1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
|
<pre>Internet Engineering Task Force (IETF) S. Madanapalli
Request for Comments: 5948 iRam Technologies
Category: Standards Track S. Park
ISSN: 2070-1721 Samsung Electronics
S. Chakrabarti
IP Infusion
G. Montenegro
Microsoft Corporation
August 2010
<span class="h1">Transmission of IPv4 Packets over the IP Convergence Sublayer</span>
<span class="h1">of IEEE 802.16</span>
Abstract
IEEE 802.16 is an air interface specification for wireless broadband
access. IEEE 802.16 has specified multiple service-specific
Convergence Sublayers for transmitting upper-layer protocols. The
Packet CS (Packet Convergence Sublayer) is used for the transport of
all packet-based protocols such as the Internet Protocol (IP) and
IEEE 802.3 (Ethernet). The IP-specific part of the Packet CS enables
the transport of IPv4 packets directly over the IEEE 802.16 Media
Access Control (MAC) layer.
This document specifies the frame format, the Maximum Transmission
Unit (MTU), and the address assignment procedures for transmitting
IPv4 packets over the IP-specific part of the Packet Convergence
Sublayer of IEEE 802.16.
Status of This Memo
This is an Internet Standards Track document.
This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Further information on
Internet Standards is available in <a href="./rfc5741#section-2">Section 2 of RFC 5741</a>.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
<a href="http://www.rfc-editor.org/info/rfc5948">http://www.rfc-editor.org/info/rfc5948</a>.
<span class="grey">Madanapalli, et al. Standards Track [Page 1]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-2" ></span>
<span class="grey"><a href="./rfc5948">RFC 5948</a> IPv4 over IEEE 802.16's IPv4 CS August 2010</span>
Copyright Notice
Copyright (c) 2010 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to <a href="https://www.rfc-editor.org/bcp/bcp78">BCP 78</a> and the IETF Trust's Legal
Provisions Relating to IETF Documents
(<a href="http://trustee.ietf.org/license-info">http://trustee.ietf.org/license-info</a>) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
This document may contain material from IETF Documents or IETF
Contributions published or made publicly available before November
10, 2008. The person(s) controlling the copyright in some of this
material may not have granted the IETF Trust the right to allow
modifications of such material outside the IETF Standards Process.
Without obtaining an adequate license from the person(s) controlling
the copyright in such materials, this document may not be modified
outside the IETF Standards Process, and derivative works of it may
not be created outside the IETF Standards Process, except to format
it for publication as an RFC or to translate it into languages other
than English.
<span class="grey">Madanapalli, et al. Standards Track [Page 2]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-3" ></span>
<span class="grey"><a href="./rfc5948">RFC 5948</a> IPv4 over IEEE 802.16's IPv4 CS August 2010</span>
Table of Contents
<a href="#section-1">1</a>. Introduction ....................................................<a href="#page-3">3</a>
<a href="#section-2">2</a>. Terminology .....................................................<a href="#page-4">4</a>
<a href="#section-3">3</a>. Typical Network Architecture for IPv4 over IEEE 802.16 ..........<a href="#page-4">4</a>
<a href="#section-3.1">3.1</a>. IEEE 802.16 IPv4 Convergence Sublayer Support ..............<a href="#page-4">4</a>
<a href="#section-4">4</a>. IPv4 CS Link in 802.16 Networks .................................<a href="#page-4">4</a>
<a href="#section-4.1">4.1</a>. IPv4 CS Link Establishment .................................<a href="#page-5">5</a>
<a href="#section-4.2">4.2</a>. Frame Format for IPv4 Packets ..............................<a href="#page-5">5</a>
<a href="#section-4.3">4.3</a>. Maximum Transmission Unit ..................................<a href="#page-6">6</a>
<a href="#section-5">5</a>. Subnet Model and IPv4 Address Assignment ........................<a href="#page-8">8</a>
