1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893
|
<pre>Internet Engineering Task Force (IETF) M. Thomson
Request for Comments: 5986 J. Winterbottom
Category: Standards Track Andrew Corporation
ISSN: 2070-1721 September 2010
<span class="h1">Discovering the Local Location Information Server (LIS)</span>
Abstract
Discovery of the correct Location Information Server (LIS) in the
local access network is necessary for Devices that wish to acquire
location information from the network. A method is described for the
discovery of a LIS in the access network serving a Device. Dynamic
Host Configuration Protocol (DHCP) options for IP versions 4 and 6
are defined that specify a domain name. This domain name is then
used as input to a URI-enabled NAPTR (U-NAPTR) resolution process.
Status of This Memo
This is an Internet Standards Track document.
This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Further information on
Internet Standards is available in <a href="./rfc5741#section-2">Section 2 of RFC 5741</a>.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
<a href="http://www.rfc-editor.org/info/rfc5986">http://www.rfc-editor.org/info/rfc5986</a>.
Copyright Notice
Copyright (c) 2010 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to <a href="https://www.rfc-editor.org/bcp/bcp78">BCP 78</a> and the IETF Trust's Legal
Provisions Relating to IETF Documents
(<a href="http://trustee.ietf.org/license-info">http://trustee.ietf.org/license-info</a>) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
<span class="grey">Thomson & Winterbottom Standards Track [Page 1]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-2" ></span>
<span class="grey"><a href="./rfc5986">RFC 5986</a> LIS Discovery September 2010</span>
Table of Contents
<a href="#section-1">1</a>. Introduction and Overview . . . . . . . . . . . . . . . . . . <a href="#page-2">2</a>
<a href="#section-1.1">1.1</a>. Discovery Procedure Overview . . . . . . . . . . . . . . . <a href="#page-3">3</a>
<a href="#section-1.2">1.2</a>. Terminology . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-3">3</a>
<a href="#section-2">2</a>. LIS Discovery Procedure . . . . . . . . . . . . . . . . . . . <a href="#page-4">4</a>
<a href="#section-2.1">2.1</a>. Residential Gateways . . . . . . . . . . . . . . . . . . . <a href="#page-6">6</a>
<a href="#section-2.2">2.2</a>. Virtual Private Networks (VPNs) . . . . . . . . . . . . . <a href="#page-7">7</a>
<a href="#section-3">3</a>. Determining a Domain Name . . . . . . . . . . . . . . . . . . <a href="#page-7">7</a>
<a href="#section-3.1">3.1</a>. Domain Name Encoding . . . . . . . . . . . . . . . . . . . <a href="#page-7">7</a>
<a href="#section-3.2">3.2</a>. Access Network Domain Name DHCPv4 Option . . . . . . . . . <a href="#page-8">8</a>
<a href="#section-3.3">3.3</a>. Access Network Domain Name DHCPv6 Option . . . . . . . . . <a href="#page-8">8</a>
<a href="#section-3.4">3.4</a>. Alternative Domain Names . . . . . . . . . . . . . . . . . <a href="#page-9">9</a>
<a href="#section-4">4</a>. U-NAPTR Resolution of a LIS URI . . . . . . . . . . . . . . . <a href="#page-10">10</a>
<a href="#section-5">5</a>. Security Considerations . . . . . . . . . . . . . . . . . . . <a href="#page-11">11</a>
<a href="#section-6">6</a>. IANA Considerations . . . . . . . . . . . . . . . . . . . . . <a href="#page-13">13</a>
<a href="#section-6.1">6.1</a>. Registration of DHCPv4 and DHCPv6 Option Codes . . . . . . <a href="#page-13">13</a>
6.2. Registration of a Location Server Application Service
Tag . . . . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-13">13</a>
6.3. Registration of a Location Server Application Protocol
Tag for HELD . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-13">13</a>
<a href="#section-7">7</a>. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-14">14</a>
<a href="#section-8">8</a>. References . . . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-14">14</a>
<a href="#section-8.1">8.1</a>. Normative References . . . . . . . . . . . . . . . . . . . <a href="#page-14">14</a>
<a href="#section-8.2">8.2</a>. Informative References . . . . . . . . . . . . . . . . . . <a href="#page-15">15</a>
<span class="h2"><a class="selflink" id="section-1" href="#section-1">1</a>. Introduction and Overview</span>
The location of a Device is a useful and sometimes necessary part of
many services. A Location Information Server (LIS) is responsible
for providing that location information to Devices with attached
access networks used to provide Internet access. The LIS uses
knowledge of the access network and its physical topology to generate
and serve location information to Devices.
