1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621
|
<pre>Internet Engineering Task Force (IETF) S. Poretsky
Request for Comments: 6412 Allot Communications
Category: Informational B. Imhoff
ISSN: 2070-1721 F5 Networks
K. Michielsen
Cisco Systems
November 2011
Terminology for Benchmarking Link-State IGP Data-Plane Route Convergence
Abstract
This document describes the terminology for benchmarking link-state
Interior Gateway Protocol (IGP) route convergence. The terminology
is to be used for benchmarking IGP convergence time through
externally observable (black-box) data-plane measurements. The
terminology can be applied to any link-state IGP, such as IS-IS and
OSPF.
Status of This Memo
This document is not an Internet Standards Track specification; it is
published for informational purposes.
This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Not all documents
approved by the IESG are a candidate for any level of Internet
Standard; see <a href="./rfc5741#section-2">Section 2 of RFC 5741</a>.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
<a href="http://www.rfc-editor.org/info/rfc6412">http://www.rfc-editor.org/info/rfc6412</a>.
Copyright Notice
Copyright (c) 2011 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to <a href="https://www.rfc-editor.org/bcp/bcp78">BCP 78</a> and the IETF Trust's Legal
Provisions Relating to IETF Documents
(<a href="http://trustee.ietf.org/license-info">http://trustee.ietf.org/license-info</a>) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
<span class="grey">Poretsky, et al. Informational [Page 1]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-2" ></span>
<span class="grey"><a href="./rfc6412">RFC 6412</a> IGP Convergence Benchmark Terminology November 2011</span>
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
This document may contain material from IETF Documents or IETF
Contributions published or made publicly available before November
10, 2008. The person(s) controlling the copyright in some of this
material may not have granted the IETF Trust the right to allow
modifications of such material outside the IETF Standards Process.
Without obtaining an adequate license from the person(s) controlling
the copyright in such materials, this document may not be modified
outside the IETF Standards Process, and derivative works of it may
not be created outside the IETF Standards Process, except to format
it for publication as an RFC or to translate it into languages other
than English.
<span class="grey">Poretsky, et al. Informational [Page 2]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-3" ></span>
<span class="grey"><a href="./rfc6412">RFC 6412</a> IGP Convergence Benchmark Terminology November 2011</span>
Table of Contents
<a href="#section-1">1</a>. Introduction and Scope . . . . . . . . . . . . . . . . . . . . <a href="#page-4">4</a>
<a href="#section-2">2</a>. Existing Definitions . . . . . . . . . . . . . . . . . . . . . <a href="#page-4">4</a>
<a href="#section-3">3</a>. Term Definitions . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-5">5</a>
<a href="#section-3.1">3.1</a>. Convergence Types . . . . . . . . . . . . . . . . . . . . <a href="#page-5">5</a>
<a href="#section-3.1.1">3.1.1</a>. Route Convergence . . . . . . . . . . . . . . . . . . <a href="#page-5">5</a>
<a href="#section-3.1.2">3.1.2</a>. Full Convergence . . . . . . . . . . . . . . . . . . . <a href="#page-5">5</a>
<a href="#section-3.2">3.2</a>. Instants . . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-6">6</a>
<a href="#section-3.2.1">3.2.1</a>. Traffic Start Instant . . . . . . . . . . . . . . . . <a href="#page-6">6</a>
<a href="#section-3.2.2">3.2.2</a>. Convergence Event Instant . . . . . . . . . . . . . . <a href="#page-6">6</a>
<a href="#section-3.2.3">3.2.3</a>. Convergence Recovery Instant . . . . . . . . . . . . . <a href="#page-7">7</a>
<a href="#section-3.2.4">3.2.4</a>. First Route Convergence Instant . . . . . . . . . . . <a href="#page-8">8</a>
<a href="#section-3.3">3.3</a>. Transitions . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-8">8</a>
<a href="#section-3.3.1">3.3.1</a>. Convergence Event Transition . . . . . . . . . . . . . <a href="#page-8">8</a>
<a href="#section-3.3.2">3.3.2</a>. Convergence Recovery Transition . . . . . . . . . . . <a href="#page-9">9</a>
<a href="#section-3.4">3.4</a>. Interfaces . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-10">10</a>
<a href="#section-3.4.1">3.4.1</a>. Local Interface . . . . . . . . . . . . . . . . . . . <a href="#page-10">10</a>
<a href="#section-3.4.2">3.4.2</a>. Remote Interface . . . . . . . . . . . . . . . . . . . <a href="#page-10">10</a>
<a href="#section-3.4.3">3.4.3</a>. Preferred Egress Interface . . . . . . . . . . . . . . <a href="#page-10">10</a>
<a href="#section-3.4.4">3.4.4</a>. Next-Best Egress Interface . . . . . . . . . . . . . . <a href="#page-11">11</a>
<a href="#section-3.5">3.5</a>. Benchmarking Methods . . . . . . . . . . . . . . . . . . . <a href="#page-11">11</a>
<a href="#section-3.5.1">3.5.1</a>. Rate-Derived Method . . . . . . . . . . . . . . . . . <a href="#page-11">11</a>
<a href="#section-3.5.2">3.5.2</a>. Loss-Derived Method . . . . . . . . . . . . . . . . . <a href="#page-14">14</a>
<a href="#section-3.5.3">3.5.3</a>. Route-Specific Loss-Derived Method . . . . . . . . . . <a href="#page-15">15</a>
<a href="#section-3.6">3.6</a>. Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-17">17</a>
<a href="#section-3.6.1">3.6.1</a>. Full Convergence Time . . . . . . . . . . . . . . . . <a href="#page-17">17</a>
<a href="#section-3.6.2">3.6.2</a>. First Route Convergence Time . . . . . . . . . . . . . <a href="#page-18">18</a>
<a href="#section-3.6.3">3.6.3</a>. Route-Specific Convergence Time . . . . . . . . . . . <a href="#page-18">18</a>
<a href="#section-3.6.4">3.6.4</a>. Loss-Derived Convergence Time . . . . . . . . . . . . <a href="#page-20">20</a>
<a href="#section-3.6.5">3.6.5</a>. Route Loss of Connectivity Period . . . . . . . . . . <a href="#page-21">21</a>
<a href="#section-3.6.6">3.6.6</a>. Loss-Derived Loss of Connectivity Period . . . . . . . <a href="#page-22">22</a>
<a href="#section-3.7">3.7</a>. Measurement Terms . . . . . . . . . . . . . . . . . . . . <a href="#page-23">23</a>
<a href="#section-3.7.1">3.7.1</a>. Convergence Event . . . . . . . . . . . . . . . . . . <a href="#page-23">23</a>
<a href="#section-3.7.2">3.7.2</a>. Convergence Packet Loss . . . . . . . . . . . . . . . <a href="#page-23">23</a>
<a href="#section-3.7.3">3.7.3</a>. Connectivity Packet Loss . . . . . . . . . . . . . . . <a href="#page-24">24</a>
<a href="#section-3.7.4">3.7.4</a>. Packet Sampling Interval . . . . . . . . . . . . . . . <a href="#page-24">24</a>
<a href="#section-3.7.5">3.7.5</a>. Sustained Convergence Validation Time . . . . . . . . <a href="#page-25">25</a>
<a href="#section-3.7.6">3.7.6</a>. Forwarding Delay Threshold . . . . . . . . . . . . . . <a href="#page-26">26</a>
<a href="#section-3.8">3.8</a>. Miscellaneous Terms . . . . . . . . . . . . . . . . . . . <a href="#page-26">26</a>
<a href="#section-3.8.1">3.8.1</a>. Impaired Packet . . . . . . . . . . . . . . . . . . . <a href="#page-26">26</a>
<a href="#section-4">4</a>. Security Considerations . . . . . . . . . . . . . . . . . . . <a href="#page-27">27</a>
<a href="#section-5">5</a>. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-27">27</a>
<a href="#section-6">6</a>. Normative References . . . . . . . . . . . . . . . . . . . . . <a href="#page-27">27</a>
<span class="grey">Poretsky, et al. Informational [Page 3]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-4" ></span>
<span class="grey"><a href="./rfc6412">RFC 6412</a> IGP Convergence Benchmark Terminology November 2011</span>
<span class="h2"><a class="selflink" id="section-1" href="#section-1">1</a>. Introduction and Scope</span>
This document is a companion to [<a href="#ref-Po11m" title=""Benchmarking Methodology for Link-State IGP Data-Plane Route Convergence"">Po11m</a>], which contains the
methodology to be used for benchmarking link-state Interior Gateway
Protocol (IGP) convergence by observing the data plane. The purpose
of this document is to introduce new terms required to complete
execution of the Link-State IGP Data-Plane Route Convergence
methodology [<a href="#ref-Po11m" title=""Benchmarking Methodology for Link-State IGP Data-Plane Route Convergence"">Po11m</a>].
