1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461
|
<pre>Internet Engineering Task Force (IETF) C. Perkins, Ed.
Request for Comments: 6275 Tellabs, Inc.
Obsoletes: <a href="./rfc3775">3775</a> D. Johnson
Category: Standards Track Rice University
ISSN: 2070-1721 J. Arkko
Ericsson
July 2011
<span class="h1">Mobility Support in IPv6</span>
Abstract
This document specifies Mobile IPv6, a protocol that allows nodes to
remain reachable while moving around in the IPv6 Internet. Each
mobile node is always identified by its home address, regardless of
its current point of attachment to the Internet. While situated away
from its home, a mobile node is also associated with a care-of
address, which provides information about the mobile node's current
location. IPv6 packets addressed to a mobile node's home address are
transparently routed to its care-of address. The protocol enables
IPv6 nodes to cache the binding of a mobile node's home address with
its care-of address, and to then send any packets destined for the
mobile node directly to it at this care-of address. To support this
operation, Mobile IPv6 defines a new IPv6 protocol and a new
destination option. All IPv6 nodes, whether mobile or stationary,
can communicate with mobile nodes. This document obsoletes <a href="./rfc3775">RFC 3775</a>.
Status of This Memo
This is an Internet Standards Track document.
This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Further information on
Internet Standards is available in <a href="./rfc5741#section-2">Section 2 of RFC 5741</a>.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
<a href="http://www.rfc-editor.org/info/rfc6275">http://www.rfc-editor.org/info/rfc6275</a>.
<span class="grey">Perkins, et al. Standards Track [Page 1]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-2" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
Copyright Notice
Copyright (c) 2011 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to <a href="https://www.rfc-editor.org/bcp/bcp78">BCP 78</a> and the IETF Trust's Legal
Provisions Relating to IETF Documents
(<a href="http://trustee.ietf.org/license-info">http://trustee.ietf.org/license-info</a>) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
This document may contain material from IETF Documents or IETF
Contributions published or made publicly available before November
10, 2008. The person(s) controlling the copyright in some of this
material may not have granted the IETF Trust the right to allow
modifications of such material outside the IETF Standards Process.
Without obtaining an adequate license from the person(s) controlling
the copyright in such materials, this document may not be modified
outside the IETF Standards Process, and derivative works of it may
not be created outside the IETF Standards Process, except to format
it for publication as an RFC or to translate it into languages other
than English.
<span class="grey">Perkins, et al. Standards Track [Page 2]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-3" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
Table of Contents
<a href="#section-1">1</a>. Introduction ....................................................<a href="#page-7">7</a>
<a href="#section-2">2</a>. Comparison with Mobile IP for IPv4 ..............................<a href="#page-8">8</a>
<a href="#section-3">3</a>. Terminology .....................................................<a href="#page-9">9</a>
<a href="#section-3.1">3.1</a>. General Terms ..............................................<a href="#page-9">9</a>
<a href="#section-3.2">3.2</a>. Mobile IPv6 Terms .........................................<a href="#page-11">11</a>
<a href="#section-4">4</a>. Overview of Mobile IPv6 ........................................<a href="#page-15">15</a>
<a href="#section-4.1">4.1</a>. Basic Operation ...........................................<a href="#page-15">15</a>
<a href="#section-4.2">4.2</a>. New IPv6 Protocol .........................................<a href="#page-17">17</a>
<a href="#section-4.3">4.3</a>. New IPv6 Destination Option ...............................<a href="#page-18">18</a>
<a href="#section-4.4">4.4</a>. New IPv6 ICMP Messages ....................................<a href="#page-19">19</a>
<a href="#section-4.5">4.5</a>. Conceptual Data Structure Terminology .....................<a href="#page-19">19</a>
<a href="#section-4.6">4.6</a>. Unique-Local Addressability ...............................<a href="#page-20">20</a>
<a href="#section-5">5</a>. Overview of Mobile IPv6 Security ...............................<a href="#page-20">20</a>
<a href="#section-5.1">5.1</a>. Binding Updates to Home Agents ............................<a href="#page-21">21</a>
<a href="#section-5.2">5.2</a>. Binding Updates to Correspondent Nodes ....................<a href="#page-22">22</a>
<a href="#section-5.2.1">5.2.1</a>. Node Keys ..........................................<a href="#page-22">22</a>
<a href="#section-5.2.2">5.2.2</a>. Nonces .............................................<a href="#page-23">23</a>
<a href="#section-5.2.3">5.2.3</a>. Cookies and Tokens .................................<a href="#page-23">23</a>
<a href="#section-5.2.4">5.2.4</a>. Cryptographic Functions ............................<a href="#page-24">24</a>
<a href="#section-5.2.5">5.2.5</a>. Return Routability Procedure .......................<a href="#page-24">24</a>
<a href="#section-5.2.6">5.2.6</a>. Authorizing Binding Management Messages ............<a href="#page-28">28</a>
<a href="#section-5.2.7">5.2.7</a>. Updating Node Keys and Nonces ......................<a href="#page-30">30</a>
<a href="#section-5.2.8">5.2.8</a>. Preventing Replay Attacks ..........................<a href="#page-32">32</a>
<a href="#section-5.2.9">5.2.9</a>. Handling Interruptions to Return Routability .......<a href="#page-32">32</a>
<a href="#section-5.3">5.3</a>. Dynamic Home Agent Address Discovery ......................<a href="#page-33">33</a>
<a href="#section-5.4">5.4</a>. Mobile Prefix Discovery ...................................<a href="#page-33">33</a>
<a href="#section-5.5">5.5</a>. Payload Packets ...........................................<a href="#page-33">33</a>
<a href="#section-6">6</a>. New IPv6 Protocol, Message Types, and Destination Option .......<a href="#page-34">34</a>
<a href="#section-6.1">6.1</a>. Mobility Header ...........................................<a href="#page-34">34</a>
<a href="#section-6.1.1">6.1.1</a>. Format .............................................<a href="#page-34">34</a>
<a href="#section-6.1.2">6.1.2</a>. Binding Refresh Request Message ....................<a href="#page-36">36</a>
<a href="#section-6.1.3">6.1.3</a>. Home Test Init Message .............................<a href="#page-37">37</a>
<a href="#section-6.1.4">6.1.4</a>. Care-of Test Init Message ..........................<a href="#page-38">38</a>
<a href="#section-6.1.5">6.1.5</a>. Home Test Message ..................................<a href="#page-39">39</a>
<a href="#section-6.1.6">6.1.6</a>. Care-of Test Message ...............................<a href="#page-41">41</a>
<a href="#section-6.1.7">6.1.7</a>. Binding Update Message .............................<a href="#page-42">42</a>
<a href="#section-6.1.8">6.1.8</a>. Binding Acknowledgement Message ....................<a href="#page-44">44</a>
<a href="#section-6.1.9">6.1.9</a>. Binding Error Message ..............................<a href="#page-47">47</a>
<a href="#section-6.2">6.2</a>. Mobility Options ..........................................<a href="#page-48">48</a>
<a href="#section-6.2.1">6.2.1</a>. Format .............................................<a href="#page-49">49</a>
<a href="#section-6.2.2">6.2.2</a>. Pad1 ...............................................<a href="#page-49">49</a>
<a href="#section-6.2.3">6.2.3</a>. PadN ...............................................<a href="#page-50">50</a>
<a href="#section-6.2.4">6.2.4</a>. Binding Refresh Advice .............................<a href="#page-50">50</a>
<a href="#section-6.2.5">6.2.5</a>. Alternate Care-of Address ..........................<a href="#page-51">51</a>
<a href="#section-6.2.6">6.2.6</a>. Nonce Indices ......................................<a href="#page-52">52</a>
<a href="#section-6.2.7">6.2.7</a>. Binding Authorization Data .........................<a href="#page-52">52</a>
<span class="grey">Perkins, et al. Standards Track [Page 3]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-4" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
<a href="#section-6.3">6.3</a>. Home Address Option .......................................<a href="#page-54">54</a>
<a href="#section-6.4">6.4</a>. Type 2 Routing Header .....................................<a href="#page-55">55</a>
<a href="#section-6.4.1">6.4.1</a>. Format .............................................<a href="#page-56">56</a>
<a href="#section-6.5">6.5</a>. ICMP Home Agent Address Discovery Request Message .........<a href="#page-57">57</a>
<a href="#section-6.6">6.6</a>. ICMP Home Agent Address Discovery Reply Message ...........<a href="#page-58">58</a>
<a href="#section-6.7">6.7</a>. ICMP Mobile Prefix Solicitation Message Format ............<a href="#page-60">60</a>
<a href="#section-6.8">6.8</a>. ICMP Mobile Prefix Advertisement Message Format ...........<a href="#page-61">61</a>
<a href="#section-7">7</a>. Modifications to IPv6 Neighbor Discovery .......................<a href="#page-64">64</a>
<a href="#section-7.1">7.1</a>. Modified Router Advertisement Message Format ..............<a href="#page-64">64</a>
<a href="#section-7.2">7.2</a>. Modified Prefix Information Option Format .................<a href="#page-65">65</a>
<a href="#section-7.3">7.3</a>. New Advertisement Interval Option Format ..................<a href="#page-66">66</a>
<a href="#section-7.4">7.4</a>. New Home Agent Information Option Format ..................<a href="#page-67">67</a>
<a href="#section-7.5">7.5</a>. Changes to Sending Router Advertisements ..................<a href="#page-69">69</a>
<a href="#section-8">8</a>. Requirements for Types of IPv6 Nodes ...........................<a href="#page-71">71</a>
<a href="#section-8.1">8.1</a>. All IPv6 Nodes ............................................<a href="#page-71">71</a>
<a href="#section-8.2">8.2</a>. IPv6 Nodes with Support for Route Optimization ............<a href="#page-72">72</a>
<a href="#section-8.3">8.3</a>. All IPv6 Routers ..........................................<a href="#page-73">73</a>
<a href="#section-8.4">8.4</a>. IPv6 Home Agents ..........................................<a href="#page-74">74</a>
<a href="#section-8.5">8.5</a>. IPv6 Mobile Nodes .........................................<a href="#page-75">75</a>
<a href="#section-9">9</a>. Correspondent Node Operation ...................................<a href="#page-76">76</a>
<a href="#section-9.1">9.1</a>. Conceptual Data Structures ................................<a href="#page-76">76</a>
<a href="#section-9.2">9.2</a>. Processing Mobility Headers ...............................<a href="#page-78">78</a>
<a href="#section-9.3">9.3</a>. Packet Processing .........................................<a href="#page-78">78</a>
<a href="#section-9.3.1">9.3.1</a>. Receiving Packets with Home Address Option .........<a href="#page-78">78</a>
<a href="#section-9.3.2">9.3.2</a>. Sending Packets to a Mobile Node ...................<a href="#page-79">79</a>
<a href="#section-9.3.3">9.3.3</a>. Sending Binding Error Messages .....................<a href="#page-81">81</a>
<a href="#section-9.3.4">9.3.4</a>. Receiving ICMP Error Messages ......................<a href="#page-81">81</a>
<a href="#section-9.4">9.4</a>. Return Routability Procedure ..............................<a href="#page-82">82</a>
<a href="#section-9.4.1">9.4.1</a>. Receiving Home Test Init Messages ..................<a href="#page-82">82</a>
<a href="#section-9.4.2">9.4.2</a>. Receiving Care-of Test Init Messages ...............<a href="#page-82">82</a>
<a href="#section-9.4.3">9.4.3</a>. Sending Home Test Messages .........................<a href="#page-83">83</a>
<a href="#section-9.4.4">9.4.4</a>. Sending Care-of Test Messages ......................<a href="#page-83">83</a>
<a href="#section-9.5">9.5</a>. Processing Bindings .......................................<a href="#page-83">83</a>
<a href="#section-9.5.1">9.5.1</a>. Receiving Binding Updates ..........................<a href="#page-83">83</a>
<a href="#section-9.5.2">9.5.2</a>. Requests to Cache a Binding ........................<a href="#page-86">86</a>
<a href="#section-9.5.3">9.5.3</a>. Requests to Delete a Binding .......................<a href="#page-86">86</a>
<a href="#section-9.5.4">9.5.4</a>. Sending Binding Acknowledgements ...................<a href="#page-87">87</a>
<a href="#section-9.5.5">9.5.5</a>. Sending Binding Refresh Requests ...................<a href="#page-88">88</a>
<a href="#section-9.6">9.6</a>. Cache Replacement Policy ..................................<a href="#page-88">88</a>
<a href="#section-10">10</a>. Home Agent Operation ..........................................<a href="#page-89">89</a>
<a href="#section-10.1">10.1</a>. Conceptual Data Structures ...............................<a href="#page-89">89</a>
<a href="#section-10.2">10.2</a>. Processing Mobility Headers ..............................<a href="#page-90">90</a>
<a href="#section-10.3">10.3</a>. Processing Bindings ......................................<a href="#page-90">90</a>
<a href="#section-10.3.1">10.3.1</a>. Primary Care-of Address Registration ..............<a href="#page-90">90</a>
<a href="#section-10.3.2">10.3.2</a>. Primary Care-of Address De-Registration ...........<a href="#page-94">94</a>
<a href="#section-10.4">10.4</a>. Packet Processing ........................................<a href="#page-96">96</a>
<a href="#section-10.4.1">10.4.1</a>. Intercepting Packets for a Mobile Node ............<a href="#page-96">96</a>
<a href="#section-10.4.2">10.4.2</a>. Processing Intercepted Packets ....................<a href="#page-98">98</a>
<span class="grey">Perkins, et al. Standards Track [Page 4]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-5" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
<a href="#section-10.4.3">10.4.3</a>. Multicast Membership Control ......................<a href="#page-99">99</a>
<a href="#section-10.4.4">10.4.4</a>. Stateful Address Autoconfiguration ...............<a href="#page-100">100</a>
<a href="#section-10.4.5">10.4.5</a>. Handling Reverse-Tunneled Packets ................<a href="#page-100">100</a>
<a href="#section-10.4.6">10.4.6</a>. Protecting Return Routability Packets ............<a href="#page-101">101</a>
<a href="#section-10.5">10.5</a>. Dynamic Home Agent Address Discovery ....................<a href="#page-102">102</a>
<a href="#section-10.5.1">10.5.1</a>. Receiving Router Advertisement Messages ..........<a href="#page-102">102</a>
<a href="#section-10.6">10.6</a>. Sending Prefix Information to the Mobile Node ...........<a href="#page-104">104</a>
<a href="#section-10.6.1">10.6.1</a>. List of Home Network Prefixes ....................<a href="#page-104">104</a>
<a href="#section-10.6.2">10.6.2</a>. Scheduling Prefix Deliveries .....................<a href="#page-105">105</a>
<a href="#section-10.6.3">10.6.3</a>. Sending Advertisements ...........................<a href="#page-107">107</a>
<a href="#section-10.6.4">10.6.4</a>. Lifetimes for Changed Prefixes ...................<a href="#page-108">108</a>
<a href="#section-11">11</a>. Mobile Node Operation ........................................<a href="#page-108">108</a>
<a href="#section-11.1">11.1</a>. Conceptual Data Structures ..............................<a href="#page-108">108</a>
<a href="#section-11.2">11.2</a>. Processing Mobility Headers .............................<a href="#page-110">110</a>
<a href="#section-11.3">11.3</a>. Packet Processing .......................................<a href="#page-110">110</a>
<a href="#section-11.3.1">11.3.1</a>. Sending Packets While Away from Home .............<a href="#page-110">110</a>
<a href="#section-11.3.2">11.3.2</a>. Interaction with Outbound IPsec Processing .......<a href="#page-113">113</a>
<a href="#section-11.3.3">11.3.3</a>. Receiving Packets While Away from Home ...........<a href="#page-115">115</a>
<a href="#section-11.3.4">11.3.4</a>. Routing Multicast Packets ........................<a href="#page-117">117</a>
<a href="#section-11.3.5">11.3.5</a>. Receiving ICMP Error Messages ....................<a href="#page-118">118</a>
<a href="#section-11.3.6">11.3.6</a>. Receiving Binding Error Messages .................<a href="#page-119">119</a>
<a href="#section-11.4">11.4</a>. Home Agent and Prefix Management ........................<a href="#page-120">120</a>
<a href="#section-11.4.1">11.4.1</a>. Dynamic Home Agent Address Discovery .............<a href="#page-120">120</a>
<a href="#section-11.4.2">11.4.2</a>. Sending Mobile Prefix Solicitations ..............<a href="#page-121">121</a>
<a href="#section-11.4.3">11.4.3</a>. Receiving Mobile Prefix Advertisements ...........<a href="#page-121">121</a>
<a href="#section-11.5">11.5</a>. Movement ................................................<a href="#page-123">123</a>
<a href="#section-11.5.1">11.5.1</a>. Movement Detection ...............................<a href="#page-123">123</a>
<a href="#section-11.5.2">11.5.2</a>. Home Link Detection ..............................<a href="#page-125">125</a>
<a href="#section-11.5.3">11.5.3</a>. Forming New Care-of Addresses ....................<a href="#page-126">126</a>
<a href="#section-11.5.4">11.5.4</a>. Using Multiple Care-of Addresses .................<a href="#page-127">127</a>
<a href="#section-11.5.5">11.5.5</a>. Returning Home ...................................<a href="#page-127">127</a>
<a href="#section-11.6">11.6</a>. Return Routability Procedure ............................<a href="#page-130">130</a>
<a href="#section-11.6.1">11.6.1</a>. Sending Test Init Messages .......................<a href="#page-130">130</a>
<a href="#section-11.6.2">11.6.2</a>. Receiving Test Messages ..........................<a href="#page-131">131</a>
<a href="#section-11.6.3">11.6.3</a>. Protecting Return Routability Packets ............<a href="#page-132">132</a>
<a href="#section-11.7">11.7</a>. Processing Bindings .....................................<a href="#page-132">132</a>
<a href="#section-11.7.1">11.7.1</a>. Sending Binding Updates to the Home Agent ........<a href="#page-132">132</a>
<a href="#section-11.7.2">11.7.2</a>. Correspondent Registration .......................<a href="#page-135">135</a>
<a href="#section-11.7.3">11.7.3</a>. Receiving Binding Acknowledgements ...............<a href="#page-138">138</a>
<a href="#section-11.7.4">11.7.4</a>. Receiving Binding Refresh Requests ...............<a href="#page-140">140</a>
<a href="#section-11.8">11.8</a>. Retransmissions and Rate Limiting .......................<a href="#page-141">141</a>
<a href="#section-12">12</a>. Protocol Constants ...........................................<a href="#page-142">142</a>
<a href="#section-13">13</a>. Protocol Configuration Variables .............................<a href="#page-142">142</a>
<a href="#section-14">14</a>. IANA Considerations ..........................................<a href="#page-143">143</a>
<a href="#section-15">15</a>. Security Considerations ......................................<a href="#page-146">146</a>
<a href="#section-15.1">15.1</a>. Threats .................................................<a href="#page-146">146</a>
<a href="#section-15.2">15.2</a>. Features ................................................<a href="#page-148">148</a>
<a href="#section-15.3">15.3</a>. Binding Updates to Home Agent ...........................<a href="#page-150">150</a>
<span class="grey">Perkins, et al. Standards Track [Page 5]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-6" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
<a href="#section-15.4">15.4</a>. Binding Updates to Correspondent Nodes ..................<a href="#page-152">152</a>
<a href="#section-15.4.1">15.4.1</a>. Overview .........................................<a href="#page-153">153</a>
<a href="#section-15.4.2">15.4.2</a>. Achieved Security Properties .....................<a href="#page-153">153</a>
<a href="#section-15.4.3">15.4.3</a>. Comparison to Regular IPv6 Communications ........<a href="#page-154">154</a>
<a href="#section-15.4.4">15.4.4</a>. Replay Attacks ...................................<a href="#page-156">156</a>
<a href="#section-15.4.5">15.4.5</a>. Denial-of-Service Attacks ........................<a href="#page-156">156</a>
<a href="#section-15.4.6">15.4.6</a>. Key Lengths ......................................<a href="#page-157">157</a>
<a href="#section-15.5">15.5</a>. Dynamic Home Agent Address Discovery ....................<a href="#page-158">158</a>
<a href="#section-15.6">15.6</a>. Mobile Prefix Discovery .................................<a href="#page-159">159</a>
<a href="#section-15.7">15.7</a>. Tunneling via the Home Agent ............................<a href="#page-159">159</a>
<a href="#section-15.8">15.8</a>. Home Address Option .....................................<a href="#page-160">160</a>
<a href="#section-15.9">15.9</a>. Type 2 Routing Header ...................................<a href="#page-161">161</a>
<a href="#section-15.10">15.10</a>. SHA-1 Secure Enough for Mobile IPv6 Control Messages ...<a href="#page-161">161</a>
<a href="#section-16">16</a>. Contributors .................................................<a href="#page-162">162</a>
<a href="#section-17">17</a>. Acknowledgements .............................................<a href="#page-162">162</a>
<a href="#section-18">18</a>. References ...................................................<a href="#page-162">162</a>
<a href="#section-18.1">18.1</a>. Normative References ....................................<a href="#page-162">162</a>
<a href="#section-18.2">18.2</a>. Informative References ..................................<a href="#page-164">164</a>
<a href="#appendix-A">Appendix A</a>. Future Extensions ....................................<a href="#page-166">166</a>
<a href="#appendix-A.1">A.1</a>. Piggybacking .............................................<a href="#page-166">166</a>
<a href="#appendix-A.2">A.2</a>. Triangular Routing .......................................<a href="#page-166">166</a>
<a href="#appendix-A.3">A.3</a>. New Authorization Methods ................................<a href="#page-166">166</a>
<a href="#appendix-A.4">A.4</a>. Neighbor Discovery Extensions ............................<a href="#page-166">166</a>
<a href="#appendix-B">Appendix B</a>. Changes since <a href="./rfc3775">RFC 3775</a> ...............................<a href="#page-167">167</a>
<span class="grey">Perkins, et al. Standards Track [Page 6]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-7" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
<span class="h2"><a class="selflink" id="section-1" href="#section-1">1</a>. Introduction</span>
This document specifies a protocol that allows nodes to remain
reachable while moving around in the IPv6 Internet. Without specific
support for mobility in IPv6 [<a href="#ref-6" title=""Internet Protocol, Version 6 (IPv6) Specification"">6</a>], packets destined to a mobile node
would not be able to reach it while the mobile node is away from its
home link. In order to continue communication in spite of its
movement, a mobile node could change its IP address each time it
moves to a new link, but the mobile node would then not be able to
maintain transport and higher-layer connections when it changes
location. Mobility support in IPv6 is particularly important, as
mobile computers are likely to account for a majority or at least a
substantial fraction of the population of the Internet during the
lifetime of IPv6.
The protocol defined in this document, known as Mobile IPv6, allows a
mobile node to move from one link to another without changing the
mobile node's "home address". Packets may be routed to the mobile
node using this address regardless of the mobile node's current point
of attachment to the Internet. The mobile node may also continue to
communicate with other nodes (stationary or mobile) after moving to a
new link. The movement of a mobile node away from its home link is
thus transparent to transport and higher-layer protocols and
applications.
The Mobile IPv6 protocol is just as suitable for mobility across
homogeneous media as for mobility across heterogeneous media. For
example, Mobile IPv6 facilitates node movement from one Ethernet
segment to another as well as it facilitates node movement from an
Ethernet segment to a wireless LAN cell, with the mobile node's IP
address remaining unchanged in spite of such movement.
One can think of the Mobile IPv6 protocol as solving the network-
layer mobility management problem. Some mobility management
applications -- for example, handover among wireless transceivers,
each of which covers only a very small geographic area -- have been
solved using link-layer techniques. For example, in many current
wireless LAN products, link-layer mobility mechanisms allow a
"handover" of a mobile node from one cell to another, re-establishing
link-layer connectivity to the node in each new location.
Mobile IPv6 does not attempt to solve all general problems related to
the use of mobile computers or wireless networks. In particular,
this protocol does not attempt to solve:
o Handling links with unidirectional connectivity or partial
reachability, such as the hidden terminal problem where a host is
hidden from only some of the routers on the link.
<span class="grey">Perkins, et al. Standards Track [Page 7]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-8" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
o Access control on a link being visited by a mobile node.
o Local or hierarchical forms of mobility management (similar to
many current link-layer mobility management solutions).
o Assistance for adaptive applications.
o Mobile routers.
o Service discovery.
o Distinguishing between packets lost due to bit errors versus
network congestion.
This document obsoletes <a href="./rfc3775">RFC 3775</a>. Issues with the original document
have been observed during the integration, testing, and deployment of
<a href="./rfc3775">RFC 3775</a>. A more detailed list of the changes since <a href="./rfc3775">RFC 3775</a> may be
found in <a href="#appendix-B">Appendix B</a>.
<span class="h2"><a class="selflink" id="section-2" href="#section-2">2</a>. Comparison with Mobile IP for IPv4</span>
The design of Mobile IP support in IPv6 (Mobile IPv6) benefits both
from the experiences gained from the development of Mobile IP support
in IPv4 (Mobile IPv4) [<a href="#ref-32" title=""IP Mobility Support for IPv4, Revised"">32</a>] [<a href="#ref-25" title=""IP Encapsulation within IP"">25</a>] [<a href="#ref-26" title=""Minimal Encapsulation within IP"">26</a>], and from the opportunities
provided by IPv6. Mobile IPv6 thus shares many features with Mobile
IPv4, but is integrated into IPv6 and offers many other improvements.
This section summarizes the major differences between Mobile IPv4 and
Mobile IPv6:
o There is no need to deploy special routers as "foreign agents", as
in Mobile IPv4. Mobile IPv6 operates in any location without any
special support required from the local router.
o Support for route optimization is a fundamental part of the
protocol, rather than a nonstandard set of extensions.
o Mobile IPv6 route optimization can operate securely even without
pre-arranged security associations. It is expected that route
optimization can be deployed on a global scale between all mobile
nodes and correspondent nodes.
o Support is also integrated into Mobile IPv6 for allowing route
optimization to coexist efficiently with routers that perform
"ingress filtering" [<a href="#ref-27" title=""Network Ingress Filtering: Defeating Denial of Service Attacks which employ IP Source Address Spoofing"">27</a>].
o The IPv6 Neighbor Unreachability Detection ensures symmetric
reachability between the mobile node and its default router in the
current location.
<span class="grey">Perkins, et al. Standards Track [Page 8]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-9" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
o Most packets sent to a mobile node while away from home in Mobile
IPv6 are sent using an IPv6 routing header rather than IP
encapsulation, reducing the amount of resulting overhead compared
to Mobile IPv4.
o Mobile IPv6 is decoupled from any particular link layer, as it
uses IPv6 Neighbor Discovery [<a href="#ref-18" title=""Neighbor Discovery for IP version 6 (IPv6)"">18</a>] instead of the Address
Resolution Protocol (ARP). This also improves the robustness of
the protocol.
o The use of IPv6 encapsulation (and the routing header) removes the
need in Mobile IPv6 to manage "tunnel soft state".
o The dynamic home agent address discovery mechanism in Mobile IPv6
returns a single reply to the mobile node. The directed broadcast
approach used in IPv4 returns separate replies from each home
agent.
<span class="h2"><a class="selflink" id="section-3" href="#section-3">3</a>. Terminology</span>
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in <a href="./rfc2119">RFC 2119</a> [<a href="#ref-2" title=""Key words for use in RFCs to Indicate Requirement Levels"">2</a>].
<span class="h3"><a class="selflink" id="section-3.1" href="#section-3.1">3.1</a>. General Terms</span>
IP
Internet Protocol Version 6 (IPv6).
node
A device that implements IP.
router
A node that forwards IP packets not explicitly addressed to
itself.
unicast routable address
An identifier for a single interface such that a packet sent to it
from another IPv6 subnet is delivered to the interface identified
by that address. Accordingly, a unicast routable address must be
either a global IPv6 address or a unique local IPv6 address.
<span class="grey">Perkins, et al. Standards Track [Page 9]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-10" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
host
Any node that is not a router.
link
A communication facility or medium over which nodes can
communicate at the link layer, such as an Ethernet (simple or
bridged). A link is the layer immediately below IP.
interface
A node's attachment to a link.
subnet prefix
A bit string that consists of some number of initial bits of an IP
address.
interface identifier
A number used to identify a node's interface on a link. The
interface identifier is the remaining low-order bits in the node's
IP address after the subnet prefix.
link-layer address
A link-layer identifier for an interface, such as IEEE 802
addresses on Ethernet links.
packet
An IP header plus payload.
security association
An IPsec security association is a cooperative relationship formed
by the sharing of cryptographic keying material and associated
context. Security associations are simplex. That is, two
security associations are needed to protect bidirectional traffic
between two nodes, one for each direction.
security policy database
A database that specifies what security services are to be offered
to IP packets and in what fashion.
<span class="grey">Perkins, et al. Standards Track [Page 10]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-11" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
destination option
Destination options are carried by the IPv6 Destination Options
extension header. Destination options include optional
information that need be examined only by the IPv6 node given as
the destination address in the IPv6 header, not by routers in
between. Mobile IPv6 defines one new destination option, the Home
Address destination option (see <a href="#section-6.3">Section 6.3</a>).
routing header
A routing header may be present as an IPv6 header extension, and
indicates that the payload has to be delivered to a destination
IPv6 address in some way that is different from what would be
carried out by standard Internet routing. In this document, use
of the term "routing header" typically refers to use of a type 2
routing header, as specified in <a href="#section-6.4">Section 6.4</a>.
"|" (concatenation)
Some formulas in this specification use the symbol "|" to indicate
bytewise concatenation, as in A | B. This concatenation requires
that all of the octets of the datum A appear first in the result,
followed by all of the octets of the datum B.
First (size, input)
Some formulas in this specification use a functional form "First
(size, input)" to indicate truncation of the "input" data so that
only the first "size" bits remain to be used.
<span class="h3"><a class="selflink" id="section-3.2" href="#section-3.2">3.2</a>. Mobile IPv6 Terms</span>
These terms are intended to be compatible with the definitions given
in <a href="./rfc3753">RFC 3753</a> [<a href="#ref-40" title=""Mobility Related Terminology"">40</a>]. However, if there is any conflict, the definitions
given here should be considered to supersede those in <a href="./rfc3753">RFC 3753</a>.
home address
A unicast routable address assigned to a mobile node, used as the
permanent address of the mobile node. This address is within the
mobile node's home link. Standard IP routing mechanisms will
deliver packets destined for a mobile node's home address to its
home link. Mobile nodes can have multiple home addresses, for
instance, when there are multiple home prefixes on the home link.
<span class="grey">Perkins, et al. Standards Track [Page 11]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-12" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
home subnet prefix
The IP subnet prefix corresponding to a mobile node's home
address.
home link
The link on which a mobile node's home subnet prefix is defined.
mobile node
A node that can change its point of attachment from one link to
another, while still being reachable via its home address.
movement
A change in a mobile node's point of attachment to the Internet
such that it is no longer connected to the same link as it was
previously. If a mobile node is not currently attached to its
home link, the mobile node is said to be "away from home".
Layer 2 (L2) handover
A process by which the mobile node changes from one link-layer
connection to another. For example, a change of wireless access
point is an L2 handover.
Layer 3 (L3) handover
Subsequent to an L2 handover, a mobile node detects a change in an
on-link subnet prefix that would require a change in the primary
care-of address. For example, a change of access router
subsequent to a change of wireless access point typically results
in an L3 handover.
correspondent node
A peer node with which a mobile node is communicating. The
correspondent node may be either mobile or stationary.
foreign subnet prefix
Any IP subnet prefix other than the mobile node's home subnet
prefix.
<span class="grey">Perkins, et al. Standards Track [Page 12]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-13" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
foreign link
Any link other than the mobile node's home link.
care-of address
A unicast routable address associated with a mobile node while
visiting a foreign link; the subnet prefix of this IP address is a
foreign subnet prefix. Among the multiple care-of addresses that
a mobile node may have at any given time (e.g., with different
subnet prefixes), the one registered with the mobile node's home
agent for a given home address is called its "primary" care-of
address.
home agent
A router on a mobile node's home link with which the mobile node
has registered its current care-of address. While the mobile node
is away from home, the home agent intercepts packets on the home
link destined to the mobile node's home address, encapsulates
them, and tunnels them to the mobile node's registered care-of
address.
binding
The association of the home address of a mobile node with a
care-of address for that mobile node, along with the remaining
lifetime of that association.
registration
The process during which a mobile node sends a Binding Update to
its home agent or a correspondent node, causing a binding for the
mobile node to be registered.
mobility message
A message containing a Mobility Header (see <a href="#section-6.1">Section 6.1</a>).
binding authorization
Correspondent registration needs to be authorized to allow the
recipient to believe that the sender has the right to specify a
new binding.
<span class="grey">Perkins, et al. Standards Track [Page 13]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-14" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
return routability procedure
The return routability procedure authorizes registrations by the
use of a cryptographic token exchange.
correspondent registration
A return routability procedure followed by a registration, run
between the mobile node and a correspondent node.
home registration
A registration between the mobile node and its home agent,
authorized by the use of IPsec.
nonce
Nonces are random numbers used internally by the correspondent
node in the creation of keygen tokens related to the return
routability procedure. The nonces are not specific to a mobile
node, and are kept secret within the correspondent node.
nonce index
A nonce index is used to indicate which nonces have been used when
creating keygen token values, without revealing the nonces
themselves.
cookie
A cookie is a random number used by a mobile node to prevent
spoofing by a bogus correspondent node in the return routability
procedure.
care-of init cookie
A cookie sent to the correspondent node in the Care-of Test Init
message, to be returned in the Care-of Test message.
home init cookie
A cookie sent to the correspondent node in the Home Test Init
message, to be returned in the Home Test message.
<span class="grey">Perkins, et al. Standards Track [Page 14]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-15" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
keygen token
A keygen token is a number supplied by a correspondent node in the
return routability procedure to enable the mobile node to compute
the necessary binding management key for authorizing a Binding
Update.
care-of keygen token
A keygen token sent by the correspondent node in the Care-of Test
message.
home keygen token
A keygen token sent by the correspondent node in the Home Test
message.
binding management key (Kbm)
A binding management key (Kbm) is a key used for authorizing a
binding cache management message (e.g., Binding Update or Binding
Acknowledgement). Return routability provides a way to create a
binding management key.
<span class="h2"><a class="selflink" id="section-4" href="#section-4">4</a>. Overview of Mobile IPv6</span>
<span class="h3"><a class="selflink" id="section-4.1" href="#section-4.1">4.1</a>. Basic Operation</span>
A mobile node is always expected to be addressable at its home
address, whether it is currently attached to its home link or is away
from home. The "home address" is an IP address assigned to the
mobile node within its home subnet prefix on its home link. While a
mobile node is at home, packets addressed to its home address are
routed to the mobile node's home link, using conventional Internet
routing mechanisms.
While a mobile node is attached to some foreign link away from home,
it is also addressable at one or more care-of addresses. A care-of
address is an IP address associated with a mobile node that has the
subnet prefix of a particular foreign link. The mobile node can
acquire its care-of address through conventional IPv6 mechanisms,
such as stateless or stateful auto-configuration. As long as the
mobile node stays in this location, packets addressed to this care-of
address will be routed to the mobile node. The mobile node may also
accept packets from several care-of addresses, such as when it is
moving but still reachable at the previous link.
<span class="grey">Perkins, et al. Standards Track [Page 15]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-16" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
The association between a mobile node's home address and care-of
address is known as a "binding" for the mobile node. While away from
home, a mobile node registers its primary care-of address with a
router on its home link, requesting this router to function as the
"home agent" for the mobile node. The mobile node performs this
binding registration by sending a "Binding Update" message to the
home agent. The home agent replies to the mobile node by returning a
"Binding Acknowledgement" message. The operation of the mobile node
is specified in <a href="#section-11">Section 11</a>, and the operation of the home agent is
specified in <a href="#section-10">Section 10</a>.
Any node communicating with a mobile node is referred to in this
document as a "correspondent node" of the mobile node, and may itself
be either a stationary node or a mobile node. Mobile nodes can
provide information about their current location to correspondent
nodes. This happens through the correspondent registration. As a
part of this procedure, a return routability test is performed in
order to authorize the establishment of the binding. The operation
of the correspondent node is specified in <a href="#section-9">Section 9</a>.
There are two possible modes for communications between the mobile
node and a correspondent node. The first mode, bidirectional
tunneling, does not require Mobile IPv6 support from the
correspondent node and is available even if the mobile node has not
registered its current binding with the correspondent node. Packets
from the correspondent node are routed to the home agent and then
tunneled to the mobile node. Packets to the correspondent node are
tunneled from the mobile node to the home agent ("reverse tunneled")
and then routed normally from the home network to the correspondent
node. In this mode, the home agent uses proxy Neighbor Discovery to
intercept any IPv6 packets addressed to the mobile node's home
address (or home addresses) on the home link. Each intercepted
packet is tunneled to the mobile node's primary care-of address.
This tunneling is performed using IPv6 encapsulation [<a href="#ref-7" title=""Generic Packet Tunneling in IPv6 Specification"">7</a>].
The second mode, "route optimization", requires the mobile node to
register its current binding at the correspondent node. Packets from
the correspondent node can be routed directly to the care-of address
of the mobile node. When sending a packet to any IPv6 destination,
the correspondent node checks its cached bindings for an entry for
the packet's destination address. If a cached binding for this
destination address is found, the node uses a new type of IPv6
routing header [<a href="#ref-6" title=""Internet Protocol, Version 6 (IPv6) Specification"">6</a>] (see <a href="#section-6.4">Section 6.4</a>) to route the packet to the
mobile node by way of the care-of address indicated in this binding.
<span class="grey">Perkins, et al. Standards Track [Page 16]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-17" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
Routing packets directly to the mobile node's care-of address allows
the shortest communications path to be used. It also eliminates
congestion at the mobile node's home agent and home link. In
addition, the impact of temporary failures of the home agent or
networks on the path to or from the home agent is reduced.
When routing packets directly to the mobile node, the correspondent
node sets the Destination Address in the IPv6 header to the care-of
address of the mobile node. A new type of IPv6 routing header (see
<a href="#section-6.4">Section 6.4</a>) is also added to the packet to carry the desired home
address. Similarly, the mobile node sets the Source Address in the
packet's IPv6 header to its current care-of addresses. The mobile
node adds a new IPv6 "Home Address" destination option (see
<a href="#section-6.3">Section 6.3</a>) to carry its home address. The inclusion of home
addresses in these packets makes the use of the care-of address
transparent above the network layer (e.g., at the transport layer).
Mobile IPv6 also provides support for multiple home agents, and a
limited support for the reconfiguration of the home network. In
these cases, the mobile node may not know the IP address of its own
home agent, and even the home subnet prefixes may change over time.
A mechanism known as "dynamic home agent address discovery" allows a
mobile node to dynamically discover the IP address of a home agent on
its home link, even when the mobile node is away from home. Mobile
nodes can also learn new information about home subnet prefixes
through the "mobile prefix discovery" mechanism. These mechanisms
are described starting in <a href="#section-6.5">Section 6.5</a>.
This document is written under the assumption that the mobile node is
configured with the home prefix for the mobile node to be able to
discover a home agent and configure a home address. This might be
limiting in deployments where the home agent and the home address for
the mobile node need to be assigned dynamically. Additional
mechanisms have been specified for the mobile node to dynamically
configure a home agent, a home address, and the home prefix. These
mechanisms are described in "Mobile IPv6 Bootstrapping in Split
Scenario" [<a href="#ref-22" title=""Mobile IPv6 Bootstrapping in Split Scenario"">22</a>] and "MIP6-bootstrapping for the Integrated Scenario"
[<a href="#ref-36" title=""MIP6-bootstrapping for the Integrated Scenario"">36</a>].
<span class="h3"><a class="selflink" id="section-4.2" href="#section-4.2">4.2</a>. New IPv6 Protocol</span>
Mobile IPv6 defines a new IPv6 protocol, using the Mobility Header
(see <a href="#section-6.1">Section 6.1</a>). This header is used to carry the following
messages:
Home Test Init
Home Test
<span class="grey">Perkins, et al. Standards Track [Page 17]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-18" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
Care-of Test Init
Care-of Test
These four messages are used to perform the return routability
procedure from the mobile node to a correspondent node. This
ensures authorization of subsequent Binding Updates, as described
in <a href="#section-5.2.5">Section 5.2.5</a>.
Binding Update
A Binding Update is used by a mobile node to notify a
correspondent node or the mobile node's home agent of its current
binding. The Binding Update sent to the mobile node's home agent
to register its primary care-of address is marked as a "home
registration".
Binding Acknowledgement
A Binding Acknowledgement is used to acknowledge receipt of a
Binding Update, if an acknowledgement was requested in the Binding
Update (e.g., the Binding Update was sent to a home agent), or an
error occurred.
Binding Refresh Request
A Binding Refresh Request is used by a correspondent node to
request that a mobile node re-establish its binding with the
correspondent node. This message is typically used when the
cached binding is in active use but the binding's lifetime is
close to expiration. The correspondent node may use, for
instance, recent traffic and open transport layer connections as
an indication of active use.
Binding Error
The Binding Error is used by the correspondent node to signal an
error related to mobility, such as an inappropriate attempt to use
the Home Address destination option without an existing binding.
The Binding Error message is also used by the home agent to signal
an error to the mobile node, if it receives an unrecognized
Mobility Header Message Type from the mobile node.
<span class="h3"><a class="selflink" id="section-4.3" href="#section-4.3">4.3</a>. New IPv6 Destination Option</span>
Mobile IPv6 defines a new IPv6 destination option, the Home Address
destination option. This option is described in detail in
<a href="#section-6.3">Section 6.3</a>.
<span class="grey">Perkins, et al. Standards Track [Page 18]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-19" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
<span class="h3"><a class="selflink" id="section-4.4" href="#section-4.4">4.4</a>. New IPv6 ICMP Messages</span>
Mobile IPv6 also introduces four new ICMP message types, two for use
in the dynamic home agent address discovery mechanism, and two for
renumbering and mobile configuration mechanisms. As described in
Sections <a href="#section-10.5">10.5</a> and <a href="#section-11.4.1">11.4.1</a>, the following two new ICMP message types
are used for home agent address discovery:
o Home Agent Address Discovery Request, described in <a href="#section-6.5">Section 6.5</a>.
o Home Agent Address Discovery Reply, described in <a href="#section-6.6">Section 6.6</a>.
The next two message types are used for network renumbering and
address configuration on the mobile node, as described in
<a href="#section-10.6">Section 10.6</a>:
o Mobile Prefix Solicitation, described in <a href="#section-6.7">Section 6.7</a>.
o Mobile Prefix Advertisement, described in <a href="#section-6.8">Section 6.8</a>.
