1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
|
<pre>Internet Engineering Task Force (IETF) N. Bahadur
Request for Comments: 6424 K. Kompella
Updates: <a href="./rfc4379">4379</a> Juniper Networks, Inc.
Category: Standards Track G. Swallow
ISSN: 2070-1721 Cisco Systems
November 2011
<span class="h1">Mechanism for Performing Label Switched Path Ping (LSP Ping)</span>
<span class="h1">over MPLS Tunnels</span>
Abstract
This document describes methods for performing LSP ping (specified in
<a href="./rfc4379">RFC 4379</a>) traceroute over MPLS tunnels and for traceroute of stitched
MPLS Label Switched Paths (LSPs). The techniques outlined in <a href="./rfc4379">RFC</a>
<a href="./rfc4379">4379</a> are insufficient to perform traceroute Forwarding Equivalency
Class (FEC) validation and path discovery for an LSP that goes over
other MPLS tunnels or for a stitched LSP. This document deprecates
the Downstream Mapping TLV (defined in <a href="./rfc4379">RFC 4379</a>) in favor of a new
TLV that, along with other procedures outlined in this document, can
be used to trace such LSPs.
Status of This Memo
This is an Internet Standards Track document.
This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Further information on
Internet Standards is available in <a href="./rfc5741#section-2">Section 2 of RFC 5741</a>.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
<a href="http://www.rfc-editor.org/info/rfc6424">http://www.rfc-editor.org/info/rfc6424</a>.
<span class="grey">Bahadur, et al. Standards Track [Page 1]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-2" ></span>
<span class="grey"><a href="./rfc6424">RFC 6424</a> LSP Ping over MPLS Tunnels November 2011</span>
Copyright Notice
Copyright (c) 2011 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to <a href="https://www.rfc-editor.org/bcp/bcp78">BCP 78</a> and the IETF Trust's Legal
Provisions Relating to IETF Documents
(<a href="http://trustee.ietf.org/license-info">http://trustee.ietf.org/license-info</a>) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
This document may contain material from IETF Documents or IETF
Contributions published or made publicly available before November
10, 2008. The person(s) controlling the copyright in some of this
material may not have granted the IETF Trust the right to allow
modifications of such material outside the IETF Standards Process.
Without obtaining an adequate license from the person(s) controlling
the copyright in such materials, this document may not be modified
outside the IETF Standards Process, and derivative works of it may
not be created outside the IETF Standards Process, except to format
it for publication as an RFC or to translate it into languages other
than English.
<span class="grey">Bahadur, et al. Standards Track [Page 2]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-3" ></span>
<span class="grey"><a href="./rfc6424">RFC 6424</a> LSP Ping over MPLS Tunnels November 2011</span>
Table of Contents
<a href="#section-1">1</a>. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-4">4</a>
<a href="#section-1.1">1.1</a>. Conventions Used in This Document . . . . . . . . . . . . <a href="#page-4">4</a>
<a href="#section-2">2</a>. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-4">4</a>
<a href="#section-3">3</a>. Packet Format . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-5">5</a>
<a href="#section-3.1">3.1</a>. Summary of Changes . . . . . . . . . . . . . . . . . . . . <a href="#page-5">5</a>
<a href="#section-3.2">3.2</a>. New Return Codes . . . . . . . . . . . . . . . . . . . . . <a href="#page-6">6</a>
<a href="#section-3.2.1">3.2.1</a>. Return Code per Downstream . . . . . . . . . . . . . . <a href="#page-6">6</a>
<a href="#section-3.2.2">3.2.2</a>. Return Code for Stitched LSPs . . . . . . . . . . . . <a href="#page-6">6</a>
<a href="#section-3.3">3.3</a>. Downstream Detailed Mapping TLV . . . . . . . . . . . . . <a href="#page-7">7</a>
<a href="#section-3.3.1">3.3.1</a>. Sub-TLVs . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-9">9</a>
<a href="#section-3.3.1.1">3.3.1.1</a>. Multipath Data Sub-TLV . . . . . . . . . . . . . . <a href="#page-9">9</a>
<a href="#section-3.4">3.4</a>. Deprecation of Downstream Mapping TLV . . . . . . . . . . <a href="#page-13">13</a>
<a href="#section-4">4</a>. Performing MPLS Traceroute on Tunnels . . . . . . . . . . . . <a href="#page-13">13</a>
<a href="#section-4.1">4.1</a>. Transit Node Procedure . . . . . . . . . . . . . . . . . . <a href="#page-13">13</a>
<a href="#section-4.1.1">4.1.1</a>. Addition of a New Tunnel . . . . . . . . . . . . . . . <a href="#page-13">13</a>
<a href="#section-4.1.2">4.1.2</a>. Transition between Tunnels . . . . . . . . . . . . . . <a href="#page-14">14</a>
4.1.3. Modification to FEC Validation Procedure on Transit . 16
<a href="#section-4.2">4.2</a>. Modification to FEC Validation Procedure on Egress . . . . <a href="#page-16">16</a>
<a href="#section-4.3">4.3</a>. Ingress Node Procedure . . . . . . . . . . . . . . . . . . <a href="#page-17">17</a>
<a href="#section-4.3.1">4.3.1</a>. Processing Downstream Detailed Mapping TLV . . . . . . <a href="#page-17">17</a>
<a href="#section-4.3.1.1">4.3.1.1</a>. Stack Change Sub-TLV Not Present . . . . . . . . . <a href="#page-17">17</a>
