each P-TE LSP,
respectively.
C-TE LSP1
<---------------------------------------------->
P-TE LSP1
<--------------------------->
............. .............
. --- --- . --- --- --- --- . --- --- .
.|CE0| |CE1|-----|PE1|----|P1 |-----|P2 |----|PE2|-----|CE2| |CE3|.
. --- --- . --- --- --- --- . --- --- .
.........|... --- --- --- --- ...|.........
+-------|PE3|----|P3 |-----|P4 |----|PE4|-------+
--- --- --- ---
<--------------------------->
P-TE LSP2
<---------------------------------------------->
C-TE LSP2
<---SP B----> <--------BGP/MPLS IP-VPN-------> <---SP B--->
network SP A network network
Figure 2. Scenario II
It's possible that the customer and the service provider have
differing preemption priorities. In this case, the PE policy will
override the customers. In the case where the service provider does
not support preemption priorities, then such priorities should be
ignored.
<span class="h3"><a class="selflink" id="section-5.3" href="#section-5.3">5.3</a>. Scenario III: Load Balance of CE-to-CE Traffic</span>
In this scenario, as shown in Figure 3, service provider C (SP C)
uses voice and video traffic between its sites (i.e., between CE0 and
CE5/CE7, between CE2 and CE5/CE7, between CE5 and CE0/CE2, and
between CE7 and CE0/CE2). H0 and H1 represent voice and video
equipment. In this case, service provider C establishes C-TE LSP1,
<span class="grey">Kumaki, et al. Informational [Page 9]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-10" ></span>
<span class="grey"><a href="./rfc5824">RFC 5824</a> Supporting RSVP/RSVP-TE over BGP/MPLS IP-VPN April 2010</span>
C-TE LSP3, C-TE LSP5, and C-TE LSP7 with preemption priority 0 and
100-Mbps bandwidth for the voice traffic, and establishes C-TE LSP2,
C-TE LSP4, C-TE LSP6, and C-TE LSP8 with preemption priority 1 and
200-Mbps bandwidth for the video traffic. On the other hand, service
provider A also pre-establishes P-TE LSP1 and P-TE LSP3 with
preemption priority 0 and 1-Gbps bandwidth for the voice traffic, and
P-TE LSP2 and P-TE LSP4 with preemption priority 1 and 2-Gbps
bandwidth for the video traffic. In this scenario, P-TE LSP1,
P-TE LSP2, P-TE LSP3, and P-TE LSP4 should support DS-TE [<a href="./rfc4124" title=""Protocol Extensions for Support of Diffserv-aware MPLS Traffic Engineering"">RFC4124</a>].
All PEs should choose an appropriate P-TE LSP based on the preemption
priority. To minimize the traffic disruption due to a single network
failure, diversely routed C-TE LSPs are established. In this case,
the FRR [<a href="./rfc4090" title=""Fast Reroute Extensions to RSVP-TE for LSP Tunnels"">RFC4090</a>] is not necessarily required.
Also, unconstrained TE LSPs (i.e., C-TE LSPs/P-TE LSPs with
0 bandwidth) [<a href="./rfc5330" title=""A Link-Type sub-TLV to Convey the Number of Traffic Engineering Label Switched Paths Signalled with Zero Reserved Bandwidth across a Link"">RFC5330</a>] are applicable to this scenario.
Furthermore, the load balancing for any communication between H0 and
H1 can be done by setting up full-mesh C-TE LSPs between CE0/CE2 and
CE5/CE7.
<span class="grey">Kumaki, et al. Informational [Page 10]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-11" ></span>
<span class="grey"><a href="./rfc5824">RFC 5824</a> Supporting RSVP/RSVP-TE over BGP/MPLS IP-VPN April 2010</span>
C-TE LSP1(P=0),2(P=1) (CE0->CE1->...->CE4->CE5)
(CE0<-CE1<-...<-CE4<-CE5)
<---------------------------------------------->
C-TE LSP3(P=0),4(P=1) (CE2->CE1->...->CE4->CE7)
(CE2<-CE1<-...<-CE4<-CE7)
<---------------------------------------------->
P-TE LSP1 (p=0)
<-------------------->
P-TE LSP2 (p=1)
<-------------------->
.................. ..................
. --- --- . --- --- --- --- . --- --- .
. |CE0|-|CE1|--|PE1|--|P1 |---|P2 |--|PE2|--|CE4|-|CE5| .
. --- /--- --- . --- --- --- --- . --- ---\ --- .
.|H0 | + . + . + |H1 |.
. --- \--- --- . --- --- --- --- . --- ---/ --- .
. |CE2|-|CE3|--|PE3|--|P3 |---|P4 |--|PE4|--|CE6|-|CE7| .
. --- --- . --- --- --- --- . --- --- .
.................. ..................