<span class="h3"><a class="selflink" id="section-4.5" href="#section-4.5">4.5</a>. Conceptual Data Structure Terminology</span>
This document describes the Mobile IPv6 protocol in terms of the
following conceptual data structures:
Binding Cache
A cache of bindings for other nodes. This cache is maintained by
home agents and correspondent nodes. The cache contains both
"correspondent registration" entries (see <a href="#section-9.1">Section 9.1</a>) and "home
registration" entries (see <a href="#section-10.1">Section 10.1</a>).
Binding Update List
This list is maintained by each mobile node. The list has an item
for every binding that the mobile node has or is trying to
establish with a specific other node. Both correspondent and home
registrations are included in this list. Entries from the list
are deleted as the lifetime of the binding expires. See
<a href="#section-11.1">Section 11.1</a>.
<span class="grey">Perkins, et al. Standards Track [Page 19]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-20" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
Home Agents List
Home agents need to know which other home agents are on the same
link. This information is stored in the Home Agents List, as
described in more detail in <a href="#section-10.1">Section 10.1</a>. The list is used for
informing mobile nodes during dynamic home agent address
discovery.
<span class="h3"><a class="selflink" id="section-4.6" href="#section-4.6">4.6</a>. Unique-Local Addressability</span>
This specification requires that home and care-of addresses MUST be
unicast routable addresses. Unique-local IPv6 unicast addresses
(ULAs, <a href="./rfc4193">RFC 4193</a> [<a href="#ref-15" title=""Unique Local IPv6 Unicast Addresses"">15</a>]) may be usable on networks that use such non-
globally routable addresses, but this specification does not define
when such usage is safe and when it is not. Mobile nodes may not be
able to distinguish between their home site and the site at which
they are currently located. This can make it hard to prevent
accidental attachment to other sites, because the mobile node might
use the ULA at another site, which could not be used to successfully
send packets to the mobile node's home agent (HA). This would result
in unreachability between the mobile node (MN) and the HA, when
unique-local IPv6 routable addresses are used as care-of addresses.
Similarly, CNs outside the MN's own site will not be reachable when
ULAs are used as home addresses. Therefore, unique-local IPv6
unicast addresses SHOULD NOT be used as home or care-of addresses
when other address choices are available. If such addresses are
used, however, according to <a href="./rfc4193">RFC 4193</a> [<a href="#ref-15" title=""Unique Local IPv6 Unicast Addresses"">15</a>], they are treated as any
global unicast IPv6 address so, for the remainder of this
specification, use of unique-local IPv6 unicast addresses is not
differentiated from other globally unique IPv6 addresses.
<span class="h2"><a class="selflink" id="section-5" href="#section-5">5</a>. Overview of Mobile IPv6 Security</span>
This specification provides a number of security features. These
include the protection of Binding Updates both to home agents and
correspondent nodes, the protection of mobile prefix discovery, and
the protection of the mechanisms that Mobile IPv6 uses for
transporting data packets.
Binding Updates are protected by the use of IPsec extension headers,
or by the use of the Binding Authorization Data option. This option
employs a binding management key, Kbm, which can be established
through the return routability procedure. Mobile prefix discovery is
protected through the use of IPsec extension headers. Mechanisms
related to transporting payload packets -- such as the Home Address
destination option and type 2 routing header -- have been specified
in a manner that restricts their use in attacks.
<span class="grey">Perkins, et al. Standards Track [Page 20]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-21" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
<span class="h3"><a class="selflink" id="section-5.1" href="#section-5.1">5.1</a>. Binding Updates to Home Agents</span>
The mobile node and the home agent MUST use an IPsec security
association to protect the integrity and authenticity of the Binding
Updates and Acknowledgements. Both the mobile nodes and the home
agents MUST support and SHOULD use the Encapsulating Security Payload
(ESP) [<a href="#ref-5" title=""IP Encapsulating Security Payload (ESP)"">5</a>] header in transport mode and MUST use a non-NULL payload
authentication algorithm to provide data origin authentication,
connectionless integrity, and optional anti-replay protection. Note
that Authentication Header (AH) [<a href="#ref-4" title=""IP Authentication Header"">4</a>] is also possible but for brevity
not discussed in this specification.
In order to protect messages exchanged between the mobile node and
the home agent with IPsec, appropriate security policy database
entries must be created. A mobile node must be prevented from using
its security association to send a Binding Update on behalf of
another mobile node using the same home agent. This MUST be achieved
by having the home agent check that the given home address has been
used with the right security association. Such a check is provided
in the IPsec processing, by having the security policy database
entries unequivocally identify a single security association for
protecting Binding Updates between any given home address and home
agent. In order to make this possible, it is necessary that the home
address of the mobile node is visible in the Binding Updates and
Acknowledgements. The home address is used in these packets as a
source or destination, or in the Home Address destination option or
the type 2 routing header.
As with all IPsec security associations in this specification, manual
configuration of security associations MUST be supported. The shared
secrets used MUST be random and unique for different mobile nodes,
and MUST be distributed off-line to the mobile nodes. Automatic key
management with the Internet Key Exchange Protocol version 2 (IKEv2)
[<a href="#ref-24" title=""Internet Key Exchange Protocol Version 2 (IKEv2)"">24</a>] MAY be supported as described in [<a href="#ref-20" title=""Mobile IPv6 Operation with IKEv2 and the Revised IPsec Architecture"">20</a>].
<a href="#section-11.3.2">Section 11.3.2</a> discusses how IKEv2 connections to the home agent need
a careful treatment of the addresses used for transporting IKEv2.
This is necessary to ensure that a Binding Update is not needed
before the IKEv2 exchange that is needed for securing the Binding
Update.
More detailed descriptions and examples using IPsec to protect
communications between the mobile node and the home agent have been
published [<a href="#ref-12" title=""Using IPsec to Protect Mobile IPv6 Signaling Between Mobile Nodes and Home Agents"">12</a>][20].
<span class="grey">Perkins, et al. Standards Track [Page 21]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-22" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
<span class="h3"><a class="selflink" id="section-5.2" href="#section-5.2">5.2</a>. Binding Updates to Correspondent Nodes</span>
The protection of Binding Updates sent to correspondent nodes does
not require the configuration of security associations or the
existence of an authentication infrastructure between the mobile
nodes and correspondent nodes. Instead, a method called the return
routability procedure is used to ensure that the right mobile node is
sending the message. This method does not protect against attackers
who are on the path between the home network and the correspondent
node. However, attackers in such a location are capable of
performing the same attacks even without Mobile IPv6. The main
advantage of the return routability procedure is that it limits the
potential attackers to those having an access to one specific path in
the Internet, and avoids forged Binding Updates from anywhere else in
the Internet. For a more in-depth explanation of the security
properties of the return routability procedure, see <a href="#section-15">Section 15</a>.
Also, consult [<a href="#ref-43" title=""Mobile IP Version 6 Route Optimization Security Design Background"">43</a>].
The integrity and authenticity of the Binding Update messages to
correspondent nodes are protected by using a keyed-hash algorithm.
The binding management key, Kbm, is used to key the hash algorithm
for this purpose. Kbm is established using data exchanged during the
return routability procedure. The data exchange is accomplished by
use of node keys, nonces, cookies, tokens, and certain cryptographic
functions. <a href="#section-5.2.5">Section 5.2.5</a> outlines the basic return routability
procedure. <a href="#section-5.2.6">Section 5.2.6</a> shows how the results of this procedure are
used to authorize a Binding Update to a correspondent node.
<span class="h4"><a class="selflink" id="section-5.2.1" href="#section-5.2.1">5.2.1</a>. Node Keys</span>
Each correspondent node has a secret key, Kcn, called the "node key",
which it uses to produce the keygen tokens sent to the mobile nodes.
The node key MUST be a random number, 20 octets in length. The node
key allows the correspondent node to verify that the keygen tokens
used by the mobile node in authorizing a Binding Update are indeed
its own. This key MUST NOT be shared with any other entity.
A correspondent node MAY generate a fresh node key at any time; this
avoids the need for secure persistent key storage. Procedures for
optionally updating the node key are discussed later in
<a href="#section-5.2.7">Section 5.2.7</a>.
<span class="grey">Perkins, et al. Standards Track [Page 22]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-23" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
<span class="h4"><a class="selflink" id="section-5.2.2" href="#section-5.2.2">5.2.2</a>. Nonces</span>
Each correspondent node also generates nonces at regular intervals.
The nonces should be generated by using a random number generator
that is known to have good randomness properties [<a href="#ref-14" title=""Randomness Requirements for Security"">14</a>]. A
correspondent node may use the same Kcn and nonce with all the mobile
nodes with which it is in communication.
Each nonce is identified by a nonce index. When a new nonce is
generated, it must be associated with a new nonce index; this may be
done, for example, by incrementing the value of the previous nonce
index, if the nonce index is used as an array pointer into a linear
array of nonces. However, there is no requirement that nonces be
stored that way, or that the values of subsequent nonce indices have
any particular relationship to each other. The index value is
communicated in the protocol, so that if a nonce is replaced by a new
nonce during the run of a protocol, the correspondent node can
distinguish messages that should be checked against the old nonce
from messages that should be checked against the new nonce. Strictly
speaking, indices are not necessary in the authentication, but allow
the correspondent node to efficiently find the nonce value that it
used in creating a keygen token.
Correspondent nodes keep both the current nonce and a small set of
valid previous nonces whose lifetime has not yet expired. Expired
values MUST be discarded, and messages using stale or unknown indices
will be rejected.
The specific nonce index values cannot be used by mobile nodes to
determine the validity of the nonce. Expected validity times for the
nonces values and the procedures for updating them are discussed
later in <a href="#section-5.2.7">Section 5.2.7</a>.
A nonce is an octet string of any length. The recommended length is
64 bits.
<span class="h4"><a class="selflink" id="section-5.2.3" href="#section-5.2.3">5.2.3</a>. Cookies and Tokens</span>
The return routability address test procedure uses cookies and keygen
tokens as opaque values within the test init and test messages,
respectively.
o The "home init cookie" and "care-of init cookie" are 64-bit values
sent to the correspondent node from the mobile node, and later
returned to the mobile node. The home init cookie is sent in the
Home Test Init message, and returned in the Home Test message.
The care-of init cookie is sent in the Care-of Test Init message,
and returned in the Care-of Test message.
<span class="grey">Perkins, et al. Standards Track [Page 23]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-24" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
o The "home keygen token" and "care-of keygen token" are 64-bit
values sent by the correspondent node to the mobile node via the
home agent (via the Home Test message) and the care-of address (by
the Care-of Test message), respectively.
The mobile node should set the home init or care-of init cookie to a
newly generated random number in every Home or Care-of Test Init
message it sends. The cookies are used to verify that the Home Test
or Care-of Test message matches the Home Test Init or Care-of Test
Init message, respectively. These cookies also serve to ensure that
parties who have not seen the request cannot spoof responses.
Home and care-of keygen tokens are produced by the correspondent node
based on its currently active secret key (Kcn) and nonces, as well as
the home or care-of address (respectively). A keygen token is valid
as long as both the secret key (Kcn) and the nonce used to create it
are valid.
<span class="h4"><a class="selflink" id="section-5.2.4" href="#section-5.2.4">5.2.4</a>. Cryptographic Functions</span>
By default in this specification, the function used to compute hash
values is SHA-1 [<a href="#ref-11" title=""Secure Hash Standard"">11</a>], which is considered to offer sufficient
protection for Mobile IPv6 control messages (see <a href="#section-15.10">Section 15.10</a>).
Message Authentication Codes (MACs) are then computed using HMAC_SHA1
[<a href="#ref-1" title=""HMAC: Keyed-Hashing for Message Authentication"">1</a>][11]. HMAC_SHA1(K,m) denotes such a MAC computed on message m
with key K.
<span class="h4"><a class="selflink" id="section-5.2.5" href="#section-5.2.5">5.2.5</a>. Return Routability Procedure</span>
The return routability procedure enables the correspondent node to
obtain some reasonable assurance that the mobile node is in fact
addressable at its claimed care-of address as well as at its home
address. Only with this assurance is the correspondent node able to
accept Binding Updates from the mobile node, which would then
instruct the correspondent node to direct that mobile node's data
traffic to its claimed care-of address.
This is done by testing whether packets addressed to the two claimed
addresses are routed to the mobile node. The mobile node can pass
the test only if it is able to supply proof that it received certain
data (the "keygen tokens") that the correspondent node sends to those
addresses. These data are combined by the mobile node into a binding
management key, denoted Kbm.
The figure below shows the message flow for the return routability
procedure.
<span class="grey">Perkins, et al. Standards Track [Page 24]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-25" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
Mobile node Home agent Correspondent node
| |
| Home Test Init (HoTI) | |
|------------------------->|------------------------->|
| | |
| Care-of Test Init (CoTI) |
|---------------------------------------------------->|
| |
| | Home Test (HoT) |
|<-------------------------|<-------------------------|
| | |
| Care-of Test (CoT) |
|<----------------------------------------------------|
| |
The Home and Care-of Test Init messages are sent at the same time.
The procedure requires very little processing at the correspondent
node, and the Home and Care-of Test messages can be returned quickly,
perhaps nearly simultaneously. These four messages form the return
routability procedure.
Home Test Init
A mobile node sends a Home Test Init message to the correspondent
node (via the home agent) to acquire the home keygen token. The
contents of the message can be summarized as follows:
* Source Address = home address
* Destination Address = correspondent
* Parameters:
+ home init cookie
The Home Test Init message conveys the mobile node's home address
to the correspondent node. The mobile node also sends along a
home init cookie that the correspondent node must return later.
The Home Test Init message is reverse tunneled through the home
agent. (The headers and addresses related to reverse tunneling
have been omitted from the above discussion of the message
contents.) The mobile node remembers these cookie values to
obtain some assurance that its protocol messages are being
processed by the desired correspondent node.
<span class="grey">Perkins, et al. Standards Track [Page 25]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-26" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
Care-of Test Init
The mobile node sends a Care-of Test Init message to the
correspondent node (directly, not via the home agent) to acquire
the care-of keygen token. The contents of this message can be
summarized as follows:
* Source Address = care-of address
* Destination Address = correspondent
* Parameters:
+ care-of init cookie
The Care-of Test Init message conveys the mobile node's care-of
address to the correspondent node. The mobile node also sends
along a care-of init cookie that the correspondent node must
return later. The Care-of Test Init message is sent directly to
the correspondent node.
Home Test
The Home Test message is sent in response to a Home Test Init
message. It is sent via the home agent. The contents of the
message are:
* Source Address = correspondent
* Destination Address = home address
* Parameters:
+ home init cookie
+ home keygen token
+ home nonce index
When the correspondent node receives the Home Test Init message,
it generates a home keygen token as follows:
home keygen token :=
First (64, HMAC_SHA1 (Kcn, (home address | nonce | 0)))
where | denotes concatenation. The final "0" inside the HMAC_SHA1
function is a single zero octet, used to distinguish home and care-of
cookies from each other.
<span class="grey">Perkins, et al. Standards Track [Page 26]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-27" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
The home keygen token is formed from the first 64 bits of the MAC.
The home keygen token tests that the mobile node can receive messages
sent to its home address. Kcn is used in the production of home
keygen token in order to allow the correspondent node to verify that
it generated the home and care-of nonces, without forcing the
correspondent node to remember a list of all tokens it has handed
out.
The Home Test message is sent to the mobile node via the home
network, where it is presumed that the home agent will tunnel the
message to the mobile node. This means that the mobile node needs to
already have sent a Binding Update to the home agent, so that the
home agent will have received and authorized the new care-of address
for the mobile node before the return routability procedure. For
improved security, the data passed between the home agent and the
mobile node is made immune to inspection and passive attacks. Such
protection is gained by encrypting the home keygen token as it is
tunneled from the home agent to the mobile node as specified in
<a href="#section-10.4.6">Section 10.4.6</a>. The security properties of this additional security
are discussed in <a href="#section-15.4.1">Section 15.4.1</a>.
The home init cookie from the mobile node is returned in the Home
Test message, to ensure that the message comes from a node on the
route between the home agent and the correspondent node.
The home nonce index is delivered to the mobile node to later allow
the correspondent node to efficiently find the nonce value that it
used in creating the home keygen token.
Care-of Test
This message is sent in response to a Care-of Test Init message.
This message is not sent via the home agent; it is sent directly
to the mobile node. The contents of the message are:
* Source Address = correspondent
* Destination Address = care-of address
* Parameters:
+ care-of init cookie
+ care-of keygen token
+ care-of nonce index
<span class="grey">Perkins, et al. Standards Track [Page 27]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-28" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
When the correspondent node receives the Care-of Test Init
message, it generates a care-of keygen token as follows:
care-of keygen token :=
First (64, HMAC_SHA1 (Kcn, (care-of address | nonce | 1)))
Here, the final "1" inside the HMAC_SHA1 function is a single octet
containing the hex value 0x01, and is used to distinguish home and
care-of cookies from each other. The keygen token is formed from the
first 64 bits of the MAC, and sent directly to the mobile node at its
care-of address. The care-of init cookie from the Care-of Test Init
message is returned to ensure that the message comes from a node on
the route to the correspondent node.
The care-of nonce index is provided to identify the nonce used for
the care-of keygen token. The home and care-of nonce indices MAY be
the same, or different, in the Home and Care-of Test messages.
When the mobile node has received both the Home and Care-of Test
messages, the return routability procedure is complete. As a result
of the procedure, the mobile node has the data it needs to send a
Binding Update to the correspondent node. The mobile node hashes the
tokens together to form a 20-octet binding key Kbm:
Kbm = SHA-1 (home keygen token | care-of keygen token)
A Binding Update may also be used to delete a previously established
binding (<a href="#section-6.1.7">Section 6.1.7</a>). In this case, the care-of keygen token is
not used. Instead, the binding management key is generated as
follows:
Kbm = SHA-1(home keygen token)
Note that the correspondent node does not create any state specific
to the mobile node, until it receives the Binding Update from that
mobile node. The correspondent node does not maintain the value for
the binding management key Kbm; it creates Kbm when given the nonce
indices and the mobile node's addresses.
<span class="h4"><a class="selflink" id="section-5.2.6" href="#section-5.2.6">5.2.6</a>. Authorizing Binding Management Messages</span>
After the mobile node has created the binding management key (Kbm),
it can supply a verifiable Binding Update to the correspondent node.
This section provides an overview of this registration. The figure
below shows the message flow.
<span class="grey">Perkins, et al. Standards Track [Page 28]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-29" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
Mobile node Correspondent node
| |
| Binding Update (BU) |
|---------------------------------------------->|
| (MAC, seq#, nonce indices, care-of address) |
| |
| |
| Binding Acknowledgement (BA) (if sent) |
|<----------------------------------------------|
| (MAC, seq#, status) |
Binding Update
To authorize a Binding Update, the mobile node creates a binding
management key Kbm from the keygen tokens as described in the
previous section. The contents of the Binding Update include the
following:
* Source Address = care-of address
* Destination Address = correspondent
* Parameters:
+ home address (within the Home Address destination option if
different from the Source Address)
+ sequence number (within the Binding Update message header)
+ home nonce index (within the Nonce Indices option)
+ care-of nonce index (within the Nonce Indices option)
+ First (96, HMAC_SHA1 (Kbm, (care-of address | correspondent
| BU)))
The Binding Update contains a Nonce Indices option, indicating to
the correspondent node which home and care-of nonces to use to
recompute Kbm, the binding management key. The MAC is computed as
described in <a href="#section-6.2.7">Section 6.2.7</a>, using the correspondent node's address
as the destination address and the Binding Update message itself
("BU" above) as the Mobility Header (MH) Data.
Once the correspondent node has verified the MAC, it can create a
Binding Cache entry for the mobile.
<span class="grey">Perkins, et al. Standards Track [Page 29]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-30" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
Binding Acknowledgement
The Binding Update is in some cases acknowledged by the
correspondent node. The contents of the message are as follows:
* Source Address = correspondent
* Destination Address = care-of address
* Parameters:
+ sequence number (within the Binding Update message header)
+ First (96, HMAC_SHA1 (Kbm, (care-of address | correspondent
| BA)))
The Binding Acknowledgement contains the same sequence number as
the Binding Update. The MAC is computed as described in
<a href="#section-6.2.7">Section 6.2.7</a>, using the correspondent node's address as the
destination address and the message itself ("BA" above) as the MH
Data.
Bindings established with correspondent nodes using keys created by
way of the return routability procedure MUST NOT exceed
MAX_RR_BINDING_LIFETIME seconds (see <a href="#section-12">Section 12</a>).
The value in the Source Address field in the IPv6 header carrying the
Binding Update is normally also the care-of address that is used in
the binding. However, a different care-of address MAY be specified
by including an Alternate Care-of Address mobility option in the
Binding Update (see <a href="#section-6.2.5">Section 6.2.5</a>). When such a message is sent to
the correspondent node and the return routability procedure is used
as the authorization method, the Care-of Test Init and Care-of Test
messages MUST have been performed for the address in the Alternate
Care-of Address option (not the Source Address). The nonce indices
and MAC value MUST be based on information gained in this test.
Binding Updates may also be sent to delete a previously established
binding. In this case, generation of the binding management key
depends exclusively on the home keygen token and the care-of nonce
index is ignored.
<span class="h4"><a class="selflink" id="section-5.2.7" href="#section-5.2.7">5.2.7</a>. Updating Node Keys and Nonces</span>
Correspondent nodes generate nonces at regular intervals. It is
recommended to keep each nonce (identified by a nonce index)
acceptable for at least MAX_TOKEN_LIFETIME seconds (see <a href="#section-12">Section 12</a>)
after it has been first used in constructing a return routability
<span class="grey">Perkins, et al. Standards Track [Page 30]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-31" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
message response. However, the correspondent node MUST NOT accept
nonces beyond MAX_NONCE_LIFETIME seconds (see <a href="#section-12">Section 12</a>) after the
first use. As the difference between these two constants is 30
seconds, a convenient way to enforce the above lifetimes is to
generate a new nonce every 30 seconds. The node can then continue to
accept tokens that have been based on the last 8 (MAX_NONCE_LIFETIME
/ 30) nonces. This results in tokens being acceptable
MAX_TOKEN_LIFETIME to MAX_NONCE_LIFETIME seconds after they have been
sent to the mobile node, depending on whether the token was sent at
the beginning or end of the first 30-second period. Note that the
correspondent node may also attempt to generate new nonces on demand,
or only if the old nonces have been used. This is possible, as long
as the correspondent node keeps track of how long a time ago the
nonces were used for the first time, and does not generate new nonces
on every return routability request.
Due to resource limitations, rapid deletion of bindings, or reboots
the correspondent node may not in all cases recognize the nonces that
the tokens were based on. If a nonce index is unrecognized, the
correspondent node replies with an error code in the Binding
Acknowledgement (either 136, 137, or 138 as discussed in
<a href="#section-6.1.8">Section 6.1.8</a>). The mobile node can then retry the return
routability procedure.
An update of Kcn SHOULD be done at the same time as an update of a
nonce, so that nonce indices can identify both the nonce and the key.
Old Kcn values have to be therefore remembered as long as old nonce
values.
Given that the tokens are normally expected to be usable for
MAX_TOKEN_LIFETIME seconds, the mobile node MAY use them beyond a
single run of the return routability procedure until
MAX_TOKEN_LIFETIME expires. After this the mobile node SHOULD NOT
use the tokens. A fast moving mobile node MAY reuse a recent home
keygen token from a correspondent node when moving to a new location,
and just acquire a new care-of keygen token to show routability in
the new location.
While this does not save the number of round-trips due to the
simultaneous processing of home and care-of return routability tests,
there are fewer messages being exchanged, and a potentially long
round-trip through the home agent is avoided. Consequently, this
optimization is often useful. A mobile node that has multiple home
addresses MAY also use the same care-of keygen token for Binding
Updates concerning all of these addresses.
<span class="grey">Perkins, et al. Standards Track [Page 31]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-32" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
<span class="h4"><a class="selflink" id="section-5.2.8" href="#section-5.2.8">5.2.8</a>. Preventing Replay Attacks</span>
The return routability procedure also protects the participants
against replayed Binding Updates through the use of the sequence
number and a MAC. Care must be taken when removing bindings at the
correspondent node, however. Correspondent nodes must retain
bindings and the associated sequence number information at least as
long as the nonces used in the authorization of the binding are still
valid. Alternatively, if memory is very constrained, the
correspondent node MAY invalidate the nonces that were used for the
binding being deleted (or some larger group of nonces that they
belong to). This may, however, impact the ability to accept Binding
Updates from mobile nodes that have recently received keygen tokens.
This alternative is therefore recommended only as a last measure.
<span class="h4"><a class="selflink" id="section-5.2.9" href="#section-5.2.9">5.2.9</a>. Handling Interruptions to Return Routability</span>
In some scenarios, such as simultaneous mobility, where both
correspondent host and mobile host move at the same time, or in the
case where the correspondent node reboots and loses data, route
optimization may not complete, or relevant data in the binding cache
might be lost.
o Return Routability signaling MUST be sent to the correspondent
node's home address if it has one (i.e., not to the correspondent
nodes care-of address if the correspondent node is also mobile).
o If Return Routability signaling timed out after MAX_RO_FAILURE
attempts, the mobile node MUST revert to sending packets to the
correspondent node's home address through its home agent.
The mobile node may run the bidirectional tunneling in parallel with
the return routability procedure until it is successful. Exponential
backoff SHOULD be used for retransmission of return routability
messages.
The return routability procedure may be triggered by movement of the
mobile node or by sustained loss of end-to-end communication with a
correspondent node (e.g., based on indications from upper layers)
that has been using a route optimized connection to the mobile node.
If such indications are received, the mobile node MAY revert to
bidirectional tunneling while restarting the return routability
procedure.
<span class="grey">Perkins, et al. Standards Track [Page 32]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-33" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
<span class="h3"><a class="selflink" id="section-5.3" href="#section-5.3">5.3</a>. Dynamic Home Agent Address Discovery</span>
Dynamic home agent address discovery has been designed for use in
deployments where security is not needed. For this reason, no
security solution is provided in this document for dynamic home agent
address discovery.
<span class="h3"><a class="selflink" id="section-5.4" href="#section-5.4">5.4</a>. Mobile Prefix Discovery</span>
The mobile node and the home agent SHOULD use an IPsec security
association to protect the integrity and authenticity of the Mobile
Prefix Solicitations and Advertisements. Both the mobile nodes and
the home agents MUST support and SHOULD use the Encapsulating
Security Payload (ESP) header in transport mode with a non-NULL
payload authentication algorithm to provide data origin
authentication, connectionless integrity, and optional anti-replay
protection.
<span class="h3"><a class="selflink" id="section-5.5" href="#section-5.5">5.5</a>. Payload Packets</span>
Payload packets exchanged with mobile nodes can be protected in the
usual manner, in the same way as stationary hosts can protect them.
However, Mobile IPv6 introduces the Home Address destination option,
a routing header, and tunneling headers in the payload packets. In
the following we define the security measures taken to protect these,
and to prevent their use in attacks against other parties.
This specification limits the use of the Home Address destination
option to the situation where the correspondent node already has a
Binding Cache entry for the given home address. This avoids the use
of the Home Address option in attacks described in <a href="#section-15.1">Section 15.1</a>.
Mobile IPv6 uses a type of routing header specific to Mobile IPv6.
This type provides the necessary functionality but does not open
vulnerabilities discussed in <a href="#section-15.1">Section 15.1</a> and <a href="./rfc5095">RFC 5095</a> [<a href="#ref-45" title=""Deprecation of Type 0 Routing Headers in IPv6"">45</a>].
Tunnels between the mobile node and the home agent are protected by
ensuring proper use of source addresses, and optional cryptographic
protection. The mobile node verifies that the outer IP address
corresponds to its home agent. The home agent verifies that the
outer IP address corresponds to the current location of the mobile
node (Binding Updates sent to the home agents are secure). The home
agent identifies the mobile node through the source address of the
inner packet. (Typically, this is the home address of the mobile
node, but it can also be a link-local address, as discussed in
<a href="#section-10.4.2">Section 10.4.2</a>. To recognize the latter type of addresses, the home
<span class="grey">Perkins, et al. Standards Track [Page 33]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-34" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
agent requires that the Link-Local Address Compatibility (L) was set
in the Binding Update.) These measures protect the tunnels against
vulnerabilities discussed in <a href="#section-15.1">Section 15.1</a>.
For traffic tunneled via the home agent, additional IPsec ESP
encapsulation MAY be supported and used. If multicast group
membership control protocols or stateful address autoconfiguration
protocols are supported, payload data protection MUST be supported.
<span class="h2"><a class="selflink" id="section-6" href="#section-6">6</a>. New IPv6 Protocol, Message Types, and Destination Option</span>
<span class="h3"><a class="selflink" id="section-6.1" href="#section-6.1">6.1</a>. Mobility Header</span>
The Mobility Header is an extension header used by mobile nodes,
correspondent nodes, and home agents in all messaging related to the
creation and management of bindings. The subsections within this
section describe the message types that may be sent using the
Mobility Header.
Mobility Header messages MUST NOT be sent with a type 2 routing
header, except as described in <a href="#section-9.5.4">Section 9.5.4</a> for Binding
Acknowledgement. Mobility Header messages also MUST NOT be used with
a Home Address destination option, except as described in Sections
11.7.1 and 11.7.2 for Binding Update. Binding Update List or Binding
Cache information (when present) for the destination MUST NOT be used
in sending Mobility Header messages. That is, Mobility Header
messages bypass both the Binding Cache check described in
<a href="#section-9.3.2">Section 9.3.2</a> and the Binding Update List check described in
<a href="#section-11.3.1">Section 11.3.1</a> that are normally performed for all packets. This
applies even to messages sent to or from a correspondent node that is
itself a mobile node.
<span class="h4"><a class="selflink" id="section-6.1.1" href="#section-6.1.1">6.1.1</a>. Format</span>
The Mobility Header is identified by a Next Header value of 135 in
the immediately preceding header, and has the following format:
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Payload Proto | Header Len | MH Type | Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Checksum | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
| |
. .
. Message Data .
. .
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
<span class="grey">Perkins, et al. Standards Track [Page 34]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-35" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
Payload Proto
8-bit selector. Identifies the type of header immediately
following the Mobility Header. Uses the same values as the IPv6
Next Header field [<a href="#ref-6" title=""Internet Protocol, Version 6 (IPv6) Specification"">6</a>].
This field is intended to be used by a future extension (see
<a href="#appendix-A.1">Appendix A.1</a>).
Implementations conforming to this specification SHOULD set the
payload protocol type to IPPROTO_NONE (59 decimal).
Header Len
8-bit unsigned integer, representing the length of the Mobility
Header in units of 8 octets, excluding the first 8 octets.
The length of the Mobility Header MUST be a multiple of 8 octets.
MH Type
8-bit selector. Identifies the particular mobility message in
question. Current values are specified in <a href="#section-6.1.2">Section 6.1.2</a> and
onward. An unrecognized MH Type field causes an error indication
to be sent.
Reserved
8-bit field reserved for future use. The value MUST be
initialized to zero by the sender, and MUST be ignored by the
receiver.
Checksum
16-bit unsigned integer. This field contains the checksum of the
Mobility Header. The checksum is calculated from the octet string
consisting of a "pseudo-header" followed by the entire Mobility
Header starting with the Payload Proto field. The checksum is the
16-bit one's complement of the one's complement sum of this
string.
The pseudo-header contains IPv6 header fields, as specified in
<a href="./rfc2460#section-8.1">Section 8.1 of RFC 2460</a> [<a href="#ref-6" title=""Internet Protocol, Version 6 (IPv6) Specification"">6</a>]. The Next Header value used in the
pseudo-header is 135. The addresses used in the pseudo-header are
the addresses that appear in the Source and Destination Address
fields in the IPv6 packet carrying the Mobility Header.
<span class="grey">Perkins, et al. Standards Track [Page 35]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-36" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
Note that the procedures of calculating upper-layer checksums
while away from home described in <a href="#section-11.3.1">Section 11.3.1</a> apply even for
the Mobility Header. If a mobility message has a Home Address
destination option, then the checksum calculation uses the home
address in this option as the value of the IPv6 Source Address
field. The type 2 routing header is treated as explained in [<a href="#ref-6" title=""Internet Protocol, Version 6 (IPv6) Specification"">6</a>].
The Mobility Header is considered as the upper-layer protocol for
the purposes of calculating the pseudo-header. The Upper-Layer
Packet Length field in the pseudo-header MUST be set to the total
length of the Mobility Header.
For computing the checksum, the checksum field is set to zero.
Message Data
A variable-length field containing the data specific to the
indicated Mobility Header type.
Mobile IPv6 also defines a number of "mobility options" for use
within these messages; if included, any options MUST appear after the
fixed portion of the message data specified in this document. The
presence of such options will be indicated by the Header Len field
within the message. When the Header Len value is greater than the
length required for the message specified here, the remaining octets
are interpreted as mobility options. These options include padding
options that can be used to ensure that other options are aligned
properly, and that the total length of the message is divisible by 8.
The encoding and format of defined options are described in
<a href="#section-6.2">Section 6.2</a>.
Alignment requirements for the Mobility Header are the same as for
any IPv6 protocol header. That is, they MUST be aligned on an
8-octet boundary.
<span class="h4"><a class="selflink" id="section-6.1.2" href="#section-6.1.2">6.1.2</a>. Binding Refresh Request Message</span>
The Binding Refresh Request (BRR) message requests a mobile node to
update its mobility binding. This message is sent by correspondent
nodes according to the rules in <a href="#section-9.5.5">Section 9.5.5</a>. When a mobile node
receives a packet containing a Binding Refresh Request message it
processes the message according to the rules in <a href="#section-11.7.4">Section 11.7.4</a>.
The Binding Refresh Request message uses the MH Type value 0. When
this value is indicated in the MH Type field, the format of the
Message Data field in the Mobility Header is as follows:
<span class="grey">Perkins, et al. Standards Track [Page 36]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-37" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
. .
. Mobility Options .
. .
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Reserved
16-bit field reserved for future use. The value MUST be
initialized to zero by the sender, and MUST be ignored by the
receiver.
Mobility Options
Variable-length field of such length that the complete Mobility
Header is an integer multiple of 8 octets long. This field
contains zero or more TLV-encoded mobility options. The encoding
and format of defined options are described in <a href="#section-6.2">Section 6.2</a>. The
receiver MUST ignore and skip any options that it does not
understand.
There MAY be additional information, associated with this Binding
Refresh Request message that need not be present in all Binding
Refresh Request messages sent. Mobility options allow future
extensions to the format of the Binding Refresh Request message to
be defined. This specification does not define any options valid
for the Binding Refresh Request message.
If no actual options are present in this message, no padding is
necessary and the Header Len field will be set to 0.
<span class="h4"><a class="selflink" id="section-6.1.3" href="#section-6.1.3">6.1.3</a>. Home Test Init Message</span>
A mobile node uses the Home Test Init (HoTI) message to initiate the
return routability procedure and request a home keygen token from a
correspondent node (see <a href="#section-11.6.1">Section 11.6.1</a>). The Home Test Init message
uses the MH Type value 1. When this value is indicated in the MH
Type field, the format of the Message Data field in the Mobility
Header is as follows:
<span class="grey">Perkins, et al. Standards Track [Page 37]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-38" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
+ Home Init Cookie +
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
. .
. Mobility Options .
. .
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Reserved
16-bit field reserved for future use. This value MUST be
initialized to zero by the sender, and MUST be ignored by the
receiver.
Home Init Cookie
64-bit field that contains a random value, the home init cookie.
Mobility Options
Variable-length field of such length that the complete Mobility
Header is an integer multiple of 8 octets long. This field
contains zero or more TLV-encoded mobility options. The receiver
MUST ignore and skip any options that it does not understand.
This specification does not define any options valid for the Home
Test Init message.
If no actual options are present in this message, no padding is
necessary and the Header Len field will be set to 1.
This message is tunneled through the home agent when the mobile node
is away from home. Such tunneling SHOULD employ IPsec ESP in tunnel
mode between the home agent and the mobile node. This protection is
indicated by the IPsec security policy database. The protection of
Home Test Init messages is unrelated to the requirement to protect
regular payload traffic, which MAY use such tunnels as well.
<span class="h4"><a class="selflink" id="section-6.1.4" href="#section-6.1.4">6.1.4</a>. Care-of Test Init Message</span>
A mobile node uses the Care-of Test Init (CoTI) message to initiate
the return routability procedure and request a care-of keygen token
from a correspondent node (see <a href="#section-11.6.1">Section 11.6.1</a>). The Care-of Test
<span class="grey">Perkins, et al. Standards Track [Page 38]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-39" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
Init message uses the MH Type value 2. When this value is indicated
in the MH Type field, the format of the Message Data field in the
Mobility Header is as follows:
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
+ Care-of Init Cookie +
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
. .
. Mobility Options .
. .
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Reserved
16-bit field reserved for future use. The value MUST be
initialized to zero by the sender, and MUST be ignored by the
receiver.
Care-of Init Cookie
64-bit field that contains a random value, the care-of init
cookie.
Mobility Options
Variable-length field of such length that the complete Mobility
Header is an integer multiple of 8 octets long. This field
contains zero or more TLV-encoded mobility options. The receiver
MUST ignore and skip any options that it does not understand.
This specification does not define any options valid for the
Care-of Test Init message.
If no actual options are present in this message, no padding is
necessary and the Header Len field will be set to 1.
<span class="h4"><a class="selflink" id="section-6.1.5" href="#section-6.1.5">6.1.5</a>. Home Test Message</span>
The Home Test (HoT) message is a response to the Home Test Init
message, and is sent from the correspondent node to the mobile node
(see <a href="#section-5.2.5">Section 5.2.5</a>). The Home Test message uses the MH Type value 3.
When this value is indicated in the MH Type field, the format of the
Message Data field in the Mobility Header is as follows:
<span class="grey">Perkins, et al. Standards Track [Page 39]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-40" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Home Nonce Index |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
+ Home Init Cookie +
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
+ Home Keygen Token +
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
. .
. Mobility Options .
. .
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Home Nonce Index
This field will be echoed back by the mobile node to the
correspondent node in a subsequent Binding Update.
Home Init Cookie
64-bit field that contains the home init cookie.
Home Keygen Token
This field contains the 64-bit home keygen token used in the
return routability procedure.
Mobility Options
Variable-length field of such length that the complete Mobility
Header is an integer multiple of 8 octets long. This field
contains zero or more TLV-encoded mobility options. The receiver
MUST ignore and skip any options that it does not understand.
This specification does not define any options valid for the Home
Test message.
If no actual options are present in this message, no padding is
necessary and the Header Len field will be set to 2.
<span class="grey">Perkins, et al. Standards Track [Page 40]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-41" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
<span class="h4"><a class="selflink" id="section-6.1.6" href="#section-6.1.6">6.1.6</a>. Care-of Test Message</span>
The Care-of Test (CoT) message is a response to the Care-of Test Init
message, and is sent from the correspondent node to the mobile node
(see <a href="#section-11.6.2">Section 11.6.2</a>). The Care-of Test message uses the MH Type
value 4. When this value is indicated in the MH Type field, the
format of the Message Data field in the Mobility Header is as
follows:
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Care-of Nonce Index |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
+ Care-of Init Cookie +
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
+ Care-of Keygen Token +
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
. .
. Mobility Options .
. .
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Care-of Nonce Index
This value will be echoed back by the mobile node to the
correspondent node in a subsequent Binding Update.
Care-of Init Cookie
64-bit field that contains the care-of init cookie.
Care-of Keygen Token
This field contains the 64-bit care-of keygen token used in the
return routability procedure.
Mobility Options
Variable-length field of such length that the complete Mobility
Header is an integer multiple of 8 octets long. This field
contains zero or more TLV-encoded mobility options. The receiver
<span class="grey">Perkins, et al. Standards Track [Page 41]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-42" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
MUST ignore and skip any options that it does not understand.
This specification does not define any options valid for the
Care-of Test message.
If no actual options are present in this message, no padding is
necessary and the Header Len field will be set to 2.
<span class="h4"><a class="selflink" id="section-6.1.7" href="#section-6.1.7">6.1.7</a>. Binding Update Message</span>
The Binding Update (BU) message is used by a mobile node to notify
other nodes of a new care-of address for itself. Binding Updates are
sent as described in Sections <a href="#section-11.7.1">11.7.1</a> and <a href="#section-11.7.2">11.7.2</a>.
The Binding Update uses the MH Type value 5. When this value is
indicated in the MH Type field, the format of the Message Data field
in the Mobility Header is as follows:
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Sequence # |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|A|H|L|K| Reserved | Lifetime |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
. .
. Mobility Options .
. .
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Acknowledge (A)
The Acknowledge (A) bit is set by the sending mobile node to
request a Binding Acknowledgement (<a href="#section-6.1.8">Section 6.1.8</a>) be returned upon
receipt of the Binding Update.
Home Registration (H)
The Home Registration (H) bit is set by the sending mobile node to
request that the receiving node should act as this node's home
agent. The destination of the packet carrying this message MUST
be that of a router sharing the same subnet prefix as the home
address of the mobile node in the binding.
Link-Local Address Compatibility (L)
The Link-Local Address Compatibility (L) bit is set when the home
address reported by the mobile node has the same interface
identifier as the mobile node's link-local address.
<span class="grey">Perkins, et al. Standards Track [Page 42]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-43" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
Key Management Mobility Capability (K)
If this bit is cleared, the protocol used for establishing the
IPsec security associations between the mobile node and the home
agent does not survive movements. It may then have to be rerun.
(Note that the IPsec security associations themselves are expected
to survive movements.) If manual IPsec configuration is used, the
bit MUST be cleared.
This bit is valid only in Binding Updates sent to the home agent,
and MUST be cleared in other Binding Updates. Correspondent nodes
MUST ignore this bit.
Reserved
These fields are unused. They MUST be initialized to zero by the
sender and MUST be ignored by the receiver.
Sequence #
A 16-bit unsigned integer used by the receiving node to sequence
Binding Updates and by the sending node to match a returned
Binding Acknowledgement with this Binding Update.
Lifetime
16-bit unsigned integer. The number of time units remaining
before the binding MUST be considered expired. A value of zero
indicates that the Binding Cache entry for the mobile node MUST be
deleted. One time unit is 4 seconds.
Mobility Options
Variable-length field of such length that the complete Mobility
Header is an integer multiple of 8 octets long. This field
contains zero or more TLV-encoded mobility options. The encoding
and format of defined options are described in <a href="#section-6.2">Section 6.2</a>. The
receiver MUST ignore and skip any options that it does not
understand.