Each access network requires specific knowledge about topology.
Therefore, it is important to discover the LIS that has the specific
knowledge necessary to locate a Device, that is, the LIS that serves
the current access network. Automatic discovery is important where
there is any chance of movement outside a single access network.
Reliance on static configuration can lead to unexpected errors if a
Device moves between access networks.
This document describes a process that a Device can use to discover a
LIS. This process uses a DHCP option and the DNS. The product of
this discovery process is an HTTP [<a href="./rfc2616" title=""Hypertext Transfer Protocol -- HTTP/1.1"">RFC2616</a>] or HTTPS [<a href="./rfc2818" title=""HTTP Over TLS"">RFC2818</a>] URI
that identifies a LIS.
<span class="grey">Thomson & Winterbottom Standards Track [Page 2]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-3" ></span>
<span class="grey"><a href="./rfc5986">RFC 5986</a> LIS Discovery September 2010</span>
The URI result from the discovery process is suitable for location
configuration only; that is, the Device MUST dereference the URI
using the process described in HTTP-Enabled Location Delivery (HELD)
[<a href="./rfc5985" title=""HTTP-Enabled Location Delivery (HELD)"">RFC5985</a>]. URIs discovered in this way are not "location URIs"
[<a href="./rfc5808" title=""Requirements for a Location-by-Reference Mechanism"">RFC5808</a>]; dereferencing one of them provides the location of the
requestor only. Devices MUST NOT embed these URIs in fields in other
protocols designed to carry the location of the Device.
<span class="h3"><a class="selflink" id="section-1.1" href="#section-1.1">1.1</a>. Discovery Procedure Overview</span>
DHCP ([<a href="./rfc2131" title=""Dynamic Host Configuration Protocol"">RFC2131</a>], [<a href="./rfc3315" title=""Dynamic Host Configuration Protocol for IPv6 (DHCPv6)"">RFC3315</a>]) is a commonly used mechanism for
providing bootstrap configuration information that allows a Device to
operate in a specific network environment. The DHCP information is
largely static, consisting of configuration information that does not
change over the period that the Device is attached to the network.
Physical location information might change over this time; however,
the address of the LIS does not. Thus, DHCP is suitable for
configuring a Device with the address of a LIS.
This document defines a DHCP option that produces a domain name that
identifies the local access network in <a href="#section-3">Section 3</a>.
<a href="#section-4">Section 4</a> describes a method that uses URI-enabled NAPTR (U-NAPTR)
[<a href="./rfc4848" title=""Domain-Based Application Service Location Using URIs and the Dynamic Delegation Discovery Service (DDDS)"">RFC4848</a>], a Dynamic Delegation Discovery Service (DDDS) profile that
produces a URI for the LIS. The input to this process is provided by
the DHCP option.
For the LIS discovery DDDS application, an Application Service tag
"LIS" and an Application Protocol tag "HELD" have been created and
registered with the IANA. Based on the domain name, this U-NAPTR
application uses the two tags to determine a URI for a LIS that
supports the HELD protocol.
<span class="h3"><a class="selflink" id="section-1.2" href="#section-1.2">1.2</a>. Terminology</span>
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [<a href="./rfc2119" title=""Key words for use in RFCs to Indicate Requirement Levels"">RFC2119</a>].
This document also uses the term "Device" to refer to an end host or
client consistent with its use in HELD. In HELD and <a href="./rfc3693">RFC 3693</a>
[<a href="./rfc3693" title=""Geopriv Requirements"">RFC3693</a>] parlance, the Device is also the Target.
The term "access network" refers to the network to which a Device
connects for Internet access. The "access network provider" is the
entity that operates the access network. This is consistent with the
definition in [<a href="./rfc5687" title=""GEOPRIV Layer 7 Location Configuration Protocol: Problem Statement and Requirements"">RFC5687</a>], which combines the Internet Access Provider
<span class="grey">Thomson & Winterbottom Standards Track [Page 3]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-4" ></span>
<span class="grey"><a href="./rfc5986">RFC 5986</a> LIS Discovery September 2010</span>
(IAP) and Internet Service Provider (ISP). The access network
provider is responsible for allocating the Device a public IP address
and for directly or indirectly providing a LIS service.
<span class="h2"><a class="selflink" id="section-2" href="#section-2">2</a>. LIS Discovery Procedure</span>
A Device that has multiple network interfaces could potentially be
served by a different access network on each interface, each with a
different LIS. The Device SHOULD attempt to discover the LIS
applicable to each network interface, stopping when a LIS is
successfully discovered on any interface.
