1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525
|
<pre>Internet Engineering Task Force (IETF) S. Frankel
Request for Comments: 6071 NIST
Obsoletes: <a href="./rfc2411">2411</a> S. Krishnan
Category: Informational Ericsson
ISSN: 2070-1721 February 2011
<span class="h1">IP Security (IPsec) and Internet Key Exchange (IKE) Document Roadmap</span>
Abstract
Over the past few years, the number of RFCs that define and use IPsec
and Internet Key Exchange (IKE) has greatly proliferated. This is
complicated by the fact that these RFCs originate from numerous IETF
working groups: the original IPsec WG, its various spin-offs, and
other WGs that use IPsec and/or IKE to protect their protocols'
traffic.
This document is a snapshot of IPsec- and IKE-related RFCs. It
includes a brief description of each RFC, along with background
information explaining the motivation and context of IPsec's
outgrowths and extensions. It obsoletes <a href="./rfc2411">RFC 2411</a>, the previous "IP
Security Document Roadmap."
The obsoleted IPsec roadmap (<a href="./rfc2411">RFC 2411</a>) briefly described the
interrelationship of the various classes of base IPsec documents.
The major focus of <a href="./rfc2411">RFC 2411</a> was to specify the recommended contents
of documents specifying additional encryption and authentication
algorithms.
Status of This Memo
This document is not an Internet Standards Track specification; it is
published for informational purposes.
This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Not all documents
approved by the IESG are a candidate for any level of Internet
Standard; see <a href="./rfc5741#section-2">Section 2 of RFC 5741</a>.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
<a href="http://www.rfc-editor.org/info/rfc6071">http://www.rfc-editor.org/info/rfc6071</a>.
<span class="grey">Frankel & Krishnan Informational [Page 1]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-2" ></span>
<span class="grey"><a href="./rfc6071">RFC 6071</a> IPsec/IKE Roadmap February 2011</span>
Copyright Notice
Copyright (c) 2011 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to <a href="https://www.rfc-editor.org/bcp/bcp78">BCP 78</a> and the IETF Trust's Legal
Provisions Relating to IETF Documents
(<a href="http://trustee.ietf.org/license-info">http://trustee.ietf.org/license-info</a>) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
This document may contain material from IETF Documents or IETF
Contributions published or made publicly available before November
10, 2008. The person(s) controlling the copyright in some of this
material may not have granted the IETF Trust the right to allow
modifications of such material outside the IETF Standards Process.
Without obtaining an adequate license from the person(s) controlling
the copyright in such materials, this document may not be modified
outside the IETF Standards Process, and derivative works of it may
not be created outside the IETF Standards Process, except to format
it for publication as an RFC or to translate it into languages other
than English.
Table of Contents
<a href="#section-1">1</a>. Introduction ....................................................<a href="#page-4">4</a>
<a href="#section-2">2</a>. IPsec/IKE Background Information ................................<a href="#page-5">5</a>
<a href="#section-2.1">2.1</a>. Interrelationship of IPsec/IKE Documents ...................<a href="#page-5">5</a>
<a href="#section-2.2">2.2</a>. Versions of IPsec ..........................................<a href="#page-6">6</a>
2.2.1. Differences between "Old" IPsec (IPsec-v2) and
"New" IPsec (IPsec-v3) ..............................<a href="#page-6">6</a>
<a href="#section-2.3">2.3</a>. Versions of IKE ............................................<a href="#page-7">7</a>
<a href="#section-2.3.1">2.3.1</a>. Differences between IKEv1 and IKEv2 .................<a href="#page-8">8</a>
<a href="#section-2.4">2.4</a>. IPsec and IKE IANA Registries ..............................<a href="#page-9">9</a>
<a href="#section-3">3</a>. IPsec Documents .................................................<a href="#page-9">9</a>
<a href="#section-3.1">3.1</a>. Base Documents .............................................<a href="#page-9">9</a>
<a href="#section-3.1.1">3.1.1</a>. "Old" IPsec (IPsec-v2) ..............................<a href="#page-9">9</a>
<a href="#section-3.1.2">3.1.2</a>. "New" IPsec (IPsec-v3) .............................<a href="#page-11">11</a>
<a href="#section-3.2">3.2</a>. Additions to IPsec ........................................<a href="#page-11">11</a>
<a href="#section-3.3">3.3</a>. General Considerations ....................................<a href="#page-14">14</a>
<a href="#section-4">4</a>. IKE Documents ..................................................<a href="#page-15">15</a>
<a href="#section-4.1">4.1</a>. Base Documents ............................................<a href="#page-15">15</a>
<a href="#section-4.1.1">4.1.1</a>. IKEv1 ..............................................<a href="#page-15">15</a>
<a href="#section-4.1.2">4.1.2</a>. IKEv2 ..............................................<a href="#page-16">16</a>
<span class="grey">Frankel & Krishnan Informational [Page 2]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-3" ></span>
<span class="grey"><a href="./rfc6071">RFC 6071</a> IPsec/IKE Roadmap February 2011</span>
<a href="#section-4.2">4.2</a>. Additions and Extensions ..................................<a href="#page-17">17</a>
<a href="#section-4.2.1">4.2.1</a>. Peer Authentication Methods ........................<a href="#page-17">17</a>
<a href="#section-4.2.2">4.2.2</a>. Certificate Contents and Management (PKI4IPsec) ....<a href="#page-18">18</a>
<a href="#section-4.2.3">4.2.3</a>. Dead Peer Detection ................................<a href="#page-19">19</a>
<a href="#section-4.2.4">4.2.4</a>. Remote Access ......................................<a href="#page-19">19</a>
<a href="#section-5">5</a>. Cryptographic Algorithms and Suites ............................<a href="#page-21">21</a>
<a href="#section-5.1">5.1</a>. Algorithm Requirements ....................................<a href="#page-22">22</a>
<a href="#section-5.2">5.2</a>. Encryption Algorithms .....................................<a href="#page-23">23</a>
<a href="#section-5.3">5.3</a>. Integrity-Protection (Authentication) Algorithms ..........<a href="#page-27">27</a>
<a href="#section-5.4">5.4</a>. Combined Mode Algorithms ..................................<a href="#page-30">30</a>
<a href="#section-5.5">5.5</a>. Pseudo-Random Functions (PRFs) ............................<a href="#page-33">33</a>
<a href="#section-5.6">5.6</a>. Cryptographic Suites ......................................<a href="#page-34">34</a>
<a href="#section-5.7">5.7</a>. Diffie-Hellman Algorithms .................................<a href="#page-35">35</a>
<a href="#section-6">6</a>. IPsec/IKE for Multicast ........................................<a href="#page-36">36</a>
<a href="#section-7">7</a>. Outgrowths of IPsec/IKE ........................................<a href="#page-38">38</a>
<a href="#section-7.1">7.1</a>. IPsec Policy ..............................................<a href="#page-38">38</a>
<a href="#section-7.2">7.2</a>. IPsec MIBs ................................................<a href="#page-39">39</a>
<a href="#section-7.3">7.3</a>. IPComp (Compression) ......................................<a href="#page-39">39</a>
<a href="#section-7.4">7.4</a>. Better-Than-Nothing Security (BTNS) .......................<a href="#page-39">39</a>
<a href="#section-7.5">7.5</a>. Kerberized Internet Negotiation of Keys (KINK) ............<a href="#page-40">40</a>
<a href="#section-7.6">7.6</a>. IPsec Secure Remote Access (IPSRA) ........................<a href="#page-41">41</a>
<a href="#section-7.7">7.7</a>. IPsec Keying Information Resource Record (IPSECKEY) .......<a href="#page-42">42</a>
<a href="#section-8">8</a>. Other Protocols That Use IPsec/IKE .............................<a href="#page-42">42</a>
<a href="#section-8.1">8.1</a>. Mobile IP (MIPv4 and MIPv6) ...............................<a href="#page-42">42</a>
<a href="#section-8.2">8.2</a>. Open Shortest Path First (OSPF) ...........................<a href="#page-44">44</a>
<a href="#section-8.3">8.3</a>. Host Identity Protocol (HIP) ..............................<a href="#page-45">45</a>
<a href="#section-8.4">8.4</a>. Stream Control Transmission Protocol (SCTP) ...............<a href="#page-46">46</a>
<a href="#section-8.5">8.5</a>. Robust Header Compression (ROHC) ..........................<a href="#page-46">46</a>
<a href="#section-8.6">8.6</a>. Border Gateway Protocol (BGP) .............................<a href="#page-47">47</a>
<a href="#section-8.7">8.7</a>. IPsec Benchmarking ........................................<a href="#page-47">47</a>
<a href="#section-8.8">8.8</a>. Network Address Translators (NAT) .........................<a href="#page-48">48</a>
<a href="#section-8.9">8.9</a>. Session Initiation Protocol (SIP) .........................<a href="#page-48">48</a>
<a href="#section-8.10">8.10</a>. Explicit Packet Sensitivity Labels .......................<a href="#page-49">49</a>
<a href="#section-9">9</a>. Other Protocols That Adapt IKE for Non-IPsec Functionality .....<a href="#page-49">49</a>
<a href="#section-9.1">9.1</a>. Extensible Authentication Protocol (EAP) ..................<a href="#page-49">49</a>
<a href="#section-9.2">9.2</a>. Fibre Channel .............................................<a href="#page-49">49</a>
<a href="#section-9.3">9.3</a>. Wireless Security .........................................<a href="#page-50">50</a>
<a href="#section-10">10</a>. Acknowledgements ..............................................<a href="#page-50">50</a>
<a href="#section-11">11</a>. Security Considerations .......................................<a href="#page-50">50</a>
<a href="#section-12">12</a>. References ....................................................<a href="#page-50">50</a>
<a href="#section-12.1">12.1</a>. Informative References ...................................<a href="#page-50">50</a>
<a href="#appendix-A">Appendix A</a>. Summary of Algorithm Requirement Levels ..............<a href="#page-61">61</a>
<span class="grey">Frankel & Krishnan Informational [Page 3]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-4" ></span>
<span class="grey"><a href="./rfc6071">RFC 6071</a> IPsec/IKE Roadmap February 2011</span>
<span class="h2"><a class="selflink" id="section-1" href="#section-1">1</a>. Introduction</span>
IPsec (Internet Protocol Security) is a suite of protocols that
provides security to Internet communications at the IP layer. The
most common current use of IPsec is to provide a Virtual Private
Network (VPN), either between two locations (gateway-to-gateway) or
between a remote user and an enterprise network (host-to-gateway); it
can also provide end-to-end, or host-to-host, security. IPsec is
also used by other Internet protocols (e.g., Mobile IP version 6
(MIPv6)) to protect some or all of their traffic. IKE (Internet Key
Exchange) is the key negotiation and management protocol that is most
commonly used to provide dynamically negotiated and updated keying
material for IPsec. IPsec and IKE can be used in conjunction with
both IPv4 and IPv6.
In addition to the base documents for IPsec and IKE, there are
numerous RFCs that reference, extend, and in some cases alter the
core specifications. This document obsoletes [<a href="./rfc2411" title=""IP Security Document Roadmap"">RFC2411</a>]. It attempts
to list and briefly describe those RFCs, providing context and
rationale where indicated. The title of each RFC is followed by a
letter that indicates its category in the RFC series [<a href="./rfc2026" title=""The Internet Standards Process -- Revision 3"">RFC2026</a>], as
follows:
o S: Standards Track (Proposed Standard, Draft Standard, or
Standard)
o E: Experimental
o B: Best Current Practice
o I: Informational
For each RFC, the publication date is also given.
This document also categorizes the requirements level of each
cryptographic algorithm for use with IKEv1, IKEv2, IPsec-v2, and
IPsec-v3. These requirements are summarized in <a href="#appendix-A">Appendix A</a>. These
levels are current as of February 2011; subsequent RFCs may result in
altered requirement levels.
This document does not define requirement levels; it simply restates
those found in the IKE and IPsec RFCs. If there is a conflict
between this document and any other RFC, then the other RFC takes
precedence.
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [<a href="./rfc2119" title=""Key words for use in RFCs to Indicate Requirement Levels"">RFC2119</a>].
<span class="grey">Frankel & Krishnan Informational [Page 4]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-5" ></span>
<span class="grey"><a href="./rfc6071">RFC 6071</a> IPsec/IKE Roadmap February 2011</span>
<span class="h2"><a class="selflink" id="section-2" href="#section-2">2</a>. IPsec/IKE Background Information</span>
<span class="h3"><a class="selflink" id="section-2.1" href="#section-2.1">2.1</a>. Interrelationship of IPsec/IKE Documents</span>
The main documents describing the set of IPsec protocols are divided
into seven groups. This is illustrated in Figure 1. There is a main
Architecture document that broadly covers the general concepts,
security requirements, definitions, and mechanisms defining IPsec
technology.
There are an Encapsulating Security Payload (ESP) Protocol document
and an Authentication Header (AH) Protocol document that cover the
packet format and general issues regarding the respective protocols.
The "Encryption Algorithm" document set, shown on the left, is the
set of documents describing how various encryption algorithms are
used for ESP. The "Combined Algorithm" document set, shown in the
middle, is the set of documents describing how various combined mode
algorithms are used to provide both encryption and integrity
protection for ESP. The "Integ-Protection Algorithm" document set,
shown on the right, is the set of documents describing how various
integrity-protection algorithms are used for both ESP and AH.
The "IKE" documents, shown at the bottom, are the documents
describing the IETF Standards-Track key management schemes.
<span class="grey">Frankel & Krishnan Informational [Page 5]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-6" ></span>
<span class="grey"><a href="./rfc6071">RFC 6071</a> IPsec/IKE Roadmap February 2011</span>
+--------------+
| Architecture |
+--------------+
v v
+<-<-<-<-<-<-<-<-+ +->->->->->->->->+
v v
+----------+ +----------+
| ESP | | AH |
| Protocol | | Protocol |
+----------+ +----------+
v v v v
v +->->->->->->->->+->->->->->->->->+ v v
v v v v v v
v v v v v v
v +------------+ +-----------+ +----------------+ v
v | +------------+ | +------------+ | +----------------+ v
v | | Encryption | | | Combined | | |Integ-Protection| v
v +-| Algorithm | +-| Algorithm | +-| Algorithm | v
v +------------+ +------------+ +----------------+ v
v v v v v
v v v v v
+>->->->-+->->->->->->->->->--<-<-<-<-<-<-<-<-<-+-<-<-<-<-+
^
^
+------------+
| IKE |
| Protocol |
+------------+
Figure 1. IPsec/IKE Document Interrelationships
<span class="h3"><a class="selflink" id="section-2.2" href="#section-2.2">2.2</a>. Versions of IPsec</span>
Two versions of IPsec can currently be found in implementations. The
"new" IPsec (referred to as IPsec-v3 in this document; see <a href="#section-3.1.1">Section</a>
<a href="#section-3.1.1">3.1.1</a> for the RFC descriptions) obsoleted the "old" IPsec (referred
to as IPsec-v2 in this document; see <a href="#section-3.1.2">Section 3.1.2</a> for the RFC
descriptions); however, IPsec-v2 is still commonly found in
operational use. In this document, when the unqualified term IPsec
is used, it pertains to both versions of IPsec. An earlier version
of IPsec (defined in RFCs 1825-1829), obsoleted by IPsec-v2, is not
covered in this document.
<span class="h4"><a class="selflink" id="section-2.2.1" href="#section-2.2.1">2.2.1</a>. Differences between "Old" IPsec (IPsec-v2) and "New" IPsec</span>
(IPsec-v3)
IPsec-v3 incorporates "lessons learned" from implementation and
operational experience with IPsec-v2 and its predecessor, IPsec-v1.
<span class="grey">Frankel & Krishnan Informational [Page 6]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-7" ></span>
<span class="grey"><a href="./rfc6071">RFC 6071</a> IPsec/IKE Roadmap February 2011</span>
Knowledge was gained about the barriers to IPsec deployment, the
scenarios in which IPsec is most effective, and the requirements that
needed to be added to IPsec to facilitate its use with other
protocols. In addition, the documentation for IPsec-v3 clarifies and
expands details that were underspecified or ambiguous in IPsec-v2.
Changes to the architecture document [<a href="./rfc4301" title=""Security Architecture for the Internet Protocol"">RFC4301</a>] include:
o More detailed descriptions of IPsec processing, both unicast and
multicast, and the interactions among the various IPsec
databases
o In IPsec-v2, an SA (Security Association) is uniquely identified
by a combination of the SPI (Security Parameters Index),
protocol (ESP or AH) and the destination address. In IPsec-v3,
a unicast SA is uniquely identified by the SPI and, optionally,
by the protocol; a multicast SA is identified by a combination
of the SPI and the destination address and, optionally, the
source address.
o More flexible SPD (Security Policy Database) selectors,
including ranges of values and ICMP message types as selectors
o Decorrelated (order-independent) SAD (Security Association
Database) replaced the former ordered SAD
o Extended sequence numbers (ESNs) were added
o Mandatory algorithms defined in standalone document
o AH [<a href="./rfc4302" title=""IP Authentication Header"">RFC4302</a>] is mandatory to implement (MUST) in IPsec-v2,
optional (MAY) in IPsec-v3
Changes to ESP [<a href="./rfc4303" title=""IP Encapsulating Security Payload (ESP)"">RFC4303</a>] include:
o Combined mode algorithms were added, necessitating changes to
packet format and processing
o NULL authentication, mandatory (MUST) in ESP-v2, is optional
(MAY) in ESP-v3
<span class="h3"><a class="selflink" id="section-2.3" href="#section-2.3">2.3</a>. Versions of IKE</span>
Two versions of IKE can currently be found in implementations. The
"new" IKE (generally referred to as IKEv2) obsoleted the "old" IKE
(generally referred to as IKEv1); however, IKEv1 is still commonly
found in operational use. In this document, when the unqualified
term IKE is used, it pertains to both versions of IKE.
<span class="grey">Frankel & Krishnan Informational [Page 7]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-8" ></span>
<span class="grey"><a href="./rfc6071">RFC 6071</a> IPsec/IKE Roadmap February 2011</span>
<span class="h4"><a class="selflink" id="section-2.3.1" href="#section-2.3.1">2.3.1</a>. Differences between IKEv1 and IKEv2</span>
As with IPsec-v3, IKEv2 incorporates "lessons learned" from
implementation and operational experience with IKEv1. Knowledge was
gained about the barriers to IKE deployment, the scenarios in which
IKE is most effective, and the requirements that needed to be added
to IKE to facilitate its use with other protocols as well as in
general-purpose use. The documentation for IKEv2 replaces multiple,
at times contradictory, documents with a single document; it also
clarifies and expands details that were underspecified or ambiguous
in IKEv1.
Once an IKE negotiation is successfully completed, the peers have
established two pairs of one-way (inbound and outbound) SAs. Since
IKE always negotiates pairs of SAs, the term "SA" is generally used
to refer to a pair of SAs (e.g., an "IKE SA" or an "IPsec SA" is in
reality a pair of one-way SAs). The first SA, the IKE SA, is used to
protect IKE traffic. The second SA provides IPsec protection to data
traffic between the peers and/or other devices for which the peers
are authorized to negotiate. It is called the IPsec SA in IKEv1 and,
in the IKEv2 RFCs, it is referred to variously as a CHILD_SA, a child
SA, and an IPsec SA. This document uses the term "IPsec SA". To
further complicate the terminology, since IKEv1 consists of two
sequential negotiations, called phases, the IKE SA is also referred
to as a Phase 1 SA and the IPsec SA is referred to as a Phase 2 SA.
Changes to IKE include:
o Replaced multiple alternate exchange types with a single,
shorter exchange
o Streamlined negotiation format to avoid combinatorial bloat for
multiple proposals
o Protect responder from committing significant resources to the
exchange until the initiator's existence and identity are
confirmed
o Reliable exchanges: every request expects a response
o Protection of IKE messages based on ESP, rather than a method
unique to IKE
o Add traffic selectors: distinct from peer IDs and more flexible
o Support of EAP-based authentication methods and asymmetric
authentication (i.e., initiator and responder can use different
authentication methods)
<span class="grey">Frankel & Krishnan Informational [Page 8]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-9" ></span>
<span class="grey"><a href="./rfc6071">RFC 6071</a> IPsec/IKE Roadmap February 2011</span>
<span class="h3"><a class="selflink" id="section-2.4" href="#section-2.4">2.4</a>. IPsec and IKE IANA Registries</span>
Numerous IANA registries contain values that are used in IPsec, IKE,
and related protocols. They include:
o IKE Attributes
(<a href="http://www.iana.org/assignments/ipsec-registry">http://www.iana.org/assignments/ipsec-registry</a>): values used
during IKEv1 Phase 1 exchanges, defined in [<a href="./rfc2409" title=""The Internet Key Exchange (IKE)"">RFC2409</a>].
o "Magic Numbers" for Internet Security Association and Key
Management Protocol (ISAKMP)
(<a href="http://www.iana.org/assignments/isakmp-registry">http://www.iana.org/assignments/isakmp-registry</a>): values used
during IKEv1 Phase 2 exchanges, defined in [<a href="./rfc2407" title=""The Internet IP Security Domain of Interpretation for ISAKMP"">RFC2407</a>],
[<a href="./rfc2408" title=""Internet Security Association and Key Management Protocol (ISAKMP)"">RFC2408</a>], and numerous other cryptographic algorithm RFCs.
o IKEv2 Parameters
(<a href="http://www.iana.org/assignments/ikev2-parameters">http://www.iana.org/assignments/ikev2-parameters</a>): values used
in IKEv2 exchanges, defined in [<a href="./rfc5996" title=""Internet Key Exchange Protocol Version 2 (IKEv2)"">RFC5996</a>] and numerous other
cryptographic algorithm RFCs.
o Cryptographic Suites for IKEv1, IKEv2, and IPsec
(<a href="http://www.iana.org/assignments/crypto-suites">http://www.iana.org/assignments/crypto-suites</a>): names of
cryptographic suites in [<a href="./rfc4308" title=""Cryptographic Suites for IPsec"">RFC4308</a>] and [<a href="./rfc4869" title=""Suite B Cryptographic Suites for IPsec"">RFC4869</a>].
<span class="h2"><a class="selflink" id="section-3" href="#section-3">3</a>. IPsec Documents</span>
<span class="h3"><a class="selflink" id="section-3.1" href="#section-3.1">3.1</a>. Base Documents</span>
IPsec protections are provided by two special headers: the
Encapsulating Security Payload (ESP) Header and the Authentication
Header (AH). In IPv4, these headers take the form of protocol
headers; in IPv6, they are classified as extension headers. There
are three base IPsec documents: one that describes the IP security
architecture, and one for each of the IPsec headers.
<span class="h4"><a class="selflink" id="section-3.1.1" href="#section-3.1.1">3.1.1</a>. "Old" IPsec (IPsec-v2)</span>
<span class="h5"><a class="selflink" id="section-3.1.1.1" href="#section-3.1.1.1">3.1.1.1</a>. <a href="./rfc2401">RFC 2401</a>, Security Architecture for the Internet Protocol</span>
(S, November 1998)
[<a id="ref-RFC2401">RFC2401</a>] specifies the mechanisms, procedures, and components
required to provide security services at the IP layer. It also
describes their interrelationship and the general processing required
to inject IPsec protections into the network architecture.
<span class="grey">Frankel & Krishnan Informational [Page 9]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-10" ></span>
<span class="grey"><a href="./rfc6071">RFC 6071</a> IPsec/IKE Roadmap February 2011</span>
The components include:
- SA (Security Association): a one-way (inbound or outbound)
agreement between two communicating peers that specifies the
IPsec protections to be provided to their communications. This
includes the specific security protections, cryptographic
algorithms, and secret keys to be applied, as well as the
specific types of traffic to be protected.
- SPI (Security Parameters Index): a value that, together with the
destination address and security protocol (AH or ESP), uniquely
identifies a single SA.
- SAD (Security Association Database): each peer's SA repository.
The RFC describes how this database functions (SA lookup, etc.)
and the types of information it must contain to facilitate SA
processing; it does not dictate the format or layout of the
database. SAs can be established in either transport mode or
tunnel mode (see below).
- SPD (Security Policy Database): an ordered database that
expresses the security protections to be afforded to different
types and classes of traffic. The three general classes of
traffic are traffic to be discarded, traffic that is allowed
without IPsec protection, and traffic that requires IPsec
protection.
<a href="./rfc2401">RFC 2401</a> describes general inbound and outbound IPsec processing; it
also includes details on several special cases: packet fragments,
ICMP messages, and multicast traffic.
