1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
|
<pre>Internet Engineering Task Force (IETF) D. Papadimitriou
Request for Comments: 6001 M. Vigoureux
Updates: <a href="./rfc4202">4202</a>, <a href="./rfc4203">4203</a>, <a href="./rfc4206">4206</a>, <a href="./rfc4874">4874</a>, <a href="./rfc4974">4974</a>, <a href="./rfc5307">5307</a> Alcatel-Lucent
Category: Standards Track K. Shiomoto
ISSN: 2070-1721 NTT
D. Brungard
ATT
JL. Le Roux
France Telecom
October 2010
<span class="h1">Generalized MPLS (GMPLS) Protocol Extensions</span>
<span class="h1">for Multi-Layer and Multi-Region Networks (MLN/MRN)</span>
Abstract
There are specific requirements for the support of networks
comprising Label Switching Routers (LSRs) participating in different
data plane switching layers controlled by a single Generalized Multi-
Protocol Label Switching (GMPLS) control plane instance, referred to
as GMPLS Multi-Layer Networks / Multi-Region Networks (MLN/MRN).
This document defines extensions to GMPLS routing and signaling
protocols so as to support the operation of GMPLS Multi-Layer /
Multi-Region Networks. It covers the elements of a single GMPLS
control plane instance controlling multiple Label Switched Path (LSP)
regions or layers within a single Traffic Engineering (TE) domain.
Status of This Memo
This is an Internet Standards Track document.
This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Further information on
Internet Standards is available in <a href="./rfc5741#section-2">Section 2 of RFC 5741</a>.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
<a href="http://www.rfc-editor.org/info/rfc6001">http://www.rfc-editor.org/info/rfc6001</a>.
<span class="grey">Papadimitriou, et al. Standards Track [Page 1]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-2" ></span>
<span class="grey"><a href="./rfc6001">RFC 6001</a> GMPLS Protocol Extensions for MLN/MRN October 2010</span>
Copyright Notice
Copyright (c) 2010 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to <a href="https://www.rfc-editor.org/bcp/bcp78">BCP 78</a> and the IETF Trust's Legal
Provisions Relating to IETF Documents
(<a href="http://trustee.ietf.org/license-info">http://trustee.ietf.org/license-info</a>) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
This document may contain material from IETF Documents or IETF
Contributions published or made publicly available before November
10, 2008. The person(s) controlling the copyright in some of this
material may not have granted the IETF Trust the right to allow
modifications of such material outside the IETF Standards Process.
Without obtaining an adequate license from the person(s) controlling
the copyright in such materials, this document may not be modified
outside the IETF Standards Process, and derivative works of it may
not be created outside the IETF Standards Process, except to format
it for publication as an RFC or to translate it into languages other
than English.
<span class="grey">Papadimitriou, et al. Standards Track [Page 2]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-3" ></span>
<span class="grey"><a href="./rfc6001">RFC 6001</a> GMPLS Protocol Extensions for MLN/MRN October 2010</span>
Table of Contents
<a href="#section-1">1</a>. Introduction ....................................................<a href="#page-3">3</a>
<a href="#section-1.1">1.1</a>. Conventions Used in This Document ..........................<a href="#page-4">4</a>
<a href="#section-2">2</a>. Summary of the Requirements and Evaluation ......................<a href="#page-4">4</a>
<a href="#section-3">3</a>. Interface Adjustment Capability Descriptor (IACD) ...............<a href="#page-5">5</a>
<a href="#section-3.1">3.1</a>. Overview ...................................................<a href="#page-5">5</a>
<a href="#section-3.2">3.2</a>. Interface Adjustment Capability Descriptor (IACD) ..........<a href="#page-6">6</a>
<a href="#section-4">4</a>. Multi-Region Signaling ..........................................<a href="#page-9">9</a>
<a href="#section-4.1">4.1</a>. XRO Subobjects ............................................<a href="#page-10">10</a>
<a href="#section-5">5</a>. Virtual TE Link ................................................<a href="#page-12">12</a>
<a href="#section-5.1">5.1</a>. Edge-to-Edge Association ..................................<a href="#page-13">13</a>
<a href="#section-5.2">5.2</a>. Soft Forwarding Adjacency (Soft FA) .......................<a href="#page-16">16</a>
<a href="#section-6">6</a>. Backward Compatibility .........................................<a href="#page-18">18</a>
<a href="#section-7">7</a>. Security Considerations ........................................<a href="#page-18">18</a>
<a href="#section-8">8</a>. IANA Considerations ............................................<a href="#page-18">18</a>
<a href="#section-8.1">8.1</a>. RSVP ......................................................<a href="#page-18">18</a>
<a href="#section-8.2">8.2</a>. OSPF ......................................................<a href="#page-20">20</a>
<a href="#section-8.3">8.3</a>. IS-IS .....................................................<a href="#page-20">20</a>
<a href="#section-9">9</a>. References .....................................................<a href="#page-20">20</a>
<a href="#section-9.1">9.1</a>. Normative References ......................................<a href="#page-20">20</a>
<a href="#section-9.2">9.2</a>. Informative References ....................................<a href="#page-22">22</a>
Acknowledgments....................................................<a href="#page-23">23</a>
Contributors ......................................................<a href="#page-23">23</a>
<span class="h2"><a class="selflink" id="section-1" href="#section-1">1</a>. Introduction</span>
Generalized Multi-Protocol Label Switching (GMPLS) [<a href="./rfc3945" title=""Generalized Multi-Protocol Label Switching (GMPLS) Architecture"">RFC3945</a>] extends
MPLS to handle multiple switching technologies: packet switching
(PSC), Layer 2 switching (L2SC), Time-Division Multiplexing (TDM)
Switching, wavelength switching (LSC) and fiber switching (FSC). A
GMPLS switching type (PSC, TDM, etc.) describes the ability of a node
to forward data of a particular data plane technology, and uniquely
identifies a control plane LSP region. LSP regions are defined in
[<a href="./rfc4206" title=""Label Switched Paths (LSP) Hierarchy with Generalized Multi-Protocol Label Switching (GMPLS) Traffic Engineering (TE)"">RFC4206</a>]. A network comprised of multiple switching types (e.g.,
PSC and TDM) controlled by a single GMPLS control plane instance is
called a Multi-Region Network (MRN).
A data plane layer is a collection of network resources capable of
terminating and/or switching data traffic of a particular format.
For example, LSC, TDM VC-11, and TDM VC-4-64c represent three
different layers. A network comprising transport nodes participating
in different data plane switching layers controlled by a single GMPLS
control plane instance is called a Multi-Layer Network (MLN).
<span class="grey">Papadimitriou, et al. Standards Track [Page 3]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-4" ></span>
<span class="grey"><a href="./rfc6001">RFC 6001</a> GMPLS Protocol Extensions for MLN/MRN October 2010</span>
The applicability of GMPLS to multiple switching technologies
provides the unified control and operations for both LSP provisioning
and recovery. This document covers the elements of a single GMPLS
control plane instance controlling multiple layers within a given TE
domain. A TE domain is defined as group of Label Switching Routers
(LSRs) that enforces a common TE policy. A Control Plane (CP)
instance can serve one, two, or more layers. Other possible
approaches, such as having multiple CP instances serving disjoint
sets of layers, are outside the scope of this document.
The next sections provide the procedural aspects in terms of routing
and signaling for such environments as well as the extensions
required to instrument GMPLS to provide the capabilities for MLN/MRN
unified control. The rationales and requirements for Multi-
Layer/Region networks are set forth in [<a href="./rfc5212" title=""Requirements for GMPLS-Based Multi- Region and Multi-Layer Networks (MRN/MLN)"">RFC5212</a>]. These requirements
are evaluated against GMPLS protocols in [<a href="./rfc5339" title=""Evaluation of Existing GMPLS Protocols against Multi-Layer and Multi- Region Networks (MLN/MRN)"">RFC5339</a>] and several areas
where GMPLS protocol extensions are required are identified.