The LIS discovery procedure follows this process:
1. Acquire the access network domain name (<a href="#section-3">Section 3</a>).
This process might be repeated for each of the network interfaces
on the Device. Domain names acquired from other sources might
also be added.
2. Apply U-NAPTR resolution (<a href="#section-4">Section 4</a>) to discover a LIS URI.
The U-NAPTR process is applied using each of the domain names as
input.
3. Verify that the LIS is able to provide location information.
The first URI that results in a successful response from the LIS
is used.
A Device MUST support discovery using the access network domain name
DHCP option (<a href="#section-3">Section 3</a>) as input to U-NAPTR resolution (<a href="#section-4">Section 4</a>).
If this option is not available, DHCPv4 option 15 [<a href="./rfc2132" title=""DHCP Options and BOOTP Vendor Extensions"">RFC2132</a>] is used.
Other domain names MAY be used, as described in <a href="#section-3.4">Section 3.4</a>.
A Device that discovers a LIS URI MUST attempt to verify that the LIS
is able to provide location information. For the HELD protocol, the
Device verifies the URI by making a location request to the LIS. Any
HTTP 200 response containing a HELD response signifies success. This
includes HELD error responses, with the exception of the
"notLocatable" error.
If -- at any time -- the LIS responds to a request with the
"notLocatable" error code (see <a href="./rfc5985#section-4.3.2">Section 4.3.2 of [RFC5985]</a>), the
Device MUST continue or restart the discovery process. A Device
SHOULD NOT make further requests to a LIS that provides a
"notLocatable" error until its network attachment changes, or it
discovers the LIS on an alternative network interface.
<span class="grey">Thomson & Winterbottom Standards Track [Page 4]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-5" ></span>
<span class="grey"><a href="./rfc5986">RFC 5986</a> LIS Discovery September 2010</span>
Static configuration of a domain name or a LIS URI MAY be used. Note
that if a Device has moved from its customary location, static
configuration might indicate a LIS that is unable to provide accurate
location information.
The product of the LIS discovery process for HELD is an HTTPS or HTTP
URI. Nothing distinguishes this URI from other URIs with the same
scheme, aside from the fact that it is the product of this process.
Only URIs produced by the discovery process can be used for location
configuration using HELD.
The overall discovery process is summarized in Figure 1.
-----------
( Start )
-----+-----
|<--------------------------------------+
| |
V |
------^------- ------^------ |
/ \ / 1. \ |
< Next interface >------->< Get domain >-----+
\ / Y ^ \ / N
------v------- | ------v------
| N | | Y
| | V
| | ------^------
| | / 2. \
| +----< Get URI ><----+
| N \ / |
| ------v------ |
| | Y |
| V |
| ------^------ |
| / 3. \ |
| < Check URI >-----+
| \ / N
| ------v------
| | Y
V V
----------- -----------
( Failure ) ( Success )
----------- -----------
Figure 1: LIS Discovery Flowchart
<span class="grey">Thomson & Winterbottom Standards Track [Page 5]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-6" ></span>
<span class="grey"><a href="./rfc5986">RFC 5986</a> LIS Discovery September 2010</span>
<span class="h3"><a class="selflink" id="section-2.1" href="#section-2.1">2.1</a>. Residential Gateways</span>
The options available in residential gateways will affect the success
of this algorithm in residential network scenarios. A fixed wireline
scenario is described in more detail in <a href="./rfc5687#section-3.1">[RFC5687], Section 3.1</a>. In
this fixed wireline environment, an intervening residential gateway
exists between the Device and the access network. If the residential
gateway does not provide the appropriate information to the Devices
it serves, those Devices are unable to discover a LIS.
Support of this specification by residential gateways ensures that
the Devices they serve are able to acquire location information. In
many cases, the residential gateway configures the Devices it serves
using DHCP. A residential gateway is able to use DHCP to assist
Devices in gaining access to their location information. This can be
accomplished by providing an access network domain name DHCP option
suitable for LIS discovery, or by acting as a LIS directly. To
actively assist Devices, a residential gateway can either:
o acquire an access network domain name from the access network
provider (possibly using DHCP) and pass the resulting value to
Devices; or
o discover a LIS on its external interface, then provide Devices
with the domain name that was used to successfully discover the
LIS; or
o explicitly include configuration that refers to a particular LIS;
or
o act as a LIS and directly provide location information to the
Devices it serves, including providing a means to discover this
service.