<span class="h5"><a class="selflink" id="section-3.1.1.2" href="#section-3.1.1.2">3.1.1.2</a>. <a href="./rfc2402">RFC 2402</a>, IP Authentication Header (S, November 1998)</span>
[<a id="ref-RFC2402">RFC2402</a>] defines the Authentication Header (AH), which provides
integrity protection; it also provides data-origin authentication,
access control, and, optionally, replay protection. A transport mode
AH SA, used to protect peer-to-peer communications, protects upper-
layer data, as well as those portions of the IP header that do not
vary unpredictably during packet delivery. A tunnel mode AH SA can
be used to protect gateway-to-gateway or host-to-gateway traffic; it
can optionally be used for host-to-host traffic. This class of AH SA
protects the inner (original) header and upper-layer data, as well as
those portions of the outer (tunnel) header that do not vary
unpredictably during packet delivery. Because portions of the IP
header are not included in the AH calculations, AH processing is more
complex than ESP processing. AH also does not work in the presence
of Network Address Translation (NAT). Unlike IPsec-v3, IPsec-v2
classifies AH as mandatory to implement.
<span class="grey">Frankel & Krishnan Informational [Page 10]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-11" ></span>
<span class="grey"><a href="./rfc6071">RFC 6071</a> IPsec/IKE Roadmap February 2011</span>
<span class="h5"><a class="selflink" id="section-3.1.1.3" href="#section-3.1.1.3">3.1.1.3</a>. <a href="./rfc2406">RFC 2406</a>, IP Encapsulating Security Payload (ESP)</span>
(S, November 1998)
[<a id="ref-RFC2406">RFC2406</a>] defines the IP Encapsulating Security Payload (ESP), which
provides confidentiality (encryption) and/or integrity protection; it
also provides data-origin authentication, access control, and,
optionally, replay and/or traffic analysis protection. A transport
mode ESP SA protects the upper-layer data, but not the IP header. A
tunnel mode ESP SA protects the upper-layer data and the inner
header, but not the outer header.
<span class="h4"><a class="selflink" id="section-3.1.2" href="#section-3.1.2">3.1.2</a>. "New" IPsec (IPsec-v3)</span>
<span class="h5"><a class="selflink" id="section-3.1.2.1" href="#section-3.1.2.1">3.1.2.1</a>. <a href="./rfc4301">RFC 4301</a>, Security Architecture for the Internet Protocol</span>
(S, December 2005)
[<a id="ref-RFC4301">RFC4301</a>] obsoletes [<a href="./rfc2401" title=""Security Architecture for the Internet Protocol"">RFC2401</a>], and it includes a more complete and
detailed processing model. The most notable changes are detailed
above in <a href="#section-2.2.1">Section 2.2.1</a>. IPsec-v3 processing incorporates an
additional database:
- PAD (Peer Authorization Database): contains information
necessary to conduct peer authentication, providing a link
between IPsec and the key management protocol (e.g., IKE)
<span class="h5"><a class="selflink" id="section-3.1.2.2" href="#section-3.1.2.2">3.1.2.2</a>. <a href="./rfc4302">RFC 4302</a>, IP Authentication Header (S, December 2005)</span>
[<a id="ref-RFC4302">RFC4302</a>] obsoletes [<a href="./rfc2402" title=""IP Authentication Header"">RFC2402</a>]. Unlike IPsec-v2, IPsec-v3 classifies
AH as optional.
<span class="h5"><a class="selflink" id="section-3.1.2.3" href="#section-3.1.2.3">3.1.2.3</a>. <a href="./rfc4303">RFC 4303</a>, IP Encapsulating Security Payload (ESP)</span>
(S, December 2005)
[<a id="ref-RFC4303">RFC4303</a>] obsoletes [<a href="./rfc2406" title=""IP Encapsulating Security Payload (ESP)"">RFC2406</a>]. The most notable changes are detailed
above in <a href="#section-2.2.1">Section 2.2.1</a>.
<span class="h3"><a class="selflink" id="section-3.2" href="#section-3.2">3.2</a>. Additions to IPsec</span>
Once the IKEv1 and IPsec-v2 RFCs were finalized, several additions
were defined in separate documents: negotiation of NAT traversal,
extended sequence numbers, UDP encapsulation of ESP packets,
opportunistic encryption, and IPsec-related ICMP messages.
Additional uses of IPsec transport mode were also described:
protection of manually configured IPv6-in-IPv4 tunnels and protection
of IP-in-IP tunnels. These documents describe atypical uses of IPsec
transport mode, but do not define any new IPsec features.
<span class="grey">Frankel & Krishnan Informational [Page 11]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-12" ></span>
<span class="grey"><a href="./rfc6071">RFC 6071</a> IPsec/IKE Roadmap February 2011</span>
Once the original IPsec Working Group concluded, additional IPsec-
related issues were handled by the IPsecME (IPsec Maintenance and
Extensions) Working Group. One such problem is the capability of
middleboxes to distinguish unencrypted ESP packets (ESP-NULL) from
encrypted ones in a fast and accurate manner. Two solutions are
described: a new protocol that requires changes to IKEv2 and IPsec-v3
and a heuristic method that imposes no new requirements. Another
issue that was addressed is the problem of using IKE and IPsec in a
high-availability environment.
<span class="h4"><a class="selflink" id="section-3.2.1" href="#section-3.2.1">3.2.1</a>. <a href="./rfc3947">RFC 3947</a>, Negotiation of NAT-Traversal in the IKE</span>
(S, January 2005)
[<a id="ref-RFC3947">RFC3947</a>] defines an optional extension to IKEv1. It enables IKEv1
to detect whether there are any NATs between the negotiating peers
and whether both peers support NAT traversal. It also describes how
IKEv1 can be used to negotiate the use of UDP encapsulation of ESP
packets for the IPsec SA. For IKEv2, this capability is described in
[<a href="./rfc5996" title=""Internet Key Exchange Protocol Version 2 (IKEv2)"">RFC5996</a>].
<span class="h4"><a class="selflink" id="section-3.2.2" href="#section-3.2.2">3.2.2</a>. <a href="./rfc3948">RFC 3948</a>, UDP Encapsulation of IPsec ESP Packets</span>
(S, January 2005)
[<a id="ref-RFC3948">RFC3948</a>] is an optional extension for IPsec-v2 and IPsec-v3. It
defines how to encapsulate ESP packets in UDP packets to enable the
traversal of NATs that discard packets with protocols other than UDP
or TCP. This makes it possible for ESP packets to pass through the
NAT device without requiring any change to the NAT device itself.
The use of this solution is negotiated by IKE, as described in
[<a href="./rfc3947" title=""Negotiation of NAT-Traversal in the IKE"">RFC3947</a>] for IKEv1 and [<a href="./rfc5996" title=""Internet Key Exchange Protocol Version 2 (IKEv2)"">RFC5996</a>] for IKEv2.
<span class="h4"><a class="selflink" id="section-3.2.3" href="#section-3.2.3">3.2.3</a>. <a href="./rfc4304">RFC 4304</a>, Extended Sequence Number (ESN) Addendum to IPsec</span>
<span class="h4"> Domain of Interpretation (DOI) for Internet Security Association</span>
and Key Management Protocol (ISAKMP) (S, December 2005)
The use of ESNs allows IPsec to use 64-bit sequence numbers for
replay protection, but to send only 32 bits of the sequence number in
the packet, enabling shorter packets and avoiding a redesign of the
packet format. The larger sequence numbers allow an existing IPsec
SA to be used for larger volumes of data. [<a href="./rfc4304" title=""Extended Sequence Number (ESN) Addendum to IPsec Domain of Interpretation (DOI) for Internet Security Association and Key Management Protocol (ISAKMP)"">RFC4304</a>] describes an
optional extension to IKEv1 that enables IKEv1 to negotiate the use
of ESNs for IPsec SAs. For IKEv2, this capability is described in
[<a href="./rfc5996" title=""Internet Key Exchange Protocol Version 2 (IKEv2)"">RFC5996</a>].
<span class="grey">Frankel & Krishnan Informational [Page 12]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-13" ></span>
<span class="grey"><a href="./rfc6071">RFC 6071</a> IPsec/IKE Roadmap February 2011</span>
<span class="h4"><a class="selflink" id="section-3.2.4" href="#section-3.2.4">3.2.4</a>. <a href="./rfc4322">RFC 4322</a>, Opportunistic Encryption using the Internet Key</span>
<span class="h4"> Exchange (IKE) (I, December 2005)</span>
Opportunistic encryption allows a pair of end systems to use
encryption without any specific pre-arrangements. [<a href="./rfc4322" title=""Opportunistic Encryption using the Internet Key Exchange (IKE)"">RFC4322</a>]
specifies a mechanism that uses DNS to distribute the public keys of
each system involved and uses DNS Security (DNSSEC) to secure the
mechanism against active attackers. It specifies the changes that
are needed in existing IPsec and IKE implementations. The majority
of the changes are needed in the IKE implementation and these changes
relate to the handling of key acquisition requests, the lookup of
public keys and TXT records, and the interactions with firewalls and
other security facilities that may be co-resident on the same
gateway.
<span class="h4"><a class="selflink" id="section-3.2.5" href="#section-3.2.5">3.2.5</a>. <a href="./rfc4891">RFC 4891</a>, Using IPsec to Secure IPv6-in-IPv4 Tunnels</span>
(I, May 2007)
[<a id="ref-RFC4891">RFC4891</a>] describes how to use IKE and transport-mode IPsec to
provide security protection to manually configured IPv6-in-IPv4
tunnels. This document uses standard IKE and IPsec, without any new
extensions. It does not apply to tunnels that are initiated in an
automated manner (e.g., 6to4 tunnels [<a href="./rfc3056" title=""Connection of IPv6 Domains via IPv4 Clouds"">RFC3056</a>]).
<span class="h4"><a class="selflink" id="section-3.2.6" href="#section-3.2.6">3.2.6</a>. <a href="./rfc3884">RFC 3884</a>, Use of IPsec Transport Mode for Dynamic Routing</span>
(I, September 2004)
[<a id="ref-RFC3884">RFC3884</a>] describes the use of transport-mode IPsec to secure IP-in-
IP tunnels, which constitute the links of a multi-hop, distributed
virtual network (VN). This allows the traffic to be dynamically
routed via the VN's trusted routers, rather than routing all traffic
through a statically routed IPsec tunnel. This RFC has not been
widely adopted.
<span class="h4"><a class="selflink" id="section-3.2.7" href="#section-3.2.7">3.2.7</a>. <a href="./rfc5840">RFC 5840</a>, Wrapped Encapsulating Security Payload (ESP) for</span>
<span class="h4"> Traffic Visibility (S, April 2010)</span>
ESP, as defined in [<a href="./rfc4303" title=""IP Encapsulating Security Payload (ESP)"">RFC4303</a>], does not allow a network device to
easily determine whether protected traffic that is passing through
the device is encrypted or only integrity protected (referred to as
ESP-NULL packets). [<a href="./rfc5840" title=""Wrapped Encapsulating Security Payload (ESP) for Traffic Visibility"">RFC5840</a>] extends ESPv3 to provide explicit
notification of integrity-protected packets, and extends IKEv2 to
negotiate this capability between the IPsec peers.
<span class="grey">Frankel & Krishnan Informational [Page 13]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-14" ></span>
<span class="grey"><a href="./rfc6071">RFC 6071</a> IPsec/IKE Roadmap February 2011</span>
<span class="h4"><a class="selflink" id="section-3.2.8" href="#section-3.2.8">3.2.8</a>. <a href="./rfc5879">RFC 5879</a>, Heuristics for Detecting ESP-NULL packets</span>
(I, May 2010)
[<a id="ref-RFC5879">RFC5879</a>] offers an alternative approach to differentiating between
ESP-encrypted and ESP-NULL packets through packet inspection. This
method does not require any change to IKE or ESP; it can be used with
ESP-v2 or ESP-v3.
<span class="h3"><a class="selflink" id="section-3.3" href="#section-3.3">3.3</a>. General Considerations</span>
<span class="h4"><a class="selflink" id="section-3.3.1" href="#section-3.3.1">3.3.1</a>. <a href="./rfc3715">RFC 3715</a>, IPsec-Network Address Translation (NAT) Compatibility</span>
<span class="h4"> Requirements (I, March 2004)</span>
[<a id="ref-RFC3715">RFC3715</a>] "describes known incompatibilities between NAT and IPsec,
and describes the requirements for addressing them". This is a
critical issue, since IPsec is frequently used to provide VPN access
to the corporate network for telecommuters, and NATs are widely
deployed in home gateways, hotels, and other access networks
typically used for remote access.
<span class="h4"><a class="selflink" id="section-3.3.2" href="#section-3.3.2">3.3.2</a>. <a href="./rfc5406">RFC 5406</a>, Guidelines for Specifying the Use of IPsec Version 2</span>
(B, February 2009)
[<a id="ref-RFC5406">RFC5406</a>] offers guidance to protocol designers on how to ascertain
whether IPsec is the appropriate security mechanism to provide an
interoperable security solution for the protocol. If this is not the
case, it advises against attempting to define a new security
protocol; rather, it suggests using another standards-based security
protocol. The details in this document apply only to IPsec-v2.
<span class="h4"><a class="selflink" id="section-3.3.3" href="#section-3.3.3">3.3.3</a>. <a href="./rfc2521">RFC 2521</a>, ICMP Security Failures Messages (E, March 1999)</span>
[<a id="ref-RFC2521">RFC2521</a>] specifies an ICMP message for indicating failures related
to the use of IPsec protocols (AH and ESP). The specified ICMP
message defines several codes for handling common failure modes for
IPsec. The failures that are signaled by this message include
invalid or expired SPIs, failure of authenticity or integrity checks
on datagrams, decryption and decompression errors, etc. These
messages can be used to trigger automated session-key management or
to signal to an operator the need to manually reconfigure the SAs.
This RFC has not been widely adopted. Furthermore, [<a href="./rfc4301" title=""Security Architecture for the Internet Protocol"">RFC4301</a>]
discusses the pros and cons of relying on unprotected ICMP messages.
<span class="h4"><a class="selflink" id="section-3.3.4" href="#section-3.3.4">3.3.4</a>. <a href="./rfc6027">RFC 6027</a>, IPsec Cluster Problem Statement (I, October 2010)</span>
[<a id="ref-RFC6027">RFC6027</a>] describes the problems of using IKE and IPsec in a high
availability environment, in which one or both of the peers are
clusters of gateways. It details the numerous types of stateful
<span class="grey">Frankel & Krishnan Informational [Page 14]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-15" ></span>
<span class="grey"><a href="./rfc6071">RFC 6071</a> IPsec/IKE Roadmap February 2011</span>
information shared by IKE and IPsec peers that would have to be
available to other members of the cluster in order to provide high-
availability, load sharing, and/or failover capabilities.
<span class="h2"><a class="selflink" id="section-4" href="#section-4">4</a>. IKE Documents</span>
<span class="h3"><a class="selflink" id="section-4.1" href="#section-4.1">4.1</a>. Base Documents</span>
<span class="h4"><a class="selflink" id="section-4.1.1" href="#section-4.1.1">4.1.1</a>. IKEv1</span>
IKE is the preferred key management protocol for IPsec. It is used
for peer authentication; to negotiate, modify, and delete SAs; and to
negotiate authenticated keying material for use within those SAs.
The standard peer authentication methods used by IKEv1 (pre-shared
secret keys and digital certificates) had several shortcomings
related to use of IKEv1 to enable remote user authentication to a
corporate VPN: it could not leverage the use of legacy authentication
systems (e.g. RADIUS databases) to authenticate a remote user to a
security gateway; and it could not be used to configure remote users
with network addresses or other information needed in order to access
the internal network. Automatic key distribution is required for
IPsec-v2, but alternatives to IKE may be used to satisfy that
requirement.
Several Internet Drafts were written to address these problems: two
such documents include "Extended Authentication within IKE (XAUTH)"
[<a href="#ref-IKE-XAUTH">IKE-XAUTH</a>] (and its predecessor, "Extended Authentication within
ISAKMP/Oakley (XAUTH)" [<a href="#ref-ISAKMP-XAUTH">ISAKMP-XAUTH</a>]) and "The ISAKMP Configuration
Method" [<a href="#ref-IKE-MODE-CFG">IKE-MODE-CFG</a>] (and its predecessor [<a href="#ref-ISAKMP-MODE-CFG">ISAKMP-MODE-CFG</a>]).
These Internet Drafts did not progress to RFC status due to security
flaws and other problems related to these solutions. However, many
current IKEv1 implementations incorporate aspects of these solutions
to facilitate remote user access to corporate VPNs. These solutions
were not standardized, and different implementations implemented
different versions. Thus, there is no assurance that the
implementations adhere fully to the suggested solutions or that one
implementation can interoperate with others that claim to incorporate
the same features. Furthermore, these solutions have known security
issues. All of those problems and security issues have been solved
in IKEv2; thus, use of these non-standardized IKEv1 solutions is not
recommended.
<span class="h5"><a class="selflink" id="section-4.1.1.1" href="#section-4.1.1.1">4.1.1.1</a>. <a href="./rfc2409">RFC 2409</a>, The Internet Key Exchange (IKE) (S, November 1998)</span>
This document defines a key exchange protocol that can be used to
negotiate authenticated keying material for SAs. This document
implements a subset of the Oakley protocol in conjunction with ISAKMP
to obtain authenticated keying material for use with ISAKMP, and for
<span class="grey">Frankel & Krishnan Informational [Page 15]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-16" ></span>
<span class="grey"><a href="./rfc6071">RFC 6071</a> IPsec/IKE Roadmap February 2011</span>
other security associations such as AH and ESP for the IETF IPsec
DOI. While, historically, IKEv1 was created by combining two
security protocols, ISAKMP and Oakley, in practice, the combination
(along with the IPsec DOI) has commonly been viewed as one protocol,
IKEv1. The protocol's origins can be seen in the organization of the
documents that define it.
<span class="h5"><a class="selflink" id="section-4.1.1.2" href="#section-4.1.1.2">4.1.1.2</a>. <a href="./rfc2408">RFC 2408</a>, Internet Security Association and Key Management</span>
<span class="h5"> Protocol (ISAKMP) (S, November 1998)</span>
This document defines procedures and packet formats to establish,
negotiate, modify, and delete Security Associations (SAs). It is
intended to support the negotiation of SAs for security protocols at
all layers of the network stack. ISAKMP can work with many different
key exchange protocols, each with different security properties.
<span class="h5"><a class="selflink" id="section-4.1.1.3" href="#section-4.1.1.3">4.1.1.3</a>. <a href="./rfc2407">RFC 2407</a>, The Internet IP Security Domain of Interpretation</span>
<span class="h5"> for ISAKMP (S, November 1998)</span>
Within ISAKMP, a Domain of Interpretation is used to group related
protocols using ISAKMP to negotiate security associations. Security
protocols sharing a DOI choose security protocol and cryptographic
transforms from a common namespace and share key exchange protocol
identifiers. This document defines the Internet IP Security DOI
(IPSEC DOI), which instantiates ISAKMP for use with IP when IP uses
ISAKMP to negotiate security associations.
<span class="h5"><a class="selflink" id="section-4.1.1.4" href="#section-4.1.1.4">4.1.1.4</a>. <a href="./rfc2412">RFC 2412</a>, The OAKLEY Key Determination Protocol</span>
(I, November 1998)
[<a id="ref-RFC2412">RFC2412</a>] describes a key establishment protocol that two
authenticated parties can use to agree on secure and secret keying
material. The Oakley protocol describes a series of key exchanges --
called "modes" -- and details the services provided by each (e.g.,
perfect forward secrecy for keys, identity protection, and
authentication). This document provides additional theory and
background to explain some of the design decisions and security
features of IKE and ISAKMP; it does not include details necessary for
the implementation of IKEv1.
<span class="h4"><a class="selflink" id="section-4.1.2" href="#section-4.1.2">4.1.2</a>. IKEv2</span>
<span class="h5"><a class="selflink" id="section-4.1.2.1" href="#section-4.1.2.1">4.1.2.1</a>. <a href="./rfc4306">RFC 4306</a>, Internet Key Exchange (IKEv2) Protocol</span>
(S, December 2005)
This document contains the original description of version 2 of the
Internet Key Exchange (IKE) protocol. It covers what was previously
covered by separate documents: ISAKMP, IKE, and DOI. It also
<span class="grey">Frankel & Krishnan Informational [Page 16]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-17" ></span>
<span class="grey"><a href="./rfc6071">RFC 6071</a> IPsec/IKE Roadmap February 2011</span>
addresses NAT traversal, legacy authentication, and remote address
acquisition. IKEv2 is not interoperable with IKEv1. Automatic key
distribution is required for IPsec-v3, but alternatives to IKE may be
used to satisfy that requirement. This document has been superseded
by [<a href="./rfc5996" title=""Internet Key Exchange Protocol Version 2 (IKEv2)"">RFC5996</a>].
<span class="h5"><a class="selflink" id="section-4.1.2.2" href="#section-4.1.2.2">4.1.2.2</a>. <a href="./rfc4718">RFC 4718</a>, IKEv2 Clarifications and Implementation Guidelines</span>
(I, October 2006)
[<a id="ref-RFC4718">RFC4718</a>] clarifies many areas of the original IKEv2 specification
[<a href="./rfc4306" title=""Internet Key Exchange (IKEv2) Protocol"">RFC4306</a>] that were seen as potentially difficult to understand for
developers who were not intimately familiar with the specification
and its history. It does not introduce any changes to the protocol,
but rather provides descriptions that are less prone to ambiguous
interpretations. The goal of this document was to encourage the
development of interoperable implementations. The clarifications in
this document have been included in the new version of the IKEv2
specification [<a href="./rfc5996" title=""Internet Key Exchange Protocol Version 2 (IKEv2)"">RFC5996</a>].
<span class="h5"><a class="selflink" id="section-4.1.2.3" href="#section-4.1.2.3">4.1.2.3</a>. <a href="./rfc5996">RFC 5996</a>, Internet Key Exchange Protocol Version 2 (IKEv2)</span>
(S, September 2010)
[<a id="ref-RFC5996">RFC5996</a>] combines the original IKEv2 RFC [<a href="./rfc4306" title=""Internet Key Exchange (IKEv2) Protocol"">RFC4306</a>] with the
Clarifications RFC [<a href="./rfc4718" title=""IKEv2 Clarifications and Implementation Guidelines"">RFC4718</a>], and resolves many implementation issues
discovered by the community since the publication of these two
documents. This document was developed by the IPsecME (IPsec
Maintenance and Extensions) Working Group, after the conclusion of
the original IPsec Working Group. Automatic key distribution is
required for IPsec-v3, but alternatives to IKE may be used to satisfy
that requirement.
<span class="h3"><a class="selflink" id="section-4.2" href="#section-4.2">4.2</a>. Additions and Extensions</span>
<span class="h4"><a class="selflink" id="section-4.2.1" href="#section-4.2.1">4.2.1</a>. Peer Authentication Methods</span>
<span class="h5"><a class="selflink" id="section-4.2.1.1" href="#section-4.2.1.1">4.2.1.1</a>. <a href="./rfc4478">RFC 4478</a>, Repeated Authentication in Internet Key Exchange</span>
(IKEv2) Protocol (E, April 2006)
[<a id="ref-RFC4478">RFC4478</a>] addresses a problem unique to remote access scenarios. How
can the gateway (the IKE responder) force the remote user (the IKE
initiator) to periodically reauthenticate, limiting the damage in the
case where an unauthorized user gains physical access to the remote
host? This document defines a new status notification, that a
responder can send to an initiator, which notifies the initiator that
the IPsec SA will be revoked unless the initiator reauthenticates
within a specified period of time. This optional extension applies
only to IKEv2, not to IKEv1.
<span class="grey">Frankel & Krishnan Informational [Page 17]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-18" ></span>
<span class="grey"><a href="./rfc6071">RFC 6071</a> IPsec/IKE Roadmap February 2011</span>
<span class="h5"><a class="selflink" id="section-4.2.1.2" href="#section-4.2.1.2">4.2.1.2</a>. <a href="./rfc4739">RFC 4739</a>, Multiple Authentication Exchanges in the Internet</span>
<span class="h5"> Key Exchange (IKEv2) Protocol (E, November 2006)</span>
IKEv2 supports several mechanisms for authenticating the parties but
each endpoint uses only one of these mechanisms to authenticate
itself. [<a href="./rfc4739" title=""Multiple Authentication Exchanges in the Internet Key Exchange (IKEv2) Protocol"">RFC4739</a>] specifies an extension to IKEv2 that allows the
use of multiple authentication exchanges, using either different
mechanisms or the same mechanism. This extension allows, for
instance, performing certificate-based authentication of the client
host followed by an EAP authentication of the user. This also allows
for authentication by multiple administrative domains, if needed.