<-------------------->
P-TE LSP3 (p=0)
<-------------------->
P-TE LSP4 (p=1)
<---------------------------------------------->
C-TE LSP5(P=0),6(P=1) (CE0->CE3->...->CE6->CE5)
(CE0<-CE3<-...<-CE6<-CE5)
<---------------------------------------------->
C-TE LSP7(P=0),8(P=1) (CE2->CE3->...->CE6->CE7)
(CE2<-CE3<-...<-CE6<-CE7)
<-----SP C-----> <----BGP/MPLS IP-VPN----> <-----SP C----->
network SP A network network
Figure 3. Scenario III
<span class="h3"><a class="selflink" id="section-5.4" href="#section-5.4">5.4</a>. Scenario IV: RSVP Aggregation over MPLS-TE Tunnels</span>
In this scenario, as shown in Figure 4, the customer has two hosts
connecting to CE1 and CE2, respectively. CE1 and CE2 are connected
to PE1 and PE2, respectively, within a VRF instance belonging to the
same VPN. The requesting host (H1) may request from H2 an RSVP path
with the bandwidth reservation of X. This reservation request from
within the context of VRF will get aggregated onto a pre-established
P-TE/DS-TE LSP based upon procedures similar to [<a href="./rfc4804" title=""Aggregation of Resource ReSerVation Protocol (RSVP) Reservations over MPLS TE/DS-TE Tunnels"">RFC4804</a>]. As in the
case of [<a href="./rfc4804" title=""Aggregation of Resource ReSerVation Protocol (RSVP) Reservations over MPLS TE/DS-TE Tunnels"">RFC4804</a>], there may be multiple P-TE LSPs belonging to
different DS-TE class-types. Local policies can be implemented to
<span class="grey">Kumaki, et al. Informational [Page 11]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-12" ></span>
<span class="grey"><a href="./rfc5824">RFC 5824</a> Supporting RSVP/RSVP-TE over BGP/MPLS IP-VPN April 2010</span>
map the incoming RSVP path request from H1 to the P-TE LSP with the
appropriate class-type. Please note that the end-to-end (e2e) RSVP
path request may also be initiated by the CE devices themselves.
C-RSVP path
<----------------------------------------------------->
P-TE LSP
<--------------------------->
............. .............
. --- --- . --- --- --- --- . --- --- .
.|H1 | |CE1|---|PE1|----|P1 |-----|P2 |----|PE2|---|CE2| |H2 |.
. --- --- . --- --- --- --- . --- --- .
............. .............
^ ^
| |
VRF instance VRF instance
<-customer-> <--------BGP/MPLS IP-VPN-------> <-customer->
network network
Figure 4. Scenario IV
<span class="h3"><a class="selflink" id="section-5.5" href="#section-5.5">5.5</a>. Scenario V: RSVP over Non-TE LSPs</span>
In this scenario, as shown in Figure 5, a customer has two hosts
connecting to CE1 and CE2, respectively. CE1 and CE2 are connected
to PE1 and PE2, respectively, within a VRF instance belonging to the
same VPN. The requesting host (H1) may request from H2 an RSVP path
with the bandwidth reservation of X. In this case, a non-TE LSP
(i.e., LDP, etc.) is provided between PEs and has LDP, which supports
MPLS Diffserv [<a href="./rfc3270" title=""Multi-Protocol Label Switching (MPLS) Support of Differentiated Services"">RFC3270</a>].
Note that this only provides Diffserv, and not the bandwidth
reservation as is done with RSVP-TE.
Local policies can be implemented to map the customer's reserved flow
to the LSP with the appropriate Traffic Class [<a href="./rfc5462" title=""Multiprotocol Label Switching (MPLS) Label Stack Entry: "">RFC5462</a>] at PE1.
<span class="grey">Kumaki, et al. Informational [Page 12]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-13" ></span>
<span class="grey"><a href="./rfc5824">RFC 5824</a> Supporting RSVP/RSVP-TE over BGP/MPLS IP-VPN April 2010</span>
C-RSVP path
<------------------------------------------>
Non-TE LSP
<--------------------------->
............. .............
. --- --- . --- --- --- --- . --- --- .
.|H1 | |CE1|---|PE1|----|P1 |-----|P2 |----|PE2|---|CE2| |H2 |.
. --- --- . --- --- --- --- . --- --- .
............. .............
^ ^
| |
VRF instance VRF instance
<-customer-> <-------BGP/MPLS IP-VPN-------> <-customer->
network network
Figure 5. Scenario V
<span class="h3"><a class="selflink" id="section-5.6" href="#section-5.6">5.6</a>. Scenario VI: RSVP-TE over Non-TE LSPs</span>
In this scenario, as shown in Figure 6, a customer uses a VoIP
application between its sites (i.e., between CE1 and CE2). H0 and H1
represent voice equipment. In this case, a non-TE LSP means LDP, and
the customer establishes C-TE LSP1 as a primary path and C-TE LSP2 as
a backup path. If the link between PE1 and CE1 or the node of PE1
fails, C-TE LSP1 needs C-TE LSP2 as a path protection.
<span class="grey">Kumaki, et al. Informational [Page 13]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-14" ></span>
<span class="grey"><a href="./rfc5824">RFC 5824</a> Supporting RSVP/RSVP-TE over BGP/MPLS IP-VPN April 2010</span>
C-TE LSP1
<----------------------------------------->
Non-TE LSP
<-------------------------->
............. .............
. --- --- . --- --- --- --- . --- --- .
.|H0 | |CE1|---|PE1|----|P1 |-----|P2 |----|PE2|---|CE2| |H1 |.
. --- --- . --- --- --- --- . --- --- .
.........|... --- --- --- --- ...|.........
