1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621
|
<pre>Internet Engineering Task Force (IETF) A. Morton
Request for Comments: 6049 AT&T Labs
Category: Standards Track E. Stephan
ISSN: 2070-1721 France Telecom Orange
January 2011
<span class="h1">Spatial Composition of Metrics</span>
Abstract
This memo utilizes IP performance metrics that are applicable to both
complete paths and sub-paths, and it defines relationships to compose
a complete path metric from the sub-path metrics with some accuracy
with regard to the actual metrics. This is called "spatial
composition" in <a href="./rfc2330">RFC 2330</a>. The memo refers to the framework for
metric composition, and provides background and motivation for
combining metrics to derive others. The descriptions of several
composed metrics and statistics follow.
Status of This Memo
This is an Internet Standards Track document.
This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Further information on
Internet Standards is available in <a href="./rfc5741#section-2">Section 2 of RFC 5741</a>.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
<a href="http://www.rfc-editor.org/info/rfc6049">http://www.rfc-editor.org/info/rfc6049</a>.
<span class="grey">Morton & Stephan Standards Track [Page 1]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-2" ></span>
<span class="grey"><a href="./rfc6049">RFC 6049</a> Spatial Composition January 2011</span>
Copyright Notice
Copyright (c) 2011 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to <a href="https://www.rfc-editor.org/bcp/bcp78">BCP 78</a> and the IETF Trust's Legal
Provisions Relating to IETF Documents
(<a href="http://trustee.ietf.org/license-info">http://trustee.ietf.org/license-info</a>) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
This document may contain material from IETF Documents or IETF
Contributions published or made publicly available before November
10, 2008. The person(s) controlling the copyright in some of this
material may not have granted the IETF Trust the right to allow
modifications of such material outside the IETF Standards Process.
Without obtaining an adequate license from the person(s) controlling
the copyright in such materials, this document may not be modified
outside the IETF Standards Process, and derivative works of it may
not be created outside the IETF Standards Process, except to format
it for publication as an RFC or to translate it into languages other
than English.
<span class="grey">Morton & Stephan Standards Track [Page 2]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-3" ></span>
<span class="grey"><a href="./rfc6049">RFC 6049</a> Spatial Composition January 2011</span>
Table of Contents
<a href="#section-1">1</a>. Introduction ....................................................<a href="#page-4">4</a>
<a href="#section-1.1">1.1</a>. Motivation .................................................<a href="#page-6">6</a>
<a href="#section-1.2">1.2</a>. Requirements Language ......................................<a href="#page-6">6</a>
<a href="#section-2">2</a>. Scope and Application ...........................................<a href="#page-6">6</a>
<a href="#section-2.1">2.1</a>. Scope of Work ..............................................<a href="#page-6">6</a>
<a href="#section-2.2">2.2</a>. Application ................................................<a href="#page-7">7</a>
<a href="#section-2.3">2.3</a>. Incomplete Information .....................................<a href="#page-7">7</a>
<a href="#section-3">3</a>. Common Specifications for Composed Metrics ......................<a href="#page-8">8</a>
<a href="#section-3.1">3.1</a>. Name: Type-P ...............................................<a href="#page-8">8</a>
<a href="#section-3.1.1">3.1.1</a>. Metric Parameters ...................................<a href="#page-8">8</a>
<a href="#section-3.1.2">3.1.2</a>. Definition and Metric Units .........................<a href="#page-9">9</a>
<a href="#section-3.1.3">3.1.3</a>. Discussion and Other Details ........................<a href="#page-9">9</a>
<a href="#section-3.1.4">3.1.4</a>. Statistic ...........................................<a href="#page-9">9</a>
<a href="#section-3.1.5">3.1.5</a>. Composition Function ................................<a href="#page-9">9</a>
<a href="#section-3.1.6">3.1.6</a>. Statement of Conjecture and Assumptions ............<a href="#page-10">10</a>
<a href="#section-3.1.7">3.1.7</a>. Justification of the Composition Function ..........<a href="#page-10">10</a>
<a href="#section-3.1.8">3.1.8</a>. Sources of Deviation from the Ground Truth .........<a href="#page-10">10</a>
<a href="#section-3.1.9">3.1.9</a>. Specific Cases where the Conjecture Might Fail .....<a href="#page-11">11</a>
<a href="#section-3.1.10">3.1.10</a>. Application of Measurement Methodology ............<a href="#page-12">12</a>
<a href="#section-4">4</a>. One-Way Delay Composed Metrics and Statistics ..................<a href="#page-12">12</a>
<a href="#section-4.1">4.1</a>. Name: Type-P-Finite-One-way-Delay-<Sample>-Stream .........<a href="#page-12">12</a>
<a href="#section-4.1.1">4.1.1</a>. Metric Parameters ..................................<a href="#page-12">12</a>
<a href="#section-4.1.2">4.1.2</a>. Definition and Metric Units ........................<a href="#page-12">12</a>
<a href="#section-4.1.3">4.1.3</a>. Discussion and Other Details .......................<a href="#page-13">13</a>
<a href="#section-4.1.4">4.1.4</a>. Statistic ..........................................<a href="#page-13">13</a>
<a href="#section-4.2">4.2</a>. Name: Type-P-Finite-Composite-One-way-Delay-Mean ..........<a href="#page-13">13</a>
<a href="#section-4.2.1">4.2.1</a>. Metric Parameters ..................................<a href="#page-13">13</a>
<a href="#section-4.2.2">4.2.2</a>. Definition and Metric Units of the Mean Statistic ..14
<a href="#section-4.2.3">4.2.3</a>. Discussion and Other Details .......................<a href="#page-14">14</a>
<a href="#section-4.2.4">4.2.4</a>. Statistic ..........................................<a href="#page-14">14</a>
<a href="#section-4.2.5">4.2.5</a>. Composition Function: Sum of Means .................<a href="#page-14">14</a>
<a href="#section-4.2.6">4.2.6</a>. Statement of Conjecture and Assumptions ............<a href="#page-15">15</a>
<a href="#section-4.2.7">4.2.7</a>. Justification of the Composition Function ..........<a href="#page-15">15</a>
<a href="#section-4.2.8">4.2.8</a>. Sources of Deviation from the Ground Truth .........<a href="#page-15">15</a>
<a href="#section-4.2.9">4.2.9</a>. Specific Cases where the Conjecture Might Fail .....<a href="#page-15">15</a>
<a href="#section-4.2.10">4.2.10</a>. Application of Measurement Methodology ............<a href="#page-16">16</a>
<a href="#section-4.3">4.3</a>. Name: Type-P-Finite-Composite-One-way-Delay-Minimum .......<a href="#page-16">16</a>
<a href="#section-4.3.1">4.3.1</a>. Metric Parameters ..................................<a href="#page-16">16</a>
4.3.2. Definition and Metric Units of the Minimum
Statistic ..........................................<a href="#page-16">16</a>
<a href="#section-4.3.3">4.3.3</a>. Discussion and Other Details .......................<a href="#page-16">16</a>
<a href="#section-4.3.4">4.3.4</a>. Statistic ..........................................<a href="#page-16">16</a>
<a href="#section-4.3.5">4.3.5</a>. Composition Function: Sum of Minima ................<a href="#page-16">16</a>
<a href="#section-4.3.6">4.3.6</a>. Statement of Conjecture and Assumptions ............<a href="#page-17">17</a>
<a href="#section-4.3.7">4.3.7</a>. Justification of the Composition Function ..........<a href="#page-17">17</a>
<a href="#section-4.3.8">4.3.8</a>. Sources of Deviation from the Ground Truth .........<a href="#page-17">17</a>
<span class="grey">Morton & Stephan Standards Track [Page 3]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-4" ></span>
<span class="grey"><a href="./rfc6049">RFC 6049</a> Spatial Composition January 2011</span>
<a href="#section-4.3.9">4.3.9</a>. Specific Cases where the Conjecture Might Fail .....<a href="#page-17">17</a>
<a href="#section-4.3.10">4.3.10</a>. Application of Measurement Methodology ............<a href="#page-17">17</a>
<a href="#section-5">5</a>. Loss Metrics and Statistics ....................................<a href="#page-18">18</a>
5.1. Type-P-Composite-One-way-Packet-Loss-Empirical-Probability 18
<a href="#section-5.1.1">5.1.1</a>. Metric Parameters ..................................<a href="#page-18">18</a>
<a href="#section-5.1.2">5.1.2</a>. Definition and Metric Units ........................<a href="#page-18">18</a>
<a href="#section-5.1.3">5.1.3</a>. Discussion and Other Details .......................<a href="#page-18">18</a>
5.1.4. Statistic:
Type-P-One-way-Packet-Loss-Empirical-Probability ...<a href="#page-18">18</a>
5.1.5. Composition Function: Composition of
Empirical Probabilities ............................<a href="#page-18">18</a>