<a href="#section-5.1">5.1</a>. IPv4 Unicast Address Assignment ...........................<a href="#page-8">8</a>
<a href="#section-5.2">5.2</a>. Address Resolution Protocol ...............................<a href="#page-8">8</a>
<a href="#section-5.3">5.3</a>. IP Broadcast and Multicast ................................<a href="#page-8">8</a>
<a href="#section-6">6</a>. Security Considerations .........................................<a href="#page-8">8</a>
<a href="#section-7">7</a>. Acknowledgements ................................................<a href="#page-9">9</a>
<a href="#section-8">8</a>. References ......................................................<a href="#page-9">9</a>
<a href="#section-8.1">8.1</a>. Normative References .......................................<a href="#page-9">9</a>
<a href="#section-8.2">8.2</a>. Informative References .....................................<a href="#page-9">9</a>
<a href="#appendix-A">Appendix A</a>. Multiple Convergence Layers -- Impact on Subnet
Model ................................................<a href="#page-11">11</a>
<a href="#appendix-B">Appendix B</a>. Sending and Receiving IPv4 Packets ...................<a href="#page-11">11</a>
<a href="#appendix-C">Appendix C</a>. WiMAX IPv4 CS MTU Size ...............................<a href="#page-12">12</a>
<span class="h2"><a class="selflink" id="section-1" href="#section-1">1</a>. Introduction</span>
IEEE 802.16 [<a href="#ref-IEEE802_16" title=""IEEE Std 802.16-2009, Draft Standard for Local and Metropolitan area networks, Part 16: Air Interface for Broadband Wireless Access Systems"">IEEE802_16</a>] is a connection-oriented access technology
for the last mile. The IEEE 802.16 specification includes the
Physical (PHY) and Media Access Control (MAC) layers. The MAC layer
includes various Convergence Sublayers (CSs) for transmitting higher-
layer packets, including IPv4 packets [<a href="#ref-IEEE802_16" title=""IEEE Std 802.16-2009, Draft Standard for Local and Metropolitan area networks, Part 16: Air Interface for Broadband Wireless Access Systems"">IEEE802_16</a>].
The scope of this specification is limited to the operation of IPv4
over the IP-specific part of the Packet CS (referred to as "IPv4 CS")
for hosts served by a network that utilizes the IEEE Std 802.16 air
interface.
This document specifies a method for encapsulating and transmitting
IPv4 [<a href="./rfc0791" title=""Internet Protocol"">RFC0791</a>] packets over the IPv4 CS of IEEE 802.16. This
document also specifies the MTU and address assignment method for
hosts using IPv4 CS.
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [<a href="./rfc2119" title=""Key words for use in RFCs to Indicate Requirement Levels"">RFC2119</a>].
<span class="grey">Madanapalli, et al. Standards Track [Page 3]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-4" ></span>
<span class="grey"><a href="./rfc5948">RFC 5948</a> IPv4 over IEEE 802.16's IPv4 CS August 2010</span>
<span class="h2"><a class="selflink" id="section-2" href="#section-2">2</a>. Terminology</span>
o Mobile Station (MS) -- The term "MS" is used to refer to an IP
host. This usage is more informal than that in IEEE 802.16, in
which "MS" refers to the interface implementing the IEEE 802.16
MAC and PHY layers and not to the entire host.
o Last mile -- The term "last mile" is used to refer to the final
leg of delivering connectivity from a communications provider to a
customer.
Other terminology in this document is based on the definitions in
[<a href="./rfc5154" title=""IP over IEEE 802.16 Problem Statement and Goals"">RFC5154</a>].
<span class="h2"><a class="selflink" id="section-3" href="#section-3">3</a>. Typical Network Architecture for IPv4 over IEEE 802.16</span>
The network architecture follows what is described in [<a href="./rfc5154" title=""IP over IEEE 802.16 Problem Statement and Goals"">RFC5154</a>] and
[<a href="./rfc5121" title=""Transmission of IPv6 via the IPv6 Convergence Sublayer over IEEE 802.16 Networks"">RFC5121</a>]. Namely, each MS is attached to an Access Router (AR)
through a Base Station (BS), a Layer 2 (L2) entity (from the
perspective of the IPv4 link between the MS and the AR).