The following options are valid in a Binding Update:
* Binding Authorization Data option (this option is mandatory in
Binding Updates sent to a correspondent node)
* Nonce Indices option
* Alternate Care-of Address option
<span class="grey">Perkins, et al. Standards Track [Page 43]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-44" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
If no options are present in this message, 4 octets of padding are
necessary and the Header Len field will be set to 1.
The care-of address is specified either by the Source Address field
in the IPv6 header or by the Alternate Care-of Address option, if
present. The care-of address MUST be a unicast routable address.
IPv6 Source Address MUST be a topologically correct source address.
Binding Updates for a care-of address that is not a unicast routable
address MUST be silently discarded.
The deletion of a binding MUST be indicated by setting the Lifetime
field to 0. In deletion, the generation of the binding management
key depends exclusively on the home keygen token, as explained in
<a href="#section-5.2.5">Section 5.2.5</a>.
Correspondent nodes SHOULD NOT delete the Binding Cache entry before
the lifetime expires, if any application hosted by the correspondent
node is still likely to require communication with the mobile node.
A Binding Cache entry that is de-allocated prematurely might cause
subsequent packets to be dropped from the mobile node, if they
contain the Home Address destination option. This situation is
recoverable, since a Binding Error message is sent to the mobile node
(see <a href="#section-6.1.9">Section 6.1.9</a>); however, it causes unnecessary delay in the
communications.
<span class="h4"><a class="selflink" id="section-6.1.8" href="#section-6.1.8">6.1.8</a>. Binding Acknowledgement Message</span>
The Binding Acknowledgement is used to acknowledge receipt of a
Binding Update (<a href="#section-6.1.7">Section 6.1.7</a>). This packet is sent as described in
Sections <a href="#section-9.5.4">9.5.4</a> and <a href="#section-10.3.1">10.3.1</a>.
The Binding Acknowledgement has the MH Type value 6. When this value
is indicated in the MH Type field, the format of the Message Data
field in the Mobility Header is as follows:
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Status |K| Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Sequence # | Lifetime |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
. .
. Mobility Options .
. .
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
<span class="grey">Perkins, et al. Standards Track [Page 44]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-45" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
Status
8-bit unsigned integer indicating the disposition of the Binding
Update. Values of the Status field less than 128 indicate that
the Binding Update was accepted by the receiving node. Values
greater than or equal to 128 indicate that the Binding Update was
rejected by the receiving node. The following Status values are
currently defined:
0 Binding Update accepted
1 Accepted but prefix discovery necessary
128 Reason unspecified
129 Administratively prohibited
130 Insufficient resources
131 Home registration not supported
132 Not home subnet
133 Not home agent for this mobile node
134 Duplicate Address Detection failed
135 Sequence number out of window
136 Expired home nonce index
137 Expired care-of nonce index
138 Expired nonces
139 Registration type change disallowed
174 Invalid Care-of Address
Up-to-date values of the Status field are to be specified in the
IANA registry of assigned numbers [<a href="#ref-30" title=""Assigned Numbers: RFC 1700 is Replaced by an On- line Database"">30</a>].
<span class="grey">Perkins, et al. Standards Track [Page 45]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-46" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
Key Management Mobility Capability (K)
If this bit is cleared, the protocol used by the home agent for
establishing the IPsec security associations between the mobile
node and the home agent does not survive movements. It may then
have to be rerun. (Note that the IPsec security associations
themselves are expected to survive movements.)
Correspondent nodes MUST set the K bit to 0.
Reserved
This field is unused. It MUST be initialized to zero by the
sender and MUST be ignored by the receiver.
Sequence #
The Sequence Number in the Binding Acknowledgement is copied from
the Sequence Number field in the Binding Update. It is used by
the mobile node in matching this Binding Acknowledgement with an
outstanding Binding Update.
Lifetime
The granted lifetime, in time units of 4 seconds, for which this
node SHOULD retain the entry for this mobile node in its Binding
Cache.
The value of this field is undefined if the Status field indicates
that the Binding Update was rejected.
Mobility Options
Variable-length field of such length that the complete Mobility
Header is an integer multiple of 8 octets long. This field
contains zero or more TLV-encoded mobility options. The encoding
and format of defined options are described in <a href="#section-6.2">Section 6.2</a>. The
receiver MUST ignore and skip any options that it does not
understand.
There MAY be additional information associated with this Binding
Acknowledgement that need not be present in all Binding
Acknowledgements sent. Mobility options allow future extensions
to the format of the Binding Acknowledgement to be defined. The
following options are valid for the Binding Acknowledgement:
<span class="grey">Perkins, et al. Standards Track [Page 46]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-47" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
* Binding Authorization Data option (this option is mandatory in
Binding Acknowledgements sent by a correspondent node, except
where otherwise noted in <a href="#section-9.5.4">Section 9.5.4</a>)
* Binding Refresh Advice option
If no options are present in this message, 4 octets of padding are
necessary and the Header Len field will be set to 1.
<span class="h4"><a class="selflink" id="section-6.1.9" href="#section-6.1.9">6.1.9</a>. Binding Error Message</span>
The Binding Error (BE) message is used by the correspondent node to
signal an error related to mobility, such as an inappropriate attempt
to use the Home Address destination option without an existing
binding; see <a href="#section-9.3.3">Section 9.3.3</a> for details.
The Binding Error message uses the MH Type value 7. When this value
is indicated in the MH Type field, the format of the Message Data
field in the Mobility Header is as follows:
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Status | Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
+ +
| |
+ Home Address +
| |
+ +
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
. .
. Mobility Options .
. .
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Status
8-bit unsigned integer indicating the reason for this message.
The following values are currently defined:
1 Unknown binding for Home Address destination option
2 Unrecognized MH Type value
<span class="grey">Perkins, et al. Standards Track [Page 47]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-48" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
Reserved
8-bit field reserved for future use. The value MUST be
initialized to zero by the sender, and MUST be ignored by the
receiver.
Home Address
The home address that was contained in the Home Address
destination option. The mobile node uses this information to
determine which binding does not exist, in cases where the mobile
node has several home addresses.
Mobility Options
Variable-length field of such length that the complete Mobility
Header is an integer multiple of 8 octets long. This field
contains zero or more TLV-encoded mobility options. The receiver
MUST ignore and skip any options that it does not understand.
There MAY be additional information associated with this Binding
Error message that need not be present in all Binding Error
messages sent. Mobility options allow future extensions to the
format of the Binding Error message to be defined. The encoding
and format of defined options are described in <a href="#section-6.2">Section 6.2</a>. This
specification does not define any options valid for the Binding
Error message.
If no actual options are present in this message, no padding is
necessary and the Header Len field will be set to 2.
<span class="h3"><a class="selflink" id="section-6.2" href="#section-6.2">6.2</a>. Mobility Options</span>
Mobility messages can include zero or more mobility options. This
allows optional fields that may not be needed in every use of a
particular Mobility Header, as well as future extensions to the
format of the messages. Such options are included in the Message
Data field of the message itself, after the fixed portion of the
message data specified in the message subsections of <a href="#section-6.1">Section 6.1</a>.
The presence of such options will be indicated by the Header Len of
the Mobility Header. If included, the Binding Authorization Data
option (<a href="#section-6.2.7">Section 6.2.7</a>) MUST be the last option and MUST NOT have
trailing padding. Otherwise, options can be placed in any order.
<span class="grey">Perkins, et al. Standards Track [Page 48]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-49" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
<span class="h4"><a class="selflink" id="section-6.2.1" href="#section-6.2.1">6.2.1</a>. Format</span>
Mobility options are encoded within the remaining space of the
Message Data field of a mobility message, using a type-length-value
(TLV) format as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Option Type | Option Length | Option Data...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Option Type
8-bit identifier of the type of mobility option. When processing
a Mobility Header containing an option for which the Option Type
value is not recognized by the receiver, the receiver MUST quietly
ignore and skip over the option, correctly handling any remaining
options in the message.
Option Length
8-bit unsigned integer, representing the length in octets of the
mobility option, not including the Option Type and Option Length
fields.
Option Data
A variable-length field that contains data specific to the option.
The following subsections specify the Option types that are currently
defined for use in the Mobility Header.
Implementations MUST silently ignore any mobility options that they
do not understand.
Mobility options may have alignment requirements. Following the
convention in IPv6, these options are aligned in a packet so that
multi-octet values within the Option Data field of each option fall
on natural boundaries (i.e., fields of width n octets are placed at
an integer multiple of n octets from the start of the header, for n =
1, 2, 4, or 8) [<a href="#ref-6" title=""Internet Protocol, Version 6 (IPv6) Specification"">6</a>].
<span class="h4"><a class="selflink" id="section-6.2.2" href="#section-6.2.2">6.2.2</a>. Pad1</span>
The Pad1 option does not have any alignment requirements. Its format
is as follows:
<span class="grey">Perkins, et al. Standards Track [Page 49]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-50" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
0
0 1 2 3 4 5 6 7
+-+-+-+-+-+-+-+-+
| Type = 0 |
+-+-+-+-+-+-+-+-+
NOTE! the format of the Pad1 option is a special case -- it has
neither Option Length nor Option Data fields.
The Pad1 option is used to insert one octet of padding in the
Mobility Options area of a Mobility Header. If more than one octet
of padding is required, the PadN option, described next, should be
used rather than multiple Pad1 options.
<span class="h4"><a class="selflink" id="section-6.2.3" href="#section-6.2.3">6.2.3</a>. PadN</span>
The PadN option does not have any alignment requirements. Its format
is as follows:
0 1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- - - - - - - - -
| Type = 1 | Option Length | Option Data
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- - - - - - - - -
The PadN option is used to insert two or more octets of padding in
the Mobility Options area of a mobility message. For N octets of
padding, the Option Length field contains the value N-2, and the
Option Data consists of N-2 zero-valued octets. PadN Option data
MUST be ignored by the receiver.
<span class="h4"><a class="selflink" id="section-6.2.4" href="#section-6.2.4">6.2.4</a>. Binding Refresh Advice</span>
The Binding Refresh Advice option has an alignment requirement of 2n.
Its format is as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 2 | Length = 2 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Refresh Interval |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
The Binding Refresh Advice option is only valid in the Binding
Acknowledgement, and only on Binding Acknowledgements sent from the
mobile node's home agent in reply to a home registration. The
Refresh Interval is measured in units of four seconds, and indicates
<span class="grey">Perkins, et al. Standards Track [Page 50]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-51" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
remaining time until the mobile node SHOULD send a new home
registration to the home agent. The Refresh Interval MUST be set to
indicate a smaller time interval than the Lifetime value of the
Binding Acknowledgement.
<span class="h4"><a class="selflink" id="section-6.2.5" href="#section-6.2.5">6.2.5</a>. Alternate Care-of Address</span>
The Alternate Care-of Address option has an alignment requirement of
8n + 6. Its format is as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 3 | Length = 16 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
+ +
| |
+ Alternate Care-of Address +
| |
+ +
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Normally, a Binding Update specifies the desired care-of address in
the Source Address field of the IPv6 header. However, this is not
possible in some cases, such as when the mobile node wishes to
indicate a care-of address that it cannot use as a topologically
correct source address (Sections <a href="#section-6.1.7">6.1.7</a> and <a href="#section-11.7.2">11.7.2</a>) or when the used
security mechanism does not protect the IPv6 header (<a href="#section-11.7.1">Section 11.7.1</a>).
The Alternate Care-of Address option is provided for these
situations. This option is valid only in Binding Update. The
Alternate Care-of Address field contains an address to use as the
care-of address for the binding, rather than using the Source Address
of the packet as the care-of address.
<span class="grey">Perkins, et al. Standards Track [Page 51]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-52" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
<span class="h4"><a class="selflink" id="section-6.2.6" href="#section-6.2.6">6.2.6</a>. Nonce Indices</span>
The Nonce Indices option has an alignment requirement of 2n. Its
format is as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 4 | Length = 4 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Home Nonce Index | Care-of Nonce Index |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
The Nonce Indices option is valid only in the Binding Update message
sent to a correspondent node, and only when present together with a
Binding Authorization Data option. When the correspondent node
authorizes the Binding Update, it needs to produce home and care-of
keygen tokens from its stored random nonce values.
The Home Nonce Index field tells the correspondent node which nonce
value to use when producing the home keygen token.
The Care-of Nonce Index field is ignored in requests to delete a
binding. Otherwise, it tells the correspondent node which nonce
value to use when producing the care-of keygen token.
<span class="h4"><a class="selflink" id="section-6.2.7" href="#section-6.2.7">6.2.7</a>. Binding Authorization Data</span>
The Binding Authorization Data option does not have alignment
requirements as such. However, since this option must be the last
mobility option, an implicit alignment requirement is 8n + 2. The
format of this option is as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 5 | Option Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
+ +
| Authenticator |
+ +
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
The Binding Authorization Data option is valid in the Binding Update
and Binding Acknowledgement.
<span class="grey">Perkins, et al. Standards Track [Page 52]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-53" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
The Option Length field contains the length of the authenticator in
octets.
The Authenticator field contains a cryptographic value that can be
used to determine that the message in question comes from the right
authority. Rules for calculating this value depends on the used
authorization procedure.
For the return routability procedure, this option can appear in the
Binding Update and Binding Acknowledgements. Rules for calculating
the Authenticator value are the following:
Mobility Data = care-of address | correspondent | MH Data
Authenticator = First (96, HMAC_SHA1 (Kbm, Mobility Data))
Where | denotes concatenation. "Care-of address" is the care-of
address that will be registered for the mobile node if the Binding
Update succeeds, or the home address of the mobile node if this
option is used in de-registration. Note also that this address might
be different from the source address of the Binding Update message,
if the Alternative Care-of Address mobility option is used, or when
the lifetime of the binding is set to zero.
The "correspondent" is the IPv6 address of the correspondent node.
Note that, if the message is sent to a destination that is itself
mobile, the "correspondent" address may not be the address found in
the Destination Address field of the IPv6 header; instead, the home
address from the type 2 Routing header should be used.
"MH Data" is the content of the Mobility Header, excluding the
Authenticator field itself. The Authenticator value is calculated as
if the Checksum field in the Mobility Header was zero. The Checksum
in the transmitted packet is still calculated in the usual manner,
with the calculated Authenticator being a part of the packet
protected by the Checksum. Kbm is the binding management key, which
is typically created using nonces provided by the correspondent node
(see <a href="#section-9.4">Section 9.4</a>). Note that while the contents of a potential Home
Address destination option are not covered in this formula, the rules
for the calculation of the Kbm do take the home address in account.
This ensures that the MAC will be different for different home
addresses.
The first 96 bits from the MAC result are used as the Authenticator
field.
<span class="grey">Perkins, et al. Standards Track [Page 53]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-54" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
<span class="h3"><a class="selflink" id="section-6.3" href="#section-6.3">6.3</a>. Home Address Option</span>
The Home Address option is carried by the Destination Option
extension header (Next Header value = 60). It is used in a packet
sent by a mobile node while away from home, to inform the recipient
of the mobile node's home address.
The Home Address option is encoded in type-length-value (TLV) format
as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Option Type | Option Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
+ +
| |
+ Home Address +
| |
+ +
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Option Type
201 = 0xC9
Option Length
8-bit unsigned integer. Length of the option, in octets,
excluding the Option Type and Option Length fields. This field
MUST be set to 16.
Home Address
The home address of the mobile node sending the packet. This
address MUST be a unicast routable address.
The alignment requirement [<a href="#ref-6" title=""Internet Protocol, Version 6 (IPv6) Specification"">6</a>] for the Home Address option is 8n + 6.
The three highest-order bits of the Option Type field are encoded to
indicate specific processing of the option [<a href="#ref-6" title=""Internet Protocol, Version 6 (IPv6) Specification"">6</a>]; for the Home Address
option, these three bits are set to 110. This indicates the
following processing requirements:
<span class="grey">Perkins, et al. Standards Track [Page 54]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-55" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
o Any IPv6 node that does not recognize the Option Type must discard
the packet, and if the packet's Destination Address was not a
multicast address, return an ICMP Parameter Problem, Code 2,
message to the packet's Source Address. The Pointer field in the
ICMP message SHOULD point at the Option Type field. Otherwise,
for multicast addresses, the ICMP message MUST NOT be sent.
o The data within the option cannot change en route to the packet's
final destination.
The Home Address option MUST be placed as follows:
o After the routing header, if that header is present
o Before the Fragment Header, if that header is present
o Before the AH Header or ESP Header, if either one of those headers
is present
For each IPv6 packet header, the Home Address option MUST NOT appear
more than once. However, an encapsulated packet [<a href="#ref-7" title=""Generic Packet Tunneling in IPv6 Specification"">7</a>] MAY contain a
separate Home Address option associated with each encapsulating IP
header.
The inclusion of a Home Address destination option in a packet
affects the receiving node's processing of only this single packet.
No state is created or modified in the receiving node as a result of
receiving a Home Address option in a packet. In particular, the
presence of a Home Address option in a received packet MUST NOT alter
the contents of the receiver's Binding Cache and MUST NOT cause any
changes in the routing of subsequent packets sent by this receiving
node.
<span class="h3"><a class="selflink" id="section-6.4" href="#section-6.4">6.4</a>. Type 2 Routing Header</span>
Mobile IPv6 defines a new routing header variant, the type 2 routing
header, to allow the packet to be routed directly from a
correspondent to the mobile node's care-of address. The mobile
node's care-of address is inserted into the IPv6 Destination Address
field. Once the packet arrives at the care-of address, the mobile
node retrieves its home address from the routing header, and this is
used as the final destination address for the packet.
The new routing header uses a different type than defined for
"regular" IPv6 source routing, enabling firewalls to apply different
rules to source routed packets than to Mobile IPv6. This routing
header type (type 2) is restricted to carry only one IPv6 address.
All IPv6 nodes that process this routing header MUST verify that the
<span class="grey">Perkins, et al. Standards Track [Page 55]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-56" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
address contained within is the node's own home address in order to
prevent packets from being forwarded outside the node. The IP
address contained in the routing header, since it is the mobile
node's home address, MUST be a unicast routable address.
Furthermore, if the scope of the home address is smaller than the
scope of the care-of address, the mobile node MUST discard the packet
(see <a href="#section-4.6">Section 4.6</a>).
<span class="h4"><a class="selflink" id="section-6.4.1" href="#section-6.4.1">6.4.1</a>. Format</span>
The type 2 routing header has the following format:
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Next Header | Hdr Ext Len=2 | Routing Type=2|Segments Left=1|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
+ +
| |
+ Home Address +
| |
+ +
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Next Header
8-bit selector. Identifies the type of header immediately
following the routing header. Uses the same values as the IPv6
Next Header field [<a href="#ref-6" title=""Internet Protocol, Version 6 (IPv6) Specification"">6</a>].
Hdr Ext Len
2 (8-bit unsigned integer); length of the routing header in
8-octet units, not including the first 8 octets.
Routing Type
2 (8-bit unsigned integer).
Segments Left
1 (8-bit unsigned integer).
<span class="grey">Perkins, et al. Standards Track [Page 56]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-57" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
Reserved
32-bit reserved field. The value MUST be initialized to zero by
the sender, and MUST be ignored by the receiver.
Home Address
The home address of the destination mobile node.
For a type 2 routing header, the Hdr Ext Len MUST be 2. The Segments
Left value describes the number of route segments remaining, i.e.,
number of explicitly listed intermediate nodes still to be visited
before reaching the final destination. Segments Left MUST be 1. The
ordering rules for extension headers in an IPv6 packet are described
in <a href="./rfc2460#section-4.1">Section 4.1 of RFC 2460</a> [<a href="#ref-6" title=""Internet Protocol, Version 6 (IPv6) Specification"">6</a>]. The type 2 routing header defined
for Mobile IPv6 follows the same ordering as other routing headers.
If another routing header is present along with a type 2 routing
header, the type 2 routing header should follow the other routing
header. A packet containing such nested encapsulation should be
created as if the inner (type 2) routing header was constructed first
and then treated as an original packet by header construction process
for the other routing header.
In addition, the general procedures defined by IPv6 for routing
headers suggest that a received routing header MAY be automatically
"reversed" to construct a routing header for use in any response
packets sent by upper-layer protocols, if the received packet is
authenticated [<a href="#ref-6" title=""Internet Protocol, Version 6 (IPv6) Specification"">6</a>]. This MUST NOT be done automatically for type 2
routing headers.
<span class="h3"><a class="selflink" id="section-6.5" href="#section-6.5">6.5</a>. ICMP Home Agent Address Discovery Request Message</span>
The ICMP Home Agent Address Discovery Request message is used by a
mobile node to initiate the dynamic home agent address discovery
mechanism, as described in <a href="#section-11.4.1">Section 11.4.1</a>. The mobile node sends the
Home Agent Address Discovery Request message to the Mobile IPv6 Home-
Agents anycast address [<a href="#ref-8" title=""Reserved IPv6 Subnet Anycast Addresses"">8</a>] for its own home subnet prefix. (Note
that the currently defined anycast addresses may not work with all
prefix lengths other than those defined in <a href="./rfc4291">RFC 4291</a> [<a href="#ref-16" title=""IP Version 6 Addressing Architecture"">16</a>] [<a href="#ref-37" title=""Use of /127 Prefix Length Between Routers Considered Harmful"">37</a>].)
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Code | Checksum |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Identifier | Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
<span class="grey">Perkins, et al. Standards Track [Page 57]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-58" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
Type
144
Code
0
Checksum
The ICMP checksum [<a href="#ref-17" title=""Internet Control Message Protocol (ICMPv6) for the Internet Protocol Version 6 (IPv6) Specification"">17</a>].
Identifier
An identifier to aid in matching Home Agent Address Discovery
Reply messages to this Home Agent Address Discovery Request
message.
Reserved
This field is unused. It MUST be initialized to zero by the
sender and MUST be ignored by the receiver.
The Source Address of the Home Agent Address Discovery Request
message packet is typically one of the mobile node's current care-of
addresses. At the time of performing this dynamic home agent address
discovery procedure, it is likely that the mobile node is not
registered with any home agent. Therefore, neither the nature of the
address nor the identity of the mobile node can be established at
this time. The home agent MUST then return the Home Agent Address
Discovery Reply message directly to the Source Address chosen by the
mobile node.
<span class="h3"><a class="selflink" id="section-6.6" href="#section-6.6">6.6</a>. ICMP Home Agent Address Discovery Reply Message</span>
The ICMP Home Agent Address Discovery Reply message is used by a home
agent to respond to a mobile node that uses the dynamic home agent
address discovery mechanism, as described in <a href="#section-10.5">Section 10.5</a>.
<span class="grey">Perkins, et al. Standards Track [Page 58]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-59" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Code | Checksum |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Identifier | Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
+ +
. .
. Home Agent Addresses .
. .
+ +
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type
145
Code
0
Checksum
The ICMP checksum [<a href="#ref-17" title=""Internet Control Message Protocol (ICMPv6) for the Internet Protocol Version 6 (IPv6) Specification"">17</a>].
Identifier
The identifier from the invoking Home Agent Address Discovery
Request message.
Reserved
This field is unused. It MUST be initialized to zero by the
sender and MUST be ignored by the receiver.
Home Agent Addresses
A list of addresses of home agents on the home link for the mobile
node. The number of addresses presented in the list is indicated
by the remaining length of the IPv6 packet carrying the Home Agent
Address Discovery Reply message.
<span class="grey">Perkins, et al. Standards Track [Page 59]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-60" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
<span class="h3"><a class="selflink" id="section-6.7" href="#section-6.7">6.7</a>. ICMP Mobile Prefix Solicitation Message Format</span>
The ICMP Mobile Prefix Solicitation message is sent by a mobile node
to its home agent while it is away from home. The purpose of the
message is to solicit a Mobile Prefix Advertisement from the home
agent, which will allow the mobile node to gather prefix information
about its home network. This information can be used to configure
and update home address(es) according to changes in prefix
information supplied by the home agent.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Code | Checksum |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Identifier | Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
IP Fields:
Source Address
The mobile node's care-of address.
Destination Address
The address of the mobile node's home agent. This home agent must
be on the link that the mobile node wishes to learn prefix
information about.
Hop Limit
Set to an initial hop limit value, similarly to any other unicast
packet sent by the mobile node.
Destination Option:
A Home Address destination option MUST be included.
ESP header:
IPsec headers MUST be supported and SHOULD be used as described in
<a href="#section-5.4">Section 5.4</a>.
ICMP Fields:
<span class="grey">Perkins, et al. Standards Track [Page 60]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-61" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
Type
146
Code
0
Checksum
The ICMP checksum [<a href="#ref-17" title=""Internet Control Message Protocol (ICMPv6) for the Internet Protocol Version 6 (IPv6) Specification"">17</a>].
Identifier
An identifier to aid in matching a future Mobile Prefix
Advertisement to this Mobile Prefix Solicitation.
Reserved
This field is unused. It MUST be initialized to zero by the
sender and MUST be ignored by the receiver.
The Mobile Prefix Solicitation messages may have options. These
options MUST use the option format defined in Neighbor Discovery (<a href="./rfc4861">RFC</a>
<a href="./rfc4861">4861</a> [<a href="#ref-18" title=""Neighbor Discovery for IP version 6 (IPv6)"">18</a>]). This document does not define any option types for the
Mobile Prefix Solicitation message, but future documents may define
new options. Home agents MUST silently ignore any options they do
not recognize and continue processing the message.
<span class="h3"><a class="selflink" id="section-6.8" href="#section-6.8">6.8</a>. ICMP Mobile Prefix Advertisement Message Format</span>
A home agent will send a Mobile Prefix Advertisement to a mobile node
to distribute prefix information about the home link while the mobile
node is traveling away from the home network. This will occur in
response to a Mobile Prefix Solicitation with an Advertisement, or by
an unsolicited Advertisement sent according to the rules in
<a href="#section-10.6">Section 10.6</a>.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Code | Checksum |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Identifier |M|O| Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Options ...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
<span class="grey">Perkins, et al. Standards Track [Page 61]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-62" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
IP Fields:
Source Address
The home agent's address as the mobile node would expect to see it
(i.e., same network prefix).
Destination Address
If this message is a response to a Mobile Prefix Solicitation,
this field contains the Source Address field from that packet.
For unsolicited messages, the mobile node's care-of address SHOULD
be used. Note that unsolicited messages can only be sent if the
mobile node is currently registered with the home agent.
Routing header:
A type 2 routing header MUST be included.
ESP header:
IPsec headers MUST be supported and SHOULD be used as described in
<a href="#section-5.4">Section 5.4</a>.
ICMP Fields:
Type
147
Code
0
Checksum
The ICMP checksum [<a href="#ref-17" title=""Internet Control Message Protocol (ICMPv6) for the Internet Protocol Version 6 (IPv6) Specification"">17</a>].
<span class="grey">Perkins, et al. Standards Track [Page 62]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-63" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
Identifier
An identifier to aid in matching this Mobile Prefix Advertisement
to a previous Mobile Prefix Solicitation.
M
1-bit Managed Address Configuration flag. When set, hosts use the
administered (stateful) protocol for address autoconfiguration in
addition to any addresses autoconfigured using stateless address
autoconfiguration. The use of this flag is described in [<a href="#ref-18" title=""Neighbor Discovery for IP version 6 (IPv6)"">18</a>]
[<a href="#ref-19" title=""IPv6 Stateless Address Autoconfiguration"">19</a>].
O
1-bit Other Stateful Configuration flag. When set, hosts use the
administered (stateful) protocol for autoconfiguration of other
(non-address) information. The use of this flag is described in
[<a href="#ref-18" title=""Neighbor Discovery for IP version 6 (IPv6)"">18</a>] [<a href="#ref-19" title=""IPv6 Stateless Address Autoconfiguration"">19</a>].
Reserved
This field is unused. It MUST be initialized to zero by the
sender and MUST be ignored by the receiver.
The Mobile Prefix Advertisement messages may have options. These
options MUST use the option format defined in Neighbor Discovery (<a href="./rfc4861">RFC</a>
<a href="./rfc4861">4861</a> [<a href="#ref-18" title=""Neighbor Discovery for IP version 6 (IPv6)"">18</a>]). This document defines one option that may be carried in
a Mobile Prefix Advertisement message, but future documents may
define new options. Mobile nodes MUST silently ignore any options
they do not recognize and continue processing the message.
Prefix Information
Each message contains one or more Prefix Information options.
Each option carries the prefix(es) that the mobile node should use
to configure its home address(es). <a href="#section-10.6">Section 10.6</a> describes which
prefixes should be advertised to the mobile node.
The Prefix Information option is defined in <a href="#section-4.6.2">Section 4.6.2</a> of
Neighbor Discovery (<a href="./rfc4861">RFC 4861</a> [<a href="#ref-18" title=""Neighbor Discovery for IP version 6 (IPv6)"">18</a>]), with modifications defined in
<a href="#section-7.2">Section 7.2</a> of this specification. The home agent MUST use this
modified Prefix Information option to send home network prefixes
as defined in <a href="#section-10.6.1">Section 10.6.1</a>.
If the Advertisement is sent in response to a Mobile Prefix
Solicitation, the home agent MUST copy the Identifier value from that
message into the Identifier field of the Advertisement.
<span class="grey">Perkins, et al. Standards Track [Page 63]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-64" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
The home agent MUST NOT send more than one Mobile Prefix
Advertisement message per second to any mobile node.
The M and O bits MUST be cleared if the Home Agent DHCPv6 support is
not provided. If such support is provided, then they are set in
concert with the home network's administrative settings.
<span class="h2"><a class="selflink" id="section-7" href="#section-7">7</a>. Modifications to IPv6 Neighbor Discovery</span>
<span class="h3"><a class="selflink" id="section-7.1" href="#section-7.1">7.1</a>. Modified Router Advertisement Message Format</span>
Mobile IPv6 modifies the format of the Router Advertisement message
[<a href="#ref-18" title=""Neighbor Discovery for IP version 6 (IPv6)"">18</a>] by the addition of a single flag bit to indicate that the router
sending the Advertisement message is serving as a home agent on this
link. The format of the Router Advertisement message is as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Code | Checksum |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Cur Hop Limit |M|O|H| Reserved| Router Lifetime |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Reachable Time |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Retrans Timer |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Options ...
+-+-+-+-+-+-+-+-+-+-+-+-
This format represents the following changes over that originally
specified for Neighbor Discovery [<a href="#ref-18" title=""Neighbor Discovery for IP version 6 (IPv6)"">18</a>]:
Home Agent (H)
The Home Agent (H) bit is set in a Router Advertisement to
indicate that the router sending this Router Advertisement is also
functioning as a Mobile IPv6 home agent on this link.
Reserved
Reduced from a 6-bit field to a 5-bit field to account for the
addition of the above bit.
<span class="grey">Perkins, et al. Standards Track [Page 64]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-65" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
<span class="h3"><a class="selflink" id="section-7.2" href="#section-7.2">7.2</a>. Modified Prefix Information Option Format</span>
Mobile IPv6 requires knowledge of a router's global address in
building a Home Agents List as part of the dynamic home agent address
discovery mechanism.
However, Neighbor Discovery [<a href="#ref-18" title=""Neighbor Discovery for IP version 6 (IPv6)"">18</a>] only advertises a router's link-
local address, by requiring this address to be used as the IP Source
Address of each Router Advertisement.
Mobile IPv6 extends Neighbor Discovery to allow a router to advertise
its global address, by the addition of a single flag bit in the
format of a Prefix Information option for use in Router Advertisement
messages. The format of the Prefix Information option is as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Length | Prefix Length |L|A|R|Reserved1|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Valid Lifetime |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Preferred Lifetime |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Reserved2 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
+ +
| |
+ Prefix +
| |
+ +
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
This format represents the following changes over that originally
specified for Neighbor Discovery [<a href="#ref-18" title=""Neighbor Discovery for IP version 6 (IPv6)"">18</a>]:
Router Address (R)
1-bit router address flag. When set, indicates that the Prefix
field contains a complete IP address assigned to the sending
router. The indicated prefix is given by the first Prefix Length
bits of the Prefix field. The router IP address has the same
scope and conforms to the same lifetime values as the advertised
prefix. This use of the Prefix field is compatible with its use
in advertising the prefix itself, since Prefix Advertisement uses
<span class="grey">Perkins, et al. Standards Track [Page 65]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-66" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
only the leading bits. Interpretation of this flag bit is thus
independent of the processing required for the On-Link (L) and
Autonomous Address-Configuration (A) flag bits.
Reserved1
Reduced from a 6-bit field to a 5-bit field to account for the
addition of the above bit.
In a Router Advertisement, a home agent MUST, and all other routers
MAY, include at least one Prefix Information option with the Router
Address (R) bit set. Neighbor Discovery (<a href="./rfc4861">RFC 4861</a> [<a href="#ref-18" title=""Neighbor Discovery for IP version 6 (IPv6)"">18</a>]) specifies
that, when including all options in a Router Advertisement causes the
size of the Advertisement to exceed the link MTU, multiple
Advertisements can be sent, each containing a subset of the Neighbor
Discovery options. Also, when sending unsolicited multicast Router
Advertisements more frequently than the limit specified in <a href="./rfc4861">RFC 4861</a>,
the sending router need not include all options in each of these
Advertisements. However, in both of these cases the router SHOULD
include at least one Prefix Information option with the Router
Address (R) bit set in each such advertisement, if this bit is set in
some advertisement sent by the router.
In addition, the following requirement can assist mobile nodes in
movement detection. Barring changes in the prefixes for the link,
routers that send multiple Router Advertisements with the Router
Address (R) bit set in some of the included Prefix Information
options SHOULD provide at least one option and router address that
stays the same in all of the Advertisements.
<span class="h3"><a class="selflink" id="section-7.3" href="#section-7.3">7.3</a>. New Advertisement Interval Option Format</span>
Mobile IPv6 defines a new Advertisement Interval option, used in
Router Advertisement messages to advertise the interval at which the
sending router sends unsolicited multicast Router Advertisements.
The format of the Advertisement Interval option is as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Length | Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Advertisement Interval |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
<span class="grey">Perkins, et al. Standards Track [Page 66]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-67" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
Type
7
Length
8-bit unsigned integer. The length of the option (including the
type and length fields) is in units of 8 octets. The value of
this field MUST be 1.
Reserved
This field is unused. It MUST be initialized to zero by the
sender and MUST be ignored by the receiver.
Advertisement Interval
32-bit unsigned integer. The maximum time, in milliseconds,
between successive unsolicited Router Advertisement messages sent
by this router on this network interface. Using the conceptual
router configuration variables defined by Neighbor Discovery [<a href="#ref-18" title=""Neighbor Discovery for IP version 6 (IPv6)"">18</a>],
this field MUST be equal to the value MaxRtrAdvInterval, expressed
in milliseconds.
Routers MAY include this option in their Router Advertisements. A
mobile node receiving a Router Advertisement containing this option
SHOULD utilize the specified Advertisement Interval for that router
in its movement detection algorithm, as described in <a href="#section-11.5.1">Section 11.5.1</a>.
This option MUST be silently ignored for other Neighbor Discovery
messages.
<span class="h3"><a class="selflink" id="section-7.4" href="#section-7.4">7.4</a>. New Home Agent Information Option Format</span>
Mobile IPv6 defines a new Home Agent Information option, used in
Router Advertisements sent by a home agent to advertise information
specific to this router's functionality as a home agent. The format
of the Home Agent Information option is as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Length | Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Home Agent Preference | Home Agent Lifetime |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
<span class="grey">Perkins, et al. Standards Track [Page 67]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-68" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
Type
8
Length
8-bit unsigned integer. The length of the option (including the
type and length fields) in units of 8 octets. The value of this
field MUST be 1.
Reserved
This field is unused. It MUST be initialized to zero by the
sender and MUST be ignored by the receiver.
Home Agent Preference
16-bit unsigned integer. The preference for the home agent
sending this Router Advertisement, for use in ordering the
addresses returned to a mobile node in the Home Agent Addresses
field of a Home Agent Address Discovery Reply message. Higher
values mean more preferable. If this option is not included in a
Router Advertisement in which the Home Agent (H) bit is set, the
preference value for this home agent MUST be considered to be 0.
Greater values indicate a more preferable home agent than lower
values.
The manual configuration of the Home Agent Preference value is
described in <a href="#section-8.4">Section 8.4</a>. In addition, the sending home agent MAY
dynamically set the Home Agent Preference value, for example,
basing it on the number of mobile nodes it is currently serving or
on its remaining resources for serving additional mobile nodes;
such dynamic settings are beyond the scope of this document. Any
such dynamic setting of the Home Agent Preference, however, MUST
set the preference appropriately, relative to the default Home
Agent Preference value of 0 that may be in use by some home agents
on this link (i.e., a home agent not including a Home Agent
Information option in its Router Advertisements will be considered
to have a Home Agent Preference value of 0).
Home Agent Lifetime
16-bit unsigned integer. The lifetime associated with the home
agent in units of seconds. The default value is the same as the
Router Lifetime, as specified in the main body of the Router
Advertisement. The maximum value corresponds to 18.2 hours. A
<span class="grey">Perkins, et al. Standards Track [Page 68]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-69" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
value of 0 MUST NOT be used. The Home Agent Lifetime applies only
to this router's usefulness as a home agent; it does not apply to
information contained in other message fields or options.
Home agents MAY include this option in their Router Advertisements.
This option MUST NOT be included in a Router Advertisement in which
the Home Agent (H) bit (see <a href="#section-7.1">Section 7.1</a>) is not set. If this option
is not included in a Router Advertisement in which the Home Agent (H)
bit is set, the lifetime for this home agent MUST be considered to be
the same as the Router Lifetime in the Router Advertisement. If
multiple Advertisements are being sent instead of a single larger
unsolicited multicast Router Advertisement, all of the multiple
Advertisements with the Router Address (R) bit set MUST include this
option with the same contents; otherwise, this option MUST be omitted
from all Advertisements.
This option MUST be silently ignored for other Neighbor Discovery
messages.
If both the Home Agent Preference and Home Agent Lifetime are set to
their default values specified above, this option SHOULD NOT be
included in the Router Advertisement messages sent by this home
agent.
<span class="h3"><a class="selflink" id="section-7.5" href="#section-7.5">7.5</a>. Changes to Sending Router Advertisements</span>
The Neighbor Discovery protocol specification [<a href="#ref-18" title=""Neighbor Discovery for IP version 6 (IPv6)"">18</a>] limits routers to
a minimum interval of 3 seconds between sending unsolicited multicast
Router Advertisement messages from any given network interface
(limited by MinRtrAdvInterval and MaxRtrAdvInterval), stating that:
Routers generate Router Advertisements frequently enough that
hosts will learn of their presence within a few minutes, but not
frequently enough to rely on an absence of advertisements to
detect router failure; a separate Neighbor Unreachability
Detection algorithm provides failure detection.
This limitation, however, is not suitable to providing timely
movement detection for mobile nodes. Mobile nodes detect their own
movement by learning the presence of new routers as the mobile node
moves into wireless transmission range of them (or physically
connects to a new wired network), and by learning that previous
routers are no longer reachable. Mobile nodes MUST be able to
quickly detect when they move to a link served by a new router, so
that they can acquire a new care-of address and send Binding Updates
to register this care-of address with their home agent and to notify
correspondent nodes as needed.
<span class="grey">Perkins, et al. Standards Track [Page 69]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-70" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
One method that can provide for faster movement detection is to
increase the rate at which unsolicited Router Advertisements are
sent. Mobile IPv6 relaxes this limit such that routers MAY send
unsolicited multicast Router Advertisements more frequently. This
method can be applied where the router is expecting to provide
service to visiting mobile nodes (e.g., wireless network interfaces),
or on which it is serving as a home agent to one or more mobile nodes
(who may return home and need to hear its Advertisements).
Routers supporting mobility SHOULD be able to be configured with a
smaller MinRtrAdvInterval value and MaxRtrAdvInterval value to allow
sending of unsolicited multicast Router Advertisements more often.
The minimum allowed values are:
o MinRtrAdvInterval 0.03 seconds
o MaxRtrAdvInterval 0.07 seconds
In the case where the minimum intervals and delays are used, the mean
time between unsolicited multicast Router Advertisements is 50 ms.
Use of these modified limits MUST be configurable (see also the
configuration variable MinDelayBetweenRas in <a href="#section-13">Section 13</a> that may also
have to be modified accordingly). Systems where these values are
available MUST NOT default to them, and SHOULD default to values
specified in Neighbor Discovery (<a href="./rfc4861">RFC 4861</a> [<a href="#ref-18" title=""Neighbor Discovery for IP version 6 (IPv6)"">18</a>]). Knowledge of the
type of network interface and operating environment SHOULD be taken
into account in configuring these limits for each network interface.
This is important with some wireless links, where increasing the
frequency of multicast beacons can cause considerable overhead.
Routers SHOULD adhere to the intervals specified in <a href="./rfc4861">RFC 4861</a> [<a href="#ref-18" title=""Neighbor Discovery for IP version 6 (IPv6)"">18</a>], if
this overhead is likely to cause service degradation.
Additionally, the possible low values of MaxRtrAdvInterval may cause
some problems with movement detection in some mobile nodes. To
ensure that this is not a problem, Routers SHOULD add 20 ms to any
Advertisement Intervals sent in RAs that are below 200 ms, in order
to account for scheduling granularities on both the MN and the
router.
Note that multicast Router Advertisements are not always required in
certain wireless networks that have limited bandwidth. Mobility
detection or link changes in such networks may be done at lower
layers. Router advertisements in such networks SHOULD be sent only
when solicited. In such networks it SHOULD be possible to disable
unsolicited multicast Router Advertisements on specific interfaces.
The MinRtrAdvInterval and MaxRtrAdvInterval in such a case can be set
to some high values.
<span class="grey">Perkins, et al. Standards Track [Page 70]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-71" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
Home agents MUST include the Source Link-Layer Address option in all
Router Advertisements they send. This simplifies the process of
returning home, as discussed in <a href="#section-11.5.5">Section 11.5.5</a>.
Note that according to Neighbor Discovery (<a href="./rfc4861">RFC 4861</a> [<a href="#ref-18" title=""Neighbor Discovery for IP version 6 (IPv6)"">18</a>]),
AdvDefaultLifetime is by default based on the value of
MaxRtrAdvInterval. AdvDefaultLifetime is used in the Router Lifetime
field of Router Advertisements. Given that this field is expressed
in seconds, a small MaxRtrAdvInterval value can result in a zero
value for this field. To prevent this, routers SHOULD keep
AdvDefaultLifetime in at least one second, even if the use of
MaxRtrAdvInterval would result in a smaller value.
<span class="h2"><a class="selflink" id="section-8" href="#section-8">8</a>. Requirements for Types of IPv6 Nodes</span>
Mobile IPv6 places some special requirements on the functions
provided by different types of IPv6 nodes. This section summarizes
those requirements, identifying the functionality each requirement is
intended to support.
