1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
|
<pre>Independent Submission V. Dolmatov, Ed.
Request for Comments: 5832 Cryptocom, Ltd.
Category: Informational March 2010
ISSN: 2070-1721
<span class="h1">GOST R 34.10-2001:</span>
<span class="h1">Digital Signature Algorithm</span>
Abstract
This document is intended to be a source of information about the
Russian Federal standard for digital signatures (GOST R 34.10-2001),
which is one of the Russian cryptographic standard algorithms (called
GOST algorithms). Recently, Russian cryptography is being used in
Internet applications, and this document has been created as
information for developers and users of GOST R 34.10-2001 for digital
signature generation and verification.
Status of This Memo
This document is not an Internet Standards Track specification; it is
published for informational purposes.
This is a contribution to the RFC Series, independently of any other
RFC stream. The RFC Editor has chosen to publish this document at
its discretion and makes no statement about its value for
implementation or deployment. Documents approved for publication by
the RFC Editor are not a candidate for any level of Internet
Standard; see <a href="./rfc5741#section-2">Section 2 of RFC 5741</a>.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
<a href="http://www.rfc-editor.org/info/rfc5832">http://www.rfc-editor.org/info/rfc5832</a>.
<span class="grey">Dolmatov Informational [Page 1]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-2" ></span>
<span class="grey"><a href="./rfc5832">RFC 5832</a> GOST R 34.10-2001 March 2010</span>
Copyright Notice
Copyright (c) 2010 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to <a href="https://www.rfc-editor.org/bcp/bcp78">BCP 78</a> and the IETF Trust's Legal
Provisions Relating to IETF Documents
(<a href="http://trustee.ietf.org/license-info">http://trustee.ietf.org/license-info</a>) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document.
This document may not be modified, and derivative works of it may not
be created, except to format it for publication as an RFC or to
translate it into languages other than English.
Table of Contents
<a href="#section-1">1</a>. Introduction ....................................................<a href="#page-3">3</a>
<a href="#section-1.1">1.1</a>. General Information ........................................<a href="#page-3">3</a>
<a href="#section-1.2">1.2</a>. The Purpose of GOST R 34.10-2001 ...........................<a href="#page-3">3</a>
<a href="#section-2">2</a>. Applicability ...................................................<a href="#page-4">4</a>
<a href="#section-3">3</a>. Definitions and Notations .......................................<a href="#page-4">4</a>
<a href="#section-3.1">3.1</a>. Definitions ................................................<a href="#page-4">4</a>
<a href="#section-3.2">3.2</a>. Notations ..................................................<a href="#page-6">6</a>
<a href="#section-4">4</a>. General Statements ..............................................<a href="#page-7">7</a>
<a href="#section-5">5</a>. Mathematical Conventions ........................................<a href="#page-8">8</a>
<a href="#section-5.1">5.1</a>. Mathematical Definitions ...................................<a href="#page-9">9</a>
<a href="#section-5.2">5.2</a>. Digital Signature Parameters ..............................<a href="#page-10">10</a>
<a href="#section-5.3">5.3</a>. Binary Vectors ............................................<a href="#page-11">11</a>
<a href="#section-6">6</a>. Main Processes .................................................<a href="#page-12">12</a>
<a href="#section-6.1">6.1</a>. Digital Signature Generation Process ......................<a href="#page-12">12</a>
<a href="#section-6.2">6.2</a>. Digital Signature Verification ............................<a href="#page-13">13</a>
<a href="#section-7">7</a>. Test Examples (Appendix to GOST R 34.10-2001) ..................<a href="#page-14">14</a>
<a href="#section-7.1">7.1</a>. The Digital Signature Scheme Parameters ...................<a href="#page-14">14</a>
<a href="#section-7.2">7.2</a>. Digital Signature Process (Algorithm I) ...................<a href="#page-16">16</a>
<a href="#section-7.3">7.3</a>. Verification Process of Digital Signature (Algorithm II) ..17
<a href="#section-8">8</a>. Security Considerations ........................................<a href="#page-19">19</a>
<a href="#section-9">9</a>. References .....................................................<a href="#page-19">19</a>
<a href="#section-9.1">9.1</a>. Normative References ......................................<a href="#page-19">19</a>
<a href="#section-9.2">9.2</a>. Informative References ....................................<a href="#page-19">19</a>
<a href="#appendix-A">Appendix A</a>. Extra Terms in the Digital Signature Area .............<a href="#page-21">21</a>
<a href="#appendix-B">Appendix B</a>. Contributors ..........................................<a href="#page-22">22</a>
<span class="grey">Dolmatov Informational [Page 2]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-3" ></span>
<span class="grey"><a href="./rfc5832">RFC 5832</a> GOST R 34.10-2001 March 2010</span>
<span class="h2"><a class="selflink" id="section-1" href="#section-1">1</a>. Introduction</span>
<span class="h3"><a class="selflink" id="section-1.1" href="#section-1.1">1.1</a>. General Information</span>
1. GOST R 34.10-2001 [<a href="#ref-GOST3410" title=""Information technology. Cryptographic data security. Signature and verification processes of [electronic] digital signature."">GOST3410</a>] was developed by the Federal Agency
for Government Communication and Information under the President
of the Russian Federation with the participation of the All-Russia
Scientific and Research Institute of Standardization.