As with Devices, configuration of a specific domain name or location
information is only accurate as long as the residential gateway does
not move. If a residential gateway that relies on configuration
rather than automatic discovery is moved, the Devices it serves could
be provided with inaccurate information. Devices could be led to
discover a LIS that is unable to provide accurate location
information, or -- if location is configured on the residential
gateway -- the residential gateway could provide incorrect location
information.
<span class="grey">Thomson & Winterbottom Standards Track [Page 6]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-7" ></span>
<span class="grey"><a href="./rfc5986">RFC 5986</a> LIS Discovery September 2010</span>
<span class="h3"><a class="selflink" id="section-2.2" href="#section-2.2">2.2</a>. Virtual Private Networks (VPNs)</span>
A Device MUST NOT attempt LIS discovery over a VPN network interface
until it has attempted and failed to perform discovery on all other
non-VPN interfaces. A Device MAY perform discovery over a VPN
network interface if it has first attempted discovery on non-VPN
interfaces, but a LIS discovered in this way is unlikely to have the
information necessary to determine an accurate location.
Not all interfaces connected to a VPN can be detected by Devices or
the software running on them. In these cases, it might be that a LIS
on the remote side of a VPN is inadvertently discovered. A LIS
provides a "notLocatable" error code in response to a request that it
is unable to fulfill (see <a href="./rfc5985#section-6.3">[RFC5985], Section 6.3</a>). This ensures that
even if a Device discovers a LIS over the VPN, it does not rely on a
LIS that is unable to provide accurate location information.
<span class="h2"><a class="selflink" id="section-3" href="#section-3">3</a>. Determining a Domain Name</span>
DHCP provides a direct means for the access network provider to
configure a Device. The access network domain name option identifies
a domain name that is suitable for service discovery within the
access network. This domain name is used as input to the U-NAPTR
resolution process for LIS discovery.
The domain name provided in this option is one owned by the access
network operator. This domain name is intended for use in
discovering services within the access network.
This document registers a DHCP option for the access network domain
name for both IPv4 and IPv6.
<span class="h3"><a class="selflink" id="section-3.1" href="#section-3.1">3.1</a>. Domain Name Encoding</span>
This section describes the encoding of the domain name used in the
DHCPv4 option defined in <a href="#section-3.2">Section 3.2</a> and also used in the DHCPv6
option defined in <a href="#section-3.3">Section 3.3</a>.
The domain name is encoded according to <a href="./rfc1035#section-3.1">Section 3.1 of [RFC1035]</a>.
Each label is represented as a one-octet length field followed by
that number of octets. Since every domain name ends with the null
label of the root, a domain name is terminated by a length byte of
zero. The high-order two bits of every length octet MUST be zero,
and the remaining six bits of the length field limit the label to 63
octets or less. To simplify implementations, the total length of a
domain name (i.e., label octets and label length octets) is
restricted to 255 octets or less.
<span class="grey">Thomson & Winterbottom Standards Track [Page 7]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-8" ></span>
<span class="grey"><a href="./rfc5986">RFC 5986</a> LIS Discovery September 2010</span>
For example, the domain "example.com." is encoded in 13 octets as:
+---+---+---+---+---+---+---+---+---+---+---+---+---+
| 7 | e | x | a | m | p | l | e | 3 | c | o | m | 0 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+
Note that the length field in either option represents the length of
the entire domain name encoding, whereas the length fields in the
domain name encoding is the length of a single domain name label.
<span class="h3"><a class="selflink" id="section-3.2" href="#section-3.2">3.2</a>. Access Network Domain Name DHCPv4 Option</span>
This section defines a DHCP for IPv4 (DHCPv4) option for the domain
name associated with the access network.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Code | Length | Access Network Domain Name .
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
. Access Network Domain Name (cont.) .
. ... .
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 2: Access Network Domain Name DHCPv4 Option
option-code: OPTION_V4_ACCESS_DOMAIN (213).
option-length: The length of the entire access network domain name
option in octets.
option-value: The domain name associated with the access network,
encoded as described in <a href="#section-3.1">Section 3.1</a>.
A DHCPv4 client MAY request an access network domain name option in a
Parameter Request List option, as described in [<a href="./rfc2131" title=""Dynamic Host Configuration Protocol"">RFC2131</a>].
This option contains a single domain name and, as such, MUST contain
precisely one root label.
<span class="h3"><a class="selflink" id="section-3.3" href="#section-3.3">3.3</a>. Access Network Domain Name DHCPv6 Option</span>
This section defines a DHCP for IPv6 (DHCPv6) option for the domain
name associated with the access network. The DHCPv6 option for this
parameter is similarly formatted to the DHCPv4 option.
