1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781
|
<pre>Network Working Group W. Naylor
Request for Comment: 619 H. Opderbeck
NIC 21990 UCLA-NMC
March 7, 1974
<span class="h1">Mean Round-Trip Times in the ARPANET</span>
In one of our current measurement projects we are interested in the
average values of important network parameters. For this purpose we
collect data on the network activity over seven consecutive days. This
data collection is only interrupted by down-time or maintenance of
either the net or our collecting facility (the "late" Sigma-7 or, in
future, the 360/91 at CCN).
The insight gained from the analysis of this data has been reported in
Network Measurement Group Note 18 (NIC 20793):
L. Kleinrock and W. Naylor
"On Measured Behavior of the ARPA Network"
This paper will be presented at the NCC '74 in Chicago.
In this RFC we want to report the mean round-trip times (or delays) that
were observed during these week-long measurements since we think these
figures are of general interest to the ARPA community. Let us first
define the term "round trip time" as it is used by the statistics
gathering program in the IMPs. When a message is sent from a source
HOST to a destination HOST, the following events, among others, can be
distinguished (T(i) is the time of event i):
T(1): The message is passed from the user program to the NCP in the
source HOST
T(2): The proper entry is made in the pending packet table (PPT) for
single packet messages or the pending leader table (PLT) for
multiple packet messages after the first packet is received by
the source IMP
T(3): The first packet of the message is put on the proper output
queue in the source IMP (at this time the input of the second
packet is initiated)
T(4): The message is put on the HOST-output queue in the destination
IMP (at this time the reassembly of the message is complete)
T(5): The RFNM is sent from the destination IMP to the source IMP
<span class="grey">Naylor & Opderbeck [Page 1]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-2" ></span>
<span class="grey"><a href="./rfc619">RFC 619</a> Mean Round-Trip Times in the ARPANET March 1974</span>
T(6): The RFNM arrives at the source IMP
T(7): The RFNM is accepted by the source HOST
The time intervals T(i)-T(i-1) are mainly due to the following delays
and waiting times:
T(2)-T(1): -HOST processing delay
-HOST-IMP transmission delay for the 32-bit leader
-Waiting time for a message number to become free (only
four messages can simultaneously be transmitted between
any pair of source IMP - destination IMP)
-Waiting time for a buffer to become free (there must be
more than three buffers on the "free buffer list")
-HOST-IMP transmission delay for the first packet
-Waiting time for an entry in the PPT or PLT to become
available (there are eight entries in the PPT and twelve
in the PLT table)
T(3)-T(2): -Waiting time for a store-and-forward (S/F) buffer to
become free (the maximum number of S/F-buffers is 20).
-Waiting time for a logical ACK-channel to become free
(there are 8 logical ACK-channels for each physical
channel).
-For multiple packet messages, waiting time until the
ALLOCATE is received (unless an allocation from a previous
multiple-packet message still exists; such an allocation
is returned in the RFNM and expires after 125 msec)
T(4)-T(3): -Queuing delay, transmission delay, and propagation delay
in all the IMPs and lines in the path from source IMP to
destination IMP
-Possibly retransmission delay due to transmission errors
or lack of buffer space (for multiple packet messages the
delays for the individual packets overlap)
T(5)-T(4): -Queuing delay in the destination IMP
-IMP-HOST transmission delay for the first packet
-For multiple-packet messages, waiting time for reassembly
buffers to become free to piggy-back an ALLOCATE on the
RFNM (if this waiting time exceeds one second then the
RFNM is sent without the ALLOCATE)
T(6)-T(5): -Queuing delay, transmission delay, and propagation delay
for the RFNM in all the IMPs and lines in the path from
destination IMP to source IMP
<span class="grey">Naylor & Opderbeck [Page 2]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-3" ></span>
<span class="grey"><a href="./rfc619">RFC 619</a> Mean Round-Trip Times in the ARPANET March 1974</span>
T(7)-T(6): -Queuing delay for the RFNM in the source IMP
-IMP-HOST transmission delay for the RFNM
IMP processing delays are not included in this table since they are
usually very small. Also, some of the abovementioned waiting times
reduce to zero in many cases, e.g. the waiting time for a message number
to become available and the waiting time for a buffer to become free.
If the source and destination HOSTs are attached to the same IMP, this
table can be simplified as follows:
T(2)-T(1): as before
T(3)-T(2): for multiple packet messages: waiting time until
reassembly space becomes available (there are up to 66
reassembly buffers)
T(4)-T(3): for multiple packet messages: HOST-IMP transmission delay
for packets 2,3,...
