1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845
|
<pre>Internet Engineering Task Force (IETF) S. Poretsky
Request for Comments: 6414 Allot Communications
Category: Informational R. Papneja
ISSN: 2070-1721 Huawei
J. Karthik
S. Vapiwala
Cisco Systems
November 2011
<span class="h1">Benchmarking Terminology for Protection Performance</span>
Abstract
This document provides common terminology and metrics for
benchmarking the performance of sub-IP layer protection mechanisms.
The performance benchmarks are measured at the IP layer; protection
may be provided at the sub-IP layer. The benchmarks and terminology
can be applied in methodology documents for different sub-IP layer
protection mechanisms such as Automatic Protection Switching (APS),
Virtual Router Redundancy Protocol (VRRP), Stateful High Availability
(HA), and Multiprotocol Label Switching Fast Reroute (MPLS-FRR).
Status of This Memo
This document is not an Internet Standards Track specification; it is
published for informational purposes.
This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Not all documents
approved by the IESG are a candidate for any level of Internet
Standard; see <a href="./rfc5741#section-2">Section 2 of RFC 5741</a>.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
<a href="http://www.rfc-editor.org/info/rfc6414">http://www.rfc-editor.org/info/rfc6414</a>.
<span class="grey">Poretsky, et al. Informational [Page 1]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-2" ></span>
<span class="grey"><a href="./rfc6414">RFC 6414</a> Benchmarking Terms for Protection November 2011</span>
Copyright Notice
Copyright (c) 2011 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to <a href="https://www.rfc-editor.org/bcp/bcp78">BCP 78</a> and the IETF Trust's Legal
Provisions Relating to IETF Documents
(<a href="http://trustee.ietf.org/license-info">http://trustee.ietf.org/license-info</a>) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
This document may contain material from IETF Documents or IETF
Contributions published or made publicly available before November
10, 2008. The person(s) controlling the copyright in some of this
material may not have granted the IETF Trust the right to allow
modifications of such material outside the IETF Standards Process.
Without obtaining an adequate license from the person(s) controlling
the copyright in such materials, this document may not be modified
outside the IETF Standards Process, and derivative works of it may
not be created outside the IETF Standards Process, except to format
it for publication as an RFC or to translate it into languages other
than English.
Table of Contents
<a href="#section-1">1</a>. Introduction ....................................................<a href="#page-4">4</a>
<a href="#section-1.1">1.1</a>. Scope ......................................................<a href="#page-4">4</a>
<a href="#section-1.2">1.2</a>. General Model ..............................................<a href="#page-5">5</a>
<a href="#section-2">2</a>. Existing Definitions ............................................<a href="#page-8">8</a>
<a href="#section-3">3</a>. Test Considerations .............................................<a href="#page-9">9</a>
<a href="#section-3.1">3.1</a>. Paths ......................................................<a href="#page-9">9</a>
<a href="#section-3.1.1">3.1.1</a>. Path ................................................<a href="#page-9">9</a>
<a href="#section-3.1.2">3.1.2</a>. Working Path .......................................<a href="#page-10">10</a>
<a href="#section-3.1.3">3.1.3</a>. Primary Path .......................................<a href="#page-10">10</a>
<a href="#section-3.1.4">3.1.4</a>. Protected Primary Path .............................<a href="#page-11">11</a>
<a href="#section-3.1.5">3.1.5</a>. Backup Path ........................................<a href="#page-11">11</a>
<a href="#section-3.1.6">3.1.6</a>. Standby Backup Path ................................<a href="#page-12">12</a>
<a href="#section-3.1.7">3.1.7</a>. Dynamic Backup Path ................................<a href="#page-12">12</a>
<a href="#section-3.1.8">3.1.8</a>. Disjoint Paths .....................................<a href="#page-13">13</a>
<a href="#section-3.1.9">3.1.9</a>. Point of Local Repair (PLR) ........................<a href="#page-13">13</a>
<a href="#section-3.1.10">3.1.10</a>. Shared Risk Link Group (SRLG) .....................<a href="#page-14">14</a>
<a href="#section-3.2">3.2</a>. Protection ................................................<a href="#page-14">14</a>
<a href="#section-3.2.1">3.2.1</a>. Link Protection ....................................<a href="#page-14">14</a>
<a href="#section-3.2.2">3.2.2</a>. Node Protection ....................................<a href="#page-15">15</a>
<span class="grey">Poretsky, et al. Informational [Page 2]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-3" ></span>
<span class="grey"><a href="./rfc6414">RFC 6414</a> Benchmarking Terms for Protection November 2011</span>
<a href="#section-3.2.3">3.2.3</a>. Path Protection ....................................<a href="#page-15">15</a>
<a href="#section-3.2.4">3.2.4</a>. Backup Span ........................................<a href="#page-16">16</a>
<a href="#section-3.2.5">3.2.5</a>. Local Link Protection ..............................<a href="#page-16">16</a>
<a href="#section-3.2.6">3.2.6</a>. Redundant Node Protection ..........................<a href="#page-17">17</a>
<a href="#section-3.2.7">3.2.7</a>. State Control Interface ............................<a href="#page-17">17</a>
<a href="#section-3.2.8">3.2.8</a>. Protected Interface ................................<a href="#page-18">18</a>
<a href="#section-3.3">3.3</a>. Protection Switching ......................................<a href="#page-18">18</a>
<a href="#section-3.3.1">3.3.1</a>. Protection-Switching System ........................<a href="#page-18">18</a>
<a href="#section-3.3.2">3.3.2</a>. Failover Event .....................................<a href="#page-19">19</a>
<a href="#section-3.3.3">3.3.3</a>. Failure Detection ..................................<a href="#page-19">19</a>
<a href="#section-3.3.4">3.3.4</a>. Failover ...........................................<a href="#page-20">20</a>
<a href="#section-3.3.5">3.3.5</a>. Restoration ........................................<a href="#page-20">20</a>
<a href="#section-3.3.6">3.3.6</a>. Reversion ..........................................<a href="#page-21">21</a>
<a href="#section-3.4">3.4</a>. Nodes .....................................................<a href="#page-22">22</a>
<a href="#section-3.4.1">3.4.1</a>. Protection-Switching Node ..........................<a href="#page-22">22</a>
<a href="#section-3.4.2">3.4.2</a>. Non-Protection-Switching Node ......................<a href="#page-22">22</a>
<a href="#section-3.4.3">3.4.3</a>. Headend Node .......................................<a href="#page-23">23</a>
<a href="#section-3.4.4">3.4.4</a>. Backup Node ........................................<a href="#page-23">23</a>
<a href="#section-3.4.5">3.4.5</a>. Merge Node .........................................<a href="#page-24">24</a>
<a href="#section-3.4.6">3.4.6</a>. Primary Node .......................................<a href="#page-24">24</a>
<a href="#section-3.4.7">3.4.7</a>. Standby Node .......................................<a href="#page-25">25</a>
<a href="#section-3.5">3.5</a>. Benchmarks ................................................<a href="#page-26">26</a>
<a href="#section-3.5.1">3.5.1</a>. Failover Packet Loss ...............................<a href="#page-26">26</a>
<a href="#section-3.5.2">3.5.2</a>. Reversion Packet Loss ..............................<a href="#page-26">26</a>
<a href="#section-3.5.3">3.5.3</a>. Failover Time ......................................<a href="#page-27">27</a>
<a href="#section-3.5.4">3.5.4</a>. Reversion Time .....................................<a href="#page-27">27</a>
<a href="#section-3.5.5">3.5.5</a>. Additive Backup Delay ..............................<a href="#page-28">28</a>
<a href="#section-3.6">3.6</a>. Failover Time Calculation Methods .........................<a href="#page-28">28</a>
<a href="#section-3.6.1">3.6.1</a>. Time-Based Loss Method (TBLM) ......................<a href="#page-29">29</a>
<a href="#section-3.6.2">3.6.2</a>. Packet-Loss-Based Method (PLBM) ....................<a href="#page-29">29</a>
<a href="#section-3.6.3">3.6.3</a>. Timestamp-Based Method (TBM) .......................<a href="#page-30">30</a>
<a href="#section-4">4</a>. Security Considerations ........................................<a href="#page-31">31</a>
<a href="#section-5">5</a>. References .....................................................<a href="#page-32">32</a>
<a href="#section-5.1">5.1</a>. Normative References ......................................<a href="#page-32">32</a>
<a href="#section-5.2">5.2</a>. Informative References ....................................<a href="#page-32">32</a>
<a href="#section-6">6</a>. Acknowledgments ................................................<a href="#page-32">32</a>
<span class="grey">Poretsky, et al. Informational [Page 3]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-4" ></span>
<span class="grey"><a href="./rfc6414">RFC 6414</a> Benchmarking Terms for Protection November 2011</span>
<span class="h2"><a class="selflink" id="section-1" href="#section-1">1</a>. Introduction</span>
The IP network layer provides route convergence to protect data
traffic against planned and unplanned failures in the Internet. Fast
convergence times are critical to maintain reliable network
connectivity and performance. Convergence Events [<a href="#ref-6" title=""Terminology for Benchmarking Link-State IGP Data Plane Route Convergence"">6</a>] are recognized
at the IP Layer so that Route Convergence [<a href="#ref-6" title=""Terminology for Benchmarking Link-State IGP Data Plane Route Convergence"">6</a>] occurs. Technologies
that function at sub-IP layers can be enabled to provide further
protection of IP traffic by providing the failure recovery at the
sub-IP layers so that the outage is not observed at the IP layer.