IGP convergence time is measured by observing the data plane through
the Device Under Test (DUT) at the Tester. The methodology and
terminology to be used for benchmarking IGP convergence can be
applied to IPv4 and IPv6 traffic and link-state IGPs such as
Intermediate System to Intermediate System (IS-IS) [<a href="#ref-Ca90" title=""Use of OSI IS-IS for routing in TCP/IP and dual environments"">Ca90</a>][Ho08], Open
Shortest Path First (OSPF) [<a href="#ref-Mo98" title=""OSPF Version 2"">Mo98</a>] [<a href="#ref-Co08" title=""OSPF for IPv6"">Co08</a>], and others.
<span class="h2"><a class="selflink" id="section-2" href="#section-2">2</a>. Existing Definitions</span>
This document uses existing terminology defined in other IETF
documents. Examples include, but are not limited to:
Throughput [<a href="#ref-Br91" title=""Benchmarking terminology for network interconnection devices"">Br91</a>], Section 3.17
Offered Load [<a href="#ref-Ma98" title=""Benchmarking Terminology for LAN Switching Devices"">Ma98</a>], Section 3.5.2
Forwarding Rate [<a href="#ref-Ma98" title=""Benchmarking Terminology for LAN Switching Devices"">Ma98</a>], Section 3.6.1
Device Under Test (DUT) [<a href="#ref-Ma98" title=""Benchmarking Terminology for LAN Switching Devices"">Ma98</a>], Section 3.1.1
System Under Test (SUT) [<a href="#ref-Ma98" title=""Benchmarking Terminology for LAN Switching Devices"">Ma98</a>], Section 3.1.2
Out-of-Order Packet [<a href="#ref-Po06" title=""Terminology for Benchmarking Network-layer Traffic Control Mechanisms"">Po06</a>], Section 3.3.4
Duplicate Packet [<a href="#ref-Po06" title=""Terminology for Benchmarking Network-layer Traffic Control Mechanisms"">Po06</a>], Section 3.3.5
Stream [<a href="#ref-Po06" title=""Terminology for Benchmarking Network-layer Traffic Control Mechanisms"">Po06</a>], Section 3.3.2
Forwarding Delay [<a href="#ref-Po06" title=""Terminology for Benchmarking Network-layer Traffic Control Mechanisms"">Po06</a>], Section 3.2.4
IP Packet Delay Variation (IPDV) [<a href="#ref-De02" title=""IP Packet Delay Variation Metric for IP Performance Metrics (IPPM)"">De02</a>], Section 1.2
Loss Period [<a href="#ref-Ko02" title=""One-way Loss Pattern Sample Metrics"">Ko02</a>], Section 4
The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in <a href="https://www.rfc-editor.org/bcp/bcp14">BCP 14</a>, <a href="./rfc2119">RFC 2119</a>
[<a href="#ref-Br97" title=""Key words for use in RFCs to Indicate Requirement Levels"">Br97</a>]. <a href="./rfc2119">RFC 2119</a> defines the use of these keywords to help make the
intent of Standards Track documents as clear as possible. While this
document uses these keywords, this document is not a Standards Track
document.
<span class="grey">Poretsky, et al. Informational [Page 4]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-5" ></span>
<span class="grey"><a href="./rfc6412">RFC 6412</a> IGP Convergence Benchmark Terminology November 2011</span>
<span class="h2"><a class="selflink" id="section-3" href="#section-3">3</a>. Term Definitions</span>
<span class="h3"><a class="selflink" id="section-3.1" href="#section-3.1">3.1</a>. Convergence Types</span>
<span class="h4"><a class="selflink" id="section-3.1.1" href="#section-3.1.1">3.1.1</a>. Route Convergence</span>
Definition:
The process of updating all components of the router, including
the Routing Information Base (RIB) and Forwarding Information Base
(FIB), along with software and hardware tables, with the most
recent route change(s) such that forwarding for a route entry is
successful on the Next-Best Egress Interface (<a href="#section-3.4.4">Section 3.4.4</a>).
Discussion:
In general, IGP convergence does not necessarily result in a
change in forwarding. But the test cases in [<a href="#ref-Po11m" title=""Benchmarking Methodology for Link-State IGP Data-Plane Route Convergence"">Po11m</a>] are specified
such that the IGP convergence results in a change of egress
interface for the measurement data-plane traffic. Due to this
property of the test case specifications, Route Convergence can be
observed externally by the rerouting of the measurement data-plane
traffic to the Next-Best Egress Interface (<a href="#section-3.4.4">Section 3.4.4</a>).
Measurement Units:
N/A
See Also:
Next-Best Egress Interface, Full Convergence
<span class="h4"><a class="selflink" id="section-3.1.2" href="#section-3.1.2">3.1.2</a>. Full Convergence</span>
Definition:
Route Convergence for all routes in the Forwarding Information
Base (FIB).
Discussion:
In general, IGP convergence does not necessarily result in a
change in forwarding. But the test cases in [<a href="#ref-Po11m" title=""Benchmarking Methodology for Link-State IGP Data-Plane Route Convergence"">Po11m</a>] are specified
such that the IGP convergence results in a change of egress
interface for the measurement data-plane traffic. Due to this
property of the test cases specifications, Full Convergence can be
observed externally by the rerouting of the measurement data-plane
traffic to the Next-Best Egress Interface (<a href="#section-3.4.4">Section 3.4.4</a>).
<span class="grey">Poretsky, et al. Informational [Page 5]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-6" ></span>
<span class="grey"><a href="./rfc6412">RFC 6412</a> IGP Convergence Benchmark Terminology November 2011</span>
Measurement Units:
N/A
See Also:
Next-Best Egress Interface, Route Convergence
<span class="h3"><a class="selflink" id="section-3.2" href="#section-3.2">3.2</a>. Instants</span>
<span class="h4"><a class="selflink" id="section-3.2.1" href="#section-3.2.1">3.2.1</a>. Traffic Start Instant</span>
Definition:
The time instant the Tester sends out the first data packet to the
DUT.