For further information on the typical network architecture, see
<a href="./rfc5121#section-5">[RFC5121], Section 5</a>.
<span class="h3"><a class="selflink" id="section-3.1" href="#section-3.1">3.1</a>. IEEE 802.16 IPv4 Convergence Sublayer Support</span>
As described in [<a href="#ref-IEEE802_16" title=""IEEE Std 802.16-2009, Draft Standard for Local and Metropolitan area networks, Part 16: Air Interface for Broadband Wireless Access Systems"">IEEE802_16</a>], the IP-specific part of the Packet CS
allows the transmission of either IPv4 or IPv6 payloads. In this
document, we are focusing on IPv4 over the Packet Convergence
Sublayer.
For further information on the IEEE 802.16 Convergence Sublayer and
encapsulation of IP packets, see <a href="./rfc5121#section-4">Section 4 of [RFC5121]</a> and
[<a href="#ref-IEEE802_16" title=""IEEE Std 802.16-2009, Draft Standard for Local and Metropolitan area networks, Part 16: Air Interface for Broadband Wireless Access Systems"">IEEE802_16</a>].
<span class="h2"><a class="selflink" id="section-4" href="#section-4">4</a>. IPv4 CS Link in 802.16 Networks</span>
In 802.16, the transport connection between an MS and a BS is used to
transport user data, i.e., IPv4 packets in this case. A transport
connection is represented by a service flow, and multiple transport
connections can exist between an MS and a BS.
When an AR and a BS are co-located, the collection of transport
connections to an MS is defined as a single IPv4 link. When an AR
and a BS are separated, it is recommended that a tunnel be
established between the AR and a BS whose granularity is no greater
<span class="grey">Madanapalli, et al. Standards Track [Page 4]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-5" ></span>
<span class="grey"><a href="./rfc5948">RFC 5948</a> IPv4 over IEEE 802.16's IPv4 CS August 2010</span>
than "per MS" or "per service flow". (An MS can have multiple
service flows, which are identified by a service flow ID.) Then the
tunnel(s) for an MS, in combination with the MS's transport
connections, forms a single point-to-point IPv4 link.
Each host belongs to a different IPv4 link and is assigned a unique
IPv4 address, similar to the recommendations discussed in "Analysis
of IPv6 Link Models for IEEE 802.16 Based Networks" ([<a href="./rfc4968" title=""Analysis of IPv6 Link Models for 802.16 Based Networks"">RFC4968</a>]).
<span class="h3"><a class="selflink" id="section-4.1" href="#section-4.1">4.1</a>. IPv4 CS Link Establishment</span>
In order to enable the sending and receiving of IPv4 packets between
the MS and the AR, the link between the MS and the AR via the BS
needs to be established. This section explains the link
establishment procedure, as described in <a href="./rfc5121#section-6.2">Section 6.2 of [RFC5121]</a>.
Steps 1-4 are the same as those indicated in <a href="./rfc5121#section-6.2">Section 6.2 of
[RFC5121]</a>. In step 5, support for IPv4 is indicated. In step 6, a
service flow is created that can be used for exchanging IP-layer
signaling messages, e.g., address assignment procedures using DHCP.
<span class="h3"><a class="selflink" id="section-4.2" href="#section-4.2">4.2</a>. Frame Format for IPv4 Packets</span>
IPv4 packets are transmitted in Generic IEEE 802.16 MAC frames in the
data payloads of the 802.16 PDU (see <a href="./rfc5154#section-3.2">Section 3.2 of [RFC5154]</a>).