Such sub-IP protection technologies include, but are not limited to,
High Availability (HA) stateful failover, Virtual Router Redundancy
Protocol (VRRP) [<a href="#ref-8" title=""Virtual Router Redundancy Protocol (VRRP) Version 3 for IPv4 and IPv6"">8</a>], Automatic Link Protection (APS) for SONET/SDH,
Resilient Packet Ring (RPR) for Ethernet, and Fast Reroute for
Multiprotocol Label Switching (MPLS-FRR) [<a href="#ref-9" title=""Fast Reroute Extensions to RSVP-TE for LSP Tunnels"">9</a>].
<span class="h3"><a class="selflink" id="section-1.1" href="#section-1.1">1.1</a>. Scope</span>
Benchmarking terminology was defined for IP-layer convergence in [<a href="#ref-6" title=""Terminology for Benchmarking Link-State IGP Data Plane Route Convergence"">6</a>].
Different terminology and methodologies specific to benchmarking sub-
IP layer protection mechanisms are required. The metrics for
benchmarking the performance of sub-IP protection mechanisms are
measured at the IP layer, so that the results are always measured in
reference to IP and independent of the specific protection mechanism
being used. The purpose of this document is to provide a single
terminology for benchmarking sub-IP protection mechanisms.
A common terminology for sub-IP layer protection mechanism
benchmarking enables different implementations of a protection
mechanism to be benchmarked and evaluated. In addition,
implementations of different protection mechanisms can be benchmarked
and evaluated. It is intended that there can exist unique
methodology documents for each sub-IP protection mechanism based upon
this common terminology document. The terminology can be applied to
methodologies that benchmark sub-IP protection mechanism performance
with a single stream of traffic or multiple streams of traffic. The
traffic flow may be unidirectional or bidirectional as to be
indicated in the methodology.
<span class="grey">Poretsky, et al. Informational [Page 4]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-5" ></span>
<span class="grey"><a href="./rfc6414">RFC 6414</a> Benchmarking Terms for Protection November 2011</span>
<span class="h3"><a class="selflink" id="section-1.2" href="#section-1.2">1.2</a>. General Model</span>
The sequence of events to benchmark the performance of sub-IP
protection mechanisms is as follows:
1. Failover Event - Primary Path fails
2. Failure Detection - Failover Event is detected
3. Failover - Backup Path becomes the Working Path due to Failover
Event
4. Restoration - Primary Path recovers from a Failover Event
5. Reversion (optional) - Primary Path becomes the Working Path
These terms are further defined in this document.
Figures 1 through 5 show models that MAY be used when benchmarking
sub-IP protection mechanisms, which MUST use a Protection-Switching
System that consists of a minimum of two Protection-Switching Nodes,
an Ingress Node known as the Headend Node and an Egress Node known as
the Merge Node. The Protection-Switching System MUST include either
a Primary Path and Backup Path, as shown in Figures 1 through 4, or a
Primary Node and Standby Node, as shown in Figure 5. A Protection-
Switching System may provide link protection, node protection, path
protection, local link protection, and high availability, as shown in
Figures 1 through 5, respectively. A Failover Event occurs along the
Primary Path or at the Primary Node. The Working Path is the Primary
Path prior to the Failover Event and the Backup Path after the
Failover Event. A Tester is set outside the two paths or nodes as it
sends and receives IP traffic along the Working Path. The tester
MUST record the IP packet sequence numbers, departure time, and
arrival time so that the metrics of Failover Time, Additive Latency,
Packet Reordering, Duplicate Packets, and Reversion Time can be
measured. The Tester may be a single device or a test system. If
Reversion is supported, then the Working Path is the Primary Path
after Restoration (Failure Recovery) of the Primary Path.
Link Protection, as shown in Figure 1, provides protection when a
Failover Event occurs on the link between two nodes along the Primary
Path. Node Protection, as shown in Figure 2, provides protection
when a Failover Event occurs at a Node along the Primary Path. Path
Protection, as shown in Figure 3, provides protection for link or
node failures for multiple hops along the Primary Path. Local Link
Protection, as shown in Figure 4, provides sub-IP protection of a
link between two nodes, without a Backup Node. An example of such a
sub-IP protection mechanism is SONET APS. High Availability
Protection, as shown in Figure 5, provides protection of a Primary
Node with a redundant Standby Node. State Control is provided
between the Primary and Standby Nodes. Failure of the Primary Node
<span class="grey">Poretsky, et al. Informational [Page 5]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-6" ></span>
<span class="grey"><a href="./rfc6414">RFC 6414</a> Benchmarking Terms for Protection November 2011</span>
is detected at the sub-IP layer to force traffic to switch to the
Standby Node, which has state maintained for zero or minimal packet
loss.