<a href="#section-5.1.6">5.1.6</a>. Statement of Conjecture and Assumptions ............<a href="#page-19">19</a>
<a href="#section-5.1.7">5.1.7</a>. Justification of the Composition Function ..........<a href="#page-19">19</a>
<a href="#section-5.1.8">5.1.8</a>. Sources of Deviation from the Ground Truth .........<a href="#page-19">19</a>
<a href="#section-5.1.9">5.1.9</a>. Specific Cases where the Conjecture Might Fail .....<a href="#page-19">19</a>
<a href="#section-5.1.10">5.1.10</a>. Application of Measurement Methodology ............<a href="#page-19">19</a>
<a href="#section-6">6</a>. Delay Variation Metrics and Statistics .........................<a href="#page-20">20</a>
<a href="#section-6.1">6.1</a>. Name: Type-P-One-way-pdv-refmin-<Sample>-Stream ...........<a href="#page-20">20</a>
<a href="#section-6.1.1">6.1.1</a>. Metric Parameters ..................................<a href="#page-20">20</a>
<a href="#section-6.1.2">6.1.2</a>. Definition and Metric Units ........................<a href="#page-20">20</a>
<a href="#section-6.1.3">6.1.3</a>. Discussion and Other Details .......................<a href="#page-21">21</a>
<a href="#section-6.1.4">6.1.4</a>. Statistics: Mean, Variance, Skewness, Quantile .....<a href="#page-21">21</a>
<a href="#section-6.1.5">6.1.5</a>. Composition Functions ..............................<a href="#page-22">22</a>
<a href="#section-6.1.6">6.1.6</a>. Statement of Conjecture and Assumptions ............<a href="#page-23">23</a>
<a href="#section-6.1.7">6.1.7</a>. Justification of the Composition Function ..........<a href="#page-23">23</a>
<a href="#section-6.1.8">6.1.8</a>. Sources of Deviation from the Ground Truth .........<a href="#page-23">23</a>
<a href="#section-6.1.9">6.1.9</a>. Specific Cases where the Conjecture Might Fail .....<a href="#page-24">24</a>
<a href="#section-6.1.10">6.1.10</a>. Application of Measurement Methodology ............<a href="#page-24">24</a>
<a href="#section-7">7</a>. Security Considerations ........................................<a href="#page-24">24</a>
<a href="#section-7.1">7.1</a>. Denial-of-Service Attacks .................................<a href="#page-24">24</a>
<a href="#section-7.2">7.2</a>. User Data Confidentiality .................................<a href="#page-24">24</a>
<a href="#section-7.3">7.3</a>. Interference with the Metrics .............................<a href="#page-24">24</a>
<a href="#section-8">8</a>. IANA Considerations ............................................<a href="#page-25">25</a>
<a href="#section-9">9</a>. Contributors and Acknowledgements ..............................<a href="#page-27">27</a>
<a href="#section-10">10</a>. References ....................................................<a href="#page-28">28</a>
<a href="#section-10.1">10.1</a>. Normative References .....................................<a href="#page-28">28</a>
<a href="#section-10.2">10.2</a>. Informative References ...................................<a href="#page-28">28</a>
<span class="h2"><a class="selflink" id="section-1" href="#section-1">1</a>. Introduction</span>
The IP Performance Metrics (IPPM) framework [<a href="./rfc2330" title=""Framework for IP Performance Metrics"">RFC2330</a>] describes two
forms of metric composition: spatial and temporal. The composition
framework [<a href="./rfc5835" title=""Framework for Metric Composition"">RFC5835</a>] expands and further qualifies these original
forms into three categories. This memo describes spatial
composition, one of the categories of metrics under the umbrella of
the composition framework.
<span class="grey">Morton & Stephan Standards Track [Page 4]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-5" ></span>
<span class="grey"><a href="./rfc6049">RFC 6049</a> Spatial Composition January 2011</span>
Spatial composition encompasses the definition of performance metrics
that are applicable to a complete path, based on metrics collected on
various sub-paths.
The main purpose of this memo is to define the deterministic
functions that yield the complete path metrics using metrics of the
sub-paths. The effectiveness of such metrics is dependent on their
usefulness in analysis and applicability with practical measurement
methods.
The relationships may involve conjecture, and [<a href="./rfc2330" title=""Framework for IP Performance Metrics"">RFC2330</a>] lists four
points that the metric definitions should include:
o the specific conjecture applied to the metric and assumptions of
the statistical model of the process being measured (if any; see
<a href="./rfc2330#section-12">[RFC2330], Section 12</a>),
o a justification of the practical utility of the composition in
terms of making accurate measurements of the metric on the path,
o a justification of the usefulness of the composition in terms of
making analysis of the path using A-frame concepts more effective,
and
o an analysis of how the conjecture could be incorrect.
Also, [<a href="./rfc2330" title=""Framework for IP Performance Metrics"">RFC2330</a>] gives an example using the conjecture that the delay
of a path is very nearly the sum of the delays of the exchanges and
clouds of the corresponding path digest. This example is
particularly relevant to those who wish to assess the performance of
an inter-domain path without direct measurement, and the performance
estimate of the complete path is related to the measured results for
various sub-paths instead.
Approximate functions between the sub-path and complete path metrics
are useful, with knowledge of the circumstances where the
relationships are/are not applicable. For example, we would not
expect that delay singletons from each sub-path would sum to produce
an accurate estimate of a delay singleton for the complete path
(unless all the delays were essentially constant -- very unlikely).
However, other delay statistics (based on a reasonable sample size)
may have a sufficiently large set of circumstances where they are
applicable.
<span class="grey">Morton & Stephan Standards Track [Page 5]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-6" ></span>
<span class="grey"><a href="./rfc6049">RFC 6049</a> Spatial Composition January 2011</span>
<span class="h3"><a class="selflink" id="section-1.1" href="#section-1.1">1.1</a>. Motivation</span>
One-way metrics defined in other RFCs (such as [<a href="./rfc2679" title=""A One-way Delay Metric for IPPM"">RFC2679</a>] and
[<a href="./rfc2680" title=""A One-way Packet Loss Metric for IPPM"">RFC2680</a>]) all assume that the measurement can be practically carried
out between the source and the destination of interest. Sometimes
there are reasons that the measurement cannot be executed from the
source to the destination. For instance, the measurement path may
cross several independent domains that have conflicting policies,
measurement tools and methods, and measurement time assignment. The
solution then may be the composition of several sub-path
measurements. This means each domain performs the one-way
measurement on a sub-path between two nodes that are involved in the
complete path, following its own policy, using its own measurement
tools and methods, and using its own measurement timing. Under the
appropriate conditions, one can combine the sub-path one-way metric
results to estimate the complete path one-way measurement metric with
some degree of accuracy.
<span class="h3"><a class="selflink" id="section-1.2" href="#section-1.2">1.2</a>. Requirements Language</span>
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in <a href="./rfc2119">RFC 2119</a> [<a href="./rfc2119" title=""Key words for use in RFCs to Indicate Requirement Levels"">RFC2119</a>].
In this memo, the characters "<=" should be read as "less than or
equal to" and ">=" as "greater than or equal to".
<span class="h2"><a class="selflink" id="section-2" href="#section-2">2</a>. Scope and Application</span>
<span class="h3"><a class="selflink" id="section-2.1" href="#section-2.1">2.1</a>. Scope of Work</span>
For the primary IP Performance Metrics RFCs for loss [<a href="./rfc2680" title=""A One-way Packet Loss Metric for IPPM"">RFC2680</a>], delay
[<a href="./rfc2679" title=""A One-way Delay Metric for IPPM"">RFC2679</a>], and delay variation [<a href="./rfc3393" title=""IP Packet Delay Variation Metric for IP Performance Metrics (IPPM)"">RFC3393</a>], this memo gives a set of
metrics that can be composed from the same or similar sub-path
metrics. This means that the composition function may utilize:
o the same metric for each sub-path;
o multiple metrics for each sub-path (possibly one that is the same
as the complete path metric);
o a single sub-path metric that is different from the complete path
metric;
o different measurement techniques like active [<a href="./rfc2330" title=""Framework for IP Performance Metrics"">RFC2330</a>], [<a href="./rfc3432" title=""Network performance measurement with periodic streams"">RFC3432</a>]
and passive [<a href="./rfc5474" title=""A Framework for Packet Selection and Reporting"">RFC5474</a>].