Discussion:
If using the Loss-Derived Method (<a href="#section-3.5.2">Section 3.5.2</a>) or the Route-
Specific Loss-Derived Method (<a href="#section-3.5.3">Section 3.5.3</a>) to benchmark IGP
convergence time, and the applied Convergence Event
(<a href="#section-3.7.1">Section 3.7.1</a>) does not cause instantaneous traffic loss for all
routes at the Convergence Event Instant (<a href="#section-3.2.2">Section 3.2.2</a>), then the
Tester SHOULD collect a timestamp on the Traffic Start Instant in
order to measure the period of time between the Traffic Start
Instant and Convergence Event Instant.
Measurement Units:
seconds (and fractions), reported with resolution sufficient to
distinguish between different instants
See Also:
Loss-Derived Method, Route-Specific Loss-Derived Method,
Convergence Event, Convergence Event Instant
<span class="h4"><a class="selflink" id="section-3.2.2" href="#section-3.2.2">3.2.2</a>. Convergence Event Instant</span>
Definition:
The time instant that a Convergence Event (<a href="#section-3.7.1">Section 3.7.1</a>) occurs.
<span class="grey">Poretsky, et al. Informational [Page 6]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-7" ></span>
<span class="grey"><a href="./rfc6412">RFC 6412</a> IGP Convergence Benchmark Terminology November 2011</span>
Discussion:
If the Convergence Event (<a href="#section-3.7.1">Section 3.7.1</a>) causes instantaneous
traffic loss on the Preferred Egress Interface (<a href="#section-3.4.3">Section 3.4.3</a>),
the Convergence Event Instant is observable from the data plane as
the instant that no more packets are received on the Preferred
Egress Interface.
The Tester SHOULD collect a timestamp on the Convergence Event
Instant if the Convergence Event does not cause instantaneous
traffic loss on the Preferred Egress Interface (<a href="#section-3.4.3">Section 3.4.3</a>).
Measurement Units:
seconds (and fractions), reported with resolution sufficient to
distinguish between different instants
See Also:
Convergence Event, Preferred Egress Interface
<span class="h4"><a class="selflink" id="section-3.2.3" href="#section-3.2.3">3.2.3</a>. Convergence Recovery Instant</span>
Definition:
The time instant that Full Convergence (<a href="#section-3.1.2">Section 3.1.2</a>) has
completed.
Discussion:
The Full Convergence completed state MUST be maintained for an
interval of duration equal to the Sustained Convergence Validation
Time (<a href="#section-3.7.5">Section 3.7.5</a>) in order to validate the Convergence Recovery
Instant.
The Convergence Recovery Instant is observable from the data plane
as the instant the DUT forwards traffic to all destinations over
the Next-Best Egress Interface (<a href="#section-3.4.4">Section 3.4.4</a>) without
impairments.
Measurement Units:
seconds (and fractions), reported with resolution sufficient to
distinguish between different instants
<span class="grey">Poretsky, et al. Informational [Page 7]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-8" ></span>
<span class="grey"><a href="./rfc6412">RFC 6412</a> IGP Convergence Benchmark Terminology November 2011</span>
See Also:
Sustained Convergence Validation Time, Full Convergence, Next-Best
Egress Interface
<span class="h4"><a class="selflink" id="section-3.2.4" href="#section-3.2.4">3.2.4</a>. First Route Convergence Instant</span>
Definition:
The time instant the first route entry completes Route Convergence
(<a href="#section-3.1.1">Section 3.1.1</a>)
Discussion:
Any route may be the first to complete Route Convergence. The
First Route Convergence Instant is observable from the data plane
as the instant that the first packet that is not an Impaired
Packet (<a href="#section-3.8.1">Section 3.8.1</a>) is received from the Next-Best Egress
Interface (<a href="#section-3.4.4">Section 3.4.4</a>) or, for the test cases with Equal Cost
Multi-Path (ECMP) or Parallel Links, the instant that the
Forwarding Rate on the Next-Best Egress Interface (<a href="#section-3.4.4">Section 3.4.4</a>)
starts to increase.
Measurement Units:
seconds (and fractions), reported with resolution sufficient to
distinguish between different instants
See Also:
Route Convergence, Impaired Packet, Next-Best Egress Interface
<span class="h3"><a class="selflink" id="section-3.3" href="#section-3.3">3.3</a>. Transitions</span>
<span class="h4"><a class="selflink" id="section-3.3.1" href="#section-3.3.1">3.3.1</a>. Convergence Event Transition</span>
Definition:
A time interval following a Convergence Event (<a href="#section-3.7.1">Section 3.7.1</a>) in
which the Forwarding Rate on the Preferred Egress Interface
(<a href="#section-3.4.3">Section 3.4.3</a>) gradually reduces to zero.
Discussion:
The Forwarding Rate during a Convergence Event Transition may or
may not decrease linearly.
<span class="grey">Poretsky, et al. Informational [Page 8]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-9" ></span>
<span class="grey"><a href="./rfc6412">RFC 6412</a> IGP Convergence Benchmark Terminology November 2011</span>
The Forwarding Rate observed on the DUT egress interface(s) may or
may not decrease to zero.
The Offered Load, the number of routes, and the Packet Sampling
Interval (<a href="#section-3.7.4">Section 3.7.4</a>) influence the observations of the
Convergence Event Transition using the Rate-Derived Method
(<a href="#section-3.5.1">Section 3.5.1</a>).
Measurement Units:
seconds (and fractions)
See Also:
Convergence Event, Preferred Egress Interface, Packet Sampling
Interval, Rate-Derived Method
<span class="h4"><a class="selflink" id="section-3.3.2" href="#section-3.3.2">3.3.2</a>. Convergence Recovery Transition</span>
Definition:
A time interval following the First Route Convergence Instant
(<a href="#section-3.4.4">Section 3.4.4</a>) in which the Forwarding Rate on the DUT egress
interface(s) gradually increases to equal to the Offered Load.
Discussion:
The Forwarding Rate observed during a Convergence Recovery
Transition may or may not increase linearly.
The Offered Load, the number of routes, and the Packet Sampling
Interval (<a href="#section-3.7.4">Section 3.7.4</a>) influence the observations of the
Convergence Recovery Transition using the Rate-Derived Method
(<a href="#section-3.5.1">Section 3.5.1</a>).
Measurement Units:
seconds (and fractions)
See Also:
First Route Convergence Instant, Packet Sampling Interval, Rate-
Derived Method
<span class="grey">Poretsky, et al. Informational [Page 9]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-10" ></span>
<span class="grey"><a href="./rfc6412">RFC 6412</a> IGP Convergence Benchmark Terminology November 2011</span>
<span class="h3"><a class="selflink" id="section-3.4" href="#section-3.4">3.4</a>. Interfaces</span>
<span class="h4"><a class="selflink" id="section-3.4.1" href="#section-3.4.1">3.4.1</a>. Local Interface</span>
Definition:
An interface on the DUT.
Discussion:
A failure of a Local Interface indicates that the failure occurred
directly on the DUT.
Measurement Units:
N/A
See Also:
Remote Interface
<span class="h4"><a class="selflink" id="section-3.4.2" href="#section-3.4.2">3.4.2</a>. Remote Interface</span>
Definition:
An interface on a neighboring router that is not directly
connected to any interface on the DUT.
Discussion:
A failure of a Remote Interface indicates that the failure
occurred on a neighbor router's interface that is not directly
connected to the DUT.
Measurement Units:
N/A
See Also:
Local Interface
<span class="h4"><a class="selflink" id="section-3.4.3" href="#section-3.4.3">3.4.3</a>. Preferred Egress Interface</span>
Definition:
The outbound interface from the DUT for traffic routed to the
preferred next-hop.