The requirements are set for the following groups of nodes:
o All IPv6 nodes.
o All IPv6 nodes with support for route optimization.
o All IPv6 routers.
o All Mobile IPv6 home agents.
o All Mobile IPv6 mobile nodes.
It is outside the scope of this specification to specify which of
these groups are mandatory in IPv6. We only describe what is
mandatory for a node that supports, for instance, route optimization.
Other specifications are expected to define the extent of IPv6.
<span class="h3"><a class="selflink" id="section-8.1" href="#section-8.1">8.1</a>. All IPv6 Nodes</span>
Any IPv6 node may at any time be a correspondent node of a mobile
node, either sending a packet to a mobile node or receiving a packet
from a mobile node. There are no Mobile IPv6 specific MUST
requirements for such nodes, and basic IPv6 techniques are
sufficient. If a mobile node attempts to set up route optimization
with a node with only basic IPv6 support, an ICMP error will signal
that the node does not support such optimizations (<a href="#section-11.3.5">Section 11.3.5</a>),
and communications will flow through the home agent.
<span class="grey">Perkins, et al. Standards Track [Page 71]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-72" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
An IPv6 node MUST NOT support the Home Address destination option,
type 2 routing header, or the Mobility Header unless it fully
supports the requirements listed in the next sections for either
route optimization, mobile node, or home agent functionality.
<span class="h3"><a class="selflink" id="section-8.2" href="#section-8.2">8.2</a>. IPv6 Nodes with Support for Route Optimization</span>
Nodes that implement route optimization are a subset of all IPv6
nodes on the Internet. The ability of a correspondent node to
participate in route optimization is essential for the efficient
operation of the IPv6 Internet, for the following reasons:
o Avoidance of congestion in the home network, and enabling the use
of lower-performance home agent equipment even for supporting
thousands of mobile nodes.
o Reduced network load across the entire Internet, as mobile devices
begin to predominate.
o Reduction of jitter and latency for the communications.
o Greater likelihood of success for Quality of Service (QoS)
signaling as tunneling is avoided and, again, fewer sources of
congestion.
o Improved robustness against network partitions, congestion, and
other problems, since fewer routing path segments are traversed.
These effects combine to enable much better performance and
robustness for communications between mobile nodes and IPv6
correspondent nodes. Route optimization introduces a small amount of
additional state for the peers, some additional messaging, and up to
1.5 round-trip delays before it can be turned on. However, it is
believed that the benefits far outweigh the costs in most cases.
<a href="#section-11.3.1">Section 11.3.1</a> discusses how mobile nodes may avoid route
optimization for some of the remaining cases, such as very short-term
communications.
The following requirements apply to all correspondent nodes that
support route optimization:
o The node MUST be able to validate a Home Address option using an
existing Binding Cache entry, as described in <a href="#section-9.3.1">Section 9.3.1</a>.
o The node MUST be able to insert a type 2 routing header into
packets to be sent to a mobile node, as described in
<a href="#section-9.3.2">Section 9.3.2</a>.
<span class="grey">Perkins, et al. Standards Track [Page 72]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-73" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
o Unless the correspondent node is also acting as a mobile node, it
MUST ignore type 2 routing headers and silently discard all
packets that it has received with such headers.
o The node SHOULD be able to interpret ICMP messages as described in
<a href="#section-9.3.4">Section 9.3.4</a>.
o The node MUST be able to send Binding Error messages as described
in <a href="#section-9.3.3">Section 9.3.3</a>.
o The node MUST be able to process Mobility Headers as described in
<a href="#section-9.2">Section 9.2</a>.
o The node MUST be able to participate in a return routability
procedure (<a href="#section-9.4">Section 9.4</a>).
o The node MUST be able to process Binding Update messages
(<a href="#section-9.5">Section 9.5</a>).
o The node MUST be able to return a Binding Acknowledgement
(<a href="#section-9.5.4">Section 9.5.4</a>).
o The node MUST be able to maintain a Binding Cache of the bindings
received in accepted Binding Updates, as described in Sections <a href="#section-9.1">9.1</a>
and 9.6.
o The node SHOULD allow route optimization to be administratively
enabled or disabled. The default SHOULD be enabled.
<span class="h3"><a class="selflink" id="section-8.3" href="#section-8.3">8.3</a>. All IPv6 Routers</span>
All IPv6 routers, even those not serving as a home agent for Mobile
IPv6, have an effect on how well mobile nodes can communicate:
o Every IPv6 router SHOULD be able to send an Advertisement Interval
option (<a href="#section-7.3">Section 7.3</a>) in each of its Router Advertisements [<a href="#ref-18" title=""Neighbor Discovery for IP version 6 (IPv6)"">18</a>], to
aid movement detection by mobile nodes (as in <a href="#section-11.5.1">Section 11.5.1</a>).
The use of this option in Router Advertisements SHOULD be
configurable.
o Every IPv6 router SHOULD be able to support sending unsolicited
multicast Router Advertisements at the faster rate described in
<a href="#section-7.5">Section 7.5</a>. If the router supports a faster rate, the used rate
MUST be configurable.
o Each router SHOULD include at least one prefix with the Router
Address (R) bit set and with its full IP address in its Router
Advertisements (as described in <a href="#section-7.2">Section 7.2</a>).
<span class="grey">Perkins, et al. Standards Track [Page 73]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-74" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
o Routers supporting filtering packets with routing headers SHOULD
support different rules for type 0 and type 2 routing headers (see
<a href="#section-6.4">Section 6.4</a>) so that filtering of source routed packets (type 0)
will not necessarily limit Mobile IPv6 traffic that is delivered
via type 2 routing headers.
<span class="h3"><a class="selflink" id="section-8.4" href="#section-8.4">8.4</a>. IPv6 Home Agents</span>
In order for a mobile node to operate correctly while away from home,
at least one IPv6 router on the mobile node's home link must function
as a home agent for the mobile node. The following additional
requirements apply to all IPv6 routers that serve as a home agent:
o Every home agent MUST be able to maintain an entry in its Binding
Cache for each mobile node for which it is serving as the home
agent (Sections <a href="#section-10.1">10.1</a> and <a href="#section-10.3.1">10.3.1</a>).
o Every home agent MUST be able to intercept packets (using proxy
Neighbor Discovery [<a href="#ref-18" title=""Neighbor Discovery for IP version 6 (IPv6)"">18</a>]) addressed to a mobile node for which it
is currently serving as the home agent, on that mobile node's home
link, while the mobile node is away from home (<a href="#section-10.4.1">Section 10.4.1</a>).
o Every home agent MUST be able to encapsulate [<a href="#ref-7" title=""Generic Packet Tunneling in IPv6 Specification"">7</a>] such intercepted
packets in order to tunnel them to the primary care-of address for
the mobile node indicated in its binding in the home agent's
Binding Cache (<a href="#section-10.4.2">Section 10.4.2</a>).
o Every home agent MUST support decapsulating [<a href="#ref-7" title=""Generic Packet Tunneling in IPv6 Specification"">7</a>] reverse-tunneled
packets sent to it from a mobile node's home address. Every home
agent MUST also check that the source address in the tunneled
packets corresponds to the currently registered location of the
mobile node (<a href="#section-10.4.5">Section 10.4.5</a>).
o The node MUST be able to process Mobility Headers as described in
<a href="#section-10.2">Section 10.2</a>.
o Every home agent MUST be able to return a Binding Acknowledgement
in response to a Binding Update (<a href="#section-10.3.1">Section 10.3.1</a>).
o Every home agent MUST maintain a separate Home Agents List for
each link on which it is serving as a home agent, as described in
Sections <a href="#section-10.1">10.1</a> and <a href="#section-10.5.1">10.5.1</a>.
o Every home agent MUST be able to accept packets addressed to the
Mobile IPv6 Home-Agents anycast address [<a href="#ref-8" title=""Reserved IPv6 Subnet Anycast Addresses"">8</a>] for the subnet on
which it is serving as a home agent, and MUST be able to
participate in dynamic home agent address discovery
(<a href="#section-10.5">Section 10.5</a>).
<span class="grey">Perkins, et al. Standards Track [Page 74]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-75" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
o Every home agent SHOULD support a configuration mechanism to allow
a system administrator to manually set the value to be sent by
this home agent in the Home Agent Preference field of the Home
Agent Information Option in Router Advertisements that it sends
(<a href="#section-7.4">Section 7.4</a>).
o Every home agent SHOULD support sending ICMP Mobile Prefix
Advertisements (<a href="#section-6.8">Section 6.8</a>), and SHOULD respond to Mobile Prefix
Solicitations (<a href="#section-6.7">Section 6.7</a>). If supported, this behavior MUST be
configurable, so that home agents can be configured to avoid
sending such Prefix Advertisements according to the needs of the
network administration in the home domain.
o Every home agent MUST support IPsec ESP for protection of packets
belonging to the return routability procedure (<a href="#section-10.4.6">Section 10.4.6</a>).
o Every home agent SHOULD support the multicast group membership
control protocols as described in <a href="#section-10.4.3">Section 10.4.3</a>. If this support
is provided, the home agent MUST be capable of using it to
determine which multicast data packets to forward via the tunnel
to the mobile node.
o Home agents MAY support stateful address autoconfiguration for
mobile nodes as described in <a href="#section-10.4.4">Section 10.4.4</a>.
<span class="h3"><a class="selflink" id="section-8.5" href="#section-8.5">8.5</a>. IPv6 Mobile Nodes</span>
Finally, the following requirements apply to all IPv6 nodes capable
of functioning as mobile nodes:
o The node MUST maintain a Binding Update List (<a href="#section-11.1">Section 11.1</a>).
o The node MUST support sending packets containing a Home Address
option (<a href="#section-11.3.1">Section 11.3.1</a>), and follow the required IPsec interaction
(<a href="#section-11.3.2">Section 11.3.2</a>).
o The node MUST be able to perform IPv6 encapsulation and
decapsulation [<a href="#ref-7" title=""Generic Packet Tunneling in IPv6 Specification"">7</a>].
o The node MUST be able to process type 2 routing header as defined
in Sections <a href="#section-6.4">6.4</a> and <a href="#section-11.3.3">11.3.3</a>.
o The node MUST support receiving a Binding Error message
(<a href="#section-11.3.6">Section 11.3.6</a>).
o The node MUST support receiving ICMP errors (<a href="#section-11.3.5">Section 11.3.5</a>).
<span class="grey">Perkins, et al. Standards Track [Page 75]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-76" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
o The node MUST support movement detection, care-of address
formation, and returning home (<a href="#section-11.5">Section 11.5</a>).
o The node MUST be able to process Mobility Headers as described in
<a href="#section-11.2">Section 11.2</a>.
o The node MUST support the return routability procedure
(<a href="#section-11.6">Section 11.6</a>).
o The node MUST be able to send Binding Updates, as specified in
Sections <a href="#section-11.7.1">11.7.1</a> and <a href="#section-11.7.2">11.7.2</a>.
o The node MUST be able to receive and process Binding
Acknowledgements, as specified in <a href="#section-11.7.3">Section 11.7.3</a>.
o The node MUST support receiving a Binding Refresh Request
(<a href="#section-6.1.2">Section 6.1.2</a>), by responding with a Binding Update.
o The node MUST support receiving Mobile Prefix Advertisements
(<a href="#section-11.4.3">Section 11.4.3</a>) and reconfiguring its home address based on the
prefix information contained therein.
o The node SHOULD support use of the dynamic home agent address
discovery mechanism, as described in <a href="#section-11.4.1">Section 11.4.1</a>.
o The node MUST allow route optimization to be administratively
enabled or disabled. The default SHOULD be enabled.
o The node MAY support the multicast address listener part of a
multicast group membership protocol as described in
<a href="#section-11.3.4">Section 11.3.4</a>. If this support is provided, the mobile node MUST
be able to receive tunneled multicast packets from the home agent.
o The node MAY support stateful address autoconfiguration mechanisms
such as DHCPv6 [<a href="#ref-31" title=""Dynamic Host Configuration Protocol for IPv6 (DHCPv6)"">31</a>] on the interface represented by the tunnel to
the home agent.
<span class="h2"><a class="selflink" id="section-9" href="#section-9">9</a>. Correspondent Node Operation</span>
<span class="h3"><a class="selflink" id="section-9.1" href="#section-9.1">9.1</a>. Conceptual Data Structures</span>
IPv6 nodes with route optimization support maintain a Binding Cache
of bindings for other nodes. A separate Binding Cache SHOULD be
maintained by each IPv6 node for each of its unicast routable
addresses. The Binding Cache MAY be implemented in any manner
consistent with the external behavior described in this document, for
example, by being combined with the node's Destination Cache as
<span class="grey">Perkins, et al. Standards Track [Page 76]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-77" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
maintained by Neighbor Discovery [<a href="#ref-18" title=""Neighbor Discovery for IP version 6 (IPv6)"">18</a>]. When sending a packet, the
Binding Cache is searched before the Neighbor Discovery conceptual
Destination Cache [<a href="#ref-18" title=""Neighbor Discovery for IP version 6 (IPv6)"">18</a>].
Each Binding Cache entry conceptually contains the following fields:
o The home address of the mobile node for which this is the Binding
Cache entry. This field is used as the key for searching the
Binding Cache for the destination address of a packet being sent.
o The care-of address for the mobile node indicated by the home
address field in this Binding Cache entry.
o A lifetime value, indicating the remaining lifetime for this
Binding Cache entry. The lifetime value is initialized from the
Lifetime field in the Binding Update that created or last modified
this Binding Cache entry. A correspondent node MAY select a
smaller lifetime for the Binding Cache entry, and supply that
value to the mobile node in the Binding Acknowledgment message.
o A flag indicating whether or not this Binding Cache entry is a
home registration entry (applicable only on nodes that support
home agent functionality).
o The maximum value of the Sequence Number field received in
previous Binding Updates for this home address. The Sequence
Number field is 16 bits long. Sequence Number values MUST be
compared modulo 2**16 as explained in <a href="#section-9.5.1">Section 9.5.1</a>.
o Usage information for this Binding Cache entry. This is needed to
implement the cache replacement policy in use in the Binding
Cache. Recent use of a cache entry also serves as an indication
that a Binding Refresh Request should be sent when the lifetime of
this entry nears expiration.
Binding Cache entries not marked as home registrations MAY be
replaced at any time by any reasonable local cache replacement policy
but SHOULD NOT be unnecessarily deleted. The Binding Cache for any
one of a node's IPv6 addresses may contain at most one entry for each
mobile node home address. The contents of a node's Binding Cache
MUST NOT be changed in response to a Home Address option in a
received packet.
<span class="grey">Perkins, et al. Standards Track [Page 77]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-78" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
<span class="h3"><a class="selflink" id="section-9.2" href="#section-9.2">9.2</a>. Processing Mobility Headers</span>
Mobility Header processing MUST observe the following rules:
o The checksum must be verified as per <a href="#section-6.1">Section 6.1</a>. If invalid, the
node MUST silently discard the message.
o The MH Type field MUST have a known value (<a href="#section-6.1.1">Section 6.1.1</a>).
Otherwise, the node MUST discard the message and issue a Binding
Error message as described in <a href="#section-9.3.3">Section 9.3.3</a>, with the Status field
set to 2 (unrecognized MH Type value).
o The Payload Proto field MUST be IPPROTO_NONE (59 decimal).
Otherwise, the node MUST discard the message and SHOULD send ICMP
Parameter Problem, Code 0, directly to the Source Address of the
packet as specified in <a href="./rfc4443">RFC 4443</a> [<a href="#ref-17" title=""Internet Control Message Protocol (ICMPv6) for the Internet Protocol Version 6 (IPv6) Specification"">17</a>]. Thus, no Binding Cache
information is used in sending the ICMP message. The Pointer
field in the ICMP message SHOULD point at the Payload Proto field.
o The Header Len field in the Mobility Header MUST NOT be less than
the length specified for this particular type of message in
<a href="#section-6.1">Section 6.1</a>. Otherwise, the node MUST discard the message and
SHOULD send ICMP Parameter Problem, Code 0, directly to the Source
Address of the packet as specified in <a href="./rfc4443">RFC 4443</a> [<a href="#ref-17" title=""Internet Control Message Protocol (ICMPv6) for the Internet Protocol Version 6 (IPv6) Specification"">17</a>]. (The Binding
Cache information is again not used.) The Pointer field in the
ICMP message SHOULD point at the Header Len field.
Subsequent checks depend on the particular Mobility Header.
<span class="h3"><a class="selflink" id="section-9.3" href="#section-9.3">9.3</a>. Packet Processing</span>
This section describes how the correspondent node sends packets to
the mobile node, and receives packets from it.
<span class="h4"><a class="selflink" id="section-9.3.1" href="#section-9.3.1">9.3.1</a>. Receiving Packets with Home Address Option</span>
Packets containing a Home Address option MUST be dropped if the given
home address is not a unicast routable address.
Mobile nodes can include a Home Address destination option in a
packet if they believe the correspondent node has a Binding Cache
entry for the home address of a mobile node. If the Next Header
value of the Destination Option is one of the following: {50 (ESP),
51 (AH), 135 (Mobility Header)}, the packet SHOULD be processed
normally. Otherwise, the packet MUST be dropped if there is no
corresponding Binding Cache entry. A corresponding Binding Cache
<span class="grey">Perkins, et al. Standards Track [Page 78]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-79" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
entry MUST have the same home address as appears in the Home Address
destination option, and the currently registered care-of address MUST
be equal to the source address of the packet.
If the packet is dropped due to the above tests, the correspondent
node MUST send the Binding Error message as described in
<a href="#section-9.3.3">Section 9.3.3</a>. The Status field in this message should be set to 1
(unknown binding for Home Address destination option).
The correspondent node MUST process the option in a manner consistent
with exchanging the Home Address field from the Home Address option
into the IPv6 header and replacing the original value of the Source
Address field there. After all IPv6 options have been processed, it
MUST be possible for upper layers to process the packet without the
knowledge that it came originally from a care-of address or that a
Home Address option was used.
The use of IPsec Authentication Header (AH) for the Home Address
option is not required, except that if the IPv6 header of a packet is
covered by AH, then the authentication MUST also cover the Home
Address option; this coverage is achieved automatically by the
definition of the Option Type code for the Home Address option, since
it indicates that the data within the option cannot change en route
to the packet's final destination, and thus the option is included in
the AH computation. By requiring that any authentication of the IPv6
header also cover the Home Address option, the security of the Source
Address field in the IPv6 header is not compromised by the presence
of a Home Address option.
When attempting to verify AH authentication data in a packet that
contains a Home Address option, the receiving node MUST calculate the
AH authentication data as if the following were true: the Home
Address option contains the care-of address, and the source IPv6
address field of the IPv6 header contains the home address. This
conforms with the calculation specified in <a href="#section-11.3.2">Section 11.3.2</a>.
<span class="h4"><a class="selflink" id="section-9.3.2" href="#section-9.3.2">9.3.2</a>. Sending Packets to a Mobile Node</span>
Before sending any packet, the sending node SHOULD examine its
Binding Cache for an entry for the destination address to which the
packet is being sent. If the sending node has a Binding Cache entry
for this address, the sending node SHOULD use a type 2 routing header
to route the packet to this mobile node (the destination node) by way
of its care-of address. However, the sending node MUST NOT do this
in the following cases:
o When sending an IPv6 Neighbor Discovery [<a href="#ref-18" title=""Neighbor Discovery for IP version 6 (IPv6)"">18</a>] packet.
<span class="grey">Perkins, et al. Standards Track [Page 79]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-80" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
o Where otherwise noted in <a href="#section-6.1">Section 6.1</a>.
When calculating authentication data in a packet that contains a type
2 routing header, the correspondent node MUST calculate the AH
authentication data as if the following were true: the routing header
contains the care-of address, the destination IPv6 address field of
the IPv6 header contains the home address, and the Segments Left
field is zero. The IPsec Security Policy Database lookup MUST based
on the mobile node's home address.
For instance, assuming there are no additional routing headers in
this packet beyond those needed by Mobile IPv6, the correspondent
node could set the fields in the packet's IPv6 header and routing
header as follows:
o The Destination Address in the packet's IPv6 header is set to the
mobile node's home address (the original destination address to
which the packet was being sent).
o The routing header is initialized to contain a single route
segment, containing the mobile node's care-of address copied from
the Binding Cache entry. The Segments Left field is, however,
temporarily set to zero.
The IP layer will insert the routing header before performing any
necessary IPsec processing. Once all IPsec processing has been
performed, the node swaps the IPv6 destination field with the Home
Address field in the routing header, sets the Segments Left field to
one, and sends the packet. This ensures the AH calculation is done
on the packet in the form it will have on the receiver after
advancing the routing header.
Following the definition of a type 2 routing header in <a href="#section-6.4">Section 6.4</a>,
this packet will be routed to the mobile node's care-of address,
where it will be delivered to the mobile node (the mobile node has
associated the care-of address with its network interface).
Note that following the above conceptual model in an implementation
creates some additional requirements for path MTU discovery since the
layer that determines the packet size (e.g., TCP and applications
using UDP) needs to be aware of the size of the headers added by the
IP layer on the sending node.
If, instead, the sending node has no Binding Cache entry for the
destination address to which the packet is being sent, the sending
node simply sends the packet normally, with no routing header. If
the destination node is not a mobile node (or is a mobile node that
is currently at home), the packet will be delivered directly to this
<span class="grey">Perkins, et al. Standards Track [Page 80]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-81" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
node and processed normally by it. If, however, the destination node
is a mobile node that is currently away from home, the packet will be
intercepted by the mobile node's home agent and tunneled to the
mobile node's current primary care-of address.
<span class="h4"><a class="selflink" id="section-9.3.3" href="#section-9.3.3">9.3.3</a>. Sending Binding Error Messages</span>
Sections <a href="#section-9.2">9.2</a> and <a href="#section-9.3.1">9.3.1</a> describe error conditions that lead to a need
to send a Binding Error message.
A Binding Error message is sent directly to the address that appeared
in the IPv6 Source Address field of the offending packet. If the
Source Address field does not contain a unicast address, the Binding
Error message MUST NOT be sent.
The Home Address field in the Binding Error message MUST be copied
from the Home Address field in the Home Address destination option of
the offending packet, or set to the unspecified address if no such
option appeared in the packet.
Note that the IPv6 Source Address and Home Address field values
discussed above are the values from the wire, i.e., before any
modifications possibly performed as specified in <a href="#section-9.3.1">Section 9.3.1</a>.
Binding Error messages SHOULD be subject to rate limiting in the same
manner as is done for ICMPv6 messages [<a href="#ref-17" title=""Internet Control Message Protocol (ICMPv6) for the Internet Protocol Version 6 (IPv6) Specification"">17</a>].
<span class="h4"><a class="selflink" id="section-9.3.4" href="#section-9.3.4">9.3.4</a>. Receiving ICMP Error Messages</span>
When the correspondent node has a Binding Cache entry for a mobile
node, all traffic destined to the mobile node goes directly to the
current care-of address of the mobile node using a routing header.
Any ICMP error message caused by packets on their way to the care-of
address will be returned in the normal manner to the correspondent
node.
On the other hand, if the correspondent node has no Binding Cache
entry for the mobile node, the packet will be routed through the
mobile node's home link. Any ICMP error message caused by the packet
on its way to the mobile node while in the tunnel, will be
transmitted to the mobile node's home agent. By the definition of
IPv6 encapsulation [<a href="#ref-7" title=""Generic Packet Tunneling in IPv6 Specification"">7</a>], the home agent MUST relay certain ICMP error
messages back to the original sender of the packet, which in this
case is the correspondent node.
Thus, in all cases, any meaningful ICMP error messages caused by
packets from a correspondent node to a mobile node will be returned
to the correspondent node. If the correspondent node receives
<span class="grey">Perkins, et al. Standards Track [Page 81]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-82" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
persistent ICMP Destination Unreachable messages after sending
packets to a mobile node based on an entry in its Binding Cache, the
correspondent node SHOULD delete this Binding Cache entry. Note that
if the mobile node continues to send packets with the Home Address
destination option to this correspondent node, they will be dropped
due to the lack of a binding. For this reason it is important that
only persistent ICMP messages lead to the deletion of the Binding
Cache entry.
<span class="h3"><a class="selflink" id="section-9.4" href="#section-9.4">9.4</a>. Return Routability Procedure</span>
This subsection specifies actions taken by a correspondent node
during the return routability procedure.
<span class="h4"><a class="selflink" id="section-9.4.1" href="#section-9.4.1">9.4.1</a>. Receiving Home Test Init Messages</span>
Upon receiving a Home Test Init message, the correspondent node
verifies the following:
o The packet MUST NOT include a Home Address destination option.
Any packet carrying a Home Test Init message that fails to satisfy
this test MUST be silently ignored.
Otherwise, in preparation for sending the corresponding Home Test
Message, the correspondent node checks that it has the necessary
material to engage in a return routability procedure, as specified in
<a href="#section-5.2">Section 5.2</a>. The correspondent node MUST have a secret Kcn and a
nonce. If it does not have this material yet, it MUST produce it
before continuing with the return routability procedure.
<a href="#section-9.4.3">Section 9.4.3</a> specifies further processing.
<span class="h4"><a class="selflink" id="section-9.4.2" href="#section-9.4.2">9.4.2</a>. Receiving Care-of Test Init Messages</span>
Upon receiving a Care-of Test Init message, the correspondent node
verifies the following:
o The packet MUST NOT include a Home Address destination option.
Any packet carrying a Care-of Test Init message that fails to satisfy
this test MUST be silently ignored.
Otherwise, in preparation for sending the corresponding Care-of Test
Message, the correspondent node checks that it has the necessary
material to engage in a return routability procedure in the manner
described in <a href="#section-9.4.1">Section 9.4.1</a>.
<span class="grey">Perkins, et al. Standards Track [Page 82]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-83" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
<a href="#section-9.4.4">Section 9.4.4</a> specifies further processing.
<span class="h4"><a class="selflink" id="section-9.4.3" href="#section-9.4.3">9.4.3</a>. Sending Home Test Messages</span>
The correspondent node creates a home keygen token and uses the
current nonce index as the Home Nonce Index. It then creates a Home
Test message (<a href="#section-6.1.5">Section 6.1.5</a>) and sends it to the mobile node at the
latter's home address.
<span class="h4"><a class="selflink" id="section-9.4.4" href="#section-9.4.4">9.4.4</a>. Sending Care-of Test Messages</span>
The correspondent node creates a care-of keygen token and uses the
current nonce index as the Care-of Nonce Index. It then creates a
Care-of Test message (<a href="#section-6.1.6">Section 6.1.6</a>) and sends it to the mobile node
at the latter's care-of address.
<span class="h3"><a class="selflink" id="section-9.5" href="#section-9.5">9.5</a>. Processing Bindings</span>
This section explains how the correspondent node processes messages
related to bindings. These messages are:
o Binding Update
o Binding Refresh Request
o Binding Acknowledgement
o Binding Error
<span class="h4"><a class="selflink" id="section-9.5.1" href="#section-9.5.1">9.5.1</a>. Receiving Binding Updates</span>
Before accepting a Binding Update, the receiving node MUST validate
the Binding Update according to the following tests:
o The packet MUST contain a unicast routable home address, either in
the Home Address option or in the Source Address, if the Home
Address option is not present.
o The Sequence Number field in the Binding Update is greater than
the Sequence Number received in the previous valid Binding Update
for this home address, if any.
If the receiving node has no Binding Cache entry for the indicated
home address, it MUST accept any Sequence Number value in a
received Binding Update from this mobile node.
<span class="grey">Perkins, et al. Standards Track [Page 83]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-84" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
This Sequence Number comparison MUST be performed modulo 2**16,
i.e., the number is a free running counter represented modulo
65536. A Sequence Number in a received Binding Update is
considered less than or equal to the last received number if its
value lies in the range of the last received number and the
preceding 32768 values, inclusive. For example, if the last
received sequence number was 15, then messages with sequence
numbers 0 through 15, as well as 32783 through 65535, would be
considered less than or equal.
When the Home Registration (H) bit is not set, the following are also
required:
o A Nonce Indices mobility option MUST be present, and the Home and
Care-of Nonce Index values in this option MUST be recent enough to
be recognized by the correspondent node. (Care-of Nonce Index
values are not inspected for requests to delete a binding.)
o The correspondent node MUST re-generate the home keygen token and
the care-of keygen token from the information contained in the
packet. It then generates the binding management key Kbm and uses
it to verify the authenticator field in the Binding Update as
specified in <a href="#section-6.1.7">Section 6.1.7</a>.
o The Binding Authorization Data mobility option MUST be present,
and its contents MUST satisfy rules presented in <a href="#section-5.2.6">Section 5.2.6</a>.
Note that a care-of address different from the Source Address MAY
have been specified by including an Alternate Care-of Address
mobility option in the Binding Update. When such a message is
received and the return routability procedure is used as an
authorization method, the correspondent node MUST verify the
authenticator by using the address within the Alternate Care-of
Address in the calculations.
o The Binding Authorization Data mobility option MUST be the last
option and MUST NOT have trailing padding.
If the Home Registration (H) bit is set, the Nonce Indices mobility
option MUST NOT be present.
If the mobile node sends a sequence number that is not greater than
the sequence number from the last valid Binding Update for this home
address, then the receiving node MUST send back a Binding
Acknowledgement with status code 135, and the last accepted sequence
number in the Sequence Number field of the Binding Acknowledgement.
<span class="grey">Perkins, et al. Standards Track [Page 84]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-85" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
If a binding already exists for the given home address and the home
registration flag has a different value than the Home Registration
(H) bit in the Binding Update, then the receiving node MUST send back
a Binding Acknowledgement with status code 139 (registration type
change disallowed). The home registration flag stored in the Binding
Cache entry MUST NOT be changed.
If the receiving node no longer recognizes the Home Nonce Index
value, Care-of Nonce Index value, or both values from the Binding
Update, then the receiving node MUST send back a Binding
Acknowledgement with status code 136, 137, or 138, respectively.
Packets carrying Binding Updates that fail to satisfy all of these
tests for any reason other than insufficiency of the Sequence Number,
registration type change, or expired nonce index values, MUST be
silently discarded.
If the Binding Update is valid according to the tests above, then the
Binding Update is processed further as follows:
o The Sequence Number value received from a mobile node in a Binding
Update is stored by the receiving node in its Binding Cache entry
for the given home address.
o If the Lifetime specified in the Binding Update is not zero, then
this is a request to cache a binding for the home address. If the
Home Registration (H) bit is set in the Binding Update, the
Binding Update is processed according to the procedure specified
in <a href="#section-10.3.1">Section 10.3.1</a>; otherwise, it is processed according to the
procedure specified in <a href="#section-9.5.2">Section 9.5.2</a>.
o If the Lifetime specified in the Binding Update is zero, then this
is a request to delete the cached binding for the home address.
In this case, the Binding Update MUST include a valid home nonce
index, and the care-of nonce index MUST be ignored by the
correspondent node. The generation of the binding management key
depends then exclusively on the home keygen token (<a href="#section-5.2.5">Section 5.2.5</a>).
If the Home Registration (H) bit is set in the Binding Update, the
Binding Update is processed according to the procedure specified
in <a href="#section-10.3.2">Section 10.3.2</a>; otherwise, it is processed according to the
procedure specified in <a href="#section-9.5.3">Section 9.5.3</a>.
The specified care-of address MUST be determined as follows:
o If the Alternate Care-of Address option is present, the care-of
address is the address in that option.
<span class="grey">Perkins, et al. Standards Track [Page 85]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-86" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
o Otherwise, the care-of address is the Source Address field in the
packet's IPv6 header.
The home address for the binding MUST be determined as follows:
o If the Home Address destination option is present, the home
address is the address in that option.
o Otherwise, the home address is the Source Address field in the
packet's IPv6 header.
<span class="h4"><a class="selflink" id="section-9.5.2" href="#section-9.5.2">9.5.2</a>. Requests to Cache a Binding</span>
This section describes the processing of a valid Binding Update that
requests a node to cache a binding, for which the Home Registration
(H) bit is not set in the Binding Update.
In this case, the receiving node SHOULD create a new entry in its
Binding Cache for this home address, or update its existing Binding
Cache entry for this home address, if such an entry already exists.
The lifetime for the Binding Cache entry is initialized from the
Lifetime field specified in the Binding Update, although this
lifetime MAY be reduced by the node caching the binding; the lifetime
for the Binding Cache entry MUST NOT be greater than the Lifetime
value specified in the Binding Update. Any Binding Cache entry MUST
be deleted after the expiration of its lifetime.
Note that if the mobile node did not request a Binding
Acknowledgement, then it is not aware of the selected shorter
lifetime. The mobile node may thus use route optimization and send
packets with the Home Address destination option. As discussed in
<a href="#section-9.3.1">Section 9.3.1</a>, such packets will be dropped if there is no binding.
This situation is recoverable, but can cause temporary packet loss.
The correspondent node MAY refuse to accept a new Binding Cache entry
if it does not have sufficient resources. A new entry MAY also be
refused if the correspondent node believes its resources are utilized
more efficiently in some other purpose, such as serving another
mobile node with higher amount of traffic. In both cases the
correspondent node SHOULD return a Binding Acknowledgement with
status value 130.
<span class="h4"><a class="selflink" id="section-9.5.3" href="#section-9.5.3">9.5.3</a>. Requests to Delete a Binding</span>
This section describes the processing of a valid Binding Update that
requests a node to delete a binding when the Home Registration (H)
bit is not set in the Binding Update.
<span class="grey">Perkins, et al. Standards Track [Page 86]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-87" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
Any existing binding for the given home address MUST be deleted. A
Binding Cache entry for the home address MUST NOT be created in
response to receiving the Binding Update.
If the Binding Cache entry was created by use of return routability
nonces, the correspondent node MUST ensure that the same nonces are
not used again with the particular home and care-of address. If both
nonces are still valid, the correspondent node has to remember the
particular combination of nonce indices, addresses, and sequence
number as illegal until at least one of the nonces has become too
old.
<span class="h4"><a class="selflink" id="section-9.5.4" href="#section-9.5.4">9.5.4</a>. Sending Binding Acknowledgements</span>
A Binding Acknowledgement may be sent to indicate receipt of a
Binding Update as follows:
o If the Binding Update was discarded as described in Sections <a href="#section-9.2">9.2</a>
or 9.5.1, a Binding Acknowledgement MUST NOT be sent. Otherwise,
the treatment depends on the following rules.
o If the Acknowledge (A) bit is set in the Binding Update, a Binding
Acknowledgement MUST be sent. Otherwise, the treatment depends on
the next rule.
o If the node rejects the Binding Update due to an expired nonce
index, sequence number being out of window (<a href="#section-9.5.1">Section 9.5.1</a>), or
insufficiency of resources (<a href="#section-9.5.2">Section 9.5.2</a>), a Binding
Acknowledgement MUST be sent. If the node accepts the Binding
Update, the Binding Acknowledgement SHOULD NOT be sent.
If the node accepts the Binding Update and creates or updates an
entry for this binding, the Status field in the Binding
Acknowledgement MUST be set to a value less than 128. Otherwise, the
Status field MUST be set to a value greater than or equal to 128.
Values for the Status field are described in <a href="#section-6.1.8">Section 6.1.8</a> and in the
IANA registry of assigned numbers [<a href="#ref-30" title=""Assigned Numbers: RFC 1700 is Replaced by an On- line Database"">30</a>].
If the Status field in the Binding Acknowledgement contains the value
136 (expired home nonce index), 137 (expired care-of nonce index), or
138 (expired nonces), then the message MUST NOT include the Binding
Authorization Data mobility option. Otherwise, the Binding
Authorization Data mobility option MUST be included, and MUST meet
the specific authentication requirements for Binding Acknowledgements
as defined in <a href="#section-5.2">Section 5.2</a>.
<span class="grey">Perkins, et al. Standards Track [Page 87]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-88" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
If the Source Address field of the IPv6 header that carried the
Binding Update does not contain a unicast address, the Binding
Acknowledgement MUST NOT be sent and the Binding Update packet MUST
be silently discarded. Otherwise, the acknowledgement MUST be sent
to the Source Address. Unlike the treatment of regular packets, this
addressing procedure does not use information from the Binding Cache.
However, a routing header is needed in some cases. If the Source
Address is the home address of the mobile node, i.e., the Binding
Update did not contain a Home Address destination option, then the
Binding Acknowledgement MUST be sent to that address and the routing
header MUST NOT be used. Otherwise, the Binding Acknowledgement MUST
be sent using a type 2 routing header that contains the mobile node's
home address.
<span class="h4"><a class="selflink" id="section-9.5.5" href="#section-9.5.5">9.5.5</a>. Sending Binding Refresh Requests</span>
If a Binding Cache entry being deleted is still in active use when
sending packets to a mobile node, then the next packet sent to the
mobile node will be routed normally to the mobile node's home link.
Communication with the mobile node continues, but the tunneling from
the home network creates additional overhead and latency in
delivering packets to the mobile node.
If the sender knows that the Binding Cache entry is still in active
use, it MAY send a Binding Refresh Request message to the mobile node
in an attempt to avoid this overhead and latency due to deleting and
recreating the Binding Cache entry. This message is always sent to
the home address of the mobile node.
The correspondent node MAY retransmit Binding Refresh Request
messages as long as the rate limitation is applied. The
correspondent node MUST stop retransmitting when it receives a
Binding Update.
<span class="h3"><a class="selflink" id="section-9.6" href="#section-9.6">9.6</a>. Cache Replacement Policy</span>
Conceptually, a node maintains a separate timer for each entry in its
Binding Cache. When creating or updating a Binding Cache entry in
response to a received and accepted Binding Update, the node sets the
timer for this entry to the specified Lifetime period. Any entry in
a node's Binding Cache MUST be deleted after the expiration of the
Lifetime specified in the Binding Update from which the entry was
created or last updated.
Each node's Binding Cache will, by necessity, have a finite size. A
node MAY use any reasonable local policy for managing the space
within its Binding Cache.
<span class="grey">Perkins, et al. Standards Track [Page 88]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-89" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
A node MAY choose to drop any entry already in its Binding Cache in
order to make space for a new entry. For example, a "least-recently
used" (LRU) strategy for cache entry replacement among entries should
work well, unless the size of the Binding Cache is substantially
insufficient. When entries are deleted, the correspondent node MUST
follow the rules in <a href="#section-5.2.8">Section 5.2.8</a> in order to guard the return
routability procedure against replay attacks.
If the node sends a packet to a destination for which it has dropped
the entry from its Binding Cache, the packet will be routed through
the mobile node's home link. The mobile node can detect this and
establish a new binding if necessary.
However, if the mobile node believes that the binding still exists,
it may use route optimization and send packets with the Home Address
destination option. This can create temporary packet loss, as
discussed earlier, in the context of binding lifetime reductions
performed by the correspondent node (<a href="#section-9.5.2">Section 9.5.2</a>).
<span class="h2"><a class="selflink" id="section-10" href="#section-10">10</a>. Home Agent Operation</span>
<span class="h3"><a class="selflink" id="section-10.1" href="#section-10.1">10.1</a>. Conceptual Data Structures</span>
Each home agent MUST maintain a Binding Cache and Home Agents List.
The rules for maintaining a Binding Cache are the same for home
agents and correspondent nodes and have already been described in
<a href="#section-9.1">Section 9.1</a>.
The Home Agents List is maintained by each home agent, recording
information about each router on the same link that is acting as a
home agent. This list is used by the dynamic home agent address
discovery mechanism. A router is known to be acting as a home agent,
if it sends a Router Advertisement in which the Home Agent (H) bit is
set. When the lifetime for a list entry (defined below) expires,
that entry is removed from the Home Agents List. The Home Agents
List is similar to the Default Router List conceptual data structure
maintained by each host for Neighbor Discovery [<a href="#ref-18" title=""Neighbor Discovery for IP version 6 (IPv6)"">18</a>]. The Home Agents
List MAY be implemented in any manner consistent with the external
behavior described in this document.
Each home agent maintains a separate Home Agents List for each link
on which it is serving as a home agent. A new entry is created or an
existing entry is updated in response to receipt of a valid Router
Advertisement in which the Home Agent (H) bit is set. Each Home
Agents List entry conceptually contains the following fields:
<span class="grey">Perkins, et al. Standards Track [Page 89]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-90" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
o The link-local IP address of a home agent on the link. This
address is learned through the Source Address of the Router
Advertisements [<a href="#ref-18" title=""Neighbor Discovery for IP version 6 (IPv6)"">18</a>] received from the router.
o One or more global IP addresses for this home agent. Global
addresses are learned through Prefix Information options with the
Router Address (R) bit set and received in Router Advertisements
from this link-local address. Global addresses for the router in
a Home Agents List entry MUST be deleted once the prefix
associated with that address is no longer valid [<a href="#ref-18" title=""Neighbor Discovery for IP version 6 (IPv6)"">18</a>].
o The remaining lifetime of this Home Agents List entry. If a Home
Agent Information Option is present in a Router Advertisement
received from a home agent, the lifetime of the Home Agents List
entry representing that home agent is initialized from the Home
Agent Lifetime field in the option (if present); otherwise, the
lifetime is initialized from the Router Lifetime field in the
received Router Advertisement. If Home Agents List entry lifetime
reaches zero, the entry MUST be deleted from the Home Agents List.
o The preference for this home agent; higher values indicate a more
preferable home agent. The preference value is taken from the
Home Agent Preference field in the received Router Advertisement,
if the Router Advertisement contains a Home Agent Information
Option and is otherwise set to the default value of 0. A home
agent uses this preference in ordering the Home Agents List when
it sends an ICMP Home Agent Address Discovery message.
<span class="h3"><a class="selflink" id="section-10.2" href="#section-10.2">10.2</a>. Processing Mobility Headers</span>
All IPv6 home agents MUST observe the rules described in <a href="#section-9.2">Section 9.2</a>
when processing Mobility Headers.
<span class="h3"><a class="selflink" id="section-10.3" href="#section-10.3">10.3</a>. Processing Bindings</span>
<span class="h4"><a class="selflink" id="section-10.3.1" href="#section-10.3.1">10.3.1</a>. Primary Care-of Address Registration</span>
When a node receives a Binding Update, it MUST validate it and
determine the type of Binding Update according to the steps described
in <a href="#section-9.5.1">Section 9.5.1</a>. Furthermore, it MUST authenticate the Binding
Update as described in <a href="#section-5.1">Section 5.1</a>. An authorization step specific
for the home agent is also needed to ensure that only the right node
can control a particular home address. This is provided through the
home address unequivocally identifying the security association that
must be used.
<span class="grey">Perkins, et al. Standards Track [Page 90]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-91" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
This section describes the processing of a valid and authorized
Binding Update when it requests the registration of the mobile node's
primary care-of address.