<span class="grey">Morton & Stephan Standards Track [Page 6]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-7" ></span>
<span class="grey"><a href="./rfc6049">RFC 6049</a> Spatial Composition January 2011</span>
We note a possibility: using a complete path metric and all but one
sub-path metric to infer the performance of the missing sub-path,
especially when the "last" sub-path metric is missing. However, such
de-composition calculations, and the corresponding set of issues they
raise, are beyond the scope of this memo.
<span class="h3"><a class="selflink" id="section-2.2" href="#section-2.2">2.2</a>. Application</span>
The composition framework [<a href="./rfc5835" title=""Framework for Metric Composition"">RFC5835</a>] requires the specification of the
applicable circumstances for each metric. In particular, each
section addresses whether the metric:
o Requires the same test packets to traverse all sub-paths or may
use similar packets sent and collected separately in each
sub-path.
o Requires homogeneity of measurement methodologies or can allow a
degree of flexibility (e.g., active, active spatial division
[<a href="./rfc5644" title=""IP Performance Metrics (IPPM): Spatial and Multicast"">RFC5644</a>], or passive methods produce the "same" metric). Also,
the applicable sending streams will be specified, such as Poisson,
Periodic, or both.
o Needs information or access that will only be available within an
operator's domain, or is applicable to inter-domain composition.
o Requires synchronized measurement start and stop times in all
sub-paths or largely overlapping measurement intervals, or no
timing requirements.
o Requires the assumption of sub-path independence with regard to
the metric being defined/composed or other assumptions.
o Has known sources of inaccuracy/error and identifies the sources.
<span class="h3"><a class="selflink" id="section-2.3" href="#section-2.3">2.3</a>. Incomplete Information</span>
In practice, when measurements cannot be initiated on a sub-path (and
perhaps the measurement system gives up during the test interval),
then there will not be a value for the sub-path reported, and the
entire test result SHOULD be recorded as "undefined". This case
should be distinguished from the case where the measurement system
continued to send packets throughout the test interval, but all were
declared lost.
When a composed metric requires measurements from sub-paths A, B, and
C, and one or more of the sub-path results are undefined, then the
composed metric SHOULD also be recorded as undefined.
<span class="grey">Morton & Stephan Standards Track [Page 7]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-8" ></span>
<span class="grey"><a href="./rfc6049">RFC 6049</a> Spatial Composition January 2011</span>
<span class="h2"><a class="selflink" id="section-3" href="#section-3">3</a>. Common Specifications for Composed Metrics</span>
To reduce the redundant information presented in the detailed metrics
sections that follow, this section presents the specifications that
are common to two or more metrics. The section is organized using
the same subsections as the individual metrics, to simplify
comparisons.
Also, the index variables are represented as follows:
o m = index for packets sent.
o n = index for packets received.
o s = index for involved sub-paths.
<span class="h3"><a class="selflink" id="section-3.1" href="#section-3.1">3.1</a>. Name: Type-P</span>
All metrics use the "Type-P" convention as described in [<a href="./rfc2330" title=""Framework for IP Performance Metrics"">RFC2330</a>].
The rest of the name is unique to each metric.
<span class="h4"><a class="selflink" id="section-3.1.1" href="#section-3.1.1">3.1.1</a>. Metric Parameters</span>
o Src, the IP address of a host.
o Dst, the IP address of a host.
o T, a time (start of test interval).
o Tf, a time (end of test interval).
o lambda, a rate in reciprocal seconds (for Poisson Streams).
o incT, the nominal duration of inter-packet interval, first bit to
first bit (for Periodic Streams).
o dT, the duration of the allowed interval for Periodic Stream
sample start times.
o T0, a time that MUST be selected at random from the interval
[T, T + dT] to start generating packets and taking measurements
(for Periodic Streams).
o TstampSrc, the wire time of the packet as measured at MP(Src)
(measurement point at the source).
o TstampDst, the wire time of the packet as measured at MP(Dst),
assigned to packets that arrive within a "reasonable" time.
<span class="grey">Morton & Stephan Standards Track [Page 8]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-9" ></span>
<span class="grey"><a href="./rfc6049">RFC 6049</a> Spatial Composition January 2011</span>
o Tmax, a maximum waiting time for packets at the destination, set
sufficiently long to disambiguate packets with long delays from
packets that are discarded (lost); thus, the distribution of delay
is not truncated.
o M, the total number of packets sent between T0 and Tf.
o N, the total number of packets received at Dst (sent between T0
and Tf).
o S, the number of sub-paths involved in the complete Src-Dst path.
o Type-P, as defined in [<a href="./rfc2330" title=""Framework for IP Performance Metrics"">RFC2330</a>], which includes any field that may
affect a packet's treatment as it traverses the network.
In metric names, the term "<Sample>" is intended to be replaced by
the name of the method used to define a sample of values of parameter
TstampSrc. This can be done in several ways, including:
1. Poisson: a pseudo-random Poisson process of rate lambda, whose
values fall between T and Tf. The time interval between
successive values of TstampSrc will then average 1/lambda, as per
[<a href="./rfc2330" title=""Framework for IP Performance Metrics"">RFC2330</a>].
2. Periodic: a Periodic stream process with pseudo-random start time
T0 between T and dT, and nominal inter-packet interval incT, as
per [<a href="./rfc3432" title=""Network performance measurement with periodic streams"">RFC3432</a>].
<span class="h4"><a class="selflink" id="section-3.1.2" href="#section-3.1.2">3.1.2</a>. Definition and Metric Units</span>
This section is unique for every metric.
<span class="h4"><a class="selflink" id="section-3.1.3" href="#section-3.1.3">3.1.3</a>. Discussion and Other Details</span>
This section is unique for every metric.
<span class="h4"><a class="selflink" id="section-3.1.4" href="#section-3.1.4">3.1.4</a>. Statistic</span>
This section is unique for every metric.
<span class="h4"><a class="selflink" id="section-3.1.5" href="#section-3.1.5">3.1.5</a>. Composition Function</span>
This section is unique for every metric.
<span class="grey">Morton & Stephan Standards Track [Page 9]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-10" ></span>
<span class="grey"><a href="./rfc6049">RFC 6049</a> Spatial Composition January 2011</span>
<span class="h4"><a class="selflink" id="section-3.1.6" href="#section-3.1.6">3.1.6</a>. Statement of Conjecture and Assumptions</span>
This section is unique for each metric. The term "ground truth" is
frequently used in these sections and is defined in <a href="./rfc5835#section-4.7">Section 4.7 of
[RFC5835]</a>.
<span class="h4"><a class="selflink" id="section-3.1.7" href="#section-3.1.7">3.1.7</a>. Justification of the Composition Function</span>
It is sometimes impractical to conduct active measurements between
every Src-Dst pair. Since the full mesh of N measurement points
grows as N x N, the scope of measurement may be limited by testing
resources.
There may be varying limitations on active testing in different parts
of the network. For example, it may not be possible to collect the
desired sample size in each test interval when access link speed is
limited, because of the potential for measurement traffic to degrade
the user traffic performance. The conditions on a low-speed access
link may be understood well enough to permit use of a small sample
size/rate, while a larger sample size/rate may be used on other
sub-paths.
Also, since measurement operations have a real monetary cost, there
is value in re-using measurements where they are applicable, rather
than launching new measurements for every possible source-destination
pair.
<span class="h4"><a class="selflink" id="section-3.1.8" href="#section-3.1.8">3.1.8</a>. Sources of Deviation from the Ground Truth</span>
<span class="h5"><a class="selflink" id="section-3.1.8.1" href="#section-3.1.8.1">3.1.8.1</a>. Sub-Path List Differs from Complete Path</span>
The measurement packets, each having source and destination addresses
intended for collection at edges of the sub-path, may take a
different specific path through the network equipment and links when
compared to packets with the source and destination addresses of the
complete path. Example sources of parallel paths include Equal Cost
Multi-Path and parallel (or bundled) links. Therefore, the
performance estimated from the composition of sub-path measurements
may differ from the performance experienced by packets on the
complete path. Multiple measurements employing sufficient sub-path
address pairs might produce bounds on the extent of this error.