<span class="grey">Poretsky, et al. Informational [Page 10]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-11" ></span>
<span class="grey"><a href="./rfc6412">RFC 6412</a> IGP Convergence Benchmark Terminology November 2011</span>
Discussion:
The Preferred Egress Interface is the egress interface prior to a
Convergence Event (<a href="#section-3.7.1">Section 3.7.1</a>).
Measurement Units:
N/A
See Also:
Convergence Event, Next-Best Egress Interface
<span class="h4"><a class="selflink" id="section-3.4.4" href="#section-3.4.4">3.4.4</a>. Next-Best Egress Interface</span>
Definition:
The outbound interface or set of outbound interfaces in an Equal
Cost Multipath (ECMP) set or parallel link set of the Device Under
Test (DUT) for traffic routed to the second-best next-hop.
Discussion:
The Next-Best Egress Interface becomes the egress interface after
a Convergence Event (<a href="#section-3.4.4">Section 3.4.4</a>).
For the test cases in [<a href="#ref-Po11m" title=""Benchmarking Methodology for Link-State IGP Data-Plane Route Convergence"">Po11m</a>] using test topologies with an ECMP
set or parallel link set, the term Preferred Egress Interface
refers to all members of the link set.
Measurement Units:
N/A
See Also:
Convergence Event, Preferred Egress Interface
<span class="h3"><a class="selflink" id="section-3.5" href="#section-3.5">3.5</a>. Benchmarking Methods</span>
<span class="h4"><a class="selflink" id="section-3.5.1" href="#section-3.5.1">3.5.1</a>. Rate-Derived Method</span>
Definition:
The method to calculate convergence time benchmarks from observing
the Forwarding Rate each Packet Sampling Interval (<a href="#section-3.7.4">Section 3.7.4</a>).
<span class="grey">Poretsky, et al. Informational [Page 11]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-12" ></span>
<span class="grey"><a href="./rfc6412">RFC 6412</a> IGP Convergence Benchmark Terminology November 2011</span>
Discussion:
Figure 1 shows an example of the Forwarding Rate change in time
during convergence as observed when using the Rate-Derived Method.
^ Traffic Convergence
Fwd | Start Recovery
Rate | Instant Instant
| Offered ^ ^
| Load --> ----------\ /-----------
| \ /<--- Convergence
| \ Packet / Recovery
| Convergence --->\ Loss / Transition
| Event \ /
| Transition \---------/ <-- Max Packet Loss
|
+--------------------------------------------------------->
^ ^ time
Convergence First Route
Event Instant Convergence Instant
Figure 1: Rate-Derived Convergence Graph
To enable collecting statistics of Out-of-Order Packets per flow
(see [<a href="#ref-Th00" title=""Multipath Issues in Unicast and Multicast Next-Hop Selection"">Th00</a>], Section 3), the Offered Load SHOULD consist of
multiple Streams [<a href="#ref-Po06" title=""Terminology for Benchmarking Network-layer Traffic Control Mechanisms"">Po06</a>], and each Stream SHOULD consist of a
single flow . If sending multiple Streams, the measured traffic
statistics for all Streams MUST be added together.
The destination addresses for the Offered Load MUST be distributed
such that all routes or a statistically representative subset of
all routes are matched and each of these routes is offered an
equal share of the Offered Load. It is RECOMMENDED to send
traffic to all routes, but a statistically representative subset
of all routes can be used if required.
At least one packet per route for all routes matched in the
Offered Load MUST be offered to the DUT within each Packet
Sampling Interval. For maximum accuracy, the value of the Packet
Sampling Interval SHOULD be as small as possible, but the presence
of IP Packet Delay Variation (IPDV) [<a href="#ref-De02" title=""IP Packet Delay Variation Metric for IP Performance Metrics (IPPM)"">De02</a>] may require that a
larger Packet Sampling Interval be used.
The Offered Load, IPDV, the number of routes, and the Packet
Sampling Interval influence the observations for the Rate-Derived
Method. It may be difficult to identify the different convergence
time instants in the Rate-Derived Convergence Graph. For example,
<span class="grey">Poretsky, et al. Informational [Page 12]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-13" ></span>
<span class="grey"><a href="./rfc6412">RFC 6412</a> IGP Convergence Benchmark Terminology November 2011</span>
it is possible that a Convergence Event causes the Forwarding Rate
to drop to zero, while this may not be observed in the Forwarding
Rate measurements if the Packet Sampling Interval is too large.
IPDV causes fluctuations in the number of received packets during
each Packet Sampling Interval. To account for the presence of
IPDV in determining if a convergence instant has been reached,
Forwarding Delay SHOULD be observed during each Packet Sampling
Interval. The minimum and maximum number of packets expected in a
Packet Sampling Interval in presence of IPDV can be calculated
with Equation 1.
number of packets expected in a Packet Sampling Interval
in presence of IP Packet Delay Variation
= expected number of packets without IP Packet Delay Variation
+/-( (maxDelay - minDelay) * Offered Load)
where minDelay and maxDelay indicate (respectively) the minimum and
maximum Forwarding Delay of packets received during the Packet
Sampling Interval
Equation 1
To determine if a convergence instant has been reached, the number
of packets received in a Packet Sampling Interval is compared with
the range of expected number of packets calculated in Equation 1.
If packets are going over multiple ECMP members and one or more of
the members has failed, then the number of received packets during
each Packet Sampling Interval may vary, even excluding presence of
IPDV. To prevent fluctuation of the number of received packets
during each Packet Sampling Interval for this reason, the Packet
Sampling Interval duration SHOULD be a whole multiple of the time
between two consecutive packets sent to the same destination.
Metrics measured at the Packet Sampling Interval MUST include
Forwarding Rate and Impaired Packet count.
To measure convergence time benchmarks for Convergence Events
(<a href="#section-3.7.1">Section 3.7.1</a>) that do not cause instantaneous traffic loss for
all routes at the Convergence Event Instant, the Tester SHOULD
collect a timestamp of the Convergence Event Instant
(<a href="#section-3.2.2">Section 3.2.2</a>), and the Tester SHOULD observe Forwarding Rate
separately on the Next-Best Egress Interface.
<span class="grey">Poretsky, et al. Informational [Page 13]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-14" ></span>
<span class="grey"><a href="./rfc6412">RFC 6412</a> IGP Convergence Benchmark Terminology November 2011</span>
Since the Rate-Derived Method does not distinguish between
individual traffic destinations, it SHOULD NOT be used for any
route specific measurements. Therefore, the Rate-Derived Method
SHOULD NOT be used to benchmark Route Loss of Connectivity Period
(<a href="#section-3.6.5">Section 3.6.5</a>).
Measurement Units:
N/A
See Also:
Packet Sampling Interval, Convergence Event, Convergence Event
Instant, Next-Best Egress Interface, Route Loss of Connectivity
Period
<span class="h4"><a class="selflink" id="section-3.5.2" href="#section-3.5.2">3.5.2</a>. Loss-Derived Method</span>
Definition:
The method to calculate the Loss-Derived Convergence Time
(<a href="#section-3.6.4">Section 3.6.4</a>) and Loss-Derived Loss of Connectivity Period
(<a href="#section-3.6.6">Section 3.6.6</a>) benchmarks from the amount of Impaired Packets
(<a href="#section-3.8.1">Section 3.8.1</a>).