To begin processing the Binding Update, the home agent MUST perform
the following sequence of tests:
o If the node implements only correspondent node functionality, or
has not been configured to act as a home agent, then the node MUST
reject the Binding Update. The node MUST also return a Binding
Acknowledgement to the mobile node, in which the Status field is
set to 131 (home registration not supported).
o Else, if the home address for the binding (the Home Address field
in the packet's Home Address option) is not an on-link IPv6
address with respect to the home agent's current Prefix List, then
the home agent MUST reject the Binding Update and SHOULD return a
Binding Acknowledgement to the mobile node, in which the Status
field is set to 132 (not home subnet).
o Else, if the home agent chooses to reject the Binding Update for
any other reason (e.g., insufficient resources to serve another
mobile node as a home agent), then the home agent SHOULD return a
Binding Acknowledgement to the mobile node, in which the Status
field is set to an appropriate value to indicate the reason for
the rejection.
o A Home Address destination option MUST be present in the message.
It MUST be validated as described in <a href="#section-9.3.1">Section 9.3.1</a> with the
following additional rule. The Binding Cache entry existence test
MUST NOT be done for IPsec packets when the Home Address option
contains an address for which the receiving node could act as a
home agent.
If home agent accepts the Binding Update, it MUST then create a new
entry in its Binding Cache for this mobile node or update its
existing Binding Cache entry, if such an entry already exists. The
Home Address field as received in the Home Address option provides
the home address of the mobile node.
The home agent MUST mark this Binding Cache entry as a home
registration to indicate that the node is serving as a home agent for
this binding. Binding Cache entries marked as a home registration
MUST be excluded from the normal cache replacement policy used for
the Binding Cache (<a href="#section-9.6">Section 9.6</a>) and MUST NOT be removed from the
Binding Cache until the expiration of the Lifetime period.
<span class="grey">Perkins, et al. Standards Track [Page 91]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-92" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
Unless this home agent already has a binding for the given home
address, the home agent MUST perform Duplicate Address Detection [<a href="#ref-19" title=""IPv6 Stateless Address Autoconfiguration"">19</a>]
on the mobile node's home link before returning the Binding
Acknowledgement. This ensures that no other node on the home link
was using the mobile node's home address when the Binding Update
arrived. If this Duplicate Address Detection fails for the given
home address or an associated link local address, then the home agent
MUST reject the complete Binding Update and MUST return a Binding
Acknowledgement to the mobile node, in which the Status field is set
to 134 (Duplicate Address Detection failed). When the home agent
sends a successful Binding Acknowledgement to the mobile node, the
home agent assures to the mobile node that its address(es) will be
kept unique by the home agent for as long as the lifetime was granted
for the binding.
The specific addresses, which are to be tested before accepting the
Binding Update and later to be defended by performing Duplicate
Address Detection, depend on the setting of the Link-Local Address
Compatibility (L) bit, as follows:
o L=0: Defend only the given address. Do not derive a link-local
address.
o L=1: Defend both the given non link-local unicast (home) address
and the derived link-local. The link-local address is derived by
replacing the subnet prefix in the mobile node's home address with
the link-local prefix.
The lifetime of the Binding Cache entry depends on a number of
factors:
o The lifetime for the Binding Cache entry MUST NOT be greater than
the Lifetime value specified in the Binding Update.
o The lifetime for the Binding Cache entry MUST NOT be greater than
the remaining valid lifetime for the subnet prefix in the mobile
node's home address specified with the Binding Update. The
remaining valid lifetime for this prefix is determined by the home
agent based on its own Prefix List entry [<a href="#ref-18" title=""Neighbor Discovery for IP version 6 (IPv6)"">18</a>].
The remaining preferred lifetime SHOULD NOT have any impact on the
lifetime for the Binding Cache entry.
The home agent MUST remove a binding when the valid lifetime of
the prefix associated with it expires.
<span class="grey">Perkins, et al. Standards Track [Page 92]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-93" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
o The home agent MAY further decrease the specified lifetime for the
binding, for example, based on a local policy. The resulting
lifetime is stored by the home agent in the Binding Cache entry,
and this Binding Cache entry MUST be deleted by the home agent
after the expiration of this lifetime.
Regardless of the setting of the Acknowledge (A) bit in the Binding
Update, the home agent MUST return a Binding Acknowledgement to the
mobile node constructed as follows:
o The Status field MUST be set to a value indicating success. The
value 1 (accepted but prefix discovery necessary) MUST be used if
the subnet prefix of the specified home address is deprecated, or
becomes deprecated during the lifetime of the binding, or becomes
invalid at the end of the lifetime. The value 0 MUST be used
otherwise. For the purposes of comparing the binding and prefix
lifetimes, the prefix lifetimes are first converted into units of
four seconds by ignoring the two least significant bits.
o The Key Management Mobility Capability (K) bit is set if the
following conditions are all fulfilled, and cleared otherwise:
* The Key Management Mobility Capability (K) bit was set in the
Binding Update.
* The IPsec security associations between the mobile node and the
home agent have been established dynamically.
* The home agent has the capability to update its endpoint in the
used key management protocol to the new care-of address every
time it moves.
Depending on the final value of the bit in the Binding
Acknowledgement, the home agent SHOULD perform the following
actions:
K = 0
Discard key management connections, if any, to the old care-of
address. If the mobile node did not have a binding before
sending this Binding Update, discard the connections to the
home address.
K = 1
Move the peer endpoint of the key management protocol
connection, if any, to the new care-of address.
<span class="grey">Perkins, et al. Standards Track [Page 93]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-94" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
o The Sequence Number field MUST be copied from the Sequence Number
given in the Binding Update.
o The Lifetime field MUST be set to the remaining lifetime for the
binding as set by the home agent in its home registration Binding
Cache entry for the mobile node, as described above.
o If the home agent stores the Binding Cache entry in nonvolatile
storage, then the Binding Refresh Advice mobility option MUST be
omitted. Otherwise, the home agent MAY include this option to
suggest that the mobile node refreshes its binding before the
actual lifetime of the binding ends.
If the Binding Refresh Advice mobility option is present, the
Refresh Interval field in the option MUST be set to a value less
than the Lifetime value being returned in the Binding
Acknowledgement. This indicates that the mobile node SHOULD
attempt to refresh its home registration at the indicated shorter
interval. The home agent MUST still retain the registration for
the Lifetime period, even if the mobile node does not refresh its
registration within the Refresh period.
The rules for selecting the Destination IP address (and possibly
routing header construction) for the Binding Acknowledgement to the
mobile node are the same as in <a href="#section-9.5.4">Section 9.5.4</a>.
In addition, the home agent MUST follow the procedure defined in
<a href="#section-10.4.1">Section 10.4.1</a> to intercept packets on the mobile node's home link
addressed to the mobile node, while the home agent is serving as the
home agent for this mobile node. The home agent MUST also be
prepared to accept reverse-tunneled packets from the new care-of
address of the mobile node, as described in <a href="#section-10.4.5">Section 10.4.5</a>. Finally,
the home agent MUST also propagate new home network prefixes, as
described in <a href="#section-10.6">Section 10.6</a>.
<span class="h4"><a class="selflink" id="section-10.3.2" href="#section-10.3.2">10.3.2</a>. Primary Care-of Address De-Registration</span>
A binding may need to be de-registered when the mobile node returns
home or when the mobile node knows that it will not have any care-of
addresses in the visited network.
A Binding Update is validated and authorized in the manner described
in the previous section; note that when the mobile node de-registers
when it is at home, it MAY choose to omit the Home Address
destination option, in which case the mobile node's home address is
the source IP address of the de-registration Binding Update. This
<span class="grey">Perkins, et al. Standards Track [Page 94]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-95" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
section describes the processing of a valid Binding Update that
requests the receiving node to no longer serve as its home agent, de-
registering its primary care-of address.
To begin processing the Binding Update, the home agent MUST perform
the following test:
o If the receiving node has no entry marked as a home registration
in its Binding Cache for this mobile node, then this node MUST
reject the Binding Update and SHOULD return a Binding
Acknowledgement to the mobile node, in which the Status field is
set to 133 (not home agent for this mobile node).
If the home agent does not reject the Binding Update as described
above, then the home agent MUST return a Binding Acknowledgement to
the mobile node, constructed as follows:
o The Status field MUST be set to a value 0, indicating success.
o The Key Management Mobility Capability (K) bit is set or cleared
and actions based on its value are performed as described in the
previous section. The mobile node's home address is used as its
new care-of address for the purposes of moving the key management
connection to a new endpoint.
o The Sequence Number field MUST be copied from the Sequence Number
given in the Binding Update.
o The Lifetime field MUST be set to zero.
o The Binding Refresh Advice mobility option MUST be omitted.
The rules for selecting the Destination IP address (and, if required,
routing header construction) for the Binding Acknowledgement to the
mobile node are the same as in the previous section. When the Status
field in the Binding Acknowledgement is greater than or equal to 128
and the Source Address of the Binding Update is on the home link, and
the Binding Update came from a mobile node on the same link, the home
agent MUST send it to the mobile node's link-layer address (retrieved
either from the Binding Update or through Neighbor Solicitation).
When a mobile node sends a Binding Update to refresh the binding from
the visited link and soon after moves to the home link and sends a
de-registration Binding Update, a race condition can happen if the
first Binding Update gets delayed. The delayed Binding Update can
cause the home agent to create a new Binding Cache entry for a mobile
<span class="grey">Perkins, et al. Standards Track [Page 95]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-96" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
node that had just attached to the home link and successfully deleted
the binding. This would prevent the mobile node from using its home
address from the home link.
In order to prevent this, the home agent SHOULD NOT remove the
Binding Cache entry immediately after receiving the de-registration
Binding Update from the mobile node. It SHOULD mark the Binding
Cache entry as invalid, and MUST stop intercepting packets on the
mobile node's home link that are addressed to the mobile node
(<a href="#section-10.4.1">Section 10.4.1</a>). The home agent should wait for
MAX_DELETE_BCE_TIMEOUT (<a href="#section-12">Section 12</a>) seconds before removing the
Binding Cache entry completely. In the scenario described above, if
the home agent receives the delayed Binding Update that the mobile
node sent from the visited link, it would reject the message since
the sequence number would be less than the last received de-
registration Binding Update from the home link. The home agent would
then send a Binding Acknowledgment with status '135' (Sequence number
out of window) to the care-of address on the visited link. The
mobile node can continue using the home address from the home link.
<span class="h3"><a class="selflink" id="section-10.4" href="#section-10.4">10.4</a>. Packet Processing</span>
<span class="h4"><a class="selflink" id="section-10.4.1" href="#section-10.4.1">10.4.1</a>. Intercepting Packets for a Mobile Node</span>
While a node is serving as the home agent for a mobile node it MUST
attempt to intercept packets on the mobile node's home link that are
addressed to the mobile node.
In order to do this, when a node begins serving as the home agent it
MUST have performed Duplicate Address Detection (as specified in
<a href="#section-10.3.1">Section 10.3.1</a>), and subsequently it MUST multicast onto the home
link a Neighbor Advertisement message [<a href="#ref-18" title=""Neighbor Discovery for IP version 6 (IPv6)"">18</a>] on behalf of the mobile
node. For the home address specified in the Binding Update, the home
agent sends a Neighbor Advertisement message [<a href="#ref-18" title=""Neighbor Discovery for IP version 6 (IPv6)"">18</a>] to the all-nodes
multicast address on the home link to advertise the home agent's own
link-layer address for this IP address on behalf of the mobile node.
If the Link-Layer Address Compatibility (L) flag has been specified
in the Binding Update, the home agent MUST do the same for the link-
local address of the mobile node.
All fields in each Neighbor Advertisement message SHOULD be set in
the same way they would be set by the mobile node if it was sending
this Neighbor Advertisement [<a href="#ref-18" title=""Neighbor Discovery for IP version 6 (IPv6)"">18</a>] while at home, with the following
exceptions:
o The Target Address in the Neighbor Advertisement MUST be set to
the specific IP address for the mobile node.
<span class="grey">Perkins, et al. Standards Track [Page 96]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-97" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
o The Advertisement MUST include a Target Link-layer Address option
specifying the home agent's link-layer address.
o The Router (R) bit in the Advertisement MUST be set to zero.
o The Solicited (S) flag in the Advertisement MUST NOT be set, since
it was not solicited by any Neighbor Solicitation.
o The Override (O) flag in the Advertisement MUST be set, indicating
that the Advertisement SHOULD override any existing Neighbor Cache
entry at any node receiving it.
o The Source Address in the IPv6 header MUST be set to the home
agent's IP address on the interface used to send the
advertisement.
Any node on the home link that receives one of the Neighbor
Advertisement messages (described above) will update its Neighbor
Cache to associate the mobile node's address with the home agent's
link-layer address, causing it to transmit any future packets
normally destined to the mobile node to the mobile node's home agent.
Since multicasting on the local link (such as Ethernet) is typically
not guaranteed to be reliable, the home agent MAY retransmit this
Neighbor Advertisement message up to MAX_NEIGHBOR_ADVERTISEMENT (see
[<a href="#ref-18" title=""Neighbor Discovery for IP version 6 (IPv6)"">18</a>]) times to increase its reliability. It is still possible that
some nodes on the home link will not receive any of the Neighbor
Advertisements, but these nodes will eventually be able to detect the
link-layer address change for the mobile node's address through use
of Neighbor Unreachability Detection [<a href="#ref-18" title=""Neighbor Discovery for IP version 6 (IPv6)"">18</a>].
While a node is serving as a home agent for some mobile node, the
home agent uses IPv6 Neighbor Discovery [<a href="#ref-18" title=""Neighbor Discovery for IP version 6 (IPv6)"">18</a>] to intercept unicast
packets on the home link addressed to the mobile node. In order to
intercept packets in this way, the home agent MUST act as a proxy for
this mobile node and reply to any received Neighbor Solicitations for
it. When a home agent receives a Neighbor Solicitation, it MUST
check if the Target Address specified in the message matches the
address of any mobile node for which it has a Binding Cache entry
marked as a home registration.
If such an entry exists in the home agent's Binding Cache, the home
agent MUST reply to the Neighbor Solicitation with a Neighbor
Advertisement giving the home agent's own link-layer address as the
link-layer address for the specified Target Address. In addition,
the Router (R) bit in the Advertisement MUST be set to zero. Acting
<span class="grey">Perkins, et al. Standards Track [Page 97]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-98" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
as a proxy in this way allows other nodes on the mobile node's home
link to resolve the mobile node's address and for the home agent to
defend these addresses on the home link for Duplicate Address
Detection [<a href="#ref-18" title=""Neighbor Discovery for IP version 6 (IPv6)"">18</a>].
<span class="h4"><a class="selflink" id="section-10.4.2" href="#section-10.4.2">10.4.2</a>. Processing Intercepted Packets</span>
For any packet sent to a mobile node from the mobile node's home
agent (in which the home agent is the original sender of the packet),
the home agent is operating as a correspondent node of the mobile
node for this packet and the procedures described in <a href="#section-9.3.2">Section 9.3.2</a>
apply. The home agent then uses a routing header to route the packet
to the mobile node by way of the primary care-of address in the home
agent's Binding Cache.
While the mobile node is away from home, the home agent intercepts
any packets on the home link addressed to the mobile node's home
address, as described in <a href="#section-10.4.1">Section 10.4.1</a>. In order to forward each
intercepted packet to the mobile node, the home agent MUST tunnel the
packet to the mobile node using IPv6 encapsulation [<a href="#ref-7" title=""Generic Packet Tunneling in IPv6 Specification"">7</a>]. When a home
agent encapsulates an intercepted packet for forwarding to the mobile
node, the home agent sets the Source Address in the new tunnel IP
header to the home agent's own IP address and sets the Destination
Address in the tunnel IP header to the mobile node's primary care-of
address. When received by the mobile node, normal processing of the
tunnel header [<a href="#ref-7" title=""Generic Packet Tunneling in IPv6 Specification"">7</a>] will result in decapsulation and processing of the
original packet by the mobile node.
However, packets addressed to the mobile node's link-local address
MUST NOT be tunneled to the mobile node. Instead, these packets MUST
be discarded and the home agent SHOULD return an ICMP Destination
Unreachable, Code 3, message to the packet's Source Address (unless
this Source Address is a multicast address).
Interception and tunneling of the following multicast addressed
packets on the home network are only done if the home agent supports
multicast group membership control messages from the mobile node as
described in the next section. Tunneling of multicast packets to a
mobile node follows similar limitations to those defined above for
unicast packets addressed to the mobile node's link-local address.
Multicast packets addressed to a multicast address with link-local
scope [<a href="#ref-16" title=""IP Version 6 Addressing Architecture"">16</a>], to which the mobile node is subscribed, MUST NOT be
tunneled to the mobile node. These packets SHOULD be silently
discarded (after delivering to other local multicast recipients).
Multicast packets addressed to a multicast address with a scope
larger than link-local, but smaller than global (e.g., site-local and
organization-local [<a href="#ref-16" title=""IP Version 6 Addressing Architecture"">16</a>]), to which the mobile node is subscribed,
<span class="grey">Perkins, et al. Standards Track [Page 98]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-99" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
SHOULD NOT be tunneled to the mobile node. Multicast packets
addressed with a global scope, to which the mobile node has
successfully subscribed, MUST be tunneled to the mobile node.
Before tunneling a packet to the mobile node, the home agent MUST
perform any IPsec processing as indicated by the security policy data
base.
<span class="h4"><a class="selflink" id="section-10.4.3" href="#section-10.4.3">10.4.3</a>. Multicast Membership Control</span>
This section is a prerequisite for the multicast data packet
forwarding, described in the previous section. If this support is
not provided, multicast group membership control messages are
silently ignored.
In order to forward multicast data packets from the home network to
all the proper mobile nodes, the home agent SHOULD be capable of
receiving tunneled multicast group membership control information
from the mobile node in order to determine which groups the mobile
node has subscribed to. These multicast group membership messages
are Listener Report messages specified in Multicast Listener
Discovery (MLD) [<a href="#ref-9" title=""Multicast Listener Discovery (MLD) for IPv6"">9</a>] or in other protocols such as [<a href="#ref-41" title=""Multicast Listener Discovery Version 2 (MLDv2) for IPv6"">41</a>].
The messages are issued by the mobile node, but sent through the
reverse tunnel to the home agent. These messages are issued whenever
the mobile node decides to enable reception of packets for a
multicast group or in response to an MLD Query from the home agent.
The mobile node will also issue multicast group control messages to
disable reception of multicast packets when it is no longer
interested in receiving multicasts for a particular group.
To obtain the mobile node's current multicast group membership the
home agent must periodically transmit MLD Query messages through the
tunnel to the mobile node. These MLD periodic transmissions will
ensure the home agent has an accurate record of the groups in which
the mobile node is interested despite packet losses of the mobile
node's MLD group membership messages.
All MLD packets are sent directly between the mobile node and the
home agent. Since all of these packets are destined to a link-scope
multicast address and have a hop limit of 1, there is no direct
forwarding of such packets between the home network and the mobile
node. The MLD packets between the mobile node and the home agent are
encapsulated within the same tunnel header used for other packet
flows between the mobile node and home agent.
<span class="grey">Perkins, et al. Standards Track [Page 99]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-100" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
Note that at this time, even though a link-local source is used on
MLD packets, no functionality depends on these addresses being
unique, nor do they elicit direct responses. All MLD messages are
sent to multicast destinations. To avoid ambiguity on the home
agent, due to mobile nodes that may choose identical link-local
source addresses for their MLD function, it is necessary for the home
agent to identify which mobile node was actually the issuer of a
particular MLD message. This may be accomplished by noting which
tunnel such an MLD arrived by, which IPsec security association (SA)
was used, or by other distinguishing means.
This specification puts no requirement on how the functions in this
section and the multicast forwarding in <a href="#section-10.4.2">Section 10.4.2</a> are to be
achieved. At the time of this writing, it was thought that a full
IPv6 multicast router function would be necessary on the home agent,
but it may be possible to achieve the same effects through a "proxy
MLD" application coupled with kernel multicast forwarding. This may
be the subject of future specifications.
<span class="h4"><a class="selflink" id="section-10.4.4" href="#section-10.4.4">10.4.4</a>. Stateful Address Autoconfiguration</span>
This section describes how home agents support the use of stateful
address autoconfiguration mechanisms such as DHCPv6 [<a href="#ref-31" title=""Dynamic Host Configuration Protocol for IPv6 (DHCPv6)"">31</a>] from the
mobile nodes. If this support is not provided, then the M and O bits
must remain cleared on the Mobile Prefix Advertisement Messages. Any
mobile node that sends DHCPv6 messages to the home agent without this
support will not receive a response.
If DHCPv6 is used, packets are sent with link-local source addresses
either to a link-scope multicast address or a link-local address.
Mobile nodes desiring to locate a DHCPv6 service may reverse tunnel
standard DHCPv6 packets to the home agent. Since these link-scope
packets cannot be forwarded onto the home network, it is necessary
for the home agent to implement either a DHCPv6 relay agent or a
DHCPv6 server function itself. The arriving tunnel or IPsec SA of
DHCPv6 link-scope messages from the mobile node must be noted so that
DHCPv6 responses may be sent back to the appropriate mobile node.
DHCPv6 messages sent to the mobile node with a link-local destination
must be tunneled within the same tunnel header used for other packet
flows.
<span class="h4"><a class="selflink" id="section-10.4.5" href="#section-10.4.5">10.4.5</a>. Handling Reverse-Tunneled Packets</span>
Unless a binding has been established between the mobile node and a
correspondent node, traffic from the mobile node to the correspondent
node goes through a reverse tunnel. Home agents MUST support reverse
tunneling as follows:
<span class="grey">Perkins, et al. Standards Track [Page 100]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-101" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
o The tunneled traffic arrives to the home agent's address using
IPv6 encapsulation [<a href="#ref-7" title=""Generic Packet Tunneling in IPv6 Specification"">7</a>].
o Depending on the security policies used by the home agent,
reverse-tunneled packets MAY be discarded unless accompanied by a
valid ESP header. The support for authenticated reverse tunneling
allows the home agent to protect the home network and
correspondent nodes from malicious nodes masquerading as a mobile
node.
o Otherwise, when a home agent decapsulates a tunneled packet from
the mobile node, the home agent MUST verify that the Source
Address in the tunnel IP header is the mobile node's primary
care-of address. Otherwise, any node in the Internet could send
traffic through the home agent and escape ingress filtering
limitations. This simple check forces the attacker to know the
current location of the real mobile node and be able to defeat
ingress filtering. This check is not necessary if the reverse-
tunneled packet is protected by ESP in tunnel mode.
<span class="h4"><a class="selflink" id="section-10.4.6" href="#section-10.4.6">10.4.6</a>. Protecting Return Routability Packets</span>
The return routability procedure, described in <a href="#section-5.2.5">Section 5.2.5</a>, assumes
that the confidentiality of the Home Test Init and Home Test messages
is protected as they are tunneled between the home agent and the
mobile node. Therefore, the home agent MUST support tunnel mode
IPsec ESP for the protection of packets belonging to the return
routability procedure. Support for a non-null encryption transform
and authentication algorithm MUST be available. It is not necessary
to distinguish between different kinds of packets during the return
routability procedure.
Security associations are needed to provide this protection. When
the care-of address for the mobile node changes as a result of an
accepted Binding Update, special treatment is needed for the next
packets sent using these security associations. The home agent MUST
set the new care-of address as the destination address of these
packets, as if the outer header destination address in the security
association had changed.
The above protection SHOULD be used with all mobile nodes. The use
is controlled by configuration of the IPsec security policy database
both at the mobile node and at the home agent.
As described earlier, the Binding Update and Binding Acknowledgement
messages require protection between the home agent and the mobile
node. The Mobility Header protocol carries both these messages as
well as the return routability messages. From the point of view of
<span class="grey">Perkins, et al. Standards Track [Page 101]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-102" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
the security policy database these messages are indistinguishable.
When IPsec is used to protect return routability signaling or payload
packets, this protection MUST only be applied to the return
routability packets entering the IPv6 encapsulated tunnel interface
between the mobile node and the home agent. This can be achieved,
for instance, by defining the security policy database entries
specifically for the tunnel interface. That is, the policy entries
are not generally applied on all traffic on the physical interface(s)
of the nodes, but rather only on traffic that enters the tunnel.
This makes use of per-interface security policy database entries [<a href="#ref-3" title=""Security Architecture for the Internet Protocol"">3</a>]
specific to the tunnel interface (the node's attachment to the tunnel
[<a href="#ref-6" title=""Internet Protocol, Version 6 (IPv6) Specification"">6</a>]).
<span class="h3"><a class="selflink" id="section-10.5" href="#section-10.5">10.5</a>. Dynamic Home Agent Address Discovery</span>
This section describes an optional mechanism by which a home agent
can help mobile nodes to discover the addresses of other home agents
on the mobile node's home network. The home agent keeps track of the
other home agents on the same link and responds to queries sent by
the mobile node.
<span class="h4"><a class="selflink" id="section-10.5.1" href="#section-10.5.1">10.5.1</a>. Receiving Router Advertisement Messages</span>
For each link on which a router provides service as a home agent, the
router maintains a Home Agents List recording information about all
other home agents on that link. This list is used in the dynamic
home agent address discovery mechanism; the mobile node uses the list
as described in <a href="#section-11.4.1">Section 11.4.1</a>. The information for the list is
learned through receipt of the periodic unsolicited multicast Router
Advertisements, in a manner similar to the Default Router List
conceptual data structure maintained by each host for Neighbor
Discovery [<a href="#ref-18" title=""Neighbor Discovery for IP version 6 (IPv6)"">18</a>]. In the construction of the Home Agents List, the
Router Advertisements are from each (other) home agent on the link
and the Home Agent (H) bit is set in them.
On receipt of a valid Router Advertisement, as defined in the
processing algorithm specified for Neighbor Discovery [<a href="#ref-18" title=""Neighbor Discovery for IP version 6 (IPv6)"">18</a>], the home
agent performs the following steps in addition to any steps already
required of it by Neighbor Discovery:
o If the Home Agent (H) bit in the Router Advertisement is not set,
delete the sending node's entry in the current Home Agents List
(if one exists). Skip all the following steps.
o Otherwise, extract the Source Address from the IP header of the
Router Advertisement. This is the link-local IP address on this
link of the home agent sending this Advertisement [<a href="#ref-18" title=""Neighbor Discovery for IP version 6 (IPv6)"">18</a>].
<span class="grey">Perkins, et al. Standards Track [Page 102]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-103" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
o Determine the preference for this home agent. If the Router
Advertisement contains a Home Agent Information Option, then the
preference is taken from the Home Agent Preference field in the
option; otherwise, the default preference of 0 MUST be used.
o Determine the lifetime for this home agent. If the Router
Advertisement contains a Home Agent Information Option, then the
lifetime is taken from the Home Agent Lifetime field in the
option; otherwise, the lifetime specified by the Router Lifetime
field in the Router Advertisement SHOULD be used.
o If the link-local address of the home agent sending this
Advertisement is already present in this home agent's Home Agents
List and the received home agent lifetime value is zero,
immediately delete this entry in the Home Agents List.
o Otherwise, if the link-local address of the home agent sending
this Advertisement is already present in the receiving home
agent's Home Agents List, reset its lifetime and preference to the
values determined above.
o If the link-local address of the home agent sending this
Advertisement is not already present in the Home Agents List
maintained by the receiving home agent, and the lifetime for the
sending home agent is non-zero, create a new entry in the list,
and initialize its lifetime and preference to the values
determined above.
o If the Home Agents List entry for the link-local address of the
home agent sending this Advertisement was not deleted as described
above, determine any global address(es) of the home agent based on
each Prefix Information option received in this Advertisement in
which the Router Address (R) bit is set (<a href="#section-7.2">Section 7.2</a>). Add all
such global addresses to the list of global addresses in this Home
Agents List entry.
A home agent SHOULD maintain an entry in its Home Agents List for
each valid home agent address until that entry's lifetime expires,
after which time the entry MUST be deleted.
As described in <a href="#section-11.4.1">Section 11.4.1</a>, a mobile node attempts dynamic home
agent address discovery by sending an ICMP Home Agent Address
Discovery Request message to the Mobile IPv6 Home-Agents anycast
address [<a href="#ref-8" title=""Reserved IPv6 Subnet Anycast Addresses"">8</a>] for its home IP subnet prefix. A home agent receiving a
Home Agent Address Discovery Request message that serves this subnet
SHOULD return an ICMP Home Agent Address Discovery Reply message to
<span class="grey">Perkins, et al. Standards Track [Page 103]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-104" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
the mobile node with the Source Address of the Reply packet set to
one of the global unicast addresses of the home agent. The Home
Agent Addresses field in the Reply message is constructed as follows:
o The Home Agent Addresses field SHOULD contain all global IP
addresses for each home agent currently listed in this home
agent's own Home Agents List (<a href="#section-10.1">Section 10.1</a>).
o The IP addresses in the Home Agent Addresses field SHOULD be
listed in order of decreasing preference values, based either on
the respective advertised preference from a Home Agent Information
option or on the default preference of 0 if no preference is
advertised (or on the configured home agent preference for this
home agent itself).
o Among home agents with equal preference, their IP addresses in the
Home Agent Addresses field SHOULD be listed in an order randomized
with respect to other home agents with equal preference every time
a Home Agent Address Discovery Reply message is returned by this
home agent.
o If more than one global IP address is associated with a home
agent, these addresses SHOULD be listed in a randomized order.
o The home agent SHOULD reduce the number of home agent IP addresses
so that the packet fits within the minimum IPv6 MTU [<a href="#ref-6" title=""Internet Protocol, Version 6 (IPv6) Specification"">6</a>]. The home
agent addresses selected for inclusion in the packet SHOULD be
those from the complete list with the highest preference. This
limitation avoids the danger of the Reply message packet being
fragmented (or rejected by an intermediate router with an ICMP
Packet Too Big message [<a href="#ref-17" title=""Internet Control Message Protocol (ICMPv6) for the Internet Protocol Version 6 (IPv6) Specification"">17</a>]).
<span class="h3"><a class="selflink" id="section-10.6" href="#section-10.6">10.6</a>. Sending Prefix Information to the Mobile Node</span>
<span class="h4"><a class="selflink" id="section-10.6.1" href="#section-10.6.1">10.6.1</a>. List of Home Network Prefixes</span>
Mobile IPv6 arranges to propagate relevant prefix information to the
mobile node when it is away from home, so that it may be used in
mobile node home address configuration and in network renumbering.
In this mechanism, mobile nodes away from home receive Mobile Prefix
Advertisement messages. These messages include Prefix Information
Options for the prefixes configured on the home subnet interface(s)
of the home agent.
If there are multiple home agents, differences in the advertisements
sent by different home agents can lead to an inability to use a
particular home address when changing to another home agent. In
<span class="grey">Perkins, et al. Standards Track [Page 104]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-105" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
order to ensure that the mobile nodes get the same information from
different home agents, it is preferred that all of the home agents on
the same link be configured in the same manner.
To support this, the home agent monitors prefixes advertised by
itself and other home agents on the home link. In Neighbor Discovery
(<a href="./rfc4861">RFC 4861</a> [<a href="#ref-18" title=""Neighbor Discovery for IP version 6 (IPv6)"">18</a>]) it is acceptable for two routers to advertise
different sets of prefixes on the same link. For home agents, the
differences should be detected for a given home address because the
mobile node communicates only with one home agent at a time and the
mobile node needs to know the full set of prefixes assigned to the
home link. All other comparisons of Router Advertisements are as
specified in <a href="./rfc4861#section-6.2.7">Section 6.2.7 of RFC 4861</a>.
<span class="h4"><a class="selflink" id="section-10.6.2" href="#section-10.6.2">10.6.2</a>. Scheduling Prefix Deliveries</span>
A home agent serving a mobile node will schedule the delivery of the
new prefix information to that mobile node when any of the following
conditions occur:
MUST:
o The state of the flags changes for the prefix of the mobile node's
registered home address.
o The valid or preferred lifetime is reconfigured or changes for any
reason other than advancing real time.
o The mobile node requests the information with a Mobile Prefix
Solicitation (see <a href="#section-11.4.2">Section 11.4.2</a>).
SHOULD:
o A new prefix is added to the home subnet interface(s) of the home
agent.
MAY:
o The valid or preferred lifetime or the state of the flags changes
for a prefix that is not used in any Binding Cache entry for this
mobile node.
The home agent uses the following algorithm to determine when to send
prefix information to the mobile node.
o If a mobile node sends a solicitation, answer right away.
<span class="grey">Perkins, et al. Standards Track [Page 105]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-106" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
o If no Mobile Prefix Advertisement has been sent to the mobile node
in the last MaxMobPfxAdvInterval seconds (see <a href="#section-13">Section 13</a>), then
ensure that a transmission is scheduled. The actual transmission
time is randomized as described below.
o If a prefix matching the mobile node's home registration is added
on the home subnet interface or if its information changes in any
way that does not deprecate the mobile node's address, ensure that
a transmission is scheduled. The actual transmission time is
randomized as described below.
o If a home registration expires, cancel any scheduled
advertisements to the mobile node.
The list of prefixes is sent in its entirety in all cases.
If the home agent has already scheduled the transmission of a Mobile
Prefix Advertisement to the mobile node, then the home agent will
replace the advertisement with a new one to be sent at the scheduled
time.
Otherwise, the home agent computes a fresh value for RAND_ADV_DELAY
that offsets from the current time for the scheduled transmission.
First, calculate the maximum delay for the scheduled Advertisement:
MaxScheduleDelay = min (MaxMobPfxAdvInterval, Preferred Lifetime),
where MaxMobPfxAdvInterval is as defined in <a href="#section-12">Section 12</a>. Then,
compute the final delay for the advertisement:
RAND_ADV_DELAY = MinMobPfxAdvInterval +
(rand() % abs(MaxScheduleDelay - MinMobPfxAdvInterval))
Here rand() returns a random integer value in the range of 0 to the
maximum possible integer value. This computation is expected to
alleviate bursts of advertisements when prefix information changes.
In addition, a home agent MAY further reduce the rate of packet
transmission by further delaying individual advertisements, when
necessary to avoid overwhelming local network resources. The home
agent SHOULD periodically continue to retransmit an unsolicited
Advertisement to the mobile node, until it is acknowledged by the
receipt of a Mobile Prefix Solicitation from the mobile node.
The home agent MUST wait PREFIX_ADV_TIMEOUT (see <a href="#section-12">Section 12</a>) before
the first retransmission and double the retransmission wait time for
every succeeding retransmission until a maximum number of
<span class="grey">Perkins, et al. Standards Track [Page 106]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-107" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
PREFIX_ADV_RETRIES attempts (see <a href="#section-12">Section 12</a>) has been tried. If the
mobile node's bindings expire before the matching Binding Update has
been received, then the home agent MUST NOT attempt any more
retransmissions, even if not all PREFIX_ADV_RETRIES have been
retransmitted. In the meantime, if the mobile node sends another
Binding Update without returning home, then the home agent SHOULD
begin transmitting the unsolicited Advertisement again.
If some condition, as described above, occurs on the home link and
causes another Prefix Advertisement to be sent to the mobile node,
before the mobile node acknowledges a previous transmission, the home
agent SHOULD combine any Prefix Information options in the
unacknowledged Mobile Prefix Advertisement into a new Advertisement.
The home agent then discards the old Advertisement.
<span class="h4"><a class="selflink" id="section-10.6.3" href="#section-10.6.3">10.6.3</a>. Sending Advertisements</span>
When sending a Mobile Prefix Advertisement to the mobile node, the
home agent MUST construct the packet as follows:
o The Source Address in the packet's IPv6 header MUST be set to the
home agent's IP address to which the mobile node addressed its
current home registration or its default global home agent address
if no binding exists.
o If the advertisement was solicited, it MUST be destined to the
source address of the solicitation. If it was triggered by prefix
changes or renumbering, the advertisement's destination will be
the mobile node's home address in the binding that triggered the
rule.
o A type 2 routing header MUST be included with the mobile node's
home address.
o IPsec headers MUST be supported and SHOULD be used.
o The home agent MUST send the packet as it would any other unicast
IPv6 packet that it originates.
o Set the Managed Address Configuration (M) flag if the
corresponding flag has been set in any of the Router
Advertisements from which the prefix information has been learned
(including the ones sent by this home agent).
o Set the Other Stateful Configuration (O) flag if the corresponding
flag has been set in any of the Router Advertisements from which
the prefix information has been learned (including the ones sent
by this home agent).
<span class="grey">Perkins, et al. Standards Track [Page 107]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-108" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
<span class="h4"><a class="selflink" id="section-10.6.4" href="#section-10.6.4">10.6.4</a>. Lifetimes for Changed Prefixes</span>
As described in <a href="#section-10.3.1">Section 10.3.1</a>, the lifetime returned by the home
agent in a Binding Acknowledgement MUST NOT be greater than the
remaining valid lifetime for the subnet prefix in the mobile node's
home address. This limit on the binding lifetime serves to prohibit
use of a mobile node's home address after it becomes invalid.
<span class="h2"><a class="selflink" id="section-11" href="#section-11">11</a>. Mobile Node Operation</span>
<span class="h3"><a class="selflink" id="section-11.1" href="#section-11.1">11.1</a>. Conceptual Data Structures</span>
Each mobile node MUST maintain a Binding Update List.
The Binding Update List records information for each Binding Update
sent by this mobile node, in which the lifetime of the binding has
not yet expired. The Binding Update List includes all bindings sent
by the mobile node to either its home agent or correspondent nodes.
It also contains Binding Updates that are waiting for the completion
of the return routability procedure before they can be sent.
However, for multiple Binding Updates sent to the same destination
address, the Binding Update List contains only the most recent
Binding Update (i.e., with the greatest Sequence Number value) sent
to that destination. The Binding Update List MAY be implemented in
any manner consistent with the external behavior described in this
document.
Each Binding Update List entry conceptually contains the following
fields:
o The IP address of the node to which a Binding Update was sent.
o The home address for which that Binding Update was sent.
o The care-of address sent in that Binding Update. This value is
necessary for the mobile node to determine if it has sent a
Binding Update while giving its new care-of address to this
destination after changing its care-of address.
o The initial value of the Lifetime field sent in that Binding
Update.
o The remaining lifetime of that binding. This lifetime is
initialized from the Lifetime value sent in the Binding Update and
is decremented until it reaches zero, at which time this entry
MUST be deleted from the Binding Update List.
<span class="grey">Perkins, et al. Standards Track [Page 108]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-109" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
o The maximum value of the Sequence Number field sent in previous
Binding Updates to this destination. The Sequence Number field is
16 bits long and all comparisons between Sequence Number values
MUST be performed modulo 2**16 (see <a href="#section-9.5.1">Section 9.5.1</a>).
o The time at which a Binding Update was last sent to this
destination, as needed to implement the rate limiting restriction
for sending Binding Updates.
o The state of any retransmissions needed for this Binding Update.
This state includes the time remaining until the next
retransmission attempt for the Binding Update and the current
state of the exponential back-off mechanism for retransmissions.
o A flag specifying whether or not future Binding Updates should be
sent to this destination. The mobile node sets this flag in the
Binding Update List entry when it receives an ICMP Parameter
Problem, Code 1, error message in response to a return routability
message or Binding Update sent to that destination, as described
in <a href="#section-11.3.5">Section 11.3.5</a>.
The Binding Update List is used to determine whether a particular
packet is sent directly to the correspondent node or tunneled via the
home agent (see <a href="#section-11.3.1">Section 11.3.1</a>).
The Binding Update list also conceptually contains the following data
related to running the return routability procedure. This data is
relevant only for Binding Updates sent to correspondent nodes.
o The time at which a Home Test Init or Care-of Test Init message
was last sent to this destination, as needed to implement the rate
limiting restriction for the return routability procedure.
o The state of any retransmissions needed for this return
routability procedure. This state includes the time remaining
until the next retransmission attempt and the current state of the
exponential back-off mechanism for retransmissions.
o Cookie values used in the Home Test Init and Care-of Test Init
messages.
o Home and care-of keygen tokens received from the correspondent
node.
o Home and care-of nonce indices received from the correspondent
node.
<span class="grey">Perkins, et al. Standards Track [Page 109]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-110" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
o The time at which each of the tokens and nonces were received from
the correspondent node, as needed to implement reuse while moving.
<span class="h3"><a class="selflink" id="section-11.2" href="#section-11.2">11.2</a>. Processing Mobility Headers</span>
All IPv6 mobile nodes MUST observe the rules described in <a href="#section-9.2">Section 9.2</a>
when processing Mobility Headers.
<span class="h3"><a class="selflink" id="section-11.3" href="#section-11.3">11.3</a>. Packet Processing</span>
<span class="h4"><a class="selflink" id="section-11.3.1" href="#section-11.3.1">11.3.1</a>. Sending Packets While Away from Home</span>
While a mobile node is away from home, it continues to use its home
address, as well as also using one or more care-of addresses. When
sending a packet while away from home, a mobile node MAY choose among
these in selecting the address that it will use as the source of the
packet, as follows:
o Protocols layered over IP will generally treat the mobile node's
home address as its IP source address for most packets. For
packets sent that are part of transport-level connections
established while the mobile node was at home, the mobile node
MUST use its home address. Likewise, for packets sent that are
part of transport-level connections that the mobile node may still
be using after moving to a new location, the mobile node SHOULD
use its home address in this way. If a binding exists, the mobile
node SHOULD send the packets directly to the correspondent node.
Otherwise, if a binding does not exist, the mobile node MUST use
reverse tunneling.
o The mobile node MAY choose to directly use one of its care-of
addresses as the source of the packet, not requiring the use of a
Home Address option in the packet. This is particularly useful
for short-term communication that may easily be retried if it
fails. Using the mobile node's care-of address as the source for
such queries will generally have a lower overhead than using the
mobile node's home address, since no extra options need to be used
in either the query or its reply. Such packets can be routed
normally, directly between their source and destination without
relying on Mobile IPv6. If application running on the mobile node
has no particular knowledge that the communication being sent fits
within this general type of communication, however, the mobile
node should not use its care-of address as the source of the
packet in this way.
<span class="grey">Perkins, et al. Standards Track [Page 110]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-111" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
The choice of the most efficient communications method is
application specific, and outside the scope of this specification.
The APIs necessary for controlling the choice are also out of
scope. One example of such an API is described in the IPv6 Socket
API for Source Address Selection specification [<a href="#ref-44" title=""IPv6 Socket API for Source Address Selection"">44</a>].
o While not at its home link, the mobile node MUST NOT use the Home
Address destination option when communicating with link-local
peers.