+-----------+
+--------------| Tester |<-----------------------+
| +-----------+ |
| IP Traffic | Failover IP Traffic |
| | Event |
| ------------ | ---------- |
+--->| Ingress/ | V | Egress/ |---+
|Headend Node|------------------|Merge Node| Primary
------------ ---------- Path
| ^
| --------- | Backup
+--------| Backup |-------------+ Path
| Node |
---------
Figure 1. System Under Test (SUT) for Sub-IP Link Protection
+-----------+
+--------------------| Tester |<-----------------+
| +-----------+ |
| IP Traffic | Failover IP Traffic |
| | Event |
| V |
| ------------ -------- ---------- |
+--->| Ingress/ | |Midpoint| | Egress/ |---+
|Headend Node|----| Node |----|Merge Node| Primary
------------ -------- ---------- Path
| ^
| --------- | Backup
+--------| Backup |-------------+ Path
| Node |
---------
Figure 2. System Under Test (SUT) for Sub-IP Node Protection
<span class="grey">Poretsky, et al. Informational [Page 6]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-7" ></span>
<span class="grey"><a href="./rfc6414">RFC 6414</a> Benchmarking Terms for Protection November 2011</span>
+-----------+
+---------------------------| Tester |<----------------------+
| +-----------+ |
| IP Traffic | Failover IP Traffic |
| | Event |
| Primary Path | |
| ------------ -------- | -------- ---------- |
+--->| Ingress/ | |Midpoint| V |Midpoint| | Egress/ |---+
|Headend Node|----| Node |---| Node |---|Merge Node|
------------ -------- -------- ----------
| ^
| --------- -------- | Backup
+--------| Backup |----| Backup |--------+ Path
| Node | | Node |
--------- --------
Figure 3. System Under Test (SUT) for Sub-IP Path Protection
+-----------+
+--------------------| Tester |<-------------------+
| +-----------+ |
| IP Traffic | Failover IP Traffic |
| | Event |
| Primary | |
| +--------+ Path v +--------+ |
| | |------------------------>| | |
+--->| Ingress| | Egress |----+
| Node |- - - - - - - - - - - - >| Node |
+--------+ Backup Path +--------+
| |
| IP-Layer Forwarding |
+<----------------------------------------->+
Figure 4. System Under Test (SUT) for Sub-IP Local Link Protection
<span class="grey">Poretsky, et al. Informational [Page 7]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-8" ></span>
<span class="grey"><a href="./rfc6414">RFC 6414</a> Benchmarking Terms for Protection November 2011</span>
+-----------+
+-----------------| Tester |<--------------------+
| +-----------+ |
| IP Traffic | Failover IP Traffic |
| | Event |
| V |
| --------- -------- ---------- |
+--->| Ingress | |Primary | | Egress/ |------+
| Node |----| Node |----|Merge Node| Primary
--------- -------- ---------- Path
| State |Control ^
| Interface |(Optional) |
| --------- |
+---------| Standby |---------+
| Node |
---------
Figure 5. System Under Test (SUT)
for Sub-IP Redundant Node Protection
Some protection-switching technologies may use a series of steps that
differ from the general model. The specific differences SHOULD be
highlighted in each technology-specific methodology. Note that some
protection-switching technologies are endowed with the ability to re-
optimize the working path after a node or link failure.
<span class="h2"><a class="selflink" id="section-2" href="#section-2">2</a>. Existing Definitions</span>
This document uses existing terminology defined in other BMWG work.
Examples include, but are not limited to:
Latency [<a href="#ref-2" title=""Benchmarking Terminology for Network Interconnection Devices"">2</a>], Section 3.8
Frame Loss Rate [<a href="#ref-2" title=""Benchmarking Terminology for Network Interconnection Devices"">2</a>], Section 3.6
Throughput [<a href="#ref-2" title=""Benchmarking Terminology for Network Interconnection Devices"">2</a>], Section 3.17
Device Under Test (DUT) [<a href="#ref-3" title=""Benchmarking Terminology for LAN Switching Devices"">3</a>], Section 3.1.1
System Under Test (SUT) [<a href="#ref-3" title=""Benchmarking Terminology for LAN Switching Devices"">3</a>], Section 3.1.2
Offered Load [<a href="#ref-3" title=""Benchmarking Terminology for LAN Switching Devices"">3</a>], Section 3.5.2
Out-of-order Packet [<a href="#ref-4" title=""Terminology for Benchmarking Network-layer Traffic Control Mechanisms"">4</a>], Section 3.3.4
Duplicate Packet [<a href="#ref-4" title=""Terminology for Benchmarking Network-layer Traffic Control Mechanisms"">4</a>], Section 3.3.5
Forwarding Delay [<a href="#ref-4" title=""Terminology for Benchmarking Network-layer Traffic Control Mechanisms"">4</a>], Section 3.2.4
Jitter [<a href="#ref-4" title=""Terminology for Benchmarking Network-layer Traffic Control Mechanisms"">4</a>], Section 3.2.5
Packet Loss [<a href="#ref-6" title=""Terminology for Benchmarking Link-State IGP Data Plane Route Convergence"">6</a>], Section 3.5
Packet Reordering [<a href="#ref-7" title=""Packet Reordering Metrics"">7</a>], Section 3.3
This document has the following frequently used acronyms:
DUT Device Under Test
SUT System Under Test
<span class="grey">Poretsky, et al. Informational [Page 8]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-9" ></span>
<span class="grey"><a href="./rfc6414">RFC 6414</a> Benchmarking Terms for Protection November 2011</span>
This document adopts the definition format in <a href="./rfc1242#section-2">Section 2 of RFC 1242</a>
[<a href="#ref-2" title=""Benchmarking Terminology for Network Interconnection Devices"">2</a>]. Terms defined in this document are capitalized when used within
this document.
The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in <a href="https://www.rfc-editor.org/bcp/bcp14">BCP 14</a>, <a href="./rfc2119">RFC 2119</a> [<a href="#ref-5" title=""Key words for use in RFCs to Indicate Requirement Levels"">5</a>].
<a href="./rfc2119">RFC 2119</a> defines the use of these keywords to help make the intent of
Standards Track documents as clear as possible. While this document
uses these keywords, this document is not a Standards Track document.
<span class="h2"><a class="selflink" id="section-3" href="#section-3">3</a>. Test Considerations</span>
<span class="h3"><a class="selflink" id="section-3.1" href="#section-3.1">3.1</a>. Paths</span>
<span class="h4"><a class="selflink" id="section-3.1.1" href="#section-3.1.1">3.1.1</a>. Path</span>
Definition:
A unidirectional sequence of nodes <R1, ..., Rn> and links
<L12,... L(n-1)n> with the following properties:
a. R1 is the ingress node and forwards IP packets, which input
into DUT/SUT, to R2 as sub-IP frames over link L12.
b. Ri is a node which forwards data frames to R(i+1) over Link
Li(i+1) for all i, 1<i<n-1, based on information in the sub-IP
layer.
c. Rn is the egress node, and it outputs sub-IP frames from
DUT/SUT as IP packets. L(n-1)n is the link between the R(n-1)
and Rn.
Discussion:
The path is defined in the sub-IP layer in this document, unlike
an IP path in <a href="./rfc2026">RFC 2026</a> [<a href="#ref-1" title=""The Internet Standards Process -- Revision 3"">1</a>]. One path may be regarded as being
equivalent to one IP link between two IP nodes, i.e., R1 and Rn.
The two IP nodes may have multiple paths for protection. A packet
will travel on only one path between the nodes. Packets belonging
to a microflow [<a href="#ref-10" title=""Definition of the Differentiated Services Field (DS Field) in the IPv4 and IPv6 Headers"">10</a>] will traverse one or more paths. The path is
unidirectional. For example, the link between R1 and R2 in the
direction from R1 to R2 is L12. For traffic flowing in the
reverse direction from R2 to R1, the link is L21. Example paths
are the SONET/SDH path and the label switched path for MPLS.