GOST R 34.10-2001 was submitted by Federal Agency for Government
Communication and Information at President of the Russian
Federation.
2. GOST R 34.10-2001 was accepted and activated by the Act 380-st of
12.09.2001 issued by the Government Committee of Russia for
Standards.
3. GOST R 34.10-2001 was developed in accordance with the terminology
and concepts of international standards ISO 2382-2:1976 "Data
processing - Vocabulary - Part 2: Arithmetic and logic
operations"; ISO/IEC 9796:1991 "Information technology -- Security
techniques -- Digital signature schemes giving message recovery";
ISO/IEC 14888 "Information technology - Security techniques -
Digital signatures with appendix"; and ISO/IEC 10118 "Information
technology - Security techniques - Hash-functions".
4. GOST R 34.10-2001 replaces GOST R 34.10-94.
<span class="h3"><a class="selflink" id="section-1.2" href="#section-1.2">1.2</a>. The Purpose of GOST R 34.10-2001</span>
GOST R 34.10-2001 describes the generation and verification processes
for digital signatures, based on operations with an elliptic curve
points group, defined over a prime finite field.
GOST R 34.10-2001 has been developed to replace GOST R 34.10-94.
Necessity for this development is caused by the need to increase
digital signature security against unauthorized modification.
Digital signature security is based on the complexity of discrete
logarithm calculation in an elliptic curve points group and also on
the security of the hash function used (according to [<a href="#ref-GOST3411" title=""Information technology. Cryptographic Data Security. Hashing function."">GOST3411</a>]).
Terminologically and conceptually, GOST R 34.10-2001 is in accordance
with international standards ISO 2382-2 [<a href="#ref-ISO2382-2" title=""Data processing - Vocabulary - Part 2: Arithmetic and logic operations"">ISO2382-2</a>], ISO/IEC 9796
[<a href="#ref-ISO9796-1991">ISO9796-1991</a>], ISO/IEC 14888 Parts 1-3 [<a href="#ref-ISO14888-1" title="">ISO14888-1</a>]-[<a href="#ref-ISO14888-3" title="">ISO14888-3</a>],
and ISO/IEC 10118 Parts 1-4 [<a href="#ref-ISO10118-1" title=""Information technology - Security techniques - Hash-functions - Part 1: General"">ISO10118-1</a>]-[<a href="#ref-ISO10118-4" title=""Information technology - Security techniques - Hash-functions - Part 4: Hash- functions using modular arithmetic"">ISO10118-4</a>].
Note: the main part of GOST R 34.10-2001 is supplemented with three
appendixes:
<span class="grey">Dolmatov Informational [Page 3]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-4" ></span>
<span class="grey"><a href="./rfc5832">RFC 5832</a> GOST R 34.10-2001 March 2010</span>
"Extra Terms in the Digital Signature Area" (Appendix A of this
memo);
"Test Examples" (<a href="#section-7">Section 7</a> of this memo);
"A Bibliography in the Digital Signature Area" (<a href="#section-9.2">Section 9.2</a> of
this memo).
<span class="h2"><a class="selflink" id="section-2" href="#section-2">2</a>. Applicability</span>
GOST R 34.10-2001 defines an electronic digital signature (or simply
digital signature) scheme, digital signature generation and
verification processes for a given message (document), meant for
transmission via insecure public telecommunication channels in data
processing systems of different purposes.
Use of a digital signature based on GOST R 34.10-2001 makes
transmitted messages more resistant to forgery and loss of integrity,
in comparison with the digital signature scheme prescribed by the
previous standard.
GOST R 34.10-2001 is obligatory to use in the Russian Federation in
all data processing systems providing public services.
<span class="h2"><a class="selflink" id="section-3" href="#section-3">3</a>. Definitions and Notations</span>
<span class="h3"><a class="selflink" id="section-3.1" href="#section-3.1">3.1</a>. Definitions</span>
The following terms are used in the standard:
Appendix: Bit string, formed by a digital signature and by the
arbitrary text field [<a href="#ref-ISO14888-1" title="">ISO14888-1</a>].
Signature key: Element of secret data, specific to the subject and
used only by this subject during the signature generation process
[<a href="#ref-ISO14888-1" title="">ISO14888-1</a>].
Verification key: Element of data mathematically linked to the
signature key data element, used by the verifier during the digital
signature verification process [<a href="#ref-ISO14888-1" title="">ISO14888-1</a>].
Domain parameter: Element of data that is common for all the subjects
of the digital signature scheme, known or accessible to all the
subjects [<a href="#ref-ISO14888-1" title="">ISO14888-1</a>].
Signed message: A set of data elements, which consists of the message
and the appendix, which is a part of the message.
<span class="grey">Dolmatov Informational [Page 4]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-5" ></span>
<span class="grey"><a href="./rfc5832">RFC 5832</a> GOST R 34.10-2001 March 2010</span>
Pseudo-random number sequence: A sequence of numbers, which is
obtained during some arithmetic (calculation) process, used in a
specific case instead of a true random number sequence [<a href="#ref-ISO2382-2" title=""Data processing - Vocabulary - Part 2: Arithmetic and logic operations"">ISO2382-2</a>].