Discussion:
To enable collecting statistics of Out-of-Order Packets per flow
(see [<a href="#ref-Th00" title=""Multipath Issues in Unicast and Multicast Next-Hop Selection"">Th00</a>], Section 3), the Offered Load SHOULD consist of
multiple Streams [<a href="#ref-Po06" title=""Terminology for Benchmarking Network-layer Traffic Control Mechanisms"">Po06</a>], and each Stream SHOULD consist of a
single flow . If sending multiple Streams, the measured traffic
statistics for all Streams MUST be added together.
The destination addresses for the Offered Load MUST be distributed
such that all routes or a statistically representative subset of
all routes are matched and each of these routes is offered an
equal share of the Offered Load. It is RECOMMENDED to send
traffic to all routes, but a statistically representative subset
of all routes can be used if required.
Loss-Derived Method SHOULD always be combined with the Rate-
Derived Method in order to observe Full Convergence completion.
The total amount of Convergence Packet Loss is collected after
Full Convergence completion.
<span class="grey">Poretsky, et al. Informational [Page 14]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-15" ></span>
<span class="grey"><a href="./rfc6412">RFC 6412</a> IGP Convergence Benchmark Terminology November 2011</span>
To measure convergence time and loss of connectivity benchmarks
for Convergence Events that cause instantaneous traffic loss for
all routes at the Convergence Event Instant, the Tester SHOULD
observe the Impaired Packet count on all DUT egress interfaces
(see Connectivity Packet Loss (<a href="#section-3.7.3">Section 3.7.3</a>)).
To measure convergence time benchmarks for Convergence Events that
do not cause instantaneous traffic loss for all routes at the
Convergence Event Instant, the Tester SHOULD collect timestamps of
the Start Traffic Instant and of the Convergence Event Instant,
and the Tester SHOULD observe Impaired Packet count separately on
the Next-Best Egress Interface (see Convergence Packet Loss
(<a href="#section-3.7.2">Section 3.7.2</a>)).
Since Loss-Derived Method does not distinguish between traffic
destinations and the Impaired Packet statistics are only collected
after Full Convergence completion, this method can only be used to
measure average values over all routes. For these reasons, Loss-
Derived Method can only be used to benchmark Loss-Derived
Convergence Time (<a href="#section-3.6.4">Section 3.6.4</a>) and Loss-Derived Loss of
Connectivity Period (<a href="#section-3.6.6">Section 3.6.6</a>).
Note that the Loss-Derived Method measures an average over all
routes, including the routes that may not be impacted by the
Convergence Event, such as routes via non-impacted members of ECMP
or parallel links.
Measurement Units:
N/A
See Also:
Loss-Derived Convergence Time, Loss-Derived Loss of Connectivity
Period, Connectivity Packet Loss, Convergence Packet Loss
<span class="h4"><a class="selflink" id="section-3.5.3" href="#section-3.5.3">3.5.3</a>. Route-Specific Loss-Derived Method</span>
Definition:
The method to calculate the Route-Specific Convergence Time
(<a href="#section-3.6.3">Section 3.6.3</a>) benchmark from the amount of Impaired Packets
(<a href="#section-3.8.1">Section 3.8.1</a>) during convergence for a specific route entry.
<span class="grey">Poretsky, et al. Informational [Page 15]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-16" ></span>
<span class="grey"><a href="./rfc6412">RFC 6412</a> IGP Convergence Benchmark Terminology November 2011</span>
Discussion:
To benchmark Route-Specific Convergence Time, the Tester provides
an Offered Load that consists of multiple Streams [<a href="#ref-Po06" title=""Terminology for Benchmarking Network-layer Traffic Control Mechanisms"">Po06</a>]. Each
Stream has a single destination address matching a different route
entry, for all routes or a statistically representative subset of
all routes. Each Stream SHOULD consist of a single flow (see
[<a href="#ref-Th00" title=""Multipath Issues in Unicast and Multicast Next-Hop Selection"">Th00</a>], Section 3). Convergence Packet Loss is measured for each
Stream separately.
Route-Specific Loss-Derived Method SHOULD always be combined with
the Rate-Derived Method in order to observe Full Convergence
completion. The total amount of Convergence Packet Loss
(<a href="#section-3.7.2">Section 3.7.2</a>) for each Stream is collected after Full
Convergence completion.
Route-Specific Loss-Derived Method is the RECOMMENDED method to
measure convergence time benchmarks.
To measure convergence time and loss of connectivity benchmarks
for Convergence Events that cause instantaneous traffic loss for
all routes at the Convergence Event Instant, the Tester SHOULD
observe Impaired Packet count on all DUT egress interfaces (see
Connectivity Packet Loss (<a href="#section-3.7.3">Section 3.7.3</a>)).
To measure convergence time benchmarks for Convergence Events that
do not cause instantaneous traffic loss for all routes at the
Convergence Event Instant, the Tester SHOULD collect timestamps of
the Start Traffic Instant and of the Convergence Event Instant,
and the Tester SHOULD observe packet loss separately on the Next-
Best Egress Interface (see Convergence Packet Loss
(<a href="#section-3.7.2">Section 3.7.2</a>)).
Since Route-Specific Loss-Derived Method uses traffic streams to
individual routes, it observes Impaired Packet count as it would
be experienced by a network user. For this reason, Route-Specific
Loss-Derived Method is RECOMMENDED to measure Route-Specific
Convergence Time benchmarks and Route Loss of Connectivity Period
benchmarks.
Measurement Units:
N/A
See Also:
Route-Specific Convergence Time, Route Loss of Connectivity
Period, Connectivity Packet Loss, Convergence Packet Loss
<span class="grey">Poretsky, et al. Informational [Page 16]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-17" ></span>
<span class="grey"><a href="./rfc6412">RFC 6412</a> IGP Convergence Benchmark Terminology November 2011</span>
<span class="h3"><a class="selflink" id="section-3.6" href="#section-3.6">3.6</a>. Benchmarks</span>
<span class="h4"><a class="selflink" id="section-3.6.1" href="#section-3.6.1">3.6.1</a>. Full Convergence Time</span>
Definition:
The time duration of the period between the Convergence Event
Instant and the Convergence Recovery Instant as observed using the
Rate-Derived Method.
Discussion:
Using the Rate-Derived Method, Full Convergence Time can be
calculated as the time difference between the Convergence Event
Instant and the Convergence Recovery Instant, as shown in Equation
2.
Full Convergence Time =
Convergence Recovery Instant - Convergence Event Instant
Equation 2
The Convergence Event Instant can be derived from the Forwarding
Rate observation or from a timestamp collected by the Tester.
For the test cases described in [<a href="#ref-Po11m" title=""Benchmarking Methodology for Link-State IGP Data-Plane Route Convergence"">Po11m</a>], it is expected that Full
Convergence Time equals the maximum Route-Specific Convergence
Time when benchmarking all routes in the FIB using the Route-
Specific Loss-Derived Method.
It is not possible to measure Full Convergence Time using the
Loss-Derived Method.
Measurement Units:
seconds (and fractions)
See Also:
Full Convergence, Rate-Derived Method, Route-Specific Loss-Derived
Method, Convergence Event Instant, Convergence Recovery Instant
<span class="grey">Poretsky, et al. Informational [Page 17]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-18" ></span>
<span class="grey"><a href="./rfc6412">RFC 6412</a> IGP Convergence Benchmark Terminology November 2011</span>
<span class="h4"><a class="selflink" id="section-3.6.2" href="#section-3.6.2">3.6.2</a>. First Route Convergence Time</span>
Definition:
The duration of the period between the Convergence Event Instant
and the First Route Convergence Instant as observed using the
Rate-Derived Method.