Measurement Units:
n/a
<span class="grey">Poretsky, et al. Informational [Page 9]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-10" ></span>
<span class="grey"><a href="./rfc6414">RFC 6414</a> Benchmarking Terms for Protection November 2011</span>
Issues:
"A bidirectional path", which transmits traffic in both directions
along the same nodes, consists of two unidirectional paths.
Therefore, the two unidirectional paths belonging to "one
bidirectional path" will be treated independently when
benchmarking for "a bidirectional path".
See Also:
Working Path
Primary Path
Backup Path
<span class="h4"><a class="selflink" id="section-3.1.2" href="#section-3.1.2">3.1.2</a>. Working Path</span>
Definition:
The path that the DUT/SUT is currently using to forward packets.
Discussion:
A Primary Path is the Working Path before occurrence of a Failover
Event. A Backup Path shall become the Working Path after a
Failover Event.
Measurement Units:
n/a
Issues:
None.
See Also:
Path
Primary Path
Backup Path
<span class="h4"><a class="selflink" id="section-3.1.3" href="#section-3.1.3">3.1.3</a>. Primary Path</span>
Definition:
The preferred point-to-point path for forwarding traffic between
two or more nodes.
Discussion:
The Primary Path is the Path that traffic traverses prior to a
Failover Event.
Measurement Units:
n/a
Issues:
None.
<span class="grey">Poretsky, et al. Informational [Page 10]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-11" ></span>
<span class="grey"><a href="./rfc6414">RFC 6414</a> Benchmarking Terms for Protection November 2011</span>
See Also:
Path
Failover Event
<span class="h4"><a class="selflink" id="section-3.1.4" href="#section-3.1.4">3.1.4</a>. Protected Primary Path</span>
Definition:
A Primary Path that is protected with a Backup Path.
Discussion:
A Protected Primary Path must include at least one Protection-
Switching Node.
Measurement Units:
n/a
Issues:
None.
See Also:
Path
Primary Path
<span class="h4"><a class="selflink" id="section-3.1.5" href="#section-3.1.5">3.1.5</a>. Backup Path</span>
Definition:
A path that exists to carry data traffic only if a Failover Event
occurs on a Primary Path.
Discussion:
The Backup Path shall become the Working Path upon a Failover
Event. A Path may have one or more Backup Paths. A Backup Path
may protect one or more Primary Paths. There are various types of
Backup Paths:
a. dedicated recovery Backup Path (1+1) or (1:1), which has 100%
redundancy for a specific ordinary path
b. shared Backup Path (1:N), which is dedicated to the protection
for more than one specific Primary Path
c. associated shared Backup Path (M:N) for which a specific set of
Backup Paths protects a specific set of more than one Primary
Path
<span class="grey">Poretsky, et al. Informational [Page 11]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-12" ></span>
<span class="grey"><a href="./rfc6414">RFC 6414</a> Benchmarking Terms for Protection November 2011</span>
A Backup Path may be signaled or unsignaled. The Backup Path must
be created prior to the Failover Event. The Backup Path generally
originates at the point of local repair (PLR) and terminates at a
node along a primary path.
Measurement Units:
n/a
Issues:
None.
See Also:
Path
Working Path
Primary Path
<span class="h4"><a class="selflink" id="section-3.1.6" href="#section-3.1.6">3.1.6</a>. Standby Backup Path</span>
Definition:
A Backup Path that is established prior to a Failover Event to
protect a Primary Path.
Discussion:
The Standby Backup Path and Dynamic Backup Path provide
protection, but are established at different times.
Measurement Units:
n/a
Issues:
None.
See Also:
Backup Path
Primary Path
Failover Event
<span class="h4"><a class="selflink" id="section-3.1.7" href="#section-3.1.7">3.1.7</a>. Dynamic Backup Path</span>
Definition:
A Backup Path that is established upon occurrence of a Failover
Event.
Discussion:
The Standby Backup Path and Dynamic Backup Path provide
protection, but are established at different times.
<span class="grey">Poretsky, et al. Informational [Page 12]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-13" ></span>
<span class="grey"><a href="./rfc6414">RFC 6414</a> Benchmarking Terms for Protection November 2011</span>
Measurement Units:
n/a
Issues:
None.
See Also:
Backup Path
Standby Backup Path
Failover Event
<span class="h4"><a class="selflink" id="section-3.1.8" href="#section-3.1.8">3.1.8</a>. Disjoint Paths</span>
Definition:
A pair of paths that do not share a common link or nodes.
Discussion:
Two paths are disjoint if they do not share a common node or link
other than the ingress and egress.
Measurement Units:
n/a
Issues:
None.
See Also:
Path
Primary Path
SRLG
<span class="h4"><a class="selflink" id="section-3.1.9" href="#section-3.1.9">3.1.9</a>. Point of Local Repair (PLR)</span>
Definition:
A node capable of Failover along the Primary Path that is also the
ingress node for the Backup Path to protect another node or link.
Discussion:
Any node along the Primary Path from the ingress node to the
penultimate node may be a PLR. The PLR may use a single Backup
Path for protecting one or more Primary Paths. There can be
multiple PLRs along a Primary Path. The PLR must be an ingress to
a Backup Path. The PLR can be any node along the Primary Path
except the egress node of the Primary Path. The PLR may
simultaneously be a Headend Node when it is serving the role as
ingress to the Primary Path and the Backup Path. If the PLR is
also the Headend Node, then the Backup Path is a Disjoint Path
from the ingress to the Merge Node.
<span class="grey">Poretsky, et al. Informational [Page 13]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-14" ></span>
<span class="grey"><a href="./rfc6414">RFC 6414</a> Benchmarking Terms for Protection November 2011</span>
Measurement Units:
n/a
Issues:
None.
See Also:
Primary Path
Backup Path
Failover
<span class="h4"><a class="selflink" id="section-3.1.10" href="#section-3.1.10">3.1.10</a>. Shared Risk Link Group (SRLG)</span>
Definition:
SRLG is a set of links that share the same risk (physical or
logical) within a network.
Discussion:
SRLG is considered the set of links to be avoided when the primary
and secondary paths are considered disjoint. The SRLG will fail
as a group if the shared resource (physical or anything abstract
such as software version) fails.
Measurement Units:
n/a
Issues:
None.
See Also:
Path Primary Path
<span class="h3"><a class="selflink" id="section-3.2" href="#section-3.2">3.2</a>. Protection</span>
<span class="h4"><a class="selflink" id="section-3.2.1" href="#section-3.2.1">3.2.1</a>. Link Protection</span>
Definition:
A Backup Path that is signaled to at least one Backup Node to
protect for failure of interfaces and links along a Primary Path.
Discussion:
Link Protection may or may not protect the entire Primary Path.
Link Protection is shown in Figure 1.
Measurement Units:
n/a
<span class="grey">Poretsky, et al. Informational [Page 14]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-15" ></span>
<span class="grey"><a href="./rfc6414">RFC 6414</a> Benchmarking Terms for Protection November 2011</span>
Issues:
None.
See Also:
Primary Path Backup Path
<span class="h4"><a class="selflink" id="section-3.2.2" href="#section-3.2.2">3.2.2</a>. Node Protection</span>
Definition:
A Backup Path that is signaled to at least one Backup Node to
protect for failure of interfaces, links, and nodes along a
Primary Path.
Discussion:
Node Protection may or may not protect the entire Primary Path.
Node Protection also provides Link Protection. Node Protection is
shown in Figure 2.
Measurement Units:
n/a
Issues:
None.