This document defines GMPLS routing and signaling extensions so as to
cover GMPLS MLN/MRN requirements.
<span class="h3"><a class="selflink" id="section-1.1" href="#section-1.1">1.1</a>. Conventions Used in This Document</span>
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [<a href="./rfc2119" title=""Key words for use in RFCs to Indicate Requirement Levels"">RFC2119</a>].
In addition, the reader is assumed to be familiar with [<a href="./rfc3945" title=""Generalized Multi-Protocol Label Switching (GMPLS) Architecture"">RFC3945</a>],
[<a href="./rfc3471" title=""Generalized Multi-Protocol Label Switching (GMPLS) Signaling Functional Description"">RFC3471</a>], [<a href="./rfc4201" title=""Link Bundling in MPLS Traffic Engineering (TE)"">RFC4201</a>], [<a href="./rfc4202" title=""Routing Extensions in Support of Generalized Multi-Protocol Label Switching (GMPLS)"">RFC4202</a>], [<a href="./rfc4203" title=""OSPF Extensions in Support of Generalized Multi-Protocol Label Switching (GMPLS)"">RFC4203</a>], [<a href="./rfc4206" title=""Label Switched Paths (LSP) Hierarchy with Generalized Multi-Protocol Label Switching (GMPLS) Traffic Engineering (TE)"">RFC4206</a>], and [<a href="./rfc5307" title=""IS-IS Extensions in Support of Generalized Multi-Protocol Label Switching (GMPLS)"">RFC5307</a>].
<span class="h2"><a class="selflink" id="section-2" href="#section-2">2</a>. Summary of the Requirements and Evaluation</span>
As identified in [<a href="./rfc5339" title=""Evaluation of Existing GMPLS Protocols against Multi-Layer and Multi- Region Networks (MLN/MRN)"">RFC5339</a>], most MLN/MRN requirements rely on
mechanisms and procedures (such as local procedures and policies, or
specific TE mechanisms and algorithms) that are outside the scope of
the GMPLS protocols, and thus do not require any GMPLS protocol
extensions.
Four areas for extensions of GMPLS protocols and procedures have been
identified in [<a href="./rfc5339" title=""Evaluation of Existing GMPLS Protocols against Multi-Layer and Multi- Region Networks (MLN/MRN)"">RFC5339</a>]:
o GMPLS routing extensions for the advertisement of the internal
adjustment capability of hybrid nodes. See <a href="./rfc5339#section-3.2.2">Section 3.2.2 of
[RFC5339]</a>.
<span class="grey">Papadimitriou, et al. Standards Track [Page 4]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-5" ></span>
<span class="grey"><a href="./rfc6001">RFC 6001</a> GMPLS Protocol Extensions for MLN/MRN October 2010</span>
o GMPLS signaling extensions for constrained multi-region signaling
(Switching Capability inclusion/exclusion). See <a href="./rfc5339#section-3.2.1">Section 3.2.1 of
[RFC5339]</a>. An additional eXclude Route Object (XRO) Label
subobject is also defined since it was absent from [<a href="./rfc4874" title=""Exclude Routes - Extension to Resource ReserVation Protocol-Traffic Engineering (RSVP-TE)"">RFC4874</a>].
o GMPLS signaling extensions for the setup/deletion of virtual TE
links (as well as exact trigger for its actual provisioning). See
<a href="./rfc5339#section-3.1.1.2">Section 3.1.1.2 of [RFC5339]</a>.
o GMPLS routing and signaling extensions for graceful TE link
deletion. See <a href="./rfc5339#section-3.1.1.3">Section 3.1.1.3 of [RFC5339]</a>.
The first three requirements are addressed in Sections <a href="#section-3">3</a>, <a href="#section-4">4</a>, and <a href="#section-5">5</a> of
this document, respectively. The fourth requirement is addressed in
[<a href="./rfc5710" title=""PathErr Message Triggered MPLS and GMPLS LSP Reroutes"">RFC5710</a>] with additional context provided by [<a href="./rfc5817" title=""Graceful Shutdown in MPLS and Generalized MPLS Traffic Engineering Networks"">RFC5817</a>].
<span class="h2"><a class="selflink" id="section-3" href="#section-3">3</a>. Interface Adjustment Capability Descriptor (IACD)</span>
In the MRN context, nodes that have at least one interface that
supports more than one switching capability are called hybrid nodes
[<a href="./rfc5212" title=""Requirements for GMPLS-Based Multi- Region and Multi-Layer Networks (MRN/MLN)"">RFC5212</a>]. The logical composition of a hybrid node contains at
least two distinct switching elements that are interconnected by
"internal links" to provide adjustment between the supported
switching capabilities. These internal links have finite capacities
that MUST be taken into account when computing the path of a multi-
region TE-LSP. The advertisement of the internal adjustment
capability is required as it provides critical information when
performing multi-region path computation.
<span class="h3"><a class="selflink" id="section-3.1" href="#section-3.1">3.1</a>. Overview</span>
In an MRN environment, some LSRs could contain multiple switching
capabilities, such as PSC and TDM or PSC and LSC, all under the
control of a single GMPLS instance.
These nodes, hosting multiple Interface Switching Capabilities (ISCs)
[<a href="./rfc4202" title=""Routing Extensions in Support of Generalized Multi-Protocol Label Switching (GMPLS)"">RFC4202</a>], are required to hold and advertise resource information on
link states and topology, just like other nodes (hosting a single
ISC). They may also have to consider some portions of internal node
resources use to terminate hierarchical LSPs, since in circuit-
switching technologies (such as TDM, LSC, and FSC) LSPs require the
use of resources allocated in a discrete manner (as predetermined by
the switching type). For example, a node with PSC+LSC hierarchical
switching capability can switch a lambda LSP, but cannot terminate
the Lambda LSP if there is no available (i.e., not already in use)
adjustment capability between the LSC and the PSC switching
components. Another example occurs when L2SC (Ethernet) switching
can be adapted in the Link Access Procedure-SDH (LAPS) X.86 and
<span class="grey">Papadimitriou, et al. Standards Track [Page 5]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-6" ></span>
<span class="grey"><a href="./rfc6001">RFC 6001</a> GMPLS Protocol Extensions for MLN/MRN October 2010</span>
Generic Framing Procedure (GFP) for instance, before reaching the TDM
switching matrix. Similar circumstances can occur, for example, if a
switching fabric that supports both PSC and L2SC functionalities is
assembled with LSC interfaces enabling "lambda" encoding. In the
switching fabric, some interfaces can terminate Lambda LSPs and
perform frame (or cell) switching whilst other interfaces can
terminate Lambda LSPs and perform packet switching.
Therefore, within multi-region networks, the advertisement of the so-
called adjustment capability to terminate LSPs (not the interface
capability since the latter can be inferred from the bandwidth
available for each switching capability) provides the information to
take into account when performing multi-region path computation.
This concept enables a node to discriminate the remote nodes (and
thus allows their selection during path computation) with respect to
their adjustment capability, e.g., to terminate LSPs at the PSC or
LSC level.
Hence, we introduce the capability of discriminating the (internal)
adjustment capability from the (interface) switching capability by
defining an Interface Adjustment Capability Descriptor (IACD).
A more detailed problem statement can be found in [<a href="./rfc5339" title=""Evaluation of Existing GMPLS Protocols against Multi-Layer and Multi- Region Networks (MLN/MRN)"">RFC5339</a>].
<span class="h3"><a class="selflink" id="section-3.2" href="#section-3.2">3.2</a>. Interface Adjustment Capability Descriptor (IACD)</span>
The Interface Adjustment Capability Descriptor (IACD) provides the
information for the forwarding/switching capability.