This optional extension applies only to IKEv2, not to IKEv1.
<span class="h5"><a class="selflink" id="section-4.2.1.3" href="#section-4.2.1.3">4.2.1.3</a>. <a href="./rfc4754">RFC 4754</a>, IKE and IKEv2 Authentication Using the Elliptic</span>
<span class="h5"> Curve Digital Signature Algorithm (ECDSA) (S, January 2007)</span>
[<a id="ref-RFC4754">RFC4754</a>] describes how the Elliptic Curve Digital Signature
Algorithm (ECDSA) may be used as the authentication method within the
IKEv1 and IKEv2 protocols. ECDSA provides many benefits including
computational efficiency, small signature sizes, and minimal
bandwidth compared to other available digital signature methods like
RSA and DSA. This optional extension applies to both IKEv1 and
IKEv2.
<span class="h5"><a class="selflink" id="section-4.2.1.4" href="#section-4.2.1.4">4.2.1.4</a>. <a href="./rfc5998">RFC 5998</a>, An Extension for EAP-Only Authentication in IKEv2</span>
(S, September 2010)
IKEv2 allows an initiator to use EAP for peer authentication, but
requires the responder to authenticate through the use of a digital
signature. [<a href="./rfc5998" title=""An Extension for EAP-Only Authentication in IKEv2"">RFC5998</a>] extends IKEv2 so that EAP methods that provide
mutual authentication and key agreement can also be used to provide
peer authentication for the responder. This optional extension
applies only to IKEv2, not to IKEv1.
<span class="h4"><a class="selflink" id="section-4.2.2" href="#section-4.2.2">4.2.2</a>. Certificate Contents and Management (PKI4IPsec)</span>
The format, contents, and interpretation of Public Key Certificates
(PKCs) proved to be a source of interoperability problems within IKE
and IPsec. PKI4IPsec was an attempt to set in place some common
procedures and interpretations to mitigate those problems.
<span class="h5"><a class="selflink" id="section-4.2.2.1" href="#section-4.2.2.1">4.2.2.1</a>. <a href="./rfc4809">RFC 4809</a>, Requirements for an IPsec Certificate Management</span>
<span class="h5"> Profile (I, February 2007)</span>
[<a id="ref-RFC4809">RFC4809</a>] enumerates requirements for Public Key Certificate (PKC)
lifecycle transactions between different VPN System and PKI System
products in order to better enable large scale, PKI-enabled IPsec
<span class="grey">Frankel & Krishnan Informational [Page 18]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-19" ></span>
<span class="grey"><a href="./rfc6071">RFC 6071</a> IPsec/IKE Roadmap February 2011</span>
deployments with a common set of transactions. This document
discusses requirements for both the IPsec and the PKI products.
These optional requirements apply to both IKEv1 and IKEv2.
<span class="h5"><a class="selflink" id="section-4.2.2.2" href="#section-4.2.2.2">4.2.2.2</a>. <a href="./rfc4945">RFC 4945</a>, The Internet IP Security PKI Profile of</span>
<span class="h5"> IKEv1/ISAKMP, IKEv2, and PKIX (S, August 2007)</span>
[<a id="ref-RFC4945">RFC4945</a>] defines a profile of the IKE and Public Key Infrastructure
using X.509 (PKIX) frameworks in order to provide an agreed-upon
standard for using PKI technology in the context of IPsec. It also
documents the contents of the relevant IKE payloads and further
specifies their semantics. In addition, it summarizes the current
state of implementations and deployment and provides advice to avoid
common interoperability issues. This optional extension applies to
both IKEv1 and IKEv2.
<span class="h5"><a class="selflink" id="section-4.2.2.3" href="#section-4.2.2.3">4.2.2.3</a>. <a href="./rfc4806">RFC 4806</a>, Online Certificate Status Protocol (OCSP) Extensions</span>
<span class="h5"> to IKEv2 (S, February 2007)</span>
When certificates are used with IKEv2, the communicating peers need a
mechanism to determine the revocation status of the peer's
certificate. OCSP is one such mechanism. [<a href="./rfc4806" title=""Online Certificate Status Protocol (OCSP) Extensions to IKEv2"">RFC4806</a>] defines the
"OCSP Content" extension to IKEv2. This document is applicable when
OCSP is desired and security policy (e.g., firewall policy) prevents
one of the IKEv2 peers from accessing the relevant OCSP responder
directly. This optional extension applies only to IKEv2, not to
IKEv1.
<span class="h4"><a class="selflink" id="section-4.2.3" href="#section-4.2.3">4.2.3</a>. Dead Peer Detection</span>
<span class="h5"><a class="selflink" id="section-4.2.3.1" href="#section-4.2.3.1">4.2.3.1</a>. <a href="./rfc3706">RFC 3706</a>, A Traffic-Based Method of Detecting Dead Internet</span>
<span class="h5"> Key Exchange (IKE) Peers (I, February 2004)</span>
When two peers communicate using IKE and IPsec, it is possible for
the connectivity between the two peers to drop unexpectedly. But the
SAs can still remain until their lifetimes expire, resulting in the
packets getting tunneled into a "black hole". [<a href="./rfc3706" title=""A Traffic- Based Method of Detecting Dead Internet Key Exchange (IKE) Peers"">RFC3706</a>] describes an
approach to detect peer liveliness without needing to send messages
at regular intervals. This RFC defines an optional extension to
IKEv1; dead peer detection (DPD) is an integral part of IKEv2, which
refers to this feature as a "liveness check" or "liveness test".
<span class="h4"><a class="selflink" id="section-4.2.4" href="#section-4.2.4">4.2.4</a>. Remote Access</span>
The IKEv2 Mobility and Multihoming (MOBIKE) protocol enables two
additional capabilities for IPsec VPN users: 1) moving from one
address to another without re-establishing existing SAs and 2) using
<span class="grey">Frankel & Krishnan Informational [Page 19]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-20" ></span>
<span class="grey"><a href="./rfc6071">RFC 6071</a> IPsec/IKE Roadmap February 2011</span>
multiple interfaces simultaneously. These solutions are limited to
IPsec VPNs; they are not intended to provide more general mobility or
multihoming capabilities.
The IPsecME Working Group identified some missing components needed
for more extensive IKEv2 and IPsec-v3 support for remote access
clients. These include efficient client resumption of a previously
established session with a VPN gateway, efficient client redirection
to an alternate VPN gateway, and support for IPv6 client
configuration using IPsec configuration payloads.
<span class="h5"><a class="selflink" id="section-4.2.4.1" href="#section-4.2.4.1">4.2.4.1</a>. <a href="./rfc4555">RFC 4555</a>, IKEv2 Mobility and Multihoming Protocol (MOBIKE)</span>
(S, June 2006)
IKEv2 assumes that an IKE SA is created implicitly between the IP
address pair that is used during the protocol execution when
establishing the IKEv2 SA. IPsec-related documents had no provision
to change this pair after an IKE SA was created. [<a href="./rfc4555" title=""IKEv2 Mobility and Multihoming Protocol (MOBIKE)"">RFC4555</a>] defines
extensions to IKEv2 that enable an efficient management of IKE and
IPsec Security Associations when a host possesses multiple IP
addresses and/or where IP addresses of an IPsec host change over
time.
<span class="h5"><a class="selflink" id="section-4.2.4.2" href="#section-4.2.4.2">4.2.4.2</a>. <a href="./rfc4621">RFC 4621</a>, Design of the IKEv2 Mobility and Multihoming</span>
(MOBIKE) Protocol (I, August 2006)
[<a id="ref-RFC4621">RFC4621</a>] discusses the involved network entities and the
relationship between IKEv2 signaling and information provided by
other protocols. It also records design decisions for the MOBIKE
protocol, background information, and records discussions within the
working group.
<span class="h5"><a class="selflink" id="section-4.2.4.3" href="#section-4.2.4.3">4.2.4.3</a>. <a href="./rfc5266">RFC 5266</a>, Secure Connectivity and Mobility Using Mobile IPv4</span>
<span class="h5"> and IKEv2 Mobility and Multihoming (MOBIKE) (B, June 2008)</span>
[<a id="ref-RFC5266">RFC5266</a>] describes a solution using Mobile IPv4 (MIPv4) and mobility
extensions to IKEv2 (MOBIKE) to provide secure connectivity and
mobility to enterprise users when they roam into untrusted networks.
<span class="h5"><a class="selflink" id="section-4.2.4.4" href="#section-4.2.4.4">4.2.4.4</a>. <a href="./rfc5723">RFC 5723</a>, Internet Key Exchange Protocol Version 2 (IKEv2)</span>
<span class="h5"> Session Resumption (S, January 2010)</span>
[<a id="ref-RFC5723">RFC5723</a>] enables a remote client that has been disconnected from a
gateway to re-establish SAs with the gateway in an expedited manner,
without repeating the complete IKEv2 negotiation. This capability
requires changes to IKEv2. This optional extension applies only to
IKEv2, not to IKEv1.
<span class="grey">Frankel & Krishnan Informational [Page 20]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-21" ></span>
<span class="grey"><a href="./rfc6071">RFC 6071</a> IPsec/IKE Roadmap February 2011</span>
<span class="h5"><a class="selflink" id="section-4.2.4.5" href="#section-4.2.4.5">4.2.4.5</a>. <a href="./rfc5685">RFC 5685</a>, Re-direct Mechanism for the Internet Key Exchange</span>
<span class="h5"> Protocol Version 2 (IKEv2) (S, November 2009)</span>
[<a id="ref-RFC5685">RFC5685</a>] enables a gateway to securely redirect VPN clients to
another VPN gateway, either during or after the IKEv2 negotiation.
Possible reasons include, but are not limited to, an overloaded
gateway or a gateway that needs to shut down. This requires changes
to IKEv2. This optional extension applies only to IKEv2, not to
IKEv1.
<span class="h5"><a class="selflink" id="section-4.2.4.6" href="#section-4.2.4.6">4.2.4.6</a>. <a href="./rfc5739">RFC 5739</a>, IPv6 Configuration in Internet Key Exchange Protocol</span>
<span class="h5"> Version 2 (IKEv2) (E, February 2010)</span>
In IKEv2, a VPN gateway can assign an internal network address to a
remote VPN client. This is accomplished through the use of
configuration payloads. For an IPv6 client, the assignment of a
single address is not sufficient to enable full-fledged IPv6
communications. [<a href="./rfc5739" title=""IPv6 Configuration in Internet Key Exchange Protocol Version 2 (IKEv2)"">RFC5739</a>] proposes several solutions that might
remove this limitation. This optional extension applies only to
IKEv2, not to IKEv1.
<span class="h2"><a class="selflink" id="section-5" href="#section-5">5</a>. Cryptographic Algorithms and Suites</span>
Two basic requirements must be met for an algorithm to be used within
IKE and/or IPsec: assignment of one or more IANA values and an RFC
that describes how to use the algorithm within the relevant protocol,
packet formats, special considerations, etc. For each RFC that
describes a cryptographic algorithm, this roadmap will classify its
requirement level for each protocol, as either MUST, SHOULD, or MAY
[<a href="./rfc2119" title=""Key words for use in RFCs to Indicate Requirement Levels"">RFC2119</a>]; SHOULD+, SHOULD-, or MUST- [<a href="./rfc4835" title=""Cryptographic Algorithm Implementation Requirements for Encapsulating Security Payload (ESP) and Authentication Header (AH)"">RFC4835</a>]; optional; undefined;
or N/A (not applicable). A designation of "optional" means that the
algorithm meets the two basic requirements, but its use is not
specifically recommended for that protocol. "Undefined" means that
one of the basic requirements is not met: either there is no relevant
IANA number for the algorithm or there is no RFC specifying how it
should be used within that specific protocol. "N/A" means that use
of the algorithm is inappropriate in the context (e.g., NULL
encryption for IKE, which always requires encryption; or combined
mode algorithms, a new feature in IPsec-v3, for use with IPsec-v2).
This document categorizes the requirement level of each algorithm for
IKEv1, IKEv2, IPsec-v2, and IPsec-v3. If an algorithm is recommended
for use within IKEv1 or IKEv2, it is used either to protect the IKE
SA's traffic (encryption and integrity-protection algorithms) or to
generate keying material (Diffie-Hellman or DH groups, Pseudorandom
Functions or PRFs). If an algorithm is recommended for use within
IPsec, it is used to protect the IPsec/child SA's traffic, and IKE is
capable of negotiating its use for that purpose. These requirements
<span class="grey">Frankel & Krishnan Informational [Page 21]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-22" ></span>
<span class="grey"><a href="./rfc6071">RFC 6071</a> IPsec/IKE Roadmap February 2011</span>
are summarized in Table 1 (Appendix A). These levels are current as
of February 2011; subsequent RFCs may result in altered requirement
levels. For algorithms, this could mean the introduction of new
algorithms or upgrading or downgrading the requirement levels of
current algorithms.
The IANA registries for IKEv1 and IKEv2 include IANA values for
various cryptographic algorithms. IKE uses these values to negotiate
IPsec SAs that will provide protection using those algorithms. If a
specific algorithm lacks a value for IKEv1 and/or IKEv2, that
algorithm's use is classified as "undefined" (no IANA #) within
IPsec-v2 and/or IPsec-v3.
<span class="h3"><a class="selflink" id="section-5.1" href="#section-5.1">5.1</a>. Algorithm Requirements</span>
Specifying a core set of mandatory algorithms for each protocol
facilitates interoperability. Defining those algorithms in an RFC
separate from the base protocol RFC enhances algorithm agility.
IPsec-v3 and IKEv2 each have an RFC that specifies their mandatory-
to-implement (MUST), recommended (SHOULD), optional (MAY), and
deprecated (SHOULD NOT) algorithms. For IPsec-v2, this is included
in the base protocol RFC. That was originally the case for IKEv1,
but IKEv1's algorithm requirements were updated in [<a href="./rfc4109" title=""Algorithms for Internet Key Exchange version 1 (IKEv1)"">RFC4109</a>].
<span class="h4"><a class="selflink" id="section-5.1.1" href="#section-5.1.1">5.1.1</a>. <a href="./rfc4835">RFC 4835</a>, Cryptographic Algorithm Implementation Requirements</span>
<span class="h4"> for Encapsulating Security Payload (ESP) and Authentication</span>
Header (AH) (S, April 2007)
[<a id="ref-RFC4835">RFC4835</a>] specifies the encryption and integrity-protection
algorithms for IPsec (both versions). Algorithms for IPsec-v2 were
originally defined in [<a href="./rfc2402" title=""IP Authentication Header"">RFC2402</a>] and [<a href="./rfc2406" title=""IP Encapsulating Security Payload (ESP)"">RFC2406</a>]. [<a href="./rfc4305" title=""Cryptographic Algorithm Implementation Requirements for Encapsulating Security Payload (ESP) and Authentication Header (AH)"">RFC4305</a>] obsoleted
those requirements, and was in turn obsoleted by [<a href="./rfc4835" title=""Cryptographic Algorithm Implementation Requirements for Encapsulating Security Payload (ESP) and Authentication Header (AH)"">RFC4835</a>].
Therefore, [<a href="./rfc4835" title=""Cryptographic Algorithm Implementation Requirements for Encapsulating Security Payload (ESP) and Authentication Header (AH)"">RFC4835</a>] applies to IPsec-v2 as well as IPsec-v3.
Combined mode algorithms are mentioned, but not assigned a
requirement level.
<span class="h4"><a class="selflink" id="section-5.1.2" href="#section-5.1.2">5.1.2</a>. <a href="./rfc4307">RFC 4307</a>, Cryptographic Algorithms for Use in the Internet Key</span>
<span class="h4"> Exchange Version 2 (IKEv2) (S, December 2005)</span>
[<a id="ref-RFC4307">RFC4307</a>] specifies the encryption and integrity-protection
algorithms used by IKEv2 to protect its own traffic, the Diffie-
Hellman (DH) groups used within IKEv2, and the pseudorandom functions
used by IKEv2 to generate keys, nonces, and other random values.
[<a href="./rfc4307" title=""Cryptographic Algorithms for Use in the Internet Key Exchange Version 2 (IKEv2)"">RFC4307</a>] contains conflicting requirements for IKEv2 encryption and
integrity-protection algorithms. Where there are contradictory
requirements, this document takes its requirement levels from Section
<span class="grey">Frankel & Krishnan Informational [Page 22]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-23" ></span>
<span class="grey"><a href="./rfc6071">RFC 6071</a> IPsec/IKE Roadmap February 2011</span>
3.1.1, "Encrypted Payload Algorithms", rather than from <a href="#section-3.1.3">Section</a>
<a href="#section-3.1.3">3.1.3</a>, "IKEv2 Transform Type 1 Algorithms", or <a href="#section-3.1.4">Section 3.1.4</a>, "IKEv2
Transform Type 2 Algorithms".
<span class="h4"><a class="selflink" id="section-5.1.3" href="#section-5.1.3">5.1.3</a>. <a href="./rfc4109">RFC 4109</a>, Algorithms for Internet Key Exchange version 1 (IKEv1)</span>
(S, May 2005)
[<a id="ref-RFC4109">RFC4109</a>] updates IKEv1's algorithm specifications, which were
originally defined in [<a href="./rfc2409" title=""The Internet Key Exchange (IKE)"">RFC2409</a>]. It specifies the encryption and
integrity-protection algorithms used by IKEv1 to protect its own
traffic; the Diffie-Hellman (DH) groups used within IKEv1; the hash
and pseudorandom functions used by IKEv1 to generate keys, nonces and
other random values; and the authentication methods and algorithms
used by IKEv1 for peer authentication.
<span class="h3"><a class="selflink" id="section-5.2" href="#section-5.2">5.2</a>. Encryption Algorithms</span>
The encryption-algorithm RFCs describe how to use these algorithms to
encrypt IKE and/or ESP traffic, providing confidentiality protection
to the traffic. They describe any special constraints, requirements,
or changes to packet format appropriate for the specific algorithm.
In general, they do not describe the detailed algorithmic
computations; the reference section of each RFC includes pointers to
documents that define the inner workings of the algorithm. Some of
the RFCs include sample test data, to enable implementors to compare
their results with standardized output.
When any encryption algorithm is used to provide confidentiality, the
use of integrity protection is strongly recommended. If the
encryption algorithm is a stream cipher, omitting integrity
protection seriously compromises the security properties of the
algorithm.
DES, as described in [<a href="./rfc2405" title=""The ESP DES-CBC Cipher Algorithm With Explicit IV"">RFC2405</a>], was originally a required algorithm
for IKEv1 and ESP-v2. Since the use of DES is now deprecated, this
roadmap does not include [<a href="./rfc2405" title=""The ESP DES-CBC Cipher Algorithm With Explicit IV"">RFC2405</a>].
<span class="h4"><a class="selflink" id="section-5.2.1" href="#section-5.2.1">5.2.1</a>. <a href="./rfc2410">RFC 2410</a>, The NULL Encryption Algorithm and Its Use With IPsec</span>
(S, November 1998)
[<a id="ref-RFC2410">RFC2410</a>] is a tongue-in-cheek description of the no-op encryption
algorithm (i.e., using ESP without encryption). In order for IKE to
negotiate the selection of the NULL encryption algorithm for use in
an ESP SA, an identifying IANA number is needed. This number (the
value 11 for ESP_NULL) is found on the IANA registries for both IKEv1
and IKEv2, but it is not mentioned in [<a href="./rfc2410" title=""The NULL Encryption Algorithm and Its Use With IPsec"">RFC2410</a>].
<span class="grey">Frankel & Krishnan Informational [Page 23]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-24" ></span>
<span class="grey"><a href="./rfc6071">RFC 6071</a> IPsec/IKE Roadmap February 2011</span>
Requirement levels for ESP-NULL:
IKEv1 - N/A
IKEv2 - N/A
ESP-v2 - MUST [<a href="./rfc4835" title=""Cryptographic Algorithm Implementation Requirements for Encapsulating Security Payload (ESP) and Authentication Header (AH)"">RFC4835</a>]
ESP-v3 - MUST [<a href="./rfc4835" title=""Cryptographic Algorithm Implementation Requirements for Encapsulating Security Payload (ESP) and Authentication Header (AH)"">RFC4835</a>]
NOTE: <a href="./rfc4307">RFC 4307</a> erroneously classifies ESP-NULL as MAY for IKEv2; this
has been corrected in an errata submission for <a href="./rfc4307">RFC 4307</a>.
<span class="h4"><a class="selflink" id="section-5.2.2" href="#section-5.2.2">5.2.2</a>. <a href="./rfc2451">RFC 2451</a>, The ESP CBC-Mode Cipher Algorithms (S, November 1998)</span>
[<a id="ref-RFC2451">RFC2451</a>] describes how to use encryption algorithms in cipher-block-
chaining (CBC) mode to encrypt IKE and ESP traffic. It specifically
mentions Blowfish, CAST-128, Triple DES (3DES), International Data
Encryption Algorithm (IDEA), and RC5, but it is applicable to any
block-cipher algorithm used in CBC mode. The algorithms mentioned in
the RFC all have a 64-bit blocksize and a 64-bit random
Initialization Vector (IV) that is sent in the packet along with the
encrypted data.
Requirement levels for 3DES-CBC:
IKEv1 - MUST [<a href="./rfc4109" title=""Algorithms for Internet Key Exchange version 1 (IKEv1)"">RFC4109</a>]
IKEv2 - MUST- [<a href="./rfc4307" title=""Cryptographic Algorithms for Use in the Internet Key Exchange Version 2 (IKEv2)"">RFC4307</a>]
ESP-v2 - MUST [<a href="./rfc4835" title=""Cryptographic Algorithm Implementation Requirements for Encapsulating Security Payload (ESP) and Authentication Header (AH)"">RFC4835</a>]
ESP-v3 - MUST- [<a href="./rfc4835" title=""Cryptographic Algorithm Implementation Requirements for Encapsulating Security Payload (ESP) and Authentication Header (AH)"">RFC4835</a>]
Requirement levels for other CBC algorithms (Blowfish, CAST, IDEA,
RC5):
IKEv1 - optional
IKEv2 - optional
ESP-v2 - optional
ESP-v3 - optional
<span class="h4"><a class="selflink" id="section-5.2.3" href="#section-5.2.3">5.2.3</a>. <a href="./rfc3602">RFC 3602</a>, The AES-CBC Cipher Algorithm and Its Use with IPsec</span>
(S, September. 2003)
[<a id="ref-RFC3602">RFC3602</a>] describes how to use AES in cipher block chaining (CBC)
mode to encrypt IKE and ESP traffic. AES is the successor to DES.
AES-CBC is a block-mode cipher with a 128-bit blocksize, a random IV
that is sent in the packet along with the encrypted data, and
keysizes of 128, 192 and 256 bits. If AES-CBC is implemented,
128-bit keys are MUST; the other sizes are MAY. [<a href="./rfc3602" title=""The AES-CBC Cipher Algorithm and Its Use with IPsec"">RFC3602</a>] includes
IANA values for use in IKEv1 and ESP-v2. A single IANA value is
defined for AES-CBC, so IKE negotiations need to specify the keysize.
<span class="grey">Frankel & Krishnan Informational [Page 24]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-25" ></span>
<span class="grey"><a href="./rfc6071">RFC 6071</a> IPsec/IKE Roadmap February 2011</span>
Requirement levels for AES-CBC with 128-bit keys:
IKEv1 - SHOULD [<a href="./rfc4109" title=""Algorithms for Internet Key Exchange version 1 (IKEv1)"">RFC4109</a>]
IKEv2 - SHOULD+ [<a href="./rfc4307" title=""Cryptographic Algorithms for Use in the Internet Key Exchange Version 2 (IKEv2)"">RFC4307</a>]
ESP-v2 - MUST [<a href="./rfc4835" title=""Cryptographic Algorithm Implementation Requirements for Encapsulating Security Payload (ESP) and Authentication Header (AH)"">RFC4835</a>]
ESP-v3 - MUST [<a href="./rfc4835" title=""Cryptographic Algorithm Implementation Requirements for Encapsulating Security Payload (ESP) and Authentication Header (AH)"">RFC4835</a>]
Requirement levels for AES-CBC with 192- or 256-bit keys:
IKEv1 - optional
IKEv2 - optional
ESP-v2 - optional
ESP-v3 - optional
<span class="h4"><a class="selflink" id="section-5.2.4" href="#section-5.2.4">5.2.4</a>. <a href="./rfc3686">RFC 3686</a>, Using Advanced Encryption Standard (AES) Counter Mode</span>
<span class="h4"> With IPsec Encapsulating Security Payload (ESP)</span>
(S, January 2004)
[<a id="ref-RFC3686">RFC3686</a>] describes how to use AES in counter (CTR) mode to encrypt
ESP traffic. AES-CTR is a stream cipher with a 32-bit random nonce
(1/SA) and a 64-bit IV. If AES-CTR is implemented, 128-bit keys are
MUST; 192- and 256-byte keys are MAY. Reuse of the IV with the same
key and nonce compromises the data's security; thus, AES-CTR should
not be used with manual keying. AES-CTR can be pipelined and
parallelized; it uses only the AES encryption operations for both
encryption and decryption.