See Also:
Link Protection
<span class="h4"><a class="selflink" id="section-3.2.3" href="#section-3.2.3">3.2.3</a>. Path Protection</span>
Definition:
A Backup Path that is signaled to at least one Backup Node to
provide protection along the entire Primary Path.
Discussion:
Path Protection provides Node Protection and Link Protection for
every node and link along the Primary Path. A Backup Path
providing Path Protection may have the same ingress node as the
Primary Path. Path Protection is shown in Figure 3.
Measurement Units:
n/a
Issues:
None.
<span class="grey">Poretsky, et al. Informational [Page 15]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-16" ></span>
<span class="grey"><a href="./rfc6414">RFC 6414</a> Benchmarking Terms for Protection November 2011</span>
See Also:
Primary Path
Backup Path
Node Protection
Link Protection
<span class="h4"><a class="selflink" id="section-3.2.4" href="#section-3.2.4">3.2.4</a>. Backup Span</span>
Definition:
The number of hops used by a Backup Path.
Discussion:
The Backup Span is an integer obtained by counting the number of
nodes along the Backup Path.
Measurement Units:
number of nodes
Issues:
None.
See Also:
Primary Path
Backup Path
<span class="h4"><a class="selflink" id="section-3.2.5" href="#section-3.2.5">3.2.5</a>. Local Link Protection</span>
Definition:
A Backup Path that is a redundant path between two nodes and does
not use a Backup Node.
Discussion:
Local Link Protection must be provided as a Backup Path between
two nodes along the Primary Path without the use of a Backup Node.
Local Link Protection is provided by Protection-Switching Systems
such as SONET APS. Local Link Protection is shown in Figure 4.
Measurement Units:
n/a
Issues:
None.
See Also:
Backup Path
Backup Node
<span class="grey">Poretsky, et al. Informational [Page 16]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-17" ></span>
<span class="grey"><a href="./rfc6414">RFC 6414</a> Benchmarking Terms for Protection November 2011</span>
<span class="h4"><a class="selflink" id="section-3.2.6" href="#section-3.2.6">3.2.6</a>. Redundant Node Protection</span>
Definition:
A Protection-Switching System with a Primary Node protected by a
Standby Node along the Primary Path.
Discussion:
Redundant Node Protection is provided by Protection-Switching
Systems such as VRRP and HA. The protection mechanisms occur at
sub-IP layers to switch traffic from a Primary Node to Backup Node
upon a Failover Event at the Primary Node. Traffic continues to
traverse the Primary Path through the Standby Node. The failover
may be stateful, in which the state information may be exchanged
in-band or over an out-of-band State Control Interface. The
Standby Node may be active or passive. Redundant Node Protection
is shown in Figure 5.
Measurement Units:
n/a
Issues:
None.
See Also:
Primary Path
Primary Node
Standby Node
<span class="h4"><a class="selflink" id="section-3.2.7" href="#section-3.2.7">3.2.7</a>. State Control Interface</span>
Definition:
An out-of-band control interface used to exchange state
information between the Primary Node and Standby Node.
Discussion:
The State Control Interface may be used for Redundant Node
Protection. The State Control Interface should be out-of-band.
It is possible to have Redundant Node Protection in which there is
no state control or state control is provided in-band. The State
Control Interface between the Primary and Standby Node may be one
or more hops.
Measurement Units:
n/a
Issues:
None.
<span class="grey">Poretsky, et al. Informational [Page 17]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-18" ></span>
<span class="grey"><a href="./rfc6414">RFC 6414</a> Benchmarking Terms for Protection November 2011</span>
See Also:
Primary Node
Standby Node
<span class="h4"><a class="selflink" id="section-3.2.8" href="#section-3.2.8">3.2.8</a>. Protected Interface</span>
Definition:
An interface along the Primary Path that is protected by a Backup
Path.
Discussion:
A Protected Interface is an interface protected by a Protection-
Switching System that provides Link Protection, Node Protection,
Path Protection, Local Link Protection, and Redundant Node
Protection.
Measurement Units:
n/a
Issues:
None.
See Also:
Primary Path
Backup Path
<span class="h3"><a class="selflink" id="section-3.3" href="#section-3.3">3.3</a>. Protection Switching</span>
<span class="h4"><a class="selflink" id="section-3.3.1" href="#section-3.3.1">3.3.1</a>. Protection-Switching System</span>
Definition:
A DUT/SUT that is capable of Failure Detection and Failover from a
Primary Path to a Backup Path or Standby Node when a Failover
Event occurs.
Discussion:
The Protection-Switching System must include either a Primary Path
and Backup Path, as shown in Figures 1 through 4, or a Primary
Node and Standby Node, as shown in Figure 5. The Backup Path may
be a Standby Backup Path or a Dynamic Backup Path. The
Protection-Switching System includes the mechanisms for both
Failure Detection and Failover.
Measurement Units:
n/a
Issues:
None.
<span class="grey">Poretsky, et al. Informational [Page 18]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-19" ></span>
<span class="grey"><a href="./rfc6414">RFC 6414</a> Benchmarking Terms for Protection November 2011</span>
See Also:
Primary Path Backup Path Failover
<span class="h4"><a class="selflink" id="section-3.3.2" href="#section-3.3.2">3.3.2</a>. Failover Event</span>
Definition:
The occurrence of a planned or unplanned action in the network
that results in a change in the Path that data traffic traverses.
Discussion:
Failover Events include, but are not limited to, link failure and
router failure. Routing changes are considered Convergence Events
[<a href="#ref-6" title=""Terminology for Benchmarking Link-State IGP Data Plane Route Convergence"">6</a>] and are not Failover Events. This restricts Failover Events
to sub-IP layers. Failover may be at the PLR or at the ingress.
If the failover is at the ingress, it is generally on a disjoint
path from the ingress to egress.
Failover Events may result from failures such as link failure or
router failure. The change in path after Failover may have a
Backup Span of one or more nodes. Failover Events are
distinguished from routing changes and Convergence Events [<a href="#ref-6" title=""Terminology for Benchmarking Link-State IGP Data Plane Route Convergence"">6</a>] by
the detection of the failure and subsequent protection switching
at a sub-IP layer. Failover occurs at a PLR or Primary Node.
Measurement Units:
n/a
Issues:
None.
See Also:
Path
Failure Detection
Disjoint Path
<span class="h4"><a class="selflink" id="section-3.3.3" href="#section-3.3.3">3.3.3</a>. Failure Detection</span>
Definition:
The process to identify at a sub-IP layer a Failover Event at a
Primary Node or along the Primary Path.
Discussion:
Failure Detection occurs at the Primary Node or ingress node of
the Primary Path. Failure Detection occurs via a sub-IP mechanism
such as detection of a link down event or timeout for receipt of a
control packet. A failure may be completely isolated. A failure
<span class="grey">Poretsky, et al. Informational [Page 19]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-20" ></span>
<span class="grey"><a href="./rfc6414">RFC 6414</a> Benchmarking Terms for Protection November 2011</span>
may affect a set of links that share a single SRLG (e.g., port
with many sub-interfaces). A failure may affect multiple links
that are not part of the SRLG.
Measurement Units:
n/a
Issues:
None.
See Also:
Primary Path
<span class="h4"><a class="selflink" id="section-3.3.4" href="#section-3.3.4">3.3.4</a>. Failover</span>
Definition:
The process to switch data traffic from the protected Primary Path
to the Backup Path upon Failure Detection of a Failover Event.