Discussion:
Using the Rate-Derived Method, First Route Convergence Time can be
calculated as the time difference between the Convergence Event
Instant and the First Route Convergence Instant, as shown with
Equation 3.
First Route Convergence Time =
First Route Convergence Instant - Convergence Event Instant
Equation 3
The Convergence Event Instant can be derived from the Forwarding
Rate observation or from a timestamp collected by the Tester.
For the test cases described in [<a href="#ref-Po11m" title=""Benchmarking Methodology for Link-State IGP Data-Plane Route Convergence"">Po11m</a>], it is expected that First
Route Convergence Time equals the minimum Route-Specific
Convergence Time when benchmarking all routes in the FIB using the
Route-Specific Loss-Derived Method.
It is not possible to measure First Route Convergence Time using
the Loss-Derived Method.
Measurement Units:
seconds (and fractions)
See Also:
Rate-Derived Method, Route-Specific Loss-Derived Method,
Convergence Event Instant, First Route Convergence Instant
<span class="h4"><a class="selflink" id="section-3.6.3" href="#section-3.6.3">3.6.3</a>. Route-Specific Convergence Time</span>
Definition:
The amount of time it takes for Route Convergence to be completed
for a specific route, as calculated from the amount of Impaired
Packets (<a href="#section-3.8.1">Section 3.8.1</a>) during convergence for a single route
entry.
<span class="grey">Poretsky, et al. Informational [Page 18]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-19" ></span>
<span class="grey"><a href="./rfc6412">RFC 6412</a> IGP Convergence Benchmark Terminology November 2011</span>
Discussion:
Route-Specific Convergence Time can only be measured using the
Route-Specific Loss-Derived Method.
If the applied Convergence Event causes instantaneous traffic loss
for all routes at the Convergence Event Instant, Connectivity
Packet Loss should be observed. Connectivity Packet Loss is the
combined Impaired Packet count observed on Preferred Egress
Interface and Next-Best Egress Interface. When benchmarking
Route-Specific Convergence Time, Connectivity Packet Loss is
measured, and Equation 4 is applied for each measured route. The
calculation is equal to Equation 8 in <a href="#section-3.6.5">Section 3.6.5</a>.
Route-Specific Convergence Time =
Connectivity Packet Loss for specific route / Offered Load per route
Equation 4
If the applied Convergence Event does not cause instantaneous
traffic loss for all routes at the Convergence Event Instant, then
the Tester SHOULD collect timestamps of the Traffic Start Instant
and of the Convergence Event Instant, and the Tester SHOULD
observe Convergence Packet Loss separately on the Next-Best Egress
Interface. When benchmarking Route-Specific Convergence Time,
Convergence Packet Loss is measured, and Equation 5 is applied for
each measured route.
Route-Specific Convergence Time =
Convergence Packet Loss for specific route / Offered Load per route
- (Convergence Event Instant - Traffic Start Instant)
Equation 5
The Route-Specific Convergence Time benchmarks enable minimum,
maximum, average, and median convergence time measurements to be
reported by comparing the results for the different route entries.
It also enables benchmarking of convergence time when configuring
a priority value for the route entry or entries. Since multiple
Route-Specific Convergence Times can be measured, it is possible
to have an array of results. The format for reporting Route-
Specific Convergence Time is provided in [<a href="#ref-Po11m" title=""Benchmarking Methodology for Link-State IGP Data-Plane Route Convergence"">Po11m</a>].
Measurement Units:
seconds (and fractions)
<span class="grey">Poretsky, et al. Informational [Page 19]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-20" ></span>
<span class="grey"><a href="./rfc6412">RFC 6412</a> IGP Convergence Benchmark Terminology November 2011</span>
See Also:
Route-Specific Loss-Derived Method, Convergence Event, Convergence
Event Instant, Convergence Packet Loss, Connectivity Packet Loss,
Route Convergence
<span class="h4"><a class="selflink" id="section-3.6.4" href="#section-3.6.4">3.6.4</a>. Loss-Derived Convergence Time</span>
Definition:
The average Route Convergence time for all routes in the
Forwarding Information Base (FIB), as calculated from the amount
of Impaired Packets (<a href="#section-3.8.1">Section 3.8.1</a>) during convergence.
Discussion:
Loss-Derived Convergence Time is measured using the Loss-Derived
Method.
If the applied Convergence Event causes instantaneous traffic loss
for all routes at the Convergence Event Instant, Connectivity
Packet Loss (<a href="#section-3.7.3">Section 3.7.3</a>) should be observed. Connectivity
Packet Loss is the combined Impaired Packet count observed on
Preferred Egress Interface and Next-Best Egress Interface. When
benchmarking Loss-Derived Convergence Time, Connectivity Packet
Loss is measured, and Equation 6 is applied.
Loss-Derived Convergence Time =
Connectivity Packet Loss / Offered Load
Equation 6
If the applied Convergence Event does not cause instantaneous
traffic loss for all routes at the Convergence Event Instant, then
the Tester SHOULD collect timestamps of the Start Traffic Instant
and of the Convergence Event Instant, and the Tester SHOULD
observe Convergence Packet Loss (<a href="#section-3.7.2">Section 3.7.2</a>) separately on the
Next-Best Egress Interface. When benchmarking Loss-Derived
Convergence Time, Convergence Packet Loss is measured and Equation
7 is applied.
Loss-Derived Convergence Time =
Convergence Packet Loss / Offered Load
- (Convergence Event Instant - Traffic Start Instant)
Equation 7
<span class="grey">Poretsky, et al. Informational [Page 20]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-21" ></span>
<span class="grey"><a href="./rfc6412">RFC 6412</a> IGP Convergence Benchmark Terminology November 2011</span>
Measurement Units:
seconds (and fractions)
See Also:
Convergence Packet Loss, Connectivity Packet Loss, Route
Convergence, Loss-Derived Method
<span class="h4"><a class="selflink" id="section-3.6.5" href="#section-3.6.5">3.6.5</a>. Route Loss of Connectivity Period</span>
Definition:
The time duration of packet impairments for a specific route entry
following a Convergence Event until Full Convergence completion,
as observed using the Route-Specific Loss-Derived Method.
Discussion:
In general, the Route Loss of Connectivity Period is not equal to
the Route-Specific Convergence Time. If the DUT continues to
forward traffic to the Preferred Egress Interface after the
Convergence Event is applied, then the Route Loss of Connectivity
Period will be smaller than the Route-Specific Convergence Time.
This is also specifically the case after reversing a failure
event.
The Route Loss of Connectivity Period may be equal to the Route-
Specific Convergence Time if, as a characteristic of the
Convergence Event, traffic for all routes starts dropping
instantaneously on the Convergence Event Instant. See discussion
in [<a href="#ref-Po11m" title=""Benchmarking Methodology for Link-State IGP Data-Plane Route Convergence"">Po11m</a>].
For the test cases described in [<a href="#ref-Po11m" title=""Benchmarking Methodology for Link-State IGP Data-Plane Route Convergence"">Po11m</a>], the Route Loss of
Connectivity Period is expected to be a single Loss Period [<a href="#ref-Ko02" title=""One-way Loss Pattern Sample Metrics"">Ko02</a>].
When benchmarking the Route Loss of Connectivity Period,
Connectivity Packet Loss is measured for each route, and Equation
8 is applied for each measured route entry. The calculation is
equal to Equation 4 in <a href="#section-3.6.3">Section 3.6.3</a>.