T(5)-T(4): as before
T(6)-T(5): 0
T(7)-T(6): as before
Up to now we have neglected the possibility that a single packet message
is rejected at the destination IMP because of lack of reassembly space.
If this occurs, the single packet message is treated as a request for
buffer space allocation and the time interval T(3)-T(2) increased by the
waiting time until the corresponding "ALLOCATE" is received.
The round trip time (RTT) is now defined as the time interval T(6)-T(2).
Note that the RTT for multiple packet messages does include the waiting
time until the ALLOCATE is received. It does, however, not include the
source HOST processing delay (i.e. delays in the NCP), the HOST-IMP
transmission delay, and the waiting time until a message number becomes
available. Note also, that the RFNM is sent after the first packet of a
multiple packet message has been received by the destination HOST.
Let us now turn to the presentation of the average round trip times as
they were measured during continuous seven-day periods in August and
December '73. In August, an average number of 2935 messages/minute were
entering the ARPANET. The overall mean round trip delay for all these
messages was 93 milliseconds (msec). The corresponding numbers for
December were 2226 messages/minute and 200 msec. An obvious question
that immediately arises is: why did the average round trip delay more
than double while the rate of incoming messages decreased? The answer
to this question can be found in the large round trip delays for the
status reports that are sent from each IMP to the NCC. Each IMP sends,
on the average, 2.29 status reports per minute to the NCC. Since there
<span class="grey">Naylor & Opderbeck [Page 3]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-4" ></span>
<span class="grey"><a href="./rfc619">RFC 619</a> Mean Round-Trip Times in the ARPANET March 1974</span>
were 45 sites connected to the net in December, a total of 103.05 status
reports per minute were sent to the NCC. Thus 4.63 percent of all
messages that entered the net were status reports.
The average round trip delay for all these status reports in December
was 1.66 sec. This number is five to ten times larger than the average
round-trip delay for status reports we observed in August. It is not
yet clear what change in the collection of status reports caused this
increase. One reason appears to be that the number of these reports was
doubled between August and December. Since the large round-trip delays
of these status reports distort the overall picture somewhat, we are
going to present the December data - wherever appropriate - with and
without the effect of these delays. (We should point out here that the
traffic/delay picture is distorted by the accumulated statistics
messages which were collected to produce this data. We have, however,
ignored this effect since these measurement messages represent less than
0.3% of the total traffic.) The overall mean round trip delay without
the status reports in December is 132 msec. This value is still more
than 35 msec larger than the corresponding value for August. However,
before we shall attempt to explain this difference we will first present
the measured data.
Table 1 shows the mean round trip delay as a function of the number of
hops over the minimum-hop path. This minimum number of hops was
calculated from the (static) topology of the net as it existed in August
and December of last year. The actual number of hops over which any
given message travels may, of course, be larger due to network
congestion, line failures or IMP failures. In fact, for August we
observed a minimum mean path length of 3.24 while the actual measured
mean path length was 3.30; in December we observed 4.02 and 4.40,
respectively. (See Network Measurement Group Note #18 for an
explanation of the computation of actual mean path length.) As expected
we observe a sharp increase of the mean round trip delay as the minimum
number of hops is increased. Note, however, that the mean round trip
delay is not a strictly increasing function of the minimum number of
hops.
Table 2 gives the mean round trip delay for messages from a given site.
The December data is presented with and without the large delays
incurred by the sending of status reports to the NCC. Table 3 shows the
mean round trip delay for messages to a given site. The largest round
trip delays, in December, were incurred by messages sent to the NCC-TIP
since these messages include all the status reports.
Table 4, finally, gives for each site the mean round trip delays to
those three destination IMP/TIP's to which the most messages were sent
during the seven-day measurement period in December. Let us first say
few words about the traffic distribution which is dealt with in more
<span class="grey">Naylor & Opderbeck [Page 4]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-5" ></span>
<span class="grey"><a href="./rfc619">RFC 619</a> Mean Round-Trip Times in the ARPANET March 1974</span>
detail in Network Measurement Group Note #18. There are several sites
which like to use their IMP as a kind of local multiplexer (UTAH, MIT,
HARV, CMU, USCT, CCAT, XROX, HAWT, MIT2). For these sites the most
favorite destination site is the source IMP itself. For several other
sites the most favorite destination site is just one hop away (BBN,
AMES, AMST, NCCT, RUTT). Nobody will be surprised that for many sites
ISI (ILL, MTRT, ETAT, SDAT, ARPT, RMLT, LONT) or SRI (UCSB, RADT, NBST)
is the most favorite site. There are several other sites (SDC, LL,
CASE, DOCT, BELV, ABRD, FNWT, LBL, NSAT, TYMT, MOFF, WPAT) which were
rather inactive in terms of generating traffic during the seven-day
measurement period in December. Most of their messages were status
reports sent to the NCC. (Those IMPs, for which the frequency of
messages to the NCC-TIP is less than 2.2 messages per minute, were down
for some time during the measurement period).