0 1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|H|E| TYPE |R|C|EKS|R|LEN |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| LEN LSB | CID MSB |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| CID LSB | HCS |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| IPv4 |
+- -+
| header |
+- -+
| and |
+- -+
/ payload /
+- -+
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|CRC (optional) |
+-+-+-+-+-+-+-+-+
Figure 1. IEEE 802.16 MAC Frame Format for IPv4 Packets
<span class="grey">Madanapalli, et al. Standards Track [Page 5]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-6" ></span>
<span class="grey"><a href="./rfc5948">RFC 5948</a> IPv4 over IEEE 802.16's IPv4 CS August 2010</span>
Here, "MSB" means "most significant byte", and "LSB" means "least
significant byte".
H: Header Type (1 bit). Shall be set to zero, indicating that it
is a Generic MAC PDU.
E: Encryption Control. 0 = Payload is not encrypted; 1 = Payload
is encrypted.
R: Reserved. Shall be set to zero.
C: Cyclic Redundancy Check (CRC) Indicator. 1 = CRC is included;
0 = No CRC is included.
EKS: Encryption Key Sequence.
LEN: The Length, in bytes, of the MAC PDU, including the MAC
header and the CRC, if present (11 bits).
CID: Connection Identifier (16 bits).
HCS: Header Check Sequence (8 bits).
CRC: An optional 8-bit field. The CRC is appended to the PDU
after encryption.
TYPE: This field indicates the subheaders (Mesh subheader,
Fragmentation subheader, Packing subheader, etc.) and special
payload types (e.g., Automatic Repeat reQuest (ARQ)) present in
the message payload.
<span class="h3"><a class="selflink" id="section-4.3" href="#section-4.3">4.3</a>. Maximum Transmission Unit</span>
The MTU value for IPv4 packets on an IEEE 802.16 link is configurable
(e.g., see the end of this section for some possible mechanisms).
The default MTU for IPv4 packets over an IEEE 802.16 link SHOULD be
1500 octets. Given the possibility for "in-the-network" tunneling,
supporting this MTU at the end hosts has implications on the
underlying network, for example, as discussed in [<a href="./rfc4459" title=""MTU and Fragmentation Issues with In-the- Network Tunneling"">RFC4459</a>].
Per <a href="./rfc5121#section-6.3">[RFC5121], Section 6.3</a>, the IP MTU can vary to be larger or
smaller than 1500 octets.
If an MS transmits 1500-octet packets in a deployment with a smaller
MTU, packets from the MS may be dropped at the link layer silently.
Unlike IPv6, in which departures from the default MTU are readily
advertised via the MTU option in Neighbor Discovery (via router
advertisement), there is no similarly reliable mechanism in IPv4, as
<span class="grey">Madanapalli, et al. Standards Track [Page 6]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-7" ></span>
<span class="grey"><a href="./rfc5948">RFC 5948</a> IPv4 over IEEE 802.16's IPv4 CS August 2010</span>
the legacy IPv4 client implementations do not determine the link MTU
by default before sending packets. Even though there is a DHCP
option to accomplish this, DHCP servers are required to provide the
MTU information only when requested.
Discovery and configuration of the proper link MTU value ensures
adequate usage of the network bandwidth and resources. Accordingly,
deployments should avoid packet loss due to a mismatch between the
default MTU and the configured link MTUs.
Some of the mechanisms available for the IPv4 CS host to find out the
link's MTU value and mitigate MTU-related issues are:
o Recent revision of 802.16 by the IEEE (see IEEE 802.16-2009
[<a href="#ref-IEEE802_16" title=""IEEE Std 802.16-2009, Draft Standard for Local and Metropolitan area networks, Part 16: Air Interface for Broadband Wireless Access Systems"">IEEE802_16</a>]) to (among other things) allow the provision of the
Service Data Unit or MAC MTU in the IEEE 802.16 SBC-REQ/SBC-RSP
phase, such that clients that are compliant with IEEE 802.16 can
infer and configure the negotiated MTU size for the IPv4 CS link.
However, the implementation must communicate the negotiated MTU
value to the IP layer to adjust the IP Maximum Payload Size for
proper handling of fragmentation. Note that this method is useful
only when the MS is directly connected to the BS.
o Configuration and negotiation of MTU size at the network layer by
using the DHCP interface MTU option [<a href="./rfc2132" title=""DHCP Options and BOOTP Vendor Extensions"">RFC2132</a>].