Discussion:
Failover to a Backup Path provides Link Protection, Node
Protection, or Path Protection. Failover is complete when Packet
Loss [<a href="#ref-6" title=""Terminology for Benchmarking Link-State IGP Data Plane Route Convergence"">6</a>], Out-of-order Packets [<a href="#ref-4" title=""Terminology for Benchmarking Network-layer Traffic Control Mechanisms"">4</a>], and Duplicate Packets [<a href="#ref-4" title=""Terminology for Benchmarking Network-layer Traffic Control Mechanisms"">4</a>] are
no longer observed. Forwarding Delay [<a href="#ref-4" title=""Terminology for Benchmarking Network-layer Traffic Control Mechanisms"">4</a>] may continue to be
observed.
Measurement Units:
n/a
Issues:
None.
See Also:
Primary Path Backup Path Failover Event
<span class="h4"><a class="selflink" id="section-3.3.5" href="#section-3.3.5">3.3.5</a>. Restoration</span>
Definition:
The state of failover recovery in which the Primary Path has
recovered from a Failover Event, but is not yet forwarding packets
because the Backup Path remains the Working Path.
Discussion:
Restoration must occur while the Backup Path is the Working Path.
The Backup Path is maintained as the Working Path during
Restoration. Restoration produces a Primary Path that is
<span class="grey">Poretsky, et al. Informational [Page 20]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-21" ></span>
<span class="grey"><a href="./rfc6414">RFC 6414</a> Benchmarking Terms for Protection November 2011</span>
recovered from failure, but is not yet forwarding traffic.
Traffic is still being forwarded by the Backup Path functioning as
the Working Path.
Measurement Units:
n/a
Issues:
None.
See Also:
Primary Path
Failover Event
Failure Recovery
Working Path
Backup Path
<span class="h4"><a class="selflink" id="section-3.3.6" href="#section-3.3.6">3.3.6</a>. Reversion</span>
Definition:
The state of failover recovery in which the Primary Path has
become the Working Path so that it is forwarding packets.
Discussion:
Protection-Switching Systems may or may not support Reversion.
Reversion, if supported, must occur after Restoration. Packet
forwarding on the Primary Path resulting from Reversion may occur
either fully or partially over the Primary Path. A potential
problem with Reversion is the discontinuity in end-to-end delay
when the Forwarding Delays [<a href="#ref-4" title=""Terminology for Benchmarking Network-layer Traffic Control Mechanisms"">4</a>] along the Primary Path and Backup
Path are different, possibly causing Out-of-order Packets [<a href="#ref-4" title=""Terminology for Benchmarking Network-layer Traffic Control Mechanisms"">4</a>],
Duplicate Packets [<a href="#ref-4" title=""Terminology for Benchmarking Network-layer Traffic Control Mechanisms"">4</a>], and increased Jitter [<a href="#ref-4" title=""Terminology for Benchmarking Network-layer Traffic Control Mechanisms"">4</a>].
Measurement Units:
n/a
Issues:
None.
See Also:
Protection-Switching System
Working Path
Primary Path
<span class="grey">Poretsky, et al. Informational [Page 21]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-22" ></span>
<span class="grey"><a href="./rfc6414">RFC 6414</a> Benchmarking Terms for Protection November 2011</span>
<span class="h3"><a class="selflink" id="section-3.4" href="#section-3.4">3.4</a>. Nodes</span>
<span class="h4"><a class="selflink" id="section-3.4.1" href="#section-3.4.1">3.4.1</a>. Protection-Switching Node</span>
Definition:
A node that is capable of participating in a Protection Switching
System.
Discussion:
The Protection-Switching Node may be an ingress or egress for a
Primary Path or Backup Path, such as used for MPLS Fast Reroute
configurations. The Protection-Switching Node may provide
Redundant Node Protection as a Primary Node in a Redundant chassis
configuration with a Standby Node, such as used for VRRP and HA
configurations.
Measurement Units:
n/a
Issues:
None.
See Also:
Protection-Switching System
<span class="h4"><a class="selflink" id="section-3.4.2" href="#section-3.4.2">3.4.2</a>. Non-Protection-Switching Node</span>
Definition:
A node that is not capable of participating in a Protection
Switching System, but may exist along the Primary Path or Backup
Path.
Discussion:
None.
Measurement Units:
n/a
Issues:
None.
See Also:
Protection-Switching System
Primary Path
Backup Path
<span class="grey">Poretsky, et al. Informational [Page 22]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-23" ></span>
<span class="grey"><a href="./rfc6414">RFC 6414</a> Benchmarking Terms for Protection November 2011</span>
<span class="h4"><a class="selflink" id="section-3.4.3" href="#section-3.4.3">3.4.3</a>. Headend Node</span>
Definition:
The ingress node of the Primary Path.
Discussion:
The Headend Node may also be a PLR when it is serving in the dual
role as the ingress to the Backup Path.
Measurement Units:
n/a
Issues:
None.
See Also:
Primary Path
PLR
Failover
<span class="h4"><a class="selflink" id="section-3.4.4" href="#section-3.4.4">3.4.4</a>. Backup Node</span>
Definition:
A node along the Backup Path.
Discussion:
The Backup Node can be any node along the Backup Path. There may
be one or more Backup Nodes along the Backup Path. A Backup Node
may be the ingress, midpoint, or egress of the Backup Path. If
the Backup Path has only one Backup Node, then that Backup Node is
the ingress and egress of the Backup Path.
Measurement Units:
n/a
Issues:
None.
See Also:
Backup Path
<span class="grey">Poretsky, et al. Informational [Page 23]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-24" ></span>
<span class="grey"><a href="./rfc6414">RFC 6414</a> Benchmarking Terms for Protection November 2011</span>
<span class="h4"><a class="selflink" id="section-3.4.5" href="#section-3.4.5">3.4.5</a>. Merge Node</span>
Definition:
A node along the Primary Path where Backup Path terminates.
Discussion:
The Merge Node can be any node along the Primary Path except the
ingress node of the Primary Path. There can be multiple Merge
Nodes along a Primary Path. A Merge Node can be the egress node
for a single Backup Path or multiple Backup Paths. The Merge Node
must be the egress to the Backup Path. The Merge Node may also be
the egress of the Primary Path or Point of Local Repair (PLR).
Measurement Units:
n/a
Issues:
None.
See Also:
Primary Path
Backup Path
PLR
Failover
<span class="h4"><a class="selflink" id="section-3.4.6" href="#section-3.4.6">3.4.6</a>. Primary Node</span>
Definition:
A node along the Primary Path that is capable of Failover to a
redundant Standby Node.
Discussion:
The Primary Node may be used for Protection-Switching Systems that
provide Redundant Node Protection, such as VRRP and HA.
Measurement Units:
n/a
Issues:
None.
See Also:
Protection-Switching System Redundant Node Protection Standby Node
<span class="grey">Poretsky, et al. Informational [Page 24]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-25" ></span>
<span class="grey"><a href="./rfc6414">RFC 6414</a> Benchmarking Terms for Protection November 2011</span>
<span class="h4"><a class="selflink" id="section-3.4.7" href="#section-3.4.7">3.4.7</a>. Standby Node</span>
Definition:
A redundant node to a Primary Node; it forwards traffic along the
Primary Path upon Failure Detection of the Primary Node.
Discussion:
The Standby Node must be used for Protection-Switching Systems
that provide Redundant Node Protection, such as VRRP and HA. The
Standby Node must provide protection along the same Primary Path.
If the failover is to a Disjoint Path, then it is a Backup Node.
The Standby Node may be configured for 1:1 or N:1 protection.