<span class="grey">Thomson & Winterbottom Standards Track [Page 8]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-9" ></span>
<span class="grey"><a href="./rfc5986">RFC 5986</a> LIS Discovery September 2010</span>
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| OPTION_V6_ACCESS_DOMAIN | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
. Access Network Domain Name .
. ... .
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 3: DHCPv6 Access Network Domain Name Option
option-code: OPTION_V6_ACCESS_DOMAIN (57).
option-length: The length of the entire access network domain name
option in octets.
option-value: The domain name associated with the access network,
encoded as described in <a href="#section-3.1">Section 3.1</a>.
A DHCPv6 client MAY request an access network domain name option in
an Options Request Option (ORO), as described in [<a href="./rfc3315" title=""Dynamic Host Configuration Protocol for IPv6 (DHCPv6)"">RFC3315</a>].
This option contains a single domain name and, as such, MUST contain
precisely one root label.
<span class="h3"><a class="selflink" id="section-3.4" href="#section-3.4">3.4</a>. Alternative Domain Names</span>
The U-NAPTR resolution method described requires a domain name as
input. The access network domain name DHCP options (Sections <a href="#section-3.2">3.2</a> and
3.3) are one source of this domain name.
If a Device knows one or more alternative domain names that might be
used for discovery, it MAY repeat the U-NAPTR process using those
domain names as input. For instance, static configuration of a
Device might be used to provide a Device with a domain name.
DHCPv4 option 15 [<a href="./rfc2132" title=""DHCP Options and BOOTP Vendor Extensions"">RFC2132</a>] provides an indication of the domain name
that a host uses when resolving hostnames in DNS. This option is
used when the DHCPv4 access domain name is not available.
DHCPv4 option 15 might not be suitable for some network deployments.
For instance, a global enterprise could operate multiple sites, with
Devices at all sites using the same value for option 15. In this
type of deployment, it might be desirable to discover a LIS local to
a site. The access domain name option can be given a different value
at each site to enable discovery of a LIS at that site.
<span class="grey">Thomson & Winterbottom Standards Track [Page 9]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-10" ></span>
<span class="grey"><a href="./rfc5986">RFC 5986</a> LIS Discovery September 2010</span>
Alternative domain names MUST NOT be used unless the access network
domain name option is unsuccessful or where external information
indicates that a particular domain name is to be used.
Other domain names might be provided by a DHCP server (for example,
[<a href="./rfc4702" title=""The Dynamic Host Configuration Protocol (DHCP) Client Fully Qualified Domain Name (FQDN) Option"">RFC4702</a>] for DHCPv4, [<a href="./rfc4704" title=""The Dynamic Host Configuration Protocol for IPv6 (DHCPv6) Client Fully Qualified Domain Name (FQDN) Option"">RFC4704</a>] for DHCPv6). However, these domain
names could be provided without considering their use for LIS
discovery; therefore, it is not likely that these other domain names
contain useful values.
<span class="h2"><a class="selflink" id="section-4" href="#section-4">4</a>. U-NAPTR Resolution of a LIS URI</span>
U-NAPTR [<a href="./rfc4848" title=""Domain-Based Application Service Location Using URIs and the Dynamic Delegation Discovery Service (DDDS)"">RFC4848</a>] resolution for a LIS takes a domain name as input
and produces a URI that identifies the LIS. This process also
requires an Application Service tag and an Application Protocol tag,
which differentiate LIS-related NAPTR records from other records for
that domain.
<a href="#section-6.2">Section 6.2</a> defines an Application Service tag of "LIS", which is
used to identify the location service for a given domain. The
Application Protocol tag "HELD", defined in <a href="#section-6.3">Section 6.3</a>, is used to
identify a LIS that understands the HELD protocol [<a href="./rfc5985" title=""HTTP-Enabled Location Delivery (HELD)"">RFC5985</a>].
The NAPTR records in the following example demonstrate the use of the
Application Service and Protocol tags. Iterative NAPTR resolution is
used to delegate responsibility for the LIS service from
"zonea.example.net." and "zoneb.example.net." to
"outsource.example.com.".
<span class="grey">Thomson & Winterbottom Standards Track [Page 10]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-11" ></span>
<span class="grey"><a href="./rfc5986">RFC 5986</a> LIS Discovery September 2010</span>
zonea.example.net.
;; order pref flags
IN NAPTR 100 10 "" "LIS:HELD" ( ; service
"" ; regex
outsource.example.com. ; replacement
)
zoneb.example.net.
;; order pref flags
IN NAPTR 100 10 "" "LIS:HELD" ( ; service
"" ; regex
outsource.example.com. ; replacement
)
outsource.example.com.