This document recommends that implementations of IPv4 and IPv4 CS
clients SHOULD use the DHCP interface MTU option [<a href="./rfc2132" title=""DHCP Options and BOOTP Vendor Extensions"">RFC2132</a>] in order
to configure its interface MTU accordingly.
In the absence of DHCP MTU configuration, the client node (MS) has
two alternatives: 1) use the default MTU (1500 bytes), or 2)
determine the MTU by the methods described in IEEE 802.16-2009
[<a href="#ref-IEEE802_16" title=""IEEE Std 802.16-2009, Draft Standard for Local and Metropolitan area networks, Part 16: Air Interface for Broadband Wireless Access Systems"">IEEE802_16</a>].
Additionally, the clients are encouraged to run Path MTU (PMTU)
Discovery [<a href="./rfc1191" title=""Path MTU discovery"">RFC1191</a>] or Packetization Layer Path MTU Discovery
(PLPMTUD) [<a href="./rfc4821" title=""Packetization Layer Path MTU Discovery"">RFC4821</a>]. However, the PMTU mechanism has inherent
problems of packet loss due to ICMP messages not reaching the sender
and IPv4 routers not fragmenting the packets due to the Don't
Fragment (DF) bit being set in the IP packet. The above-mentioned
path MTU mechanisms will take care of the MTU size between the MS and
its correspondent node across different flavors of convergence layers
in the access networks.
<span class="grey">Madanapalli, et al. Standards Track [Page 7]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-8" ></span>
<span class="grey"><a href="./rfc5948">RFC 5948</a> IPv4 over IEEE 802.16's IPv4 CS August 2010</span>
<span class="h2"><a class="selflink" id="section-5" href="#section-5">5</a>. Subnet Model and IPv4 Address Assignment</span>
The subnet model recommended for IPv4 over IEEE 802.16 using IPv4 CS
is based on the point-to-point link between the MS and the AR
[<a href="./rfc4968" title=""Analysis of IPv6 Link Models for 802.16 Based Networks"">RFC4968</a>]; hence, each MS shall be assigned an address with a 32-bit
prefix length or subnet mask. The point-to-point link between the MS
and the AR is achieved using a set of IEEE 802.16 MAC connections
(identified by service flows) and an L2 tunnel (e.g., a Generic
Routing Encapsulation (GRE) tunnel) for each MS between the BS and
the AR. If the AR is co-located with the BS, then the set of IEEE
802.16 MAC connections between the MS and the BS/AR represent the
point-to-point connection.
The "next hop" IP address of the IPv4 CS MS is always the IP address
of the AR, because the MS and the AR are attached via a point-to-
point link.
<span class="h3"><a class="selflink" id="section-5.1" href="#section-5.1">5.1</a>. IPv4 Unicast Address Assignment</span>
DHCP [<a href="./rfc2131" title=""Dynamic Host Configuration Protocol"">RFC2131</a>] SHOULD be used for assigning an IPv4 address for the
MS. DHCP messages are transported over the IEEE 802.16 MAC
connection to and from the BS and relayed to the AR. In case the
DHCP server does not reside in the AR, the AR SHOULD implement a DHCP
relay agent [<a href="./rfc1542" title=""Clarifications and Extensions for the Bootstrap Protocol"">RFC1542</a>].
<span class="h3"><a class="selflink" id="section-5.2" href="#section-5.2">5.2</a>. Address Resolution Protocol</span>
The IPv4 CS does not allow for transmission of Address Resolution
Protocol (ARP) [<a href="./rfc0826" title=""Ethernet Address Resolution Protocol: Or converting network protocol addresses to 48.bit Ethernet address for transmission on Ethernet hardware"">RFC0826</a>] packets. Furthermore, in a point-to-point
link model, address resolution is not needed.
