1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837
|
<pre>Internet Engineering Task Force (IETF) T. Otani, Ed.
Request for Comments: 6205 KDDI
Updates: <a href="./rfc3471">3471</a> D. Li, Ed.
Category: Standards Track Huawei
ISSN: 2070-1721 March 2011
<span class="h1">Generalized Labels for Lambda-Switch-Capable (LSC)</span>
<span class="h1">Label Switching Routers</span>
Abstract
Technology in the optical domain is constantly evolving, and, as a
consequence, new equipment providing lambda switching capability has
been developed and is currently being deployed.
Generalized MPLS (GMPLS) is a family of protocols that can be used to
operate networks built from a range of technologies including
wavelength (or lambda) switching. For this purpose, GMPLS defined a
wavelength label as only having significance between two neighbors.
Global wavelength semantics are not considered.
In order to facilitate interoperability in a network composed of next
generation lambda-switch-capable equipment, this document defines a
standard lambda label format that is compliant with the Dense
Wavelength Division Multiplexing (DWDM) and Coarse Wavelength
Division Multiplexing (CWDM) grids defined by the International
Telecommunication Union Telecommunication Standardization Sector.
The label format defined in this document can be used in GMPLS
signaling and routing protocols.
Status of This Memo
This is an Internet Standards Track document.
This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Further information on
Internet Standards is available in <a href="./rfc5741#section-2">Section 2 of RFC 5741</a>.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
<a href="http://www.rfc-editor.org/info/rfc6205">http://www.rfc-editor.org/info/rfc6205</a>.
<span class="grey">Otani & Li Standards Track [Page 1]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-2" ></span>
<span class="grey"><a href="./rfc6205">RFC 6205</a> Generalized Labels for LSC LSRs March 2011</span>
Copyright Notice
Copyright (c) 2011 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to <a href="https://www.rfc-editor.org/bcp/bcp78">BCP 78</a> and the IETF Trust's Legal
Provisions Relating to IETF Documents
(<a href="http://trustee.ietf.org/license-info">http://trustee.ietf.org/license-info</a>) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
This document may contain material from IETF Documents or IETF
Contributions published or made publicly available before November
10, 2008. The person(s) controlling the copyright in some of this
material may not have granted the IETF Trust the right to allow
modifications of such material outside the IETF Standards Process.
Without obtaining an adequate license from the person(s) controlling
the copyright in such materials, this document may not be modified
outside the IETF Standards Process, and derivative works of it may
not be created outside the IETF Standards Process, except to format
it for publication as an RFC or to translate it into languages other
than English.
<span class="h2"><a class="selflink" id="section-1" href="#section-1">1</a>. Introduction</span>
As described in [<a href="./rfc3945" title=""Generalized Multi-Protocol Label Switching (GMPLS) Architecture"">RFC3945</a>], GMPLS extends MPLS from supporting only
Packet Switching Capable (PSC) interfaces and switching to also
supporting four new classes of interfaces and switching:
o Layer-2 Switch Capable (L2SC)
o Time-Division Multiplex (TDM) Capable
o Lambda Switch Capable (LSC)
o Fiber Switch Capable (FSC)
A functional description of the extensions to MPLS signaling needed
to support new classes of interfaces and switching is provided in
[<a href="./rfc3471" title=""Generalized Multi-Protocol Label Switching (GMPLS) Signaling Functional Description"">RFC3471</a>].
This document presents details that are specific to the use of GMPLS
with LSC equipment. Technologies such as Reconfigurable Optical
Add/Drop Multiplex (ROADM) and Wavelength Cross-Connect (WXC) operate
<span class="grey">Otani & Li Standards Track [Page 2]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-3" ></span>
<span class="grey"><a href="./rfc6205">RFC 6205</a> Generalized Labels for LSC LSRs March 2011</span>
at the wavelength switching level. [<a href="./rfc3471" title=""Generalized Multi-Protocol Label Switching (GMPLS) Signaling Functional Description"">RFC3471</a>] states that wavelength
labels "only have significance between two neighbors" (<a href="#section-3.2.1.1">Section</a>
<a href="#section-3.2.1.1">3.2.1.1</a>); global wavelength semantics are not considered. In order
to facilitate interoperability in a network composed of LSC
equipment, this document defines a standard lambda label format,
which is compliant with both the Dense Wavelength Division
Multiplexing (DWDM) grid [<a href="#ref-G.694.1" title=""Spectral grids for WDM applications: DWDM frequency grid"">G.694.1</a>] and the Coarse Wavelength Division
Multiplexing (CWDM) grid [<a href="#ref-G.694.2" title=""Spectral grids for WDM applications: CWDM wavelength grid"">G.694.2</a>].