We also note the possibility of re-routing during a measurement
interval, as it may affect the correspondence between packets
traversing the complete path and the sub-paths that were "involved"
prior to the re-route.
<span class="grey">Morton & Stephan Standards Track [Page 10]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-11" ></span>
<span class="grey"><a href="./rfc6049">RFC 6049</a> Spatial Composition January 2011</span>
<span class="h5"><a class="selflink" id="section-3.1.8.2" href="#section-3.1.8.2">3.1.8.2</a>. Sub-Path Contains Extra Network Elements</span>
Related to the case of an alternate path described above is the case
where elements in the measured path are unique to measurement system
connectivity. For example, a measurement system may use a dedicated
link to a LAN switch, and packets on the complete path do not
traverse that link. The performance of such a dedicated link would
be measured continuously, and its contribution to the sub-path
metrics SHOULD be minimized as a source of error.
<span class="h5"><a class="selflink" id="section-3.1.8.3" href="#section-3.1.8.3">3.1.8.3</a>. Sub-Paths Have Incomplete Coverage</span>
Measurements of sub-path performance may not cover all the network
elements on the complete path. For example, the network exchange
points might be excluded unless a cooperative measurement is
conducted. In this example, test packets on the previous sub-path
are received just before the exchange point, and test packets on the
next sub-path are injected just after the same exchange point.
Clearly, the set of sub-path measurements SHOULD cover all critical
network elements in the complete path.
<span class="h5"><a class="selflink" id="section-3.1.8.4" href="#section-3.1.8.4">3.1.8.4</a>. Absence of Route</span>
At a specific point in time, no viable route exists between the
complete path source and destination. The routes selected for one or
more sub-paths therefore differ from the complete path.
Consequently, spatial composition may produce finite estimation of a
ground truth metric (see <a href="./rfc5835#section-4.7">Section 4.7 of [RFC5835]</a>) between a source
and a destination, even when the route between them is undefined.
<span class="h4"><a class="selflink" id="section-3.1.9" href="#section-3.1.9">3.1.9</a>. Specific Cases where the Conjecture Might Fail</span>
This section is unique for most metrics (see the metric-specific
sections).
For delay-related metrics, one-way delay always depends on packet
size and link capacity, since it is measured in [<a href="./rfc2679" title=""A One-way Delay Metric for IPPM"">RFC2679</a>] from first
bit to last bit. If the size of an IP packet changes on its route
(due to encapsulation), this can influence delay performance.
However, the main error source may be the additional processing
associated with encapsulation and encryption/decryption if not
experienced or accounted for in sub-path measurements.
Fragmentation is a major issue for composition accuracy, since all
metrics require all fragments to arrive before proceeding, and
fragmented complete path performance is likely to be different from
performance with non-fragmented packets and composed metrics based on
non-fragmented sub-path measurements.
<span class="grey">Morton & Stephan Standards Track [Page 11]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-12" ></span>
<span class="grey"><a href="./rfc6049">RFC 6049</a> Spatial Composition January 2011</span>
Highly manipulated routing can cause measurement error if not
expected and compensated for. For example, policy-based MPLS routing
could modify the class of service for the sub-paths and complete
path.
<span class="h4"><a class="selflink" id="section-3.1.10" href="#section-3.1.10">3.1.10</a>. Application of Measurement Methodology</span>
o The methodology SHOULD use similar packets sent and collected
separately in each sub-path, where "similar" in this case means
that Type-P contains as many equal attributes as possible, while
recognizing that there will be differences. Note that Type-P
includes stream characteristics (e.g., Poisson, Periodic).
o The methodology allows a degree of flexibility regarding test
stream generation (e.g., active or passive methods can produce an
equivalent result, but the lack of control over the source,
timing, and correlation of passive measurements is much more
challenging).
o Poisson and/or Periodic streams are RECOMMENDED.
o The methodology applies to both inter-domain and intra-domain
composition.
o The methodology SHOULD have synchronized measurement time
intervals in all sub-paths, but largely overlapping intervals MAY
suffice.
o Assumption of sub-path independence with regard to the metric
being defined/composed is REQUIRED.
<span class="h2"><a class="selflink" id="section-4" href="#section-4">4</a>. One-Way Delay Composed Metrics and Statistics</span>
<span class="h3"><a class="selflink" id="section-4.1" href="#section-4.1">4.1</a>. Name: Type-P-Finite-One-way-Delay-<Sample>-Stream</span>
This metric is a necessary element of delay composition metrics, and
its definition does not formally exist elsewhere in IPPM literature.
<span class="h4"><a class="selflink" id="section-4.1.1" href="#section-4.1.1">4.1.1</a>. Metric Parameters</span>
See the common parameters section (<a href="#section-3.1.1">Section 3.1.1</a>).
<span class="h4"><a class="selflink" id="section-4.1.2" href="#section-4.1.2">4.1.2</a>. Definition and Metric Units</span>
Using the parameters above, we obtain the value of the Type-P-One-
way-Delay singleton as per [<a href="./rfc2679" title=""A One-way Delay Metric for IPPM"">RFC2679</a>].
<span class="grey">Morton & Stephan Standards Track [Page 12]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-13" ></span>
<span class="grey"><a href="./rfc6049">RFC 6049</a> Spatial Composition January 2011</span>
For each packet "[i]" that has a finite one-way delay (in other
words, excluding packets that have undefined one-way delay):
Type-P-Finite-One-way-Delay-<Sample>-Stream[i] =
FiniteDelay[i] = TstampDst - TstampSrc
This metric is measured in units of time in seconds, expressed in
sufficiently low resolution to convey meaningful quantitative
information. For example, resolution of microseconds is usually
sufficient.
<span class="h4"><a class="selflink" id="section-4.1.3" href="#section-4.1.3">4.1.3</a>. Discussion and Other Details</span>
The "Type-P-Finite-One-way-Delay" metric permits calculation of the
sample mean statistic. This resolves the problem of including lost
packets in the sample (whose delay is undefined) and the issue with
the informal assignment of infinite delay to lost packets (practical
systems can only assign some very large value).
The Finite-One-way-Delay approach handles the problem of lost packets
by reducing the event space. We consider conditional statistics, and
estimate the mean one-way delay conditioned on the event that all
packets in the sample arrive at the destination (within the specified
waiting time, Tmax). This offers a way to make some valid statements
about one-way delay, at the same time avoiding events with undefined
outcomes. This approach is derived from the treatment of lost
packets in [<a href="./rfc3393" title=""IP Packet Delay Variation Metric for IP Performance Metrics (IPPM)"">RFC3393</a>], and is similar to [<a href="#ref-Y.1540" title=""Internet protocol data communication service - IP packet transfer and availability performance parameters"">Y.1540</a>].
<span class="h4"><a class="selflink" id="section-4.1.4" href="#section-4.1.4">4.1.4</a>. Statistic</span>
All statistics defined in [<a href="./rfc2679" title=""A One-way Delay Metric for IPPM"">RFC2679</a>] are applicable to the finite one-
way delay, and additional metrics are possible, such as the mean (see
below).
<span class="h3"><a class="selflink" id="section-4.2" href="#section-4.2">4.2</a>. Name: Type-P-Finite-Composite-One-way-Delay-Mean</span>
This section describes a statistic based on the Type-P-Finite-One-
way-Delay-<Sample>-Stream metric.
<span class="h4"><a class="selflink" id="section-4.2.1" href="#section-4.2.1">4.2.1</a>. Metric Parameters</span>
See the common parameters section (<a href="#section-3.1.1">Section 3.1.1</a>).
<span class="grey">Morton & Stephan Standards Track [Page 13]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-14" ></span>
<span class="grey"><a href="./rfc6049">RFC 6049</a> Spatial Composition January 2011</span>
<span class="h4"><a class="selflink" id="section-4.2.2" href="#section-4.2.2">4.2.2</a>. Definition and Metric Units of the Mean Statistic</span>
We define
Type-P-Finite-One-way-Delay-Mean =
N
---
1 \
MeanDelay = - * > (FiniteDelay [n])
N /
---
n = 1
where all packets n = 1 through N have finite singleton delays.
This metric is measured in units of time in seconds, expressed in
sufficiently fine resolution to convey meaningful quantitative
information. For example, resolution of microseconds is usually
sufficient.