Note that the addition of the IACD as a TE link attribute does not
modify the format of the Interface Switching Capability Descriptor
(ISCD) defined in [<a href="./rfc4202" title=""Routing Extensions in Support of Generalized Multi-Protocol Label Switching (GMPLS)"">RFC4202</a>], and does not change how the ISCD sub-TLV
is carried in the routing protocols or how it is processed when it is
received [<a href="./rfc4201" title=""Link Bundling in MPLS Traffic Engineering (TE)"">RFC4201</a>], [<a href="./rfc4203" title=""OSPF Extensions in Support of Generalized Multi-Protocol Label Switching (GMPLS)"">RFC4203</a>].
The receiving LSR uses its Link State Database to determine the
IACD(s) of the far end of the link. Different Interface Adjustment
Capabilities at two ends of a TE link are allowed.
<span class="h4"><a class="selflink" id="section-3.2.1" href="#section-3.2.1">3.2.1</a>. OSPF</span>
In OSPF, the IACD sub-TLV is defined as an optional sub-TLV of the TE
Link TLV (Type 2, see [<a href="./rfc3630" title=""Traffic Engineering (TE) Extensions to OSPF Version 2"">RFC3630</a>]), with Type 25 and variable length.
<span class="grey">Papadimitriou, et al. Standards Track [Page 6]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-7" ></span>
<span class="grey"><a href="./rfc6001">RFC 6001</a> GMPLS Protocol Extensions for MLN/MRN October 2010</span>
The IACD sub-TLV format is defined as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Lower SC | Lower Encoding| Upper SC | Upper Encoding|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Max LSP Bandwidth at priority 0 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Max LSP Bandwidth at priority 1 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Max LSP Bandwidth at priority 2 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Max LSP Bandwidth at priority 3 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Max LSP Bandwidth at priority 4 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Max LSP Bandwidth at priority 5 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Max LSP Bandwidth at priority 6 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Max LSP Bandwidth at priority 7 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Adjustment Capability-specific information |
| (variable) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Lower Switching Capability (SC) field (byte 1) - 8 bits
Indicates the lower switching capability associated with the
Lower Encoding field (byte 2). The value of the Lower
Switching Capability field MUST be set to the value of
Switching Capability of the ISCD sub-TLV advertised for this TE
link. If multiple ISCD sub-TLVs are advertised for that TE
link, the Lower Switching Capability (SC) value MUST be set to
the value of SC to which the adjustment capacity is associated.
Lower Encoding (byte 2) - 8 bits
Contains one of the LSP Encoding Type values specified in
<a href="./rfc3471#section-3.1.1">Section 3.1.1 of [RFC3471]</a> and updates.
Upper Switching Capability (SC) field (byte 3) - 8 bits
Indicates the upper switching capability. The Upper Switching
Capability field MUST be set to one of the values defined in
[<a href="./rfc4202" title=""Routing Extensions in Support of Generalized Multi-Protocol Label Switching (GMPLS)"">RFC4202</a>].
<span class="grey">Papadimitriou, et al. Standards Track [Page 7]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-8" ></span>
<span class="grey"><a href="./rfc6001">RFC 6001</a> GMPLS Protocol Extensions for MLN/MRN October 2010</span>
Upper Encoding (byte 4) - 8 bits
Set to the encoding of the available adjustment capacity and to
0xFF when the corresponding SC value has no access to the wire,
i.e., there is no ISC sub-TLV for this upper switching
capability. The adjustment capacity is the set of resources
associated to the upper switching capability.
Max LSP Bandwidth
The Maximum LSP Bandwidth is encoded as a list of eight 4-octet
fields in the IEEE floating point format [<a href="#ref-IEEE" title=""IEEE Standard for Binary Floating-Point Arithmetic"">IEEE</a>], with priority
0 first and priority 7 last. The units are bytes per second.
Processing MUST follow the rules specified in [<a href="./rfc4202" title=""Routing Extensions in Support of Generalized Multi-Protocol Label Switching (GMPLS)"">RFC4202</a>].
The Adjustment Capability-specific information - variable
This field is defined so as to leave the possibility for future
addition of technology-specific information associated to the
adjustment capability.
Other fields MUST be processed as specified in [<a href="./rfc4202" title=""Routing Extensions in Support of Generalized Multi-Protocol Label Switching (GMPLS)"">RFC4202</a>] and
[<a href="./rfc4203" title=""OSPF Extensions in Support of Generalized Multi-Protocol Label Switching (GMPLS)"">RFC4203</a>].
The bandwidth values provide an indication of the resources still
available to perform insertion/extraction for a given adjustment at a
given priority (resource pool concept: set of shareable available
resources that can be assigned dynamically).
Multiple IACD sub-TLVs MAY be present within a given TE Link TLV.
The presence of the IACD sub-TLV as part of the TE Link TLV does not
modify the format/messaging and the processing associated to the ISCD
sub-TLV defined in [<a href="./rfc4203" title=""OSPF Extensions in Support of Generalized Multi-Protocol Label Switching (GMPLS)"">RFC4203</a>].
<span class="h4"><a class="selflink" id="section-3.2.2" href="#section-3.2.2">3.2.2</a>. IS-IS</span>
In IS-IS, the IACD sub-TLV is an optional sub-TLV of the Extended IS
Reachability TLV (see [<a href="./rfc5305" title=""IS-IS Extensions for Traffic Engineering"">RFC5305</a>]) with Type 27.
The IACD sub-TLV format is identical to the OSPF sub-TLV format
defined in <a href="#section-3.2.1">Section 3.2.1</a>. The fields of the IACD sub-TLV have the
same processing and interpretation rules as defined in <a href="#section-3.2.1">Section 3.2.1</a>.
Multiple IACD sub-TLVs MAY be present within a given extended IS
reachability TLV.
<span class="grey">Papadimitriou, et al. Standards Track [Page 8]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-9" ></span>
<span class="grey"><a href="./rfc6001">RFC 6001</a> GMPLS Protocol Extensions for MLN/MRN October 2010</span>
The presence of the IACD sub-TLV as part of the extended IS
reachability TLV does not modify format/messaging and processing
associated to the ISCD sub-TLV defined in [<a href="./rfc5307" title=""IS-IS Extensions in Support of Generalized Multi-Protocol Label Switching (GMPLS)"">RFC5307</a>].
<span class="h2"><a class="selflink" id="section-4" href="#section-4">4</a>. Multi-Region Signaling</span>
<a href="./rfc4206#section-6.2">Section 6.2 of [RFC4206]</a> specifies that when a region boundary node
receives a Path message, the node determines whether or not it is at
the edge of an LSP region with respect to the Explicit Route Object
(ERO) carried in the message. If the node is at the edge of a
region, it must then determine the other edge of the region with
respect to the Explicit Route Object (ERO), using the IGP database.
The node then extracts from the ERO the sub-sequence of hops from
itself to the other end of the region.
The node then compares the sub-sequence of hops with all existing
Forwarding Agency LSPs (FA-LSPs) originated by the node:
o If a match is found, that FA-LSP has enough unreserved bandwidth
for the LSP being signaled, and the Generalized PID (G-PID) of the
FA-LSP is compatible with the G-PID of the LSP being signaled, the
node uses that FA-LSP as follows. The Path message for the
original LSP is sent to the egress of the FA-LSP. The previous hop
(PHOP) in the message is the address of the node at the head-end of
the FA-LSP. Before sending the Path message, the ERO in that
message is adjusted by removing the subsequence of the ERO that
lies in the FA-LSP, and replacing it with just the endpoint of the
FA-LSP.
o If no existing FA-LSP is found, the node sets up a new FA-LSP.
That is, it initiates a new LSP setup just for the FA-LSP.