<span class="h3"><a class="selflink" id="section-1.1" href="#section-1.1">1.1</a>. Conventions Used in This Document</span>
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [<a href="./rfc2119" title=""Key words for use in RFCs to Indicate Requirement Levels"">RFC2119</a>].
<span class="h2"><a class="selflink" id="section-2" href="#section-2">2</a>. Assumed Network Model and Related Problem Statement</span>
Figure 1 depicts an all-optical switched network consisting of
different vendors' optical network domains. Vendor A's network
consists of ROADM or WXC, and Vendor B's network consists of a number
of Photonic Cross-Connects (PXCs) and DWDM multiplexers and
demultiplexers. Otherwise, both vendors' networks might be based on
the same technology.
In this case, the use of standardized wavelength label information is
quite significant to establish a wavelength-based Label Switched Path
(LSP). It is also an important constraint when calculating the
Constrained Shortest Path First (CSPF) for use by Generalized Multi-
Protocol Label Switching (GMPLS) Resource ReserVation Protocol -
Traffic Engineering (RSVP-TE) signaling [<a href="./rfc3473" title=""Generalized Multi-Protocol Label Switching (GMPLS) Signaling Resource ReserVation Protocol- Traffic Engineering (RSVP-TE) Extensions"">RFC3473</a>]. The way the CSPF
is performed is outside the scope of this document.
Needless to say, an LSP must be appropriately provisioned between a
selected pair of ports not only within Domain A but also over
multiple domains satisfying wavelength constraints.
Figure 2 illustrates the interconnection between Domain A and Domain
B in detail.
<span class="grey">Otani & Li Standards Track [Page 3]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-4" ></span>
<span class="grey"><a href="./rfc6205">RFC 6205</a> Generalized Labels for LSC LSRs March 2011</span>
|
Domain A (or Vendor A) | Domain B (or Vendor B)
|
Node-1 Node-2 | Node-6 Node-7
+--------+ +--------+ | +-------+ +-+ +-+ +-------+
| ROADM | | ROADM +---|------+ PXC +-+D| |D+-+ PXC |
| or WXC +========+ or WXC +---|------+ +-+W+=====+W+-+ |
| (LSC) | | (LSC) +---|------+ (LSC) +-+D| |D+-+ (LSC) |
+--------+ +--------+ | | +-|M| |M+-+ |
|| || | +++++++++ +-+ +-+ +++++++++
|| Node-3 || | ||||||| |||||||
|| +--------+ || | +++++++++ +++++++++
||===| WXC +===|| | | DWDM | | DWDM |
| (LSC) | | +--++---+ +--++---+
||===+ +===|| | || ||
|| +--------+ || | +--++---+ +--++---+
|| || | | DWDM | | DWDM |
+--------+ +--------+ | +++++++++ +++++++++
| ROADM | | ROADM | | ||||||| |||||||
| or WXC +========+ or WXC +=+ | +-+ +++++++++ +-+ +-+ +++++++++
| (LSC) | | (LSC) | | | |D|-| PXC +-+D| |D+-+ PXC |
+--------+ +--------+ +=|==+W|-| +-+W+=====+W+-+ |
Node-4 Node-5 | |D|-| (LSC) +-+D| |D+-+ (LSC) |
| |M|-| +-+M| |M+-+ |
| +-+ +-------+ +-+ +-+ +-------+
| Node-8 Node-9
Figure 1. Wavelength-Based Network Model
<span class="grey">Otani & Li Standards Track [Page 4]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-5" ></span>
<span class="grey"><a href="./rfc6205">RFC 6205</a> Generalized Labels for LSC LSRs March 2011</span>
+-------------------------------------------------------------+
| Domain A | Domain B |
| | |
| +---+ lambda 1 | +---+ |
| | |---------------|---------| | |
| WDM | N | lambda 2 | | N | WDM |
| =====| O |---------------|---------| O |===== |
| O | D | . | | D | O |
| T WDM | E | . | | E | WDM T |
| H =====| 2 | lambda n | | 6 |===== H |
| E | |---------------|---------| | E |
| R +---+ | +---+ R |
| | |
| N +---+ | +---+ N |
| O | | | | | O |
| D WDM | N | | | N | WDM D |
| E =====| O | WDM | | O |===== E |
| S | D |=========================| D | S |
| WDM | E | | | E | WDM |
| =====| 5 | | | 8 |===== |
| | | | | | |
| +---+ | +---+ |
+-------------------------------------------------------------+