<span class="h3"><a class="selflink" id="section-5.3" href="#section-5.3">5.3</a>. IP Broadcast and Multicast</span>
Multicast or broadcast packets from the MS are delivered to the AR
via the BS through the point-to-point link. This specification
simply assumes that the broadcast and multicast services are
provided. How these services are implemented in an IEEE 802.16
Packet CS deployment is out of scope of this document.
<span class="h2"><a class="selflink" id="section-6" href="#section-6">6</a>. Security Considerations</span>
This document specifies transmission of IPv4 packets over IEEE 802.16
networks with the IPv4 Convergence Sublayer and does not introduce
any new vulnerabilities to IPv4 specifications or operation. The
security of the IEEE 802.16 air interface is the subject of
[<a href="#ref-IEEE802_16" title=""IEEE Std 802.16-2009, Draft Standard for Local and Metropolitan area networks, Part 16: Air Interface for Broadband Wireless Access Systems"">IEEE802_16</a>]. In addition, the security issues of the network
<span class="grey">Madanapalli, et al. Standards Track [Page 8]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-9" ></span>
<span class="grey"><a href="./rfc5948">RFC 5948</a> IPv4 over IEEE 802.16's IPv4 CS August 2010</span>
architecture spanning beyond the IEEE 802.16 Base Stations is the
subject of the documents defining such architectures, such as the
Worldwide Interoperability for Microwave Access (WiMAX) network
architecture [<a href="#ref-WMF" title=""WiMAX End-to-End Network Systems Architecture Stage 2-3 Release 1.2, http://www.wimaxforum.org/"">WMF</a>].
<span class="h2"><a class="selflink" id="section-7" href="#section-7">7</a>. Acknowledgements</span>
The authors would like to acknowledge the contributions of Bernard
Aboba, Dave Thaler, Jari Arkko, Bachet Sarikaya, Basavaraj Patil,
Paolo Narvaez, and Bruno Sousa for their review and comments. The
working group members Burcak Beser, Wesley George, Max Riegel, and DJ
Johnston helped shape the MTU discussion for the IPv4 CS link.
Thanks to many other members of the 16ng Working Group who commented
on this document to make it better.
<span class="h2"><a class="selflink" id="section-8" href="#section-8">8</a>. References</span>
<span class="h3"><a class="selflink" id="section-8.1" href="#section-8.1">8.1</a>. Normative References</span>
[<a id="ref-IEEE802_16">IEEE802_16</a>] "IEEE Std 802.16-2009, Draft Standard for Local and
Metropolitan area networks, Part 16: Air Interface for
Broadband Wireless Access Systems", May 2009.
[<a id="ref-RFC0791">RFC0791</a>] Postel, J., "Internet Protocol", STD 5, <a href="./rfc791">RFC 791</a>,
September 1981.
[<a id="ref-RFC0826">RFC0826</a>] Plummer, D., "Ethernet Address Resolution Protocol: Or
converting network protocol addresses to 48.bit
Ethernet address for transmission on Ethernet
hardware", STD 37, <a href="./rfc826">RFC 826</a>, November 1982.
[<a id="ref-RFC1542">RFC1542</a>] Wimer, W., "Clarifications and Extensions for the
Bootstrap Protocol", <a href="./rfc1542">RFC 1542</a>, October 1993.
[<a id="ref-RFC2119">RFC2119</a>] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", <a href="https://www.rfc-editor.org/bcp/bcp14">BCP 14</a>, <a href="./rfc2119">RFC 2119</a>, March 1997.
[<a id="ref-RFC2131">RFC2131</a>] Droms, R., "Dynamic Host Configuration Protocol",
<a href="./rfc2131">RFC 2131</a>, March 1997.
<span class="h3"><a class="selflink" id="section-8.2" href="#section-8.2">8.2</a>. Informative References</span>
[<a id="ref-RFC1191">RFC1191</a>] Mogul, J. and S. Deering, "Path MTU discovery",
<a href="./rfc1191">RFC 1191</a>, November 1990.