+-----|PE3|----|P3 |-----|P4 |----|PE4|-----+
--- --- --- ---
<-------------------------->
Non-TE LSP
<----------------------------------------->
C-TE LSP2
<-customer-> <------BGP/MPLS IP-VPN------> <-customer->
network network
Figure 6. Scenario VI
<span class="h2"><a class="selflink" id="section-6" href="#section-6">6</a>. Detailed Requirements for the C-TE LSP Model</span>
This section describes detailed requirements for C-TE LSPs in
BGP/MPLS IP-VPN environments.
<span class="h3"><a class="selflink" id="section-6.1" href="#section-6.1">6.1</a>. Selective P-TE LSPs</span>
The solution MUST provide the ability to decide which P-TE LSPs a PE
uses for a C-RSVP path and a C-TE LSP. When a PE receives a native
RSVP and/or a path message from a CE, it MUST be able to decide which
P-TE LSPs it uses. In this case, various kinds of P-TE LSPs exist in
the service-provider network. For example, the PE MUST choose an
appropriate P-TE LSP based on local policies such as:
1. preemption priority
2. affinity
3. class-type
4. on the data plane: (Differentiated Services Code Point (DSCP) or
Traffic Class bits)
<span class="h3"><a class="selflink" id="section-6.2" href="#section-6.2">6.2</a>. Graceful Restart Support for C-TE LSPs</span>
The solution SHOULD support the graceful restart capability, where
the C-TE LSP traffic continues to be forwarded during a PE graceful
restart. Graceful restart mechanisms related to this architecture
are described in [<a href="./rfc3473" title=""Generalized Multi-Protocol Label Switching (GMPLS) Signaling Resource ReserVation Protocol-Traffic Engineering (RSVP-TE) Extensions"">RFC3473</a>], [<a href="./rfc3623" title=""Graceful OSPF Restart"">RFC3623</a>], and [<a href="./rfc4781" title=""Graceful Restart Mechanism for BGP with MPLS"">RFC4781</a>].
<span class="grey">Kumaki, et al. Informational [Page 14]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-15" ></span>
<span class="grey"><a href="./rfc5824">RFC 5824</a> Supporting RSVP/RSVP-TE over BGP/MPLS IP-VPN April 2010</span>
<span class="h3"><a class="selflink" id="section-6.3" href="#section-6.3">6.3</a>. Rerouting Support for C-TE LSPs</span>
The solution MUST provide the rerouting of a C-TE LSP in case of
link, node, and SRLG failures, or in case of preemption. Such
rerouting may be controlled by a CE or by a PE, depending on the
failure. In a dual-homed environment, the ability to perform
rerouting MUST be provided against a CE-PE link failure or a PE
failure, if another CE-PE link or PE is available between the head-
end and the tail-end of the C-TE LSP.
<span class="h3"><a class="selflink" id="section-6.4" href="#section-6.4">6.4</a>. FRR Support for C-TE LSPs</span>
The solution MUST support FRR [<a href="./rfc4090" title=""Fast Reroute Extensions to RSVP-TE for LSP Tunnels"">RFC4090</a>] features for a C-TE LSP over
a VRF instance.
In BGP/MPLS IP-VPN environments, a C-TE LSP from a CE traverses
multiple PEs and Ps, albeit tunneled over a P-TE LSP. In order to
avoid PE-CE link/PE node/SRLG failures, a CE (a customer's head-end
router) needs to support link protection or node protection.
The following protection MUST be supported:
1. CE link protection
2. PE node protection
3. CE node protection
<span class="h3"><a class="selflink" id="section-6.5" href="#section-6.5">6.5</a>. Admission Control Support on P-TE LSP Head-Ends</span>
The solution MUST support admission control on a P-TE LSP tunnel
head-end for C-TE LSPs. C-TE LSPs may potentially try to reserve the
bandwidth that exceeds the bandwidth of the P-TE LSP. The P-TE LSP
tunnel head-end SHOULD control the number of C-TE LSPs and/or the
bandwidth of C-TE LSPs. For example, the transport TE LSP head-end
SHOULD have a configurable limit on the maximum number of C-TE LSPs
that it can admit from a CE. As for the amount of bandwidth that can
be reserved by C-TE LSPs, there could be two situations:
1. Let the P-TE LSP do its natural bandwidth admission
2. Set a cap on the amount of bandwidth, and have the configuration
option to:
a. Reserve the minimum cap bandwidth or the C-TE LSP bandwidth on
the P-TE LSP if the required bandwidth is available
b. Reject the C-TE LSP if the required bandwidth by the C-TE LSP
is not available
<span class="grey">Kumaki, et al. Informational [Page 15]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-16" ></span>
<span class="grey"><a href="./rfc5824">RFC 5824</a> Supporting RSVP/RSVP-TE over BGP/MPLS IP-VPN April 2010</span>
<span class="h3"><a class="selflink" id="section-6.6" href="#section-6.6">6.6</a>. Admission Control Support for C-TE LSPs in LDP-Based Core</span>
<span class="h3"> Networks</span>
The solution MUST support admission control for a C-TE LSP at a PE in
the LDP-based core network. Specifically, PEs MUST have a
configurable limit on the maximum amount of bandwidth that can be
reserved by C-TE LSPs for a given VRF instance (i.e., for a given
customer). Also, a PE SHOULD have a configurable limit on the total
amount of bandwidth that can be reserved by C-TE LSPs between PEs.