Figure 2. Interconnecting Details between Two Domains
In the scenario of Figure 1, consider the setting up of a
bidirectional LSP from ingress switch (Node-1) to egress switch
(Node-9) using GMPLS RSVP-TE. In order to satisfy wavelength
continuity constraints, a fixed wavelength (lambda 1) needs to be
used in Domain A and Domain B. A Path message will be used for
signaling. The Path message will contain an Upstream_Label object
and a Label_Set object, both containing the same value. The
Label_Set object shall contain a single sub-channel that must be the
same as the Upstream_Label object. The Path setup will continue
downstream to egress switch (Node-9) by configuring each lambda
switch based on the wavelength label. If a node has a tunable
wavelength transponder, the tuning wavelength is considered a part of
the wavelength switching operation.
Not using a standardized label would add undue burden on the operator
to enforce policy as each manufacturer may decide on a different
representation; therefore, each domain may have its own label
formats. Moreover, manual provisioning may lead to misconfiguration
if domain-specific labels are used.
<span class="grey">Otani & Li Standards Track [Page 5]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-6" ></span>
<span class="grey"><a href="./rfc6205">RFC 6205</a> Generalized Labels for LSC LSRs March 2011</span>
Therefore, a wavelength label should be standardized in order to
allow interoperability between multiple domains; otherwise,
appropriate existing labels are identified in support of wavelength
availability. Containing identical wavelength information, the ITU-T
DWDM frequency grid specified in [<a href="#ref-G.694.1" title=""Spectral grids for WDM applications: DWDM frequency grid"">G.694.1</a>] and the CWDM wavelength
information in [<a href="#ref-G.694.2" title=""Spectral grids for WDM applications: CWDM wavelength grid"">G.694.2</a>] are used by Label Switching Routers (LSRs)
and should be followed for wavelength labels.
<span class="h2"><a class="selflink" id="section-3" href="#section-3">3</a>. Label-Related Formats</span>
To deal with the widening scope of MPLS into the optical switching
and time division multiplexing domains, several new forms of "label"
have been defined in [<a href="./rfc3471" title=""Generalized Multi-Protocol Label Switching (GMPLS) Signaling Functional Description"">RFC3471</a>]. This section contains a definition
of a wavelength label based on [<a href="#ref-G.694.1" title=""Spectral grids for WDM applications: DWDM frequency grid"">G.694.1</a>] or [<a href="#ref-G.694.2" title=""Spectral grids for WDM applications: CWDM wavelength grid"">G.694.2</a>] for use by LSC
LSRs.
<span class="h3"><a class="selflink" id="section-3.1" href="#section-3.1">3.1</a>. Wavelength Labels</span>
<a href="./rfc3471#section-3.2.1.1">Section 3.2.1.1 of [RFC3471]</a> defines wavelength labels: "values used
in this field only have significance between two neighbors, and the
receiver may need to convert the received value into a value that has
local significance".
We do not need to define a new type as the information stored is
either a port label or a wavelength label. Only the wavelength label
needs to be defined.
LSC equipment uses multiple wavelengths controlled by a single
control channel. In such a case, the label indicates the wavelength
to be used for the LSP. This document defines a standardized
wavelength label format. For examples of wavelength values, refer to
[<a href="#ref-G.694.1" title=""Spectral grids for WDM applications: DWDM frequency grid"">G.694.1</a>], which lists the frequencies from the ITU-T DWDM frequency
grid. For CWDM technology, refer to the wavelength values defined in
[<a href="#ref-G.694.2" title=""Spectral grids for WDM applications: CWDM wavelength grid"">G.694.2</a>].