Note: compatible G-PID implies that traffic can be processed by
both ends of the FA-LSP without dropping traffic after its
establishment.
Applying the procedure of [<a href="./rfc4206" title=""Label Switched Paths (LSP) Hierarchy with Generalized Multi-Protocol Label Switching (GMPLS) Traffic Engineering (TE)"">RFC4206</a>] in an MRN environment MAY lead to
the setup of single-hop FA-LSPs between each pair of nodes.
Therefore, considering that the path computation is able to take into
account richness of information with regard to the SC available on
given nodes belonging to the path, it is consistent to provide enough
signaling information to indicate the SC to be used and over which
link. Particularly, in case a TE link has multiple SCs advertised as
part of its ISCD sub-TLVs, an ERO does not provide a mechanism to
select a particular SC.
<span class="grey">Papadimitriou, et al. Standards Track [Page 9]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-10" ></span>
<span class="grey"><a href="./rfc6001">RFC 6001</a> GMPLS Protocol Extensions for MLN/MRN October 2010</span>
In order to limit the modifications to existing RSVP-TE procedures
([<a href="./rfc3473" title=""Generalized Multi-Protocol Label Switching (GMPLS) Signaling Resource ReserVation Protocol- Traffic Engineering (RSVP-TE) Extensions"">RFC3473</a>] and referenced), this document defines a new subobject of
the eXclude Route Object (XRO), see [<a href="./rfc4874" title=""Exclude Routes - Extension to Resource ReserVation Protocol-Traffic Engineering (RSVP-TE)"">RFC4874</a>], called the Switching
Capability subobject. This subobject enables (when desired) the
explicit identification of at least one switching capability to be
excluded from the resource selection process described above.
Including this subobject as part of the XRO that explicitly indicates
which SCs have to be excluded (before initiating the procedure
described here above) over a specified TE link, solves the ambiguous
choice among SCs that are potentially used along a given path and
give the possibility to optimize resource usage on a multi-region
basis. Note that implicit SC inclusion is easily supported by
explicitly excluding other SCs (e.g., to include LSC, it is required
to exclude PSC, L2SC, TDM, and FSC).
The approach followed here is to concentrate exclusions in XRO and
inclusions in ERO. Indeed, the ERO specifies the topological
characteristics of the path to be signaled. Usage of Explicit
Exclusion Route Subobjects (EXRSs) would also lead in the exclusion
over certain portions of the LSP during the FA-LSP setup. Thus, it
is more suited to extend generality of the elements excluded by the
XRO but also prevent complex consistency checks as well as
transpositions between EXRS and XRO at FA-LSP head-ends.
<span class="h3"><a class="selflink" id="section-4.1" href="#section-4.1">4.1</a>. XRO Subobjects</span>
The contents of an EXCLUDE_ROUTE object defined in [<a href="./rfc4874" title=""Exclude Routes - Extension to Resource ReserVation Protocol-Traffic Engineering (RSVP-TE)"">RFC4874</a>] are a
series of variable-length data items called subobjects.
This document defines the Switching Capability (SC) subobject of the
XRO (Type 35), its encoding, and processing. It also complements the
subobjects defined in [<a href="./rfc4874" title=""Exclude Routes - Extension to Resource ReserVation Protocol-Traffic Engineering (RSVP-TE)"">RFC4874</a>] with a Label subobject (Type 3).
<span class="h4"><a class="selflink" id="section-4.1.1" href="#section-4.1.1">4.1.1</a>. SC Subobject</span>
XRO subobject Type 35: Switching Capability
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|L| Type=35 | Length | Attribute | Switching Cap |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
L (1 bit)
0 indicates that the attribute specified MUST be excluded.
<span class="grey">Papadimitriou, et al. Standards Track [Page 10]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-11" ></span>
<span class="grey"><a href="./rfc6001">RFC 6001</a> GMPLS Protocol Extensions for MLN/MRN October 2010</span>
1 indicates that the attribute specified SHOULD be avoided.
Type (7 bits)
The Type of the XRO SC subobject is 35.
Length (8 bits)
The total length of the subobject in bytes (including the Type
and Length fields). The Length of the XRO SC subobject is 4.
Attribute (8 bits)
0 reserved value.
1 indicates that the specified SC SHOULD be excluded or avoided
with respect to the preceding numbered (Type 1 or Type 2) or
unnumbered interface (Type) subobject.
Switching Cap (8 bits)
Switching Capability value to be excluded.
The Switching Capability subobject MUST follow the set of one or more
numbered or unnumbered interface subobjects to which this subobject
refers.
In the case of a loose-hop ERO subobject, the XRO subobject MUST
precede the loose-hop subobject identifying the tail-end
node/interface of the traversed region(s).
<span class="h4"><a class="selflink" id="section-4.1.2" href="#section-4.1.2">4.1.2</a>. Label Subobject</span>
The encoding of the XRO Label subobject is identical to the Label ERO
subobject defined in [<a href="./rfc3473" title=""Generalized Multi-Protocol Label Switching (GMPLS) Signaling Resource ReserVation Protocol- Traffic Engineering (RSVP-TE) Extensions"">RFC3473</a>] with the exception of the L bit. The
XRO Label subobject is defined as follows:
XRO Subobject Type 3: Label Subobject
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|L| Type=3 | Length |U| Reserved | C-Type |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Label |
| ... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
<span class="grey">Papadimitriou, et al. Standards Track [Page 11]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-12" ></span>
<span class="grey"><a href="./rfc6001">RFC 6001</a> GMPLS Protocol Extensions for MLN/MRN October 2010</span>
L (1 bit)
0 indicates that the attribute specified MUST be excluded.
1 indicates that the attribute specified SHOULD be avoided.
Type (7 bits)
The Type of the XRO Label subobject is 3.
Length (8 bits)
The total length of the subobject in bytes (including the Type
and Length fields). The Length is always divisible by 4.
U (1 bit)
See [<a href="./rfc3471" title=""Generalized Multi-Protocol Label Switching (GMPLS) Signaling Functional Description"">RFC3471</a>].
C-Type (8 bits)
The C-Type of the included Label Object. Copied from the Label
Object (see [<a href="./rfc3471" title=""Generalized Multi-Protocol Label Switching (GMPLS) Signaling Functional Description"">RFC3471</a>]).
Label
See [<a href="./rfc3471" title=""Generalized Multi-Protocol Label Switching (GMPLS) Signaling Functional Description"">RFC3471</a>].
XRO Label subobjects MUST follow the numbered or unnumbered interface
subobjects to which they refer, and, when present, MUST also follow
the Switching Capability subobject.
When XRO Label subobjects are following the Switching Capability
subobject, the corresponding label values MUST be compatible with the
SC capability to be explicitly excluded.
<span class="h2"><a class="selflink" id="section-5" href="#section-5">5</a>. Virtual TE Link</span>
A virtual TE link is defined as a TE link between two upper-layer
nodes that is not associated with a fully provisioned FA-LSP in a
lower layer [<a href="./rfc5212" title=""Requirements for GMPLS-Based Multi- Region and Multi-Layer Networks (MRN/MLN)"">RFC5212</a>]. A virtual TE link is advertised as any TE
link, following the rules in [<a href="./rfc4206" title=""Label Switched Paths (LSP) Hierarchy with Generalized Multi-Protocol Label Switching (GMPLS) Traffic Engineering (TE)"">RFC4206</a>] defined for fully provisioned
TE links. A virtual TE link represents thus the potentiality to set
up an FA-LSP in the lower layer to support the TE link that has been
advertised. In particular, the flooding scope of a virtual TE link
is within an IGP area, as is the case for any TE link.