Similarly, the mobile node MUST NOT use the Home Address
destination option for IPv6 Neighbor Discovery [<a href="#ref-18" title=""Neighbor Discovery for IP version 6 (IPv6)"">18</a>] packets.
Detailed operation of these cases is described later in this section
and also discussed in [<a href="#ref-33" title=""Default Address Selection for Internet Protocol version 6 (IPv6)"">33</a>].
For packets sent by a mobile node while it is at home, no special
Mobile IPv6 processing is required. Likewise, if the mobile node
uses any address other than one of its home addresses as the source
of a packet sent while away from home, no special Mobile IPv6
processing is required. In either case, the packet is simply
addressed and transmitted in the same way as any normal IPv6 packet.
For packets sent by the mobile node sent while away from home using
the mobile node's home address as the source, special Mobile IPv6
processing of the packet is required. This can be done in the
following two ways:
Route Optimization
This manner of delivering packets does not require going through
the home network, and typically will enable faster and more
reliable transmission.
The mobile node needs to ensure that a Binding Cache entry exists
for its home address so that the correspondent node can process
the packet (<a href="#section-9.3.1">Section 9.3.1</a> specifies the rules for Home Address
Destination Option Processing at a correspondent node). The
mobile node SHOULD examine its Binding Update List for an entry
that fulfills the following conditions:
* The Source Address field of the packet being sent is equal to
the home address in the entry.
* The Destination Address field of the packet being sent is equal
to the address of the correspondent node in the entry.
<span class="grey">Perkins, et al. Standards Track [Page 111]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-112" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
* One of the current care-of addresses of the mobile node appears
as the care-of address in the entry.
* The entry indicates that a binding has been successfully
created.
* The remaining lifetime of the binding is greater than zero.
When these conditions are met, the mobile node knows that the
correspondent node has a suitable Binding Cache entry.
A mobile node SHOULD arrange to supply the home address in a Home
Address option, and MUST set the IPv6 header's Source Address
field to the care-of address that the mobile node has registered
to be used with this correspondent node. The correspondent node
will then use the address supplied in the Home Address option to
serve the function traditionally done by the Source IP address in
the IPv6 header. The mobile node's home address is then supplied
to higher protocol layers and applications.
Specifically:
* Construct the packet using the mobile node's home address as
the packet's Source Address, in the same way as if the mobile
node were at home. This includes the calculation of upper-
layer checksums using the home address as the value of the
source.
* Insert a Home Address option into the packet with the Home
Address field copied from the original value of the Source
Address field in the packet.
* Change the Source Address field in the packet's IPv6 header to
one of the mobile node's care-of addresses. This will
typically be the mobile node's current primary care-of address,
but MUST be an address assigned to the interface on the link
being used.
By using the care-of address as the Source Address in the IPv6
header, with the mobile node's home address instead in the Home
Address option, the packet will be able to safely pass through any
router implementing ingress filtering [<a href="#ref-27" title=""Network Ingress Filtering: Defeating Denial of Service Attacks which employ IP Source Address Spoofing"">27</a>].
<span class="grey">Perkins, et al. Standards Track [Page 112]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-113" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
Reverse Tunneling
This is the mechanism that tunnels the packets via the home agent.
It is not as efficient as the above mechanism, but is needed if
there is no binding yet with the correspondent node.
This mechanism is used for packets that have the mobile node's
home address as the Source Address in the IPv6 header, or with
multicast control protocol packets as described in <a href="#section-11.3.4">Section 11.3.4</a>.
Specifically:
* The packet is sent to the home agent using IPv6 encapsulation
[<a href="#ref-7" title=""Generic Packet Tunneling in IPv6 Specification"">7</a>].
* The Source Address in the tunnel packet is the primary care-of
address as registered with the home agent.
* The Destination Address in the tunnel packet is the home
agent's address.
Then, the home agent will pass the encapsulated packet to the
correspondent node.
<span class="h4"><a class="selflink" id="section-11.3.2" href="#section-11.3.2">11.3.2</a>. Interaction with Outbound IPsec Processing</span>
This section sketches the interaction between outbound Mobile IPv6
processing and outbound IP Security (IPsec) processing for packets
sent by a mobile node while away from home. Any specific
implementation MAY use algorithms and data structures other than
those suggested here, but its processing MUST be consistent with the
effect of the operation described here and with the relevant IPsec
specifications. In the steps described below, it is assumed that
IPsec is being used in transport mode [<a href="#ref-3" title=""Security Architecture for the Internet Protocol"">3</a>] and that the mobile node is
using its home address as the source for the packet (from the point
of view of higher protocol layers or applications, as described in
<a href="#section-11.3.1">Section 11.3.1</a>):
o The packet is created by higher-layer protocols and applications
(e.g., by TCP) as if the mobile node were at home and Mobile IPv6
were not being used.
o Determine the outgoing interface for the packet. (Note that the
selection between reverse tunneling and route optimization may
imply different interfaces, particularly if tunnels are considered
interfaces as well.)
<span class="grey">Perkins, et al. Standards Track [Page 113]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-114" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
o As part of outbound packet processing in IP, the packet is
compared against the IPsec security policy database to determine
what processing is required for the packet [<a href="#ref-3" title=""Security Architecture for the Internet Protocol"">3</a>].
o If IPsec processing is required, the packet is either mapped to an
existing security association (or SA bundle), or a new SA (or SA
bundle) is created for the packet, according to the procedures
defined for IPsec.
o Since the mobile node is away from home, the mobile is using
either reverse tunneling or route optimization to reach the
correspondent node.
If reverse tunneling is used, the packet is constructed in the
normal manner and then tunneled through the home agent.
If route optimization is in use, the mobile node inserts a Home
Address destination option into the packet, replacing the Source
Address in the packet's IP header with the care-of address used
with this correspondent node, as described in <a href="#section-11.3.1">Section 11.3.1</a>. The
Destination Options header in which the Home Address destination
option is inserted MUST appear in the packet after the routing
header, if present, and before the IPsec (AH [<a href="#ref-4" title=""IP Authentication Header"">4</a>] or ESP [<a href="#ref-5" title=""IP Encapsulating Security Payload (ESP)"">5</a>])
header, so that the Home Address destination option is processed
by the destination node before the IPsec header is processed.
Finally, once the packet is fully assembled, the necessary IPsec
authentication (and encryption, if required) processing is
performed on the packet, initializing the Authentication Data in
the IPsec header.
The treatment of destination options described in <a href="./rfc4302">RFC 4302</a> is
extended as follows. The AH authentication data MUST be
calculated as if the following were true:
* the IPv6 source address in the IPv6 header contains the mobile
node's home address, and
* the Home Address field of the Home Address destination option
(<a href="#section-6.3">Section 6.3</a>) contains the new care-of address.
o This allows, but does not require, the receiver of the packet
containing a Home Address destination option to exchange the two
fields of the incoming packet to reach the above situation,
simplifying processing for all subsequent packet headers.
However, such an exchange is not required, as long as the result
of the authentication calculation remains the same.
<span class="grey">Perkins, et al. Standards Track [Page 114]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-115" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
When an automated key management protocol is used to create new
security associations for a peer, it is important to ensure that the
peer can send the key management protocol packets to the mobile node.
This may not be possible if the peer is the home agent of the mobile
node and the purpose of the security associations would be to send a
Binding Update to the home agent. Packets addressed to the home
address of the mobile node cannot be used before the Binding Update
has been processed. For the default case of using IKEv2 [<a href="#ref-24" title=""Internet Key Exchange Protocol Version 2 (IKEv2)"">24</a>] as the
automated key management protocol, such problems can be avoided by
the following requirements when communicating with its home agent:
o When the mobile node is away from home, it MUST use its care-of
address as the Source Address of all packets it sends as part of
the key management protocol (without use of Mobile IPv6 for these
packets, as suggested in <a href="#section-11.3.1">Section 11.3.1</a>).
The Key Management Mobility Capability (K) bit in Binding Updates and
Acknowledgements can be used to avoid the need to rerun IKEv2 upon
movements.
<span class="h4"><a class="selflink" id="section-11.3.3" href="#section-11.3.3">11.3.3</a>. Receiving Packets While Away from Home</span>
While away from home, a mobile node will receive packets addressed to
its home address, by one of two methods:
o Packets sent by a correspondent node that does not have a Binding
Cache entry for the mobile node will be sent to the home address,
captured by the home agent and tunneled to the mobile node.
o Packets sent by a correspondent node that has a Binding Cache
entry for the mobile node that contains the mobile node's current
care-of address will be sent by the correspondent node using a
type 2 routing header. The packet will be addressed to the mobile
node's care-of address, with the final hop in the routing header
directing the packet to the mobile node's home address; the
processing of this last hop of the routing header is entirely
internal to the mobile node, since the care-of address and home
address are both addresses within the mobile node.
For packets received by the first method, the mobile node MUST check
that the IPv6 source address of the tunneled packet is the IP address
of its home agent. In this method, the mobile node may also send a
Binding Update to the original sender of the packet as described in
<a href="#section-11.7.2">Section 11.7.2</a> and subject to the rate limiting defined in
<a href="#section-11.8">Section 11.8</a>. The mobile node MUST also process the received packet
in the manner defined for IPv6 encapsulation [<a href="#ref-7" title=""Generic Packet Tunneling in IPv6 Specification"">7</a>], which will result
<span class="grey">Perkins, et al. Standards Track [Page 115]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-116" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
in the encapsulated (inner) packet being processed normally by upper-
layer protocols within the mobile node as if it had been addressed
(only) to the mobile node's home address.
For packets received by the second method, the following rules will
result in the packet being processed normally by upper-layer
protocols within the mobile node as if it had been addressed to the
mobile node's home address.
A node receiving a packet addressed to itself (i.e., one of the
node's addresses is in the IPv6 destination field) follows the next
header chain of headers and processes them. When it encounters a
type 2 routing header during this processing, it performs the
following checks. If any of these checks fail, the node MUST
silently discard the packet.
o The length field in the routing header is exactly 2.
o The segments left field in the routing header is 1 on the wire.
(But implementations may process the routing header so that the
value may become 0 after the routing header has been processed,
but before the rest of the packet is processed.)
o The Home Address field in the routing header is one of the node's
home addresses, if the segments left field was 1. Thus, in
particular the address field is required to be a unicast routable
address.
Once the above checks have been performed, the node swaps the IPv6
destination field with the Home Address field in the routing header,
decrements segments left by one from the value it had on the wire,
and resubmits the packet to IP for processing the next header.
Conceptually, this follows the same model as in <a href="./rfc2460">RFC 2460</a>. However,
in the case of the type 2 routing header, this can be simplified
since it is known that the packet will not be forwarded to a
different node.
The definition of AH requires the sender to calculate the AH
integrity check value of a routing header in the same way it appears
in the receiver after it has processed the header. Since IPsec
headers follow the routing header, any IPsec processing will operate
on the packet with the home address in the IP destination field and
segments left being zero. Thus, the AH calculations at the sender
and receiver will have an identical view of the packet.
<span class="grey">Perkins, et al. Standards Track [Page 116]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-117" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
<span class="h4"><a class="selflink" id="section-11.3.4" href="#section-11.3.4">11.3.4</a>. Routing Multicast Packets</span>
A mobile node that is connected to its home link functions in the
same way as any other (stationary) node. Thus, when it is at home, a
mobile node functions identically to other multicast senders and
receivers. Therefore, this section describes the behavior of a
mobile node that is not on its home link.
In order to receive packets sent to some multicast group, a mobile
node must join that multicast group. One method, in which a mobile
node MAY join the group, is via a (local) multicast router on the
foreign link being visited. In this case, the mobile node MUST use
its care-of address and MUST NOT use the Home Address destination
option when sending MLD packets [<a href="#ref-9" title=""Multicast Listener Discovery (MLD) for IPv6"">9</a>].
Alternatively, a mobile node MAY join multicast groups via a
bidirectional tunnel to its home agent. The mobile node tunnels its
multicast group membership control packets (such as those defined in
[<a href="#ref-9" title=""Multicast Listener Discovery (MLD) for IPv6"">9</a>] or in [<a href="#ref-41" title=""Multicast Listener Discovery Version 2 (MLDv2) for IPv6"">41</a>]) to its home agent, and the home agent forwards
multicast packets down the tunnel to the mobile node. A mobile node
MUST NOT tunnel multicast group membership control packets until (1)
the mobile node has a binding in place at the home agent, and (2) the
latter sends at least one multicast group membership control packet
via the tunnel. Once this condition is true, the mobile node SHOULD
assume it does not change as long as the binding does not expire.
A mobile node that wishes to send packets to a multicast group also
has two options:
1. Send directly on the foreign link being visited.
To do this, the application uses the care-of address as a source
address for multicast traffic, just as it would use a stationary
address. This requires that the application either knows the
care-of address, or uses an API such as the IPv6 Socket API for
Source Address Selection specification [<a href="#ref-44" title=""IPv6 Socket API for Source Address Selection"">44</a>] to request that the
care-of address be used as the source address in transmitted
packets. The mobile node MUST NOT use the Home Address
destination option in such traffic.
<span class="grey">Perkins, et al. Standards Track [Page 117]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-118" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
2. Send via a tunnel to its home agent.
Because multicast routing in general depends upon the Source
Address used in the IPv6 header of the multicast packet, a mobile
node that tunnels a multicast packet to its home agent MUST use
its home address as the IPv6 Source Address of the inner
multicast packet.
Note that direct sending from the foreign link is only applicable
while the mobile node is at that foreign link. This is because the
associated multicast tree is specific to that source location and any
change of location and source address will invalidate the source-
specific tree or branch and the application context of the other
multicast group members.
This specification does not provide mechanisms to enable such local
multicast session to survive hand-off and to seamlessly continue from
a new care-of address on each new foreign link. Any such mechanism,
developed as an extension to this specification, needs to take into
account the impact of fast moving mobile nodes on the Internet
multicast routing protocols and their ability to maintain the
integrity of source specific multicast trees and branches.
While the use of bidirectional tunneling can ensure that multicast
trees are independent of the mobile nodes movement, in some case such
tunneling can have adverse effects. The latency of specific types of
multicast applications (such as multicast-based discovery protocols)
will be affected when the round-trip time between the foreign subnet
and the home agent is significant compared to that of the topology to
be discovered. In addition, the delivery tree from the home agent in
such circumstances relies on unicast encapsulation from the agent to
the mobile node. Therefore, bandwidth usage is inefficient compared
to the native multicast forwarding in the foreign multicast system.
<span class="h4"><a class="selflink" id="section-11.3.5" href="#section-11.3.5">11.3.5</a>. Receiving ICMP Error Messages</span>
Any node that does not recognize the Mobility header will return an
ICMP Parameter Problem, Code 1, message to the sender of the packet.
If the mobile node receives such an ICMP error message in response to
a return routability procedure or Binding Update, it SHOULD record in
its Binding Update List that future Binding Updates SHOULD NOT be
sent to this destination. Such Binding Update List entries SHOULD be
removed after a period of time in order to allow for retrying route
optimization.
New Binding Update List entries MUST NOT be created as a result of
receiving ICMP error messages.
<span class="grey">Perkins, et al. Standards Track [Page 118]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-119" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
Correspondent nodes that have participated in the return routability
procedure MUST implement the ability to correctly process received
packets containing a Home Address destination option. Therefore,
correctly implemented correspondent nodes should always be able to
recognize Home Address options. If a mobile node receives an ICMP
Parameter Problem, Code 2, message from some node indicating that it
does not support the Home Address option, the mobile node SHOULD log
the error and then discard the ICMP message.
<span class="h4"><a class="selflink" id="section-11.3.6" href="#section-11.3.6">11.3.6</a>. Receiving Binding Error Messages</span>
When a mobile node receives a packet containing a Binding Error
message, it should first check if the mobile node has a Binding
Update List entry for the source of the Binding Error message. If
the mobile node does not have such an entry, it MUST ignore the
message. This is necessary to prevent a waste of resources, e.g., on
return routability procedure due to spoofed Binding Error messages.
Otherwise, if the message Status field was 1 (unknown binding for
Home Address destination option), the mobile node should perform one
of the following three actions:
o If the Binding Error Message was sent by the home agent, the
mobile node SHOULD send a Binding Update to the home agent
according to <a href="#section-11.7.1">Section 11.7.1</a>.
o If the mobile node has recent upper-layer progress information,
which indicates that communications with the correspondent node
are progressing, it MAY ignore the message. This can be done in
order to limit the damage that spoofed Binding Error messages can
cause to ongoing communications.
o If the mobile node has no upper-layer progress information, it
MUST remove the entry and route further communications through the
home agent. It MAY also optionally start a return routability
procedure (see <a href="#section-5.2">Section 5.2</a>).
If the message Status field was 2 (unrecognized MH Type value), the
mobile node should perform one of the following two actions:
o If the mobile node is not expecting an acknowledgement or response
from the correspondent node, the mobile node SHOULD ignore this
message.
o Otherwise, the mobile node SHOULD cease the use of any extensions
to this specification. If no extensions had been used, the mobile
node should cease the attempt to use route optimization.
<span class="grey">Perkins, et al. Standards Track [Page 119]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-120" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
<span class="h3"><a class="selflink" id="section-11.4" href="#section-11.4">11.4</a>. Home Agent and Prefix Management</span>
<span class="h4"><a class="selflink" id="section-11.4.1" href="#section-11.4.1">11.4.1</a>. Dynamic Home Agent Address Discovery</span>
Sometimes when the mobile node needs to send a Binding Update to its
home agent to register its new primary care-of address, as described
in <a href="#section-11.7.1">Section 11.7.1</a>, the mobile node may not know the address of any
router on its home link that can serve as a home agent for it. For
example, some nodes on its home link may have been reconfigured while
the mobile node has been away from home, such that the router that
was operating as the mobile node's home agent has been replaced by a
different router serving this role.
In this case, the mobile node MAY attempt to discover the address of
a suitable home agent on its home link. To do so, the mobile node
sends an ICMP Home Agent Address Discovery Request message to the
Mobile IPv6 Home-Agents anycast address [<a href="#ref-8" title=""Reserved IPv6 Subnet Anycast Addresses"">8</a>] for its home subnet
prefix. As described in <a href="#section-10.5">Section 10.5</a>, the home agent on its home
link that receives this Request message will return an ICMP Home
Agent Address Discovery Reply message. This message gives the
addresses for the home agents operating on the home link.
The mobile node, upon receiving this Home Agent Address Discovery
Reply message, MAY then send its home registration Binding Update to
any of the unicast IP addresses listed in the Home Agent Addresses
field in the Reply. For example, the mobile node MAY attempt its
home registration to each of these addresses, in turn, until its
registration is accepted. The mobile node sends a Binding Update to
an address and waits for the matching Binding Acknowledgement, moving
on to the next address if there is no response. The mobile node
MUST, however, wait at least InitialBindackTimeoutFirstReg seconds
(see <a href="#section-13">Section 13</a>) before sending a Binding Update to the next home
agent. In trying each of the returned home agent addresses, the
mobile node SHOULD try each of them in the order they appear in the
Home Agent Addresses field in the received Home Agent Address
Discovery Reply message. In order to do this, the mobile node SHOULD
store the list of home agents for later use in case the home agent
currently managing the mobile node's care-of address forwarding
should become unavailable. The list MAY be stored, along with any
available lifetime information for the home agent addresses, in
nonvolatile memory to survive reboots by the mobile node.
If the mobile node has a current registration with some home agent
(the Lifetime for that registration has not yet expired), then the
mobile node MUST attempt any new registration first with that home
agent. If that registration attempt fails (e.g., timed out or
rejected), the mobile node SHOULD then reattempt this registration
<span class="grey">Perkins, et al. Standards Track [Page 120]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-121" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
with another home agent. If the mobile node knows of no other
suitable home agent, then it MAY attempt the dynamic home agent
address discovery mechanism described above.
If, after a mobile node transmits a Home Agent Address Discovery
Request message to the Home Agents Anycast address, it does not
receive a corresponding Home Agent Address Discovery Reply message
within INITIAL_DHAAD_TIMEOUT (see <a href="#section-12">Section 12</a>) seconds, the mobile
node MAY retransmit the same Request message to the same anycast
address. This retransmission MAY be repeated up to a maximum of
DHAAD_RETRIES (see <a href="#section-12">Section 12</a>) attempts. Each retransmission MUST be
delayed by twice the time interval of the previous retransmission.
<span class="h4"><a class="selflink" id="section-11.4.2" href="#section-11.4.2">11.4.2</a>. Sending Mobile Prefix Solicitations</span>
When a mobile node has a home address that is about to become
invalid, it SHOULD send a Mobile Prefix Solicitation to its home
agent in an attempt to acquire fresh routing prefix information. The
new information also enables the mobile node to participate in
renumbering operations affecting the home network, as described in
<a href="#section-10.6">Section 10.6</a>.
The mobile node MUST use the Home Address destination option to carry
its home address. The mobile node MUST support and SHOULD use IPsec
to protect the solicitation. The mobile node MUST set the Identifier
field in the ICMP header to a random value.
As described in <a href="#section-11.7.2">Section 11.7.2</a>, Binding Updates sent by the mobile
node to other nodes MUST use a lifetime no greater than the remaining
lifetime of its home registration of its primary care-of address.
The mobile node SHOULD further limit the lifetimes that it sends on
any Binding Updates to be within the remaining valid lifetime (see
<a href="#section-10.6.2">Section 10.6.2</a>) for the prefix in its home address.
When the lifetime for a changed prefix decreases, and the change
would cause cached bindings at correspondent nodes in the Binding
Update List to be stored past the newly shortened lifetime, the
mobile node MUST issue a Binding Update to all such correspondent
nodes.
These limits on the binding lifetime serve to prohibit use of a
mobile node's home address after it becomes invalid.
<span class="h4"><a class="selflink" id="section-11.4.3" href="#section-11.4.3">11.4.3</a>. Receiving Mobile Prefix Advertisements</span>
<a href="#section-10.6">Section 10.6</a> describes the operation of a home agent to support boot
time configuration and renumbering a mobile node's home subnet while
the mobile node is away from home. The home agent sends Mobile
<span class="grey">Perkins, et al. Standards Track [Page 121]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-122" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
Prefix Advertisements to the mobile node while away from home, giving
"important" Prefix Information options that describe changes in the
prefixes in use on the mobile node's home link.
The Mobile Prefix Solicitation is similar to the Router Solicitation
used in Neighbor Discovery [<a href="#ref-18" title=""Neighbor Discovery for IP version 6 (IPv6)"">18</a>], except it is routed from the mobile
node on the visited network to the home agent on the home network by
usual unicast routing rules.
When a mobile node receives a Mobile Prefix Advertisement, it MUST
validate it according to the following test:
o The Source Address of the IP packet carrying the Mobile Prefix
Advertisement is the same as the home agent address to which the
mobile node last sent an accepted home registration Binding Update
to register its primary care-of address. Otherwise, if no such
registrations have been made, it SHOULD be the mobile node's
stored home agent address, if one exists. Otherwise, if the
mobile node has not yet discovered its home agent's address, it
MUST NOT accept Mobile Prefix Advertisements.
o The packet MUST have a type 2 routing header and SHOULD be
protected by an IPsec header as described in Sections <a href="#section-5.4">5.4</a> and <a href="#section-6.8">6.8</a>.
o If the ICMP Identifier value matches the ICMP Identifier value of
the most recently sent Mobile Prefix Solicitation and no other
advertisement has yet been received for this value, then the
advertisement is considered to be solicited and will be processed
further.
Otherwise, the advertisement is unsolicited, and MUST be
discarded. In this case the mobile node SHOULD send a Mobile
Prefix Solicitation.
Any received Mobile Prefix Advertisement not meeting these tests MUST
be silently discarded.
For an accepted Mobile Prefix Advertisement, the mobile node MUST
process Managed Address Configuration (M), Other Stateful
Configuration (O), and the Prefix Information Options as if they
arrived in a Router Advertisement [<a href="#ref-18" title=""Neighbor Discovery for IP version 6 (IPv6)"">18</a>] on the mobile node's home
link. (This specification does not, however, describe how to acquire
home addresses through stateful protocols.) Such processing may
result in the mobile node configuring a new home address, although
due to separation between preferred lifetime and valid lifetime, such
changes should not affect most communications by the mobile node, in
the same way as for nodes that are at home.
<span class="grey">Perkins, et al. Standards Track [Page 122]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-123" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
This specification assumes that any security associations and
security policy entries that may be needed for new prefixes have been
pre-configured in the mobile node. Note that while dynamic key
management avoids the need to configure new security associations, it
is still necessary to add policy entries to protect the
communications involving the home address(es). Mechanisms for
setting up these entries are outside the scope of this specification.
<span class="h3"><a class="selflink" id="section-11.5" href="#section-11.5">11.5</a>. Movement</span>
<span class="h4"><a class="selflink" id="section-11.5.1" href="#section-11.5.1">11.5.1</a>. Movement Detection</span>
The primary goal of movement detection is to detect L3 handovers.
This section does not attempt to specify a fast movement detection
algorithm that will function optimally for all types of applications,
link layers, and deployment scenarios; instead, it describes a
generic method that uses the facilities of IPv6 Neighbor Discovery,
including Router Discovery and Neighbor Unreachability Detection. At
the time of this writing, this method is considered well enough
understood to recommend for standardization; however, it is expected
that future versions of this specification or other specifications
may contain updated versions of the movement detection algorithm that
have better performance.
Generic movement detection uses Neighbor Unreachability Detection to
detect when the default router is no longer bidirectionally
reachable, in which case the mobile node must discover a new default
router (usually on a new link). However, this detection only occurs
when the mobile node has packets to send, and in the absence of
frequent Router Advertisements or indications from the link-layer,
the mobile node might become unaware of an L3 handover that occurred.
Therefore, the mobile node should supplement this method with other
information whenever it is available to the mobile node (e.g., from
lower protocol layers).
When the mobile node detects an L3 handover, it performs Duplicate
Address Detection [<a href="#ref-19" title=""IPv6 Stateless Address Autoconfiguration"">19</a>] on its link-local address, selects a new
default router as a consequence of Router Discovery, and then
performs prefix discovery with that new router to form new care-of
address(es) as described in <a href="#section-11.5.3">Section 11.5.3</a>. It then registers its
new primary care-of address with its home agent as described in
<a href="#section-11.7.1">Section 11.7.1</a>. After updating its home registration, the mobile
node then updates associated mobility bindings in correspondent nodes
that it is performing route optimization with as specified in
<a href="#section-11.7.2">Section 11.7.2</a>.
<span class="grey">Perkins, et al. Standards Track [Page 123]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-124" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
Due to the temporary packet flow disruption and signaling overhead
involved in updating mobility bindings, the mobile node should avoid
performing an L3 handover until it is strictly necessary.
Specifically, when the mobile node receives a Router Advertisement
from a new router that contains a different set of on-link prefixes,
if the mobile node detects that the currently selected default router
on the old link is still bidirectionally reachable, it should
generally continue to use the old router on the old link rather than
switch away from it to use a new default router.
Mobile nodes can use the information in received Router
Advertisements to detect L3 handovers. In doing so the mobile node
needs to consider the following issues:
o There might be multiple routers on the same link. Thus, hearing a
new router does not necessarily constitute an L3 handover.
o When there are multiple routers on the same link they might
advertise different prefixes. Thus, even hearing a new router
with a new prefix might not be a reliable indication of an L3
handover.
o The link-local addresses of routers are not globally unique, hence
after completing an L3 handover the mobile node might continue to
receive Router Advertisements with the same link-local source
address. This might be common if routers use the same link-local
address on multiple interfaces. This issue can be avoided when
routers use the Router Address (R) bit, since that provides a
global address of the router.
In addition, the mobile node should consider the following events as
indications that an L3 handover may have occurred. Upon receiving
such indications, the mobile node needs to perform Router Discovery
to discover routers and prefixes on the new link, as described in
<a href="#section-6.3.7">Section 6.3.7</a> of Neighbor Discovery (<a href="./rfc4861">RFC 4861</a> [<a href="#ref-18" title=""Neighbor Discovery for IP version 6 (IPv6)"">18</a>]).
o If Router Advertisements that the mobile node receives include an
Advertisement Interval option, the mobile node may use its
Advertisement Interval field as an indication of the frequency
with which it should expect to continue to receive future
Advertisements from that router. This field specifies the minimum
rate (the maximum amount of time between successive
Advertisements) that the mobile node should expect. If this
amount of time elapses without the mobile node receiving any
Advertisement from this router, the mobile node can be sure that
at least one Advertisement sent by the router has been lost. The
<span class="grey">Perkins, et al. Standards Track [Page 124]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-125" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
mobile node can then implement its own policy to determine how
many lost Advertisements from its current default router
constitute an L3 handover indication.
o Neighbor Unreachability Detection determines that the default
router is no longer reachable.
o With some types of networks, notification that an L2 handover has
occurred might be obtained from lower-layer protocols or device
driver software within the mobile node. While further details
around handling L2 indications as movement hints is an item for
further study, at the time of writing this specification the
following is considered reasonable:
An L2 handover indication may or may not imply L2 movement and L2
movement may or may not imply L3 movement; the correlations might
be a function of the type of L2 but might also be a function of
actual deployment of the wireless topology.
Unless it is well-known that an L2 handover indication is likely
to imply L3 movement, instead of immediately multicasting a router
solicitation it may be better to attempt to verify whether the
default router is still bidirectionally reachable. This can be
accomplished by sending a unicast Neighbor Solicitation and
waiting for a Neighbor Advertisement with the Solicited flag set.
Note that this is similar to Neighbor Unreachability detection,
but it does not have the same state machine, such as the STALE
state.
If the default router does not respond to the Neighbor
Solicitation it makes sense to proceed to multicasting a Router
Solicitation.
<span class="h4"><a class="selflink" id="section-11.5.2" href="#section-11.5.2">11.5.2</a>. Home Link Detection</span>
When an MN detects that it has arrived on a new link using the
movement detection algorithm in use (<a href="#section-11.5.1">Section 11.5.1</a>) or on
bootstrapping, it performs the following steps to determine if it is
on the home link.
o The MN performs the procedure described in <a href="#section-11.5.3">Section 11.5.3</a> and
configures an address. It also keeps track of all the on-link
prefix(es) received in the RA along with their prefix lengths.
o If the home prefix has not been statically configured the MN uses
some form of bootstrapping procedure (e.g., <a href="./rfc5026">RFC 5026</a> [<a href="#ref-22" title=""Mobile IPv6 Bootstrapping in Split Scenario"">22</a>]) to
determine the home prefix.
<span class="grey">Perkins, et al. Standards Track [Page 125]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-126" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
o Given the availability of the home prefix, the MN checks whether
or not the home prefix matches one of the prefixes received in the
RA. If it does, the MN concludes that it is connected to the home
link.
<span class="h4"><a class="selflink" id="section-11.5.3" href="#section-11.5.3">11.5.3</a>. Forming New Care-of Addresses</span>
After detecting that it has moved a mobile node SHOULD generate a new
primary care-of address using normal IPv6 mechanisms. This SHOULD
also be done when the current primary care-of address becomes
deprecated. A mobile node MAY form a new primary care-of address at
any time, but a mobile node MUST NOT send a Binding Update about a
new care-of address to its home agent more than MAX_UPDATE_RATE times
within a second.
In addition, a mobile node MAY form new non-primary care-of addresses
even when it has not switched to a new default router. A mobile node
can have only one primary care-of address at a time (which is
registered with its home agent), but it MAY have an additional
care-of address for any or all of the prefixes on its current link.
Furthermore, since a wireless network interface may actually allow a
mobile node to be reachable on more than one link at a time (i.e.,
within wireless transmitter range of routers on more than one
separate link), a mobile node MAY have care-of addresses on more than
one link at a time. The use of more than one care-of address at a
time is described in <a href="#section-11.5.4">Section 11.5.4</a>.
As described in <a href="#section-4">Section 4</a>, in order to form a new care-of address, a
mobile node MAY use either stateless [<a href="#ref-19" title=""IPv6 Stateless Address Autoconfiguration"">19</a>] or stateful (e.g., DHCPv6
[<a href="#ref-31" title=""Dynamic Host Configuration Protocol for IPv6 (DHCPv6)"">31</a>]) Address Autoconfiguration. If a mobile node needs to use a
source address (other than the unspecified address) in packets sent
as a part of address autoconfiguration, it MUST use an IPv6 link-
local address rather than its own IPv6 home address.
<a href="./rfc4862">RFC 4862</a> [<a href="#ref-19" title=""IPv6 Stateless Address Autoconfiguration"">19</a>] specifies that in normal processing for Duplicate
Address Detection, the node SHOULD delay sending the initial Neighbor
Solicitation message by a random delay between 0 and
MAX_RTR_SOLICITATION_DELAY. Since delaying Duplicate Address
Detection (DAD) can result in significant delays in configuring a new
care-of address when the mobile node moves to a new link, the mobile
node preferably SHOULD NOT delay DAD when configuring a new care-of
address. The mobile node SHOULD delay according to the mechanisms
specified in <a href="./rfc4862">RFC 4862</a> unless the implementation has a behavior that
desynchronizes the steps that happen before the DAD in the case that
multiple nodes experience handover at the same time. Such
desynchronizing behaviors might be due to random delays in the L2
protocols or device drivers, or due to the movement detection
mechanism that is used.
<span class="grey">Perkins, et al. Standards Track [Page 126]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-127" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
<span class="h4"><a class="selflink" id="section-11.5.4" href="#section-11.5.4">11.5.4</a>. Using Multiple Care-of Addresses</span>
As described in <a href="#section-11.5.3">Section 11.5.3</a>, a mobile node MAY use more than one
care-of address at a time. Particularly in the case of many wireless
networks, a mobile node effectively might be reachable through
multiple links at the same time (e.g., with overlapping wireless
cells), on which different on-link subnet prefixes may exist. The
mobile node MUST ensure that its primary care-of address always has a
prefix that is advertised by its current default router. After
selecting a new primary care-of address, the mobile node MUST send a
Binding Update containing that care-of address to its home agent.
The Binding Update MUST have the Home Registration (H) and
Acknowledge (A) bits set its home agent, as described on
<a href="#section-11.7.1">Section 11.7.1</a>.
To assist with smooth handovers, a mobile node SHOULD retain its
previous primary care-of address as a (non-primary) care-of address,
and SHOULD still accept packets at this address, even after
registering its new primary care-of address with its home agent.
This is reasonable, since the mobile node could only receive packets
at its previous primary care-of address if it were indeed still
connected to that link. If the previous primary care-of address was
allocated using stateful Address Autoconfiguration [<a href="#ref-31" title=""Dynamic Host Configuration Protocol for IPv6 (DHCPv6)"">31</a>], the mobile
node may not wish to release the address immediately upon switching
to a new primary care-of address.
Whenever a mobile node determines that it is no longer reachable
through a given link, it SHOULD invalidate all care-of addresses
associated with address prefixes that it discovered from routers on
the unreachable link that are not in the current set of address
prefixes advertised by the (possibly new) current default router.
<span class="h4"><a class="selflink" id="section-11.5.5" href="#section-11.5.5">11.5.5</a>. Returning Home</span>
A mobile node detects that it has returned to its home link through
the movement detection algorithm in use (<a href="#section-11.5.2">Section 11.5.2</a>), when the
mobile node detects that its home subnet prefix is again on-link. To
be able to send and receive packets using its home address from the
home link, the mobile node MUST send a Binding Update to its home
agent to instruct its home agent to no longer intercept or tunnel
packets for it. Until the mobile node sends such a de-registration
Binding Update, it MUST NOT attempt to send and receive packets using
its home address from the home link. The home agent will continue to
intercept all packets sent to the mobile's home address and tunnel
them to the previously registered care-of address.
<span class="grey">Perkins, et al. Standards Track [Page 127]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-128" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
In this home registration, the mobile node MUST set the Acknowledge
(A) and Home Registration (H) bits, set the Lifetime field to zero,
and set the care-of address for the binding to the mobile node's own
home address. The mobile node MUST use its home address as the
source address in the Binding Update.
When sending this Binding Update to its home agent, the mobile node
must be careful in how it uses Neighbor Solicitation [<a href="#ref-18" title=""Neighbor Discovery for IP version 6 (IPv6)"">18</a>] (if needed)
to learn the home agent's link-layer address, since the home agent
will be currently configured to intercept packets to the mobile
node's home address using Proxy Neighbor Discovery (Proxy ND). In
particular, the mobile node is unable to use its home address as the
Source Address in the Neighbor Solicitation until the home agent
stops defending the home address.
Neighbor Solicitation by the mobile node for the home agent's address
will normally not be necessary, since the mobile node has already
learned the home agent's link-layer address from a Source Link-Layer
Address option in a Router Advertisement. However, if there are
multiple home agents it may still be necessary to send a
solicitation. In this special case of the mobile node returning
home, the mobile node MUST multicast the packet, and in addition set
the Source Address of this Neighbor Solicitation to the unspecified
address (0:0:0:0:0:0:0:0). The target of the Neighbor Solicitation
MUST be set to the mobile node's home address. The destination IP
address MUST be set to the Solicited-Node multicast address [<a href="#ref-16" title=""IP Version 6 Addressing Architecture"">16</a>].
The home agent will send a multicast Neighbor Advertisement back to
the mobile node with the Solicited (S) flag set to zero. In any
case, the mobile node SHOULD record the information from the Source
Link-Layer Address option or from the advertisement, and set the
state of the Neighbor Cache entry for the home agent to REACHABLE.
The mobile node then sends its Binding Update to the home agent's
link-layer address, instructing its home agent to no longer serve as
a home agent for it. By processing this Binding Update, the home
agent will cease defending the mobile node's home address for
Duplicate Address Detection and will no longer respond to Neighbor
Solicitations for the mobile node's home address. The mobile node is
then the only node on the link receiving packets at the mobile node's
home address. In addition, when returning home prior to the
expiration of a current binding for its home address, and configuring
its home address on its network interface on its home link, the
mobile node MUST NOT perform Duplicate Address Detection on its own
home address, in order to avoid confusion or conflict with its home
agent's use of the same address. This rule also applies to the
derived link-local address of the mobile node, if the Link Local
<span class="grey">Perkins, et al. Standards Track [Page 128]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-129" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
Address Compatibility (L) bit was set when the binding was created.
If the mobile node returns home after the bindings for all of its
care-of addresses have expired, then it SHOULD perform DAD.
After the mobile node sends the Binding Update, it MUST be prepared
to reply to Neighbor Solicitations for its home address. Such
replies MUST be sent using a unicast Neighbor Advertisement to the
sender's link-layer address. It is necessary to reply, since sending
the Binding Acknowledgement from the home agent may require
performing Neighbor Discovery, and the mobile node may not be able to
distinguish Neighbor Solicitations coming from the home agent from
other Neighbor Solicitations. Note that a race condition exists
where both the mobile node and the home agent respond to the same
solicitations sent by other nodes; this will be only temporary,
however, until the Binding Update is accepted.
After receiving the Binding Acknowledgement for its Binding Update to
its home agent, the mobile node MUST multicast onto the home link (to
the all-nodes multicast address) a Neighbor Advertisement [<a href="#ref-18" title=""Neighbor Discovery for IP version 6 (IPv6)"">18</a>], to
advertise the mobile node's own link-layer address for its own home
address. The Target Address in this Neighbor Advertisement MUST be
set to the mobile node's home address, and the Advertisement MUST
include a Target Link-layer Address option specifying the mobile
node's link-layer address. The mobile node MUST multicast such a
Neighbor Advertisement for each of its home addresses, as defined by
the current on-link prefixes, including its link-local address. The
Solicited (S) flag in these Advertisements MUST NOT be set, since
they were not solicited by any Neighbor Solicitation. The Override
(O) flag in these Advertisements MUST be set, indicating that the
Advertisements SHOULD override any existing Neighbor Cache entries at
any node receiving them.
Since multicasting on the local link (such as Ethernet) is typically
not guaranteed to be reliable, the mobile node MAY retransmit these
Neighbor Advertisements [<a href="#ref-18" title=""Neighbor Discovery for IP version 6 (IPv6)"">18</a>] up to MAX_NEIGHBOR_ADVERTISEMENT times
to increase their reliability. It is still possible that some nodes
on the home link will not receive any of these Neighbor
Advertisements, but these nodes will eventually be able to recover
through use of Neighbor Unreachability Detection [<a href="#ref-18" title=""Neighbor Discovery for IP version 6 (IPv6)"">18</a>].
Note that the tunnel via the home agent typically stops operating at
the same time that the home registration is deleted.
<span class="grey">Perkins, et al. Standards Track [Page 129]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-130" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
<span class="h3"><a class="selflink" id="section-11.6" href="#section-11.6">11.6</a>. Return Routability Procedure</span>
This section defines the rules that the mobile node must follow when
performing the return routability procedure. <a href="#section-11.7.2">Section 11.7.2</a>
describes the rules when the return routability procedure needs to be
initiated.
<span class="h4"><a class="selflink" id="section-11.6.1" href="#section-11.6.1">11.6.1</a>. Sending Test Init Messages</span>
A mobile node that initiates a return routability procedure MUST send
(in parallel) a Home Test Init message and a Care-of Test Init
message. However, if the mobile node has recently received (see
<a href="#section-5.2.7">Section 5.2.7</a>) one or both home or care-of keygen tokens, and
associated nonce indices for the desired addresses, it MAY reuse
them. Therefore, the return routability procedure may in some cases
be completed with only one message pair. It may even be completed
without any messages at all, if the mobile node has a recent home
keygen token and has previously visited the same care-of address so
that it also has a recent care-of keygen token. If the mobile node
intends to send a Binding Update with the Lifetime set to zero and
the care-of address equal to its home address -- such as when
returning home -- sending a Home Test Init message is sufficient. In
this case, generation of the binding management key depends
exclusively on the home keygen token (<a href="#section-5.2.5">Section 5.2.5</a>).
A Home Test Init message MUST be created as described in
<a href="#section-6.1.3">Section 6.1.3</a>.
A Care-of Test Init message MUST be created as described in
<a href="#section-6.1.4">Section 6.1.4</a>. When sending a Home Test Init or Care-of Test Init
message, the mobile node MUST record in its Binding Update List the
following fields from the messages:
o The IP address of the node to which the message was sent.
o The home address of the mobile node. This value will appear in
the Source Address field of the Home Test Init message. When
sending the Care-of Test Init message, this address does not
appear in the message, but represents the home address for which
the binding is desired.
o The time at which each of these messages was sent.
o The cookies used in the messages.
<span class="grey">Perkins, et al. Standards Track [Page 130]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-131" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
Note that a single Care-of Test Init message may be sufficient even
when there are multiple home addresses. In this case the mobile node
MAY record the same information in multiple Binding Update List
entries.