Let us now attempt to give a few explanations for the overall increase
in the mean round trip delay between August and December. These
explanations may also help to understand the differences in the mean
round trip delays for any given source IMP-destination IMP pair as
observed in Table 4.
<span class="h2"><a class="selflink" id="section-1" href="#section-1">1</a>. Frequency of routing messages. </span>Routing messages are the major
source of queuing delay in a very lightly loaded net. In August, a
routing message was sent every 640 msec. Since a routing message is
1160 bits long, 3.625 percent of the bandwidth of a 50 kbs circuit
was used for the sending of routing messages. For randomly arriving
packets this corresponds to a mean queuing delay of 0.42 msec per
hop. Between August and December the frequency of sending routing
messages was made dependent on line speed and line utilization. As
a result, routing messages are now sent on a 50 kbs circuit with
zero load every 128 msec. This corresponds to a line utilization of
18.125 percent and a mean queuing delay of 2.10 msec. The queuing
delay due to routing messages in a very lightly loaded net in
December was therefore five times as large as it was in August.
<span class="h2"><a class="selflink" id="section-2" href="#section-2">2</a>. Traffic matrix. </span>The overall mean round trip delay depends on the
traffic matrix. If most of the messages are sent over distances of
0 or 1 hop the overall round trip delay will be small. The heavy
traffic between AMES and AMST over a high-speed circuit in August
contributed to the small overall mean round trip delay.
<span class="h2"><a class="selflink" id="section-3" href="#section-3">3</a>. Network topology. </span>The mean round trip delay depends on the number
of hops between source-IMP and destination-IMP and therefore on the
network topology. Disregarding line or IMP failures, the mean
number of hops for a message in August and December was,
respectively, 3.24 and 4.02.
<span class="grey">Naylor & Opderbeck [Page 5]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-6" ></span>
<span class="grey"><a href="./rfc619">RFC 619</a> Mean Round-Trip Times in the ARPANET March 1974</span>
<span class="h2"><a class="selflink" id="section-4" href="#section-4">4</a>. Averaging. </span>The network load, given in number or messages per
minute, represents an average over a seven-day period. Even though
this number may be small, considerable queuing delays could have
been incurred during bursts of traffic.
<span class="h2"><a class="selflink" id="section-5" href="#section-5">5</a>. Host delays. </span>The round trip delay includes the transmission delay
of the first packet from the destination-IMP to the destination-
HOST; therefore, the mean round trip delay may be influenced by HOST
delays that are independent of the network load.
<span class="grey">Naylor & Opderbeck [Page 6]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-7" ></span>
<span class="grey"><a href="./rfc619">RFC 619</a> Mean Round-Trip Times in the ARPANET March 1974</span>
Table 1 Mean Round Trip Delay as a
Function of the Number of Hops
#MESSAGES/MINUTE #SITE PAIRS MEAN ROUND TRIP DELAY
HOPS AUG DEC AUG DEC AUG DEC DEC
WITH W/OUT
STAT STAT
RPTS RPTS
O 646.9 378.3 39 45 27 44 41
<span class="h2"><a class="selflink" id="section-1" href="#section-1">1</a> 487.6 </span> 288.7 86 100 25 65 50
<span class="h2"><a class="selflink" id="section-2" href="#section-2">2</a> 191.0 </span> 143.1 118 138 70 119 80
<span class="h2"><a class="selflink" id="section-3" href="#section-3">3</a> 380.7 </span> 226.9 148 168 95 131 112