<span class="grey">Papadimitriou, et al. Standards Track [Page 12]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-13" ></span>
<span class="grey"><a href="./rfc6001">RFC 6001</a> GMPLS Protocol Extensions for MLN/MRN October 2010</span>
Two techniques can be used for the setup, operation, and maintenance
of virtual TE links. The corresponding GMPLS protocols extensions
are described in this section. The procedures described in this
section complement those defined in [<a href="./rfc4206" title=""Label Switched Paths (LSP) Hierarchy with Generalized Multi-Protocol Label Switching (GMPLS) Traffic Engineering (TE)"">RFC4206</a>] and [<a href="#ref-HIER-BIS" title=""Procedures for Dynamically Signaled Hierarchical Label Switched Paths"">HIER-BIS</a>].
<span class="h3"><a class="selflink" id="section-5.1" href="#section-5.1">5.1</a>. Edge-to-Edge Association</span>
This approach, that does not require state maintenance on transit
LSRs, relies on extensions to the GMPLS RSVP-TE Call procedure (see
[<a href="./rfc4974" title=""Generalized MPLS (GMPLS) RSVP-TE Signaling Extensions in Support of Calls"">RFC4974</a>]). This technique consists of exchanging identification and
TE attributes information directly between TE link endpoints through
the establishment of a call between terminating LSRs. These TE link
endpoints correspond to the LSP head-end and tail-end points of the
LSPs that will be established. The endpoints MUST belong to the same
(LSP) region.
Once the call is established, the resulting association populates the
local Traffic Engineering DataBase (TEDB) and the resulting virtual
TE link is advertised as any other TE link. The latter can then be
used to attract traffic. When an upper-layer/region LSP tries to
make use of this virtual TE link, one or more FA LSPs MUST be
established using the procedures defined in [<a href="./rfc4206" title=""Label Switched Paths (LSP) Hierarchy with Generalized Multi-Protocol Label Switching (GMPLS) Traffic Engineering (TE)"">RFC4206</a>] to make the
virtual TE link "real" and allow it to carry traffic by nesting the
upper-layer/region LSP.
In order to distinguish usage of such call from the call and
associated procedures defined in [<a href="./rfc4974" title=""Generalized MPLS (GMPLS) RSVP-TE Signaling Extensions in Support of Calls"">RFC4974</a>], a CALL_ATTRIBUTES object
is introduced.
<span class="h4"><a class="selflink" id="section-5.1.1" href="#section-5.1.1">5.1.1</a>. CALL_ATTRIBUTES Object</span>
The CALL_ATTRIBUTES object is used to signal attributes required in
support of a call, or to indicate the nature or use of a call. It is
modeled on the LSP_ATTRIBUTES object defined in [<a href="./rfc5420" title=""Encoding of Attributes for MPLS LSP Establishment Using Resource Reservation Protocol Traffic Engineering (RSVP-TE)"">RFC5420</a>]. The
CALL_ATTRIBUTES object MAY also be used to report call operational
state on a Notify message.
The CALL_ATTRIBUTES object class is 202 of the form 11bbbbbb. This
C-Num value (see <a href="./rfc2205#section-3.10">[RFC2205], Section 3.10</a>) ensures that LSRs that do
not recognize the object pass it on transparently.
One C-Type is defined, C-Type = 1 for Call Attributes. This object
is OPTIONAL and MAY be placed on Notify messages to convey additional
information about the desired attributes of the call.
<span class="grey">Papadimitriou, et al. Standards Track [Page 13]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-14" ></span>
<span class="grey"><a href="./rfc6001">RFC 6001</a> GMPLS Protocol Extensions for MLN/MRN October 2010</span>
CALL_ATTRIBUTES class = 202, C-Type = 1
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
// Call Attributes TLVs //
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
The Call Attributes TLVs are encoded as described in <a href="#section-5.1.3">Section 5.1.3</a>.
<span class="h4"><a class="selflink" id="section-5.1.2" href="#section-5.1.2">5.1.2</a>. Processing</span>
If an egress (or intermediate) LSR does not support the object, it
forwards it unexamined and unchanged. This facilitates the exchange
of attributes across legacy networks that do not support this new
object.
<span class="h4"><a class="selflink" id="section-5.1.3" href="#section-5.1.3">5.1.3</a>. Call Attributes TLVs</span>
Attributes carried by the CALL_ATTRIBUTES object are encoded within
TLVs named Call Attributes TLVs. One or more Call Attributes TLVs
MAY be present in each object.
There are no ordering rules for Call Attributes TLVs, and no
interpretation SHOULD be placed on the order in which these TLVs are
received.
Each Call Attributes TLV carried by the CALL_ATTRIBUTES object is
encoded as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
// Value //
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type
The identifier of the TLV.
<span class="grey">Papadimitriou, et al. Standards Track [Page 14]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-15" ></span>
<span class="grey"><a href="./rfc6001">RFC 6001</a> GMPLS Protocol Extensions for MLN/MRN October 2010</span>
Length
Indicates the total length of the TLV in octets. That is, the
combined length of the Type, Length, and Value fields, i.e.,
four plus the length of the Value field in octets.
The entire TLV MUST be padded with between zero and three
trailing zeros to make it four-octet aligned. The Length field
does not count any padding.
Value
The data field for the TLV padded as described above.
Assignment of Call Attributes TLV types MUST follow the rules
specified in <a href="#section-8">Section 8</a> (IANA Considerations).
<span class="h4"><a class="selflink" id="section-5.1.4" href="#section-5.1.4">5.1.4</a>. Call Attributes Flags TLV</span>
The Call Attributes TLV of Type 1 defines the Call Attributes Flags
TLV. The Call Attributes Flags TLV MAY be present in a
CALL_ATTRIBUTES object.
The Call Attributes Flags TLV value field is an array of units of 32
flags numbered from the most significant bit as bit zero. The Length
field for this TLV MUST therefore always be a multiple of 4 bytes,
regardless of the number of bits carried and no padding is required.
Unassigned bits are considered reserved and MUST be set to zero on
transmission by the originator of the object. Bits not contained in
the Call Attributes Flags TLV MUST be assumed to be set to zero. If
the Call Attributes Flags TLV is absent, either because it is not
contained in the CALL_ATTRIBUTES object or because this object is
itself absent, all processing MUST be performed as though the bits
were present and set to zero. In other terms, assigned bits that are
not present either because the Call Attributes Flags TLV is
deliberately foreshortened or because the TLV is not included MUST be
treated as though they are present and are set to zero.
<span class="h4"><a class="selflink" id="section-5.1.5" href="#section-5.1.5">5.1.5</a>. Call Inheritance Flag</span>
This document introduces a specific Call Inheritance Flag at position
bit 0 (most significant bit) in the Call Attributes Flags TLV. This
flag indicates that the association initiated between the endpoints
belonging to a call results into a (virtual) TE link advertisement.
<span class="grey">Papadimitriou, et al. Standards Track [Page 15]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-16" ></span>
<span class="grey"><a href="./rfc6001">RFC 6001</a> GMPLS Protocol Extensions for MLN/MRN October 2010</span>
The Call Inheritance Flag MUST be set to 1 in order to indicate that
the established association is to be translated into a TE link
advertisement. The value of this flag SHALL by default be set to 1.
Setting this flag to 0 results in a hidden TE link or in deleting the
corresponding TE link advertisement (by setting the corresponding
Opaque LSA Age to MaxAge) if the association had been established
with this flag set to 1. In the latter case, the corresponding FA-
LSP SHOULD also be torn down to prevent unused resources.