Route Loss of Connectivity Period =
Connectivity Packet Loss for specific route / Offered Load per route
Equation 8
Route Loss of Connectivity Period SHOULD be measured using Route-
Specific Loss-Derived Method.
<span class="grey">Poretsky, et al. Informational [Page 21]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-22" ></span>
<span class="grey"><a href="./rfc6412">RFC 6412</a> IGP Convergence Benchmark Terminology November 2011</span>
Measurement Units:
seconds (and fractions)
See Also:
Route-Specific Convergence Time, Route-Specific Loss-Derived
Method, Connectivity Packet Loss
<span class="h4"><a class="selflink" id="section-3.6.6" href="#section-3.6.6">3.6.6</a>. Loss-Derived Loss of Connectivity Period</span>
Definition:
The average time duration of packet impairments for all routes
following a Convergence Event until Full Convergence completion,
as observed using the Loss-Derived Method.
Discussion:
In general, the Loss-Derived Loss of Connectivity Period is not
equal to the Loss-Derived Convergence Time. If the DUT continues
to forward traffic to the Preferred Egress Interface after the
Convergence Event is applied, then the Loss-Derived Loss of
Connectivity Period will be smaller than the Loss-Derived
Convergence Time. This is also specifically the case after
reversing a failure event.
The Loss-Derived Loss of Connectivity Period may be equal to the
Loss-Derived Convergence Time if, as a characteristic of the
Convergence Event, traffic for all routes starts dropping
instantaneously on the Convergence Event Instant. See discussion
in [<a href="#ref-Po11m" title=""Benchmarking Methodology for Link-State IGP Data-Plane Route Convergence"">Po11m</a>].
For the test cases described in [<a href="#ref-Po11m" title=""Benchmarking Methodology for Link-State IGP Data-Plane Route Convergence"">Po11m</a>], each route's Route Loss
of Connectivity Period is expected to be a single Loss Period
[<a href="#ref-Ko02" title=""One-way Loss Pattern Sample Metrics"">Ko02</a>].
When benchmarking the Loss-Derived Loss of Connectivity Period,
Connectivity Packet Loss is measured for all routes, and Equation
9 is applied. The calculation is equal to Equation 6 in
<a href="#section-3.6.4">Section 3.6.4</a>.
Loss-Derived Loss of Connectivity Period =
Connectivity Packet Loss for all routes / Offered Load
Equation 9
<span class="grey">Poretsky, et al. Informational [Page 22]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-23" ></span>
<span class="grey"><a href="./rfc6412">RFC 6412</a> IGP Convergence Benchmark Terminology November 2011</span>
The Loss-Derived Loss of Connectivity Period SHOULD be measured
using the Loss-Derived Method.
Measurement Units:
seconds (and fractions)
See Also:
Loss-Derived Convergence Time, Loss-Derived Method, Connectivity
Packet Loss
<span class="h3"><a class="selflink" id="section-3.7" href="#section-3.7">3.7</a>. Measurement Terms</span>
<span class="h4"><a class="selflink" id="section-3.7.1" href="#section-3.7.1">3.7.1</a>. Convergence Event</span>
Definition:
The occurrence of an event in the network that will result in a
change in the egress interface of the DUT for routed packets.
Discussion:
All test cases in [<a href="#ref-Po11m" title=""Benchmarking Methodology for Link-State IGP Data-Plane Route Convergence"">Po11m</a>] are defined such that a Convergence
Event results in a change of egress interface of the DUT. Local
or remote triggers that cause a route calculation that does not
result in a change in forwarding are not considered.
Measurement Units:
N/A
See Also:
Convergence Event Instant
<span class="h4"><a class="selflink" id="section-3.7.2" href="#section-3.7.2">3.7.2</a>. Convergence Packet Loss</span>
Definition:
The number of Impaired Packets (<a href="#section-3.8.1">Section 3.8.1</a>) as observed on the
Next-Best Egress Interface of the DUT during convergence.
Discussion:
An Impaired Packet is considered as a lost packet.
<span class="grey">Poretsky, et al. Informational [Page 23]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-24" ></span>
<span class="grey"><a href="./rfc6412">RFC 6412</a> IGP Convergence Benchmark Terminology November 2011</span>
Measurement Units:
number of packets
See Also:
Connectivity Packet Loss
<span class="h4"><a class="selflink" id="section-3.7.3" href="#section-3.7.3">3.7.3</a>. Connectivity Packet Loss</span>
Definition:
The number of Impaired Packets observed on all DUT egress
interfaces during convergence.
Discussion:
An Impaired Packet is considered as a lost packet. Connectivity
Packet Loss is equal to Convergence Packet Loss if the Convergence
Event causes instantaneous traffic loss for all egress interfaces
of the DUT except for the Next-Best Egress Interface.
Measurement Units:
number of packets
See Also:
Convergence Packet Loss
<span class="h4"><a class="selflink" id="section-3.7.4" href="#section-3.7.4">3.7.4</a>. Packet Sampling Interval</span>
Definition:
The interval at which the Tester (test equipment) polls to make
measurements for arriving packets.
Discussion:
At least one packet per route for all routes matched in the
Offered Load MUST be offered to the DUT within the Packet Sampling
Interval. Metrics measured at the Packet Sampling Interval MUST
include Forwarding Rate and received packets.
Packet Sampling Interval can influence the convergence graph as
observed with the Rate-Derived Method. This is particularly true
when implementations complete Full Convergence in less time than
the Packet Sampling Interval. The Convergence Event Instant and
<span class="grey">Poretsky, et al. Informational [Page 24]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-25" ></span>
<span class="grey"><a href="./rfc6412">RFC 6412</a> IGP Convergence Benchmark Terminology November 2011</span>
First Route Convergence Instant may not be easily identifiable,
and the Rate-Derived Method may produce a larger than actual
convergence time.
Using a small Packet Sampling Interval in the presence of IPDV
[<a href="#ref-De02" title=""IP Packet Delay Variation Metric for IP Performance Metrics (IPPM)"">De02</a>] may cause fluctuations of the Forwarding Rate observation
and can prevent correct observation of the different convergence
time instants.
The value of the Packet Sampling Interval only contributes to the
measurement accuracy of the Rate-Derived Method. For maximum
accuracy, the value for the Packet Sampling Interval SHOULD be as
small as possible, but the presence of IPDV may enforce using a
larger Packet Sampling Interval.
Measurement Units:
seconds (and fractions)
See Also:
Rate-Derived Method
<span class="h4"><a class="selflink" id="section-3.7.5" href="#section-3.7.5">3.7.5</a>. Sustained Convergence Validation Time</span>
Definition:
The amount of time for which the completion of Full Convergence is
maintained without additional Impaired Packets being observed.
Discussion:
The purpose of the Sustained Convergence Validation Time is to
produce convergence benchmarks protected against fluctuation in
Forwarding Rate after the completion of Full Convergence is
observed. The RECOMMENDED Sustained Convergence Validation Time
to be used is the time to send 5 consecutive packets to each
destination with a minimum of 5 seconds. The Benchmarking
Methodology Working Group (BMWG) selected 5 seconds based upon
[<a href="#ref-Br99" title=""Benchmarking Methodology for Network Interconnect Devices"">Br99</a>], which recommends waiting 2 seconds for residual frames to
arrive (this is the Forwarding Delay Threshold for the last packet
sent) and 5 seconds for DUT restabilization.