Requirement levels for AES-CTR:
IKEv1 - undefined (no IANA #)
IKEv2 - optional [<a href="./rfc5930" title=""Using Advanced Encryption Standard Counter Mode (AES-CTR) with the Internet Key Exchange version 02 (IKEv2) Protocol"">RFC5930</a>]
ESP-v2 - SHOULD [<a href="./rfc4835" title=""Cryptographic Algorithm Implementation Requirements for Encapsulating Security Payload (ESP) and Authentication Header (AH)"">RFC4835</a>]
ESP-v3 - SHOULD [<a href="./rfc4835" title=""Cryptographic Algorithm Implementation Requirements for Encapsulating Security Payload (ESP) and Authentication Header (AH)"">RFC4835</a>]
<span class="h4"><a class="selflink" id="section-5.2.5" href="#section-5.2.5">5.2.5</a>. <a href="./rfc5930">RFC 5930</a>, Using Advanced Encryption Standard Counter Mode (AES-</span>
<span class="h4"> CTR) with the Internet Key Exchange version 02 (IKEv2) Protocol</span>
(I, July 210).
[<a id="ref-RFC5930">RFC5930</a>] extends [<a href="./rfc3686" title=""Using Advanced Encryption Standard (AES) Counter Mode With IPsec Encapsulating Security Payload (ESP)"">RFC3686</a>] to enable the use of AES-CTR to provide
encryption and integrity protection for IKEv2 messages.
<span class="h4"><a class="selflink" id="section-5.2.6" href="#section-5.2.6">5.2.6</a>. <a href="./rfc4312">RFC 4312</a>, The Camellia Cipher Algorithm and Its Use with IPsec</span>
(S, December 2005)
[<a id="ref-RFC4312">RFC4312</a>] describes how to use Camellia in cipher block chaining
(CBC) mode to encrypt IKE and ESP traffic. Camellia-CBC is a block-
mode cipher with a 128-bit blocksize, a random IV that is sent in the
packet along with the encrypted data, and keysizes of 128, 192, and
<span class="grey">Frankel & Krishnan Informational [Page 25]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-26" ></span>
<span class="grey"><a href="./rfc6071">RFC 6071</a> IPsec/IKE Roadmap February 2011</span>
256 bits. If Camellia-CBC is implemented, 128-bit keys are MUST; the
other sizes are MAY. [<a href="./rfc4312" title=""The Camellia Cipher Algorithm and Its Use With IPsec"">RFC4312</a>] includes IANA values for use in IKEv1
and IPsec-v2. A single IANA value is defined for Camellia-CBC, so
IKEv1 negotiations need to specify the keysize.
<span class="h4"><a class="selflink" id="section-5.2.7" href="#section-5.2.7">5.2.7</a>. <a href="./rfc5529">RFC 5529</a>, Modes of Operation for Camellia for Use with IPsec</span>
(S, April 2009)
[<a id="ref-RFC5529">RFC5529</a>] describes the use of the Camellia block-cipher algorithm in
conjunction with several different modes of operation. It describes
the use of Camellia in cipher block chaining (CBC) mode and counter
(CTR) mode as an encryption algorithm within ESP. It also describes
the use of Camellia in Counter with CBC-MAC (CCM) mode as a combined
mode algorithm in ESP. This document defines how to use IKEv2 to
generate keying material for a Camellia ESP SA; it does not define
how to use Camellia within IKEv2 to protect an IKEv2 SA's traffic.
However, this RFC, in conjunction with IKEv2's generalized
description of block-mode encryption, provide enough detail to allow
the use of Camellia-CBC algorithms within IKEv2. All three modes can
use keys of length 128 bits, 192 bits, or 256 bits. [<a href="./rfc5529" title=""Modes of Operation for Camellia for Use with IPsec"">RFC5529</a>]
includes IANA values for use in IKEv2 and IPsec-v3. A single IANA
value is defined for each Camellia mode, so IKEv2 negotiations need
to specify the keysize.
Requirement levels for Camellia-CBC:
IKEv1 - optional
IKEv2 - optional
ESP-v2 - optional
ESP-v3 - optional
Requirement levels for Camellia-CTR:
IKEv1 - undefined (no IANA #)
IKEv2 - undefined (no RFC)
ESP-v2 - optional (but no IANA #, so cannot be negotiated by IKE)
ESP-v3 - optional
Requirement levels for Camellia-CCM:
IKEv1 - N/A
IKEv2 - undefined (no RFC)
ESP-v2 - N/A
ESP-v3 - optional
<span class="grey">Frankel & Krishnan Informational [Page 26]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-27" ></span>
<span class="grey"><a href="./rfc6071">RFC 6071</a> IPsec/IKE Roadmap February 2011</span>
<span class="h4"><a class="selflink" id="section-5.2.8" href="#section-5.2.8">5.2.8</a>. <a href="./rfc4196">RFC 4196</a>, The SEED Cipher Algorithm and Its Use with IPsec</span>
(S, October 2005)
[<a id="ref-RFC4196">RFC4196</a>] describes how to use SEED in cipher block chaining (CBC)
mode to encrypt ESP traffic. It describes how to use IKEv1 to
negotiate a SEED-ESP SA, but does not define the use of SEED to
protect IKEv1 traffic. SEED-CBC is a block-mode cipher with a
128-bit blocksize, a random IV that is sent in the packet along with
the encrypted data, and a keysize of 128 bits. [<a href="./rfc4196" title=""The SEED Cipher Algorithm and Its Use with IPsec"">RFC4196</a>] includes
IANA values for use in IKEv1 and IPsec-v2. [<a href="./rfc4196" title=""The SEED Cipher Algorithm and Its Use with IPsec"">RFC4196</a>] includes test
data.
Requirement levels for SEED-CBC:
IKEv1 - undefined (no IANA #)
IKEv2 - undefined (no IANA #)
ESP-v2 - optional
ESP-v3 - optional (but no IANA #, so cannot be negotiated by IKE)
<span class="h3"><a class="selflink" id="section-5.3" href="#section-5.3">5.3</a>. Integrity-Protection (Authentication) Algorithms</span>
The integrity-protection algorithm RFCs describe how to use these
algorithms to authenticate IKE and/or IPsec traffic, providing
integrity protection to the traffic. This protection is provided by
computing an Integrity Check Value (ICV), which is sent in the
packet. The RFCs describe any special constraints, requirements, or
changes to packet format appropriate for the specific algorithm. In
general, they do not describe the detailed algorithmic computations;
the reference section of each RFC includes pointers to documents that
define the inner workings of the algorithm. Some of the RFCs include
sample test data, to enable implementors to compare their results
with standardized output.
Some of these algorithms generate a fixed-length ICV, which is
truncated when it is included in an IPsec-protected packet. For
example, standard HMAC-SHA-1 (Hashed Message Authentication Code)
generates a 160-bit ICV, which is truncated to 96 bits when it is
used to provide integrity protection to an ESP or AH packet. The
individual RFC descriptions mention those algorithms that are
truncated. When these algorithms are used to protect IKEv2 SAs, they
are also truncated. For IKEv1, HMAC-SHA-1 and HMAC-MD5 are
negotiated by requesting the hash algorithms SHA-1 and MD5,
respectively; these algorithms are not truncated when used to protect
an IKEv1 SA. For HMAC-SHA-1 and HMAC-MD5, the IKEv2 IANA registry
contains values for both the truncated version and the standard non-
truncated version; thus, IKEv2 has the capability to negotiate either
version of the algorithm. However, only the truncated version is
used for IKEv2 SAs and for IPsec SAs. The non-truncated version is
<span class="grey">Frankel & Krishnan Informational [Page 27]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-28" ></span>
<span class="grey"><a href="./rfc6071">RFC 6071</a> IPsec/IKE Roadmap February 2011</span>
reserved for use by the Fibre Channel protocol [<a href="./rfc4595" title=""Use of IKEv2 in the Fibre Channel Security Association Management Protocol"">RFC4595</a>]. For the
other algorithms (AES-XCBC, HMAC-SHA-256/384/512, AES-CMAC, and HMAC-
RIPEMD), only the truncated version can be used for both IKEv2 and
IPsec-v3 SAs.
One other algorithm, AES-GMAC [<a href="./rfc4543" title=""The Use of Galois Message Authentication Code (GMAC) in IPsec ESP and AH"">RFC4543</a>], can also provide integrity
protection. It has two versions: an integrity-protection algorithm
for use within AH-v3, and a combined mode algorithm with null
encryption for use within ESP-v3. [<a href="./rfc4543" title=""The Use of Galois Message Authentication Code (GMAC) in IPsec ESP and AH"">RFC4543</a>] is described in <a href="#section-5.4">Section</a>
<a href="#section-5.4">5.4</a>, "Combined Mode Algorithms".
<span class="h4"><a class="selflink" id="section-5.3.1" href="#section-5.3.1">5.3.1</a>. <a href="./rfc2404">RFC 2404</a>, The Use of HMAC-SHA-1-96 within ESP and AH</span>
(S, November 1998)
[<a id="ref-RFC2404">RFC2404</a>] describes HMAC-SHA-1, an integrity-protection algorithm
with a 512-bit blocksize, and a 160-bit key and Integrity Check Value
(ICV). For use within IPsec, the ICV is truncated to 96 bits. This
is currently the most commonly used integrity-protection algorithm.
Requirement levels for HMAC-SHA-1:
IKEv1 - MUST [<a href="./rfc4109" title=""Algorithms for Internet Key Exchange version 1 (IKEv1)"">RFC4109</a>]
IKEv2 - MUST [<a href="./rfc4307" title=""Cryptographic Algorithms for Use in the Internet Key Exchange Version 2 (IKEv2)"">RFC4307</a>]
IPsec-v2 - MUST [<a href="./rfc4835" title=""Cryptographic Algorithm Implementation Requirements for Encapsulating Security Payload (ESP) and Authentication Header (AH)"">RFC4835</a>]
IPsec-v3 - MUST [<a href="./rfc4835" title=""Cryptographic Algorithm Implementation Requirements for Encapsulating Security Payload (ESP) and Authentication Header (AH)"">RFC4835</a>]
<span class="h4"><a class="selflink" id="section-5.3.2" href="#section-5.3.2">5.3.2</a>. <a href="./rfc3566">RFC 3566</a>, The AES-XCBC-MAC-96 Algorithm and Its Use With IPsec</span>
(S, September 2003)
[<a id="ref-RFC3566">RFC3566</a>] describes AES-XCBC-MAC, a variant of CBC-MAC, which is
secure for messages of varying lengths (unlike classic CBC-MAC). It
is an integrity-protection algorithm with a 128-bit blocksize and a
128-bit key and ICV. For use within IPsec, the ICV is truncated to
96 bits. [<a href="./rfc3566" title=""The AES-XCBC-MAC-96 Algorithm and Its Use With IPsec"">RFC3566</a>] includes test data.
Requirement levels for AES-XCBC-MAC:
IKEv1 - undefined (no RFC)
IKEv2 - optional
IPsec-v2 - SHOULD+ [<a href="./rfc4835" title=""Cryptographic Algorithm Implementation Requirements for Encapsulating Security Payload (ESP) and Authentication Header (AH)"">RFC4835</a>]
IPsec-v3 - SHOULD+ [<a href="./rfc4835" title=""Cryptographic Algorithm Implementation Requirements for Encapsulating Security Payload (ESP) and Authentication Header (AH)"">RFC4835</a>]
<span class="h4"><a class="selflink" id="section-5.3.3" href="#section-5.3.3">5.3.3</a>. <a href="./rfc4868">RFC 4868</a>, Using HMAC-SHA-256, HMAC-SHA-384, and HMAC-SHA-512</span>
<span class="h4"> with IPsec (S, May 2007)</span>
[<a id="ref-RFC4868">RFC4868</a>] describes a family of algorithms, successors to HMAC-SHA-1.
HMAC-SHA-256 has a 512-bit blocksize and a 256-bit key and ICV.
HMAC-SHA-384 has a 1024-bit blocksize and a 384-bit key and ICV.
<span class="grey">Frankel & Krishnan Informational [Page 28]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-29" ></span>
<span class="grey"><a href="./rfc6071">RFC 6071</a> IPsec/IKE Roadmap February 2011</span>
HMAC-SHA-512 has a 1024-bit blocksize and a 512-bit key and ICV. For
use within IKE and IPsec, the ICV is truncated to half its original
size (128 bits, 192 bits, or 256 bits). Each of the three algorithms
has its own IANA value, so IKE does not have to negotiate the
keysize.
Requirement levels for HMAC-SHA-256, HMAC-SHA-384, HMAC-SHA-512:
IKEv1 - optional
IKEv2 - optional
IPsec-v2 - optional
IPsec-v3 - optional
<span class="h4"><a class="selflink" id="section-5.3.4" href="#section-5.3.4">5.3.4</a>. <a href="./rfc2403">RFC 2403</a>, The Use of HMAC-MD5-96 within ESP and AH</span>
(S, November 1998)
[<a id="ref-RFC2403">RFC2403</a>] describes HMAC-MD5, an integrity-protection algorithm with
a 512-bit blocksize and a 128-bit key and Integrity Check Value
(ICV). For use within IPsec, the ICV is truncated to 96 bits. It
was a required algorithm for IKEv1 and IPsec-v2. The use of plain
MD5 is now deprecated, but [<a href="./rfc4835" title=""Cryptographic Algorithm Implementation Requirements for Encapsulating Security Payload (ESP) and Authentication Header (AH)"">RFC4835</a>] states: "Weaknesses have become
apparent in MD5; however, these should not affect the use of MD5 with
HMAC".
Requirement levels for HMAC-MD5:
IKEv1 - MAY [<a href="./rfc4109" title=""Algorithms for Internet Key Exchange version 1 (IKEv1)"">RFC4109</a>]
IKEv2 - optional [<a href="./rfc4307" title=""Cryptographic Algorithms for Use in the Internet Key Exchange Version 2 (IKEv2)"">RFC4307</a>]
IPsec-v2 - MAY [<a href="./rfc4835" title=""Cryptographic Algorithm Implementation Requirements for Encapsulating Security Payload (ESP) and Authentication Header (AH)"">RFC4835</a>]
IPsec-v3 - MAY [<a href="./rfc4835" title=""Cryptographic Algorithm Implementation Requirements for Encapsulating Security Payload (ESP) and Authentication Header (AH)"">RFC4835</a>]
<span class="h4"><a class="selflink" id="section-5.3.5" href="#section-5.3.5">5.3.5</a>. <a href="./rfc4494">RFC 4494</a>, The AES-CMAC-96 Algorithm and Its Use with IPsec</span>
(S, June 2006)
[<a id="ref-RFC4494">RFC4494</a>] describes AES-CMAC, another variant of CBC-MAC, which is
secure for messages of varying lengths. It is an integrity-
protection algorithm with a 128-bit blocksize and 128-bit key and
ICV. For use within IPsec, the ICV is truncated to 96 bits.
[<a href="./rfc4494" title=""The AES-CMAC-96 Algorithm and Its Use with IPsec"">RFC4494</a>] includes test data.
Requirement levels for AES-CMAC:
IKEv1 - undefined (no IANA #)
IKEv2 - optional
IPsec-v2 - optional (but no IANA #, so cannot be negotiated by IKE)
IPsec-v3 - optional
<span class="grey">Frankel & Krishnan Informational [Page 29]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-30" ></span>
<span class="grey"><a href="./rfc6071">RFC 6071</a> IPsec/IKE Roadmap February 2011</span>
<span class="h4"><a class="selflink" id="section-5.3.6" href="#section-5.3.6">5.3.6</a>. <a href="./rfc2857">RFC 2857</a>, The Use of HMAC-RIPEMD-160-96 within ESP and AH</span>
(S, June 2000)
[<a id="ref-RFC2857">RFC2857</a>] describes HMAC-RIPEMD, an integrity-protection algorithm
with a 512-bit blocksize and a 160-bit key and ICV. For use within
IPsec, the ICV is truncated to 96 bits.
Requirement levels for HMAC-RIPEMD:
IKEv1 - undefined (no IANA #)
IKEv2 - undefined (no IANA #)
IPsec-v2 - optional
IPsec-v3 - optional (but no IANA #, so cannot be negotiated by IKE)
<span class="h4"><a class="selflink" id="section-5.3.7" href="#section-5.3.7">5.3.7</a>. <a href="./rfc4894">RFC 4894</a>, Use of Hash Algorithms in Internet Key Exchange (IKE)</span>
<span class="h4"> and IPsec (I, May 2007)</span>
In light of recent attacks on MD5 and SHA-1, [<a href="./rfc4894" title=""Use of Hash Algorithms in Internet Key Exchange (IKE) and IPsec"">RFC4894</a>] examines
whether it is necessary to replace the hash functions currently used
by IKE and IPsec for key generation, integrity protection, digital
signatures, or PKIX certificates. It concludes that the algorithms
recommended for IKEv2 [<a href="./rfc4307" title=""Cryptographic Algorithms for Use in the Internet Key Exchange Version 2 (IKEv2)"">RFC4307</a>] and IPsec-v3 [<a href="./rfc4305" title=""Cryptographic Algorithm Implementation Requirements for Encapsulating Security Payload (ESP) and Authentication Header (AH)"">RFC4305</a>] are not
currently susceptible to any known attacks. Nonetheless, it suggests
that implementors add support for AES-XCBC-MAC-96 [<a href="./rfc3566" title=""The AES-XCBC-MAC-96 Algorithm and Its Use With IPsec"">RFC3566</a>], AES-
XCBC-PRF-128 [<a href="./rfc4434" title=""The AES-XCBC-PRF-128 Algorithm for the Internet Key Exchange Protocol (IKE)"">RFC4434</a>], and HMAC-SHA-256, -384, and -512 [<a href="./rfc4868" title=""Using HMAC-SHA-256, HMAC- SHA-384, and HMAC-SHA-512 with IPsec"">RFC4868</a>]
for future use. It also suggests that IKEv2 implementors add support
for PKIX certificates signed with SHA-256, -384, and -512.
<span class="h3"><a class="selflink" id="section-5.4" href="#section-5.4">5.4</a>. Combined Mode Algorithms</span>
IKEv1 and ESP-v2 use separate algorithms to provide encryption and
integrity protection, and IKEv1 can negotiate different combinations
of algorithms for different SAs. In ESP-v3, a new class of
algorithms was introduced, in which a single algorithm can provide
both encryption and integrity protection. [<a href="./rfc5996" title=""Internet Key Exchange Protocol Version 2 (IKEv2)"">RFC5996</a>] describes how
IKEv2 can negotiate combined mode algorithms to be used in ESP-v3
SAs. [<a href="./rfc5282" title=""Using Authenticated Encryption Algorithms with the Encrypted Payload of the Internet Key Exchange version 2 (IKEv2) Protocol"">RFC5282</a>] adds that capability to IKEv2, enabling IKEv2 to
negotiate and use combined mode algorithms for its own traffic. When
properly designed, these algorithms can provide increased efficiency
in both implementation and execution.
Although ESP-v2 did not originally include combined mode algorithms,
some IKEv1 implementations have added the capability to negotiate
combined mode algorithms for use in IPsec SAs; these implementations
do not include the capability to use combined mode algorithms to
protect IKE SAs. IANA numbers for combined mode algorithms have been
added to the IKEv1 registry.
<span class="grey">Frankel & Krishnan Informational [Page 30]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-31" ></span>
<span class="grey"><a href="./rfc6071">RFC 6071</a> IPsec/IKE Roadmap February 2011</span>
<span class="h4"><a class="selflink" id="section-5.4.1" href="#section-5.4.1">5.4.1</a>. <a href="./rfc4309">RFC 4309</a>, Using Advanced Encryption Standard (AES) CCM Mode with</span>
<span class="h4"> IPsec Encapsulating Security Payload (ESP) (S, December 2005)</span>
[<a id="ref-RFC4309">RFC4309</a>] describes how to use AES in counter with CBC-MAC (CCM)
mode, a combined algorithm, to encrypt and integrity protect ESP
traffic. AES-CCM is a block-mode cipher with a 128-bit blocksize; a
random IV that is sent in the packet along with the encrypted data; a
24-bit salt value (1/SA); keysizes of 128, 192, and 256 bits and ICV
sizes of 64, 96 and 128 bits. If AES-CCM is implemented, 128-bit
keys are MUST; the other sizes are MAY. ICV sizes of 64 and 128 bits
are MUST; 96 bits is MAY. The salt value is generated by IKE during
the key-generation process. Reuse of the IV with the same key
compromises the data's security; thus, AES-CCM should not be used
with manual keying. [<a href="./rfc4309" title=""Using Advanced Encryption Standard (AES) CCM Mode with IPsec Encapsulating Security Payload (ESP)"">RFC4309</a>] includes IANA values that IKE can use
to negotiate ESP-v3 SAs. Each of the three ICV lengths has its own
IANA value, but IKE negotiations need to specify the keysize.
[<a href="./rfc4309" title=""Using Advanced Encryption Standard (AES) CCM Mode with IPsec Encapsulating Security Payload (ESP)"">RFC4309</a>] includes test data. [<a href="./rfc4309" title=""Using Advanced Encryption Standard (AES) CCM Mode with IPsec Encapsulating Security Payload (ESP)"">RFC4309</a>] describes how IKE can
negotiate the use of AES-CCM to use in an ESP SA. [<a href="./rfc5282" title=""Using Authenticated Encryption Algorithms with the Encrypted Payload of the Internet Key Exchange version 2 (IKEv2) Protocol"">RFC5282</a>] extends
this to the use of AES-CCM to protect an IKEv2 SA.
Requirement levels for AES-CCM:
IKEv1 - N/A
IKEv2 - optional
ESP-v2 - N/A
ESP-v3 - optional [<a href="./rfc4835" title=""Cryptographic Algorithm Implementation Requirements for Encapsulating Security Payload (ESP) and Authentication Header (AH)"">RFC4835</a>]
NOTE: The IPsec-v2 IANA registry includes values for AES-CCM, but
combined mode algorithms are not a feature of IPsec-v2. Although
some IKEv1/IPsec-v2 implementations include this capability (see
<a href="#section-5.4">Section 5.4</a>), it is not part of the protocol.
<span class="h4"><a class="selflink" id="section-5.4.2" href="#section-5.4.2">5.4.2</a>. <a href="./rfc4106">RFC 4106</a>, The Use of Galois/Counter Mode (GCM) in IPsec</span>
<span class="h4"> Encapsulating Security Payload (ESP) (S, June 2005)</span>
[<a id="ref-RFC4106">RFC4106</a>] describes how to use AES in Galois/Counter (GCM) mode, a
combined algorithm, to encrypt and integrity protect ESP traffic.
AES-GCM is a block-mode cipher with a 128-bit blocksize; a random IV
that is sent in the packet along with the encrypted data; a 32-bit
salt value (1/SA); keysizes of 128, 192, and 256 bits; and ICV sizes
of 64, 96, and 128 bits. If AES-GCM is implemented, 128-bit keys are
MUST; the other sizes are MAY. An ICV size of 128 bits is a MUST; 64
and 96 bits are MAY. The salt value is generated by IKE during the
key-generation process. Reuse of the IV with the same key
compromises the data's security; thus, AES-GCM should not be used
with manual keying. [<a href="./rfc4106" title=""The Use of Galois/Counter Mode (GCM) in IPsec Encapsulating Security Payload (ESP)"">RFC4106</a>] includes IANA values that IKE can use
to negotiate ESP-v3 SAs. Each of the three ICV lengths has its own
IANA value, but IKE negotiations need to specify the keysize.
<span class="grey">Frankel & Krishnan Informational [Page 31]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-32" ></span>
<span class="grey"><a href="./rfc6071">RFC 6071</a> IPsec/IKE Roadmap February 2011</span>
[<a id="ref-RFC4106">RFC4106</a>] includes test data. [<a href="./rfc4106" title=""The Use of Galois/Counter Mode (GCM) in IPsec Encapsulating Security Payload (ESP)"">RFC4106</a>] describes how IKE can
negotiate the use of AES-GCM to use in an ESP SA. [<a href="./rfc5282" title=""Using Authenticated Encryption Algorithms with the Encrypted Payload of the Internet Key Exchange version 2 (IKEv2) Protocol"">RFC5282</a>] extends
this to the use of AES-GCM to protect an IKEv2 SA.