Since the ITU-T DWDM grid is based on nominal central frequencies, we
need to indicate the appropriate table, the channel spacing in the
grid, and a value n that allows the calculation of the frequency.
That value can be positive or negative.
The frequency is calculated as such in [<a href="#ref-G.694.1" title=""Spectral grids for WDM applications: DWDM frequency grid"">G.694.1</a>]:
Frequency (THz) = 193.1 THz + n * channel spacing (THz)
Where "n" is a two's-complement integer (positive, negative, or 0)
and "channel spacing" is defined to be 0.0125, 0.025, 0.05, or 0.1
THz. When wider channel spacing such as 0.2 THz is utilized, the
combination of narrower channel spacing and the value "n" can provide
<span class="grey">Otani & Li Standards Track [Page 6]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-7" ></span>
<span class="grey"><a href="./rfc6205">RFC 6205</a> Generalized Labels for LSC LSRs March 2011</span>
proper frequency with that channel spacing. Channel spacing is not
utilized to indicate the LSR capability but only to specify a
frequency in signaling.
For other cases that use the ITU-T CWDM grid, the spacing between
different channels is defined as 20 nm, so we need to express the
wavelength value in nanometers (nm). Examples of CWDM wavelengths in
nm are 1471, 1491, etc.
The wavelength is calculated as follows:
Wavelength (nm) = 1471 nm + n * 20 nm
Where "n" is a two's-complement integer (positive, negative, or 0).
The grids listed in [<a href="#ref-G.694.1" title=""Spectral grids for WDM applications: DWDM frequency grid"">G.694.1</a>] and [<a href="#ref-G.694.2" title=""Spectral grids for WDM applications: CWDM wavelength grid"">G.694.2</a>] are not numbered and
change with the changing frequency spacing as technology advances, so
an index is not appropriate in this case.
<span class="h3"><a class="selflink" id="section-3.2" href="#section-3.2">3.2</a>. DWDM Wavelength Label</span>
For the case of lambda switching of DWDM, the information carried in
a wavelength label is:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Grid | C.S. | Identifier | n |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
(1) Grid: 3 bits
The value for Grid is set to 1 for the ITU-T DWDM grid as defined in
[<a href="#ref-G.694.1" title=""Spectral grids for WDM applications: DWDM frequency grid"">G.694.1</a>].
+----------+---------+
| Grid | Value |
+----------+---------+
| Reserved | 0 |
+----------+---------+
|ITU-T DWDM| 1 |
+----------+---------+
|ITU-T CWDM| 2 |
+----------+---------+
|Future use| 3 - 7 |
+----------+---------+
(2) C.S. (channel spacing): 4 bits
<span class="grey">Otani & Li Standards Track [Page 7]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-8" ></span>
<span class="grey"><a href="./rfc6205">RFC 6205</a> Generalized Labels for LSC LSRs March 2011</span>
DWDM channel spacing is defined as follows.
+----------+---------+
|C.S. (GHz)| Value |
+----------+---------+
| Reserved | 0 |
+----------+---------+
| 100 | 1 |
+----------+---------+
| 50 | 2 |
+----------+---------+
| 25 | 3 |
+----------+---------+
| 12.5 | 4 |
+----------+---------+
|Future use| 5 - 15 |
+----------+---------+
(3) Identifier: 9 bits
The Identifier field in lambda label format is used to distinguish
different lasers (in one node) when they can transmit the same
frequency lambda. The Identifier field is a per-node assigned and
scoped value. This field MAY change on a per-hop basis. In all
cases but one, a node MAY select any value, including zero (0), for
this field. Once selected, the value MUST NOT change until the LSP
is torn down, and the value MUST be used in all LSP-related messages,
e.g., in Resv messages and label Record Route Object (RRO)
subobjects. The sole special case occurs when this label format is
used in a label Explicit Route Object (ERO) subobject. In this case,
the special value of zero (0) means that the referenced node MAY
assign any Identifier field value, including zero (0), when
establishing the corresponding LSP. When a non-zero value is
assigned to the Identifier field in a label ERO subobject, the
referenced node MUST use the assigned value for the Identifier field
in the corresponding LSP-related messages.