<span class="h2"><a class="selflink" id="section-4" href="#section-4">4</a> 218.5 </span> 274.1 176 196 102 167 119
<span class="h2"><a class="selflink" id="section-5" href="#section-5">5</a> 276.3 </span> 185.6 204 228 109 217 134
<span class="h2"><a class="selflink" id="section-6" href="#section-6">6</a> 183.8 </span> 136.3 210 258 175 355 167
<span class="h2"><a class="selflink" id="section-7" href="#section-7">7</a> 333.6 </span> 212.7 218 256 178 301 240
<span class="h2"><a class="selflink" id="section-8" href="#section-8">8</a> 156.7 </span> 161.1 160 234 222 365 241
<span class="h2"><a class="selflink" id="section-9" href="#section-9">9</a> 59.0 </span> 160.3 102 208 270 308 218
<span class="h2"><a class="selflink" id="section-10" href="#section-10">10</a> 0.6 </span> 29.9 40 124 331 939 410
<span class="h2"><a class="selflink" id="section-11" href="#section-11">11</a> 1.0 </span> 18.9 20 46 344 998 699
<span class="h2"><a class="selflink" id="section-12" href="#section-12">12</a> - </span> 10.2 - 20 - 992 655
<span class="h2"><a class="selflink" id="section-13" href="#section-13">13</a> - </span> 0.01 - 4 - 809 809
<span class="grey">Naylor & Opderbeck [Page 7]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-8" ></span>
<span class="grey"><a href="./rfc619">RFC 619</a> Mean Round-Trip Times in the ARPANET March 1974</span>
Table 2 Mean Round Trip Delays for Messages from a Given Site
#MESSAGES/MINUTE MEAN ROUND TRIP DELAY
SITE AUGUST DECEMBER AUGUST DECEMBER DECEMBER
WITH WITHOUT
STATUS STATUS
REPORTS REPORTS
1 UCLA 50.7 40.3 130 282 165
2 SRI 377.3 147.9 45 189 174
3 UCSB 80.2 70.3 120 221 161
4 UTAH 27.0 46.2 136 247 169
5 BBN 120.4 128.3 110 133 133
6 MIT 120.6 96.9 126 160 150
7 RAND 29.3 34.2 127 323 208
8 SDC 1.7 2.4 521 2068 131
9 HARV 50.3 96.0 105 88 72
<span class="h2"><a class="selflink" id="section-10" href="#section-10">10</a> LL </span> 4.4 6.7 201 602 187
<span class="h2"><a class="selflink" id="section-11" href="#section-11">11</a> STAN </span> 49.7 39.7 173 300 191
<span class="h2"><a class="selflink" id="section-12" href="#section-12">12</a> ILL </span> 26.8 53.4 158 216 165
<span class="h2"><a class="selflink" id="section-13" href="#section-13">13</a> CASE </span> 57.6 2.5 138 1592 335
<span class="h2"><a class="selflink" id="section-14" href="#section-14">14</a> CMU </span> 61.1 59.5 153 220 170
<span class="h2"><a class="selflink" id="section-15" href="#section-15">15</a> AMES </span> 242.4 114.1 43 120 81
<span class="h2"><a class="selflink" id="section-16" href="#section-16">16</a> AMST </span> 304.0 163.0 39 94 67
<span class="h2"><a class="selflink" id="section-17" href="#section-17">17</a> MTRT </span> 89.5 60.0 126 199 142
<span class="h2"><a class="selflink" id="section-18" href="#section-18">18</a> RADT </span> 27.7 29.1 145 273 160
<span class="h2"><a class="selflink" id="section-19" href="#section-19">19</a> NBST </span> 98.4 48.2 118 213 152
<span class="h2"><a class="selflink" id="section-20" href="#section-20">20</a> ETAT </span> 24.1 20.6 119 280 119
<span class="h2"><a class="selflink" id="section-21" href="#section-21">21</a> LLL </span> - 6.8 - 721 169
<span class="h2"><a class="selflink" id="section-22" href="#section-22">22</a> ISI </span> 372.0 304.4 110 147 142
<span class="h2"><a class="selflink" id="section-23" href="#section-23">23</a> USCT </span> 298.1 210.3 60 92 70
<span class="h2"><a class="selflink" id="section-24" href="#section-24">24</a> GWCT </span> 10.5 14.1 144 381 102
<span class="h2"><a class="selflink" id="section-25" href="#section-25">25</a> DOCT </span> 5.5 7.0 236 791 171