Requirement levels for AES-GCM:
IKEv1 - N/A
IKEv2 - optional
ESP-v2 - N/A
ESP-v3 - optional [<a href="./rfc4835" title=""Cryptographic Algorithm Implementation Requirements for Encapsulating Security Payload (ESP) and Authentication Header (AH)"">RFC4835</a>]
NOTE: The IPsec-v2 IANA registry includes values for AES-GCM, but
combined mode algorithms are not a feature of IPsec-v2. Although
some IKEv1/IPsec-v2 implementations include this capability (see
<a href="#section-5.4">Section 5.4</a>), it is not part of the protocol.
<span class="h4"><a class="selflink" id="section-5.4.3" href="#section-5.4.3">5.4.3</a>. <a href="./rfc4543">RFC 4543</a>, The Use of Galois Message Authentication Code (GMAC)</span>
<span class="h4"> in IPsec ESP and AH (S, May 2006)</span>
[<a id="ref-RFC4543">RFC4543</a>] is the variant of AES-GCM [<a href="./rfc4106" title=""The Use of Galois/Counter Mode (GCM) in IPsec Encapsulating Security Payload (ESP)"">RFC4106</a>] that provides integrity
protection without encryption. It has two versions: an integrity-
protection algorithm for use within AH, and a combined mode algorithm
with null encryption for use within ESP. It can use a key of 128-,
192-, or 256-bits; the ICV is always 128 bits, and is not truncated.
AES-GMAC uses a nonce, consisting of a 64-bit IV and a 32-bit salt
(1/SA). The salt value is generated by IKE during the key generation
process. Reuse of the salt value with the same key compromises the
data's security; thus, AES-GMAC should not be used with manual
keying. For use within AH, each keysize has its own IANA value, so
IKE does not have to negotiate the keysize. For use within ESP,
there is only one IANA value, so IKE negotiations must specify the
keysize. AES-GMAC cannot be used by IKE to protect its own SAs,
since IKE traffic requires encryption.
Requirement levels for AES-GMAC:
IKEv1 - N/A
IKEv2 - N/A
IPsec-v2 - N/A
IPsec-v3 - optional
NOTE: The IPsec-v2 IANA registry includes values for AES-GMAC, but
combined mode algorithms are not a feature of IPsec-v2. Although
some IKEv1/IPsec-v2 implementations include this capability (see
<a href="#section-5.4">Section 5.4</a>), it is not part of the protocol.
<span class="grey">Frankel & Krishnan Informational [Page 32]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-33" ></span>
<span class="grey"><a href="./rfc6071">RFC 6071</a> IPsec/IKE Roadmap February 2011</span>
<span class="h4"><a class="selflink" id="section-5.4.4" href="#section-5.4.4">5.4.4</a>. <a href="./rfc5282">RFC 5282</a>, Using Authenticated Encryption Algorithms with the</span>
<span class="h4"> Encrypted Payload of the Internet Key Exchange version 2 (IKEv2)</span>
Protocol (S, August 2008)
[<a id="ref-RFC5282">RFC5282</a>] extends [<a href="./rfc4309" title=""Using Advanced Encryption Standard (AES) CCM Mode with IPsec Encapsulating Security Payload (ESP)"">RFC4309</a>] and [<a href="./rfc4106" title=""The Use of Galois/Counter Mode (GCM) in IPsec Encapsulating Security Payload (ESP)"">RFC4106</a>] to enable the use of AES-
CCM and AES-GCM to provide encryption and integrity protection for
IKEv2 messages.
<span class="h3"><a class="selflink" id="section-5.5" href="#section-5.5">5.5</a>. Pseudo-Random Functions (PRFs)</span>
IKE uses pseudorandom functions (PRFs) to generate the secret keys
that are used in IKE SAs and IPsec SAs. These PRFs are generally the
same algorithms used for integrity protection, but their output is
not truncated, since all of the generated bits are generally needed
for the keys. If the PRF's output is not long enough to supply the
required number of bits of keying material, the PRF is applied
iteratively until the requisite amount of keying material is
generated.
For each IKEv2 SA, the peers negotiate both a PRF algorithm and an
integrity-protection algorithm; the former is used to generate keying
material and other values, and the latter is used to provide
protection to the IKE SA's traffic.
IKEv1's approach is more complicated. IKEv1 [<a href="./rfc2409" title=""The Internet Key Exchange (IKE)"">RFC2409</a>] does not
specify any PRF algorithms. For each IKEv1 SA, the peers agree on an
unkeyed hash function (e.g., SHA-1). IKEv1 uses the HMAC version of
this function to generate keying material and to provide integrity
protection for the IKE SA. Therefore, PRFs that are not HMACs cannot
currently be used in IKEv1.
Requirement levels for PRF-HMAC-SHA1:
IKEv1 - MUST [<a href="./rfc4109" title=""Algorithms for Internet Key Exchange version 1 (IKEv1)"">RFC4109</a>]
IKEv2 - MUST [<a href="./rfc4307" title=""Cryptographic Algorithms for Use in the Internet Key Exchange Version 2 (IKEv2)"">RFC4307</a>]
Requirement levels for PRF-HMAC-SHA-256, PRF-HMAC-SHA-384, and PRF-
HMAC-SHA-512:
IKEv1 - optional [<a href="./rfc4868" title=""Using HMAC-SHA-256, HMAC- SHA-384, and HMAC-SHA-512 with IPsec"">RFC4868</a>]
IKEv2 - optional [<a href="./rfc4868" title=""Using HMAC-SHA-256, HMAC- SHA-384, and HMAC-SHA-512 with IPsec"">RFC4868</a>]
<span class="h4"><a class="selflink" id="section-5.5.1" href="#section-5.5.1">5.5.1</a>. <a href="./rfc4434">RFC 4434</a>, The AES-XCBC-PRF-128 Algorithm for the Internet Key</span>
<span class="h4"> Exchange Protocol (IKE) (S, February 2006)</span>
[<a id="ref-RFC3566">RFC3566</a>] defines AES-XCBC-MAC-96, which is used for integrity
protection within IKE and IPsec. [<a href="./rfc4434" title=""The AES-XCBC-PRF-128 Algorithm for the Internet Key Exchange Protocol (IKE)"">RFC4434</a>] enables the use of AES-
XCBC-MAC as a PRF within IKE. The PRF differs from the integrity-
<span class="grey">Frankel & Krishnan Informational [Page 33]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-34" ></span>
<span class="grey"><a href="./rfc6071">RFC 6071</a> IPsec/IKE Roadmap February 2011</span>
protection algorithm in two ways: its 128-bit output is not truncated
to 96 bits, and it accepts a variable-length key, which is modified
(lengthened via padding or shortened through application of AES-XCBC)
to a 128-bit key. [<a href="./rfc4434" title=""The AES-XCBC-PRF-128 Algorithm for the Internet Key Exchange Protocol (IKE)"">RFC4434</a>] includes test data.
Requirement levels for AES-XCBC-PRF:
IKEv1 - undefined (no RFC)
IKEv2 - SHOULD+ [<a href="./rfc4307" title=""Cryptographic Algorithms for Use in the Internet Key Exchange Version 2 (IKEv2)"">RFC4307</a>]
NOTE: <a href="./rfc4109">RFC 4109</a> erroneously classifies AES-XCBC-PRF as SHOULD for
IKEv1; this has been corrected in an errata submission for <a href="./rfc4109">RFC 4109</a>.
<span class="h4"><a class="selflink" id="section-5.5.2" href="#section-5.5.2">5.5.2</a>. <a href="./rfc4615">RFC 4615</a>, The Advanced Encryption Standard-Cipher-based Message</span>
<span class="h4"> Authentication Code-Pseudorandom Function-128 (AES-CMAC-PRF-128)</span>
Algorithm for the Internet Key Exchange Protocol (IKE)
(S, August 2006)
[<a id="ref-RFC4615">RFC4615</a>] extends [<a href="./rfc4494" title=""The AES-CMAC-96 Algorithm and Its Use with IPsec"">RFC4494</a>] to enable the use of AES-CMAC as a PRF
within IKEv2, in a manner analogous to that used by [<a href="./rfc4434" title=""The AES-XCBC-PRF-128 Algorithm for the Internet Key Exchange Protocol (IKE)"">RFC4434</a>] for
AES-XCBC.
Requirement levels for AES-CMAC-PRF:
IKEv1 - undefined (no IANA #)
IKEv2 - optional
<span class="h3"><a class="selflink" id="section-5.6" href="#section-5.6">5.6</a>. Cryptographic Suites</span>
<span class="h4"><a class="selflink" id="section-5.6.1" href="#section-5.6.1">5.6.1</a>. <a href="./rfc4308">RFC 4308</a>, Cryptographic Suites for IPsec (S, December 2005)</span>
An IKE negotiation consists of multiple cryptographic attributes,
both for the IKE SA and for the IPsec SA. The number of possible
combinations can pose a challenge to peers trying to find a common
policy. To enhance interoperability, [<a href="./rfc4308" title=""Cryptographic Suites for IPsec"">RFC4308</a>] defines two pre-
defined suites, consisting of combinations of algorithms that
comprise typical security policies. IKE/ESP suite "VPN-A" includes
use of 3DES, HMAC-SHA-1, and 1024-bit modular exponentiation group
(MODP) Diffie-Hellman (DH); IKE/ESP suite "VPN-B" includes AES-CBC,
AES-XCBC-MAC, and 2048-bit MODP DH. These suites are intended to be
named "single-button" choices in the administrative interface, but do
not prevent the use of alternative combinations.
<span class="h4"><a class="selflink" id="section-5.6.2" href="#section-5.6.2">5.6.2</a>. <a href="./rfc4869">RFC 4869</a>, Suite B Cryptographic Suites for IPsec (I, May 2007)</span>
[<a id="ref-RFC4869">RFC4869</a>] adds four pre-defined suites, based upon the United States
National Security Agency's "Suite B" specifications, to those
specified in [<a href="./rfc4308" title=""Cryptographic Suites for IPsec"">RFC4308</a>]. IKE/ESP suites "Suite-B-GCM-128" and "Suite-
<span class="grey">Frankel & Krishnan Informational [Page 34]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-35" ></span>
<span class="grey"><a href="./rfc6071">RFC 6071</a> IPsec/IKE Roadmap February 2011</span>
B-GCM-256" include use of AES-CBC, AES-GCM, HMAC-SHA-256, or HMAC-
SHA-384, and 256-bit or 384-bit elliptic-curve (EC) DH groups.
IKE/AH suites "Suite-B-GMAC-128" and "Suite-B-GMAC-256" include use
of AES-CBC, AES-GMAC, HMAC-SHA-256, or HMAC-SHA-384, and 256-bit or
384-bit EC DH groups. While [<a href="./rfc4308" title=""Cryptographic Suites for IPsec"">RFC4308</a>] does not specify a peer-
authentication method, [<a href="./rfc4869" title=""Suite B Cryptographic Suites for IPsec"">RFC4869</a>] mandates pre-shared key
authentication for IKEv1; public key authentication using ECDSA is
recommended for IKEv1 and required for IKEv2.
<span class="h3"><a class="selflink" id="section-5.7" href="#section-5.7">5.7</a>. Diffie-Hellman Algorithms</span>
IKE negotiations include a Diffie-Hellman exchange, which establishes
a shared secret to which both parties contributed. This value is
used to generate keying material to protect both the IKE SA and the
IPsec SA.
IKEv1 [<a href="./rfc2409" title=""The Internet Key Exchange (IKE)"">RFC2409</a>] contains definitions of two DH MODP groups and two
elliptic curve (EC) groups; IKEv2 [<a href="./rfc5996" title=""Internet Key Exchange Protocol Version 2 (IKEv2)"">RFC5996</a>] only references the MODP
groups. The requirements levels of these groups are:
Requirement levels for DH MODP group 1:
IKEv1 - MAY [<a href="./rfc4109" title=""Algorithms for Internet Key Exchange version 1 (IKEv1)"">RFC4109</a>]
IKEv2 - optional
Requirement levels for DH MODP group 2:
IKEv1 - MUST [<a href="./rfc4109" title=""Algorithms for Internet Key Exchange version 1 (IKEv1)"">RFC4109</a>]
IKEv2 - MUST- [<a href="./rfc4307" title=""Cryptographic Algorithms for Use in the Internet Key Exchange Version 2 (IKEv2)"">RFC4307</a>]
Requirement levels for EC groups 3-4:
IKEv1 - MAY [<a href="./rfc4109" title=""Algorithms for Internet Key Exchange version 1 (IKEv1)"">RFC4109</a>]
IKEv2 - undefined (no IANA #)
<span class="h4"><a class="selflink" id="section-5.7.1" href="#section-5.7.1">5.7.1</a>. <a href="./rfc3526">RFC 3526</a>, More Modular Exponential (MODP) Diffie-Hellman groups</span>
<span class="h4"> for Internet Key Exchange (IKE) (S, May 2003)</span>
[<a id="ref-RFC2409">RFC2409</a>] and [<a href="./rfc5996" title=""Internet Key Exchange Protocol Version 2 (IKEv2)"">RFC5996</a>] define two MODP DH groups (groups 1 and 2)
for use within IKE. [<a href="./rfc3526" title=""More Modular Exponential (MODP) Diffie-Hellman groups for Internet Key Exchange (IKE)"">RFC3526</a>] adds six more groups (groups 5 and
14-18). Group 14 is a 2048-bit group that is strongly recommended
for use in IKE.
Requirement levels for DH MODP group 14:
IKEv1 - SHOULD [<a href="./rfc4109" title=""Algorithms for Internet Key Exchange version 1 (IKEv1)"">RFC4109</a>]
IKEv2 - SHOULD+ [<a href="./rfc4307" title=""Cryptographic Algorithms for Use in the Internet Key Exchange Version 2 (IKEv2)"">RFC4307</a>]
<span class="grey">Frankel & Krishnan Informational [Page 35]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-36" ></span>
<span class="grey"><a href="./rfc6071">RFC 6071</a> IPsec/IKE Roadmap February 2011</span>
Requirement levels for DH MODP groups 5, 15-18:
IKEv1 - optional [<a href="./rfc4109" title=""Algorithms for Internet Key Exchange version 1 (IKEv1)"">RFC4109</a>]
IKEv2 - optional
<span class="h4"><a class="selflink" id="section-5.7.2" href="#section-5.7.2">5.7.2</a>. <a href="./rfc4753">RFC 4753</a>, ECP Groups For IKE and IKEv2 (I, January 2007)</span>
[<a id="ref-RFC4753">RFC4753</a>] defines three EC DH groups (groups 19-21) for use within
IKE.
The document includes test data.
Requirement levels for DH EC groups 19-21:
IKEv1 - optional [<a href="./rfc4109" title=""Algorithms for Internet Key Exchange version 1 (IKEv1)"">RFC4109</a>]
IKEv2 - optional
<span class="h4"><a class="selflink" id="section-5.7.3" href="#section-5.7.3">5.7.3</a>. <a href="./rfc5903">RFC 5903</a>, Elliptic Curve Groups modulo a Prime (ECP Groups) for</span>
<span class="h4"> IKE and IKEv2 (I, June 2010)</span>
[<a id="ref-RFC5903">RFC5903</a>] obsoletes [<a href="./rfc4753" title=""ECP Groups For IKE and IKEv2"">RFC4753</a>], fixing an inconsistency in the DH
shared secret value.
<span class="h4"><a class="selflink" id="section-5.7.4" href="#section-5.7.4">5.7.4</a>. <a href="./rfc5114">RFC 5114</a>, Additional Diffie-Hellman Groups for Use with IETF</span>
<span class="h4"> Standards (I, January 2008)</span>
[<a id="ref-RFC5114">RFC5114</a>] defines five additional DH groups (MODP groups 22-24 and EC
groups 25-26) for use in IKE. It also includes three EC DH groups
(groups 19-21) that were originally defined in [<a href="./rfc4753" title=""ECP Groups For IKE and IKEv2"">RFC4753</a>]; however,
the current specification for these groups is [<a href="./rfc5903" title=""Elliptic Curve Groups modulo a Prime (ECP Groups) for IKE and IKEv2"">RFC5903</a>]. The IANA
group numbers are specific to IKE, but the DH groups are intended for
use in multiple IETF protocols, including Transport Layer
Security/Secure Socket Layer (TLS/SSL), Secure/Multipurpose Internet
Mail Extensions (S/MIME), and X.509 Certificates.
Requirement levels for DH MODP groups 22-24, EC groups 25-26:
IKEv1 - optional
IKEv2 - optional
<span class="h2"><a class="selflink" id="section-6" href="#section-6">6</a>. IPsec/IKE for Multicast</span>
[<a id="ref-RFC4301">RFC4301</a>] describes IPsec processing for unicast and multicast
traffic. However, classical IPsec SAs provide point-to-point
protection; the security afforded by IPsec's cryptographic algorithms
is not applicable when the SA is one-to-many or many-to-many, the
case for multicast. The Multicast Security (msec) Working Group has
defined alternatives to IKE and extensions to IPsec for use with
<span class="grey">Frankel & Krishnan Informational [Page 36]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-37" ></span>
<span class="grey"><a href="./rfc6071">RFC 6071</a> IPsec/IKE Roadmap February 2011</span>
multicast traffic. Different multicast groups have differing
characteristics and requirements: number of senders (one-to-many or
many-to-many), number of members (few, moderate, very large),
volatility of membership, real-time delivery, etc. Their security
requirements vary as well. Each solution defined by msec applies to
a subset of the large variety of possible multicast groups.
<span class="h3"><a class="selflink" id="section-6.1" href="#section-6.1">6.1</a>. <a href="./rfc3740">RFC 3740</a>, The Multicast Group Security Architecture</span>
(I, March 2004)
[<a id="ref-RFC3740">RFC3740</a>] defines the multicast security architecture, which is used
to provide security for packets exchanged by large multicast groups.
It defines the components of the architectural framework; discusses
Group Security Associations (GSAs), key management, data handling,
and security policies. Several existing protocols, including Group
DOI (GDOI) [<a href="./rfc3547" title=""The Group Domain of Interpretation"">RFC3547</a>], Group Secure Association Key Management
Protocol (GSAKMP) [<a href="./rfc4535" title=""GSAKMP: Group Secure Association Key Management Protocol"">RFC4535</a>], and Multimedia Internet KEYing (MIKEY)
[<a href="./rfc3830" title=""MIKEY: Multimedia Internet KEYing"">RFC3830</a>], satisfy the group key management requirements defined in
this document. Both the architecture and the components for
Multicast Group Security differ from IPsec.
<span class="h3"><a class="selflink" id="section-6.2" href="#section-6.2">6.2</a>. <a href="./rfc5374">RFC 5374</a>, Multicast Extensions to the Security Architecture for</span>
<span class="h3"> the Internet Protocol (S, November 2008)</span>
[<a id="ref-RFC5374">RFC5374</a>] extends the security architecture defined in [<a href="./rfc4301" title=""Security Architecture for the Internet Protocol"">RFC4301</a>] to
apply to multicast traffic. It defines a new class of SAs (GSAs -
Group Security Associations) and additional databases used to apply
IPsec protection to multicast traffic. It also describes revisions
and additions to the processing algorithms in [<a href="./rfc4301" title=""Security Architecture for the Internet Protocol"">RFC4301</a>].
<span class="h3"><a class="selflink" id="section-6.3" href="#section-6.3">6.3</a>. <a href="./rfc3547">RFC 3547</a>, The Group Domain of Interpretation (S, July 2003)</span>
GDOI [<a href="./rfc3547" title=""The Group Domain of Interpretation"">RFC3547</a>] extends IKEv1 so that it can be used to establish SAs
to protect multicast traffic. This document defines additional
exchanges and payloads to be used for that purpose.
<span class="h3"><a class="selflink" id="section-6.4" href="#section-6.4">6.4</a>. <a href="./rfc4046">RFC 4046</a>, Multicast Security (MSEC) Group Key Management</span>
<span class="h3"> Architecture (I, April 2005)</span>
[<a id="ref-RFC4046">RFC4046</a>] sets out the general requirements and design principles for
protocols that are used for multicast key management. It does not go
into the specifics of an individual protocol that can be used for
that purpose.
<span class="grey">Frankel & Krishnan Informational [Page 37]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-38" ></span>
<span class="grey"><a href="./rfc6071">RFC 6071</a> IPsec/IKE Roadmap February 2011</span>
<span class="h3"><a class="selflink" id="section-6.5" href="#section-6.5">6.5</a>. <a href="./rfc4359">RFC 4359</a>, The Use of RSA/SHA-1 Signatures within Encapsulating</span>
<span class="h3"> Security Payload (ESP) and Authentication Header (AH)</span>
(S, January 2006)
[<a id="ref-RFC4359">RFC4359</a>] describes the use of the RSA digital signature algorithm to
provide integrity protection for multicast traffic within ESP and AH.
The algorithms used for integrity protection for unicast traffic
(e.g., HMAC) are not suitable for this purpose when used with
multicast traffic.
<span class="h2"><a class="selflink" id="section-7" href="#section-7">7</a>. Outgrowths of IPsec/IKE</span>
Operational experience with IPsec revealed additional capabilities
that could make IPsec more useful in real-world scenarios. These
include support for IPsec policy mechanisms, IPsec MIBs, payload
compression (IPComp), extensions to facilitate additional peer
authentication methods (Better-Than-Nothing Security (BTNS),
Kerberized Internet Negotiation of Keys (KINK), and IPSECKEY), and
additional capabilities for VPN clients (IPSRA).
<span class="h3"><a class="selflink" id="section-7.1" href="#section-7.1">7.1</a>. IPsec Policy</span>
The IPsec Policy (ipsp) Working Group originally planned an RFC that
would allow entities with no common Trust Anchor and no prior
knowledge of each other's security policies to establish an IPsec-
protected connection. The solutions that were proposed for gateway
discovery and security policy negotiation proved to be overly complex
and fragile, in the absence of prior knowledge or compatible
configuration policies.
<span class="h4"><a class="selflink" id="section-7.1.1" href="#section-7.1.1">7.1.1</a>. <a href="./rfc3586">RFC 3586</a>, IP Security Policy (IPSP) Requirements</span>
(S, August 2003)
[<a id="ref-RFC3586">RFC3586</a>] describes the functional requirements of a generalized
IPsec policy framework, that could be used to discover, negotiate,
and manage IPsec policies.
<span class="h4"><a class="selflink" id="section-7.1.2" href="#section-7.1.2">7.1.2</a>. <a href="./rfc3585">RFC 3585</a>, IPsec Configuration Policy Information Model</span>
(S, August 2003)
As stated in [<a href="./rfc3585" title=""IPsec Configuration Policy Information Model"">RFC3585</a>]:
This document presents an object-oriented information model of IP
Security (IPsec) policy designed to facilitate agreement about the
content and semantics of IPsec policy, and enable derivations of
task-specific representations of IPsec policy such as storage
schema, distribution representations, and policy specification
languages used to configure IPsec-enabled endpoints.
<span class="grey">Frankel & Krishnan Informational [Page 38]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-39" ></span>
<span class="grey"><a href="./rfc6071">RFC 6071</a> IPsec/IKE Roadmap February 2011</span>
This RFC has not been widely adopted.
<span class="h3"><a class="selflink" id="section-7.2" href="#section-7.2">7.2</a>. IPsec MIBs</span>
Over the years, several MIB-related Internet Drafts were proposed for
IPsec and IKE, but only one progressed to RFC status.
<span class="h4"><a class="selflink" id="section-7.2.1" href="#section-7.2.1">7.2.1</a>. <a href="./rfc4807">RFC 4807</a>, IPsec Security Policy Database Configuration MIB</span>
(S, March 2007)
[<a id="ref-RFC4807">RFC4807</a>] defines a MIB module that can be used to configure the SPD
of an IPsec device. This RFC has not been widely adopted.
<span class="h3"><a class="selflink" id="section-7.3" href="#section-7.3">7.3</a>. IPComp (Compression)</span>
The IP Payload Compression Protocol (IPComp) is a protocol that
provides lossless compression for IP datagrams. Although IKE can be
used to negotiate the use of IPComp in conjunction with IPsec, IPComp
can also be used when IPsec is not applied.
The IPComp protocol allows the compression of IP datagrams by
supporting different compression algorithms. Three of these
algorithms are: DEFLATE [<a href="./rfc2394" title=""IP Payload Compression Using DEFLATE"">RFC2394</a>], LZS [<a href="./rfc2395" title=""IP Payload Compression Using LZS"">RFC2395</a>], and the ITU-T V.44
Packet Method [<a href="./rfc3051" title=""IP Payload Compression Using ITU-T V.44 Packet Method"">RFC3051</a>], which is based on the LZJH algorithm.