<span class="h4"><a class="selflink" id="section-4.2.3" href="#section-4.2.3">4.2.3</a>. Discussion and Other Details</span>
The Type-P-Finite-One-way-Delay-Mean metric requires the conditional
delay distribution described in <a href="#section-4.1.3">Section 4.1.3</a>.
<span class="h4"><a class="selflink" id="section-4.2.4" href="#section-4.2.4">4.2.4</a>. Statistic</span>
This metric, a mean, does not require additional statistics.
<span class="h4"><a class="selflink" id="section-4.2.5" href="#section-4.2.5">4.2.5</a>. Composition Function: Sum of Means</span>
The Type-P-Finite-Composite-One-way-Delay-Mean, or CompMeanDelay, for
the complete source to destination path can be calculated from the
sum of the mean delays of all of its S constituent sub-paths.
<span class="grey">Morton & Stephan Standards Track [Page 14]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-15" ></span>
<span class="grey"><a href="./rfc6049">RFC 6049</a> Spatial Composition January 2011</span>
Then the
Type-P-Finite-Composite-One-way-Delay-Mean =
S
---
\
CompMeanDelay = > (MeanDelay [s])
/
---
s = 1
where sub-paths s = 1 to S are involved in the complete path.
<span class="h4"><a class="selflink" id="section-4.2.6" href="#section-4.2.6">4.2.6</a>. Statement of Conjecture and Assumptions</span>
The mean of a sufficiently large stream of packets measured on each
sub-path during the interval [T, Tf] will be representative of the
ground truth mean of the delay distribution (and the distributions
themselves are sufficiently independent), such that the means may be
added to produce an estimate of the complete path mean delay.
It is assumed that the one-way delay distributions of the sub-paths
and the complete path are continuous. The mean of multi-modal
distributions has the unfortunate property that such a value may
never occur.
<span class="h4"><a class="selflink" id="section-4.2.7" href="#section-4.2.7">4.2.7</a>. Justification of the Composition Function</span>
See the common section (<a href="#section-3">Section 3</a>).
<span class="h4"><a class="selflink" id="section-4.2.8" href="#section-4.2.8">4.2.8</a>. Sources of Deviation from the Ground Truth</span>
See the common section (<a href="#section-3">Section 3</a>).
<span class="h4"><a class="selflink" id="section-4.2.9" href="#section-4.2.9">4.2.9</a>. Specific Cases where the Conjecture Might Fail</span>
If any of the sub-path distributions are multi-modal, then the
measured means may not be stable, and in this case the mean will not
be a particularly useful statistic when describing the delay
distribution of the complete path.
The mean may not be a sufficiently robust statistic to produce a
reliable estimate, or to be useful even if it can be measured.
If a link contributing non-negligible delay is erroneously included
or excluded, the composition will be in error.
<span class="grey">Morton & Stephan Standards Track [Page 15]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-16" ></span>
<span class="grey"><a href="./rfc6049">RFC 6049</a> Spatial Composition January 2011</span>
<span class="h4"><a class="selflink" id="section-4.2.10" href="#section-4.2.10">4.2.10</a>. Application of Measurement Methodology</span>
The requirements of the common section (<a href="#section-3">Section 3</a>) apply here as
well.
<span class="h3"><a class="selflink" id="section-4.3" href="#section-4.3">4.3</a>. Name: Type-P-Finite-Composite-One-way-Delay-Minimum</span>
This section describes a statistic based on the Type-P-Finite-One-
way-Delay-<Sample>-Stream metric, and the composed metric based on
that statistic.
<span class="h4"><a class="selflink" id="section-4.3.1" href="#section-4.3.1">4.3.1</a>. Metric Parameters</span>
See the common parameters section (<a href="#section-3.1.1">Section 3.1.1</a>).
<span class="h4"><a class="selflink" id="section-4.3.2" href="#section-4.3.2">4.3.2</a>. Definition and Metric Units of the Minimum Statistic</span>
We define
Type-P-Finite-One-way-Delay-Minimum =
MinDelay = (FiniteDelay [j])
such that for some index, j, where 1 <= j <= N
FiniteDelay[j] <= FiniteDelay[n] for all n
where all packets n = 1 through N have finite singleton delays.
This metric is measured in units of time in seconds, expressed in
sufficiently fine resolution to convey meaningful quantitative
information. For example, resolution of microseconds is usually
sufficient.
<span class="h4"><a class="selflink" id="section-4.3.3" href="#section-4.3.3">4.3.3</a>. Discussion and Other Details</span>
The Type-P-Finite-One-way-Delay-Minimum metric requires the
conditional delay distribution described in <a href="#section-4.1.3">Section 4.1.3</a>.
<span class="h4"><a class="selflink" id="section-4.3.4" href="#section-4.3.4">4.3.4</a>. Statistic</span>
This metric, a minimum, does not require additional statistics.
<span class="h4"><a class="selflink" id="section-4.3.5" href="#section-4.3.5">4.3.5</a>. Composition Function: Sum of Minima</span>
The Type-P-Finite-Composite-One-way-Delay-Minimum, or CompMinDelay,
for the complete source to destination path can be calculated from
the sum of the minimum delays of all of its S constituent sub-paths.
<span class="grey">Morton & Stephan Standards Track [Page 16]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-17" ></span>
<span class="grey"><a href="./rfc6049">RFC 6049</a> Spatial Composition January 2011</span>
Then the
Type-P-Finite-Composite-One-way-Delay-Minimum =
S
---
\
CompMinDelay = > (MinDelay [s])
/
---
s = 1
<span class="h4"><a class="selflink" id="section-4.3.6" href="#section-4.3.6">4.3.6</a>. Statement of Conjecture and Assumptions</span>
The minimum of a sufficiently large stream of packets measured on
each sub-path during the interval [T, Tf] will be representative of
the ground truth minimum of the delay distribution (and the
distributions themselves are sufficiently independent), such that the
minima may be added to produce an estimate of the complete path
minimum delay.
It is assumed that the one-way delay distributions of the sub-paths
and the complete path are continuous.
<span class="h4"><a class="selflink" id="section-4.3.7" href="#section-4.3.7">4.3.7</a>. Justification of the Composition Function</span>
See the common section (<a href="#section-3">Section 3</a>).
<span class="h4"><a class="selflink" id="section-4.3.8" href="#section-4.3.8">4.3.8</a>. Sources of Deviation from the Ground Truth</span>
See the common section (<a href="#section-3">Section 3</a>).
<span class="h4"><a class="selflink" id="section-4.3.9" href="#section-4.3.9">4.3.9</a>. Specific Cases where the Conjecture Might Fail</span>
If the routing on any of the sub-paths is not stable, then the
measured minimum may not be stable. In this case the composite
minimum would tend to produce an estimate for the complete path that
may be too low for the current path.
<span class="h4"><a class="selflink" id="section-4.3.10" href="#section-4.3.10">4.3.10</a>. Application of Measurement Methodology</span>
The requirements of the common section (<a href="#section-3">Section 3</a>) apply here as
well.
<span class="grey">Morton & Stephan Standards Track [Page 17]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-18" ></span>
<span class="grey"><a href="./rfc6049">RFC 6049</a> Spatial Composition January 2011</span>
<span class="h2"><a class="selflink" id="section-5" href="#section-5">5</a>. Loss Metrics and Statistics</span>
<span class="h3"><a class="selflink" id="section-5.1" href="#section-5.1">5.1</a>. Type-P-Composite-One-way-Packet-Loss-Empirical-Probability</span>
<span class="h4"><a class="selflink" id="section-5.1.1" href="#section-5.1.1">5.1.1</a>. Metric Parameters</span>
See the common parameters section (<a href="#section-3.1.1">Section 3.1.1</a>).
<span class="h4"><a class="selflink" id="section-5.1.2" href="#section-5.1.2">5.1.2</a>. Definition and Metric Units</span>
Using the parameters above, we obtain the value of the Type-P-One-
way-Packet-Loss singleton and stream as per [<a href="./rfc2680" title=""A One-way Packet Loss Metric for IPPM"">RFC2680</a>].
We obtain a sequence of pairs with elements as follows:
o TstampSrc, as above.
o L, either zero or one, where L = 1 indicates loss and L = 0
indicates arrival at the destination within TstampSrc + Tmax.