Measurement Units:
seconds (and fractions)
<span class="grey">Poretsky, et al. Informational [Page 25]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-26" ></span>
<span class="grey"><a href="./rfc6412">RFC 6412</a> IGP Convergence Benchmark Terminology November 2011</span>
See Also:
Full Convergence, Convergence Recovery Instant
<span class="h4"><a class="selflink" id="section-3.7.6" href="#section-3.7.6">3.7.6</a>. Forwarding Delay Threshold</span>
Definition:
The maximum waiting time threshold used to distinguish between
packets with very long delay and lost packets that will never
arrive.
Discussion:
Applying a Forwarding Delay Threshold allows packets with a too
large Forwarding Delay to be considered lost, as is required for
some applications (e.g. voice, video, etc.). The Forwarding Delay
Threshold is a parameter of the methodology, and it MUST be
reported. [<a href="#ref-Br99" title=""Benchmarking Methodology for Network Interconnect Devices"">Br99</a>] recommends waiting 2 seconds for residual frames
to arrive.
Measurement Units:
seconds (and fractions)
See Also:
Convergence Packet Loss, Connectivity Packet Loss
<span class="h3"><a class="selflink" id="section-3.8" href="#section-3.8">3.8</a>. Miscellaneous Terms</span>
<span class="h4"><a class="selflink" id="section-3.8.1" href="#section-3.8.1">3.8.1</a>. Impaired Packet</span>
Definition:
A packet that experienced at least one of the following
impairments: loss, excessive Forwarding Delay, corruption,
duplication, reordering.
Discussion:
A lost packet, a packet with a Forwarding Delay exceeding the
Forwarding Delay Threshold, a corrupted packet, a Duplicate Packet
[<a href="#ref-Po06" title=""Terminology for Benchmarking Network-layer Traffic Control Mechanisms"">Po06</a>], and an Out-of-Order Packet [<a href="#ref-Po06" title=""Terminology for Benchmarking Network-layer Traffic Control Mechanisms"">Po06</a>] are Impaired Packets.
Packet ordering is observed for each individual flow (see [<a href="#ref-Th00" title=""Multipath Issues in Unicast and Multicast Next-Hop Selection"">Th00</a>],
Section 3) of the Offered Load.
<span class="grey">Poretsky, et al. Informational [Page 26]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-27" ></span>
<span class="grey"><a href="./rfc6412">RFC 6412</a> IGP Convergence Benchmark Terminology November 2011</span>
Measurement Units:
N/A
See Also:
Forwarding Delay Threshold
<span class="h2"><a class="selflink" id="section-4" href="#section-4">4</a>. Security Considerations</span>
Benchmarking activities as described in this memo are limited to
technology characterization using controlled stimuli in a laboratory
environment, with dedicated address space and the constraints
specified in the sections above.
The benchmarking network topology will be an independent test setup
and MUST NOT be connected to devices that may forward the test
traffic into a production network or misroute traffic to the test
management network.
Further, benchmarking is performed on a "black-box" basis, relying
solely on measurements observable external to the DUT/SUT.
Special capabilities SHOULD NOT exist in the DUT/SUT specifically for
benchmarking purposes. Any implications for network security arising
from the DUT/SUT SHOULD be identical in the lab and in production
networks.
<span class="h2"><a class="selflink" id="section-5" href="#section-5">5</a>. Acknowledgements</span>
Thanks to Sue Hares, Al Morton, Kevin Dubray, Ron Bonica, David Ward,
Peter De Vriendt, Anuj Dewagan, Adrian Farrel, Stewart Bryant,
Francis Dupont, and the Benchmarking Methodology Working Group for
their contributions to this work.
<span class="h2"><a class="selflink" id="section-6" href="#section-6">6</a>. Normative References</span>
[<a id="ref-Br91">Br91</a>] Bradner, S., "Benchmarking terminology for network
interconnection devices", <a href="./rfc1242">RFC 1242</a>, July 1991.
[<a id="ref-Br97">Br97</a>] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", <a href="https://www.rfc-editor.org/bcp/bcp14">BCP 14</a>, <a href="./rfc2119">RFC 2119</a>, March 1997.
[<a id="ref-Br99">Br99</a>] Bradner, S. and J. McQuaid, "Benchmarking Methodology for
Network Interconnect Devices", <a href="./rfc2544">RFC 2544</a>, March 1999.
[<a id="ref-Ca90">Ca90</a>] Callon, R., "Use of OSI IS-IS for routing in TCP/IP and dual
environments", <a href="./rfc1195">RFC 1195</a>, December 1990.
<span class="grey">Poretsky, et al. Informational [Page 27]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-28" ></span>
<span class="grey"><a href="./rfc6412">RFC 6412</a> IGP Convergence Benchmark Terminology November 2011</span>
[<a id="ref-Co08">Co08</a>] Coltun, R., Ferguson, D., Moy, J., and A. Lindem, "OSPF for
IPv6", <a href="./rfc5340">RFC 5340</a>, July 2008.
[<a id="ref-De02">De02</a>] Demichelis, C. and P. Chimento, "IP Packet Delay Variation
Metric for IP Performance Metrics (IPPM)", <a href="./rfc3393">RFC 3393</a>,
November 2002.
[<a id="ref-Ho08">Ho08</a>] Hopps, C., "Routing IPv6 with IS-IS", <a href="./rfc5308">RFC 5308</a>,
October 2008.
[<a id="ref-Ko02">Ko02</a>] Koodli, R. and R. Ravikanth, "One-way Loss Pattern Sample
Metrics", <a href="./rfc3357">RFC 3357</a>, August 2002.
[<a id="ref-Ma98">Ma98</a>] Mandeville, R., "Benchmarking Terminology for LAN Switching
Devices", <a href="./rfc2285">RFC 2285</a>, February 1998.
[<a id="ref-Mo98">Mo98</a>] Moy, J., "OSPF Version 2", STD 54, <a href="./rfc2328">RFC 2328</a>, April 1998.
[<a id="ref-Po06">Po06</a>] Poretsky, S., Perser, J., Erramilli, S., and S. Khurana,
"Terminology for Benchmarking Network-layer Traffic Control
Mechanisms", <a href="./rfc4689">RFC 4689</a>, October 2006.
[<a id="ref-Po11m">Po11m</a>] Poretsky, S., Imhoff, B., and K. Michielsen, "Benchmarking
Methodology for Link-State IGP Data-Plane Route
Convergence", <a href="./rfc6413">RFC 6413</a>, November 2011.
[<a id="ref-Th00">Th00</a>] Thaler, D. and C. Hopps, "Multipath Issues in Unicast and
Multicast Next-Hop Selection", <a href="./rfc2991">RFC 2991</a>, November 2000.
<span class="grey">Poretsky, et al. Informational [Page 28]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-29" ></span>
<span class="grey"><a href="./rfc6412">RFC 6412</a> IGP Convergence Benchmark Terminology November 2011</span>
Authors' Addresses
Scott Poretsky
Allot Communications
300 TradeCenter
Woburn, MA 01801
USA
Phone: + 1 508 309 2179
EMail: sporetsky@allot.com
Brent Imhoff
F5 Networks
401 Elliott Avenue West
Seattle, WA 98119
USA
Phone: + 1 314 378 2571
EMail: bimhoff@planetspork.com
Kris Michielsen
Cisco Systems
6A De Kleetlaan
Diegem, BRABANT 1831
Belgium
EMail: kmichiel@cisco.com
Poretsky, et al. Informational [Page 29]
</pre>
|