<span class="h3"><a class="selflink" id="section-6.7" href="#section-6.7">6.7</a>. Policy Control Support for C-TE LSPs</span>
The solution MUST support the policy control for a C-TE LSP at a PE.
The PE MUST be able to perform the following:
1. Limit the rate of RSVP messages per CE link.
2. Accept and map, or reject, requests for a given affinity.
3. Accept and map, or reject, requests with a specified setup and/or
preemption priorities.
4. Accept or reject requests for fast reroutes.
5. Ignore the requested setup and/or preemption priorities, and
select a P-TE LSP based on a local policy that applies to the
CE-PE link or the VRF.
6. Ignore the requested affinity, and select a P-TE LSP based on a
local policy that applies to the CE-PE link or the VRF.
7. Perform mapping in the data plane between customer Traffic Class
bits and transport P-TE LSP Traffic Class bits, as signaled per
[<a href="./rfc3270" title=""Multi-Protocol Label Switching (MPLS) Support of Differentiated Services"">RFC3270</a>].
<span class="h3"><a class="selflink" id="section-6.8" href="#section-6.8">6.8</a>. PCE Features Support for C-TE LSPs</span>
The solution SHOULD support the PCE architecture for a C-TE LSP
establishment in the context of a VRF instance. When a C-TE LSP is
provided, CEs, PEs, and Ps may support PCE features ([<a href="./rfc4655" title=""A Path Computation Element (PCE)-Based Architecture"">RFC4655</a>],
[<a href="./rfc5440" title=""Path Computation Element (PCE) Communication Protocol (PCEP)"">RFC5440</a>]).
In this case, CE routers or PE routers may be Path Computation
Clients (PCCs), and PE routers and/or P routers may be PCEs.
Furthermore, the solution SHOULD support a mechanism for dynamic PCE
discovery. Specifically, all PCEs are not necessarily discovered
automatically, and only specific PCEs that know VPN routes should be
discovered automatically.
<span class="h3"><a class="selflink" id="section-6.9" href="#section-6.9">6.9</a>. Diversely Routed C-TE LSP Support</span>
The solution MUST provide for setting up diversely routed C-TE LSPs
over the VRF instance. These diverse C-TE LSPs MAY be traversing
<span class="grey">Kumaki, et al. Informational [Page 16]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-17" ></span>
<span class="grey"><a href="./rfc5824">RFC 5824</a> Supporting RSVP/RSVP-TE over BGP/MPLS IP-VPN April 2010</span>
over two different P-TE LSPs that are fully disjoint within a
service-provider network. When a single CE has multiple uplinks that
connect to different PEs, it is desirable that multiple C-TE LSPs
over the VRF instance be established between a pair of LSRs. When
two CEs have multiple uplinks that connect to different PEs, it is
desirable that multiple C-TE LSPs over the VRF instance be
established between two different pairs of LSRs. In these cases, for
example, the following points will be beneficial to customers.
1. load balance of the CE-to-CE traffic across diverse C-TE LSPs so
as to minimize the traffic disruption in case of a single network
element failure
2. path protection (e.g., 1:1, 1:N)
<span class="h3"><a class="selflink" id="section-6.10" href="#section-6.10">6.10</a>. Optimal Path Support for C-TE LSPs</span>
The solution MUST support the optimal path for a C-TE LSP over the
VRF instance. Depending on an application (e.g., voice and video),
an optimal path is needed for a C-TE LSP over the VRF instance. In
the case of a TE LSP, an optimal route may be the shortest path based
on the TE metric applied. For a non-TE LSP using LDP, the IGP metric
may be used to compute optimal paths.
<span class="h3"><a class="selflink" id="section-6.11" href="#section-6.11">6.11</a>. Reoptimization Support for C-TE LSPs</span>
The solution MUST support the reoptimization of a C-TE LSP over the
VRF instance. These LSPs MUST be reoptimized using "make-before-
break" [<a href="./rfc3209" title=""RSVP-TE: Extensions to RSVP for LSP Tunnels"">RFC3209</a>].
In this case, it is desirable for a CE to be configured with regard
to the timer-based or event-driven reoptimization. Furthermore,
customers SHOULD be able to reoptimize a C-TE LSP manually. To
provide for delay-sensitive or jitter-sensitive traffic (i.e., voice
traffic), C-TE LSP path computation and route selection are expected
to be optimal for the specific application.
<span class="h3"><a class="selflink" id="section-6.12" href="#section-6.12">6.12</a>. DS-TE Support for C-TE LSPs</span>
The solution MUST support DS-TE [<a href="./rfc4124" title=""Protocol Extensions for Support of Diffserv-aware MPLS Traffic Engineering"">RFC4124</a>] for a C-TE LSP over the VRF
instance. In the event that the service provider and the customer
have differing bandwidth constraint models, then only the service-
provider bandwidth model should be supported.
Applications, which have different traffic characteristics, are used
in BGP/MPLS IP-VPN environments. Service providers try to achieve
the fine-grained optimization of transmission resources, efficiency,
and further-enhanced network performance. It may be desirable to
perform TE at a per-class level.