<span class="h4"><a class="selflink" id="section-5.1.3" href="#section-5.1.3">5.1.3</a>. Discussion and Other Details</span>
None.
<span class="h4"><a class="selflink" id="section-5.1.4" href="#section-5.1.4">5.1.4</a>. Statistic: Type-P-One-way-Packet-Loss-Empirical-Probability</span>
Given the stream parameter M, the number of packets sent, we can
define the Empirical Probability of Loss Statistic (Ep), consistent
with average loss in [<a href="./rfc2680" title=""A One-way Packet Loss Metric for IPPM"">RFC2680</a>], as follows:
Type-P-One-way-Packet-Loss-Empirical-Probability =
M
---
1 \
Ep = - * > (L[m])
M /
---
m = 1
where all packets m = 1 through M have a value for L.
<span class="h4"><a class="selflink" id="section-5.1.5" href="#section-5.1.5">5.1.5</a>. Composition Function: Composition of Empirical Probabilities</span>
The Type-P-One-way-Composite-Packet-Loss-Empirical-Probability, or
CompEp, for the complete source to destination path can be calculated
by combining the Ep of all of its constituent sub-paths (Ep1, Ep2,
Ep3, ... Epn) as
<span class="grey">Morton & Stephan Standards Track [Page 18]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-19" ></span>
<span class="grey"><a href="./rfc6049">RFC 6049</a> Spatial Composition January 2011</span>
Type-P-Composite-One-way-Packet-Loss-Empirical-Probability =
CompEp = 1 - {(1 - Ep1) x (1 - Ep2) x (1 - Ep3) x ... x (1 - EpS)}
If any Eps is undefined in a particular measurement interval,
possibly because a measurement system failed to report a value, then
any CompEp that uses sub-path s for that measurement interval is
undefined.
<span class="h4"><a class="selflink" id="section-5.1.6" href="#section-5.1.6">5.1.6</a>. Statement of Conjecture and Assumptions</span>
The empirical probability of loss calculated on a sufficiently large
stream of packets measured on each sub-path during the interval
[T, Tf] will be representative of the ground truth empirical loss
probability (and the probabilities themselves are sufficiently
independent), such that the sub-path probabilities may be combined to
produce an estimate of the complete path empirical loss probability.
<span class="h4"><a class="selflink" id="section-5.1.7" href="#section-5.1.7">5.1.7</a>. Justification of the Composition Function</span>
See the common section (<a href="#section-3">Section 3</a>).
<span class="h4"><a class="selflink" id="section-5.1.8" href="#section-5.1.8">5.1.8</a>. Sources of Deviation from the Ground Truth</span>
See the common section (<a href="#section-3">Section 3</a>).
<span class="h4"><a class="selflink" id="section-5.1.9" href="#section-5.1.9">5.1.9</a>. Specific Cases where the Conjecture Might Fail</span>
A concern for loss measurements combined in this way is that root
causes may be correlated to some degree.
For example, if the links of different networks follow the same
physical route, then a single catastrophic event like a fire in a
tunnel could cause an outage or congestion on remaining paths in
multiple networks. Here it is important to ensure that measurements
before the event and after the event are not combined to estimate the
composite performance.
Or, when traffic volumes rise due to the rapid spread of an email-
borne worm, loss due to queue overflow in one network may help
another network to carry its traffic without loss.
<span class="h4"><a class="selflink" id="section-5.1.10" href="#section-5.1.10">5.1.10</a>. Application of Measurement Methodology</span>
See the common section (<a href="#section-3">Section 3</a>).
<span class="grey">Morton & Stephan Standards Track [Page 19]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-20" ></span>
<span class="grey"><a href="./rfc6049">RFC 6049</a> Spatial Composition January 2011</span>
<span class="h2"><a class="selflink" id="section-6" href="#section-6">6</a>. Delay Variation Metrics and Statistics</span>
<span class="h3"><a class="selflink" id="section-6.1" href="#section-6.1">6.1</a>. Name: Type-P-One-way-pdv-refmin-<Sample>-Stream</span>
This packet delay variation (PDV) metric is a necessary element of
Composed Delay Variation metrics, and its definition does not
formally exist elsewhere in IPPM literature (with the exception of
[<a href="./rfc5481" title=""Packet Delay Variation Applicability Statement"">RFC5481</a>]).
<span class="h4"><a class="selflink" id="section-6.1.1" href="#section-6.1.1">6.1.1</a>. Metric Parameters</span>
In addition to the parameters of <a href="#section-3.1.1">Section 3.1.1</a>:
o TstampSrc[i], the wire time of packet[i] as measured at MP(Src)
(measurement point at the source).
o TstampDst[i], the wire time of packet[i] as measured at MP(Dst),
assigned to packets that arrive within a "reasonable" time.
o B, a packet length in bits.
o F, a selection function unambiguously defining the packets from
the stream that are selected for the packet-pair computation of
this metric. F(current packet), the first packet of the pair,
MUST have a valid Type-P-Finite-One-way-Delay less than Tmax (in
other words, excluding packets that have undefined one-way delay)
and MUST have been transmitted during the interval [T, Tf]. The
second packet in the pair, F(min_delay packet) MUST be the packet
with the minimum valid value of Type-P-Finite-One-way-Delay for
the stream, in addition to the criteria for F(current packet). If
multiple packets have equal minimum Type-P-Finite-One-way-Delay
values, then the value for the earliest arriving packet SHOULD be
used.
o MinDelay, the Type-P-Finite-One-way-Delay value for F(min_delay
packet) given above.
o N, the number of packets received at the destination that meet the
F(current packet) criteria.
<span class="h4"><a class="selflink" id="section-6.1.2" href="#section-6.1.2">6.1.2</a>. Definition and Metric Units</span>
Using the definition above in <a href="#section-5.1.2">Section 5.1.2</a>, we obtain the value of
Type-P-Finite-One-way-Delay-<Sample>-Stream[n], the singleton for
each packet[i] in the stream (a.k.a. FiniteDelay[i]).
<span class="grey">Morton & Stephan Standards Track [Page 20]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-21" ></span>
<span class="grey"><a href="./rfc6049">RFC 6049</a> Spatial Composition January 2011</span>
For each packet[n] that meets the F(first packet) criteria given
above: Type-P-One-way-pdv-refmin-<Sample>-Stream[n] =
PDV[n] = FiniteDelay[n] - MinDelay
where PDV[i] is in units of time in seconds, expressed in
sufficiently fine resolution to convey meaningful quantitative
information. For example, resolution of microseconds is usually
sufficient.
<span class="h4"><a class="selflink" id="section-6.1.3" href="#section-6.1.3">6.1.3</a>. Discussion and Other Details</span>
This metric produces a sample of delay variation normalized to the
minimum delay of the sample. The resulting delay variation
distribution is independent of the sending sequence (although
specific FiniteDelay values within the distribution may be
correlated, depending on various stream parameters such as packet
spacing). This metric is equivalent to the IP Packet Delay Variation
parameter defined in [<a href="#ref-Y.1540" title=""Internet protocol data communication service - IP packet transfer and availability performance parameters"">Y.1540</a>].
<span class="h4"><a class="selflink" id="section-6.1.4" href="#section-6.1.4">6.1.4</a>. Statistics: Mean, Variance, Skewness, Quantile</span>
We define the mean PDV as follows (where all packets n = 1 through N
have a value for PDV[n]):
Type-P-One-way-pdv-refmin-Mean = MeanPDV =
N
---
1 \
- * > (PDV[n])
N /
---
n = 1
We define the variance of PDV as follows:
Type-P-One-way-pdv-refmin-Variance = VarPDV =
N
---
1 \ 2
------- > (PDV[n] - MeanPDV)
(N - 1) /
---
n = 1
<span class="grey">Morton & Stephan Standards Track [Page 21]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-22" ></span>
<span class="grey"><a href="./rfc6049">RFC 6049</a> Spatial Composition January 2011</span>
We define the skewness of PDV as follows:
Type-P-One-way-pdv-refmin-Skewness = SkewPDV =
N
--- 3
\ / \
> | PDV[n] - MeanPDV |
/ \ /
---
n = 1
-----------------------------------
/ \
| ( 3/2 ) |
\ (N - 1) * VarPDV /
(See <a href="#appendix-X">Appendix X</a> of [<a href="#ref-Y.1541" title=""Network Performance Objectives for IP-based Services"">Y.1541</a>] for additional background information.)