Random number sequence: A sequence of numbers none of which can be
predicted (calculated) using only the preceding numbers of the same
sequence [<a href="#ref-ISO2382-2" title=""Data processing - Vocabulary - Part 2: Arithmetic and logic operations"">ISO2382-2</a>].
Verification process: A process that uses the signed message, the
verification key, and the digital signature scheme parameters as
initial data and that gives the conclusion about digital signature
validity or invalidity as a result [<a href="#ref-ISO14888-1" title="">ISO14888-1</a>].
Signature generation process: A process that uses the message, the
signature key, and the digital signature scheme parameters as initial
data and that generates the digital signature as the result
[<a href="#ref-ISO14888-1" title="">ISO14888-1</a>].
Witness: Element of data (resulting from the verification process)
that states to the verifier whether the digital signature is valid or
invalid [ISO148881-1]).
Random number: A number chosen from the definite number set in such a
way that every number from the set can be chosen with equal
probability [<a href="#ref-ISO2382-2" title=""Data processing - Vocabulary - Part 2: Arithmetic and logic operations"">ISO2382-2</a>].
Message: String of bits of a limited length [<a href="#ref-ISO9796-1991">ISO9796-1991</a>].
Hash code: String of bits that is a result of the hash function
[ISO148881-1].
Hash function: The function, mapping bit strings onto bit strings of
fixed length observing the following properties:
1) it is difficult to calculate the input data, that is the pre-
image of the given function value;
2) it is difficult to find another input data that is the pre-
image of the same function value as is the given input data;
3) it is difficult to find a pair of different input data,
producing the same hash function value.
Note: Property 1 in the context of the digital signature area means
that it is impossible to recover the initial message using the
digital signature; property 2 means that it is difficult to find
another (falsified) message that produces the same digital signature
<span class="grey">Dolmatov Informational [Page 5]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-6" ></span>
<span class="grey"><a href="./rfc5832">RFC 5832</a> GOST R 34.10-2001 March 2010</span>
as a given message; property 3 means that it is difficult to find
some pair of different messages, which both produce the same
signature.
(Electronic) Digital signature: String of bits obtained as a result
of the signature generation process. This string has an internal
structure, depending on the specific signature generation mechanism.
Note: In GOST R 34.10-2001 terms, "Digital signature" and "Electronic
digital signature" are synonymous to save terminological succession
to native legal documents currently in force and scientific
publications.
<span class="h3"><a class="selflink" id="section-3.2" href="#section-3.2">3.2</a>. Notations</span>
In GOST R 34.10-2001, the following notations are used:
V256 - set of all binary vectors of a 256-bit length
V_all - set of all binary vectors of an arbitrary finite length
Z - set of all integers
p - prime number, p > 3
GF(p) - finite prime field represented by a set of integers
{0, 1, ..., p - 1}
b (mod p) - minimal non-negative number, congruent to b modulo p
M - user's message, M belongs to V_all
(H1 || H2 ) - concatenation of two binary vectors
a,b - elliptic curve coefficients
m - points of the elliptic curve group order
q - subgroup order of group of points of the elliptic curve
O - zero point of the elliptic curve
P - elliptic curve point of order q
d - integer - a signature key
Q - elliptic curve point - a verification key
<span class="grey">Dolmatov Informational [Page 6]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-7" ></span>
<span class="grey"><a href="./rfc5832">RFC 5832</a> GOST R 34.10-2001 March 2010</span>
^ - the power operator
/= - non-equality
sqrt - square root
zeta - digital signature for the message M
<span class="h2"><a class="selflink" id="section-4" href="#section-4">4</a>. General Statements</span>
A commonly accepted digital signature scheme (model) (see <a href="#section-6">Section 6</a>
of [ISO/IEC14888-1]) consists of three processes:
- generation of a pair of keys (for signature generation and for
signature verification);
- signature generation;
- signature verification.
In GOST R 34.10-2001, a process for generating a pair of keys (for
signature and verification) is not defined. Characteristics and ways
of the process realization are defined by involved subjects, who
determine corresponding parameters by their agreement.
The digital signature mechanism is defined by the realization of two
main processes (see <a href="#section-7">Section 7</a>):
- signature generation (see <a href="#section-6.1">Section 6.1</a>) and
- signature verification (see <a href="#section-6.2">Section 6.2</a>).
The digital signature is meant for the authentication of the
signatory of the electronic message. Besides, digital signature
usage gives an opportunity to provide the following properties during
signed message transmission:
- realization of control of the transmitted signed message
integrity,
- proof of the authorship of the signatory of the message,
- protection of the message against possible forgery.
A schematic representation of the signed message is shown in
Figure 1.
<span class="grey">Dolmatov Informational [Page 7]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-8" ></span>
<span class="grey"><a href="./rfc5832">RFC 5832</a> GOST R 34.10-2001 March 2010</span>
appendix
|
+-------------------------------+
| |
+-----------+ +------------------------+- - - +
| message M |---| digital signature zeta | text |
+-----------+ +------------------------+- - - +
Figure 1: Signed message scheme
The field "digital signature" is supplemented by the field "text"
(see Figure 1), that can contain, for example, identifiers of the
signatory of the message and/or time label.
The digital signature scheme determined in GOST R 34.10-2001 must be
implemented using operations of the elliptic curve points group,
defined over a finite prime field, and also with the use of hash
function.