The communication between the Primary Node and Standby Node may be
in-band or across an out-of-band State Control Interface. The
Standby Node may be geographically dispersed from the Primary
Node. When geographically dispersed, the number of hops of
separation may increase failover time.
The Standby Node may be passive or active. The Passive Standby
Node is not offered traffic and does not forward traffic until
Failure Detection of the Primary Node. Upon Failure Detection of
the Primary Node, traffic offered to the Primary Node is instead
offered to the Passive Standby Node. The Active Standby Node is
offered traffic and forwards traffic along the Primary Path while
the Primary Node is also active. Upon Failure Detection of the
Primary Node, traffic offered to the Primary Node is switched to
the Active Standby Node.
Measurement Units:
n/a
Issues:
None.
See Also:
Primary Node
State Control Interface
<span class="grey">Poretsky, et al. Informational [Page 25]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-26" ></span>
<span class="grey"><a href="./rfc6414">RFC 6414</a> Benchmarking Terms for Protection November 2011</span>
<span class="h3"><a class="selflink" id="section-3.5" href="#section-3.5">3.5</a>. Benchmarks</span>
<span class="h4"><a class="selflink" id="section-3.5.1" href="#section-3.5.1">3.5.1</a>. Failover Packet Loss</span>
Definition:
The amount of packet loss produced by a Failover Event until
Failover completes, where the measurement begins when the last
unimpaired packet is received by the Tester on the Protected
Primary Path and ends when the first unimpaired packet is received
by the Tester on the Backup Path.
Discussion:
Packet loss can be observed as a reduction of forwarded traffic
from the maximum forwarding rate. Failover Packet Loss includes
packets that were lost, reordered, or delayed. Failover Packet
Loss may reach 100% of the offered load.
Measurement Units:
Number of Packets
Issues:
None.
See Also:
Failover Event
Failover
<span class="h4"><a class="selflink" id="section-3.5.2" href="#section-3.5.2">3.5.2</a>. Reversion Packet Loss</span>
Definition:
The amount of packet loss produced by Reversion, where the
measurement begins when the last unimpaired packet is received by
the Tester on the Backup Path and ends when the first unimpaired
packet is received by the Tester on the Protected Primary Path.
Discussion:
Packet loss can be observed as a reduction of forwarded traffic
from the maximum forwarding rate. Reversion Packet Loss includes
packets that were lost, reordered, or delayed. Reversion Packet
Loss may reach 100% of the offered load.
Measurement Units:
Number of Packets
Issues:
None.
<span class="grey">Poretsky, et al. Informational [Page 26]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-27" ></span>
<span class="grey"><a href="./rfc6414">RFC 6414</a> Benchmarking Terms for Protection November 2011</span>
See Also:
Reversion
<span class="h4"><a class="selflink" id="section-3.5.3" href="#section-3.5.3">3.5.3</a>. Failover Time</span>
Definition:
The amount of time it takes for Failover to successfully complete.
Discussion:
Failover Time can be calculated using the Time-Based Loss Method
(TBLM), Packet-Loss-Based Method (PLBM), or Timestamp-Based Method
(TBM). It is RECOMMENDED that the TBM is used.
Measurement Units:
milliseconds
Issues:
None.
See Also:
Failover
Failover Time
Time-Based Loss Method (TBLM)
Packet-Loss-Based Method (PLBM)
Timestamp-Based Method (TBM)
<span class="h4"><a class="selflink" id="section-3.5.4" href="#section-3.5.4">3.5.4</a>. Reversion Time</span>
Definition:
The amount of time it takes for Reversion to complete so that the
Primary Path is restored as the Working Path.
Discussion:
Reversion Time can be calculated using the Time-Based Loss Method
(TBLM), Packet-Loss-Based Method (PLBM), or Timestamp-Based Method
(TBM). It is RECOMMENDED that the TBM is used.
Measurement Units:
milliseconds
Issues:
None.
See Also:
Reversion
Primary Path
Working Path
Reversion Packet Loss
<span class="grey">Poretsky, et al. Informational [Page 27]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-28" ></span>
<span class="grey"><a href="./rfc6414">RFC 6414</a> Benchmarking Terms for Protection November 2011</span>
Time-Based Loss Method (TBLM)
Packet-Loss-Based Method (PLBM)
Timestamp-Based Method (TBM)
<span class="h4"><a class="selflink" id="section-3.5.5" href="#section-3.5.5">3.5.5</a>. Additive Backup Delay</span>
Definition:
The amount of increased Forwarding Delay [<a href="#ref-4" title=""Terminology for Benchmarking Network-layer Traffic Control Mechanisms"">4</a>] resulting from data
traffic traversing the Backup Path instead of the Primary Path.
Discussion:
Additive Backup Delay is calculated using Equation 1 as shown
below:
(Equation 1)
Additive Backup Delay =
Forwarding Delay(Backup Path) -
Forwarding Delay(Primary Path)
Measurement Units:
milliseconds
Issues:
Additive Backup Latency may be a negative result. This is
theoretically possible but could be indicative of a sub-optimum
network configuration.
See Also:
Primary Path
Backup Path
Primary Path Latency
Backup Path Latency
<span class="h3"><a class="selflink" id="section-3.6" href="#section-3.6">3.6</a>. Failover Time Calculation Methods</span>
The following Methods may be assessed on a per-flow basis using at
least 16 flows spread over the routing table (using more flows is
better). Otherwise, the impact of a prefix-dependency in the
implementation of a particular protection technology could be missed.
However, the test designer must be aware of the number of packets per
second sent to each prefix, as this establishes sampling of the path
and the time resolution for measurement of Failover time on a per-
flow basis.
<span class="grey">Poretsky, et al. Informational [Page 28]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-29" ></span>
<span class="grey"><a href="./rfc6414">RFC 6414</a> Benchmarking Terms for Protection November 2011</span>
<span class="h4"><a class="selflink" id="section-3.6.1" href="#section-3.6.1">3.6.1</a>. Time-Based Loss Method (TBLM)</span>
Definition:
The method to calculate Failover Time (or Reversion Time) using a
time scale on the Tester to measure the interval of Failover
Packet Loss.
Discussion:
The Tester must provide statistics that show the duration of
failure on a time scale based on occurrence of packet loss on a
time scale. This is indicated by the duration of non-zero packet
loss. The TBLM includes failure detection time and time for data
traffic to begin traversing the Backup Path. Failover Time and
Reversion Time are calculated using the TBLM as shown in Equation
2:
(Equation 2)
(Equation 2a)
TBLM Failover Time = Time(Failover) - Time(Failover Event)
(Equation 2b)
TBLM Reversion Time = Time(Reversion) - Time(Restoration)
Where
Time(Failover) = Time on the tester at the receipt of the first
unimpaired packet at egress node after the backup path became the
working path
Time(Failover Event) = Time on the tester at the receipt of the
last unimpaired packet at egress node on the primary path before
failure
Measurement Units:
milliseconds
Issues:
None.
See Also:
Failover
Packet-Loss-Based Method
<span class="h4"><a class="selflink" id="section-3.6.2" href="#section-3.6.2">3.6.2</a>. Packet-Loss-Based Method (PLBM)</span>
Definition:
The method used to calculate Failover Time (or Reversion Time)
from the amount of Failover Packet Loss.