<span class="h4"><a class="selflink" id="section-7.3.1" href="#section-7.3.1">7.3.1</a>. <a href="./rfc3173">RFC 3173</a>, IP Payload Compression Protocol (IPComp)</span>
(S, September 2001)
IP payload compression is especially useful when IPsec-based
encryption is applied to IP datagrams. Encrypting the IP datagram
causes the data to be random in nature, rendering compression at
lower protocol layers ineffective. If IKE is used to negotiate
compression in conjunction with IPsec, compression can be performed
prior to encryption. [<a href="./rfc3173" title=""IP Payload Compression Protocol (IPComp)"">RFC3173</a>] defines the payload compression
protocol, the IPComp packet structure, the IPComp Association (IPCA),
and several methods to negotiate the IPCA.
<span class="h3"><a class="selflink" id="section-7.4" href="#section-7.4">7.4</a>. Better-Than-Nothing Security (BTNS)</span>
One of the major obstacles to widespread implementation of IPsec is
the lack of pre-existing credentials that can be used for peer
authentication. Better-Than-Nothing Security (BTNS) is an attempt to
sidestep this problem by allowing IKE to negotiate unauthenticated
(anonymous) IPsec SAs, using credentials such as self-signed
certificates or "bare" public keys (public keys that are not
connected to a public key certificate) for peer authentication. This
ensures that subsequent traffic protected by the SA is conducted with
<span class="grey">Frankel & Krishnan Informational [Page 39]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-40" ></span>
<span class="grey"><a href="./rfc6071">RFC 6071</a> IPsec/IKE Roadmap February 2011</span>
the same peer, and protects the communications from passive attack.
These SAs can then be cryptographically bound to a higher-level
application protocol, which performs its own peer authentication.
<span class="h4"><a class="selflink" id="section-7.4.1" href="#section-7.4.1">7.4.1</a>. <a href="./rfc5660">RFC 5660</a>, IPsec Channels: Connection Latching (S, October 2009)</span>
[<a id="ref-RFC5660">RFC5660</a>] specifies, abstractly, how to interface applications and
transport protocols with IPsec so as to create channels by latching
connections (packet flows) to certain IPsec Security Association (SA)
parameters for the lifetime of the connections. Connection latching
is layered on top of IPsec and does not modify the underlying IPsec
architecture.
<span class="h4"><a class="selflink" id="section-7.4.2" href="#section-7.4.2">7.4.2</a>. <a href="./rfc5386">RFC 5386</a>, Better-Than-Nothing-Security: An Unauthenticated Mode</span>
<span class="h4"> of IPsec (S, November 2008)</span>
[<a id="ref-RFC5386">RFC5386</a>] specifies how to use IKEv2 to set up unauthenticated
security associations (SAs) for use with the IPsec Encapsulating
Security Payload (ESP) and the IPsec Authentication Header (AH).
This document does not require any changes to the bits on the wire,
but specifies extensions to the Peer Authorization Database (PAD) and
Security Policy Database (SPD).
<span class="h4"><a class="selflink" id="section-7.4.3" href="#section-7.4.3">7.4.3</a>. <a href="./rfc5387">RFC 5387</a>, Problem and Applicability Statement for Better-Than-</span>
<span class="h4"> Nothing Security (BTNS) (I, November 2008)</span>
[<a id="ref-RFC5387">RFC5387</a>] considers that the need to deploy authentication
information and its associated identities is a significant obstacle
to the use of IPsec. This document explains the rationale for
extending the Internet network security protocol suite to enable use
of IPsec security services without authentication.
<span class="h3"><a class="selflink" id="section-7.5" href="#section-7.5">7.5</a>. Kerberized Internet Negotiation of Keys (KINK)</span>
Kerberized Internet Negotiation of Keys (KINK) is an attempt to
provide an alternative to IKE for IPsec peer authentication. It uses
Kerberos, instead of IKE, to establish IPsec SAs. For enterprises
that already deploy the Kerberos centralized key management system,
IPsec can then be implemented without the need for additional peer
credentials. Some vendors have implemented proprietary extensions
for using Kerberos in IKEv1, as an alternative to the use of KINK.
These extensions, as well as the KINK protocol, apply only to IKEv1,
and not to IKEv2.
<span class="grey">Frankel & Krishnan Informational [Page 40]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-41" ></span>
<span class="grey"><a href="./rfc6071">RFC 6071</a> IPsec/IKE Roadmap February 2011</span>
<span class="h4"><a class="selflink" id="section-7.5.1" href="#section-7.5.1">7.5.1</a>. <a href="./rfc3129">RFC 3129</a>, Requirements for Kerberized Internet Negotiation of</span>
<span class="h4"> Keys (I, June 2001)</span>
[<a id="ref-RFC3129">RFC3129</a>] considers that peer-to-peer authentication and keying
mechanisms have inherent drawbacks such as computational complexity
and difficulty in enforcing security policies. This document
specifies the requirements for using basic features of Kerberos and
uses them to its advantage to create a protocol that can establish
and maintain IPsec security associations ([<a href="./rfc2401" title=""Security Architecture for the Internet Protocol"">RFC2401</a>]).
<span class="h4"><a class="selflink" id="section-7.5.2" href="#section-7.5.2">7.5.2</a>. <a href="./rfc4430">RFC 4430</a>, Kerberized Internet Negotiation of Keys (KINK)</span>
(S, March 2006)
[<a id="ref-RFC4430">RFC4430</a>] defines a low-latency, computationally inexpensive, easily
managed, and cryptographically sound protocol to establish and
maintain security associations using the Kerberos authentication
system. This document reuses the Quick Mode payloads of IKEv1 in
order to foster substantial reuse of IKEv1 implementations. This RFC
has not been widely adopted.
<span class="h3"><a class="selflink" id="section-7.6" href="#section-7.6">7.6</a>. IPsec Secure Remote Access (IPSRA)</span>
IPsec Secure Remote Access (IPSRA) was an attempt to extend IPsec
protection to "road warriors", allowing IKE to authenticate not only
the user's device but also the user, without changing IKEv1. The
working group defined generic requirements of different IPsec remote
access scenarios. An attempt was made to define an IKE-like protocol
that would use legacy authentication mechanisms to create a temporary
or short-lived user credential that could be used for peer
authentication within IKE. This protocol proved to be more
cumbersome than standard Public Key protocols, and was abandoned.
This led to the development of IKEv2, which incorporates the use of
EAP for user authentication.
<span class="h4"><a class="selflink" id="section-7.6.1" href="#section-7.6.1">7.6.1</a>. <a href="./rfc3457">RFC 3457</a>, Requirements for IPsec Remote Access Scenarios</span>
(I, January 2003)
[<a id="ref-RFC3457">RFC3457</a>] explores and enumerates the requirements of various IPsec
remote access scenarios, without suggesting particular solutions for
them.
<span class="h4"><a class="selflink" id="section-7.6.2" href="#section-7.6.2">7.6.2</a>. <a href="./rfc3456">RFC 3456</a>, Dynamic Host Configuration Protocol (DHCPv4)</span>
<span class="h4"> Configuration of IPsec Tunnel Mode (S, January 2003)</span>
[<a id="ref-RFC3456">RFC3456</a>] explores the requirements for host configuration in IPsec
tunnel mode, and describes how the Dynamic Host Configuration
Protocol (DHCPv4) may be used for providing such configuration
information. This RFC has not been widely adopted.
<span class="grey">Frankel & Krishnan Informational [Page 41]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-42" ></span>
<span class="grey"><a href="./rfc6071">RFC 6071</a> IPsec/IKE Roadmap February 2011</span>
<span class="h3"><a class="selflink" id="section-7.7" href="#section-7.7">7.7</a>. IPsec Keying Information Resource Record (IPSECKEY)</span>
The IPsec Keying Information Resource Record (IPSECKEY) enables the
storage of public keys and other information that can be used to
facilitate opportunistic IPsec in a new type of DNS resource record.
<span class="h4"><a class="selflink" id="section-7.7.1" href="#section-7.7.1">7.7.1</a>. <a href="./rfc4025">RFC 4025</a>, A method for storing IPsec keying material in DNS</span>
(S, February 2005)
[<a id="ref-RFC4025">RFC4025</a>] describes a method of storing IPsec keying material in the
DNS using a new type of resource record. This document describes how
to store the public key of the target node in this resource record.
This RFC has not been widely adopted.
<span class="h2"><a class="selflink" id="section-8" href="#section-8">8</a>. Other Protocols That Use IPsec/IKE</span>
IPsec and IKE were designed to provide IP-layer security protection
to other Internet protocols' traffic as well as generic
communications. Since IPsec is a general-purpose protocol, in some
cases, its features do not provide the granularity or distinctive
features required by another protocol; in some cases, its overhead or
prerequisites do not match another protocol's requirements. However,
a number of other protocols do use IKE and/or IPsec to protect some
or all of their communications.
<span class="h3"><a class="selflink" id="section-8.1" href="#section-8.1">8.1</a>. Mobile IP (MIPv4 and MIPv6)</span>
<span class="h4"><a class="selflink" id="section-8.1.1" href="#section-8.1.1">8.1.1</a>. <a href="./rfc4093">RFC 4093</a>, Problem Statement: Mobile IPv4 Traversal of Virtual</span>
<span class="h4"> Private Network (VPN) Gateways (I, August 2005)</span>
[<a id="ref-RFC4093">RFC4093</a>] describes the issues with deploying Mobile IPv4 across
virtual private networks (VPNs). IPsec is one of the VPN
technologies covered by this document. It identifies and describes
practical deployment scenarios for Mobile IPv4 running alongside
IPsec in enterprise and operator environments. It also specifies a
set of framework guidelines to evaluate proposed solutions for
supporting multi-vendor seamless IPv4 mobility across IPsec-based VPN
gateways.
<span class="h4"><a class="selflink" id="section-8.1.2" href="#section-8.1.2">8.1.2</a>. <a href="./rfc5265">RFC 5265</a>, Mobile IPv4 Traversal across IPsec-Based VPN Gateways</span>
(S, June 2008)
[<a id="ref-RFC5265">RFC5265</a>] describes a basic solution that uses Mobile IPv4 and IPsec
to provide session mobility between enterprise intranets and external
networks. The proposed solution minimizes changes to existing
firewall/VPN/DMZ deployments and does not require any changes to
IPsec or key exchange protocols. It also proposes a mechanism to
minimize IPsec renegotiation when the mobile node moves.
<span class="grey">Frankel & Krishnan Informational [Page 42]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-43" ></span>
<span class="grey"><a href="./rfc6071">RFC 6071</a> IPsec/IKE Roadmap February 2011</span>
<span class="h4"><a class="selflink" id="section-8.1.3" href="#section-8.1.3">8.1.3</a>. <a href="./rfc3776">RFC 3776</a>, Using IPsec to Protect Mobile IPv6 Signaling Between</span>
<span class="h4"> Mobile Nodes and Home Agents (S, June 2004)</span>
This document specifies the use of IPsec in securing Mobile IPv6
traffic between mobile nodes and home agents. It specifies the
required wire formats for the protected packets and illustrates
examples of Security Policy Database and Security Association
Database entries that can be used to protect Mobile IPv6 signaling
messages. It also describes how to configure either manually keyed
IPsec security associations or IKEv1 to establish the SAs
automatically. Mobile IPv6 requires considering the home address
destination option and Routing Header in IPsec processing. Also,
IPsec and IKE security association addresses can be updated by Mobile
IPv6 signaling messages.
<span class="h4"><a class="selflink" id="section-8.1.4" href="#section-8.1.4">8.1.4</a>. <a href="./rfc4877">RFC 4877</a>, Mobile IPv6 Operation with IKEv2 and the Revised IPsec</span>
<span class="h4"> Architecture (S, April 2007)</span>
This document updates [<a href="./rfc3776" title=""Using IPsec to Protect Mobile IPv6 Signaling Between Mobile Nodes and Home Agents"">RFC3776</a>] in order to work with the revised
IPsec architecture [<a href="./rfc4301" title=""Security Architecture for the Internet Protocol"">RFC4301</a>]. Since the revised IPsec architecture
expands the list of selectors to include the Mobility Header message
type, it becomes much easier to differentiate between different
mobility header messages. Since the ICMP message type and code are
also newly added as selectors, this document uses them to protect
Mobile Prefix Discovery messages. This document also specifies the
use of IKEv2 configuration payloads for dynamic home address
configuration. Finally, this document describes the use of IKEv2 in
order to set up the SAs for Mobile IPv6.
<span class="h4"><a class="selflink" id="section-8.1.5" href="#section-8.1.5">8.1.5</a>. <a href="./rfc5026">RFC 5026</a>, Mobile IPv6 Bootstrapping in Split Scenario</span>
(S, October 2007)
[<a id="ref-RFC5026">RFC5026</a>] extends [<a href="./rfc4877" title=""Mobile IPv6 Operation with IKEv2 and the Revised IPsec Architecture"">RFC4877</a>] to support dynamic discovery of home
agents and the home network prefix; for the latter purpose, it
specifies a new IKEv2 configuration attribute and notification. It
describes how a Mobile IPv6 node can obtain the address of its home
agent, its home address, and create IPsec security associations with
its home agent using DNS lookups and security credentials
preconfigured on the Mobile Node. It defines how a mobile node (MN)
can request its home address and home prefixes through the
Configuration Payload in the IKE_AUTH exchange and what attributes
need to be present in the CFG_REQUEST messages in order to do this.
It also specifies how the home agent can authorize the credentials
used for IKEv2 exchange.
<span class="grey">Frankel & Krishnan Informational [Page 43]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-44" ></span>
<span class="grey"><a href="./rfc6071">RFC 6071</a> IPsec/IKE Roadmap February 2011</span>
<span class="h4"><a class="selflink" id="section-8.1.6" href="#section-8.1.6">8.1.6</a>. <a href="./rfc5213">RFC 5213</a>, Proxy Mobile IPv6 (S, August 2008)</span>
[<a id="ref-RFC5213">RFC5213</a>] describes a network-based mobility management protocol that
is used to provide mobility services to hosts without requiring their
participation in any mobility-related signaling. It uses IPsec to
protect the mobility signaling messages between the two network
entities called the mobile access gateway (MAG) and the local
mobility anchor (LMA). It also uses IKEv2 in order to set up the
security associations between the MAG and the LMA.
<span class="h4"><a class="selflink" id="section-8.1.7" href="#section-8.1.7">8.1.7</a>. <a href="./rfc5568">RFC 5568</a>, Mobile IPv6 Fast Handovers (S, July 2009)</span>
When Mobile IPv6 is used for a handover, there is a period during
which the Mobile Node is unable to send or receive packets because of
link switching delay and IP protocol operations. [<a href="./rfc5568" title=""Mobile IPv6 Fast Handovers"">RFC5568</a>] specifies
a protocol between the Previous Access Router (PAR) and the New
Access Router (NAR) to improve handover latency due to Mobile IPv6
procedures. It uses IPsec ESP in transport mode with integrity
protection for protecting the signaling messages between the PAR and
the NAR. It also describes the SPD entries and the PAD entries when
IKEv2 is used for setting up the required SAs.
<span class="h4"><a class="selflink" id="section-8.1.8" href="#section-8.1.8">8.1.8</a>. <a href="./rfc5380">RFC 5380</a>, Hierarchical Mobile IPv6 (HMIPv6) Mobility Management</span>
(S, October 2008)
[<a id="ref-RFC5380">RFC5380</a>] describes extensions to Mobile IPv6 and IPv6 Neighbor
Discovery to allow for local mobility handling in order to reduce the
amount of signaling between the mobile node, its correspondent nodes,
and its home agent. It also improves handover speed of Mobile IPv6.
It uses IPsec for protecting the signaling between the mobile node
and a local mobility management entity called the Mobility Anchor
Point (MAP). The MAP also uses IPsec Peer Authorization Database
(PAD) entries and configuration payloads described in [<a href="./rfc4877" title=""Mobile IPv6 Operation with IKEv2 and the Revised IPsec Architecture"">RFC4877</a>] in
order to allocate a Regional Care-of Address (RCoA) for mobile nodes.
<span class="h3"><a class="selflink" id="section-8.2" href="#section-8.2">8.2</a>. Open Shortest Path First (OSPF)</span>
<span class="h4"><a class="selflink" id="section-8.2.1" href="#section-8.2.1">8.2.1</a>. <a href="./rfc4552">RFC 4552</a>, Authentication/Confidentiality for OSPFv3</span>
(S, June 2006)
OSPF is a link-state routing protocol that is designed to be run
inside a single Autonomous System. OSPFv2 provided its own
authentication mechanisms using the AuType and Authentication
protocol header fields but OSPFv3 removed these fields and uses IPsec
instead. [<a href="./rfc4552" title=""Authentication/Confidentiality for OSPFv3"">RFC4552</a>] describes how to use IPsec ESP and AH in order to
protect OSPFv3 signaling between two routers. It also enumerates the
IPsec capabilities the routers require in order to support this
specification. Finally, it also describes the operation of OSPFv3
<span class="grey">Frankel & Krishnan Informational [Page 44]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-45" ></span>
<span class="grey"><a href="./rfc6071">RFC 6071</a> IPsec/IKE Roadmap February 2011</span>
with IPsec over virtual links where the other endpoint is not known
at configuration time. Since OSPFv3 exchanges multicast packets as
well as unicast ones, the use of IKE within OSPFv3 is not
appropriate. Therefore, this document mandates the use of manual
keys.
<span class="h3"><a class="selflink" id="section-8.3" href="#section-8.3">8.3</a>. Host Identity Protocol (HIP)</span>
<span class="h4"><a class="selflink" id="section-8.3.1" href="#section-8.3.1">8.3.1</a>. <a href="./rfc5201">RFC 5201</a>, Host Identity Protocol (E, April 2008)</span>
IP addresses perform two distinct functions: host identifier and
locator. This document specifies a protocol that allows consenting
hosts to securely establish and maintain shared IP-layer state,
allowing separation of the identifier and locator roles of IP
addresses. This enables continuity of communications across IP
address (locator) changes. It uses public key identifiers from a new
Host Identity (HI) namespace for peer authentication. It uses the
HMAC-SHA-1-96 and the AES-CBC algorithms with IPsec ESP and AH for
protecting its signaling messages.
<span class="h4"><a class="selflink" id="section-8.3.2" href="#section-8.3.2">8.3.2</a>. <a href="./rfc5202">RFC 5202</a>, Using the Encapsulating Security Payload (ESP)</span>
<span class="h4"> Transport Format with the Host Identity Protocol (HIP)</span>
(E, April 2008)
The HIP base exchange specification [<a href="./rfc5201" title=""Host Identity Protocol"">RFC5201</a>] does not describe any
transport formats or methods for describing how ESP is used to
protect user data to be used during the actual communication.
[<a href="./rfc5202" title=""Using the Encapsulating Security Payload (ESP) Transport Format with the Host Identity Protocol (HIP)"">RFC5202</a>] specifies a set of HIP extensions for creating a pair of
ESP Security Associations (SAs) between the hosts during the base
exchange. After the HIP association and required ESP SAs have been
established between the hosts, the user data communication is
protected using ESP. In addition, this document specifies how the
ESP Security Parameter Index (SPI) is used to indicate the right host
context (host identity) and methods to update an existing ESP
Security Association.
<span class="h4"><a class="selflink" id="section-8.3.3" href="#section-8.3.3">8.3.3</a>. <a href="./rfc5206">RFC 5206</a>, End-Host Mobility and Multihoming with the Host</span>
<span class="h4"> Identity (E, April 2008)</span>
When a host uses HIP, the overlying protocol sublayers (e.g.,
transport layer sockets) and Encapsulating Security Payload (ESP)
Security Associations (SAs) are bound to representations of these
host identities, and the IP addresses are only used for packet
forwarding. [<a href="./rfc5206" title=""End-Host Mobility and Multihoming with the Host Identity Protocol"">RFC5206</a>] defines a generalized LOCATOR parameter for
use in HIP messages that allows a HIP host to notify a peer about
alternate addresses at which it is reachable. It also specifies how
a host can change its IP address and continue to send packets to its
peers without necessarily rekeying.
<span class="grey">Frankel & Krishnan Informational [Page 45]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-46" ></span>
<span class="grey"><a href="./rfc6071">RFC 6071</a> IPsec/IKE Roadmap February 2011</span>
<span class="h4"><a class="selflink" id="section-8.3.4" href="#section-8.3.4">8.3.4</a>. <a href="./rfc5207">RFC 5207</a>, NAT and Firewall Traversal Issues of Host Identity</span>
<span class="h4"> Protocol (HIP) (I, April 2008)</span>
[<a id="ref-RFC5207">RFC5207</a>] discusses the problems associated with HIP communication
across network paths that include network address translators and
firewalls. It analyzes the impact of NATs and firewalls on the HIP
base exchange and the ESP data exchange. It discusses possible
changes to HIP that attempt to improve NAT and firewall traversal and
proposes a rendezvous point for letting HIP nodes behind a NAT be
reachable. It also suggests mechanisms for NATs to be more aware of
the HIP messages.
<span class="h3"><a class="selflink" id="section-8.4" href="#section-8.4">8.4</a>. Stream Control Transmission Protocol (SCTP)</span>
<span class="h4"><a class="selflink" id="section-8.4.1" href="#section-8.4.1">8.4.1</a>. <a href="./rfc3554">RFC 3554</a>, On the Use of Stream Control Transmission Protocol</span>
(SCTP) with IPsec (S, July 2003)
The Stream Control Transmission Protocol (SCTP) is a reliable
transport protocol operating on top of a connection-less packet
network such as IP. [<a href="./rfc3554" title=""On the Use of Stream Control Transmission Protocol (SCTP) with IPsec"">RFC3554</a>] describes functional requirements for
IPsec and IKE to be used in securing SCTP traffic. It adds support
for SCTP in the form of a new ID type in IKE [<a href="./rfc2409" title=""The Internet Key Exchange (IKE)"">RFC2409</a>] and
implementation choices in the IPsec processing to account for the
multiple source and destination addresses associated with a single
SCTP association. This document applies only to IKEv1 and IPsec-v2;
it does not apply to IKEv2 AND IPsec-v3.
<span class="h3"><a class="selflink" id="section-8.5" href="#section-8.5">8.5</a>. Robust Header Compression (ROHC)</span>
<span class="h4"><a class="selflink" id="section-8.5.1" href="#section-8.5.1">8.5.1</a>. <a href="./rfc3095">RFC 3095</a>, RObust Header Compression (ROHC): Framework and four</span>
<span class="h4"> profiles: RTP, UDP, ESP, and uncompressed (S, July 2001)</span>
ROHC is a framework for header compression, intended to be used in
resource-constrained environments. [<a href="./rfc3095" title=""RObust Header Compression (ROHC): Framework and four profiles: RTP, UDP, ESP, and uncompressed"">RFC3095</a>] applies this framework
to four protocols, including ESP.
<span class="h4"><a class="selflink" id="section-8.5.2" href="#section-8.5.2">8.5.2</a>. <a href="./rfc5225">RFC 5225</a>, RObust Header Compression Version 2 (ROHCv2): Profiles</span>
<span class="h4"> for RTP, UDP, IP, ESP, and UDP-Lite (S, April 2008)</span>
[<a id="ref-RFC5225">RFC5225</a>] defines an updated ESP/IP profile for use with ROHC version
2. It analyzes the ESP header and classifies the fields into several
classes like static, well-known, irregular, etc., in order to
efficiently compress the headers.
<span class="grey">Frankel & Krishnan Informational [Page 46]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-47" ></span>
<span class="grey"><a href="./rfc6071">RFC 6071</a> IPsec/IKE Roadmap February 2011</span>
<span class="h4"><a class="selflink" id="section-8.5.3" href="#section-8.5.3">8.5.3</a>. <a href="./rfc5856">RFC 5856</a>, Integration of Robust Header Compression over IPsec</span>
<span class="h4"> Security Associations (I, May 2010)</span>
[<a id="ref-RFC5856">RFC5856</a>] describes a mechanism to compress inner IP headers at the
ingress point of IPsec tunnels and to decompress them at the egress
point. Since the Robust Header Compression (ROHC) specifications
only describe operations on a per-hop basis, this document also
specifies extensions to enable ROHC over multiple hops. This
document applies only to tunnel mode SAs and does not support
transport mode SAs.