<span class="h4"><a class="selflink" id="section-11.6.2" href="#section-11.6.2">11.6.2</a>. Receiving Test Messages</span>
Upon receiving a packet carrying a Home Test message, a mobile node
MUST validate the packet according to the following tests:
o The Source Address of the packet belongs to a correspondent node
for which the mobile node has a Binding Update List entry with a
state indicating that return routability procedure is in progress.
Note that there may be multiple such entries.
o The Binding Update List indicates that no home keygen token has
been received yet.
o The Destination Address of the packet has the home address of the
mobile node, and the packet has been received in a tunnel from the
home agent.
o The Home Init Cookie field in the message matches the value stored
in the Binding Update List.
Any Home Test message not satisfying all of these tests MUST be
silently ignored. Otherwise, the mobile node MUST record the Home
Nonce Index and home keygen token in the Binding Update List. If the
Binding Update List entry does not have a care-of keygen token, the
mobile node SHOULD continue waiting for the Care-of Test message.
Upon receiving a packet carrying a Care-of Test message, a mobile
node MUST validate the packet according to the following tests:
o The Source Address of the packet belongs to a correspondent node
for which the mobile node has a Binding Update List entry with a
state indicating that return routability procedure is in progress.
Note that there may be multiple such entries.
o The Binding Update List indicates that no care-of keygen token has
been received yet.
o The Destination Address of the packet is the current care-of
address of the mobile node.
o The Care-of Init Cookie field in the message matches the value
stored in the Binding Update List.
<span class="grey">Perkins, et al. Standards Track [Page 131]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-132" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
Any Care-of Test message not satisfying all of these tests MUST be
silently ignored. Otherwise, the mobile node MUST record the Care-of
Nonce Index and care-of keygen token in the Binding Update List. If
the Binding Update List entry does not have a home keygen token, the
mobile node SHOULD continue waiting for the Home Test message.
If after receiving either the Home Test or the Care-of Test message
and performing the above actions, the Binding Update List entry has
both the home and the care-of keygen tokens, the return routability
procedure is complete. The mobile node SHOULD then proceed with
sending a Binding Update as described in <a href="#section-11.7.2">Section 11.7.2</a>.
Correspondent nodes from the time before this specification was
published may not support the Mobility Header protocol. These nodes
will respond to Home Test Init and Care-of Test Init messages with an
ICMP Parameter Problem code 1. The mobile node SHOULD take such
messages as an indication that the correspondent node cannot provide
route optimization, and revert back to the use of bidirectional
tunneling.
<span class="h4"><a class="selflink" id="section-11.6.3" href="#section-11.6.3">11.6.3</a>. Protecting Return Routability Packets</span>
The mobile node MUST support the protection of Home Test and Home
Test Init messages as described in <a href="#section-10.4.6">Section 10.4.6</a>.
When IPsec is used to protect return routability signaling or payload
packets, the mobile node MUST set the source address it uses for the
outgoing tunnel packets to the current primary care-of address. The
mobile node starts to use a new primary care-of address immediately
after sending a Binding Update to the home agent to register this new
address.
<span class="h3"><a class="selflink" id="section-11.7" href="#section-11.7">11.7</a>. Processing Bindings</span>
<span class="h4"><a class="selflink" id="section-11.7.1" href="#section-11.7.1">11.7.1</a>. Sending Binding Updates to the Home Agent</span>
In order to change its primary care-of address as described in
Sections <a href="#section-11.5.1">11.5.1</a> and <a href="#section-11.5.3">11.5.3</a>, a mobile node MUST register this care-of
address with its home agent in order to make this its primary care-of
address.
Also, if the mobile node wants the services of the home agent beyond
the current registration period, the mobile node should send a new
Binding Update to it well before the expiration of this period, even
if it is not changing its primary care-of address. However, if the
home agent returned a Binding Acknowledgement for the current
registration with the Status field set to 1 (accepted but prefix
discovery necessary), the mobile node should not try to register
<span class="grey">Perkins, et al. Standards Track [Page 132]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-133" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
again before it has learned the validity of its home prefixes through
mobile prefix discovery. This is typically necessary every time this
Status value is received, because information learned earlier may
have changed.
To register a care-of address or to extend the lifetime of an
existing registration, the mobile node sends a packet to its home
agent containing a Binding Update, with the packet constructed as
follows:
o The Home Registration (H) bit MUST be set in the Binding Update.
o The Acknowledge (A) bit MUST be set in the Binding Update.
o The packet MUST contain a Home Address destination option, giving
the mobile node's home address for the binding.
o The care-of address for the binding MUST be used as the Source
Address in the packet's IPv6 header, unless an Alternate Care-of
Address mobility option is included in the Binding Update. This
option MUST be included in all home registrations, as the ESP
protocol will not be able to protect care-of addresses in the IPv6
header. (Mobile IPv6 implementations that know they are using
IPsec AH to protect a particular message might avoid this option.
For brevity the usage of AH is not discussed in this document.)
o If the mobile node's link-local address has the same interface
identifier as the home address for which it is supplying a new
care-of address, then the mobile node SHOULD set the Link-Local
Address Compatibility (L) bit.
o If the home address was generated using <a href="./rfc4941">RFC 4941</a> [<a href="#ref-21" title=""Privacy Extensions for Stateless Address Autoconfiguration in IPv6"">21</a>], then the
link local address is unlikely to have a compatible interface
identifier. In this case, the mobile node MUST clear the Link-
Local Address Compatibility (L) bit.
o If the IPsec security associations between the mobile node and the
home agent have been established dynamically, and the mobile node
has the capability to update its endpoint in the used key
management protocol to the new care-of address every time it
moves, the mobile node SHOULD set the Key Management Mobility
Capability (K) bit in the Binding Update. Otherwise, the mobile
node MUST clear the bit.
o The value specified in the Lifetime field MUST be non-zero and
SHOULD be less than or equal to the remaining valid lifetime of
the home address and the care-of address specified for the
binding.
<span class="grey">Perkins, et al. Standards Track [Page 133]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-134" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
Mobile nodes that use dynamic home agent address discovery should
be careful with long lifetimes. If the mobile node loses the
knowledge of its binding with a specific home agent, registering a
new binding with another home agent may be impossible as the
previous home agent is still defending the existing binding.
Therefore, to ensure that mobile nodes using home agent address
discovery do not lose information about their binding, they SHOULD
de-register before losing this information, or use small
lifetimes.
The Acknowledge (A) bit in the Binding Update requests the home agent
to return a Binding Acknowledgement in response to this Binding
Update. As described in <a href="#section-6.1.8">Section 6.1.8</a>, the mobile node SHOULD
retransmit this Binding Update to its home agent until it receives a
matching Binding Acknowledgement. Once reaching a retransmission
timeout period of MAX_BINDACK_TIMEOUT, the mobile node SHOULD restart
the process of delivering the Binding Update, but trying instead the
next home agent returned during dynamic home agent address discovery
(see <a href="#section-11.4.1">Section 11.4.1</a>). If there was only one home agent, the mobile
node instead SHOULD continue to periodically retransmit the Binding
Update at this rate until acknowledged (or until it begins attempting
to register a different primary care-of address). See <a href="#section-11.8">Section 11.8</a>
for information about retransmitting Binding Updates.
With the Binding Update, the mobile node requests the home agent to
serve as the home agent for the given home address. Until the
lifetime of this registration expires, the home agent considers
itself the home agent for this home address.
Each Binding Update MUST be authenticated as coming from the right
mobile node, as defined in <a href="#section-5.1">Section 5.1</a>. The mobile node MUST use its
home address -- either in the Home Address destination option or in
the Source Address field of the IPv6 header -- in Binding Updates
sent to the home agent. This is necessary in order to allow the
IPsec policies to be matched with the correct home address.
When sending a Binding Update to its home agent, the mobile node MUST
also create or update the corresponding Binding Update List entry, as
specified in <a href="#section-11.7.2">Section 11.7.2</a>.
The last Sequence Number value sent to the home agent in a Binding
Update is stored by the mobile node. If the sending mobile node has
no knowledge of the correct Sequence Number value, it may start at
any value. If the home agent rejects the value, it sends back a
Binding Acknowledgement with a status code 135, and the last accepted
sequence number in the Sequence Number field of the Binding
Acknowledgement. The mobile node MUST store this information and use
the next Sequence Number value for the next Binding Update it sends.
<span class="grey">Perkins, et al. Standards Track [Page 134]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-135" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
If the mobile node has additional home addresses, then the mobile
node SHOULD send an additional packet containing a Binding Update to
its home agent to register the care-of address for each such other
home address.
The home agent will only perform DAD for the mobile node's home
address when the mobile node has supplied a valid binding between its
home address and a care-of address. If some time elapses during
which the mobile node has no binding at the home agent, it might be
possible for another node to autoconfigure the mobile node's home
address. Therefore, the mobile node MUST treat the creation of a new
binding with the home agent using an existing home address, the same
as creation of a new home address. In the unlikely event that the
mobile node's home address is autoconfigured as the IPv6 address of
another network node on the home network, the home agent will reply
to the mobile node's subsequent Binding Update with a Binding
Acknowledgement containing a Status of 134 (Duplicate Address
Detection failed). In this case, the mobile node MUST NOT attempt to
re-use the same home address. It SHOULD continue to register the
care-of addresses for its other home addresses, if any. Mechanisms
outlined in "Mobile IPv6 Bootstrapping in Split Scenario" [<a href="#ref-22" title=""Mobile IPv6 Bootstrapping in Split Scenario"">22</a>] allow
mobile nodes to acquire new home addresses to replace the one for
which Status 134 was received.
<span class="h4"><a class="selflink" id="section-11.7.2" href="#section-11.7.2">11.7.2</a>. Correspondent Registration</span>
When the mobile node is assured that its home address is valid, it
can initiate a correspondent registration with the purpose of
allowing the correspondent node to cache the mobile node's current
care-of address. This procedure consists of the return routability
procedure followed by a registration.
This section defines when the correspondent registration is to be
initiated and the rules to follow while it is being performed.
After the mobile node has sent a Binding Update to its home agent,
registering a new primary care-of address (as described in
<a href="#section-11.7.1">Section 11.7.1</a>), the mobile node SHOULD initiate a correspondent
registration for each node that already appears in the mobile node's
Binding Update List. The initiated procedures can be used to either
update or delete binding information in the correspondent node.
For nodes that do not appear in the mobile node's Binding Update
List, the mobile node MAY initiate a correspondent registration at
any time after sending the Binding Update to its home agent.
Considerations regarding when (and if) to initiate the procedure
depend on the specific movement and traffic patterns of the mobile
node and are outside the scope of this document.
<span class="grey">Perkins, et al. Standards Track [Page 135]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-136" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
In addition, the mobile node MAY initiate the correspondent
registration in response to receiving a packet that meets all of the
following tests:
o The packet was tunneled using IPv6 encapsulation.
o The Destination Address in the tunnel (outer) IPv6 header is equal
to any of the mobile node's care-of addresses.
o The Destination Address in the original (inner) IPv6 header is
equal to one of the mobile node's home addresses.
o The Source Address in the tunnel (outer) IPv6 header differs from
the Source Address in the original (inner) IPv6 header.
o The packet does not contain a Home Test, Home Test Init, Care-of
Test, or Care-of Test Init message.
If a mobile node has multiple home addresses, it becomes important to
select the right home address to use in the correspondent
registration. The used home address MUST be the Destination Address
of the original (inner) packet.
The peer address used in the procedure MUST be determined as follows:
o If a Home Address destination option is present in the original
(inner) packet, the address from this option is used.
o Otherwise, the Source Address in the original (inner) IPv6 header
of the packet is used.
Note that the validity of the original packet is checked before
attempting to initiate a correspondent registration. For instance,
if a Home Address destination option appeared in the original packet,
then rules in <a href="#section-9.3.1">Section 9.3.1</a> are followed.
A mobile node MAY also choose to keep its topological location
private from certain correspondent nodes, and thus need not initiate
the correspondent registration.
Upon successfully completing the return routability procedure, and
after receiving a successful Binding Acknowledgement from the home
agent, a Binding Update MAY be sent to the correspondent node.
In any Binding Update sent by a mobile node, the care-of address
(either the Source Address in the packet's IPv6 header or the Care-of
Address in the Alternate Care-of Address mobility option of the
Binding Update) MUST be set to one of the care-of addresses currently
<span class="grey">Perkins, et al. Standards Track [Page 136]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-137" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
in use by the mobile node or to the mobile node's home address. A
mobile node MAY set the care-of address differently for sending
Binding Updates to different correspondent nodes.
A mobile node MAY also send a Binding Update to such a correspondent
node, instructing it to delete any existing binding for the mobile
node from its Binding Cache, as described in <a href="#section-6.1.7">Section 6.1.7</a>. Even in
this case a successful completion of the return routability procedure
is required first.
If the care-of address is not set to the mobile node's home address,
the Binding Update requests that the correspondent node create or
update an entry for the mobile node in the correspondent node's
Binding Cache. This is done in order to record a care-of address for
use in sending future packets to the mobile node. In this case, the
value specified in the Lifetime field sent in the Binding Update
SHOULD be less than or equal to the remaining lifetime of the home
registration and the care-of address specified for the binding. The
care-of address given in the Binding Update MAY differ from the
mobile node's primary care-of address.
If the Binding Update is sent to the correspondent node, requesting
the deletion of any existing Binding Cache entry it has for the
mobile node, the care-of address is set to the mobile node's home
address and the Lifetime field set to zero. In this case, generation
of the binding management key depends exclusively on the home keygen
token (<a href="#section-5.2.5">Section 5.2.5</a>). The care-of nonce index SHOULD be set to zero
in this case. In keeping with the Binding Update creation rules
below, the care-of address MUST be set to the home address if the
mobile node is at home, or to the current care-of address if it is
away from home.
If the mobile node wants to ensure that its new care-of address has
been entered into a correspondent node's Binding Cache, the mobile
node needs to request an acknowledgement by setting the Acknowledge
(A) bit in the Binding Update.
A Binding Update is created as follows:
o The current care-of address of the mobile node MUST be sent either
in the Source Address of the IPv6 header or in the Alternate
Care-of Address mobility option.
o The Destination Address of the IPv6 header MUST contain the
address of the correspondent node.
<span class="grey">Perkins, et al. Standards Track [Page 137]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-138" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
o The Mobility Header is constructed according to rules in Sections
6.1.7 and 5.2.6, including the Binding Authorization Data
(calculated as defined in <a href="#section-6.2.7">Section 6.2.7</a>) and possibly the Nonce
Indices mobility options.
o The home address of the mobile node MUST be added to the packet in
a Home Address destination option, unless the Source Address is
the home address.
Each Binding Update MUST have a Sequence Number greater than the
Sequence Number value sent in the previous Binding Update to the same
destination address (if any). The sequence numbers are compared
modulo 2**16, as described in <a href="#section-9.5.1">Section 9.5.1</a>. There is no
requirement, however, that the Sequence Number value strictly
increase by 1 with each new Binding Update sent or received, as long
as the value stays within the window. The last Sequence Number value
sent to a destination in a Binding Update is stored by the mobile
node in its Binding Update List entry for that destination. If the
sending mobile node has no Binding Update List entry, the Sequence
Number SHOULD start at a random value. The mobile node MUST NOT use
the same Sequence Number in two different Binding Updates to the same
correspondent node, even if the Binding Updates provide different
care-of addresses.
The mobile node is responsible for the completion of the
correspondent registration, as well as any retransmissions that may
be needed (subject to the rate limitation defined in <a href="#section-11.8">Section 11.8</a>).
<span class="h4"><a class="selflink" id="section-11.7.3" href="#section-11.7.3">11.7.3</a>. Receiving Binding Acknowledgements</span>
Upon receiving a packet carrying a Binding Acknowledgement, a mobile
node MUST validate the packet according to the following tests:
o The packet meets the authentication requirements for Binding
Acknowledgements defined in Sections <a href="#section-6.1.8">6.1.8</a> and <a href="#section-5">5</a>. That is, if the
Binding Update was sent to the home agent, the underlying IPsec
protection is used. If the Binding Update was sent to the
correspondent node, the Binding Authorization Data mobility option
MUST be present and have a valid value.
o The Binding Authorization Data mobility option, if present, MUST
be the last option and MUST NOT have trailing padding.
o The Sequence Number field matches the Sequence Number sent by the
mobile node to this destination address in an outstanding Binding
Update, and the Status field is not 135.
<span class="grey">Perkins, et al. Standards Track [Page 138]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-139" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
Any Binding Acknowledgement not satisfying all of these tests MUST be
silently ignored.
When a mobile node receives a packet carrying a valid Binding
Acknowledgement, the mobile node MUST examine the Status field as
follows:
o If the Status field indicates that the Binding Update was accepted
(the Status field is less than 128), then the mobile node MUST
update the corresponding entry in its Binding Update List to
indicate that the Binding Update has been acknowledged; the mobile
node MUST then stop retransmitting the Binding Update. In
addition, if the value specified in the Lifetime field in the
Binding Acknowledgement is less than the Lifetime value sent in
the Binding Update being acknowledged, the mobile node MUST
subtract the difference between these two Lifetime values from the
remaining lifetime for the binding as maintained in the
corresponding Binding Update List entry (with a minimum value for
the Binding Update List entry lifetime of 0). That is, if the
Lifetime value sent in the Binding Update was L_update, the
Lifetime value received in the Binding Acknowledgement was L_ack,
and the current remaining lifetime of the Binding Update List
entry is L_remain, then the new value for the remaining lifetime
of the Binding Update List entry should be
max((L_remain - (L_update - L_ack)), 0)
where max(X, Y) is the maximum of X and Y. The effect of this
step is to correctly manage the mobile node's view of the
binding's remaining lifetime (as maintained in the corresponding
Binding Update List entry) so that it correctly counts down from
the Lifetime value given in the Binding Acknowledgement, but with
the timer countdown beginning at the time that the Binding Update
was sent.
Mobile nodes SHOULD send a new Binding Update well before the
expiration of this period in order to extend the lifetime. This
helps to avoid disruptions in communications that might otherwise
be caused by network delays or clock drift.
o If the Binding Acknowledgement correctly passes authentication and
the Status field value is 135 (Sequence Number out of window),
then the mobile node MUST update its binding sequence number
appropriately to match the sequence number given in the Binding
Acknowledgement. Otherwise, if the Status field value is 135 but
the Binding Acknowledgement does not pass authentication, the
message MUST be silently ignored.
<span class="grey">Perkins, et al. Standards Track [Page 139]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-140" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
o If the Status field value is 1 (accepted but prefix discovery
necessary), the mobile node SHOULD send a Mobile Prefix
Solicitation message to update its information about the available
prefixes.
o If the Status field indicates that the Binding Update was rejected
(the Status field is greater than or equal to 128), then the
mobile node can take steps to correct the cause of the error and
retransmit the Binding Update (with a new Sequence Number value),
subject to the rate limiting restriction specified in
<a href="#section-11.8">Section 11.8</a>. If this is not done or it fails, then the mobile
node SHOULD record in its Binding Update List that future Binding
Updates SHOULD NOT be sent to this destination.
The treatment of a Binding Refresh Advice mobility option within the
Binding Acknowledgement depends on where the acknowledgement came
from. This option MUST be ignored if the acknowledgement came from a
correspondent node. If it came from the home agent, the mobile node
uses the Refresh Interval field in the option as a suggestion that it
SHOULD attempt to refresh its home registration at the indicated
shorter interval.
If the acknowledgement came from the home agent, the mobile node
examines the value of the Key Management Mobility Capability (K) bit.
If this bit is not set, the mobile node SHOULD discard key management
protocol connections, if any, to the home agent. The mobile node MAY
also initiate a new key management connection.
If this bit is set, the mobile node SHOULD move its own endpoint in
the key management protocol connections to the home agent, if any.
The mobile node's new endpoint should be the new care-of address.
<span class="h4"><a class="selflink" id="section-11.7.4" href="#section-11.7.4">11.7.4</a>. Receiving Binding Refresh Requests</span>
When a mobile node receives a packet containing a Binding Refresh
Request message, if the mobile node has a Binding Update List entry
for the source of the Binding Refresh Request, and the mobile node
wants to retain its Binding Cache entry at the correspondent node,
then the mobile node should start a return routability procedure. If
the mobile node wants to have its Binding Cache entry removed, it can
either ignore the Binding Refresh Request and wait for the binding to
time out, or at any time, it can delete its binding from a
correspondent node with an explicit Binding Update with a zero
lifetime and the care-of address set to the home address. If the
mobile node does not know if it needs the Binding Cache entry, it can
make the decision in an implementation-dependent manner, such as
based on available resources.
<span class="grey">Perkins, et al. Standards Track [Page 140]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-141" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
Note that the mobile node should be careful not to respond to Binding
Refresh Requests for addresses not in the Binding Update List to
avoid being subjected to a denial of service attack.
If the return routability procedure completes successfully, a Binding
Update message SHOULD be sent, as described in <a href="#section-11.7.2">Section 11.7.2</a>. The
Lifetime field in this Binding Update SHOULD be set to a new
lifetime, extending any current lifetime remaining from a previous
Binding Update sent to this node (as indicated in any existing
Binding Update List entry for this node), and the lifetime SHOULD
again be less than or equal to the remaining lifetime of the home
registration and the care-of address specified for the binding. When
sending this Binding Update, the mobile node MUST update its Binding
Update List in the same way as for any other Binding Update sent by
the mobile node.
<span class="h3"><a class="selflink" id="section-11.8" href="#section-11.8">11.8</a>. Retransmissions and Rate Limiting</span>
The mobile node is responsible for retransmissions and rate limiting
in the return routability procedure, in registrations, and in
solicited prefix discovery.
When the mobile node sends a Mobile Prefix Solicitation, Home Test
Init, Care-of Test Init, or Binding Update for which it expects a
response, the mobile node has to determine a value for the initial
retransmission timer:
o If the mobile node is sending a Mobile Prefix Solicitation, it
SHOULD use an initial retransmission interval of
INITIAL_SOLICIT_TIMER (see <a href="#section-12">Section 12</a>).
o If the mobile node is sending a Binding Update and does not have
an existing binding at the home agent, it SHOULD use
InitialBindackTimeoutFirstReg (see <a href="#section-13">Section 13</a>) as a value for the
initial retransmission timer. This long retransmission interval
will allow the home agent to complete the Duplicate Address
Detection procedure mandated in this case, as detailed in
<a href="#section-11.7.1">Section 11.7.1</a>.
o Otherwise, the mobile node should use the specified value of
INITIAL_BINDACK_TIMEOUT for the initial retransmission timer.
If the mobile node fails to receive a valid matching response within
the selected initial retransmission interval, the mobile node SHOULD
retransmit the message until a response is received.
<span class="grey">Perkins, et al. Standards Track [Page 141]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-142" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
The retransmissions by the mobile node MUST use an exponential back-
off process in which the timeout period is doubled upon each
retransmission, until either the node receives a response or the
timeout period reaches the value MAX_BINDACK_TIMEOUT. The mobile
node MAY continue to send these messages at this slower rate
indefinitely.
The mobile node SHOULD start a separate back-off process for
different message types, different home addresses, and different
care-of addresses. However, in addition an overall rate limitation
applies for messages sent to a particular correspondent node. This
ensures that the correspondent node has a sufficient amount of time
to respond when bindings for multiple home addresses are registered,
for instance. The mobile node MUST NOT send Mobility Header messages
of a particular type to a particular correspondent node more than
MAX_UPDATE_RATE times within a second.
Retransmitted Binding Updates MUST use a Sequence Number value
greater than that used for the previous transmission of this Binding
Update. Retransmitted Home Test Init and Care-of Test Init messages
MUST use new cookie values.
<span class="h2"><a class="selflink" id="section-12" href="#section-12">12</a>. Protocol Constants</span>
DHAAD_RETRIES 4 retransmissions
INITIAL_BINDACK_TIMEOUT 1 second
INITIAL_DHAAD_TIMEOUT 3 seconds
INITIAL_SOLICIT_TIMER 3 seconds
MAX_BINDACK_TIMEOUT 32 seconds
MAX_DELETE_BCE_TIMEOUT 10 seconds
MAX_NONCE_LIFETIME 240 seconds
MAX_TOKEN_LIFETIME 210 seconds
MAX_RO_FAILURE 3 retries
MAX_RR_BINDING_LIFETIME 420 seconds
MAX_UPDATE_RATE 3 times
PREFIX_ADV_RETRIES 3 retransmissions
PREFIX_ADV_TIMEOUT 3 seconds
<span class="h2"><a class="selflink" id="section-13" href="#section-13">13</a>. Protocol Configuration Variables</span>
MaxMobPfxAdvInterval Default: 86,400 seconds
MinDelayBetweenRAs Default: 3 seconds,
Min: 0.03 seconds
MinMobPfxAdvInterval Default: 600 seconds
InitialBindackTimeoutFirstReg Default: 1.5 seconds
<span class="grey">Perkins, et al. Standards Track [Page 142]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-143" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
Home agents MUST allow the first three variables to be configured by
system management, and mobile nodes MUST allow the last variable to
be configured by system management.
The default value for InitialBindackTimeoutFirstReg has been
calculated as 1.5 times the default value of RetransTimer, as
specified in Neighbor Discovery (<a href="./rfc4861">RFC 4861</a> [<a href="#ref-18" title=""Neighbor Discovery for IP version 6 (IPv6)"">18</a>]) times the default
value of DupAddrDetectTransmits, as specified in Stateless Address
Autoconfiguration (<a href="./rfc4862">RFC 4862</a> [<a href="#ref-19" title=""IPv6 Stateless Address Autoconfiguration"">19</a>]).
The value MinDelayBetweenRAs overrides the value of the protocol
constant MIN_DELAY_BETWEEN_RAS, as specified in Neighbor Discovery
(<a href="./rfc4861">RFC 4861</a> [<a href="#ref-18" title=""Neighbor Discovery for IP version 6 (IPv6)"">18</a>]). This variable SHOULD be set to MinRtrAdvInterval,
if MinRtrAdvInterval is less than 3 seconds.
<span class="h2"><a class="selflink" id="section-14" href="#section-14">14</a>. IANA Considerations</span>
This document defines a new IPv6 protocol, the Mobility Header,
described in <a href="#section-6.1">Section 6.1</a>. This protocol has been assigned protocol
number 135.
This document also creates a new name space "Mobility Header Type",
for the MH Type field in the Mobility Header. The current message
types are described starting from <a href="#section-6.1.2">Section 6.1.2</a>, and are the
following:
0 Binding Refresh Request
1 Home Test Init
2 Care-of Test Init
3 Home Test
4 Care-of Test
5 Binding Update
6 Binding Acknowledgement
7 Binding Error
Future values of the MH Type can be allocated using Standards Action
or IESG Approval [<a href="#ref-23" title="">23</a>].
<span class="grey">Perkins, et al. Standards Track [Page 143]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-144" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
Furthermore, each mobility message may contain mobility options as
described in <a href="#section-6.2">Section 6.2</a>. This document defines a new name space
"Mobility Option" to identify these options. The current mobility
options are defined starting from <a href="#section-6.2.2">Section 6.2.2</a> and are the
following:
0 Pad1
1 PadN
2 Binding Refresh Advice
3 Alternate Care-of Address
4 Nonce Indices
5 Authorization Data
Future values of the Option Type can be allocated using Standards
Action or IESG Approval [<a href="#ref-23" title="">23</a>].
Finally, this document creates a third new name space "Status Code"
for the Status field in the Binding Acknowledgement message. The
current values are listed in <a href="#section-6.1.8">Section 6.1.8</a> and are the following:
0 Binding Update accepted
1 Accepted but prefix discovery necessary
128 Reason unspecified
129 Administratively prohibited
130 Insufficient resources
131 Home registration not supported
132 Not home subnet
133 Not home agent for this mobile node
134 Duplicate Address Detection failed
135 Sequence number out of window
136 Expired home nonce index
137 Expired care-of nonce index
<span class="grey">Perkins, et al. Standards Track [Page 144]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-145" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
138 Expired nonces
139 Registration type change disallowed
174 Invalid Care-of Address
Future values of the Status field can be allocated using Standards
Action or IESG Approval [<a href="#ref-23" title="">23</a>].
All fields labeled "Reserved" are only to be assigned through
Standards Action or IESG Approval.
This document also defines a new IPv6 destination option, the Home
Address option, described in <a href="#section-6.3">Section 6.3</a>. This option has been
assigned the Option Type value 0xC9.
This document also defines a new IPv6 type 2 routing header,
described in <a href="#section-6.4">Section 6.4</a>. The value 2 has been allocated by IANA.
In addition, this document defines four ICMP message types, two used
as part of the dynamic home agent address discovery mechanism, and
two used in lieu of Router Solicitations and Advertisements when the
mobile node is away from the home link. These messages have been
assigned ICMPv6 type numbers from the informational message range:
o The Home Agent Address Discovery Request message, described in
<a href="#section-6.5">Section 6.5</a>;
o The Home Agent Address Discovery Reply message, described in
<a href="#section-6.6">Section 6.6</a>;
o The Mobile Prefix Solicitation, described in <a href="#section-6.7">Section 6.7</a>; and
o The Mobile Prefix Advertisement, described in <a href="#section-6.8">Section 6.8</a>.
This document also defines two new Neighbor Discovery [<a href="#ref-18" title=""Neighbor Discovery for IP version 6 (IPv6)"">18</a>] options,
which have been assigned Option Type values within the option
numbering space for Neighbor Discovery messages:
o The Advertisement Interval option, described in <a href="#section-7.3">Section 7.3</a>; and
o The Home Agent Information option, described in <a href="#section-7.4">Section 7.4</a>.
<span class="grey">Perkins, et al. Standards Track [Page 145]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-146" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
<span class="h2"><a class="selflink" id="section-15" href="#section-15">15</a>. Security Considerations</span>
<span class="h3"><a class="selflink" id="section-15.1" href="#section-15.1">15.1</a>. Threats</span>
Any mobility solution must protect itself against misuses of the
mobility features and mechanisms. In Mobile IPv6, most of the
potential threats are concerned with false bindings, usually
resulting in denial-of-service attacks. Some of the threats also
pose potential for man-in-the-middle, hijacking, confidentiality, and
impersonation attacks. The main threats this protocol protects
against are the following:
o Threats involving Binding Updates sent to home agents and
correspondent nodes. For instance, an attacker might claim that a
certain mobile node is currently at a different location than it
really is. If a home agent accepts such spoofed information sent
to it, the mobile node might not get traffic destined to it.
Similarly, a malicious (mobile) node might use the home address of
a victim node in a forged Binding Update sent to a correspondent
node.
These pose threats against confidentiality, integrity, and
availability. That is, an attacker might learn the contents of
packets destined to another node by redirecting the traffic to
itself. Furthermore, an attacker might use the redirected packets
in an attempt to set itself as a man in the middle between a
mobile and a correspondent node. This would allow the attacker to
impersonate the mobile node, leading to integrity and availability
problems.
A malicious (mobile) node might also send Binding Updates in which
the care-of address is set to the address of a victim node. If
such Binding Updates were accepted, the malicious node could lure
the correspondent node into sending potentially large amounts of
data to the victim; the correspondent node's replies to messages
sent by the malicious mobile node will be sent to the victim host
or network. This could be used to cause a distributed denial-of-
service attack. For example, the correspondent node might be a
site that will send a high-bandwidth stream of video to anyone who
asks for it. Note that the use of flow-control protocols such as
TCP does not necessarily defend against this type of attack,
because the attacker can fake the acknowledgements. Even keeping
TCP initial sequence numbers secret does not help, because the
attacker can receive the first few segments (including the ISN) at
its own address, and only then redirect the stream to the victim's
address. These types of attacks may also be directed to networks
instead of nodes. Further variations of this threat are described
elsewhere [<a href="#ref-28" title=""MIPv6 BU Attacks and Defenses"">28</a>] [<a href="#ref-35" title=""Authentication of Mobile IPv6 Binding Updates and Acknowledgments"">35</a>].
<span class="grey">Perkins, et al. Standards Track [Page 146]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-147" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
An attacker might also attempt to disrupt a mobile node's
communications by replaying a Binding Update that the node had
sent earlier. If the old Binding Update was accepted, packets
destined for the mobile node would be sent to its old location as
opposed to its current location.
A malicious mobile node associated to multiple home agents could
create a routing loop amongst them. This can be achieved when a
mobile node binds one home address located on a first home agent
to another home address on a second home agent. This type of
binding will force the home agents to route the same packet among
each other without knowledge that a routing loop has been created.
Such looping problem is limited to cases where a mobile node has
multiple home agents and is permitted to be associated with the
multiple home agents. For the single home agent case, a policy at
the home agent would prevent the binding of one home address to
another home address hosted by the same home agent.
The potential problems caused by such routing loops in this
scenario can be substantially reduced by use of the Tunnel-Limit
Option specified in <a href="./rfc2473">RFC 2473</a> [<a href="#ref-7" title=""Generic Packet Tunneling in IPv6 Specification"">7</a>].
In conclusion, there are denial-of-service, man-in-the-middle,
confidentiality, and impersonation threats against the parties
involved in sending legitimate Binding Updates, the threat of
routing loops when there are multiple home agents, and denial-of-
service threats against any other party.
o Threats associated with payload packets: Payload packets exchanged
with mobile nodes are exposed to similar threats as that of
regular IPv6 traffic. However, Mobile IPv6 introduces the Home
Address destination option and a new routing header type (type 2),
and uses tunneling headers in the payload packets. The protocol
must protect against potential new threats involving the use of
these mechanisms.
Third parties become exposed to a reflection threat via the Home
Address destination option, unless appropriate security
precautions are followed. The Home Address destination option
could be used to direct response traffic toward a node whose IP
address appears in the option. In this case, ingress filtering
would not catch the forged "return address" [<a href="#ref-38" title=""Security of IPv6 Routing Header and Home Address Options"">38</a>] [<a href="#ref-43" title=""Mobile IP Version 6 Route Optimization Security Design Background"">43</a>].
A similar threat exists with the tunnels between the mobile node
and the home agent. An attacker might forge tunnel packets
between the mobile node and the home agent, making it appear that
the traffic is coming from the mobile node when it is not. Note
that an attacker who is able to forge tunnel packets would
<span class="grey">Perkins, et al. Standards Track [Page 147]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-148" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
typically also be able to forge packets that appear to come
directly from the mobile node. This is not a new threat as such.
However, it may make it easier for attackers to escape detection
by avoiding ingress filtering and packet tracing mechanisms.
Furthermore, spoofed tunnel packets might be used to gain access
to the home network.
Finally, a routing header could also be used in reflection
attacks, and in attacks designed to bypass firewalls. The
generality of the regular routing header would allow circumvention
of IP-address based rules in firewalls. It would also allow
reflection of traffic to other nodes. These threats exist with
routing headers in general, even if the usage that Mobile IPv6
requires is safe.
o Threats associated with dynamic home agent and mobile prefix
discovery.
o Threats against the Mobile IPv6 security mechanisms themselves: An
attacker might, for instance, lure the participants into executing
expensive cryptographic operations or allocating memory for the
purpose of keeping state. The victim node would have no resources
left to handle other tasks.
As a fundamental service in an IPv6 stack, Mobile IPv6 is expected to
be deployed in most nodes of the IPv6 Internet. The above threats
should therefore be considered as being applicable to the whole
Internet.
It should also be noted that some additional threats result from
movements as such, even without the involvement of mobility
protocols. Mobile nodes must be capable to defend themselves in the
networks that they visit, as typical perimeter defenses applied in
the home network no longer protect them.
<span class="h3"><a class="selflink" id="section-15.2" href="#section-15.2">15.2</a>. Features</span>
This specification provides a series of features designed to mitigate
the risk introduced by the threats listed above. The main security
features are the following:
o Reverse tunneling as a mandatory feature.
o Protection of Binding Updates sent to home agents.
o Protection of Binding Updates sent to correspondent nodes.
<span class="grey">Perkins, et al. Standards Track [Page 148]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-149" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
o Protection against reflection attacks that use the Home Address
destination option.
o Protection of tunnels between the mobile node and the home agent.
o Closing routing header vulnerabilities.
o Mitigating denial-of-service threats to the Mobile IPv6 security
mechanisms themselves.
The support for encrypted reverse tunneling (see <a href="#section-11.3.1">Section 11.3.1</a>)
allows mobile nodes to defeat certain kinds of traffic analysis.
Protecting those Binding Updates that are sent to home agents and
those that are sent to arbitrary correspondent nodes requires very
different security solutions due to the different situations. Mobile
nodes and home agents are naturally expected to be subject to the
network administration of the home domain.
Thus, they can and are supposed to have a security association that
can be used to reliably authenticate the exchanged messages. See
<a href="#section-5.1">Section 5.1</a> for the description of the protocol mechanisms, and
<a href="#section-15.3">Section 15.3</a> below for a discussion of the resulting level of
security.
It is expected that Mobile IPv6 route optimization will be used on a
global basis between nodes belonging to different administrative
domains. It would be a very demanding task to build an
authentication infrastructure on this scale. Furthermore, a
traditional authentication infrastructure cannot be easily used to
authenticate IP addresses because IP addresses can change often. It
is not sufficient to just authenticate the mobile nodes;
authorization to claim the right to use an address is needed as well.
Thus, an "infrastructureless" approach is necessary. The chosen
infrastructureless method is described in <a href="#section-5.2">Section 5.2</a>, and
<a href="#section-15.4">Section 15.4</a> discusses the resulting security level and the design
rationale of this approach.
Specific rules guide the use of the Home Address destination option,
the routing header, and the tunneling headers in the payload packets.
These rules are necessary to remove the vulnerabilities associated
with their unrestricted use. The effect of the rules is discussed in
Sections <a href="#section-15.7">15.7</a>, <a href="#section-15.8">15.8</a>, and <a href="#section-15.9">15.9</a>.
Denial-of-service threats against Mobile IPv6 security mechanisms
themselves concern mainly the Binding Update procedures with
correspondent nodes. The protocol has been designed to limit the
effects of such attacks, as will be described in <a href="#section-15.4.5">Section 15.4.5</a>.
<span class="grey">Perkins, et al. Standards Track [Page 149]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-150" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
<span class="h3"><a class="selflink" id="section-15.3" href="#section-15.3">15.3</a>. Binding Updates to Home Agent</span>
Signaling between the mobile node and the home agent requires message
integrity. This is necessary to assure the home agent that a Binding
Update is from a legitimate mobile node. In addition, correct
ordering and anti-replay protection are optionally needed.
IPsec ESP protects the integrity of the Binding Updates and Binding
Acknowledgements by securing mobility messages between the mobile
node and the home agent.
IPsec can provide anti-replay protection only if dynamic keying is
used (which may not always be the case). IPsec does not guarantee
correct ordering of packets, only that they have not been replayed.
Because of this, sequence numbers within the Mobile IPv6 messages are
used to ensure correct ordering (see <a href="#section-5.1">Section 5.1</a>). However, if the
16-bit Mobile IPv6 sequence number space is cycled through, or the
home agent reboots and loses its state regarding the sequence
numbers, replay and reordering attacks become possible. The use of
dynamic keying, IPsec anti-replay protection, and the Mobile IPv6
sequence numbers can together prevent such attacks. It is also
recommended that use of non-volatile storage be considered for home
agents, to avoid losing their state.
A sliding window scheme is used for the sequence numbers. The
protection against replays and reordering attacks without a key
management mechanism works when the attacker remembers up to a
maximum of 2**15 Binding Updates.
The above mechanisms do not show that the care-of address given in
the Binding Update is correct. This opens the possibility for
denial-of-service attacks against third parties. However, since the
mobile node and home agent have a security association, the home
agent can always identify an ill-behaving mobile node. This allows
the home agent operator to discontinue the mobile node's service, and
possibly take further actions based on the business relationship with
the mobile node's owner.
Note that the use of a single pair of manually keyed security
associations conflicts with the generation of a new home address [<a href="#ref-21" title=""Privacy Extensions for Stateless Address Autoconfiguration in IPv6"">21</a>]
for the mobile node, or with the adoption of a new home subnet
prefix. This is because IPsec security associations are bound to the
used addresses. While certificate-based automatic keying alleviates
this problem to an extent, it is still necessary to ensure that a
given mobile node cannot send Binding Updates for the address of
another mobile node. In general, this leads to the inclusion of home
addresses in certificates in the Subject AltName field. This again
limits the introduction of new addresses without either manual or
<span class="grey">Perkins, et al. Standards Track [Page 150]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-151" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
automatic procedures to establish new certificates. Therefore, this
specification restricts the generation of new home addresses (for any
reason) to those situations where a security association or
certificate for the new address already exists.
Support for IKEv2 has been specified as optional. The following
should be observed about the use of manual keying:
o As discussed above, with manually keyed IPsec, only a limited form
of protection exists against replay and reordering attacks. A
vulnerability exists if either the sequence number space is cycled
through or the home agent reboots and forgets its sequence numbers
(and uses volatile memory to store the sequence numbers).
Assuming the mobile node moves continuously every 10 minutes, it
takes roughly 455 days before the sequence number space has been
cycled through. Typical movement patterns rarely reach this high
frequency today.
o A mobile node and its home agent belong to the same domain. If
this were not the case, manual keying would not be possible [<a href="#ref-42" title=""Guidelines for Cryptographic Key Management"">42</a>],
but in Mobile IPv6 only these two parties need to know the
manually configured keys. Similarly, we note that Mobile IPv6
employs standard block ciphers in IPsec, and is not vulnerable to
problems associated with stream ciphers and manual keying.
o It is expected that the owner of the mobile node and the
administrator of the home agent agree on the used keys and other
parameters with some off-line mechanism.
The use of IKEv2 with Mobile IPv6 is documented in more detail in
[<a href="#ref-20" title=""Mobile IPv6 Operation with IKEv2 and the Revised IPsec Architecture"">20</a>]. The following should be observed regarding the use of IKEv2:
o It is necessary to prevent a mobile node from claiming another
mobile node's home address. The home agent must verify that the
mobile node trying to negotiate the SA for a particular home
address is authorized for that home address. This implies that
even with the use of IKEv2, a policy entry needs to be configured
for each home address served by the home agent.
It may be possible to include home addresses in the Subject
AltName field of certificate to avoid this. However,
implementations are not guaranteed to support the use of a
particular IP address (care-of address) while another address
(home address) appears in the certificate. In any case, even this
approach would require user-specific tasks in the certificate
authority.