The Notify message used for establishing the association is defined
as per [<a href="./rfc4974" title=""Generalized MPLS (GMPLS) RSVP-TE Signaling Extensions in Support of Calls"">RFC4974</a>]. Additionally, the Notify message MUST carry an
LSP_TUNNEL_INTERFACE_ID Object, that allows identifying unnumbered
FA-LSPs ([<a href="./rfc3477" title=""Signalling Unnumbered Links in Resource ReSerVation Protocol - Traffic Engineering (RSVP-TE)"">RFC3477</a>], [<a href="./rfc4206" title=""Label Switched Paths (LSP) Hierarchy with Generalized Multi-Protocol Label Switching (GMPLS) Traffic Engineering (TE)"">RFC4206</a>], [<a href="#ref-HIER-BIS" title=""Procedures for Dynamically Signaled Hierarchical Label Switched Paths"">HIER-BIS</a>]) and numbered FA-LSPs
([<a href="./rfc4206" title=""Label Switched Paths (LSP) Hierarchy with Generalized Multi-Protocol Label Switching (GMPLS) Traffic Engineering (TE)"">RFC4206</a>], [<a href="#ref-HIER-BIS" title=""Procedures for Dynamically Signaled Hierarchical Label Switched Paths"">HIER-BIS</a>]).
<span class="h3"><a class="selflink" id="section-5.2" href="#section-5.2">5.2</a>. Soft Forwarding Adjacency (Soft FA)</span>
The Soft Forwarding Adjacency (Soft FA) approach consists of setting
up the FA LSP at the control plane level without actually committing
resources in the data plane. This means that the corresponding LSP
exists only in the control plane domain. Once such an FA is
established, the corresponding TE link can be advertised following
the procedures described in [<a href="./rfc4206" title=""Label Switched Paths (LSP) Hierarchy with Generalized Multi-Protocol Label Switching (GMPLS) Traffic Engineering (TE)"">RFC4206</a>].
There are two techniques to set up Soft FAs:
o The first one consists in setting up the FA LSP by precluding
resource commitment during its establishment. These are known as
pre-planned LSPs.
o The second technique consists in making use of path-provisioned
LSPs only. In this case, there is no associated resource demand
during the LSP establishment. This can be considered as the RSVP-
TE equivalent of the Null service type specified in [<a href="./rfc2997" title=""Specification of the Null Service Type"">RFC2997</a>].
<span class="h4"><a class="selflink" id="section-5.2.1" href="#section-5.2.1">5.2.1</a>. Pre-Planned LSP Flag</span>
The LSP ATTRIBUTES object and Attributes Flags TLV are defined in
[<a href="./rfc5420" title=""Encoding of Attributes for MPLS LSP Establishment Using Resource Reservation Protocol Traffic Engineering (RSVP-TE)"">RFC5420</a>]. The present document defines a new flag, the Pre-Planned
LSP flag, in the existing Attributes Flags TLV (numbered as Type 1).
The position of this flag is bit 6 in accordance with IANA
assignment. This flag, part of the Attributes Flags TLV, follows
general processing of [<a href="./rfc5420" title=""Encoding of Attributes for MPLS LSP Establishment Using Resource Reservation Protocol Traffic Engineering (RSVP-TE)"">RFC5420</a>] for LSP_REQUIRED_ATTRIBUTE object.
That is, LSRs that do not recognize the object reject the LSP setup
effectively saying that they do not support the attributes requested.
Indeed, the newly defined attribute requires examination at all
transit LSRs along the LSP being established.
<span class="grey">Papadimitriou, et al. Standards Track [Page 16]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-17" ></span>
<span class="grey"><a href="./rfc6001">RFC 6001</a> GMPLS Protocol Extensions for MLN/MRN October 2010</span>
The Pre-Planned LSP flag can take one of the following values:
o When set to 0, this means that the LSP MUST be fully provisioned.
Absence of this flag (hence corresponding TLV) is therefore
compliant with the signaling message processing per [<a href="./rfc3473" title=""Generalized Multi-Protocol Label Switching (GMPLS) Signaling Resource ReserVation Protocol- Traffic Engineering (RSVP-TE) Extensions"">RFC3473</a>]).
o When set to 1, this means that the LSP MUST be provisioned in the
control plane only.
If an LSP is established with the Pre-Planned flag set to 1, no
resources are committed at the data plane level.
The operation of committing data plane resources occurs by re-
signaling the same LSP with the Pre-Planned flag set to 0. It is
RECOMMENDED that no other modifications are made to other RSVP
objects during this operation. That is each intermediate node,
processing a flag transiting from 1 to 0 shall only be concerned with
the commitment of data plane resources and no other modification of
the LSP properties and/or attributes.
If an LSP is established with the Pre-Planned flag set to 0, it MAY
be re-signaled by setting the flag to 1.
<span class="h4"><a class="selflink" id="section-5.2.2" href="#section-5.2.2">5.2.2</a>. Path Provisioned LSPs</span>
There is a difference between an LSP that is established with 0
bandwidth (path provisioning) and an LSP that is established with a
certain bandwidth value not committed at the data plane level (i.e.,
pre-planned LSP).
Mechanisms for provisioning (pre-planned or not) LSP with 0 bandwidth
is straightforward for PSC LSP: in the SENDER_TSPEC/FLOWSPEC object,
the Peak Data Rate field of IntServ objects (see [<a href="./rfc2210" title=""The Use of RSVP with IETF Integrated Services"">RFC2210</a>]) MUST be
set to 0. For L2SC LSP: the Committed Information Rate (CIR), Excess
Information Rate (EIR), Committed Burst Size (CBS), and Excess Burst
Size (EBS) values MUST be set to 0 in the Type 2 sub-TLV of the
Ethernet Bandwidth Profile TLV. In both cases, upon LSP resource
commitment, actual traffic parameter values are used to perform
corresponding resource reservation.
However, mechanisms for provisioning (pre-planned or not) a TDM or
LSC LSP with 0 bandwidth is currently not possible because the
exchanged label value is tightly coupled with resource allocation
during LSP signaling (e.g., see [<a href="./rfc4606" title=""Generalized Multi- Protocol Label Switching (GMPLS) Extensions for Synchronous Optical Network (SONET) and Synchronous Digital Hierarchy (SDH) Control"">RFC4606</a>] for a SONET/SDH LSP). For
TDM and LSC LSP, a NULL Label value is used to prevent resource
allocation at the data plane level. In these cases, upon LSP
resource commitment, actual label value exchange is performed to
commit allocation of timeslots/ wavelengths.
<span class="grey">Papadimitriou, et al. Standards Track [Page 17]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-18" ></span>
<span class="grey"><a href="./rfc6001">RFC 6001</a> GMPLS Protocol Extensions for MLN/MRN October 2010</span>
<span class="h2"><a class="selflink" id="section-6" href="#section-6">6</a>. Backward Compatibility</span>
New objects and procedures defined in this document are running
within a given TE domain, defined as group of LSRs that enforces a
common TE policy. Thus, the extensions defined in this document are
expected to run in the context of a consistent TE policy.
Specification of a consistent TE policy is outside the scope of this
document.
In such TE domains, we distinguish between edge LSRs and intermediate
LSRs. Edge LSRs MUST be able to process Call Attributes as defined
in <a href="#section-5.1">Section 5.1</a> if this is the method selected for creating edge-to-
edge associations. In that domain, intermediate LSRs are by
definition transparent to the Call processing.
In case the Soft FA method is used for the creation of virtual TE
links, edge and intermediate LSRs MUST support processing of the LSP
ATTRIBUTE object per <a href="#section-5.2">Section 5.2</a>.
<span class="h2"><a class="selflink" id="section-7" href="#section-7">7</a>. Security Considerations</span>
This document does not introduce any new security considerations from
the ones already detailed in [<a href="./rfc5920" title=""Security Framework for MPLS and GMPLS Networks"">RFC5920</a>] that describes the MPLS and
GMPLS security threats, the related defensive techniques, and the
mechanisms for detection and reporting. Indeed, the applicability of
the proposed GMPLS extensions is limited to single TE domain. Such a
domain is under the authority of a single administrative entity. In
this context, multiple switching layers comprised within such TE
domain are under the control of a single GMPLS control plane
instance.