<span class="grey">Kumaki, et al. Informational [Page 17]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-18" ></span>
<span class="grey"><a href="./rfc5824">RFC 5824</a> Supporting RSVP/RSVP-TE over BGP/MPLS IP-VPN April 2010</span>
By mapping the traffic from a given Diffserv class of service on a
separate C-TE LSP, DS-TE allows this traffic to utilize resources
available to the given class on both shortest paths and non-shortest
paths, and also to follow paths that meet TE constraints that are
specific to the given class.
<span class="h2"><a class="selflink" id="section-7" href="#section-7">7</a>. Detailed Requirements for the C-RSVP Path Model</span>
This section describes detailed requirements for C-RSVP paths in
BGP/MPLS IP-VPN environments.
<span class="h3"><a class="selflink" id="section-7.1" href="#section-7.1">7.1</a>. Admission Control between PE and CE for C-RSVP Paths</span>
The solution MUST support admission control at the ingress PE. PEs
MUST control RSVP messages per a VRF instance.
<span class="h3"><a class="selflink" id="section-7.2" href="#section-7.2">7.2</a>. Aggregation of C-RSVP Paths by P-TE LSPs</span>
The solution SHOULD support C-RSVP paths aggregated by P-TE LSPs.
P-TE LSPs SHOULD be pre-established manually or dynamically by
operators and MAY be established if triggered by C-RSVP messages.
Also, the P-TE LSP SHOULD support DS-TE.
<span class="h3"><a class="selflink" id="section-7.3" href="#section-7.3">7.3</a>. Non-TE LSP Support for C-RSVP Paths</span>
The solution SHOULD support non-TE LSPs (i.e., LDP-based LSP, etc.).
Non-TE LSPs are established by LDP [<a href="./rfc5036" title=""LDP Specification"">RFC5036</a>] between PEs and support
MPLS Diffserv [<a href="./rfc3270" title=""Multi-Protocol Label Switching (MPLS) Support of Differentiated Services"">RFC3270</a>]. The solution MAY support local policies to
map the customer's reserved flow to the LSP with the appropriate
Traffic Class at the PE.
<span class="h3"><a class="selflink" id="section-7.4" href="#section-7.4">7.4</a>. Transparency of C-RSVP Paths</span>
The solution SHOULD NOT change RSVP messages from the local CE to the
remote CE (Path, Resv, Path Error, Resv Error, etc.). The solution
SHOULD allow customers to receive RSVP messages transparently between
CE sites.
<span class="h2"><a class="selflink" id="section-8" href="#section-8">8</a>. Commonly Detailed Requirements for Two Models</span>
This section describes commonly detailed requirements for C-TE LSPs
and C-RSVP paths in BGP/MPLS IP-VPN environments.
<span class="h3"><a class="selflink" id="section-8.1" href="#section-8.1">8.1</a>. CE-PE Routing</span>
The solution SHOULD support the following routing configuration on
the CE-PE links with either RSVP or RSVP-TE on the CE-PE link:
<span class="grey">Kumaki, et al. Informational [Page 18]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-19" ></span>
<span class="grey"><a href="./rfc5824">RFC 5824</a> Supporting RSVP/RSVP-TE over BGP/MPLS IP-VPN April 2010</span>
1. static routing
2. BGP routing
3. OSPF
4. OSPF-TE (RSVP-TE case only)
<span class="h3"><a class="selflink" id="section-8.2" href="#section-8.2">8.2</a>. Complexity and Risks</span>
The solution SHOULD avoid introducing unnecessary complexity to the
current operating network to such a degree that it would affect the
stability and diminish the benefits of deploying such a solution over
SP networks.
<span class="h3"><a class="selflink" id="section-8.3" href="#section-8.3">8.3</a>. Backward Compatibility</span>
The deployment of C-RSVP paths and C-TE LSPs SHOULD avoid impacting
existing RSVP and MPLS-TE mechanisms, respectively, but should allow
for a smooth migration or co-existence.
<span class="h3"><a class="selflink" id="section-8.4" href="#section-8.4">8.4</a>. Scalability Considerations</span>
The solution SHOULD minimize the impact on network scalability from a
C-RSVP path and a C-TE LSP over the VRF instance. As identified in
earlier sections, PCE provides a method for offloading computation of
C-TE LSPs and helps with the solution scalability.
The solution MUST address the scalability of C-RSVP paths and
C-TE LSPs for the following protocols.
1. RSVP (e.g., number of RSVP messages, retained state, etc.).
2. RSVP-TE (e.g., number of RSVP control messages, retained state,
message size, etc.).
3. BGP (e.g., number of routes, flaps, overload events, etc.).
<span class="h3"><a class="selflink" id="section-8.5" href="#section-8.5">8.5</a>. Performance Considerations</span>
The solution SHOULD be evaluated with regard to the following
criteria.
1. Degree of path optimality of the C-TE LSP.
2. TE LSP setup time.
3. Failure and restoration time.
4. Impact and scalability of the control plane due to added overhead.
5. Impact and scalability of the data/forwarding plane due to added
overhead.