[<a id="ref-RFC2132">RFC2132</a>] Alexander, S. and R. Droms, "DHCP Options and BOOTP
Vendor Extensions", <a href="./rfc2132">RFC 2132</a>, March 1997.
<span class="grey">Madanapalli, et al. Standards Track [Page 9]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-10" ></span>
<span class="grey"><a href="./rfc5948">RFC 5948</a> IPv4 over IEEE 802.16's IPv4 CS August 2010</span>
[<a id="ref-RFC4459">RFC4459</a>] Savola, P., "MTU and Fragmentation Issues with In-the-
Network Tunneling", <a href="./rfc4459">RFC 4459</a>, April 2006.
[<a id="ref-RFC4821">RFC4821</a>] Mathis, M. and J. Heffner, "Packetization Layer Path
MTU Discovery", <a href="./rfc4821">RFC 4821</a>, March 2007.
[<a id="ref-RFC4840">RFC4840</a>] Aboba, B., Davies, E., and D. Thaler, "Multiple
Encapsulation Methods Considered Harmful", <a href="./rfc4840">RFC 4840</a>,
April 2007.
[<a id="ref-RFC4968">RFC4968</a>] Madanapalli, S., "Analysis of IPv6 Link Models for
802.16 Based Networks", <a href="./rfc4968">RFC 4968</a>, August 2007.
[<a id="ref-RFC5121">RFC5121</a>] Patil, B., Xia, F., Sarikaya, B., Choi, JH., and S.
Madanapalli, "Transmission of IPv6 via the IPv6
Convergence Sublayer over IEEE 802.16 Networks",
<a href="./rfc5121">RFC 5121</a>, February 2008.
[<a id="ref-RFC5154">RFC5154</a>] Jee, J., Madanapalli, S., and J. Mandin, "IP over IEEE
802.16 Problem Statement and Goals", <a href="./rfc5154">RFC 5154</a>,
April 2008.
[<a id="ref-WMF">WMF</a>] "WiMAX End-to-End Network Systems Architecture Stage
2-3 Release 1.2, <a href="http://www.wimaxforum.org/">http://www.wimaxforum.org/</a>",
January 2008.
<span class="grey">Madanapalli, et al. Standards Track [Page 10]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-11" ></span>
<span class="grey"><a href="./rfc5948">RFC 5948</a> IPv4 over IEEE 802.16's IPv4 CS August 2010</span>
<span class="h2"><a class="selflink" id="appendix-A" href="#appendix-A">Appendix A</a>. Multiple Convergence Layers -- Impact on Subnet Model</span>
Two different MSs using two different Convergence Sublayers (e.g., an
MS using Ethernet CS only and another MS using IPv4 CS only) cannot
communicate at the data link layer and require interworking at the IP
layer. For this reason, these two nodes must be configured to be on
two different subnets. For more information, refer to [<a href="./rfc4840" title=""Multiple Encapsulation Methods Considered Harmful"">RFC4840</a>].
<span class="h2"><a class="selflink" id="appendix-B" href="#appendix-B">Appendix B</a>. Sending and Receiving IPv4 Packets</span>
IEEE 802.16 MAC is a point-to-multipoint connection-oriented air
interface, and the process of sending and receiving IPv4 packets is
different from multicast-capable shared-medium technologies like
Ethernet.
Before any packets are transmitted, an IEEE 802.16 transport
connection must be established. This connection consists of an
IEEE 802.16 MAC transport connection between the MS and the BS and an
L2 tunnel between the BS and the AR (if these two are not
co-located). This IEEE 802.16 transport connection provides a point-
to-point link between the MS and the AR. All the packets originating
at the MS always reach the AR before being transmitted to the final
destination.
IPv4 packets are carried directly in the payload of IEEE 802.16
frames when the IPv4 CS is used. IPv4 CS classifies the packet based
on upper-layer (IP and transport layers) header fields to place the
packet on one of the available connections identified by the CID.