<span class="h2"><a class="selflink" id="section-26" href="#section-26">26</a> SDAT </span> 14.7 22.9 164 322 177
<span class="h2"><a class="selflink" id="section-27" href="#section-27">27</a> BELV </span> 1.3 2.4 243 1469 466
<span class="h2"><a class="selflink" id="section-28" href="#section-28">28</a> ARPT </span> 57.9 64.3 84 150 93
<span class="h2"><a class="selflink" id="section-29" href="#section-29">29</a> ABRD </span> 1.3 2.4 183 1402 554
<span class="h2"><a class="selflink" id="section-30" href="#section-30">30</a> BBNT </span> 40.8 10.0 75 372 124
<span class="h2"><a class="selflink" id="section-31" href="#section-31">31</a> CCAT </span> 177.7 86.7 83 147 115
<span class="h2"><a class="selflink" id="section-32" href="#section-32">32</a> XROX </span> 56.8 71.7 79 136 78
<span class="h2"><a class="selflink" id="section-33" href="#section-33">33</a> FNWT </span> 2.3 3.5 347 1466 174
<span class="h2"><a class="selflink" id="section-34" href="#section-34">34</a> LBL </span> 1.2 2.7 384 1653 621
<span class="h2"><a class="selflink" id="section-35" href="#section-35">35</a> UCSD </span> 11.9 19.3 237 413 205
<span class="h2"><a class="selflink" id="section-36" href="#section-36">36</a> HAWT </span> 27.5 5.2 654 569 476
<span class="h2"><a class="selflink" id="section-37" href="#section-37">37</a> RMLT </span> 10.4 13.0 122 387 97
<span class="h2"><a class="selflink" id="section-40" href="#section-40">40</a> NCCT </span> - 59.3 - 110 97
<span class="h2"><a class="selflink" id="section-41" href="#section-41">41</a> NSAT </span> 0.6 3.4 1022 1870 1056
<span class="h2"><a class="selflink" id="section-42" href="#section-42">42</a> LONT </span> - 20.8 - 998 848
<span class="h2"><a class="selflink" id="section-43" href="#section-43">43</a> TYMT </span> - 3.7 - 1352 157
<span class="grey">Naylor & Opderbeck [Page 8]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-9" ></span>
<span class="grey"><a href="./rfc619">RFC 619</a> Mean Round-Trip Times in the ARPANET March 1974</span>
<span class="h2"><a class="selflink" id="section-44" href="#section-44">44</a> MIT2 </span> - 5.6 - 720 100
<span class="h2"><a class="selflink" id="section-45" href="#section-45">45</a> MOFF </span> - 2.4 - 1982 447
<span class="h2"><a class="selflink" id="section-46" href="#section-46">46</a> RUTT </span> - 22.4 - 271 153
<span class="h2"><a class="selflink" id="section-47" href="#section-47">47</a> WPAT </span> - 2.7 - 1399 380
<span class="grey">Naylor & Opderbeck [Page 9]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-10" ></span>
<span class="grey"><a href="./rfc619">RFC 619</a> Mean Round-Trip Times in the ARPANET March 1974</span>
Table 3 Mean Round Trip Delay for Messages to a Given Site
#MESSAGES/MINUTE MEAN ROUND TRIP DELAY
SITE AUGUST DECEMBER AUGUST DECEMBER
1 UCLA 57.1 43.5 134 209
2 SRI 382.3 149.4 45 158
3 UCSB 61.1 59.1 117 138
4 UTAH 28.1 50.4 128 159
5 BBN 160.8 149.2 185 110
6 MIT 150.4 107.1 116 130
7 RAND 22.6 25.0 95 161
8 SDC 1.7 0.8 149 174
9 HARV 59.3 98.3 101 70
<span class="h2"><a class="selflink" id="section-10" href="#section-10">10</a> LL </span> 4.6 5.2 195 202
<span class="h2"><a class="selflink" id="section-11" href="#section-11">11</a> STAN </span> 65.3 40.6 135 162
<span class="h2"><a class="selflink" id="section-12" href="#section-12">12</a> ILL </span> 29.1 69.8 156 149
<span class="h2"><a class="selflink" id="section-13" href="#section-13">13</a> CASE </span> 52.6 4.0 127 262
<span class="h2"><a class="selflink" id="section-14" href="#section-14">14</a> CMU </span> 74.8 68.9 135 165