Nevertheless, Call initiation, as depicted in <a href="#section-5.1">Section 5.1</a>, MUST
strictly remain under control of the TE domain administrator. To
prevent any abuse of Call setup, edge nodes MUST ensure isolation of
their call controller (i.e., the latter is not reachable via external
TE domains). To further prevent man-in-the-middle attacks, security
associations MUST be established between edge nodes initiating and
terminating calls. For this purpose, Internet Key Exchange (IKE)
protocol [<a href="./rfc5996" title=""Internet Key Exchange Protocol Version 2 (IKEv2)"">RFC5996</a>] MUST be used for performing mutual authentication
and establishing and maintaining these security associations.
<span class="h2"><a class="selflink" id="section-8" href="#section-8">8</a>. IANA Considerations</span>
<span class="h3"><a class="selflink" id="section-8.1" href="#section-8.1">8.1</a>. RSVP</span>
IANA has made the following assignments in the "Class Names, Class
Numbers, and Class Types" section of the "RSVP PARAMETERS" registry
available from <a href="http://www.iana.org">http://www.iana.org</a>.
<span class="grey">Papadimitriou, et al. Standards Track [Page 18]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-19" ></span>
<span class="grey"><a href="./rfc6001">RFC 6001</a> GMPLS Protocol Extensions for MLN/MRN October 2010</span>
This document introduces a new class named CALL_ATTRIBUTES, which has
been created in the 11bbbbbb range with the following definition:
Class Number Class Name Reference
------------ ----------------------- ---------
202 CALL ATTRIBUTES [<a href="./rfc6001">RFC6001</a>]
Class Type (C-Type):
1 Call Attributes [<a href="./rfc6001">RFC6001</a>]
IANA has established a "Call Attributes TLV" registry. The following
types are defined:
TLV Value Name Reference
--------- ------------------------- ---------
0 Reserved [<a href="./rfc6001">RFC6001</a>]
1 Call Attributes Flags TLV [<a href="./rfc6001">RFC6001</a>]
The values should be allocated based on the following allocation
policy as defined in [<a href="./rfc5226" title="">RFC5226</a>].
Range Registration Procedures
----- ------------------------
0-32767 RFC Required
32768-65535 Reserved for Private Use
IANA has established a "Call Attributes Flags" registry. The
following flags are defined:
Bit Number 32-bit Value Name Reference
---------- ------------ --------------------- ---------
0 0x80000000 Call Inheritance Flag [<a href="./rfc6001">RFC6001</a>]
The values should be allocated based on the "RFC Required" policy as
defined in [<a href="./rfc5226" title="">RFC5226</a>].
This document introduces a new Flag in the Attributes Flags TLV
defined in [<a href="./rfc5420" title=""Encoding of Attributes for MPLS LSP Establishment Using Resource Reservation Protocol Traffic Engineering (RSVP-TE)"">RFC5420</a>]:
Bit Number Name Reference
---------- -------------------- ---------
6 Pre-Planned LSP Flag [<a href="./rfc6001">RFC6001</a>]
This document introduces two new subobjects for the EXCLUDE_ROUTE
object [<a href="./rfc4874" title=""Exclude Routes - Extension to Resource ReserVation Protocol-Traffic Engineering (RSVP-TE)"">RFC4874</a>], C-Type 1.
<span class="grey">Papadimitriou, et al. Standards Track [Page 19]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-20" ></span>
<span class="grey"><a href="./rfc6001">RFC 6001</a> GMPLS Protocol Extensions for MLN/MRN October 2010</span>
Subobject Type Subobject Description
-------------- -------------------------
3 Label
35 Switching Capability (SC)
<span class="h3"><a class="selflink" id="section-8.2" href="#section-8.2">8.2</a>. OSPF</span>
IANA maintains the "Open Shortest Path First (OSPF) Traffic
Engineering TLVs" registries including the "Types for sub-TLVs of TE
link TLV (Value 2)" registry.
This document defines the following sub-TLV of TE link TLV (Value 2).
Value Sub-TLV
----- -------------------------------------------------
25 Interface Adjustment Capability Descriptor (IACD)
<span class="h3"><a class="selflink" id="section-8.3" href="#section-8.3">8.3</a>. IS-IS</span>
This document defines the following new sub-TLV type of top-level TLV
22 that has been reflected in the ISIS sub-TLV registry for TLV 22,
141, and 222:
Type Description Length
---- ------------------------------------------------- ------
27 Interface Adjustment Capability Descriptor (IACD) Var.
<span class="h2"><a class="selflink" id="section-9" href="#section-9">9</a>. References</span>
<span class="h3"><a class="selflink" id="section-9.1" href="#section-9.1">9.1</a>. Normative References</span>
[<a id="ref-IEEE">IEEE</a>] IEEE, "IEEE Standard for Binary Floating-Point
Arithmetic", Standard 754-1985, 1985.
[<a id="ref-RFC2205">RFC2205</a>] Braden, R., Ed., Zhang, L., Berson, S., Herzog, S., and S.
Jamin, "Resource ReSerVation Protocol (RSVP) -- Version 1
Functional Specification", <a href="./rfc2205">RFC 2205</a>, September 1997.
[<a id="ref-RFC2210">RFC2210</a>] Wroclawski, J., "The Use of RSVP with IETF Integrated
Services", <a href="./rfc2210">RFC 2210</a>, September 1997.
[<a id="ref-RFC2119">RFC2119</a>] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", <a href="https://www.rfc-editor.org/bcp/bcp14">BCP 14</a>, <a href="./rfc2119">RFC 2119</a>, March 1997.
[<a id="ref-RFC2997">RFC2997</a>] Bernet, Y., Smith, A., and B. Davie, "Specification of the
Null Service Type", <a href="./rfc2997">RFC 2997</a>, November 2000.
<span class="grey">Papadimitriou, et al. Standards Track [Page 20]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-21" ></span>
<span class="grey"><a href="./rfc6001">RFC 6001</a> GMPLS Protocol Extensions for MLN/MRN October 2010</span>
[<a id="ref-RFC3471">RFC3471</a>] Berger, L., Ed., "Generalized Multi-Protocol Label
Switching (GMPLS) Signaling Functional Description", <a href="./rfc3471">RFC</a>
<a href="./rfc3471">3471</a>, January 2003.
[<a id="ref-RFC3473">RFC3473</a>] Berger, L., Ed., "Generalized Multi-Protocol Label
Switching (GMPLS) Signaling Resource ReserVation Protocol-
Traffic Engineering (RSVP-TE) Extensions", <a href="./rfc3473">RFC 3473</a>,
January 2003.
[<a id="ref-RFC3477">RFC3477</a>] Kompella, K. and Y. Rekhter, "Signalling Unnumbered Links
in Resource ReSerVation Protocol - Traffic Engineering
(RSVP-TE)", <a href="./rfc3477">RFC 3477</a>, January 2003.
[<a id="ref-RFC3630">RFC3630</a>] Katz, D., Kompella, K., and D. Yeung, "Traffic Engineering
(TE) Extensions to OSPF Version 2", <a href="./rfc3630">RFC 3630</a>, September
2003.
[<a id="ref-RFC3945">RFC3945</a>] Mannie, E., Ed., "Generalized Multi-Protocol Label
Switching (GMPLS) Architecture", <a href="./rfc3945">RFC 3945</a>, October 2004.
[<a id="ref-RFC4201">RFC4201</a>] Kompella, K., Rekhter, Y., and L. Berger, "Link Bundling
in MPLS Traffic Engineering (TE)", <a href="./rfc4201">RFC 4201</a>, October 2005.