;; order pref flags
IN NAPTR 100 10 "u" "LIS:HELD" ( ; service
"!.*!https://lis.example.org:4802/?c=ex!" ; regex
. ; replacement
)
Figure 4: Sample LIS:HELD Service NAPTR Records
Details for the "LIS" Application Service tag and the "HELD"
Application Protocol tag are included in <a href="#section-6">Section 6</a>.
U-NAPTR resolution might produce multiple results from each iteration
of the algorithm. Order and preference values in the NAPTR record
determine which value is chosen. A Device MAY attempt to use
alternative choices if the first choice is not successful. However,
if a request to the resulting URI produces a HELD "notLocatable"
response, or equivalent, the Device SHOULD NOT attempt to use any
alternative choices from the same domain name.
An HTTPS LIS URI that is a product of U-NAPTR MUST be authenticated
using the domain name method described in <a href="./rfc2818#section-3.1">Section 3.1 of RFC 2818</a>
[<a href="./rfc2818" title=""HTTP Over TLS"">RFC2818</a>]. The domain name that is used in this authentication is
the one extracted from the URI, not the one that was input to the
U-NAPTR resolution process.
<span class="h2"><a class="selflink" id="section-5" href="#section-5">5</a>. Security Considerations</span>
The address of a LIS is usually well-known within an access network;
therefore, interception of messages does not introduce any specific
concerns.
The primary attack against the methods described in this document is
one that would lead to impersonation of a LIS. The LIS is
responsible for providing location information, and this information
is critical to a number of network services; furthermore, a Device
<span class="grey">Thomson & Winterbottom Standards Track [Page 11]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-12" ></span>
<span class="grey"><a href="./rfc5986">RFC 5986</a> LIS Discovery September 2010</span>
does not necessarily have a prior relationship with a LIS. Several
methods are described here that can limit the probability of, or
provide some protection against, such an attack. These methods MUST
be applied unless similar protections are in place, or in cases --
such as an emergency -- where location information of dubious origin
is arguably better than none at all.
An attacker could attempt to compromise LIS discovery at any of three
stages:
1. providing a falsified domain name to be used as input to U-NAPTR
2. altering the DNS records used in U-NAPTR resolution
3. impersonating the LIS
The domain name that used to authenticate the LIS is the domain name
input to the U-NAPTR process, not the output of that process
[<a href="./rfc3958" title=""Domain-Based Application Service Location Using SRV RRs and the Dynamic Delegation Discovery Service (DDDS)"">RFC3958</a>], [<a href="./rfc4848" title=""Domain-Based Application Service Location Using URIs and the Dynamic Delegation Discovery Service (DDDS)"">RFC4848</a>]. As a result, the results of DNS queries do not
need integrity protection.
An HTTPS URI is authenticated using the method described in <a href="./rfc2818#section-3.1">Section</a>
<a href="./rfc2818#section-3.1">3.1 of [RFC2818]</a>. HTTP client implementations frequently do not
provide a means to authenticate based on a domain name other than the
one indicated in the request URI, namely the U-NAPTR output. To
avoid having to authenticate the LIS with a domain name that is
different from the one used to identify it, a client MAY choose to
reject URIs that contain a domain name that is different to the
U-NAPTR input. To support endpoints that enforce the above
restriction on URIs, network administrators SHOULD ensure that the
domain name in the DHCP option is the same as the one contained in
the resulting URI.
Authentication of a LIS relies on the integrity of the domain name
acquired from DHCP. An attacker that is able to falsify a domain
name circumvents the protections provided. To ensure that the access
network domain name DHCP option can be relied upon, preventing DHCP
messages from being modified or spoofed by attackers is necessary.
Physical- or link-layer security are commonly used to reduce the
possibility of such an attack within an access network. DHCP
authentication [<a href="./rfc3118" title=""Authentication for DHCP Messages"">RFC3118</a>] might also provide a degree of protection
against modification or spoofing.
A LIS that is identified by an HTTP URI cannot be authenticated. Use
of unsecured HTTP also does not meet requirements in HELD for
confidentiality and integrity. If an HTTP URI is the product of LIS
<span class="grey">Thomson & Winterbottom Standards Track [Page 12]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-13" ></span>
<span class="grey"><a href="./rfc5986">RFC 5986</a> LIS Discovery September 2010</span>
discovery, this leaves Devices vulnerable to several attacks. Lower-
layer protections, such as Layer 2 traffic separation might be used
to provide some guarantees.