<span class="h2"><a class="selflink" id="section-15" href="#section-15">15</a> AMES </span> 210.3 117.2 40 75
<span class="h2"><a class="selflink" id="section-16" href="#section-16">16</a> AMST </span> 316.7 135.0 38 86
<span class="h2"><a class="selflink" id="section-17" href="#section-17">17</a> MTRT </span> 77.7 51.7 130 151
<span class="h2"><a class="selflink" id="section-18" href="#section-18">18</a> RADT </span> 23.4 23.9 142 202
<span class="h2"><a class="selflink" id="section-19" href="#section-19">19</a> NBST </span> 92.2 39.5 125 169
<span class="h2"><a class="selflink" id="section-20" href="#section-20">20</a> ETAT </span> 25.4 22.8 110 111
<span class="h2"><a class="selflink" id="section-21" href="#section-21">21</a> LLL </span> - 3.7 - 185
<span class="h2"><a class="selflink" id="section-22" href="#section-22">22</a> ISI </span> 361.9 299.2 107 130
<span class="h2"><a class="selflink" id="section-23" href="#section-23">23</a> USCT </span> 298.1 190.6 60 68
<span class="h2"><a class="selflink" id="section-24" href="#section-24">24</a> GWCT </span> 10.5 7.3 144 122
<span class="h2"><a class="selflink" id="section-25" href="#section-25">25</a> DOCT </span> 5.5 4.2 236 187
<span class="h2"><a class="selflink" id="section-26" href="#section-26">26</a> SDAT </span> 13.3 19.7 149 177
<span class="h2"><a class="selflink" id="section-27" href="#section-27">27</a> BELV </span> 0.9 0.9 196 285
<span class="h2"><a class="selflink" id="section-28" href="#section-28">28</a> ARPT </span> 55.4 58.3 78 95
<span class="h2"><a class="selflink" id="section-29" href="#section-29">29</a> ABRD </span> 1.3 0.7 183 271
<span class="h2"><a class="selflink" id="section-30" href="#section-30">30</a> BBNT </span> 40.8 6.4 75 159
<span class="h2"><a class="selflink" id="section-31" href="#section-31">31</a> CCAT </span> 177.7 76.3 83 119
<span class="h2"><a class="selflink" id="section-32" href="#section-32">32</a> XROX </span> 56.8 75.3 79 69
<span class="h2"><a class="selflink" id="section-33" href="#section-33">33</a> FNWT </span> 2.3 1.4 347 165
<span class="h2"><a class="selflink" id="section-34" href="#section-34">34</a> LBL </span> 1.2 0.9 384 305
<span class="h2"><a class="selflink" id="section-35" href="#section-35">35</a> UCSD </span> 11.9 24.0 237 157
<span class="h2"><a class="selflink" id="section-36" href="#section-36">36</a> HAWT </span> 27.5 5.0 654 458
<span class="h2"><a class="selflink" id="section-37" href="#section-37">37</a> RMLT </span> 10.4 11.0 122 97
<span class="h2"><a class="selflink" id="section-40" href="#section-40">40</a> NCCT </span> - 140.1 - 1263
<span class="h2"><a class="selflink" id="section-41" href="#section-41">41</a> NSAT </span> 0.6 1.6 1022 918
<span class="h2"><a class="selflink" id="section-42" href="#section-42">42</a> LONT </span> - 17.3 - 855
<span class="h2"><a class="selflink" id="section-43" href="#section-43">43</a> TYMT </span> - 1.6 - 160
<span class="h2"><a class="selflink" id="section-44" href="#section-44">44</a> MIT2 </span> - 3.9 - 83
<span class="h2"><a class="selflink" id="section-45" href="#section-45">45</a> MOFF </span> - 0.2 - 219
<span class="h2"><a class="selflink" id="section-46" href="#section-46">46</a> RUTT </span> - 14.7 - 153
<span class="h2"><a class="selflink" id="section-47" href="#section-47">47</a> WPAT </span> - 0.5 - 282
<span class="grey">Naylor & Opderbeck [Page 10]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-11" ></span>
<span class="grey"><a href="./rfc619">RFC 619</a> Mean Round-Trip Times in the ARPANET March 1974</span>
Table 4 Mean Round Trip Delay to the Three Most Favorite Sites
#MESSAGES/MINUTE MEAN ROUND TRIP DELAY