[<a id="ref-RFC4202">RFC4202</a>] Kompella, K., Ed., and Y. Rekhter, Ed., "Routing
Extensions in Support of Generalized Multi-Protocol Label
Switching (GMPLS)", <a href="./rfc4202">RFC 4202</a>, October 2005.
[<a id="ref-RFC4203">RFC4203</a>] Kompella, K., Ed., and Y. Rekhter, Ed., "OSPF Extensions
in Support of Generalized Multi-Protocol Label Switching
(GMPLS)", <a href="./rfc4203">RFC 4203</a>, October 2005.
[<a id="ref-RFC4206">RFC4206</a>] Kompella, K. and Y. Rekhter, "Label Switched Paths (LSP)
Hierarchy with Generalized Multi-Protocol Label Switching
(GMPLS) Traffic Engineering (TE)", <a href="./rfc4206">RFC 4206</a>, October 2005.
[<a id="ref-RFC4606">RFC4606</a>] Mannie, E. and D. Papadimitriou, "Generalized Multi-
Protocol Label Switching (GMPLS) Extensions for
Synchronous Optical Network (SONET) and Synchronous
Digital Hierarchy (SDH) Control", <a href="./rfc4606">RFC 4606</a>, August 2006.
[<a id="ref-RFC4874">RFC4874</a>] Lee, CY., Farrel, A., and S. De Cnodder, "Exclude Routes -
Extension to Resource ReserVation Protocol-Traffic
Engineering (RSVP-TE)", <a href="./rfc4874">RFC 4874</a>, April 2007.
<span class="grey">Papadimitriou, et al. Standards Track [Page 21]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-22" ></span>
<span class="grey"><a href="./rfc6001">RFC 6001</a> GMPLS Protocol Extensions for MLN/MRN October 2010</span>
[<a id="ref-RFC4974">RFC4974</a>] Papadimitriou, D. and A. Farrel, "Generalized MPLS (GMPLS)
RSVP-TE Signaling Extensions in Support of Calls", <a href="./rfc4974">RFC</a>
<a href="./rfc4974">4974</a>, August 2007.
[<a id="ref-RFC5226">RFC5226</a>] Narten, T. and H. Alvestrand, "Guidelines for Writing an
IANA Considerations Section in RFCs", <a href="https://www.rfc-editor.org/bcp/bcp26">BCP 26</a>, <a href="./rfc5226">RFC 5226</a>,
May 2008.
[<a id="ref-RFC5305">RFC5305</a>] Li, T. and H. Smit, "IS-IS Extensions for Traffic
Engineering", <a href="./rfc5305">RFC 5305</a>, October 2008.
[<a id="ref-RFC5307">RFC5307</a>] Kompella, K., Ed., and Y. Rekhter, Ed., "IS-IS Extensions
in Support of Generalized Multi-Protocol Label Switching
(GMPLS)", <a href="./rfc5307">RFC 5307</a>, October 2008.
[<a id="ref-RFC5420">RFC5420</a>] Farrel, A., Ed., Papadimitriou, D., Vasseur, JP., and A.
Ayyangarps, "Encoding of Attributes for MPLS LSP
Establishment Using Resource Reservation Protocol Traffic
Engineering (RSVP-TE)", <a href="./rfc5420">RFC 5420</a>, February 2009.
[<a id="ref-RFC5996">RFC5996</a>] Kaufman, C., Hoffman, P., Nir, Y., and P. Eronen,
"Internet Key Exchange Protocol Version 2 (IKEv2)", <a href="./rfc5996">RFC</a>
<a href="./rfc5996">5996</a>, September 2010.
<span class="h3"><a class="selflink" id="section-9.2" href="#section-9.2">9.2</a>. Informative References</span>
[<a id="ref-HIER-BIS">HIER-BIS</a>] Shiomoto, K., Ed., and A. Farrel, "Procedures for
Dynamically Signaled Hierarchical Label Switched Paths",
Work in Progress, February 2010.
[<a id="ref-RFC5212">RFC5212</a>] Shiomoto, K., Papadimitriou, D., Le Roux, JL., Vigoureux,
M., and D. Brungard, "Requirements for GMPLS-Based Multi-
Region and Multi-Layer Networks (MRN/MLN)", <a href="./rfc5212">RFC 5212</a>, July
2008.
[<a id="ref-RFC5339">RFC5339</a>] Le Roux, JL., Ed., and D. Papadimitriou, Ed., "Evaluation
of Existing GMPLS Protocols against Multi-Layer and Multi-
Region Networks (MLN/MRN)", <a href="./rfc5339">RFC 5339</a>, September 2008.
[<a id="ref-RFC5710">RFC5710</a>] Berger, L., Papadimitriou, D., and JP. Vasseur, "PathErr
Message Triggered MPLS and GMPLS LSP Reroutes", <a href="./rfc5710">RFC 5710</a>,
January 2010.
[<a id="ref-RFC5817">RFC5817</a>] Ali, Z., Vasseur, JP., Zamfir, A., and J. Newton,
"Graceful Shutdown in MPLS and Generalized MPLS Traffic
Engineering Networks", <a href="./rfc5817">RFC 5817</a>, April 2010.
<span class="grey">Papadimitriou, et al. Standards Track [Page 22]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-23" ></span>
<span class="grey"><a href="./rfc6001">RFC 6001</a> GMPLS Protocol Extensions for MLN/MRN October 2010</span>
[<a id="ref-RFC5920">RFC5920</a>] Fang, L., Ed., "Security Framework for MPLS and GMPLS
Networks", <a href="./rfc5920">RFC 5920</a>, July 2010.
Acknowledgments
The authors would like to thank Mr. Wataru Imajuku for the
discussions on adjustment between regions.
Contributors
Eiji Oki
University of Electro-Communications
1-5-1 Chofugaoka
Chofu, Tokyo 182-8585, Japan
EMail: oki@ice.uec.ac.jp
Ichiro Inoue
NTT Network Service Systems Laboratories
3-9-11 Midori-cho
Musashino-shi, Tokyo 180-8585, Japan
Phone: +81 422 596076
EMail: ichiro.inoue@lab.ntt.co.jp
Emmanuel Dotaro
Alcatel-Lucent France
Route de Villejust
91620 Nozay, France
Phone: +33 1 69634723
EMail: emmanuel.dotaro@alcatel-lucent.fr
Gert Grammel
Alcatel-Lucent SEL
Lorenzstrasse, 10
70435 Stuttgart, Germany
EMail: gert.grammel@alcatel-lucent.de
<span class="grey">Papadimitriou, et al. Standards Track [Page 23]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-24" ></span>
<span class="grey"><a href="./rfc6001">RFC 6001</a> GMPLS Protocol Extensions for MLN/MRN October 2010</span>
Authors' Addresses
Dimitri Papadimitriou
Alcatel-Lucent
Copernicuslaan 50
B-2018 Antwerpen, Belgium
Phone: +32 3 2408491
EMail: dimitri.papadimitriou@alcatel-lucent.com
Martin Vigoureux
Alcatel-Lucent
Route de Villejust
91620 Nozay, France
Phone: +33 1 30772669
EMail: martin.vigoureux@alcatel-lucent.fr
Kohei Shiomoto
NTT
3-9-11 Midori-cho
Musashino-shi, Tokyo 180-8585, Japan
Phone: +81 422 594402
EMail: shiomoto.kohei@lab.ntt.co.jp
Deborah Brungard
ATT
Rm. D1-3C22 - 200 S. Laurel Ave.
Middletown, NJ 07748, USA
Phone: +1 732 4201573
EMail: dbrungard@att.com
Jean-Louis Le Roux
France Telecom
Avenue Pierre Marzin
22300 Lannion, France
Phone: +33 2 96053020
EMail: jean-louis.leroux@rd.francetelecom.com
Papadimitriou, et al. Standards Track [Page 24]
</pre>
|