<span class="h2"><a class="selflink" id="section-6" href="#section-6">6</a>. IANA Considerations</span>
<span class="h3"><a class="selflink" id="section-6.1" href="#section-6.1">6.1</a>. Registration of DHCPv4 and DHCPv6 Option Codes</span>
The IANA has assigned an option code of 213 for the DHCPv4 option for
an access network domain name option, as described in <a href="#section-3.2">Section 3.2</a> of
this document.
The IANA has assigned an option code of 57 for the DHCPv6 option for
an access network domain name option, as described in <a href="#section-3.3">Section 3.3</a> of
this document.
<span class="h3"><a class="selflink" id="section-6.2" href="#section-6.2">6.2</a>. Registration of a Location Server Application Service Tag</span>
This section registers a new S-NAPTR/U-NAPTR Application Service tag
for LIS, as mandated by [<a href="./rfc3958" title=""Domain-Based Application Service Location Using SRV RRs and the Dynamic Delegation Discovery Service (DDDS)"">RFC3958</a>].
Application Service Tag: LIS
Intended usage: Identifies a service that provides a Device with its
location information.
Defining publication: <a href="./rfc5986">RFC 5986</a>
Related publications: HELD [<a href="./rfc5985" title=""HTTP-Enabled Location Delivery (HELD)"">RFC5985</a>]
Contact information: The authors of this document
Author/Change controller: The IESG
<span class="h3"><a class="selflink" id="section-6.3" href="#section-6.3">6.3</a>. Registration of a Location Server Application Protocol Tag for</span>
<span class="h3"> HELD</span>
This section registers a new S-NAPTR/U-NAPTR Application Protocol tag
for the HELD protocol [<a href="./rfc5985" title=""HTTP-Enabled Location Delivery (HELD)"">RFC5985</a>], as mandated by [<a href="./rfc3958" title=""Domain-Based Application Service Location Using SRV RRs and the Dynamic Delegation Discovery Service (DDDS)"">RFC3958</a>].
Application Protocol Tag: HELD
Intended Usage: Identifies the HELD protocol.
Applicable Service Tag(s): LIS
Terminal NAPTR Record Type(s): U
<span class="grey">Thomson & Winterbottom Standards Track [Page 13]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-14" ></span>
<span class="grey"><a href="./rfc5986">RFC 5986</a> LIS Discovery September 2010</span>
Defining Publication: <a href="./rfc5986">RFC 5986</a>
Related Publications: HELD [<a href="./rfc5985" title=""HTTP-Enabled Location Delivery (HELD)"">RFC5985</a>]
Contact Information: The authors of this document
Author/Change Controller: The IESG
<span class="h2"><a class="selflink" id="section-7" href="#section-7">7</a>. Acknowledgements</span>
This document uses a mechanism that is largely identical to that in
[<a href="./rfc5222" title=""LoST: A Location-to-Service Translation Protocol"">RFC5222</a>] and [<a href="./rfc5223" title=""Discovering Location-to-Service Translation (LoST) Servers Using the Dynamic Host Configuration Protocol (DHCP)"">RFC5223</a>]. The authors would like to thank Leslie
Daigle for her work on U-NAPTR; Peter Koch for feedback on how not to
use DNS for discovery; Andy Newton for constructive suggestions with
regards to document direction; Richard Barnes, Joe Salowey, Barbara
Stark, and Hannes Tschofenig for input and reviews; and Dean Willis
for constructive feedback.
<span class="h2"><a class="selflink" id="section-8" href="#section-8">8</a>. References</span>
<span class="h3"><a class="selflink" id="section-8.1" href="#section-8.1">8.1</a>. Normative References</span>
[<a id="ref-RFC1035">RFC1035</a>] Mockapetris, P., "Domain names - implementation and
specification", STD 13, <a href="./rfc1035">RFC 1035</a>, November 1987.
[<a id="ref-RFC2119">RFC2119</a>] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", <a href="https://www.rfc-editor.org/bcp/bcp14">BCP 14</a>, <a href="./rfc2119">RFC 2119</a>, March 1997.
[<a id="ref-RFC2131">RFC2131</a>] Droms, R., "Dynamic Host Configuration Protocol",
<a href="./rfc2131">RFC 2131</a>, March 1997.
[<a id="ref-RFC2132">RFC2132</a>] Alexander, S. and R. Droms, "DHCP Options and BOOTP Vendor
Extensions", <a href="./rfc2132">RFC 2132</a>, March 1997.
[<a id="ref-RFC2616">RFC2616</a>] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
Transfer Protocol -- HTTP/1.1", <a href="./rfc2616">RFC 2616</a>, June 1999.