<span class="grey">Perkins, et al. Standards Track [Page 151]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-152" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
o Due to the problems outlined in <a href="#section-11.3.2">Section 11.3.2</a>, the IKEv2 SA
between the mobile node and its home agent is established using
the mobile node's current care-of address. This implies that when
the mobile node moves to a new location, it may have to
re-establish an IKEv2 security association. A Key Management
Mobility Capability (K) flag is provided for implementations that
can update the IKEv2 endpoints without re-establishing an IKEv2
security association, but the support for this behavior is
optional.
o Nevertheless, even if per-mobile node configuration is required
with IKEv2, an important benefit of IKEv2 is that it automates the
negotiation of cryptographic parameters, including the Security
Parameter Indices (SPIs), cryptographic algorithms, and so on.
Thus, less configuration information is needed.
o The frequency of movements in some link layers or deployment
scenarios may be high enough to make replay and reordering attacks
possible, if only manual keying is used. IKEv2 SHOULD be used in
such cases. Potentially vulnerable scenarios involve continuous
movement through small cells, or uncontrolled alternation between
available network attachment points.
o Similarly, in some deployment scenarios the number of mobile nodes
may be very large. In these cases, it can be necessary to use
automatic mechanisms to reduce the management effort in the
administration of cryptographic parameters, even if some per-
mobile node configuration is always needed. IKEv2 SHOULD also be
used in such cases.
<span class="h3"><a class="selflink" id="section-15.4" href="#section-15.4">15.4</a>. Binding Updates to Correspondent Nodes</span>
The motivation for designing the return routability procedure was to
have sufficient support for Mobile IPv6, without creating significant
new security problems. The goal for this procedure was not to
protect against attacks that were already possible before the
introduction of Mobile IPv6.
The next sections will describe the security properties of the used
method, both from the point of view of possible on-path attackers who
can see those cryptographic values that have been sent in the clear
(Sections <a href="#section-15.4.2">15.4.2</a> and <a href="#section-15.4.3">15.4.3</a>) and from the point of view of other
attackers (<a href="#section-15.4.6">Section 15.4.6</a>).
<span class="grey">Perkins, et al. Standards Track [Page 152]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-153" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
<span class="h4"><a class="selflink" id="section-15.4.1" href="#section-15.4.1">15.4.1</a>. Overview</span>
The chosen infrastructureless method verifies that the mobile node is
"live" (that is, it responds to probes) at its home and care-of
addresses. <a href="#section-5.2">Section 5.2</a> describes the return routability procedure in
detail. The procedure uses the following principles:
o A message exchange verifies that the mobile node is reachable at
its addresses, i.e., is at least able to transmit and receive
traffic at both the home and care-of addresses.
o The eventual Binding Update is cryptographically bound to the
tokens supplied in the exchanged messages.
o Symmetric exchanges are employed to avoid the use of this protocol
in reflection attacks. In a symmetric exchange, the responses are
always sent to the same address from which the request was sent.
o The correspondent node operates in a stateless manner until it
receives a fully authorized Binding Update.
o Some additional protection is provided by encrypting the tunnels
between the mobile node and home agent with IPsec ESP. As the
tunnel also transports the nonce exchanges, the ability of
attackers to see these nonces is limited. For instance, this
prevents attacks from being launched from the mobile node's
current foreign link, even when no link-layer confidentiality is
available.
The resulting level of security is in theory the same even without
this additional protection: the return routability tokens are
still exposed only to one path within the whole Internet.
However, the mobile nodes are often found on an insecure link,
such as a public access Wireless LAN. Thus, in many cases, this
addition makes a practical difference.
For further information about the design rationale of the return
routability procedure, see [<a href="#ref-28" title=""MIPv6 BU Attacks and Defenses"">28</a>] [<a href="#ref-35" title=""Authentication of Mobile IPv6 Binding Updates and Acknowledgments"">35</a>] [<a href="#ref-34" title=""Securing MIPv6 BUs using return routability (BU3WAY)"">34</a>] [<a href="#ref-43" title=""Mobile IP Version 6 Route Optimization Security Design Background"">43</a>]. The mechanisms used
have been adopted from these documents.
<span class="h4"><a class="selflink" id="section-15.4.2" href="#section-15.4.2">15.4.2</a>. Achieved Security Properties</span>
The return routability procedure protects Binding Updates against all
attackers who are unable to monitor the path between the home agent
and the correspondent node. The procedure does not defend against
attackers who can monitor this path. Note that such attackers are in
any case able to mount an active attack against the mobile node when
<span class="grey">Perkins, et al. Standards Track [Page 153]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-154" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
it is at its home location. The possibility of such attacks is not
an impediment to the deployment of Mobile IPv6 because these attacks
are possible regardless of whether or not Mobile IPv6 is in use.
This procedure also protects against denial-of-service attacks in
which the attacker pretends to be mobile, but uses the victim's
address as the care-of address. This would cause the correspondent
node to send the victim some unexpected traffic. This procedure
defends against these attacks by requiring at least the passive
presence of the attacker at the care-of address or on the path from
the correspondent to the care-of address. Normally, this will be the
mobile node.
<span class="h4"><a class="selflink" id="section-15.4.3" href="#section-15.4.3">15.4.3</a>. Comparison to Regular IPv6 Communications</span>
This section discusses the protection offered by the return
routability method by comparing it to the security of regular IPv6
communications. We will divide vulnerabilities into three classes:
(1) those related to attackers on the local network of the mobile
node, home agent, or the correspondent node, (2) those related to
attackers on the path between the home network and the correspondent
node, and (3) off-path attackers, i.e., the rest of the Internet.
We will now discuss the vulnerabilities of regular IPv6
communications. The on-link vulnerabilities of IPv6 communications
include denial-of-service, masquerading, man-in-the-middle,
eavesdropping, and other attacks. These attacks can be launched
through spoofing Router Discovery, Neighbor Discovery, and other IPv6
mechanisms. Some of these attacks can be prevented with the use of
cryptographic protection in the packets.
A similar situation exists with on-path attackers. That is, without
cryptographic protection, the traffic is completely vulnerable.
Assuming that attackers have not penetrated the security of the
Internet routing protocols, attacks are much harder to launch from
off-path locations. Attacks that can be launched from these
locations are mainly denial-of-service attacks, such as flooding
and/or reflection attacks. It is not possible for an off-path
attacker to become a man in the middle.
Next, we will consider the vulnerabilities that exist when IPv6 is
used together with Mobile IPv6 and the return routability procedure.
On the local link, the vulnerabilities are the same as those in IPv6,
but masquerade and man-in-the-middle attacks can now also be launched
against future communications, and not just against current
communications. If a Binding Update was sent while the attacker was
present on the link, its effects remain for the lifetime of the
<span class="grey">Perkins, et al. Standards Track [Page 154]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-155" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
binding. This happens even if the attacker moves away from the link.
In contrast, an attacker who uses only plain IPv6 generally has to
stay on the link in order to continue the attack. Note that in order
to launch these new attacks, the IP address of the victim must be
known. This makes this attack feasible, mainly in the context of
well-known interface IDs, such as those already appearing in the
traffic on the link or registered in the DNS.
On-path attackers can exploit similar vulnerabilities as in regular
IPv6. There are some minor differences, however. Masquerade, man-
in-the-middle, and denial-of-service attacks can be launched with
just the interception of a few packets, whereas in regular IPv6 it is
necessary to intercept every packet. The effect of the attacks is
the same regardless of the method, however. In any case, the most
difficult task an attacker faces in these attacks is getting on the
right path.
The vulnerabilities for off-path attackers are the same as in regular
IPv6. Those nodes that are not on the path between the home agent
and the correspondent node will not be able to receive the home
address probe messages.
In conclusion, we can state the following main results from this
comparison:
o Return routability prevents any off-path attacks beyond those that
are already possible in regular IPv6. This is the most important
result, preventing attackers on the Internet from exploiting any
vulnerabilities.
o Vulnerabilities to attackers on the home agent link, the
correspondent node link, and the path between them are roughly the
same as in regular IPv6.
o However, one difference is that in basic IPv6 an on-path attacker
must be constantly present on the link or the path, whereas with
Mobile IPv6, an attacker can leave a binding behind after moving
away.
For this reason, this specification limits the creation of
bindings to at most MAX_TOKEN_LIFETIME seconds after the last
routability check has been performed, and limits the duration of a
binding to at most MAX_RR_BINDING_LIFETIME seconds. With these
limitations, attackers cannot take any practical advantages of
this vulnerability.
<span class="grey">Perkins, et al. Standards Track [Page 155]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-156" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
o There are some other minor differences, such as an effect to the
denial-of-service vulnerabilities. These can be considered to be
insignificant.
o The path between the home agent and a correspondent node is
typically easiest to attack on the links at either end, in
particular if these links are publicly accessible wireless LANs.
Attacks against the routers or switches on the path are typically
harder to accomplish. The security on layer 2 of the links plays
then a major role in the resulting overall network security.
Similarly, security of IPv6 Neighbor and Router Discovery on these
links has a large impact. If these were secured using some new
technology in the future, this could change the situation
regarding the easiest point of attack.
For a more in-depth discussion of these issues, see [<a href="#ref-43" title=""Mobile IP Version 6 Route Optimization Security Design Background"">43</a>].
<span class="h4"><a class="selflink" id="section-15.4.4" href="#section-15.4.4">15.4.4</a>. Replay Attacks</span>
The return routability procedure also protects the participants
against replayed Binding Updates. The attacker is unable replay the
same message due to the sequence number that is a part of the Binding
Update. It is also unable to modify the Binding Update since the MAC
verification would fail after such a modification.
Care must be taken when removing bindings at the correspondent node,
however. If a binding is removed while the nonce used in its
creation is still valid, an attacker could replay the old Binding
Update. Rules outlined in <a href="#section-5.2.8">Section 5.2.8</a> ensure that this cannot
happen.
<span class="h4"><a class="selflink" id="section-15.4.5" href="#section-15.4.5">15.4.5</a>. Denial-of-Service Attacks</span>
The return routability procedure has protection against resource
exhaustion denial-of-service attacks. The correspondent nodes do not
retain any state about individual mobile nodes until an authentic
Binding Update arrives. This is achieved through the construct of
keygen tokens from the nonces and node keys that are not specific to
individual mobile nodes. The keygen tokens can be reconstructed by
the correspondent node, based on the home and care-of address
information that arrives with the Binding Update. This means that
the correspondent nodes are safe against memory exhaustion attacks
except where on-path attackers are concerned. Due to the use of
symmetric cryptography, the correspondent nodes are relatively safe
against CPU resource exhaustion attacks as well.
<span class="grey">Perkins, et al. Standards Track [Page 156]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-157" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
Nevertheless, as [<a href="#ref-28" title=""MIPv6 BU Attacks and Defenses"">28</a>] describes, there are situations in which it is
impossible for the mobile and correspondent nodes to determine if
they actually need a binding or whether they just have been fooled
into believing so by an attacker. Therefore, it is necessary to
consider situations where such attacks are being made.
Even if route optimization is a very important optimization, it is
still only an optimization. A mobile node can communicate with a
correspondent node even if the correspondent refuses to accept any
Binding Updates. However, performance will suffer because packets
from the correspondent node to the mobile node will be routed via the
mobile's home agent rather than a more direct route. A correspondent
node can protect itself against some of these resource exhaustion
attacks as follows. If the correspondent node is flooded with a
large number of Binding Updates that fail the cryptographic integrity
checks, it can stop processing Binding Updates. If a correspondent
node finds that it is spending more resources on checking bogus
Binding Updates than it is likely to save by accepting genuine
Binding Updates, then it may silently discard some or all Binding
Updates without performing any cryptographic operations.
Layers above IP can usually provide additional information to help
determine whether there is a need to establish a binding with a
specific peer. For example, TCP knows if the node has a queue of
data that it is trying to send to a peer. An implementation of this
specification is not required to make use of information from higher
protocol layers, but some implementations are likely to be able to
manage resources more effectively by making use of such information.
We also require that all implementations be capable of
administratively disabling route optimization.
<span class="h4"><a class="selflink" id="section-15.4.6" href="#section-15.4.6">15.4.6</a>. Key Lengths</span>
Attackers can try to break the return routability procedure in many
ways. <a href="#section-15.4.2">Section 15.4.2</a> discusses the situation where the attacker can
see the cryptographic values sent in the clear, and <a href="#section-15.4.3">Section 15.4.3</a>
discusses the impact this has on IPv6 communications. This section
discusses whether attackers can guess the correct values without
seeing them.
While the return routability procedure is in progress, 64-bit cookies
are used to protect spoofed responses. This is believed to be
sufficient, given that to blindly spoof a response a very large
number of messages would have to be sent before success would be
probable.
<span class="grey">Perkins, et al. Standards Track [Page 157]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-158" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
The tokens used in the return routability procedure provide together
128 bits of information. This information is used internally as
input to a hash function to produce a 160-bit quantity suitable for
producing the keyed hash in the Binding Update using the HMAC_SHA1
algorithm. The final keyed hash length is 96 bits. The limiting
factors in this case are the input token lengths and the final keyed
hash length. The internal hash function application does not reduce
the entropy.
The 96-bit final keyed hash is of typical size and is believed to be
secure. The 128-bit input from the tokens is broken in two pieces,
the home keygen token and the care-of keygen token. An attacker can
try to guess the correct cookie value, but again this would require a
large number of messages (an the average 2**63 messages for one or
2**127 for two). Furthermore, given that the cookies are valid only
for a short period of time, the attack has to keep a high constant
message rate to achieve a lasting effect. This does not appear
practical.
When the mobile node is returning home, it is allowed to use just the
home keygen token of 64 bits. This is less than 128 bits, but
attacking it blindly would still require a large number of messages
to be sent. If the attacker is on the path and capable of seeing the
Binding Update, it could conceivably break the keyed hash with brute
force. However, in this case the attacker has to be on the path,
which appears to offer easier ways for denial of service than
preventing route optimization.
<span class="h3"><a class="selflink" id="section-15.5" href="#section-15.5">15.5</a>. Dynamic Home Agent Address Discovery</span>
The dynamic home agent address discovery function could be used to
learn the addresses of home agents in the home network.
The ability to learn addresses of nodes may be useful to attackers
because brute-force scanning of the address space is not practical
with IPv6. Thus, they could benefit from any means that make mapping
the networks easier. For example, if a security threat targeted at
routers or even home agents is discovered, having a simple ICMP
mechanism to easily find out possible targets may prove to be an
additional (though minor) security risk.
This document does not define any authentication mechanism for
dynamic home agent address discovery messages. Therefore, the home
agent cannot verify the home address of the mobile node that
requested the list of home agents.
<span class="grey">Perkins, et al. Standards Track [Page 158]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-159" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
Apart from discovering the address(es) of home agents, attackers will
not be able to learn much from this information, and mobile nodes
cannot be tricked into using wrong home agents, as all other
communication with the home agents is secure.
In cases where additional security is needed, one may consider
instead the use of MIPv6 bootstrapping [<a href="#ref-22" title=""Mobile IPv6 Bootstrapping in Split Scenario"">22</a>], (based on DNS SRV
Resource Records [<a href="#ref-10" title=""A DNS RR for specifying the location of services (DNS SRV)"">10</a>]) in conjunction with security mechanisms
suggested in these specifications. In that solution, security is
provided by the DNS Security (DNSSEC) [<a href="#ref-13" title=""DNS Security Introduction and Requirements"">13</a>] framework. The needed
pre-configured data on the mobile node for this mechanism is the
domain name of the mobile service provider, which is marginally
better than the home subnet prefix. For the security, a trust anchor
that dominates the domain is needed.
<span class="h3"><a class="selflink" id="section-15.6" href="#section-15.6">15.6</a>. Mobile Prefix Discovery</span>
The mobile prefix discovery function may leak interesting information
about network topology and prefix lifetimes to eavesdroppers; for
this reason, requests for this information have to be authenticated.
Responses and unsolicited prefix information needs to be
authenticated to prevent the mobile nodes from being tricked into
believing false information about the prefixes and possibly
preventing communications with the existing addresses. Optionally,
encryption may be applied to prevent leakage of the prefix
information.
<span class="h3"><a class="selflink" id="section-15.7" href="#section-15.7">15.7</a>. Tunneling via the Home Agent</span>
Tunnels between the mobile node and the home agent can be protected
by ensuring proper use of source addresses, and optional
cryptographic protection. These procedures are discussed in
<a href="#section-5.5">Section 5.5</a>.
Binding Updates to the home agents are secure. When receiving
tunneled traffic, the home agent verifies that the outer IP address
corresponds to the current location of the mobile node. This acts as
a weak form of protection against spoofing packets that appear to
come from the mobile node. This is particularly useful, if no end-
to-end security is being applied between the mobile and correspondent
nodes. The outer IP address check prevents attacks where the
attacker is controlled by ingress filtering. It also prevents
attacks when the attacker does not know the current care-of address
of the mobile node. Attackers who know the care-of address and are
not controlled by ingress filtering could still send traffic through
the home agent. This includes attackers on the same local link as
the mobile node is currently on. But such attackers could send
packets that appear to come from the mobile node without attacking
<span class="grey">Perkins, et al. Standards Track [Page 159]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-160" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
the tunnel; the attacker could simply send packets with the source
address set to the mobile node's home address. However, this attack
does not work if the final destination of the packet is in the home
network, and some form of perimeter defense is being applied for
packets sent to those destinations. In such cases it is recommended
that either end-to-end security or additional tunnel protection be
applied, as is usual in remote access situations.
Home agents and mobile nodes may use IPsec ESP to protect payload
packets tunneled between themselves. This is useful for protecting
communications against attackers on the path of the tunnel.
When a unique-local address (ULA, <a href="./rfc4193">RFC 4193</a> [<a href="#ref-15" title=""Unique Local IPv6 Unicast Addresses"">15</a>]) is used as a home
address, reverse tunneling can be used to send local traffic from
another location. Administrators should be aware of this when
allowing such home addresses. In particular, the outer IP address
check described above is not sufficient against all attackers. The
use of encrypted tunnels is particularly useful for these kinds of
home addresses.
<span class="h3"><a class="selflink" id="section-15.8" href="#section-15.8">15.8</a>. Home Address Option</span>
When the mobile node sends packets directly to the correspondent
node, the Source Address field of the packet's IPv6 header is the
care-of address. Therefore, ingress filtering [<a href="#ref-27" title=""Network Ingress Filtering: Defeating Denial of Service Attacks which employ IP Source Address Spoofing"">27</a>] works in the
usual manner even for mobile nodes, as the Source Address is
topologically correct. The Home Address option is used to inform the
correspondent node of the mobile node's home address.
However, the care-of address in the Source Address field does not
survive in replies sent by the correspondent node unless it has a
binding for this mobile node. Also, not all attacker tracing
mechanisms work when packets are being reflected through
correspondent nodes using the Home Address option. For these
reasons, this specification restricts the use of the Home Address
option. It may only be used when a binding has already been
established with the participation of the node at the home address,
as described in Sections <a href="#section-5.5">5.5</a> and <a href="#section-6.3">6.3</a>. This prevents reflection
attacks through the use of the Home Address option. It also ensures
that the correspondent nodes reply to the same address that the
mobile node sends traffic from.
No special authentication of the Home Address option is required
beyond the above, but note that if the IPv6 header of a packet is
covered by IPsec Authentication Header, then that authentication
covers the Home Address option as well. Thus, even when
authentication is used in the IPv6 header, the security of the Source
Address field in the IPv6 header is not compromised by the presence
<span class="grey">Perkins, et al. Standards Track [Page 160]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-161" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
of a Home Address option. Without authentication of the packet, any
field in the IPv6 header including the Source Address field or any
other part of the packet and the Home Address option can be forged or
modified in transit. In this case, the contents of the Home Address
option is no more suspect than any other part of the packet.
<span class="h3"><a class="selflink" id="section-15.9" href="#section-15.9">15.9</a>. Type 2 Routing Header</span>
The definition of the type 2 routing header is described in
<a href="#section-6.4">Section 6.4</a>. This definition and the associated processing rules
have been chosen so that the header cannot be used for what is
traditionally viewed as source routing. In particular, the home
address in the routing header will always have to be assigned to the
home address of the receiving node; otherwise, the packet will be
dropped.
Generally, source routing has a number of security concerns. These
include the automatic reversal of unauthenticated source routes
(which is an issue for IPv4, but not for IPv6). Another concern is
the ability to use source routing to "jump" between nodes inside, as
well as outside, a firewall. These security concerns are not issues
in Mobile IPv6, due to the rules mentioned above.
In essence the semantics of the type 2 routing header is the same as
a special form of IP-in-IP tunneling where the inner and outer source
addresses are the same.
This implies that a device that implements the filtering of packets
should be able to distinguish between a type 2 routing header and
other routing headers, as required in <a href="#section-8.3">Section 8.3</a>. This is necessary
in order to allow Mobile IPv6 traffic while still having the option
of filtering out other uses of routing headers.
<span class="h3"><a class="selflink" id="section-15.10" href="#section-15.10">15.10</a>. SHA-1 Secure Enough for Mobile IPv6 Control Messages</span>
This document relies on hash-based message authentication codes
(HMAC) computed using the SHA-1 [<a href="#ref-11" title=""Secure Hash Standard"">11</a>] hash algorithm for the home
keygen token and care-of keygen token, as well as the authentication
fields in the binding update and binding authorization data (see
<a href="#section-5.2.4">Section 5.2.4</a>). While SHA-1 has been deprecated for some
cryptographic mechanisms, SHA-1 is considered secure for the
foreseeable future when used as specified here. For additional
details, see [<a href="#ref-39" title=""Security Considerations for the SHA-0 and SHA-1 Message-Digest Algorithms"">39</a>].
<span class="grey">Perkins, et al. Standards Track [Page 161]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-162" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
<span class="h2"><a class="selflink" id="section-16" href="#section-16">16</a>. Contributors</span>
Work done by Tuomas Aura, Mike Roe, Greg O'Shea, Pekka Nikander, Erik
Nordmark, and Michael Thomas shaped the return routability protocols
described in [<a href="#ref-35" title=""Authentication of Mobile IPv6 Binding Updates and Acknowledgments"">35</a>].
Significant contributions were made by members of the Mobile IPv6
Security Design Team, including (in alphabetical order) Gabriel
Montenegro, Pekka Nikander, and Erik Nordmark.
<span class="h2"><a class="selflink" id="section-17" href="#section-17">17</a>. Acknowledgements</span>
We would like to thank the members of the Mobile IP, Mobility
Extensions for IPv6, and IPng Working Groups for their comments and
suggestions on this work. We would particularly like to thank (in
alphabetical order) Fred Baker, Josh Broch, Samita Chakrabarti,
Robert Chalmers, Noel Chiappa, Jean-Michel Combes, Greg Daley, Vijay
Devarapalli, Rich Draves, Francis Dupont, Ashutosh Dutta, Arnaud
Ebalard, Wesley Eddy, Thomas Eklund, Jun-Ichiro Itojun Hagino, Brian
Haley, Marc Hasson, John Ioannidis, James Kempf, Rajeev Koodli,
Suresh Krishnan, Krishna Kumar, T.J. Kniveton, Joe Lau, Aime Le
Rouzic, Julien Laganier, Jiwoong Lee, Benjamin Lim, Vesa-Matti
Mantyla, Kevin Miles, Glenn Morrow, Ahmad Muhanna, Thomas Narten,
Karen Nielsen, Simon Nybroe, David Oran, Mohan Parthasarathy,
Basavaraj Patil, Brett Pentland, Lars Henrik Petander, Alexandru
Petrescu, Mattias Petterson, Ken Powell, Ed Remmell, Phil Roberts,
Patrice Romand, Luis A. Sanchez, Pekka Savola, Jeff Schiller, Arvind
Sevalkar, Keiichi Shima, Tom Soderlund, Hesham Soliman, Jim Solomon,
Tapio Suihko, Dave Thaler, Pascal Thubert, Benny Van Houdt, Jon-Olov
Vatn, Ryuji Wakikawa, Kilian Weniger, Carl E. Williams, Vladislav
Yasevich, Alper Yegin, and Xinhua Zhao, for their detailed reviews of
earlier versions of this document. Their suggestions have helped to
improve both the design and presentation of the protocol.
We would also like to thank the participants of the Mobile IPv6
testing event (1999), implementers who participated in Mobile IPv6
interoperability testing at Connectathons (2000, 2001, 2002, and
2003), and the participants at the ETSI interoperability testing
(2000, 2002). Finally, we would like to thank the TAHI project that
has provided test suites for Mobile IPv6.
<span class="h2"><a class="selflink" id="section-18" href="#section-18">18</a>. References</span>
<span class="h3"><a class="selflink" id="section-18.1" href="#section-18.1">18.1</a>. Normative References</span>
[<a id="ref-1">1</a>] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-Hashing
for Message Authentication", <a href="./rfc2104">RFC 2104</a>, February 1997.
<span class="grey">Perkins, et al. Standards Track [Page 162]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-163" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
[<a id="ref-2">2</a>] Bradner, S., "Key words for use in RFCs to Indicate Requirement
Levels", <a href="https://www.rfc-editor.org/bcp/bcp14">BCP 14</a>, <a href="./rfc2119">RFC 2119</a>, March 1997.
[<a id="ref-3">3</a>] Kent, S. and K. Seo, "Security Architecture for the Internet
Protocol", <a href="./rfc4301">RFC 4301</a>, December 2005.
[<a id="ref-4">4</a>] Kent, S., "IP Authentication Header", <a href="./rfc4302">RFC 4302</a>, December 2005.
[<a id="ref-5">5</a>] Kent, S., "IP Encapsulating Security Payload (ESP)", <a href="./rfc4303">RFC 4303</a>,
December 2005.
[<a id="ref-6">6</a>] Deering, S. and R. Hinden, "Internet Protocol, Version 6 (IPv6)
Specification", <a href="./rfc2460">RFC 2460</a>, December 1998.
[<a id="ref-7">7</a>] Conta, A. and S. Deering, "Generic Packet Tunneling in IPv6
Specification", <a href="./rfc2473">RFC 2473</a>, December 1998.
[<a id="ref-8">8</a>] Johnson, D. and S. Deering, "Reserved IPv6 Subnet Anycast
Addresses", <a href="./rfc2526">RFC 2526</a>, March 1999.
[<a id="ref-9">9</a>] Deering, S., Fenner, W., and B. Haberman, "Multicast Listener
Discovery (MLD) for IPv6", <a href="./rfc2710">RFC 2710</a>, October 1999.
[<a id="ref-10">10</a>] Gulbrandsen, A., Vixie, P., and L. Esibov, "A DNS RR for
specifying the location of services (DNS SRV)", <a href="./rfc2782">RFC 2782</a>,
February 2000.
[<a id="ref-11">11</a>] National Institute of Standards and Technology, "Secure Hash
Standard", FIPS PUB 180-1, April 1995,
<<a href="http://www.itl.nist.gov/fipspubs/fip180-1.htm">http://www.itl.nist.gov/fipspubs/fip180-1.htm</a>>.
[<a id="ref-12">12</a>] Arkko, J., Devarapalli, V., and F. Dupont, "Using IPsec to
Protect Mobile IPv6 Signaling Between Mobile Nodes and Home
Agents", <a href="./rfc3776">RFC 3776</a>, June 2004.
[<a id="ref-13">13</a>] Arends, R., Austein, R., Larson, M., Massey, D., and S. Rose,
"DNS Security Introduction and Requirements", <a href="./rfc4033">RFC 4033</a>,
March 2005.
[<a id="ref-14">14</a>] Eastlake, D., Schiller, J., and S. Crocker, "Randomness
Requirements for Security", <a href="https://www.rfc-editor.org/bcp/bcp106">BCP 106</a>, <a href="./rfc4086">RFC 4086</a>, June 2005.
[<a id="ref-15">15</a>] Hinden, R. and B. Haberman, "Unique Local IPv6 Unicast
Addresses", <a href="./rfc4193">RFC 4193</a>, October 2005.
[<a id="ref-16">16</a>] Hinden, R. and S. Deering, "IP Version 6 Addressing
Architecture", <a href="./rfc4291">RFC 4291</a>, February 2006.
<span class="grey">Perkins, et al. Standards Track [Page 163]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-164" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
[<a id="ref-17">17</a>] Conta, A., Deering, S., and M. Gupta, "Internet Control Message
Protocol (ICMPv6) for the Internet Protocol Version 6 (IPv6)
Specification", <a href="./rfc4443">RFC 4443</a>, March 2006.
[<a id="ref-18">18</a>] Narten, T., Nordmark, E., Simpson, W., and H. Soliman,
"Neighbor Discovery for IP version 6 (IPv6)", <a href="./rfc4861">RFC 4861</a>,
September 2007.
[<a id="ref-19">19</a>] Thomson, S., Narten, T., and T. Jinmei, "IPv6 Stateless Address
Autoconfiguration", <a href="./rfc4862">RFC 4862</a>, September 2007.
[<a id="ref-20">20</a>] Devarapalli, V. and F. Dupont, "Mobile IPv6 Operation with
IKEv2 and the Revised IPsec Architecture", <a href="./rfc4877">RFC 4877</a>,
April 2007.
[<a id="ref-21">21</a>] Narten, T., Draves, R., and S. Krishnan, "Privacy Extensions
for Stateless Address Autoconfiguration in IPv6", <a href="./rfc4941">RFC 4941</a>,
September 2007.
[<a id="ref-22">22</a>] Giaretta, G., Kempf, J., and V. Devarapalli, "Mobile IPv6
Bootstrapping in Split Scenario", <a href="./rfc5026">RFC 5026</a>, October 2007.
[<a id="ref-23">23</a>] Narten, T. and H. Alvestrand, "Guidelines for Writing an IANA
Considerations Section in RFCs", <a href="https://www.rfc-editor.org/bcp/bcp26">BCP 26</a>, <a href="./rfc5226">RFC 5226</a>, May 2008.
[<a id="ref-24">24</a>] Kaufman, C., Hoffman, P., Nir, Y., and P. Eronen, "Internet Key
Exchange Protocol Version 2 (IKEv2)", <a href="./rfc5996">RFC 5996</a>, September 2010.
<span class="h3"><a class="selflink" id="section-18.2" href="#section-18.2">18.2</a>. Informative References</span>
[<a id="ref-25">25</a>] Perkins, C., "IP Encapsulation within IP", <a href="./rfc2003">RFC 2003</a>,
October 1996.
[<a id="ref-26">26</a>] Perkins, C., "Minimal Encapsulation within IP", <a href="./rfc2004">RFC 2004</a>,
October 1996.
[<a id="ref-27">27</a>] Ferguson, P. and D. Senie, "Network Ingress Filtering:
Defeating Denial of Service Attacks which employ IP Source
Address Spoofing", <a href="https://www.rfc-editor.org/bcp/bcp38">BCP 38</a>, <a href="./rfc2827">RFC 2827</a>, May 2000.
[<a id="ref-28">28</a>] Aura, T. and J. Arkko, <a style="text-decoration: none" href='https://www.google.com/search?sitesearch=datatracker.ietf.org%2Fdoc%2Fhtml%2F&q=inurl:draft-+%22MIPv6+BU+Attacks+and+Defenses%22'>"MIPv6 BU Attacks and Defenses"</a>, Work
in Progress, March 2002.
[<a id="ref-29">29</a>] Krishnan, S. and G. Tsirtsis, <a style="text-decoration: none" href='https://www.google.com/search?sitesearch=datatracker.ietf.org%2Fdoc%2Fhtml%2F&q=inurl:draft-+%22MIPv6+Home+Link+Detection%22'>"MIPv6 Home Link Detection"</a>, Work
in Progress, March 2008.
[<a id="ref-30">30</a>] Reynolds, J., "Assigned Numbers: <a href="./rfc1700">RFC 1700</a> is Replaced by an On-
line Database", <a href="./rfc3232">RFC 3232</a>, January 2002.
<span class="grey">Perkins, et al. Standards Track [Page 164]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-165" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
[<a id="ref-31">31</a>] Droms, R., Bound, J., Volz, B., Lemon, T., Perkins, C., and M.
Carney, "Dynamic Host Configuration Protocol for IPv6
(DHCPv6)", <a href="./rfc3315">RFC 3315</a>, July 2003.
[<a id="ref-32">32</a>] Perkins, C., "IP Mobility Support for IPv4, Revised", <a href="./rfc5944">RFC 5944</a>,
November 2010.
[<a id="ref-33">33</a>] Draves, R., "Default Address Selection for Internet Protocol
version 6 (IPv6)", <a href="./rfc3484">RFC 3484</a>, February 2003.
[<a id="ref-34">34</a>] Nordmark, E., "Securing MIPv6 BUs using return routability
(BU3WAY)", Work in Progress, November 2001.
[<a id="ref-35">35</a>] Roe, M., "Authentication of Mobile IPv6 Binding Updates and
Acknowledgments", Work in Progress, March 2002.
[<a id="ref-36">36</a>] Chowdhury, K. and A. Yegin, "MIP6-bootstrapping for the
Integrated Scenario", Work in Progress, April 2008.
[<a id="ref-37">37</a>] Savola, P., "Use of /127 Prefix Length Between Routers
Considered Harmful", <a href="./rfc3627">RFC 3627</a>, September 2003.
[<a id="ref-38">38</a>] Savola, P., "Security of IPv6 Routing Header and Home Address
Options", Work in Progress, March 2002.
[<a id="ref-39">39</a>] Polk, T., Chen, L., Turner, S., and P. Hoffman, "Security
Considerations for the SHA-0 and SHA-1 Message-Digest
Algorithms", <a href="./rfc6194">RFC 6194</a>, March 2011.
[<a id="ref-40">40</a>] Manner, J. and M. Kojo, "Mobility Related Terminology",
<a href="./rfc3753">RFC 3753</a>, June 2004.
[<a id="ref-41">41</a>] Vida, R. and L. Costa, "Multicast Listener Discovery Version 2
(MLDv2) for IPv6", <a href="./rfc3810">RFC 3810</a>, June 2004.
[<a id="ref-42">42</a>] Bellovin, S. and R. Housley, "Guidelines for Cryptographic Key
Management", <a href="https://www.rfc-editor.org/bcp/bcp107">BCP 107</a>, <a href="./rfc4107">RFC 4107</a>, June 2005.
[<a id="ref-43">43</a>] Nikander, P., Arkko, J., Aura, T., Montenegro, G., and E.
Nordmark, "Mobile IP Version 6 Route Optimization Security
Design Background", <a href="./rfc4225">RFC 4225</a>, December 2005.
[<a id="ref-44">44</a>] Nordmark, E., Chakrabarti, S., and J. Laganier, "IPv6 Socket
API for Source Address Selection", <a href="./rfc5014">RFC 5014</a>, September 2007.
[<a id="ref-45">45</a>] Abley, J., Savola, P., and G. Neville-Neil, "Deprecation of
Type 0 Routing Headers in IPv6", <a href="./rfc5095">RFC 5095</a>, December 2007.
<span class="grey">Perkins, et al. Standards Track [Page 165]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-166" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
<span class="h2"><a class="selflink" id="appendix-A" href="#appendix-A">Appendix A</a>. Future Extensions</span>
<span class="h3"><a class="selflink" id="appendix-A.1" href="#appendix-A.1">A.1</a>. Piggybacking</span>
This document does not specify how to piggyback payload packets on
the binding-related messages. However, it is envisioned that this
can be specified in a separate document when issues such as the
interaction between piggybacking and IPsec are fully resolved (see
also <a href="#appendix-A.3">Appendix A.3</a>). The return routability messages can indicate
support for piggybacking with a new mobility option.
<span class="h3"><a class="selflink" id="appendix-A.2" href="#appendix-A.2">A.2</a>. Triangular Routing</span>
Due to the concerns about opening reflection attacks with the Home
Address destination option, this specification requires that this
option be verified against the Binding Cache, i.e., there must be a
Binding Cache entry for the home address and care-of address.
Future extensions may be specified that allow the use of unverified
Home Address destination options in ways that do not introduce
security issues.
<span class="h3"><a class="selflink" id="appendix-A.3" href="#appendix-A.3">A.3</a>. New Authorization Methods</span>
While the return routability procedure provides a good level of
security, there exist methods that have even higher levels of
security. Second, as discussed in <a href="#section-15.4">Section 15.4</a>, future enhancements
of IPv6 security may cause a need to also improve the security of the
return routability procedure. Using IPsec as the sole method for
authorizing Binding Updates to correspondent nodes is also possible.
The protection of the Mobility Header for this purpose is easy,
though one must ensure that the IPsec SA was created with appropriate
authorization to use the home address referenced in the Binding
Update. For instance, a certificate used by IKEv2 to create the
security association might contain the home address. A future
specification may specify how this is done.
<span class="h3"><a class="selflink" id="appendix-A.4" href="#appendix-A.4">A.4</a>. Neighbor Discovery Extensions</span>
Future specifications may improve the efficiency of Neighbor
Discovery tasks, which could be helpful for fast movements. One
factor is currently being looked at: the delays caused by the
Duplicate Address Detection mechanism. Currently, Duplicate Address
Detection needs to be performed for every new care-of address as the
mobile node moves, and for the mobile node's link-local address on
every new link. In particular, the need and the trade-offs of
re-performing Duplicate Address Detection for the link-local address
every time the mobile node moves on to new links will need to be
<span class="grey">Perkins, et al. Standards Track [Page 166]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-167" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
examined. Improvements in this area are, however, generally
applicable and progress independently from the Mobile IPv6
specification.
Future functional improvements may also be relevant for Mobile IPv6
and other applications. For instance, mechanisms that would allow
recovery from a Duplicate Address Detection collision would be useful
for link-local, care-of, and home addresses.
<span class="h2"><a class="selflink" id="appendix-B" href="#appendix-B">Appendix B</a>. Changes since <a href="./rfc3775">RFC 3775</a></span>
The following issues were identified during the evolution of the
current document. Discussion about most of the issues can be found
on the [mext] working group page
<a href="http://trac.tools.ietf.org/wg/mext/trac/report/6">http://trac.tools.ietf.org/wg/mext/trac/report/6</a>
Issue #1 Last Accepted SQN [Ahmad Muhanna]
Solution: specify that the mobile node update its binding sequence
number to match the sequence number given in the Binding
Acknowledgement (if the Binding Acknowledgement correctly passes
authentication and the status is 135 (Sequence Number out of
window). See <a href="#section-11.7.3">Section 11.7.3</a>.
Issue #4 Remove references to site-local addresses [George
Tsirtsis].
Fixed.
Issue #5 Wrong protocol number (2 instead of 135) used in discussion
about checksum pseudo-header.
Fixed. See <a href="#section-6.1.1">Section 6.1.1</a>.
Issue #8 Application using the care-of address [Julien Laganier]
Cite IPv6 Socket API for Source Address Selection specification
[<a href="#ref-44" title=""IPv6 Socket API for Source Address Selection"">44</a>]. See <a href="#section-11.3.4">Section 11.3.4</a>.
Issue #10 The usage of "HA lifetime" [Ryuji Wakikawa]
The mobile node SHOULD store the list of home agents for later use
in case the home agent currently managing the mobile node's
care-of address forwarding should become unavailable. See
<a href="#section-11.4.1">Section 11.4.1</a>.
<span class="grey">Perkins, et al. Standards Track [Page 167]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-168" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
Issue #11 De-registration when returning home [Vijay Devarapalli]
To be able to send and receive packets using its home address from
the home link, the mobile node MUST send a Binding Update to its
home agent to instruct its home agent to no longer intercept or
tunnel packets for it. Until the mobile node sends such a
de-registration Binding Update, it MUST NOT attempt to send and
receive packets using its home address from the home link. See
<a href="#section-11.5.5">Section 11.5.5</a>.
Issue #12 BErr sent by HA too, not only by CN [Alexandru Petrescu]
Fixed. See <a href="#section-4.2">Section 4.2</a>.
Issue #13 Home Link Detection [Suresh Krishnan]
Proposal: Add <a href="#section-11.5.2">Section 11.5.2</a> for Home Link Detection, drawing on
"MIPv6 Home Link Detection" [<a href="#ref-29" title=""MIPv6 Home Link Detection"">29</a>].
Issue #14 References to bootstrapping [Vijay Devarapalli]
Cite "Mobile IPv6 Bootstrapping in Split Scenario" [<a href="#ref-22" title=""Mobile IPv6 Bootstrapping in Split Scenario"">22</a>] and "MIP6-
bootstrapping for the Integrated Scenario" [<a href="#ref-36" title=""MIP6-bootstrapping for the Integrated Scenario"">36</a>]. See <a href="#section-4.1">Section 4.1</a>.
Issue #17 Multi-homed mobile node can cause routing loop between
home agents [Benjamin Lim]
Added security advisory in <a href="#section-15.1">Section 15.1</a>, to highlight risk of
routing loop among HAs (e.g., in 3GPP):
A malicious mobile node associated to multiple home agents could
create a routing loop amongst them. This would happen when a
mobile node binds one home address located on a first home agent
to another home address on a second home agent.
Issue #18 Subject: Issues regarding Home Address Option and ICMP /
Binding Errors [Fabian Mauchle]
Proposal: Use the value in the Next Header field {50 (ESP), 51
(AH), 135 (Mobility Header)} to determine, if a Binding Cache
entry is required. See <a href="#section-9.3.1">Section 9.3.1</a>.
Proposal: If the Binding Error message was sent by the home agent,
the mobile node SHOULD send a Binding Update to the home agent
according to <a href="#section-11.7.1">Section 11.7.1</a>. See <a href="#section-11.3.6">Section 11.3.6</a>.
<span class="grey">Perkins, et al. Standards Track [Page 168]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-169" ></span>
<span class="grey"><a href="./rfc6275">RFC 6275</a> Mobility Support in IPv6 July 2011</span>
Issue #19 BU de-registration race condition [Kilian Weniger]
Problem arises if de-registration arrives at home agent before an
immediately preceding Binding Update.
Solution: Home agent defers BCE removal after sending the Binding
Acknowledgement. See <a href="#section-10.3.2">Section 10.3.2</a>.
Issue #6 Minor editorial corrections and updates.
Update IPsec and IKE references to the revised IPsec architecture
and IKEv2.
Update HMAC_SHA1 [<a href="#ref-1" title=""HMAC: Keyed-Hashing for Message Authentication"">1</a>] to Normative instead of Informational.
Include discussion (see <a href="#section-15.10">Section 15.10</a>) to inform implementers that
HMAC_SHA1 is considered to offer sufficient protection for control
messages as required by Mobile IPv6.
Authors' Addresses
Charles E. Perkins (editor)
Tellabs, Inc.
4555 Great America Parkway, Suite 150
Santa Clara CA 95054
USA
EMail: charliep@computer.org
David B. Johnson
Rice University
Dept. of Computer Science, MS 132
6100 Main Street
Houston TX 77005-1892
USA
EMail: dbj@cs.rice.edu
Jari Arkko
Ericsson
Jorvas 02420
Finland
EMail: jari.arkko@ericsson.com
Perkins, et al. Standards Track [Page 169]
</pre>
|