<span class="grey">Poretsky, et al. Informational [Page 29]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-30" ></span>
<span class="grey"><a href="./rfc6414">RFC 6414</a> Benchmarking Terms for Protection November 2011</span>
Discussion:
PLBM includes failure detection time and time for data traffic to
begin traversing the Backup Path. Failover Time can be calculated
using PLBM from the amount of Failover Packet Loss as shown below
in Equation 3. Note: If traffic is sent to more than 1
destination, PLBM gives the average loss over the measured
destinations.
(Equation 3)
(Equation 3a)
PLBM Failover Time =
(Number of packets lost / Offered Load rate) * 1000)
(Equation 3b)
PLBM Restoration Time =
(Number of packets lost / Offered Load rate) * 1000)
Units are packets/(packets/second) = seconds
Measurement Units:
milliseconds
Issues:
None.
See Also:
Failover Time-Based Loss Method
<span class="h4"><a class="selflink" id="section-3.6.3" href="#section-3.6.3">3.6.3</a>. Timestamp-Based Method (TBM)</span>
Definition:
The method to calculate Failover Time (or Reversion Time) using a
time scale to quantify the interval between unimpaired packets
arriving in the test stream.
Discussion:
The purpose of this method is to quantify the duration of failure
or reversion on a time scale based on the observation of
unimpaired packets. The TBM is calculated from Equation 2 with
the values obtained from the timestamp in the packet payload,
rather than from the Tester clock (which are used with the TBLM).
Unimpaired packets are normal packets that are not lost,
reordered, or duplicated. A reordered packet is defined in
Section 3.3 of [<a href="#ref-7" title=""Packet Reordering Metrics"">7</a>]. A duplicate packet is defined in <a href="#section-3.3.5">Section</a>
<a href="#section-3.3.5">3.3.5</a> of [<a href="#ref-4" title=""Terminology for Benchmarking Network-layer Traffic Control Mechanisms"">4</a>]. Unimpaired packets may be detected by checking a
<span class="grey">Poretsky, et al. Informational [Page 30]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-31" ></span>
<span class="grey"><a href="./rfc6414">RFC 6414</a> Benchmarking Terms for Protection November 2011</span>
sequence number in the payload, where the sequence number equals
the next expected number for an unimpaired packet. A sequence gap
or sequence reversal indicates impaired packets.
For calculating Failover Time, the TBM includes failure detection
time and time for data traffic to begin traversing the Backup
Path. For calculating Reversion Time, the TBM includes Reversion
Time and time for data traffic to begin traversing the Primary
Path.
Measurement Units:
milliseconds
Issues:
None.
See Also:
Failover
Failover Time
Reversion
Reversion Time
<span class="h2"><a class="selflink" id="section-4" href="#section-4">4</a>. Security Considerations</span>
Benchmarking activities as described in this memo are limited to
technology characterization using controlled stimuli in a laboratory
environment, with dedicated address space and the constraints
specified in the sections above.
The benchmarking network topology will be an independent test setup
and MUST NOT be connected to devices that may forward the test
traffic into a production network or misroute traffic to the test
management network.
Further, benchmarking is performed on a "black-box" basis, relying
solely on measurements observable external to the DUT/SUT.
Special capabilities SHOULD NOT exist in the DUT/SUT specifically for
benchmarking purposes. Any implications for network security arising
from the DUT/SUT SHOULD be identical in the lab and in production
networks.
<span class="grey">Poretsky, et al. Informational [Page 31]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-32" ></span>
<span class="grey"><a href="./rfc6414">RFC 6414</a> Benchmarking Terms for Protection November 2011</span>
<span class="h2"><a class="selflink" id="section-5" href="#section-5">5</a>. References</span>
<span class="h3"><a class="selflink" id="section-5.1" href="#section-5.1">5.1</a>. Normative References</span>
[<a id="ref-1">1</a>] Bradner, S., "The Internet Standards Process -- Revision 3", <a href="https://www.rfc-editor.org/bcp/bcp9">BCP</a>
<a href="https://www.rfc-editor.org/bcp/bcp9">9</a>, <a href="./rfc2026">RFC 2026</a>, October 1996.
[<a id="ref-2">2</a>] Bradner, S., "Benchmarking Terminology for Network
Interconnection Devices", <a href="./rfc1242">RFC 1242</a>, July 1991.
[<a id="ref-3">3</a>] Mandeville, R., "Benchmarking Terminology for LAN Switching
Devices", <a href="./rfc2285">RFC 2285</a>, February 1998.
[<a id="ref-4">4</a>] Poretsky, S., Perser, J., Erramilli, S., and S. Khurana,
"Terminology for Benchmarking Network-layer Traffic Control
Mechanisms", <a href="./rfc4689">RFC 4689</a>, October 2006.
[<a id="ref-5">5</a>] Bradner, S., "Key words for use in RFCs to Indicate Requirement
Levels", <a href="https://www.rfc-editor.org/bcp/bcp14">BCP 14</a>, <a href="./rfc2119">RFC 2119</a>, March 1997.
[<a id="ref-6">6</a>] Poretsky, S., Imhoff, B., and K. Michielsen, "Terminology for
Benchmarking Link-State IGP Data Plane Route Convergence", <a href="./rfc6412">RFC</a>
<a href="./rfc6412">6412</a>, November 2011.
[<a id="ref-7">7</a>] Morton, A., Ciavattone, L., Ramachandran, G., Shalunov, S., and
J. Perser, "Packet Reordering Metrics", <a href="./rfc4737">RFC 4737</a>, November 2006.
[<a id="ref-8">8</a>] Nadas, S., Ed., "Virtual Router Redundancy Protocol (VRRP)
Version 3 for IPv4 and IPv6", <a href="./rfc5798">RFC 5798</a>, March 2010.
<span class="h3"><a class="selflink" id="section-5.2" href="#section-5.2">5.2</a>. Informative References</span>
[<a id="ref-9">9</a>] Pan, P., Ed., Swallow, G., Ed., and A. Atlas, Ed., "Fast Reroute
Extensions to RSVP-TE for LSP Tunnels", <a href="./rfc4090">RFC 4090</a>, May 2005.
[<a id="ref-10">10</a>] Nichols, K., Blake, S., Baker, F., and D. Black, "Definition of
the Differentiated Services Field (DS Field) in the IPv4 and
IPv6 Headers", <a href="./rfc2474">RFC 2474</a>, December 1998.
<span class="h2"><a class="selflink" id="section-6" href="#section-6">6</a>. Acknowledgments</span>
We would like thank the BMWG and particularly Al Morton and Curtis
Villamizar for their reviews, comments, and contributions to this
work.
<span class="grey">Poretsky, et al. Informational [Page 32]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-33" ></span>
<span class="grey"><a href="./rfc6414">RFC 6414</a> Benchmarking Terms for Protection November 2011</span>
Authors' Addresses
Scott Poretsky
Allot Communications
300 TradeCenter
Woburn, MA 01801
USA
Phone: + 1 508 309 2179
EMail: sporetsky@allot.com
Rajiv Papneja
Huawei Technologies
2330 Central Expressway
Santa Clara, CA 95050
USA
Phone: +1 571 926 8593
EMail: rajiv.papneja@huawei.com
Jay Karthik
Cisco Systems
300 Beaver Brook Road
Boxborough, MA 01719
USA
Phone: +1 978 936 0533
EMail: jkarthik@cisco.com
Samir Vapiwala
Cisco System
300 Beaver Brook Road
Boxborough, MA 01719
USA
Phone: +1 978 936 1484
EMail: svapiwal@cisco.com
Poretsky, et al. Informational [Page 33]
</pre>
|