<span class="h4"><a class="selflink" id="section-8.5.4" href="#section-8.5.4">8.5.4</a>. <a href="./rfc5857">RFC 5857</a>, IKEv2 Extensions to Support Robust Header Compression</span>
<span class="h4"> over IPsec (S, May 2010)</span>
ROHC requires initial configuration at the compressor and
decompressor ends. Since ROHC usually operates on a per-hop basis,
this configuration information is carried over link-layer protocols
such as PPP. Since [<a href="./rfc5856" title=""Integration of Robust Header Compression over IPsec Security Associations"">RFC5856</a>] operates over multiple hops, a
different signaling mechanism is required. [<a href="./rfc5857" title=""IKEv2 Extensions to Support Robust Header Compression over IPsec"">RFC5857</a>] describes how
to use IKEv2 in order to dynamically communicate the configuration
parameters between the compressor and decompressor.
<span class="h4"><a class="selflink" id="section-8.5.5" href="#section-8.5.5">8.5.5</a>. <a href="./rfc5858">RFC 5858</a>, IPsec Extensions to Support Robust Header Compression</span>
<span class="h4"> over IPsec (S, May 2010)</span>
[<a id="ref-RFC5856">RFC5856</a>] describes how to use ROHC with IPsec. This is not possible
without extensions to IPsec. [<a href="./rfc5858" title=""IPsec Extensions to Support Robust Header Compression over IPsec"">RFC5858</a>] describes the extensions
needed to IPsec in order to support ROHC. Specifically, it describes
extensions needed to the IPsec SPD, SAD, and IPsec processing
including ICV computation and integrity verification.
<span class="h3"><a class="selflink" id="section-8.6" href="#section-8.6">8.6</a>. Border Gateway Protocol (BGP)</span>
<span class="h4"><a class="selflink" id="section-8.6.1" href="#section-8.6.1">8.6.1</a>. <a href="./rfc5566">RFC 5566</a>, BGP IPsec Tunnel Encapsulation Attribute</span>
(S, June 2009)
[<a id="ref-RFC5566">RFC5566</a>] adds an additional BGP Encapsulation Subsequent Address
Family Identifier (SAFI), allowing the use of IPsec and, optionally,
IKE to protect BGP tunnels. It defines the use of AH and ESP in
tunnel mode and the use of AH and ESP in transport mode to protect IP
in IP and MPLS-in-IP tunnels. It also defines how public key
fingerprints (hashes) are distributed via BGP and used later to
authenticate IKEv2 exchange between the tunnel endpoints.
<span class="h3"><a class="selflink" id="section-8.7" href="#section-8.7">8.7</a>. IPsec Benchmarking</span>
The Benchmarking Methodology WG in the IETF is working on documents
that relate to benchmarking IPsec [<a href="#ref-BMWG-1" title=""Methodology for Benchmarking IPsec Devices"">BMWG-1</a>] [<a href="#ref-BMWG-2" title=""Terminology for Benchmarking IPsec Devices"">BMWG-2</a>].
<span class="grey">Frankel & Krishnan Informational [Page 47]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-48" ></span>
<span class="grey"><a href="./rfc6071">RFC 6071</a> IPsec/IKE Roadmap February 2011</span>
<span class="h4"><a class="selflink" id="section-8.7.1" href="#section-8.7.1">8.7.1</a>. Methodology for Benchmarking IPsec Devices (Work in Progress)</span>
[<a id="ref-BMWG-1">BMWG-1</a>] defines a set of tests that can be used to measure and
report the performance characteristics of IPsec devices. It extends
the methodology defined for benchmarking network interconnecting
devices to include IPsec gateways and adds further tests that can be
used to measure IPsec performance of end-hosts. The document focuses
on establishing a performance testing methodology for IPsec devices
that support manual keying and IKEv1, but does not cover IKEv2.
<span class="h4"><a class="selflink" id="section-8.7.2" href="#section-8.7.2">8.7.2</a>. Terminology for Benchmarking IPsec Devices (Work in Progress)</span>
[<a id="ref-BMWG-2">BMWG-2</a>] defines the standardized performance testing terminology for
IPsec devices that support manual keying and IKEv1. It also
describes the benchmark tests that would be used to test the
performance of the IPsec devices.
<span class="h3"><a class="selflink" id="section-8.8" href="#section-8.8">8.8</a>. Network Address Translators (NAT)</span>
<span class="h4"><a class="selflink" id="section-8.8.1" href="#section-8.8.1">8.8.1</a>. <a href="./rfc2709">RFC 2709</a>, Security Model with Tunnel-mode IPsec for NAT domains</span>
(I, October 1999)
NAT devices provide transparent routing to end-hosts trying to
communicate from disparate address realms, by modifying IP and
transport headers en route. This makes it difficult for applications
to pursue end-to-end application-level security. [<a href="./rfc2709" title=""Security Model with Tunnel-mode IPsec for NAT Domains"">RFC2709</a>] describes
a security model by which tunnel mode IPsec security can be
architected on NAT devices. It defines how NATs administer security
policies and SA attributes based on private realm addressing. It
also specifies how to operate IKE in such scenarios by specifying an
IKE-ALG (Application Level Gateway) that translates policies from
private realm addressing into public addressing. Although the model
presented here uses terminology from IKEv1, it can be deployed within
IKEv1, IKEv2, IPsec-v2, and IPsec-v3. This security model has not
been widely adopted
<span class="h3"><a class="selflink" id="section-8.9" href="#section-8.9">8.9</a>. Session Initiation Protocol (SIP)</span>
<span class="h4"><a class="selflink" id="section-8.9.1" href="#section-8.9.1">8.9.1</a>. <a href="./rfc3329">RFC 3329</a>, Security Mechanism Agreement for the Session</span>
<span class="h4"> Initiation Protocol (SIP) (S, January 2003)</span>
[<a id="ref-RFC3329">RFC3329</a>] describes how a SIP client can select one of the various
available SIP security mechanisms. In particular, the method allows
secure negotiation to prevent bidding down attacks. It also
describes a security mechanism called ipsec-3gpp and its associated
parameters (algorithms, protocols, mode, SPIs and ports) as they are
used in the 3GPP IP Multimedia Subsystem.
<span class="grey">Frankel & Krishnan Informational [Page 48]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-49" ></span>
<span class="grey"><a href="./rfc6071">RFC 6071</a> IPsec/IKE Roadmap February 2011</span>
<span class="h3"><a class="selflink" id="section-8.10" href="#section-8.10">8.10</a>. Explicit Packet Sensitivity Labels</span>
<span class="h4"><a class="selflink" id="section-8.10.1" href="#section-8.10.1">8.10.1</a>. <a href="./rfc5570">RFC 5570</a>, Common Architecture Label IPv6 Security Option</span>
(CALIPSO) (I, July 2009)
[<a id="ref-RFC5570">RFC5570</a>] describes a mechanism used to encode explicit packet
Sensitivity Labels on IPv6 packets in Multi-Level Secure (MLS)
networks. The method is implemented using an IPv6 hop-by-hop option.
This document uses the IPsec Authentication Header (AH) in order to
detect any malicious modification of the Sensitivity Label in a
packet.
<span class="h2"><a class="selflink" id="section-9" href="#section-9">9</a>. Other Protocols That Adapt IKE for Non-IPsec Functionality</span>
Some protocols protect their traffic through mechanisms other than
IPsec, but use IKEv2 as a basis for their key negotiation and key
management functionality.
<span class="h3"><a class="selflink" id="section-9.1" href="#section-9.1">9.1</a>. Extensible Authentication Protocol (EAP)</span>
<span class="h4"><a class="selflink" id="section-9.1.1" href="#section-9.1.1">9.1.1</a>. <a href="./rfc5106">RFC 5106</a>, The Extensible Authentication Protocol-Internet Key</span>
<span class="h4"> Exchange Protocol version 2 (EAP-IKEv2) Method</span>
(E, February 2008)
[<a id="ref-RFC5106">RFC5106</a>] specifies an Extensible Authentication Protocol (EAP)
method that is based on the Internet Key Exchange version 2 (IKEv2)
protocol. EAP-IKEv2 provides mutual authentication and session-key
establishment between an EAP peer and an EAP server. It describes
the full EAP-IKEv2 message exchange and the composition of the
protocol messages.
<span class="h3"><a class="selflink" id="section-9.2" href="#section-9.2">9.2</a>. Fibre Channel</span>
<span class="h4"><a class="selflink" id="section-9.2.1" href="#section-9.2.1">9.2.1</a>. <a href="./rfc4595">RFC 4595</a>, Use of IKEv2 in the Fibre Channel Security Association</span>
<span class="h4"> Management Protocol (I, July 2006)</span>
Fibre Channel (FC) is a gigabit-speed network technology used for
Storage Area Networking. The Fibre Channel Security Protocols (FC-
SP) standard has adapted the IKEv2 protocol [<a href="./rfc4306" title=""Internet Key Exchange (IKEv2) Protocol"">RFC4306</a>] to provide
authentication of Fibre Channel entities and setup of security
associations. Since IP is transported over Fibre Channel and Fibre
Channel is transported over IP, there is the potential for confusion
when IKEv2 is used for both IP and FC traffic. [<a href="./rfc4595" title=""Use of IKEv2 in the Fibre Channel Security Association Management Protocol"">RFC4595</a>] specifies
identifiers for IKEv2 over FC in a fashion that ensures that any
mistaken usage of IKEv2/FC over IP or IKEv2/IP over FC will result in
a negotiation failure due to the absence of an acceptable proposal.
<span class="grey">Frankel & Krishnan Informational [Page 49]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-50" ></span>
<span class="grey"><a href="./rfc6071">RFC 6071</a> IPsec/IKE Roadmap February 2011</span>
<span class="h3"><a class="selflink" id="section-9.3" href="#section-9.3">9.3</a>. Wireless Security</span>
<span class="h4"><a class="selflink" id="section-9.3.1" href="#section-9.3.1">9.3.1</a>. <a href="./rfc4705">RFC 4705</a>, GigaBeam High-Speed Radio Link Encryption</span>
(I, October 2006)
[<a id="ref-RFC4705">RFC4705</a>] describes the encryption and key management used by
GigaBeam as part of the WiFiber(tm) family of radio-link products and
is intended to serve as a guideline for similar wireless product
development efforts to include comparable capabilities. It specifies
the algorithms that are used to provide confidentiality and integrity
protection of both subscriber and management traffic. It also
specifies a custom security protocol that runs between two Gigabeam
Radio Control Modules (RCMs).
<span class="h2"><a class="selflink" id="section-10" href="#section-10">10</a>. Acknowledgements</span>
The authors would like to thank Yaron Sheffer, Paul Hoffman, Yoav
Nir, Rajeshwar Singh Jenwar, Alfred Hoenes, Al Morton, Gabriel
Montenegro, Sean Turner, Julien Laganier, Grey Daley, Scott Moonen,
Richard Graveman, Tero Kivinen, Pasi Eronen, Ran Atkinson, David
Black, and Tim Polk for reviewing this document and suggesting
changes.
<span class="h2"><a class="selflink" id="section-11" href="#section-11">11</a>. Security Considerations</span>
This RFC serves as a review of other documents and introduces no new
security considerations itself; however, please see each of the
individual documents described herein for security considerations
related to each protocol.
<span class="h2"><a class="selflink" id="section-12" href="#section-12">12</a>. References</span>
<span class="h3"><a class="selflink" id="section-12.1" href="#section-12.1">12.1</a>. Informative References</span>
[<a id="ref-BMWG-1">BMWG-1</a>] Kaeo, M. and T. Van Herck, "Methodology for Benchmarking
IPsec Devices", Work in Progress, July 2009.
[<a id="ref-BMWG-2">BMWG-2</a>] Kaeo, M., Van Herck T., and M. Bustos, "Terminology for
Benchmarking IPsec Devices", Work in Progress, July 2009.
[<a id="ref-IKE-MODE-CFG">IKE-MODE-CFG</a>]
Dukes, D. and R. Pereira, "The ISAKMP Configuration
Method", Work in Progress, September 2001.
[<a id="ref-IKE-XAUTH">IKE-XAUTH</a>]
Beaulieu, S. and R. Pereira, "Extended Authentication
within IKE (XAUTH)", Work in Progress, October 2001.
<span class="grey">Frankel & Krishnan Informational [Page 50]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-51" ></span>
<span class="grey"><a href="./rfc6071">RFC 6071</a> IPsec/IKE Roadmap February 2011</span>
[<a id="ref-ISAKMP-MODE-CFG">ISAKMP-MODE-CFG</a>]
Pereira, R., Anand, S., and B. Patel, "The ISAKKMP
Configuration Method", Work in Progress, August 1999.
[<a id="ref-ISAKMP-XAUTH">ISAKMP-XAUTH</a>]
Pereira, R. and S. Beaulieu, "Extended Authentication
within ISAKMP/Oakley (XAUTH)", Work in Progress, December
1999.
[<a id="ref-RFC2119">RFC2119</a>] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", <a href="https://www.rfc-editor.org/bcp/bcp14">BCP 14</a>, <a href="./rfc2119">RFC 2119</a>, March 1997.
[<a id="ref-RFC2026">RFC2026</a>] Bradner, S., "The Internet Standards Process -- Revision
3", <a href="https://www.rfc-editor.org/bcp/bcp9">BCP 9</a>, <a href="./rfc2026">RFC 2026</a>, October 1996.
[<a id="ref-RFC2394">RFC2394</a>] Pereira, R., "IP Payload Compression Using DEFLATE", <a href="./rfc2394">RFC</a>
<a href="./rfc2394">2394</a>, December 1998.
[<a id="ref-RFC2395">RFC2395</a>] Friend, R. and R. Monsour, "IP Payload Compression Using
LZS", <a href="./rfc2395">RFC 2395</a>, December 1998.
[<a id="ref-RFC2401">RFC2401</a>] Kent, S. and R. Atkinson, "Security Architecture for the
Internet Protocol", <a href="./rfc2401">RFC 2401</a>, November 1998.
[<a id="ref-RFC2402">RFC2402</a>] Kent, S. and R. Atkinson, "IP Authentication Header", <a href="./rfc2402">RFC</a>
<a href="./rfc2402">2402</a>, November 1998.
[<a id="ref-RFC2403">RFC2403</a>] Madson, C. and R. Glenn, "The Use of HMAC-MD5-96 within
ESP and AH", <a href="./rfc2403">RFC 2403</a>, November 1998.
[<a id="ref-RFC2404">RFC2404</a>] Madson, C. and R. Glenn, "The Use of HMAC-SHA-1-96 within
ESP and AH", <a href="./rfc2404">RFC 2404</a>, November 1998.
[<a id="ref-RFC2405">RFC2405</a>] Madson, C. and N. Doraswamy, "The ESP DES-CBC Cipher
Algorithm With Explicit IV", <a href="./rfc2405">RFC 2405</a>, November 1998.
[<a id="ref-RFC2406">RFC2406</a>] Kent, S. and R. Atkinson, "IP Encapsulating Security
Payload (ESP)", <a href="./rfc2406">RFC 2406</a>, November 1998.
[<a id="ref-RFC2407">RFC2407</a>] Piper, D., "The Internet IP Security Domain of
Interpretation for ISAKMP", <a href="./rfc2407">RFC 2407</a>, November 1998.
[<a id="ref-RFC2408">RFC2408</a>] Maughan, D., Schertler, M., Schneider, M., and J. Turner,
"Internet Security Association and Key Management Protocol
(ISAKMP)", <a href="./rfc2408">RFC 2408</a>, November 1998.
[<a id="ref-RFC2409">RFC2409</a>] Harkins, D. and D. Carrel, "The Internet Key Exchange
(IKE)", <a href="./rfc2409">RFC 2409</a>, November 1998.
<span class="grey">Frankel & Krishnan Informational [Page 51]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-52" ></span>
<span class="grey"><a href="./rfc6071">RFC 6071</a> IPsec/IKE Roadmap February 2011</span>
[<a id="ref-RFC2410">RFC2410</a>] Glenn, R. and S. Kent, "The NULL Encryption Algorithm and
Its Use With IPsec", <a href="./rfc2410">RFC 2410</a>, November 1998.
[<a id="ref-RFC2411">RFC2411</a>] Thayer, R., Doraswamy, N., and R. Glenn, "IP Security
Document Roadmap", <a href="./rfc2411">RFC 2411</a>, November 1998.
[<a id="ref-RFC2412">RFC2412</a>] Orman, H., "The OAKLEY Key Determination Protocol", <a href="./rfc2412">RFC</a>
<a href="./rfc2412">2412</a>, November 1998.
[<a id="ref-RFC2451">RFC2451</a>] Pereira, R. and R. Adams, "The ESP CBC-Mode Cipher
Algorithms", <a href="./rfc2451">RFC 2451</a>, November 1998.
[<a id="ref-RFC2521">RFC2521</a>] Karn, P. and W. Simpson, "ICMP Security Failures
Messages", <a href="./rfc2521">RFC 2521</a>, March 1999.
[<a id="ref-RFC2709">RFC2709</a>] Srisuresh, P., "Security Model with Tunnel-mode IPsec for
NAT Domains", <a href="./rfc2709">RFC 2709</a>, October 1999.
[<a id="ref-RFC2857">RFC2857</a>] Keromytis, A. and N. Provos, "The Use of HMAC-
RIPEMD-160-96 within ESP and AH", <a href="./rfc2857">RFC 2857</a>, June 2000.
[<a id="ref-RFC3051">RFC3051</a>] Heath, J. and J. Border, "IP Payload Compression Using
ITU-T V.44 Packet Method", <a href="./rfc3051">RFC 3051</a>, January 2001.
[<a id="ref-RFC3056">RFC3056</a>] Carpenter, B. and K. Moore, "Connection of IPv6 Domains
via IPv4 Clouds", <a href="./rfc3056">RFC 3056</a>, February 2001.
[<a id="ref-RFC3095">RFC3095</a>] Bormann, C., Burmeister, C., Degermark, M., Fukushima, H.,
Hannu, H., Jonsson, L-E., Hakenberg, R., Koren, T., Le,
K., Liu, Z., Martensson, A., Miyazaki, A., Svanbro, K.,
Wiebke, T., Yoshimura, T., and H. Zheng, "RObust Header
Compression (ROHC): Framework and four profiles: RTP, UDP,
ESP, and uncompressed", <a href="./rfc3095">RFC 3095</a>, July 2001.
[<a id="ref-RFC3129">RFC3129</a>] Thomas, M., "Requirements for Kerberized Internet
Negotiation of Keys", <a href="./rfc3129">RFC 3129</a>, June 2001.
[<a id="ref-RFC3173">RFC3173</a>] Shacham, A., Monsour, B., Pereira, R., and M. Thomas, "IP
Payload Compression Protocol (IPComp)", <a href="./rfc3173">RFC 3173</a>,
September 2001.
[<a id="ref-RFC3329">RFC3329</a>] Arkko, J., Torvinen, V., Camarillo, G., Niemi, A., and T.
Haukka, "Security Mechanism Agreement for the Session
Initiation Protocol (SIP)", <a href="./rfc3329">RFC 3329</a>, January 2003.
[<a id="ref-RFC3456">RFC3456</a>] Patel, B., Aboba, B., Kelly, S., and V. Gupta, "Dynamic
Host Configuration Protocol (DHCPv4) Configuration of
IPsec Tunnel Mode", <a href="./rfc3456">RFC 3456</a>, January 2003.
<span class="grey">Frankel & Krishnan Informational [Page 52]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-53" ></span>
<span class="grey"><a href="./rfc6071">RFC 6071</a> IPsec/IKE Roadmap February 2011</span>
[<a id="ref-RFC3457">RFC3457</a>] Kelly, S. and S. Ramamoorthi, "Requirements for IPsec
Remote Access Scenarios", <a href="./rfc3457">RFC 3457</a>, January 2003.
[<a id="ref-RFC3526">RFC3526</a>] Kivinen, T. and M. Kojo, "More Modular Exponential (MODP)
Diffie-Hellman groups for Internet Key Exchange (IKE)",
<a href="./rfc3526">RFC 3526</a>, May 2003.
[<a id="ref-RFC3547">RFC3547</a>] Baugher, M., Weis, B., Hardjono, T., and H. Harney, "The
Group Domain of Interpretation", <a href="./rfc3547">RFC 3547</a>, July 2003.
[<a id="ref-RFC3554">RFC3554</a>] Bellovin, S., Ioannidis, J., Keromytis, A., and R.
Stewart, "On the Use of Stream Control Transmission
Protocol (SCTP) with IPsec", <a href="./rfc3554">RFC 3554</a>, July 2003.
[<a id="ref-RFC3566">RFC3566</a>] Frankel, S. and H. Herbert, "The AES-XCBC-MAC-96 Algorithm
and Its Use With IPsec", <a href="./rfc3566">RFC 3566</a>, September 2003.
[<a id="ref-RFC3585">RFC3585</a>] Jason, J., Rafalow, L., and E. Vyncke, "IPsec
Configuration Policy Information Model", <a href="./rfc3585">RFC 3585</a>, August
2003.
[<a id="ref-RFC3586">RFC3586</a>] Blaze, M., Keromytis, A., Richardson, M., and L. Sanchez,
"IP Security Policy (IPSP) Requirements", <a href="./rfc3586">RFC 3586</a>, August
2003.
[<a id="ref-RFC3602">RFC3602</a>] Frankel, S., Glenn, R., and S. Kelly, "The AES-CBC Cipher
Algorithm and Its Use with IPsec", <a href="./rfc3602">RFC 3602</a>, September
2003.
[<a id="ref-RFC3686">RFC3686</a>] Housley, R., "Using Advanced Encryption Standard (AES)
Counter Mode With IPsec Encapsulating Security Payload
(ESP)", <a href="./rfc3686">RFC 3686</a>, January 2004.
[<a id="ref-RFC3706">RFC3706</a>] Huang, G., Beaulieu, S., and D. Rochefort, "A Traffic-
Based Method of Detecting Dead Internet Key Exchange (IKE)
Peers", <a href="./rfc3706">RFC 3706</a>, February 2004.
[<a id="ref-RFC3715">RFC3715</a>] Aboba, B. and W. Dixon, "IPsec-Network Address Translation
(NAT) Compatibility Requirements", <a href="./rfc3715">RFC 3715</a>, March 2004.
[<a id="ref-RFC3740">RFC3740</a>] Hardjono, T. and B. Weis, "The Multicast Group Security
Architecture", <a href="./rfc3740">RFC 3740</a>, March 2004.
[<a id="ref-RFC3776">RFC3776</a>] Arkko, J., Devarapalli, V., and F. Dupont, "Using IPsec to
Protect Mobile IPv6 Signaling Between Mobile Nodes and
Home Agents", <a href="./rfc3776">RFC 3776</a>, June 2004.
<span class="grey">Frankel & Krishnan Informational [Page 53]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-54" ></span>
<span class="grey"><a href="./rfc6071">RFC 6071</a> IPsec/IKE Roadmap February 2011</span>
[<a id="ref-RFC3830">RFC3830</a>] Arkko, J., Carrara, E., Lindholm, F., Naslund, M., and K.
Norrman, "MIKEY: Multimedia Internet KEYing", <a href="./rfc3830">RFC 3830</a>,
August 2004.
[<a id="ref-RFC3884">RFC3884</a>] Touch, J., Eggert, L., and Y. Wang, "Use of IPsec
Transport Mode for Dynamic Routing", <a href="./rfc3884">RFC 3884</a>, September
2004.
[<a id="ref-RFC3947">RFC3947</a>] Kivinen, T., Swander, B., Huttunen, A., and V. Volpe,
"Negotiation of NAT-Traversal in the IKE", <a href="./rfc3947">RFC 3947</a>,
January 2005.
[<a id="ref-RFC3948">RFC3948</a>] Huttunen, A., Swander, B., Volpe, V., DiBurro, L., and M.
Stenberg, "UDP Encapsulation of IPsec ESP Packets", <a href="./rfc3948">RFC</a>
<a href="./rfc3948">3948</a>, January 2005.
[<a id="ref-RFC4025">RFC4025</a>] Richardson, M., "A Method for Storing IPsec Keying
Material in DNS", <a href="./rfc4025">RFC 4025</a>, March 2005.
[<a id="ref-RFC4046">RFC4046</a>] Baugher, M., Canetti, R., Dondeti, L., and F. Lindholm,
"Multicast Security (MSEC) Group Key Management
Architecture", <a href="./rfc4046">RFC 4046</a>, April 2005.
[<a id="ref-RFC4093">RFC4093</a>] Adrangi, F., Ed., and H. Levkowetz, Ed., "Problem
Statement: Mobile IPv4 Traversal of Virtual Private
Network (VPN) Gateways", <a href="./rfc4093">RFC 4093</a>, August 2005.
[<a id="ref-RFC4106">RFC4106</a>] Viega, J. and D. McGrew, "The Use of Galois/Counter Mode
(GCM) in IPsec Encapsulating Security Payload (ESP)", <a href="./rfc4106">RFC</a>
<a href="./rfc4106">4106</a>, June 2005.