The cryptographic security of the digital signature scheme is based
on the complexity of solving the problem of the calculation of the
discrete logarithm in the elliptic curve points group and also on the
security of the hash function used. The hash function calculation
algorithm is determined in [<a href="#ref-GOST3411" title=""Information technology. Cryptographic Data Security. Hashing function."">GOST3411</a>].
The digital signature scheme parameters needed for signature
generation and verification are determined in <a href="#section-5.2">Section 5.2</a>.
GOST R 34.10-2001 does not determine the process of generating
parameters needed for the digital signature scheme. Possible sets of
these parameters are defined, for example, in [<a href="./rfc4357" title=""Additional Cryptographic Algorithms for Use with GOST 28147-89, GOST R 34.10-94, GOST R 34.10-2001, and GOST R 34.11-94 Algorithms"">RFC4357</a>].
The digital signature represented as a binary vector of a 512-bit
length must be calculated using a definite set of rules, as stated in
<a href="#section-6.1">Section 6.1</a>.
The digital signature of the received message is accepted or denied
in accordance with the set of rules, as stated in <a href="#section-6.2">Section 6.2</a>.
<span class="h2"><a class="selflink" id="section-5" href="#section-5">5</a>. Mathematical Conventions</span>
To define a digital signature scheme, it is necessary to describe
basic mathematical objects used in the signature generation and
verification processes. This section lays out basic mathematical
definitions and requirements for the parameters of the digital
signature scheme.
<span class="grey">Dolmatov Informational [Page 8]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-9" ></span>
<span class="grey"><a href="./rfc5832">RFC 5832</a> GOST R 34.10-2001 March 2010</span>
<span class="h3"><a class="selflink" id="section-5.1" href="#section-5.1">5.1</a>. Mathematical Definitions</span>
Suppose a prime number p > 3 is given. Then, an elliptic curve E,
defined over a finite prime field GF(p), is the set of number pairs
(x,y), x, y belong to Fp, satisfying the identity:
y^2 = x^3 + a*x + b (mod p), (1)
where a, b belong to GF(p) and 4*a^3 + 27*b^2 is not congruent to
zero modulo p.
An invariant of the elliptic curve is the value J(E), satisfying the
equality:
4*a^3
J(E) = 1728 * ------------ (mod p) (2)
4*a^3+27*b^2
Elliptic curve E coefficients a,b are defined in the following way
using the invariant J(E):
| a=3*k (mod p)
| J(E)
| b=2*k (mod p), where k = ----------- (mod p), J(E) /= 0 or 1728 (3)
1728 - J(E)
The pairs (x,y) satisfying the identity (1) are called the elliptic
curve E points; x and y are called x- and y-coordinates of the point,
correspondingly.
We will denote elliptic curve points as Q(x,y) or just Q. Two
elliptic curve points are equal if their x- and y-coordinates are
equal.
On the set of all elliptic curve E points, we will define the
addition operation, denoted by "+". For two arbitrary elliptic curve
E points Q1 (x1, y1) and Q2 (x2, y2), we will consider several
variants.
Suppose coordinates of points Q1 and Q2 satisfy the condition x1 /=
x2. In this case, their sum is defined as a point Q3 (x3,y3), with
coordinates defined by congruencies:
| x3=lambda^2-x1-x2 (mod p), y1-y2
| where lambda= ------- (mod p). (4)
| y3=lambda*(x1-x3)-y1 (mod p), x1-x2
<span class="grey">Dolmatov Informational [Page 9]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-10" ></span>
<span class="grey"><a href="./rfc5832">RFC 5832</a> GOST R 34.10-2001 March 2010</span>
If x1 = x2 and y1 = y2 /= 0, then we will define point Q3 coordinates
in the following way:
| x3=lambda^2-x1*2 (mod p), 3*x1^2+a
| where lambda= --------- (mod p) (5)
| y3=lambda*(x1-x3)-y1 (mod p), y1*2
If x1 = x2 and y1 = - y2 (mod p), then the sum of points Q1 and Q2 is
called a zero point O, without determination of its x- and y-
coordinates. In this case, point Q2 is called a negative of point
Q1. For the zero point, the equalities hold:
O+Q=Q+O=Q, (6)
where Q is an arbitrary point of elliptic curve E.
A set of all points of elliptic curve E, including zero point, forms
a finite abelian (commutative) group of order m regarding the
introduced addition operation. For m, the following inequalities
hold:
p + 1 - 2*sqrt(p) =< m =< p + 1 + 2*sqrt(p). (7)
The point Q is called a point of multiplicity k, or just a multiple
point of the elliptic curve E, if for some point P the following
equality holds:
Q = P + ... + P = k*P. (8)
-----+-----
k
<span class="h3"><a class="selflink" id="section-5.2" href="#section-5.2">5.2</a>. Digital Signature Parameters</span>
The digital signature parameters are:
- prime number p is an elliptic curve modulus, satisfying the
inequality p > 2^255. The upper bound for this number must be
determined for the specific realization of the digital signature
scheme;
- elliptic curve E, defined by its invariant J(E) or by
coefficients a, b belonging to GF(p).