We define the quantile of the PDV sample as the value where the
specified fraction of singletons is less than the given value.
<span class="h4"><a class="selflink" id="section-6.1.5" href="#section-6.1.5">6.1.5</a>. Composition Functions</span>
This section gives two alternative composition functions. The
objective is to estimate a quantile of the complete path delay
variation distribution. The composed quantile will be estimated
using information from the sub-path delay variation distributions.
<span class="h5"><a class="selflink" id="section-6.1.5.1" href="#section-6.1.5.1">6.1.5.1</a>. Approximate Convolution</span>
The Type-P-Finite-One-way-Delay-<Sample>-Stream samples from each
sub-path are summarized as a histogram with 1-ms bins representing
the one-way delay distribution.
From [<a href="#ref-STATS" title=""Introduction to the Theory of Statistics, 3rd Edition"">STATS</a>], the distribution of the sum of independent random
variables can be derived using the relation:
Type-P-Composite-One-way-pdv-refmin-quantile-a =
. .
/ /
P(X + Y + Z <= a) = | | P(X <= a - y - z) * P(Y = y) * P(Z = z) dy dz
/ /
` `
z y
<span class="grey">Morton & Stephan Standards Track [Page 22]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-23" ></span>
<span class="grey"><a href="./rfc6049">RFC 6049</a> Spatial Composition January 2011</span>
Note that dy and dz indicate partial integration above, and that y
and z are the integration variables. Also, the probability of an
outcome is indicated by the symbol P(outcome), where X, Y, and Z are
random variables representing the delay variation distributions of
the sub-paths of the complete path (in this case, there are three
sub-paths), and "a" is the quantile of interest.
This relation can be used to compose a quantile of interest for the
complete path from the sub-path delay distributions. The histograms
with 1-ms bins are discrete approximations of the delay
distributions.
<span class="h5"><a class="selflink" id="section-6.1.5.2" href="#section-6.1.5.2">6.1.5.2</a>. Normal Power Approximation (NPA)</span>
Type-P-One-way-Composite-pdv-refmin-NPA for the complete source to
destination path can be calculated by combining the statistics of all
the constituent sub-paths in the process described in [<a href="#ref-Y.1541" title=""Network Performance Objectives for IP-based Services"">Y.1541</a>],
Clause 8 and <a href="#appendix-X">Appendix X</a>.
<span class="h4"><a class="selflink" id="section-6.1.6" href="#section-6.1.6">6.1.6</a>. Statement of Conjecture and Assumptions</span>
The delay distribution of a sufficiently large stream of packets
measured on each sub-path during the interval [T, Tf] will be
sufficiently stationary, and the sub-path distributions themselves
are sufficiently independent, so that summary information describing
the sub-path distributions can be combined to estimate the delay
distribution of the complete path.
It is assumed that the one-way delay distributions of the sub-paths
and the complete path are continuous.
<span class="h4"><a class="selflink" id="section-6.1.7" href="#section-6.1.7">6.1.7</a>. Justification of the Composition Function</span>
See the common section (<a href="#section-3">Section 3</a>).
<span class="h4"><a class="selflink" id="section-6.1.8" href="#section-6.1.8">6.1.8</a>. Sources of Deviation from the Ground Truth</span>
In addition to the common deviations, a few additional sources exist
here. For one, very tight distributions with ranges on the order of
a few milliseconds are not accurately represented by a histogram with
1-ms bins. This size was chosen assuming an implicit requirement on
accuracy: errors of a few milliseconds are acceptable when assessing
a composed distribution quantile.
Also, summary statistics cannot describe the subtleties of an
empirical distribution exactly, especially when the distribution is
very different from a classical form. Any procedure that uses these
statistics alone may incur error.
<span class="grey">Morton & Stephan Standards Track [Page 23]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-24" ></span>
<span class="grey"><a href="./rfc6049">RFC 6049</a> Spatial Composition January 2011</span>
<span class="h4"><a class="selflink" id="section-6.1.9" href="#section-6.1.9">6.1.9</a>. Specific Cases where the Conjecture Might Fail</span>
If the delay distributions of the sub-paths are somehow correlated,
then neither of these composition functions will be reliable
estimators of the complete path distribution.
In practice, sub-path delay distributions with extreme outliers have
increased the error of the composed metric estimate.
<span class="h4"><a class="selflink" id="section-6.1.10" href="#section-6.1.10">6.1.10</a>. Application of Measurement Methodology</span>
See the common section (<a href="#section-3">Section 3</a>).
<span class="h2"><a class="selflink" id="section-7" href="#section-7">7</a>. Security Considerations</span>
<span class="h3"><a class="selflink" id="section-7.1" href="#section-7.1">7.1</a>. Denial-of-Service Attacks</span>
This metric requires a stream of packets sent from one host (source)
to another host (destination) through intervening networks. This
method could be abused for denial-of-service attacks directed at the
destination and/or the intervening network(s).
Administrators of source, destination, and intervening networks
should establish bilateral or multilateral agreements regarding the
timing, size, and frequency of collection of sample metrics. Use of
this method in excess of the terms agreed upon between the
participants may be cause for immediate rejection or discarding of
packets, or other escalation procedures defined between the affected
parties.
<span class="h3"><a class="selflink" id="section-7.2" href="#section-7.2">7.2</a>. User Data Confidentiality</span>
Active use of this method generates packets for a sample, rather than
taking samples based on user data, and does not threaten user data
confidentiality. Passive measurement MUST restrict attention to the
headers of interest. Since user payloads may be temporarily stored
for length analysis, suitable precautions MUST be taken to keep this
information safe and confidential. In most cases, a hashing function
will produce a value suitable for payload comparisons.
<span class="h3"><a class="selflink" id="section-7.3" href="#section-7.3">7.3</a>. Interference with the Metrics</span>
It may be possible to identify that a certain packet or stream of
packets is part of a sample. With that knowledge at the destination
and/or the intervening networks, it is possible to change the
<span class="grey">Morton & Stephan Standards Track [Page 24]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-25" ></span>
<span class="grey"><a href="./rfc6049">RFC 6049</a> Spatial Composition January 2011</span>
processing of the packets (e.g., increasing or decreasing delay),
which may distort the measured performance. It may also be possible
to generate additional packets that appear to be part of the sample
metric. These additional packets are likely to perturb the results
of the sample measurement.
To discourage the kind of interference mentioned above, packet
interference checks, such as cryptographic hash, may be used.
<span class="h2"><a class="selflink" id="section-8" href="#section-8">8</a>. IANA Considerations</span>
Metrics defined in the IETF are typically registered in the IANA IPPM
Metrics Registry as described in the initial version of the registry
[<a href="./rfc4148" title=""IP Performance Metrics (IPPM) Metrics Registry"">RFC4148</a>].
IANA has registered the following metrics in the
IANA-IPPM-METRICS-REGISTRY-MIB:
ietfFiniteOneWayDelayStream OBJECT-IDENTITY
STATUS current
DESCRIPTION
"Type-P-Finite-One-way-Delay-Stream"
REFERENCE "<a href="./rfc6049#section-4.1">RFC 6049, Section 4.1</a>."
::= { ianaIppmMetrics 71 }
ietfFiniteOneWayDelayMean OBJECT-IDENTITY
STATUS current
DESCRIPTION
"Type-P-Finite-One-way-Delay-Mean"
REFERENCE "<a href="./rfc6049#section-4.2">RFC 6049, Section 4.2</a>."
::= { ianaIppmMetrics 72 }
ietfCompositeOneWayDelayMean OBJECT-IDENTITY
STATUS current
DESCRIPTION
"Type-P-Finite-Composite-One-way-Delay-Mean"
REFERENCE "<a href="./rfc6049#section-4.2.5">RFC 6049, Section 4.2.5</a>."
::= { ianaIppmMetrics 73 }
ietfFiniteOneWayDelayMinimum OBJECT-IDENTITY
STATUS current
DESCRIPTION
"Type-P-Finite-One-way-Delay-Minimum"
REFERENCE "<a href="./rfc6049#section-4.3.2">RFC 6049, Section 4.3.2</a>."
::= { ianaIppmMetrics 74 }
<span class="grey">Morton & Stephan Standards Track [Page 25]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-26" ></span>
<span class="grey"><a href="./rfc6049">RFC 6049</a> Spatial Composition January 2011</span>
ietfCompositeOneWayDelayMinimum OBJECT-IDENTITY
STATUS current
DESCRIPTION
"Type-P-Finite-Composite-One-way-Delay-Minimum"
REFERENCE "<a href="./rfc6049#section-4.3">RFC 6049, Section 4.3</a>."