(4) n: 16 bits
n is a two's-complement integer to take either a positive, negative,
or zero value. This value is used to compute the frequency as shown
above.
<span class="h3"><a class="selflink" id="section-3.3" href="#section-3.3">3.3</a>. CWDM Wavelength Label</span>
For the case of lambda switching of CWDM, the information carried in
a wavelength label is:
<span class="grey">Otani & Li Standards Track [Page 8]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-9" ></span>
<span class="grey"><a href="./rfc6205">RFC 6205</a> Generalized Labels for LSC LSRs March 2011</span>
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Grid | C.S. | Identifier | n |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
The structure of the label in the case of CWDM is the same as that of
the DWDM case.
(1) Grid: 3 bits
The value for Grid is set to 2 for the ITU-T CWDM grid as defined in
[<a href="#ref-G.694.2" title=""Spectral grids for WDM applications: CWDM wavelength grid"">G.694.2</a>].
+----------+---------+
| Grid | Value |
+----------+---------+
| Reserved | 0 |
+----------+---------+
|ITU-T DWDM| 1 |
+----------+---------+
|ITU-T CWDM| 2 |
+----------+---------+
|Future use| 3 - 7 |
+----------+---------+
(2) C.S. (channel spacing): 4 bits
CWDM channel spacing is defined as follows.
+----------+---------+
|C.S. (nm) | Value |
+----------+---------+
| Reserved | 0 |
+----------+---------+
| 20 | 1 |
+----------+---------+
|Future use| 2 - 15 |
+----------+---------+
(3) Identifier: 9 bits
The Identifier field in lambda label format is used to distinguish
different lasers (in one node) when they can transmit the same
frequency lambda. The Identifier field is a per-node assigned and
scoped value. This field MAY change on a per-hop basis. In all
cases but one, a node MAY select any value, including zero (0), for
this field. Once selected, the value MUST NOT change until the LSP
<span class="grey">Otani & Li Standards Track [Page 9]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-10" ></span>
<span class="grey"><a href="./rfc6205">RFC 6205</a> Generalized Labels for LSC LSRs March 2011</span>
is torn down, and the value MUST be used in all LSP-related messages,
e.g., in Resv messages and label RRO subobjects. The sole special
case occurs when this label format is used in a label ERO subobject.
In this case, the special value of zero (0) means that the referenced
node MAY assign any Identifier field value, including zero (0), when
establishing the corresponding LSP. When a non-zero value is
assigned to the Identifier field in a label ERO subobject, the
referenced node MUST use the assigned value for the Identifier field
in the corresponding LSP-related messages.
(4) n: 16 bits
n is a two's-complement integer. This value is used to compute the
wavelength as shown above.
<span class="h2"><a class="selflink" id="section-4" href="#section-4">4</a>. Security Considerations</span>
This document introduces no new security considerations to [<a href="./rfc3471" title=""Generalized Multi-Protocol Label Switching (GMPLS) Signaling Functional Description"">RFC3471</a>]
and [<a href="./rfc3473" title=""Generalized Multi-Protocol Label Switching (GMPLS) Signaling Resource ReserVation Protocol- Traffic Engineering (RSVP-TE) Extensions"">RFC3473</a>]. For a general discussion on MPLS and GMPLS-related
security issues, see the MPLS/GMPLS security framework [<a href="./rfc5920" title=""Security Framework for MPLS and GMPLS Networks"">RFC5920</a>].
<span class="h2"><a class="selflink" id="section-5" href="#section-5">5</a>. IANA Considerations</span>
IANA maintains the "Generalized Multi-Protocol Label Switching
(GMPLS) Signaling Parameters" registry. IANA has added three new
subregistries to track the codepoints (Grid and C.S.) used in the
DWDM and CWDM wavelength labels, which are described in the following
sections.