- integer m is an elliptic curve E points group order;
- prime number q is an order of a cyclic subgroup of the elliptic
curve E points group, which satisfies the following conditions:
<span class="grey">Dolmatov Informational [Page 10]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-11" ></span>
<span class="grey"><a href="./rfc5832">RFC 5832</a> GOST R 34.10-2001 March 2010</span>
| m = nq, n belongs to Z , n>=1
| (9)
| 2^254 < q < 2^256
- point P /= O of an elliptic curve E, with coordinates (x_p,
y_p), satisfying the equality q*P=O.
- hash function h(.):V_all -> V256, which maps the messages
represented as binary vectors of arbitrary finite length onto
binary vectors of a 256-bit length. The hash function is
determined in [<a href="#ref-GOST3411" title=""Information technology. Cryptographic Data Security. Hashing function."">GOST3411</a>].
Every user of the digital signature scheme must have its personal
keys:
- signature key, which is an integer d, satisfying the inequality
0 < d < q;
- verification key, which is an elliptic curve point Q with
coordinates (x_q, y_q), satisfying the equality d*P=Q.
The previously introduced digital signature parameters must satisfy
the following requirements:
- it is necessary that the condition p^t/= 1 (mod q ) holds for
all integers t = 1, 2, ... B where B satisfies the inequality B
>= 31;
- it is necessary that the inequality m /= p holds;
- the curve invariant must satisfy the condition J(E) /= 0, 1728.
<span class="h3"><a class="selflink" id="section-5.3" href="#section-5.3">5.3</a>. Binary Vectors</span>
To determine the digital signature generation and verification
processes, it is necessary to map the set of integers onto the set of
binary vectors of a 256-bit length.
Consider the following binary vector of a 256-bit length where low-
order bits are placed on the right, and high-order ones are placed on
the left:
H = (alpha[255], ... , alpha[0]), H belongs to V256 (10)
where alpha[i], i = 0, ... , 255 are equal to 1 or to 0. We will say
that the number alpha belonging to Z is mapped onto the binary vector
h, if the equality holds:
<span class="grey">Dolmatov Informational [Page 11]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-12" ></span>
<span class="grey"><a href="./rfc5832">RFC 5832</a> GOST R 34.10-2001 March 2010</span>
alpha = alpha[0]*2^0 + alpha[1]*2^1 + ... + alpha[255]*2^255 (11)
For two binary vectors H1 and H2, which correspond to integers alpha
and beta, we define a concatenation (union) operation in the
following way. If:
H1 = (alpha[255], ... , alpha[0]),
(12)
H2 = (beta[255], ..., beta[0]),
then their union is
H1||H2 = (alpha[255], ... , alpha[0], beta[255], ..., beta[0])
(13)
that is a binary vector of 512-bit length, consisting of coefficients
of the vectors H1 and H2.
On the other hand, the introduced formulae define a way to divide a
binary vector H of 512-bit length into two binary vectors of 256-bit
length, where H is the concatenation of the two.
<span class="h2"><a class="selflink" id="section-6" href="#section-6">6</a>. Main Processes</span>
In this section, the digital signature generation and verification
processes of user's message are defined.
For the realization of the processes, it is necessary that all users
know the digital signature scheme parameters, which satisfy the
requirements of <a href="#section-5.2">Section 5.2</a>.
Besides, every user must have the signature key d and the
verification key Q(x[q], y[q]), which also must satisfy the
requirements of <a href="#section-5.2">Section 5.2</a>.
<span class="h3"><a class="selflink" id="section-6.1" href="#section-6.1">6.1</a>. Digital Signature Generation Process</span>
It is necessary to perform the following actions (steps) according to
Algorithm I to obtain the digital signature for the message M
belonging to V_all:
Step 1 - calculate the message hash code M: H = h(M). (14)
Step 2 - calculate an integer alpha, binary representation of which
is the vector H, and determine e = alpha (mod q ). (15)
If e = 0, then assign e = 1.
<span class="grey">Dolmatov Informational [Page 12]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-13" ></span>
<span class="grey"><a href="./rfc5832">RFC 5832</a> GOST R 34.10-2001 March 2010</span>
Step 3 - generate a random (pseudorandom) integer k, satisfying the
inequality:
0 < k < q. (16)
Step 4 - calculate the elliptic curve point C = k*P and determine if:
r = x_C (mod q), (17)
where x_C is x-coordinate of the point C. If r = 0, return to
step 3.
Step 5 - calculate the value:
s = (r*d + k*e) (mod q). (18)
If s = 0, return to step 3.
Step 6 - calculate the binary vectors R and S, corresponding to r
and s, and determine the digital signature zeta = (R || S) as a
concatenation of these two binary vectors.
The initial data of this process are the signature key d and the
message M to be signed. The output result is the digital signature
zeta.
<span class="h3"><a class="selflink" id="section-6.2" href="#section-6.2">6.2</a>. Digital Signature Verification</span>
To verify digital signatures for the received message M belonging to
V_all, it is necessary to perform the following actions (steps)
according to Algorithm II:
Step 1 - calculate the integers r and s using the received signature
zeta. If the inequalities 0 < r < q, 0 < s < q hold, go to the next
step. Otherwise, the signature is invalid.
Step 2 - calculate the hash code of the received message M:
H = h(M). (19)
Step 3 - calculate the integer alpha, the binary representation of
which is the vector H, and determine if:
e = alpha (mod q). (20)
If e = 0, then assign e = 1.