::= { ianaIppmMetrics 75 }
ietfOneWayPktLossEmpiricProb OBJECT-IDENTITY
STATUS current
DESCRIPTION
"Type-P-One-way-Packet-Loss-Empirical-Probability"
REFERENCE "<a href="./rfc6049#section-5.1.4">RFC 6049, Section 5.1.4</a>"
::= { ianaIppmMetrics 76 }
ietfCompositeOneWayPktLossEmpiricProb OBJECT-IDENTITY
STATUS current
DESCRIPTION
"Type-P-Composite-One-way-Packet-Loss-Empirical-Probability"
REFERENCE "<a href="./rfc6049#section-5.1">RFC 6049, Section 5.1</a>."
::= { ianaIppmMetrics 77 }
ietfOneWayPdvRefminStream OBJECT-IDENTITY
STATUS current
DESCRIPTION
"Type-P-One-way-pdv-refmin-Stream"
REFERENCE "<a href="./rfc6049#section-6.1">RFC 6049, Section 6.1</a>."
::= { ianaIppmMetrics 78 }
ietfOneWayPdvRefminMean OBJECT-IDENTITY
STATUS current
DESCRIPTION
"Type-P-One-way-pdv-refmin-Mean"
REFERENCE "<a href="./rfc6049#section-6.1.4">RFC 6049, Section 6.1.4</a>."
::= { ianaIppmMetrics 79 }
ietfOneWayPdvRefminVariance OBJECT-IDENTITY
STATUS current
DESCRIPTION
"Type-P-One-way-pdv-refmin-Variance"
REFERENCE "<a href="./rfc6049#section-6.1.4">RFC 6049, Section 6.1.4</a>."
::= { ianaIppmMetrics 80 }
<span class="grey">Morton & Stephan Standards Track [Page 26]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-27" ></span>
<span class="grey"><a href="./rfc6049">RFC 6049</a> Spatial Composition January 2011</span>
ietfOneWayPdvRefminSkewness OBJECT-IDENTITY
STATUS current
DESCRIPTION
"Type-P-One-way-pdv-refmin-Skewness"
REFERENCE "<a href="./rfc6049#section-6.1.4">RFC 6049, Section 6.1.4</a>."
::= { ianaIppmMetrics 81 }
ietfCompositeOneWayPdvRefminQtil OBJECT-IDENTITY
STATUS current
DESCRIPTION
"Type-P-Composite-One-way-pdv-refmin-quantile-a"
REFERENCE "<a href="./rfc6049#section-6.1.5.1">RFC 6049, Section 6.1.5.1</a>."
::= { ianaIppmMetrics 82 }
ietfCompositeOneWayPdvRefminNPA OBJECT-IDENTITY
STATUS current
DESCRIPTION
"Type-P-One-way-Composite-pdv-refmin-NPA"
REFERENCE "<a href="./rfc6049#section-6.1.5.2">RFC 6049, Section 6.1.5.2</a>."
::= { ianaIppmMetrics 83 }
<span class="h2"><a class="selflink" id="section-9" href="#section-9">9</a>. Contributors and Acknowledgements</span>
The following people have contributed useful ideas, suggestions, or
the text of sections that have been incorporated into this memo:
- Phil Chimento <vze275m9@verizon.net>
- Reza Fardid <RFardid@cariden.com>
- Roman Krzanowski <roman.krzanowski@verizon.com>
- Maurizio Molina <maurizio.molina@dante.org.uk>
- Lei Liang <L.Liang@surrey.ac.uk>
- Dave Hoeflin <dhoeflin@att.com>
A long time ago, in a galaxy far, far away (Minneapolis), Will Leland
suggested the simple and elegant Type-P-Finite-One-way-Delay concept.
Thanks Will.
Yaakov Stein and Donald McLachlan also provided useful comments along
the way.
<span class="grey">Morton & Stephan Standards Track [Page 27]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-28" ></span>
<span class="grey"><a href="./rfc6049">RFC 6049</a> Spatial Composition January 2011</span>
<span class="h2"><a class="selflink" id="section-10" href="#section-10">10</a>. References</span>
<span class="h3"><a class="selflink" id="section-10.1" href="#section-10.1">10.1</a>. Normative References</span>
[<a id="ref-RFC2119">RFC2119</a>] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", <a href="https://www.rfc-editor.org/bcp/bcp14">BCP 14</a>, <a href="./rfc2119">RFC 2119</a>, March 1997.
[<a id="ref-RFC2330">RFC2330</a>] Paxson, V., Almes, G., Mahdavi, J., and M. Mathis,
"Framework for IP Performance Metrics", <a href="./rfc2330">RFC 2330</a>,
May 1998.
[<a id="ref-RFC2679">RFC2679</a>] Almes, G., Kalidindi, S., and M. Zekauskas, "A One-way
Delay Metric for IPPM", <a href="./rfc2679">RFC 2679</a>, September 1999.
[<a id="ref-RFC2680">RFC2680</a>] Almes, G., Kalidindi, S., and M. Zekauskas, "A One-way
Packet Loss Metric for IPPM", <a href="./rfc2680">RFC 2680</a>, September 1999.
[<a id="ref-RFC3393">RFC3393</a>] Demichelis, C. and P. Chimento, "IP Packet Delay Variation
Metric for IP Performance Metrics (IPPM)", <a href="./rfc3393">RFC 3393</a>,
November 2002.
[<a id="ref-RFC3432">RFC3432</a>] Raisanen, V., Grotefeld, G., and A. Morton, "Network
performance measurement with periodic streams", <a href="./rfc3432">RFC 3432</a>,
November 2002.
[<a id="ref-RFC4148">RFC4148</a>] Stephan, E., "IP Performance Metrics (IPPM) Metrics
Registry", <a href="https://www.rfc-editor.org/bcp/bcp108">BCP 108</a>, <a href="./rfc4148">RFC 4148</a>, August 2005.
[<a id="ref-RFC5835">RFC5835</a>] Morton, A. and S. Van den Berghe, "Framework for Metric
Composition", <a href="./rfc5835">RFC 5835</a>, April 2010.
<span class="h3"><a class="selflink" id="section-10.2" href="#section-10.2">10.2</a>. Informative References</span>
[<a id="ref-RFC5474">RFC5474</a>] Duffield, N., Chiou, D., Claise, B., Greenberg, A.,
Grossglauser, M., and J. Rexford, "A Framework for Packet
Selection and Reporting", <a href="./rfc5474">RFC 5474</a>, March 2009.
[<a id="ref-RFC5481">RFC5481</a>] Morton, A. and B. Claise, "Packet Delay Variation
Applicability Statement", <a href="./rfc5481">RFC 5481</a>, March 2009.
[<a id="ref-RFC5644">RFC5644</a>] Stephan, E., Liang, L., and A. Morton, "IP Performance
Metrics (IPPM): Spatial and Multicast", <a href="./rfc5644">RFC 5644</a>,
October 2009.
[<a id="ref-STATS">STATS</a>] Mood, A., Graybill, F., and D. Boes, "Introduction to the
Theory of Statistics, 3rd Edition", McGraw-Hill, New York,
NY, 1974.
<span class="grey">Morton & Stephan Standards Track [Page 28]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-29" ></span>
<span class="grey"><a href="./rfc6049">RFC 6049</a> Spatial Composition January 2011</span>
[<a id="ref-Y.1540">Y.1540</a>] ITU-T Recommendation Y.1540, "Internet protocol data
communication service - IP packet transfer and
availability performance parameters", November 2007.
[<a id="ref-Y.1541">Y.1541</a>] ITU-T Recommendation Y.1541, "Network Performance
Objectives for IP-based Services", February 2006.
Authors' Addresses
Al Morton
AT&T Labs
200 Laurel Avenue South
Middletown, NJ 07748
USA
Phone: +1 732 420 1571
Fax: +1 732 368 1192
EMail: acmorton@att.com
URI: <a href="http://home.comcast.net/~acmacm/">http://home.comcast.net/~acmacm/</a>
Stephan Emile
France Telecom Orange
2 avenue Pierre Marzin
Lannion, F-22307
France
EMail: emile.stephan@orange-ftgroup.com
Morton & Stephan Standards Track [Page 29]
</pre>
|