<span class="grey">Kumaki, et al. Informational [Page 19]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-20" ></span>
<span class="grey"><a href="./rfc5824">RFC 5824</a> Supporting RSVP/RSVP-TE over BGP/MPLS IP-VPN April 2010</span>
<span class="h3"><a class="selflink" id="section-8.6" href="#section-8.6">8.6</a>. Management Considerations</span>
The solution MUST address the manageability of C-RSVP paths and
C-TE LSPs for the following considerations.
1. Need for a MIB module for the control plane (including mapping of
P-TE LSPs and C-TE LSPs) and bandwidth monitoring.
2. Need for diagnostic tools (this includes traceroute and Ping).
The solution MUST allow routers to support the MIB module for C-RSVP
paths and C-TE LSPs per a VRF instance. If a CE is managed by
service providers, the solution MUST allow service providers to
collect MIB information for C-RSVP paths and C-TE LSPs from the CE
per a customer.
Diagnostic tools can detect failures of the control plane and data
plane for general MPLS-TE LSPs [<a href="./rfc4379" title=""Detecting Multi-Protocol Label Switched (MPLS) Data Plane Failures"">RFC4379</a>]. The solution MUST allow
routers to be able to detect failures of the control plane and the
data plane for C-TE LSPs over a VRF instance.
MPLS Operations, Administration, and Maintenance (OAM) for C-TE LSPs
MUST be supported within the context of VRF, except for the above.
<span class="h2"><a class="selflink" id="section-9" href="#section-9">9</a>. Security Considerations</span>
Any solution should consider the following general security
requirements:
1. The solution SHOULD NOT divulge the service-provider topology
information to the customer network.
2. The solution SHOULD minimize the service-provider network's
vulnerability to Denial of Service (DoS) attacks.
3. The solution SHOULD minimize the misconfiguration of DSCP marking,
preemption, and holding priorities of the customer traffic.
The following additional security issues for C-TE LSPs relate to both
the control plane and the data plane.
In terms of the control plane, in both the C-RSVP path and C-TE LSP
models, a PE receives IPv4 or IPv6 RSVP control packets from a CE.
If the CE is a router that is not trusted by service providers, the
PE MUST be able to limit the rate and number of IPv4 or IPv6 RSVP
control packets.
In terms of the data plane, in the C-TE LSP model, a PE receives
labeled IPv4 or IPv6 data packets from a CE. If the CE is a router
that is not trusted by service providers, the PE MUST be able to
limit the rate of labeled IPv4 or IPv6 data packets. If the CE is a
<span class="grey">Kumaki, et al. Informational [Page 20]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-21" ></span>
<span class="grey"><a href="./rfc5824">RFC 5824</a> Supporting RSVP/RSVP-TE over BGP/MPLS IP-VPN April 2010</span>
trusted router for service providers, the PE MAY be able to limit the
rate of labeled IPv4 or IPv6 data packets. Specifically, the PE must
drop MPLS-labeled packets if the MPLS label was not assigned over the
PE-CE link on which the packet was received. The PE must also be
able to police traffic to the traffic profile associated with the LSP
on which traffic is received on the PE-CE link.
Moreover, flooding RSVP/RSVP-TE control packets from malicious
customers must be avoided. Therefore, a PE MUST isolate the impact
of such customers' RSVP/RSVP-TE packets from other customers.
In the event that C-TE LSPs are diversely routed over VRF instances,
the VRF should indicate to the CE how such diversity was provided.
<span class="h2"><a class="selflink" id="section-10" href="#section-10">10</a>. References</span>
<span class="h3"><a class="selflink" id="section-10.1" href="#section-10.1">10.1</a>. Normative References</span>
[<a id="ref-RFC1633">RFC1633</a>] Braden, R., Clark, D., and S. Shenker, "Integrated
Services in the Internet Architecture: an Overview",
<a href="./rfc1633">RFC 1633</a>, June 1994.
[<a id="ref-RFC2119">RFC2119</a>] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", <a href="https://www.rfc-editor.org/bcp/bcp14">BCP 14</a>, <a href="./rfc2119">RFC 2119</a>, March 1997.
[<a id="ref-RFC2210">RFC2210</a>] Wroclawski, J., "The Use of RSVP with IETF Integrated
Services", <a href="./rfc2210">RFC 2210</a>, September 1997.
[<a id="ref-RFC3209">RFC3209</a>] Awduche, D., Berger, L., Gan, D., Li, T.,
Srinivasan, V., and G. Swallow, "RSVP-TE: Extensions
to RSVP for LSP Tunnels", <a href="./rfc3209">RFC 3209</a>, December 2001.
[<a id="ref-RFC3270">RFC3270</a>] Le Faucheur, F., Wu, L., Davie, B., Davari, S.,
Vaananen, P., Krishnan, R., Cheval, P., and
J. Heinanen, "Multi-Protocol Label Switching (MPLS)
Support of Differentiated Services", <a href="./rfc3270">RFC 3270</a>,
May 2002.
[<a id="ref-RFC3473">RFC3473</a>] Berger, L., Ed., "Generalized Multi-Protocol Label
Switching (GMPLS) Signaling Resource ReserVation
Protocol-Traffic Engineering (RSVP-TE) Extensions",
<a href="./rfc3473">RFC 3473</a>, January 2003.