Step 4 - calculate the value v = e^(-1) (mod q). (21)
<span class="grey">Dolmatov Informational [Page 13]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-14" ></span>
<span class="grey"><a href="./rfc5832">RFC 5832</a> GOST R 34.10-2001 March 2010</span>
Step 5 - calculate the values:
z1 = s*v (mod q), z2 = -r*v (mod q). (22)
Step 6 - calculate the elliptic curve point C = z1*P + z2*Q and
determine if:
R = x_C (mod q), (23)
where x_C is x-coordinate of the point.
Step 7 - if the equality R = r holds, then the signature is accepted.
Otherwise, the signature is invalid.
The input data of the process are the signed message M, the digital
signature zeta, and the verification key Q. The output result is the
witness of the signature validity or invalidity.
<span class="h2"><a class="selflink" id="section-7" href="#section-7">7</a>. Test Examples (Appendix to GOST R 34.10-2001)</span>
This section is included in GOST R 34.10-2001 as a reference appendix
but is not officially mentioned as a part of the standard.
The values given here for the parameters p, a, b, m, q, P, the
signature key d, and the verification key Q are recommended only for
testing the correctness of actual realizations of the algorithms
described in GOST R 34.10-2001.
All numerical values are introduced in decimal and hexadecimal
notations. The numbers beginning with 0x are in hexadecimal
notation. The symbol "\\" denotes a hyphenation of a number to the
next line. For example, the notation:
12345\\
67890
0x499602D2
represents 1234567890 in decimal and hexadecimal number systems,
respectively.
<span class="h3"><a class="selflink" id="section-7.1" href="#section-7.1">7.1</a>. The Digital Signature Scheme Parameters</span>
The following parameters must be used for the digital signature
generation and verification (see <a href="#section-5.2">Section 5.2</a>).
<span class="grey">Dolmatov Informational [Page 14]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-15" ></span>
<span class="grey"><a href="./rfc5832">RFC 5832</a> GOST R 34.10-2001 March 2010</span>
<span class="h4"><a class="selflink" id="section-7.1.1" href="#section-7.1.1">7.1.1</a>. Elliptic Curve Modulus</span>
The following value is assigned to parameter p in this example:
p= 57896044618658097711785492504343953926\\
634992332820282019728792003956564821041
p = 0x8000000000000000000000000000\\
000000000000000000000000000000000431
<span class="h4"><a class="selflink" id="section-7.1.2" href="#section-7.1.2">7.1.2</a>. Elliptic Curve Coefficients</span>
Parameters a and b take the following values in this example:
a = 7
a = 0x7
b = 43308876546767276905765904595650931995\\
942111794451039583252968842033849580414
b = 0x5FBFF498AA938CE739B8E022FBAFEF40563\\
F6E6A3472FC2A514C0CE9DAE23B7E
<span class="h4"><a class="selflink" id="section-7.1.3" href="#section-7.1.3">7.1.3</a>. Elliptic Curve Points Group Order</span>
Parameter m takes the following value in this example:
m = 5789604461865809771178549250434395392\\
7082934583725450622380973592137631069619
m = 0x80000000000000000000000000000\\
00150FE8A1892976154C59CFC193ACCF5B3
<span class="h4"><a class="selflink" id="section-7.1.4" href="#section-7.1.4">7.1.4</a>. Order of Cyclic Subgroup of Elliptic Curve Points Group</span>
Parameter q takes the following value in this example:
q = 5789604461865809771178549250434395392\\
7082934583725450622380973592137631069619
q = 0x80000000000000000000000000000001\\
50FE8A1892976154C59CFC193ACCF5B3
<span class="grey">Dolmatov Informational [Page 15]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-16" ></span>
<span class="grey"><a href="./rfc5832">RFC 5832</a> GOST R 34.10-2001 March 2010</span>
<span class="h4"><a class="selflink" id="section-7.1.5" href="#section-7.1.5">7.1.5</a>. Elliptic Curve Point Coordinates</span>
Point P coordinates take the following values in this example:
x_p = 2
x_p = 0x2
y_p = 40189740565390375033354494229370597\\
75635739389905545080690979365213431566280
y_p = 0x8E2A8A0E65147D4BD6316030E16D19\\
C85C97F0A9CA267122B96ABBCEA7E8FC8
<span class="h4"><a class="selflink" id="section-7.1.6" href="#section-7.1.6">7.1.6</a>. Signature Key</span>
It is supposed, in this example, that the user has the following
signature key d:
d = 554411960653632461263556241303241831\\
96576709222340016572108097750006097525544
d = 0x7A929ADE789BB9BE10ED359DD39A72C\\
11B60961F49397EEE1D19CE9891EC3B28
<span class="h4"><a class="selflink" id="section-7.1.7" href="#section-7.1.7">7.1.7</a>. Verification Key</span>
It is supposed, in this example, that the user has the verification
key Q with the following coordinate values:
x_q = 57520216126176808443631405023338071\\
176630104906313632182896741342206604859403
x_q = 0x7F2B49E270DB6D90D8595BEC458B5\\
0C58585BA1D4E9B788F6689DBD8E56FD80B