<span class="h3"><a class="selflink" id="section-5.1" href="#section-5.1">5.1</a>. Grid Subregistry</span>
Initial entries in this subregistry are as follows:
Value Grid Reference
----- ------------------------- ----------
0 Reserved [<a href="./rfc6205">RFC6205</a>]
1 ITU-T DWDM [<a href="./rfc6205">RFC6205</a>]
2 ITU-T CWDM [<a href="./rfc6205">RFC6205</a>]
3-7 Unassigned [<a href="./rfc6205">RFC6205</a>]
New values are assigned according to Standards Action.
<span class="grey">Otani & Li Standards Track [Page 10]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-11" ></span>
<span class="grey"><a href="./rfc6205">RFC 6205</a> Generalized Labels for LSC LSRs March 2011</span>
<span class="h3"><a class="selflink" id="section-5.2" href="#section-5.2">5.2</a>. DWDM Channel Spacing Subregistry</span>
Initial entries in this subregistry are as follows:
Value Channel Spacing (GHz) Reference
----- ------------------------- ----------
0 Reserved [<a href="./rfc6205">RFC6205</a>]
1 100 [<a href="./rfc6205">RFC6205</a>]
2 50 [<a href="./rfc6205">RFC6205</a>]
3 25 [<a href="./rfc6205">RFC6205</a>]
4 12.5 [<a href="./rfc6205">RFC6205</a>]
5-15 Unassigned [<a href="./rfc6205">RFC6205</a>]
New values are assigned according to Standards Action.
<span class="h3"><a class="selflink" id="section-5.3" href="#section-5.3">5.3</a>. CWDM Channel Spacing Subregistry</span>
Initial entries in this subregistry are as follows:
Value Channel Spacing (nm) Reference
----- ------------------------- ----------
0 Reserved [<a href="./rfc6205">RFC6205</a>]
1 20 [<a href="./rfc6205">RFC6205</a>]
2-15 Unassigned [<a href="./rfc6205">RFC6205</a>]
New values are assigned according to Standards Action.
<span class="h2"><a class="selflink" id="section-6" href="#section-6">6</a>. Acknowledgments</span>
The authors would like to thank Adrian Farrel, Lou Berger, Lawrence
Mao, Zafar Ali, and Daniele Ceccarelli for the discussion and their
comments.
<span class="h2"><a class="selflink" id="section-7" href="#section-7">7</a>. References</span>
<span class="h3"><a class="selflink" id="section-7.1" href="#section-7.1">7.1</a>. Normative References</span>
[<a id="ref-RFC2119">RFC2119</a>] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", <a href="https://www.rfc-editor.org/bcp/bcp14">BCP 14</a>, <a href="./rfc2119">RFC 2119</a>, March 1997.
[<a id="ref-RFC3471">RFC3471</a>] Berger, L., Ed., "Generalized Multi-Protocol Label
Switching (GMPLS) Signaling Functional Description", <a href="./rfc3471">RFC</a>
<a href="./rfc3471">3471</a>, January 2003.
[<a id="ref-RFC3473">RFC3473</a>] Berger, L., Ed., "Generalized Multi-Protocol Label
Switching (GMPLS) Signaling Resource ReserVation Protocol-
Traffic Engineering (RSVP-TE) Extensions", <a href="./rfc3473">RFC 3473</a>,
January 2003.
<span class="grey">Otani & Li Standards Track [Page 11]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-12" ></span>
<span class="grey"><a href="./rfc6205">RFC 6205</a> Generalized Labels for LSC LSRs March 2011</span>
[<a id="ref-RFC3945">RFC3945</a>] Mannie, E., Ed., "Generalized Multi-Protocol Label
Switching (GMPLS) Architecture", <a href="./rfc3945">RFC 3945</a>, October 2004.
<span class="h3"><a class="selflink" id="section-7.2" href="#section-7.2">7.2</a>. Informative References</span>
[<a id="ref-G.694.1">G.694.1</a>] ITU-T Recommendation G.694.1, "Spectral grids for WDM
applications: DWDM frequency grid", June 2002.
[<a id="ref-G.694.2">G.694.2</a>] ITU-T Recommendation G.694.2, "Spectral grids for WDM
applications: CWDM wavelength grid", December 2003.