[<a id="ref-RFC3623">RFC3623</a>] Moy, J., Pillay-Esnault, P., and A. Lindem, "Graceful
OSPF Restart", <a href="./rfc3623">RFC 3623</a>, November 2003.
<span class="grey">Kumaki, et al. Informational [Page 21]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-22" ></span>
<span class="grey"><a href="./rfc5824">RFC 5824</a> Supporting RSVP/RSVP-TE over BGP/MPLS IP-VPN April 2010</span>
[<a id="ref-RFC4090">RFC4090</a>] Pan, P., Ed., Swallow, G., Ed., and A. Atlas, Ed.,
"Fast Reroute Extensions to RSVP-TE for LSP Tunnels",
<a href="./rfc4090">RFC 4090</a>, May 2005.
[<a id="ref-RFC4124">RFC4124</a>] Le Faucheur, F., Ed., "Protocol Extensions for Support
of Diffserv-aware MPLS Traffic Engineering", <a href="./rfc4124">RFC 4124</a>,
June 2005.
[<a id="ref-RFC4364">RFC4364</a>] Rosen, E. and Y. Rekhter, "BGP/MPLS IP Virtual Private
Networks (VPNs)", <a href="./rfc4364">RFC 4364</a>, February 2006.
[<a id="ref-RFC4379">RFC4379</a>] Kompella, K. and G. Swallow, "Detecting Multi-Protocol
Label Switched (MPLS) Data Plane Failures", <a href="./rfc4379">RFC 4379</a>,
February 2006.
[<a id="ref-RFC4655">RFC4655</a>] Farrel, A., Vasseur, J.-P., and J. Ash, "A Path
Computation Element (PCE)-Based Architecture",
<a href="./rfc4655">RFC 4655</a>, August 2006.
[<a id="ref-RFC4781">RFC4781</a>] Rekhter, Y. and R. Aggarwal, "Graceful Restart
Mechanism for BGP with MPLS", <a href="./rfc4781">RFC 4781</a>, January 2007.
[<a id="ref-RFC5036">RFC5036</a>] Andersson, L., Ed., Minei, I., Ed., and B. Thomas,
Ed., "LDP Specification", <a href="./rfc5036">RFC 5036</a>, October 2007.
[<a id="ref-RFC5462">RFC5462</a>] Andersson, L. and R. Asati, "Multiprotocol Label
Switching (MPLS) Label Stack Entry: "EXP" Field
Renamed to "Traffic Class" Field", <a href="./rfc5462">RFC 5462</a>,
February 2009.
<span class="h3"><a class="selflink" id="section-10.2" href="#section-10.2">10.2</a>. Informative References</span>
[<a id="ref-RSVP-L3VPN">RSVP-L3VPN</a>] Davie, B., Le Faucheur, F., and A. Narayanan, "Support
for RSVP in Layer 3 VPNs", Work in Progress,
November 2009.
[<a id="ref-RFC4804">RFC4804</a>] Le Faucheur, F., Ed., "Aggregation of Resource
ReSerVation Protocol (RSVP) Reservations over MPLS
TE/DS-TE Tunnels", <a href="./rfc4804">RFC 4804</a>, February 2007.
[<a id="ref-RFC5330">RFC5330</a>] Vasseur, JP., Ed., Meyer, M., Kumaki, K., and
A. Bonda, "A Link-Type sub-TLV to Convey the Number of
Traffic Engineering Label Switched Paths Signalled
with Zero Reserved Bandwidth across a Link", <a href="./rfc5330">RFC 5330</a>,
October 2008.
<span class="grey">Kumaki, et al. Informational [Page 22]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-23" ></span>
<span class="grey"><a href="./rfc5824">RFC 5824</a> Supporting RSVP/RSVP-TE over BGP/MPLS IP-VPN April 2010</span>
[<a id="ref-RFC5440">RFC5440</a>] Vasseur, JP., Ed., and JL. Le Roux, Ed., "Path
Computation Element (PCE) Communication Protocol
(PCEP)", <a href="./rfc5440">RFC 5440</a>, March 2009.
<span class="h2"><a class="selflink" id="section-11" href="#section-11">11</a>. Acknowledgments</span>
The authors would like to express thanks to Nabil Bitar,
David McDysan, and Daniel King for their helpful and useful comments
and feedback.
<span class="grey">Kumaki, et al. Informational [Page 23]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-24" ></span>
<span class="grey"><a href="./rfc5824">RFC 5824</a> Supporting RSVP/RSVP-TE over BGP/MPLS IP-VPN April 2010</span>
<span class="h2"><a class="selflink" id="appendix-A" href="#appendix-A">Appendix A</a>. Reference Model</span>
In this appendix, a C-RSVP path, a C-TE LSP, and a P-TE LSP are
explained.
All scenarios in this appendix assume the following:
- A P-TE LSP is established between PE1 and PE2. This LSP is used by
the VRF instance to forward customer packets within a BGP/MPLS
IP-VPN.
- The service provider has ensured that enough bandwidth is available
to meet the service requirements.