The classifiers for the IPv4 CS are source and destination IPv4
addresses, source and destination ports, Type-of-Service, and IP
Protocol field. The CS may employ Packet Header Suppression (PHS)
after the classification.
The BS optionally reconstructs the payload header if PHS is in use.
It then tunnels the packet that has been received on a particular MAC
connection to the AR. Similarly, the packets received on a tunnel
interface from the AR would be mapped to a particular CID using the
IPv4 classification mechanism.
The AR performs normal routing for the packets that it receives,
processing them per its forwarding table. However, the DHCP relay
agent in the AR MUST maintain the tunnel interface on which it
receives DHCP requests so that it can relay the DHCP responses to the
correct MS. The particular method is out of scope of this
specification as it need not depend on any particularities of
IEEE 802.16.
<span class="grey">Madanapalli, et al. Standards Track [Page 11]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-12" ></span>
<span class="grey"><a href="./rfc5948">RFC 5948</a> IPv4 over IEEE 802.16's IPv4 CS August 2010</span>
<span class="h2"><a class="selflink" id="appendix-C" href="#appendix-C">Appendix C</a>. WiMAX IPv4 CS MTU Size</span>
The WiMAX (Worldwide Interoperability for Microwave Access) forum has
defined a network architecture [<a href="#ref-WMF" title=""WiMAX End-to-End Network Systems Architecture Stage 2-3 Release 1.2, http://www.wimaxforum.org/"">WMF</a>]. Furthermore, WiMAX has
specified IPv4 CS support for transmission of IPv4 packets between
the MS and the BS over the IEEE 802.16 link. The WiMAX IPv4 CS and
this specification are similar. One significant difference, however,
is that the WiMAX Forum [<a href="#ref-WMF" title=""WiMAX End-to-End Network Systems Architecture Stage 2-3 Release 1.2, http://www.wimaxforum.org/"">WMF</a>] has specified the IP MTU as 1400 octets
[<a href="#ref-WMF" title=""WiMAX End-to-End Network Systems Architecture Stage 2-3 Release 1.2, http://www.wimaxforum.org/"">WMF</a>] as opposed to 1500 in this specification.
Hence, if an IPv4 CS MS configured with an MTU of 1500 octets enters
a WiMAX network, some of the issues mentioned in this specification
may arise. As mentioned in <a href="#section-4.3">Section 4.3</a>, the possible mechanisms are
not guaranteed to work. Furthermore, an IPv4 CS client is not
capable of doing ARP probing to find out the link MTU. On the other
hand, it is imperative for an MS to know the link MTU size. In
practice, an MS should be able to sense or deduce the fact that it is
operating within a WiMAX network (e.g., given the WiMAX-specific
particularities of the authentication and network entry procedures),
and adjust its MTU size accordingly. Even though this method is not
perfect, and the potential for conflict may remain, this document
recommends a default MTU of 1500. This represents the WG's consensus
(after much debate) to select the best value for IEEE 802.16 from the
point of view of the IETF, in spite of the WiMAX Forum's deployment.
<span class="grey">Madanapalli, et al. Standards Track [Page 12]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-13" ></span>
<span class="grey"><a href="./rfc5948">RFC 5948</a> IPv4 over IEEE 802.16's IPv4 CS August 2010</span>
Authors' Addresses
Syam Madanapalli
iRam Technologies
#H304, Shriram Samruddhi, Thubarahalli
Bangalore - 560066
India
EMail: smadanapalli@gmail.com
Soohong Daniel Park
Samsung Electronics
416 Maetan-3dong, Yeongtong-gu
Suwon 442-742
Korea
EMail: soohong.park@samsung.com
Samita Chakrabarti
IP Infusion
1188 Arques Avenue
Sunnyvale, CA
USA
EMail: samitac@ipinfusion.com
Gabriel Montenegro
Microsoft Corporation
Redmond, WA
USA
EMail: gabriel.montenegro@microsoft.com
Madanapalli, et al. Standards Track [Page 13]
</pre>
|