[<a id="ref-RFC5920">RFC5920</a>] Fang, L., Ed., "Security Framework for MPLS and GMPLS
Networks", <a href="./rfc5920">RFC 5920</a>, July 2010.
<span class="grey">Otani & Li Standards Track [Page 12]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-13" ></span>
<span class="grey"><a href="./rfc6205">RFC 6205</a> Generalized Labels for LSC LSRs March 2011</span>
<span class="h2"><a class="selflink" id="appendix-A" href="#appendix-A">Appendix A</a>. DWDM Example</span>
Considering the network displayed in Figure 1, it is possible to show
an example of LSP setup using the lambda labels.
Node 1 receives the request for establishing an LSP from itself to
Node 9. The ITU-T grid to be used is the DWDM one, the channel
spacing is 50 Ghz, and the wavelength to be used is 193,35 THz.
Node 1 signals the LSP via a Path message including a wavelength
label structured as defined in <a href="#section-3.2">Section 3.2</a>:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Grid | C.S. | Identifier | n |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Where:
Grid = 1 : ITU-T DWDM grid
C.S. = 2 : 50 GHz channel spacing
n = 5 :
Frequency (THz) = 193.1 THz + n * channel spacing (THz)
193.35 (THz) = 193.1 (THz) + n* 0.05 (THz)
n = (193.35-193.1)/0.05 = 5
<span class="h2"><a class="selflink" id="appendix-B" href="#appendix-B">Appendix B</a>. CWDM Example</span>
The network displayed in Figure 1 can also be used to display an
example of signaling using the wavelength label in a CWDM
environment.
This time, the signaling of an LSP from Node 4 to Node 7 is
considered. Such LSP exploits the CWDM ITU-T grid with a 20 nm
channel spacing and is established using a wavelength equal to 1331
nm.
Node 4 signals the LSP via a Path message including a wavelength
label structured as defined in <a href="#section-3.3">Section 3.3</a>:
<span class="grey">Otani & Li Standards Track [Page 13]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-14" ></span>
<span class="grey"><a href="./rfc6205">RFC 6205</a> Generalized Labels for LSC LSRs March 2011</span>
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Grid | C.S. | Identifier | n |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Where:
Grid = 2 : ITU-T CWDM grid
C.S. = 1 : 20 nm channel spacing
n = -7 :
Wavelength (nm) = 1471 nm + n * 20 nm
1331 (nm) = 1471 (nm) + n * 20 nm
n = (1331-1471)/20 = -7
Authors' Addresses
Richard Rabbat
Google, Inc.
1600 Amphitheatre Parkway
Mountain View, CA 94043
USA
EMail: rabbat@alum.mit.edu
Sidney Shiba
EMail: sidney.shiba@att.net
Hongxiang Guo
EMail: hongxiang.guo@gmail.com
Keiji Miyazaki
Fujitsu Laboratories Ltd
4-1-1 Kotanaka Nakahara-ku,
Kawasaki Kanagawa, 211-8588
Japan
Phone: +81-44-754-2765
EMail: miyazaki.keiji@jp.fujitsu.com
<span class="grey">Otani & Li Standards Track [Page 14]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-15" ></span>
<span class="grey"><a href="./rfc6205">RFC 6205</a> Generalized Labels for LSC LSRs March 2011</span>
Diego Caviglia
Ericsson
16153 Genova Cornigliano
Italy
Phone: +390106003736
EMail: diego.caviglia@ericsson.com
Takehiro Tsuritani
KDDI R&D Laboratories Inc.
2-1-15 Ohara Fujimino-shi
Saitama, 356-8502
Japan
Phone: +81-49-278-7806
EMail: tsuri@kddilabs.jp
Editors' Addresses
Tomohiro Otani (editor)
KDDI Corporation
2-3-2 Nishishinjuku Shinjuku-ku
Tokyo, 163-8003
Japan
Phone: +81-3-3347-6006
EMail: tm-otani@kddi.com
Dan Li (editor)
Huawei Technologies
F3-5-B R&D Center, Huawei Base,
Shenzhen 518129
China
Phone: +86 755-289-70230
EMail: danli@huawei.com
Otani & Li Standards Track [Page 15]
</pre>
|