[<a id="ref-RFC2818">RFC2818</a>] Rescorla, E., "HTTP Over TLS", <a href="./rfc2818">RFC 2818</a>, May 2000.
[<a id="ref-RFC3315">RFC3315</a>] Droms, R., Bound, J., Volz, B., Lemon, T., Perkins, C.,
and M. Carney, "Dynamic Host Configuration Protocol for
IPv6 (DHCPv6)", <a href="./rfc3315">RFC 3315</a>, July 2003.
[<a id="ref-RFC4033">RFC4033</a>] Arends, R., Austein, R., Larson, M., Massey, D., and S.
Rose, "DNS Security Introduction and Requirements",
<a href="./rfc4033">RFC 4033</a>, March 2005.
<span class="grey">Thomson & Winterbottom Standards Track [Page 14]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-15" ></span>
<span class="grey"><a href="./rfc5986">RFC 5986</a> LIS Discovery September 2010</span>
[<a id="ref-RFC4702">RFC4702</a>] Stapp, M., Volz, B., and Y. Rekhter, "The Dynamic Host
Configuration Protocol (DHCP) Client Fully Qualified
Domain Name (FQDN) Option", <a href="./rfc4702">RFC 4702</a>, October 2006.
[<a id="ref-RFC4704">RFC4704</a>] Volz, B., "The Dynamic Host Configuration Protocol for
IPv6 (DHCPv6) Client Fully Qualified Domain Name (FQDN)
Option", <a href="./rfc4704">RFC 4704</a>, October 2006.
[<a id="ref-RFC4848">RFC4848</a>] Daigle, L., "Domain-Based Application Service Location
Using URIs and the Dynamic Delegation Discovery Service
(DDDS)", <a href="./rfc4848">RFC 4848</a>, April 2007.
[<a id="ref-RFC5985">RFC5985</a>] Barnes, M., Ed., "HTTP-Enabled Location Delivery (HELD)",
<a href="./rfc5985">RFC 5985</a>, September 2010.
<span class="h3"><a class="selflink" id="section-8.2" href="#section-8.2">8.2</a>. Informative References</span>
[<a id="ref-RFC3118">RFC3118</a>] Droms, R. and W. Arbaugh, "Authentication for DHCP
Messages", <a href="./rfc3118">RFC 3118</a>, June 2001.
[<a id="ref-RFC3693">RFC3693</a>] Cuellar, J., Morris, J., Mulligan, D., Peterson, J., and
J. Polk, "Geopriv Requirements", <a href="./rfc3693">RFC 3693</a>, February 2004.
[<a id="ref-RFC3958">RFC3958</a>] Daigle, L. and A. Newton, "Domain-Based Application
Service Location Using SRV RRs and the Dynamic Delegation
Discovery Service (DDDS)", <a href="./rfc3958">RFC 3958</a>, January 2005.
[<a id="ref-RFC5222">RFC5222</a>] Hardie, T., Newton, A., Schulzrinne, H., and H.
Tschofenig, "LoST: A Location-to-Service Translation
Protocol", <a href="./rfc5222">RFC 5222</a>, August 2008.
[<a id="ref-RFC5223">RFC5223</a>] Schulzrinne, H., Polk, J., and H. Tschofenig, "Discovering
Location-to-Service Translation (LoST) Servers Using the
Dynamic Host Configuration Protocol (DHCP)", <a href="./rfc5223">RFC 5223</a>,
August 2008.
[<a id="ref-RFC5687">RFC5687</a>] Tschofenig, H. and H. Schulzrinne, "GEOPRIV Layer 7
Location Configuration Protocol: Problem Statement and
Requirements", <a href="./rfc5687">RFC 5687</a>, March 2010.
[<a id="ref-RFC5808">RFC5808</a>] Marshall, R., "Requirements for a Location-by-Reference
Mechanism", <a href="./rfc5808">RFC 5808</a>, May 2010.
<span class="grey">Thomson & Winterbottom Standards Track [Page 15]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-16" ></span>
<span class="grey"><a href="./rfc5986">RFC 5986</a> LIS Discovery September 2010</span>
Authors' Addresses
Martin Thomson
Andrew Corporation
Andrew Building (39)
Wollongong University Campus
Northfields Avenue
Wollongong, NSW 2522
AU
Phone: +61 2 4221 2915
EMail: martin.thomson@andrew.com
James Winterbottom
Andrew Corporation
Andrew Building (39)
Wollongong University Campus
Northfields Avenue
Wollongong, NSW 2522
AU
Phone: +61 2 4221 2938
EMail: james.winterbottom@andrew.com
Thomson & Winterbottom Standards Track [Page 16]
</pre>
|