FROM SITE TO SITE AUGUST DECEMBER AUGUST DECEMBER
1 UCLA 1 RAND 10.8 9.4 57 92
26 SDAT 5.6 5.9 157 191
22 ISI 3.1 3.1 99 146
2 SRI 12 RADT 16.6 19.5 142 163
17 MTRT 21.9 18.7 140 161
2 SRI 266.1 17.5 14 69
3 UCSB 2 SRI 8.1 17.8 72 68
22 ISI 18.1 17.0 75 86
14 CMU 16.6 11.8 140 152
4 UTAH 4 UTAH 3.5 13.5 136 27
22 ISI 3.7 4.8 131 165
5 BBN 4.2 4.1 168 204
5 BBN 40 NCCT - 81.4 - 105
5 BBN 12.5 19.7 102 37
9 HARV 0.5 9.2 22 37
6 MIT 6 MIT 40.6 24.0 81 85
23 USCT 9.8 13.9 150 173
9 HARV 1.7 12.0 63 88
7 RAND 1 UCLA 12.5 10.4 54 96
16 AMST 0.8 2.6 99 190
40 NCCT - 2.5 - 1941
8 SDC 40 NCCT - 2.2 - 2217
1 UCLA 0.2 0.2 110 136
8 SDC 0.01 0.01 93 13
9 HARV 9 HARV 7.6 50.5 49 21
2 MIT 1.6 11.9 62 85
5 BBN 1.6 9.5 56 37
<span class="h2"><a class="selflink" id="section-10" href="#section-10">10</a> LL </span> 40 NCCT - 2.2 - 1420
10 LL 1.5 1.8 238 135
24 GWCT 0.04 0.6 146 80
<span class="h2"><a class="selflink" id="section-11" href="#section-11">11</a> STAN </span> 14 CMU 3.0 7.0 215 207
4 UTAH 0.2 5.5 117 117
6 MIT 6.5 5.0 186 225
<span class="grey">Naylor & Opderbeck [Page 11]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-12" ></span>
<span class="grey"><a href="./rfc619">RFC 619</a> Mean Round-Trip Times in the ARPANET March 1974</span>
<span class="h2"><a class="selflink" id="section-12" href="#section-12">12</a> ILL </span> 22 ISI 13.3 20.3 146 142
15 AMES 0.8 14.6 109 135
35 UCSD 6.7 6.5 192 269
<span class="h2"><a class="selflink" id="section-13" href="#section-13">13</a> CASE </span> 40 NCCT - 2.2 - 1744
1 UCLA 0.2 0.2 296 400
2 SRI 7.1 0.01 163 316
<span class="h2"><a class="selflink" id="section-14" href="#section-14">14</a> CMU </span> 14 CMU 13.8 23.4 129 94
3 UCSB 13.8 9.2 153 166
11 STAN 3.2 5.1 193 209
<span class="h2"><a class="selflink" id="section-15" href="#section-15">15</a> AMES </span> 16 AMST 205.0 65.8 15 34
12 ILL 1.2 19.6 115 120
31 CCAT 3.2 4.6 174 230
<span class="h2"><a class="selflink" id="section-16" href="#section-16">16</a> AMST </span> 15 AMES 176.8 74.3 13 28
22 ISI 63.6 33.2 50 69
32 XROX 13.3 17.4 41 60
<span class="h2"><a class="selflink" id="section-17" href="#section-17">17</a> MTRT </span> 22 ISI 26.3 27.5 115 118
2 SRI 23.8 20.3 137 155
5 BBN 3.5 4.2 179 133
<span class="h2"><a class="selflink" id="section-18" href="#section-18">18</a> RADT </span> 2 SRI 17.7 21.7 139 156
1 UCLA 0.4 2.3 265 181
40 NCCT - 2.3 - 1618
<span class="h2"><a class="selflink" id="section-19" href="#section-19">19</a> NBST </span> 2 SRI 14.1 12.1 132 163
22 ISI 29.6 11.8 100 117
5 BBN 21.6 9.6 71 97
<span class="h2"><a class="selflink" id="section-20" href="#section-20">20</a> ETAT </span> 22 ISI 11.9 11.3 106 107
24 GWCT 5.0 5.9 99 107
40 NCCT - 2.2 - 1602
<span class="h2"><a class="selflink" id="section-21" href="#section-21">21</a> LLL </span> 5 BBN - 2.9 - 183
40 NCCT - 2.2 - 1847
4 UTAH - 0.5 - 71
<span class="h2"><a class="selflink" id="section-22" href="#section-22">22</a> ISI </span> 28 ARPT 26.0 38.3 106 104
23 USCT 69.0 32.7 80 92
16 AMST 62.0 28.5 53 87
<span class="h2"><a class="selflink" id="section-23" href="#section-23">23</a> USCT </span> 23 USCT 160.9 119.2 19 23
22 ISI 69.2 34.1 78 91
6 MIT 12.9 19.6 135 150
<span class="grey">Naylor & Opderbeck [Page 12]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-13" ></span>
<span class="grey"><a href="./rfc619">RFC 619</a> Mean Round-Trip Times in the ARPANET March 1974</span>
<span class="h2"><a class="selflink" id="section-24" href="#section-24">24</a> GWCT </span> 20 ETAT 6.6 10.8 93 91
40 NCCT - 2.1 - 1978
10 LL 0.03 0.5 359 115