y_q = 17614944419213781543809391949654080\\
031942662045363639260709847859438286763994
y_q = 0x26F1B489D6701DD185C8413A977B3\\
CBBAF64D1C593D26627DFFB101A87FF77DA
<span class="h3"><a class="selflink" id="section-7.2" href="#section-7.2">7.2</a>. Digital Signature Process (Algorithm I)</span>
Suppose that after steps 1-3, according to Algorithm I (<a href="#section-6.1">Section 6.1</a>),
are performed, the following numerical values are obtained:
e = 2079889367447645201713406156150827013\\
0637142515379653289952617252661468872421
<span class="grey">Dolmatov Informational [Page 16]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-17" ></span>
<span class="grey"><a href="./rfc5832">RFC 5832</a> GOST R 34.10-2001 March 2010</span>
e = 0x2DFBC1B372D89A1188C09C52E0EE\\
C61FCE52032AB1022E8E67ECE6672B043EE5
k = 538541376773484637314038411479966192\\
41504003434302020712960838528893196233395
k = 0x77105C9B20BCD3122823C8CF6FCC\\
7B956DE33814E95B7FE64FED924594DCEAB3
And the multiple point C = k * P has the coordinates:
x_C = 297009809158179528743712049839382569\\
90422752107994319651632687982059210933395
x_C = 0x41AA28D2F1AB148280CD9ED56FED\\
A41974053554A42767B83AD043FD39DC0493
y[C] = 328425352786846634770946653225170845\\
06804721032454543268132854556539274060910
y[C] = 0x489C375A9941A3049E33B34361DD\\
204172AD98C3E5916DE27695D22A61FAE46E
Parameter r = x_C(mod q) takes the value:
r = 297009809158179528743712049839382569\\
90422752107994319651632687982059210933395
r = 0x41AA28D2F1AB148280CD9ED56FED\\
A41974053554A42767B83AD043FD39DC0493
Parameter s = (r*d + k*e)(mod q) takes the value:
s = 57497340027008465417892531001914703\\
8455227042649098563933718999175515839552
s = 0x1456C64BA4642A1653C235A98A602\\
49BCD6D3F746B631DF928014F6C5BF9C40
<span class="h3"><a class="selflink" id="section-7.3" href="#section-7.3">7.3</a>. Verification Process of Digital Signature (Algorithm II)</span>
Suppose that after steps 1-3, according to Algorithm II (<a href="#section-6.2">Section</a>
<a href="#section-6.2">6.2</a>), are performed, the following numerical value is obtained:
e = 2079889367447645201713406156150827013\\
0637142515379653289952617252661468872421
<span class="grey">Dolmatov Informational [Page 17]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-18" ></span>
<span class="grey"><a href="./rfc5832">RFC 5832</a> GOST R 34.10-2001 March 2010</span>
e = 0x2DFBC1B372D89A1188C09C52E0EE\\
C61FCE52032AB1022E8E67ECE6672B043EE5
And the parameter v = e^(-1) (mod q) takes the value:
v = 176866836059344686773017138249002685\\
62746883080675496715288036572431145718978
v = 0x271A4EE429F84EBC423E388964555BB\\
29D3BA53C7BF945E5FAC8F381706354C2
The parameters z1 = s*v(mod q) and z2 = -r*v(mod q) take the values:
z1 = 376991675009019385568410572935126561\\
08841345190491942619304532412743720999759
z1 = 0x5358F8FFB38F7C09ABC782A2DF2A\\
3927DA4077D07205F763682F3A76C9019B4F
z2 = 141719984273434721125159179695007657\\
6924665583897286211449993265333367109221
z2 = 0x3221B4FBBF6D101074EC14AFAC2D4F7\\
EFAC4CF9FEC1ED11BAE336D27D527665
The point C = z1*P + z2*Q has the coordinates:
x_C = 2970098091581795287437120498393825699\\
0422752107994319651632687982059210933395
x_C = 0x41AA28D2F1AB148280CD9ED56FED\\
A41974053554A42767B83AD043FD39DC0493
y[C] = 3284253527868466347709466532251708450\\
6804721032454543268132854556539274060910
y[C] = 0x489C375A9941A3049E33B34361DD\\
204172AD98C3E5916DE27695D22A61FAE46E
Then the parameter R = x_C (mod q) takes the value:
R = 2970098091581795287437120498393825699\\
0422752107994319651632687982059210933395
R = 0x41AA28D2F1AB148280CD9ED56FED\\
A41974053554A42767B83AD043FD39DC0493
Since the equality R = r holds, the digital signature is accepted.
<span class="grey">Dolmatov Informational [Page 18]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-19" ></span>
<span class="grey"><a href="./rfc5832">RFC 5832</a> GOST R 34.10-2001 March 2010</span>
<span class="h2"><a class="selflink" id="section-8" href="#section-8">8</a>. Security Considerations</span>
This entire document is about security considerations.
Current cryptographic resistance of GOST R 34.10-2001 digital
signature algorithm is estimated as 2^128 operations of multiple
elliptic curve point computations on prime modulus of order 2^256.
<span class="h2"><a class="selflink" id="section-9" href="#section-9">9</a>. References</span>
<span class="h3"><a class="selflink" id="section-9.1" href="#section-9.1">9.1</a>. Normative References</span>
[<a id="ref-GOST3410">GOST3410</a>] "Information technology. Cryptographic data
security. Signature and verification processes of
[electronic] digital signature.", GOST R 34.10-2001,
Gosudarstvennyi Standard of Russian Federation,
Government Committee of Russia for Standards, 2001.