<span class="h3"><a class="selflink" id="appendix-A.1" href="#appendix-A.1">A.1</a>. End-to-End C-RSVP Path Model</span>
A C-RSVP path and a P-TE LSP are shown in Figure 7, in the context of
a BGP/MPLS IP-VPN. A P-TE LSP may be a non-TE LSP (i.e., LDP) in
some cases. In the case of a non-TE mechanism, however, it may be
difficult to guarantee an end-to-end bandwidth, as resources are
shared.
CE0/CE1 requests an e2e C-RSVP path to CE3/CE2 with the bandwidth
reservation of X. At PE1, this reservation request received in the
context of a VRF will get aggregated onto a pre-established P-TE LSP,
or trigger the establishment of a new P-TE LSP. It should be noted
that C-RSVP sessions across different BGP/MPLS IP-VPNs can be
aggregated onto the same P-TE LSP between the same PE pair, achieving
further scalability. [<a href="./rfc4804" title=""Aggregation of Resource ReSerVation Protocol (RSVP) Reservations over MPLS TE/DS-TE Tunnels"">RFC4804</a>] defines this scenario in more detail.
The RSVP control messages (e.g., an RSVP PATH message and an RSVP
RESV message) exchanged among CEs are forwarded by IP packets through
the BGP/MPLS IP-VPN. After CE0 and/or CE1 receive a reservation
message from CE2 and/or CE3, CE0/CE1 establishes a C-RSVP path
through the BGP/MPLS IP-VPN.
<span class="grey">Kumaki, et al. Informational [Page 24]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-25" ></span>
<span class="grey"><a href="./rfc5824">RFC 5824</a> Supporting RSVP/RSVP-TE over BGP/MPLS IP-VPN April 2010</span>
C-RSVP path
<------------------------------------------>
P-TE LSP
<--------------------------->
............. .............
. --- --- . --- --- --- --- . --- --- .
.|CE0| |CE1|---|PE1|----|P1 |-----|P2 |----|PE2|---|CE2| |CE3|.
. --- --- . --- --- --- --- . --- --- .
............. .............
^ ^
| |
VRF instance VRF instance
<-customer-> <------BGP/MPLS IP-VPN------> <-customer->
network network
or or
another another
service-provider service-provider
network network
Figure 7. e2e C-RSVP Path Model
<span class="h3"><a class="selflink" id="appendix-A.2" href="#appendix-A.2">A.2</a>. End-to-End C-TE LSP Model</span>
A C-TE LSP and a P-TE LSP are shown in Figure 8, in the context of a
BGP/MPLS IP-VPN. A P-TE LSP may be a non-TE LSP (i.e., LDP) in some
cases. As described in the previous sub-section, it may be difficult
to guarantee an end-to-end QoS in some cases.
CE0/CE1 requests an e2e TE LSP path to CE3/CE2 with the bandwidth
reservation of X. At PE1, this reservation request received in the
context of a VRF will get aggregated onto a pre-established P-TE LSP,
or trigger the establishment of a new P-TE LSP. It should be noted
that C-TE LSPs across different BGP/MPLS IP-VPNs can be aggregated
onto the same P-TE LSP between the same PE pair, achieving further
scalability.
The RSVP-TE control messages (e.g., an RSVP PATH message and an RSVP
RESV message) exchanged among CEs are forwarded by a labeled packet
through the BGP/MPLS IP-VPN. After CE0 and/or CE1 receive a
reservation message from CE2 and/or CE3, CE0/CE1 establishes a
C-TE LSP through the BGP/MPLS IP-VPN.
A P-TE LSP is established between PE1 and PE2. This LSP is used by
the VRF instance to forward customer packets within the BGP/MPLS
IP-VPN.
<span class="grey">Kumaki, et al. Informational [Page 25]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-26" ></span>
<span class="grey"><a href="./rfc5824">RFC 5824</a> Supporting RSVP/RSVP-TE over BGP/MPLS IP-VPN April 2010</span>
C-TE LSP
<------------------------------------------------------->
or
C-TE LSP
<----------------------------------------->
P-TE LSP
<--------------------------->
............. .............
. --- --- . --- --- --- --- . --- --- .
.|CE0| |CE1|---|PE1|----|P1 |-----|P2 |----|PE2|---|CE2| |CE3|.
. --- --- . --- --- --- --- . --- --- .
............. .............
^ ^
| |
VRF instance VRF instance
<-customer-> <-------BGP/MPLS IP-VPN-------> <-customer->
network network
or or
another another
service-provider service-provider
network network
Figure 8. e2e C-TE LSP Model
<span class="grey">Kumaki, et al. Informational [Page 26]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-27" ></span>
<span class="grey"><a href="./rfc5824">RFC 5824</a> Supporting RSVP/RSVP-TE over BGP/MPLS IP-VPN April 2010</span>
Authors' Addresses
Kenji Kumaki (Editor)
KDDI Corporation
Garden Air Tower
Iidabashi, Chiyoda-ku
Tokyo 102-8460, JAPAN
EMail: ke-kumaki@kddi.com
Raymond Zhang
BT
Farady Building, PP1.21
1 Knightrider Street
London EC4V 5BT
UK
EMail: raymond.zhang@bt.com
Yuji Kamite
NTT Communications Corporation
Granpark Tower
3-4-1 Shibaura, Minato-ku
Tokyo 108-8118
Japan
EMail: y.kamite@ntt.com
Kumaki, et al. Informational [Page 27]
</pre>
|