<span class="h2"><a class="selflink" id="section-25" href="#section-25">25</a> DOCT </span> 40 NCCT - 2.3 - 2091
22 ISI 1.0 1.6 220 118
15 AMES 1.9 1.2 167 198
<span class="h2"><a class="selflink" id="section-26" href="#section-26">26</a> SDAT </span> 22 ISI 2.9 8.7 154 138
1 UCLA 5.9 6.0 169 209
2 SRI 1.0 4.4 182 184
<span class="h2"><a class="selflink" id="section-27" href="#section-27">27</a> BELV </span> 40 NCCT - 2.2 - 1553
1 UCLA 0.1 0.2 405 517
22 ISI - 0.01 - 325
<span class="h2"><a class="selflink" id="section-28" href="#section-28">28</a> ARPT </span> 22 ISI 27.4 41.6 106 101
28 ARPT 19.2 13.7 20 35
2 SRI 3.3 3.3 139 157
<span class="h2"><a class="selflink" id="section-29" href="#section-29">29</a> ABRD </span> 40 NCCT - 2.2 - 1461
1 UCLA 0.2 0.2 439 562
9 HARV - 0.01 - 112
<span class="h2"><a class="selflink" id="section-30" href="#section-30">30</a> BBNT </span> 5 BBN 24.2 5.1 36 64
40 NCCT - 2.1 - 1327
22 ISI 4.2 1.1 170 217
<span class="h2"><a class="selflink" id="section-31" href="#section-31">31</a> CCAT </span> 31 CCAT 81.9 28.2 15 31
22 ISI 31.3 23.3 156 171
5 BBN 7.8 7.3 45 42
<span class="h2"><a class="selflink" id="section-32" href="#section-32">32</a> XROX </span> 32 XROX 20.2 36.4 19 15
16 AMST 10.5 13.3 69 93
14 CMU 2.5 3.0 193 251
<span class="h2"><a class="selflink" id="section-33" href="#section-33">33</a> FNWT </span> 40 NCCT - 2.2 - 2210
9 HARV 0.01 0.3 208 194
7 RAND 0.3 0.3 96 171
<span class="h2"><a class="selflink" id="section-34" href="#section-34">34</a> LBL </span> 40 NCCT - 2.4 - 1814
41 NSAT - 0.2 - 1674
1 UCLA 0.1 0.2 295 478
<span class="h2"><a class="selflink" id="section-35" href="#section-35">35</a> UCSD </span> 12 ILL 6.0 7.5 220 260
16 AMST 1.7 4.9 120 172
40 NCCT - 2.0 - 2183
<span class="grey">Naylor & Opderbeck [Page 13]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-14" ></span>
<span class="grey"><a href="./rfc619">RFC 619</a> Mean Round-Trip Times in the ARPANET March 1974</span>
<span class="h2"><a class="selflink" id="section-36" href="#section-36">36</a> HAWT </span> 36 HAWT 0.04 1.6 17 26
22 ISI 5.1 1.0 600 623
15 AMES 2.5 0.8 551 590
<span class="h2"><a class="selflink" id="section-37" href="#section-37">37</a> RMLT </span> 22 ISI 7.5 9.0 68 67
40 NCCT - 2.2 - 1918
28 ARPT - 1.0 - 63
<span class="h2"><a class="selflink" id="section-40" href="#section-40">40</a> NCCT </span> 5 BBN - 41.2 - 33
40 NCCT - 6.6 - 433
22 ISI - 3.2 - 151
<span class="h2"><a class="selflink" id="section-41" href="#section-41">41</a> NSAT </span> 40 NCCT - 2.2 - 2308
2 SRI 0.01 0.4 1046 1002
3 UCSB 0.01 0.2 1169 1018
<span class="h2"><a class="selflink" id="section-42" href="#section-42">42</a> LONT </span> 22 ISI - 6.1 - 837
2 SRI - 3.7 - 884
4 UTAH - 2.2 - 921
<span class="h2"><a class="selflink" id="section-43" href="#section-43">43</a> TYMT </span> 40 NCCT - 2.6 - 1859
2 SRI - 0.5 - 79
3 UCSB - 0.2 - 74
<span class="h2"><a class="selflink" id="section-44" href="#section-44">44</a> MIT2 </span> 44 MIT2 - 2.8 - 18
40 NCCT - 2.3 - 1664
1 UCLA - 0.2 - 589
<span class="h2"><a class="selflink" id="section-46" href="#section-46">46</a> MOFF </span> 40 NCCT - 2.2 - 2091
1 UCLA - 0.2 - 447
<span class="h2"><a class="selflink" id="section-46" href="#section-46">46</a> RUTT </span> 9 HARV - 4.3 - 38
5 BBN - 3.5 - 93
22 ISI - 2.9 - 172
<span class="h2"><a class="selflink" id="section-47" href="#section-47">47</a> WPAT </span> 40 NCCT - 2.2 - 1643
3 UCSB - 0.2 - 301
1 UCLA - 0.2 - 671
[ This RFC was put into machine readable form for entry ]
[ into the online RFC archives by Alex McKenzie with ]
[ support from GTE, formerly BBN Corp. 12/99 ]
Naylor & Opderbeck [Page 14]
</pre>
|