(In Russian)
[<a id="ref-GOST3411">GOST3411</a>] "Information technology. Cryptographic Data
Security. Hashing function.", GOST R 34.10-94,
Gosudarstvennyi Standard of Russian Federation,
Government Committee of Russia for Standards, 1994.
(In Russian)
[<a id="ref-RFC4357">RFC4357</a>] Popov, V., Kurepkin, I., and S. Leontiev,
"Additional Cryptographic Algorithms for Use with
GOST 28147-89, GOST R 34.10-94, GOST R 34.10-2001,
and GOST R 34.11-94 Algorithms", <a href="./rfc4357">RFC 4357</a>, January
2006.
<span class="h3"><a class="selflink" id="section-9.2" href="#section-9.2">9.2</a>. Informative References</span>
[<a id="ref-ISO2382-2">ISO2382-2</a>] ISO 2382-2 (1976), "Data processing - Vocabulary -
Part 2: Arithmetic and logic operations".
[<a id="ref-ISO9796-1991">ISO9796-1991</a>] ISO/IEC 9796:1991, "Information technology --
Security techniques -- Digital signature schemes
giving message recovery."
[<a id="ref-ISO14888-1">ISO14888-1</a>] ISO/IEC 14888-1 (1998), "Information technology -
Security techniques - Digital signatures with
appendix - Part 1: General".
[<a id="ref-ISO14888-2">ISO14888-2</a>] ISO/IEC 14888-2 (1999), "Information technology -
Security techniques - Digital signatures with
appendix - Part 2: Identity-based mechanisms".
<span class="grey">Dolmatov Informational [Page 19]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-20" ></span>
<span class="grey"><a href="./rfc5832">RFC 5832</a> GOST R 34.10-2001 March 2010</span>
[<a id="ref-ISO14888-3">ISO14888-3</a>] ISO/IEC 14888-3 (1998), "Information technology -
Security techniques - Digital signatures with
appendix - Part 3: Certificate-based mechanisms".
[<a id="ref-ISO10118-1">ISO10118-1</a>] ISO/IEC 10118-1 (2000), "Information technology -
Security techniques - Hash-functions - Part 1:
General".
[<a id="ref-ISO10118-2">ISO10118-2</a>] ISO/IEC 10118-2 (2000), "Information technology -
Security techniques - Hash-functions - Part 2: Hash-
functions using an n-bit block cipher algorithm".
[<a id="ref-ISO10118-3">ISO10118-3</a>] ISO/IEC 10118-3 (2004), "Information technology -
Security techniques - Hash-functions - Part 3:
Dedicated hash-functions".
[<a id="ref-ISO10118-4">ISO10118-4</a>] ISO/IEC 10118-4 (1998), "Information technology -
Security techniques - Hash-functions - Part 4: Hash-
functions using modular arithmetic".
<span class="grey">Dolmatov Informational [Page 20]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-21" ></span>
<span class="grey"><a href="./rfc5832">RFC 5832</a> GOST R 34.10-2001 March 2010</span>
<span class="h2"><a class="selflink" id="appendix-A" href="#appendix-A">Appendix A</a>. Extra Terms in the Digital Signature Area</span>
The appendix gives extra international terms applied in the
considered and allied areas.
1. Padding: Extending a data string with extra bits [<a href="#ref-ISO10118-1" title=""Information technology - Security techniques - Hash-functions - Part 1: General"">ISO10118-1</a>].
2. Identification data: A list of data elements, including specific
object identifier, that belongs to the object and is used for its
denotation [<a href="#ref-ISO14888-1" title="">ISO14888-1</a>].
3. Signature equation: An equation, defined by the digital signature
function [<a href="#ref-ISO14888-1" title="">ISO14888-1</a>].
4. Verification function: A verification process function, defined by
the verification key, which outputs a witness of the signature
authenticity [<a href="#ref-ISO14888-1" title="">ISO14888-1</a>].
5. Signature function: A function within a signature generation
process, defined by the signature key and by the digital signature
scheme parameters. This function inputs a part of initial data
and, probably, a pseudo-random number sequence generator
(randomizer), and outputs the second part of the digital
signature.
<span class="grey">Dolmatov Informational [Page 21]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-22" ></span>
<span class="grey"><a href="./rfc5832">RFC 5832</a> GOST R 34.10-2001 March 2010</span>
<span class="h2"><a class="selflink" id="appendix-B" href="#appendix-B">Appendix B</a>. Contributors</span>
Dmitry Kabelev
Cryptocom, Ltd.
14 Kedrova St., Bldg. 2
Moscow, 117218
Russian Federation
EMail: kdb@cryptocom.ru
Igor Ustinov
Cryptocom, Ltd.
14 Kedrova St., Bldg. 2
Moscow, 117218
Russian Federation
EMail: igus@cryptocom.ru
Sergey Vyshensky
Moscow State University
Leninskie gory, 1
Moscow, 119991
Russian Federation
EMail: svysh@pn.sinp.msu.ru
Author's Address
Vasily Dolmatov, Ed.
Cryptocom, Ltd.
14 Kedrova St., Bldg. 2
Moscow, 117218
Russian Federation
EMail: dol@cryptocom.ru
Dolmatov Informational [Page 22]
</pre>
|