[<a id="ref-RFC4109">RFC4109</a>] Hoffman, P., "Algorithms for Internet Key Exchange version
1 (IKEv1)", <a href="./rfc4109">RFC 4109</a>, May 2005.
[<a id="ref-RFC4196">RFC4196</a>] Lee, H., Yoon, J., Lee, S., and J. Lee, "The SEED Cipher
Algorithm and Its Use with IPsec", <a href="./rfc4196">RFC 4196</a>, October 2005.
[<a id="ref-RFC4301">RFC4301</a>] Kent, S. and K. Seo, "Security Architecture for the
Internet Protocol", <a href="./rfc4301">RFC 4301</a>, December 2005.
[<a id="ref-RFC4302">RFC4302</a>] Kent, S., "IP Authentication Header", <a href="./rfc4302">RFC 4302</a>, December
2005.
[<a id="ref-RFC4303">RFC4303</a>] Kent, S., "IP Encapsulating Security Payload (ESP)", <a href="./rfc4303">RFC</a>
<a href="./rfc4303">4303</a>, December 2005.
<span class="grey">Frankel & Krishnan Informational [Page 54]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-55" ></span>
<span class="grey"><a href="./rfc6071">RFC 6071</a> IPsec/IKE Roadmap February 2011</span>
[<a id="ref-RFC4304">RFC4304</a>] Kent, S., "Extended Sequence Number (ESN) Addendum to
IPsec Domain of Interpretation (DOI) for Internet Security
Association and Key Management Protocol (ISAKMP)", <a href="./rfc4304">RFC</a>
<a href="./rfc4304">4304</a>, December 2005.
[<a id="ref-RFC4305">RFC4305</a>] Eastlake 3rd, D., "Cryptographic Algorithm Implementation
Requirements for Encapsulating Security Payload (ESP) and
Authentication Header (AH)", <a href="./rfc4305">RFC 4305</a>, December 2005.
[<a id="ref-RFC4306">RFC4306</a>] Kaufman, C., Ed., "Internet Key Exchange (IKEv2)
Protocol", <a href="./rfc4306">RFC 4306</a>, December 2005.
[<a id="ref-RFC4307">RFC4307</a>] Schiller, J., "Cryptographic Algorithms for Use in the
Internet Key Exchange Version 2 (IKEv2)", <a href="./rfc4307">RFC 4307</a>,
December 2005.
[<a id="ref-RFC4308">RFC4308</a>] Hoffman, P., "Cryptographic Suites for IPsec", <a href="./rfc4308">RFC 4308</a>,
December 2005.
[<a id="ref-RFC4309">RFC4309</a>] Housley, R., "Using Advanced Encryption Standard (AES) CCM
Mode with IPsec Encapsulating Security Payload (ESP)", <a href="./rfc4309">RFC</a>
<a href="./rfc4309">4309</a>, December 2005.
[<a id="ref-RFC4312">RFC4312</a>] Kato, A., Moriai, S., and M. Kanda, "The Camellia Cipher
Algorithm and Its Use With IPsec", <a href="./rfc4312">RFC 4312</a>, December
2005.
[<a id="ref-RFC4322">RFC4322</a>] Richardson, M. and D. Redelmeier, "Opportunistic
Encryption using the Internet Key Exchange (IKE)", <a href="./rfc4322">RFC</a>
<a href="./rfc4322">4322</a>, December 2005.
[<a id="ref-RFC4359">RFC4359</a>] Weis, B., "The Use of RSA/SHA-1 Signatures within
Encapsulating Security Payload (ESP) and Authentication
Header (AH)", <a href="./rfc4359">RFC 4359</a>, January 2006.
[<a id="ref-RFC4430">RFC4430</a>] Sakane, S., Kamada, K., Thomas, M., and J. Vilhuber,
"Kerberized Internet Negotiation of Keys (KINK)", <a href="./rfc4430">RFC</a>
<a href="./rfc4430">4430</a>, March 2006.
[<a id="ref-RFC4434">RFC4434</a>] Hoffman, P., "The AES-XCBC-PRF-128 Algorithm for the
Internet Key Exchange Protocol (IKE)", <a href="./rfc4434">RFC 4434</a>, February
2006.
[<a id="ref-RFC4478">RFC4478</a>] Nir, Y., "Repeated Authentication in Internet Key Exchange
(IKEv2) Protocol", <a href="./rfc4478">RFC 4478</a>, April 2006.
[<a id="ref-RFC4494">RFC4494</a>] Song, JH., Poovendran, R., and J. Lee, "The AES-CMAC-96
Algorithm and Its Use with IPsec", <a href="./rfc4494">RFC 4494</a>, June 2006.
<span class="grey">Frankel & Krishnan Informational [Page 55]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-56" ></span>
<span class="grey"><a href="./rfc6071">RFC 6071</a> IPsec/IKE Roadmap February 2011</span>
[<a id="ref-RFC4535">RFC4535</a>] Harney, H., Meth, U., Colegrove, A., and G. Gross,
"GSAKMP: Group Secure Association Key Management
Protocol", <a href="./rfc4535">RFC 4535</a>, June 2006.
[<a id="ref-RFC4543">RFC4543</a>] McGrew, D. and J. Viega, "The Use of Galois Message
Authentication Code (GMAC) in IPsec ESP and AH", <a href="./rfc4543">RFC 4543</a>,
May 2006.
[<a id="ref-RFC4552">RFC4552</a>] Gupta, M. and N. Melam, "Authentication/Confidentiality
for OSPFv3", <a href="./rfc4552">RFC 4552</a>, June 2006.
[<a id="ref-RFC4555">RFC4555</a>] Eronen, P., "IKEv2 Mobility and Multihoming Protocol
(MOBIKE)", <a href="./rfc4555">RFC 4555</a>, June 2006.
[<a id="ref-RFC4595">RFC4595</a>] Maino, F. and D. Black, "Use of IKEv2 in the Fibre Channel
Security Association Management Protocol", <a href="./rfc4595">RFC 4595</a>, July
2006.
[<a id="ref-RFC4615">RFC4615</a>] Song, J., Poovendran, R., Lee, J., and T. Iwata, "The
Advanced Encryption Standard-Cipher-based Message
Authentication Code-Pseudo-Random Function-128 (AES-CMAC-
PRF-128) Algorithm for the Internet Key Exchange Protocol
(IKE)", <a href="./rfc4615">RFC 4615</a>, August 2006.
[<a id="ref-RFC4621">RFC4621</a>] Kivinen, T. and H. Tschofenig, "Design of the IKEv2
Mobility and Multihoming (MOBIKE) Protocol", <a href="./rfc4621">RFC 4621</a>,
August 2006.
[<a id="ref-RFC4705">RFC4705</a>] Housley, R. and A. Corry, "GigaBeam High-Speed Radio Link
Encryption", <a href="./rfc4705">RFC 4705</a>, October 2006.
[<a id="ref-RFC4718">RFC4718</a>] Eronen, P. and P. Hoffman, "IKEv2 Clarifications and
Implementation Guidelines", <a href="./rfc4718">RFC 4718</a>, October 2006.
[<a id="ref-RFC4739">RFC4739</a>] Eronen, P. and J. Korhonen, "Multiple Authentication
Exchanges in the Internet Key Exchange (IKEv2) Protocol",
<a href="./rfc4739">RFC 4739</a>, November 2006.
[<a id="ref-RFC4753">RFC4753</a>] Fu, D. and J. Solinas, "ECP Groups For IKE and IKEv2", <a href="./rfc4753">RFC</a>
<a href="./rfc4753">4753</a>, January 2007.
[<a id="ref-RFC4754">RFC4754</a>] Fu, D. and J. Solinas, "IKE and IKEv2 Authentication Using
the Elliptic Curve Digital Signature Algorithm (ECDSA)",
<a href="./rfc4754">RFC 4754</a>, January 2007.
[<a id="ref-RFC4806">RFC4806</a>] Myers, M. and H. Tschofenig, "Online Certificate Status
Protocol (OCSP) Extensions to IKEv2", <a href="./rfc4806">RFC 4806</a>, February
2007.
<span class="grey">Frankel & Krishnan Informational [Page 56]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-57" ></span>
<span class="grey"><a href="./rfc6071">RFC 6071</a> IPsec/IKE Roadmap February 2011</span>
[<a id="ref-RFC4807">RFC4807</a>] Baer, M., Charlet, R., Hardaker, W., Story, R., and C.
Wang, "IPsec Security Policy Database Configuration MIB",
<a href="./rfc4807">RFC 4807</a>, March 2007.
[<a id="ref-RFC4809">RFC4809</a>] Bonatti, C., Ed., Turner, S., Ed., and G. Lebovitz, Ed.,
"Requirements for an IPsec Certificate Management
Profile", <a href="./rfc4809">RFC 4809</a>, February 2007.
[<a id="ref-RFC4835">RFC4835</a>] Manral, V., "Cryptographic Algorithm Implementation
Requirements for Encapsulating Security Payload (ESP) and
Authentication Header (AH)", <a href="./rfc4835">RFC 4835</a>, April 2007.
[<a id="ref-RFC4868">RFC4868</a>] Kelly, S. and S. Frankel, "Using HMAC-SHA-256, HMAC-
SHA-384, and HMAC-SHA-512 with IPsec", <a href="./rfc4868">RFC 4868</a>, May 2007.
[<a id="ref-RFC4869">RFC4869</a>] Law, L. and J. Solinas, "Suite B Cryptographic Suites for
IPsec", <a href="./rfc4869">RFC 4869</a>, May 2007.
[<a id="ref-RFC4877">RFC4877</a>] Devarapalli, V. and F. Dupont, "Mobile IPv6 Operation with
IKEv2 and the Revised IPsec Architecture", <a href="./rfc4877">RFC 4877</a>, April
2007.
[<a id="ref-RFC4891">RFC4891</a>] Graveman, R., Parthasarathy, M., Savola, P., and H.
Tschofenig, "Using IPsec to Secure IPv6-in-IPv4 Tunnels",
<a href="./rfc4891">RFC 4891</a>, May 2007.
[<a id="ref-RFC4894">RFC4894</a>] Hoffman, P., "Use of Hash Algorithms in Internet Key
Exchange (IKE) and IPsec", <a href="./rfc4894">RFC 4894</a>, May 2007.
[<a id="ref-RFC4945">RFC4945</a>] Korver, B., "The Internet IP Security PKI Profile of
IKEv1/ISAKMP, IKEv2, and PKIX", <a href="./rfc4945">RFC 4945</a>, August 2007.
[<a id="ref-RFC5026">RFC5026</a>] Giaretta, G., Ed., Kempf, J., and V. Devarapalli, Ed.,
"Mobile IPv6 Bootstrapping in Split Scenario", <a href="./rfc5026">RFC 5026</a>,
October 2007.
[<a id="ref-RFC5106">RFC5106</a>] Tschofenig, H., Kroeselberg, D., Pashalidis, A., Ohba, Y.,
and F. Bersani, "The Extensible Authentication Protocol-
Internet Key Exchange Protocol version 2 (EAP-IKEv2)
Method", <a href="./rfc5106">RFC 5106</a>, February 2008.
[<a id="ref-RFC5114">RFC5114</a>] Lepinski, M. and S. Kent, "Additional Diffie-Hellman
Groups for Use with IETF Standards", <a href="./rfc5114">RFC 5114</a>, January
2008.
[<a id="ref-RFC5201">RFC5201</a>] Moskowitz, R., Nikander, P., Jokela, P., Ed., and T.
Henderson, "Host Identity Protocol", <a href="./rfc5201">RFC 5201</a>, April 2008.
<span class="grey">Frankel & Krishnan Informational [Page 57]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-58" ></span>
<span class="grey"><a href="./rfc6071">RFC 6071</a> IPsec/IKE Roadmap February 2011</span>
[<a id="ref-RFC5202">RFC5202</a>] Jokela, P., Moskowitz, R., and P. Nikander, "Using the
Encapsulating Security Payload (ESP) Transport Format with
the Host Identity Protocol (HIP)", <a href="./rfc5202">RFC 5202</a>, April 2008.
[<a id="ref-RFC5206">RFC5206</a>] Nikander, P., Henderson, T., Ed., Vogt, C., and J. Arkko,
"End-Host Mobility and Multihoming with the Host Identity
Protocol", <a href="./rfc5206">RFC 5206</a>, April 2008.
[<a id="ref-RFC5207">RFC5207</a>] Stiemerling, M., Quittek, J., and L. Eggert, "NAT and
Firewall Traversal Issues of Host Identity Protocol (HIP)
Communication", <a href="./rfc5207">RFC 5207</a>, April 2008.
[<a id="ref-RFC5213">RFC5213</a>] Gundavelli, S., Ed., Leung, K., Devarapalli, V.,
Chowdhury, K., and B. Patil, "Proxy Mobile IPv6", <a href="./rfc5213">RFC</a>
<a href="./rfc5213">5213</a>, August 2008.
[<a id="ref-RFC5225">RFC5225</a>] Pelletier, G. and K. Sandlund, "RObust Header Compression
Version 2 (ROHCv2): Profiles for RTP, UDP, IP, ESP and
UDP-Lite", <a href="./rfc5225">RFC 5225</a>, April 2008.
[<a id="ref-RFC5265">RFC5265</a>] Vaarala, S. and E. Klovning, "Mobile IPv4 Traversal across
IPsec-Based VPN Gateways", <a href="./rfc5265">RFC 5265</a>, June 2008.
[<a id="ref-RFC5266">RFC5266</a>] Devarapalli, V. and P. Eronen, "Secure Connectivity and
Mobility Using Mobile IPv4 and IKEv2 Mobility and
Multihoming (MOBIKE)", <a href="https://www.rfc-editor.org/bcp/bcp136">BCP 136</a>, <a href="./rfc5266">RFC 5266</a>, June 2008.
[<a id="ref-RFC5282">RFC5282</a>] Black, D. and D. McGrew, "Using Authenticated Encryption
Algorithms with the Encrypted Payload of the Internet Key
Exchange version 2 (IKEv2) Protocol", <a href="./rfc5282">RFC 5282</a>, August
2008.
[<a id="ref-RFC5380">RFC5380</a>] Soliman, H., Castelluccia, C., ElMalki, K., and L.
Bellier, "Hierarchical Mobile IPv6 (HMIPv6) Mobility
Management", <a href="./rfc5380">RFC 5380</a>, October 2008.
[<a id="ref-RFC5386">RFC5386</a>] Williams, N. and M. Richardson, "Better-Than-Nothing
Security: An Unauthenticated Mode of IPsec", <a href="./rfc5386">RFC 5386</a>,
November 2008.
[<a id="ref-RFC5374">RFC5374</a>] Weis, B., Gross, G., and D. Ignjatic, "Multicast
Extensions to the Security Architecture for the Internet
Protocol", <a href="./rfc5374">RFC 5374</a>, November 2008.
[<a id="ref-RFC5387">RFC5387</a>] Touch, J., Black, D., and Y. Wang, "Problem and
Applicability Statement for Better-Than-Nothing Security
(BTNS)", <a href="./rfc5387">RFC 5387</a>, November 2008.
<span class="grey">Frankel & Krishnan Informational [Page 58]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-59" ></span>
<span class="grey"><a href="./rfc6071">RFC 6071</a> IPsec/IKE Roadmap February 2011</span>
[<a id="ref-RFC5406">RFC5406</a>] Bellovin, S., "Guidelines for Specifying the Use of IPsec
Version 2", <a href="https://www.rfc-editor.org/bcp/bcp146">BCP 146</a>, <a href="./rfc5406">RFC 5406</a>, February 2009.
[<a id="ref-RFC5529">RFC5529</a>] Kato, A., Kanda, M., and S. Kanno, "Modes of Operation for
Camellia for Use with IPsec", <a href="./rfc5529">RFC 5529</a>, April 2009.
[<a id="ref-RFC5566">RFC5566</a>] Berger, L., White, R., and E. Rosen, "BGP IPsec Tunnel
Encapsulation Attribute", <a href="./rfc5566">RFC 5566</a>, June 2009.
[<a id="ref-RFC5568">RFC5568</a>] Koodli, R., Ed., "Mobile IPv6 Fast Handovers", <a href="./rfc5568">RFC 5568</a>,
July 2009.
[<a id="ref-RFC5570">RFC5570</a>] StJohns, M., Atkinson, R., and G. Thomas, "Common
Architecture Label IPv6 Security Option (CALIPSO)", <a href="./rfc5570">RFC</a>
<a href="./rfc5570">5570</a>, July 2009.
[<a id="ref-RFC5660">RFC5660</a>] Williams, N., "IPsec Channels: Connection Latching", <a href="./rfc5660">RFC</a>
<a href="./rfc5660">5660</a>, October 2009.
[<a id="ref-RFC5685">RFC5685</a>] Devarapalli, V. and K. Weniger, "Redirect Mechanism for
the Internet Key Exchange Protocol Version 2 (IKEv2)", <a href="./rfc5685">RFC</a>
<a href="./rfc5685">5685</a>, November 2009.
[<a id="ref-RFC5723">RFC5723</a>] Sheffer, Y. and H. Tschofenig, "Internet Key Exchange
Protocol Version 2 (IKEv2) Session Resumption", <a href="./rfc5723">RFC 5723</a>,
January 2010.
[<a id="ref-RFC5739">RFC5739</a>] Eronen, P., Laganier, J., and C. Madson, "IPv6
Configuration in Internet Key Exchange Protocol Version 2
(IKEv2)", <a href="./rfc5739">RFC 5739</a>, February 2010.
[<a id="ref-RFC5840">RFC5840</a>] Grewal, K., Montenegro, G., and M. Bhatia, "Wrapped
Encapsulating Security Payload (ESP) for Traffic
Visibility", <a href="./rfc5840">RFC 5840</a>, April 2010.
[<a id="ref-RFC5856">RFC5856</a>] Ertekin, E., Jasani, R., Christou, C., and C. Bormann,
"Integration of Robust Header Compression over IPsec
Security Associations", <a href="./rfc5856">RFC 5856</a>, May 2010.
[<a id="ref-RFC5857">RFC5857</a>] Ertekin, E., Christou, C., Jasani, R., Kivinen, T., and C.
Bormann, "IKEv2 Extensions to Support Robust Header
Compression over IPsec", <a href="./rfc5857">RFC 5857</a>, May 2010.
[<a id="ref-RFC5858">RFC5858</a>] Ertekin, E., Christou, C., and C. Bormann, "IPsec
Extensions to Support Robust Header Compression over
IPsec", <a href="./rfc5858">RFC 5858</a>, May 2010.
<span class="grey">Frankel & Krishnan Informational [Page 59]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-60" ></span>
<span class="grey"><a href="./rfc6071">RFC 6071</a> IPsec/IKE Roadmap February 2011</span>
[<a id="ref-RFC5879">RFC5879</a>] Kivinen, T. and D. McDonald, "Heuristics for Detecting
ESP-NULL Packets", <a href="./rfc5879">RFC 5879</a>, May 2010.
[<a id="ref-RFC5903">RFC5903</a>] Fu, D. and J. Solinas, "Elliptic Curve Groups modulo a
Prime (ECP Groups) for IKE and IKEv2", <a href="./rfc5903">RFC 5903</a>, June
2010.
[<a id="ref-RFC5930">RFC5930</a>] Shen, S., Mao, Y., and NSS. Murthy, "Using Advanced
Encryption Standard Counter Mode (AES-CTR) with the
Internet Key Exchange version 02 (IKEv2) Protocol", <a href="./rfc5930">RFC</a>
<a href="./rfc5930">5930</a>, July 2010.
[<a id="ref-RFC5996">RFC5996</a>] Kaufman, C., Hoffman, P., Nir, Y., and P. Eronen,
"Internet Key Exchange Protocol Version 2 (IKEv2)", <a href="./rfc5996">RFC</a>
<a href="./rfc5996">5996</a>, September 2010.
[<a id="ref-RFC5998">RFC5998</a>] Eronen, P., Tschofenig, H., and Y. Sheffer, "An Extension
for EAP-Only Authentication in IKEv2", <a href="./rfc5998">RFC 5998</a>, September
2010.
[<a id="ref-RFC6027">RFC6027</a>] Nir, Y., "IPsec Cluster Problem Statement", <a href="./rfc6027">RFC 6027</a>,
October 2010.
<span class="grey">Frankel & Krishnan Informational [Page 60]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-61" ></span>
<span class="grey"><a href="./rfc6071">RFC 6071</a> IPsec/IKE Roadmap February 2011</span>
<span class="h2"><a class="selflink" id="appendix-A" href="#appendix-A">Appendix A</a>. Summary of Algorithm Requirement Levels</span>
Table 1: Algorithm Requirement Levels
+--------------------------+----------------------------------------+
| ALGORITHM | REQUIREMENT LEVEL |
| | IKEv1 IKEv2 IPsec-v2 IPsec-v3 |
+--------------------------+----------------------------------------+
|Encryption Algorithms: |
|--------------------- |
| ESP-NULL | N/A N/A MUST MUST |
| | |
| 3DES-CBC | MUST MUST- MUST MUST- |
| | |
| Blowfish/CAST/IDEA/RC5 | optional optional optional optional |
| | |
| AES-CBC 128-bit key | SHOULD SHOULD+ MUST MUST |
| | |
| AES-CBC 192/256-bit key | optional optional optional optional |
| | |
| AES-CTR | undefined optional SHOULD SHOULD |
| | |
| Camellia-CBC | optional optional optional optional |
| | |
| Camellia-CTR | undefined undefined undefined optional |
| | |
| SEED-CBC | undefined undefined optional undefined|
| | |
|Integrity-Protection Algorithms: |
|------------------------------ |
| HMAC-SHA-1 | MUST MUST MUST MUST |
| | |
| AES-XCBC-MAC | undefined optional SHOULD+ SHOULD+ |
| | |
| HMAC-SHA-256/384/512 | optional optional optional optional |
| | |
| AES-GMAC | N/A N/A undefined optional |
| | |
| HMAC-MD5 | MAY optional MAY MAY |
| | |
| AES-CMAC | undefined optional undefined optional |
| | |
| HMAC-RIPEMD | undefined undefined optional undefined|
+--------------------------+----------------------------------------+
<span class="grey">Frankel & Krishnan Informational [Page 61]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-62" ></span>
<span class="grey"><a href="./rfc6071">RFC 6071</a> IPsec/IKE Roadmap February 2011</span>
Table 1: Algorithm Requirement Levels (continued)
+--------------------------+----------------------------------------+
| ALGORITHM | REQUIREMENT LEVEL |
| | IKEv1 IKEv2 IPsec-v2 IPsec-v3 |
+--------------------------+----------------------------------------+
|Combined Mode Algorithms: |
|------------------------ |
| AES-CCM | N/A optional N/A optional |
| | |
| AES-GCM | N/A optional N/A optional |
| | |
| AES-GMAC | N/A N/A undefined optional |
| | |
| Camellia-CCM | N/A undefined N/A optional |
| | |
|Pseudorandom Functions: |
|----------------------- |
| PRF-HMAC-SHA1 | MUST MUST |
| | |
| PRF-HMAC-SHA-256/384/512 | optional optional |
| | |
| AES-XCBC-PRF | undefined SHOULD+ |
| | |
| AES-CMAC-PRF | undefined optional |
| | |
|Diffie-Hellman Algorithms: |
|------------------------- |
| DH MODP grp 1 | MAY optional |
| | |
| DH MODP grp 2 | MUST MUST- |
| | |
| DH MODP grp 5 | optional optional |
| | |
| DH MODP grp 14 | SHOULD SHOULD+ |
| | |
| DH MODP grp 15-18 | optional optional |
| | |
| DH MODP grp 22-24 | optional optional |
| | |
| DH EC grp 3-4 | MAY undefined |
| | |
| DH EC grp 19-21 | optional optional |
| | |
| DH EC grp 25-26 | optional optional |
+--------------------------+----------------------------------------+
<span class="grey">Frankel & Krishnan Informational [Page 62]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-63" ></span>
<span class="grey"><a href="./rfc6071">RFC 6071</a> IPsec/IKE Roadmap February 2011</span>
Authors' Addresses
Sheila Frankel
NIST
Bldg. 223 Rm. B366
Gaithersburg, MD 20899
Phone: 1-301-975-3297
EMail: sheila.frankel@nist.gov
Suresh Krishnan
Ericsson
8400 Decarie Blvd.
Town of Mount Royal, QC
Canada
Phone: 1-514-345-7900 x42871
EMail: suresh.krishnan@ericsson.com
Frankel & Krishnan Informational [Page 63]
</pre>
|