<a href="#section-4.3.1.2">4.3.1.2</a>. Stack Change Sub-TLV(s) Present . . . . . . . . . <a href="#page-17">17</a>
<a href="#section-4.3.2">4.3.2</a>. Modifications to Handling a Return Code 3 Reply. . . . <a href="#page-19">19</a>
<a href="#section-4.3.3">4.3.3</a>. Handling of New Return Codes . . . . . . . . . . . . . <a href="#page-19">19</a>
<a href="#section-4.4">4.4</a>. Handling Deprecated Downstream Mapping TLV . . . . . . . . <a href="#page-20">20</a>
<a href="#section-5">5</a>. Security Considerations . . . . . . . . . . . . . . . . . . . <a href="#page-20">20</a>
<a href="#section-6">6</a>. IANA Considerations . . . . . . . . . . . . . . . . . . . . . <a href="#page-21">21</a>
<a href="#section-7">7</a>. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-22">22</a>
<a href="#section-8">8</a>. References . . . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-22">22</a>
<a href="#section-8.1">8.1</a>. Normative References . . . . . . . . . . . . . . . . . . . <a href="#page-22">22</a>
<a href="#section-8.2">8.2</a>. Informative References . . . . . . . . . . . . . . . . . . <a href="#page-22">22</a>
<span class="grey">Bahadur, et al. Standards Track [Page 3]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-4" ></span>
<span class="grey"><a href="./rfc6424">RFC 6424</a> LSP Ping over MPLS Tunnels November 2011</span>
<span class="h2"><a class="selflink" id="section-1" href="#section-1">1</a>. Introduction</span>
This documents describes methods for performing LSP ping (specified
in [<a href="./rfc4379" title=""Detecting Multi-Protocol Label Switched (MPLS) Data Plane Failures"">RFC4379</a>]) traceroute over MPLS tunnels. The techniques in
[<a href="./rfc4379" title=""Detecting Multi-Protocol Label Switched (MPLS) Data Plane Failures"">RFC4379</a>] outline a traceroute mechanism that includes Forwarding
Equivalency Class (FEC) validation and Equal Cost Multi-Path (ECMP)
path discovery. Those mechanisms are insufficient and do not provide
details when the FEC being traced traverses one or more MPLS tunnels
and when Label Switched Path (LSP) stitching [<a href="./rfc5150" title=""Label Switched Path Stitching with Generalized Multiprotocol Label Switching Traffic Engineering (GMPLS TE)"">RFC5150</a>] is in use.
This document deprecates the Downstream Mapping TLV [<a href="./rfc4379" title=""Detecting Multi-Protocol Label Switched (MPLS) Data Plane Failures"">RFC4379</a>],
introducing instead a new TLV that is more extensible and that
enables retrieval of detailed information. Using the new TLV format
along with the existing definitions of [<a href="./rfc4379" title=""Detecting Multi-Protocol Label Switched (MPLS) Data Plane Failures"">RFC4379</a>], this document
describes procedures by which a traceroute request can correctly
traverse MPLS tunnels with proper FEC and label validations.
<span class="h3"><a class="selflink" id="section-1.1" href="#section-1.1">1.1</a>. Conventions Used in This Document</span>
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [<a href="./rfc2119" title=""Key words for use in RFCs to Indicate Requirement Levels"">RFC2119</a>].
<span class="h2"><a class="selflink" id="section-2" href="#section-2">2</a>. Motivation</span>
An LSP ping traceroute may cross multiple MPLS tunnels en route to
the destination. Let us consider a simple case.
A B C D E
o -------- o -------- o --------- o --------- o
\_____/ | \______/ \______/ | \______/
LDP | RSVP RSVP | LDP
| |
\____________________/
LDP
Figure 1: LDP over RSVP Tunnel
When a traceroute is initiated from router A, router B returns
downstream mapping information for node C in the MPLS echo reply.
The next MPLS echo request reaches router C with an LDP FEC. Node C
is a pure RSVP node and does not run LDP. Node C will receive the
MPLS echo request with two labels but only one FEC in the Target FEC
stack. Consequently, node C will be unable to perform a complete FEC
validation. It will let the trace continue by just providing next-
hop information based on the incoming label, and by looking up the
forwarding state associated with that label. However, ignoring FEC
validation defeats the purpose of control-plane validations. The
<span class="grey">Bahadur, et al. Standards Track [Page 4]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-5" ></span>
<span class="grey"><a href="./rfc6424">RFC 6424</a> LSP Ping over MPLS Tunnels November 2011</span>
MPLS echo request should contain sufficient information to allow node
C to perform FEC validations to catch any misrouted echo requests.
The above problem can be extended for a generic case of hierarchical
tunnels or stitched tunnels (e.g., B-C can be a separate RSVP tunnel
and C-D can be a separate RSVP tunnel). The problem of FEC
validation for tunnels can be solved if the transit routers (router B
in the above example) provide some information to the ingress
regarding the start of a new tunnel.
Stitched LSPs involve two or more LSP segments stitched together.
The LSP segments can be signaled using the same or different
signaling protocols. In order to perform an end-to-end trace of a
stitched LSP, the ingress needs to know FEC information regarding
each of the stitched LSP segments. For example, consider the figure
below.
A B C D E F
o -------- o -------- o --------- o -------- o ------- o
\_____/ \______/ \______/ \______/ \_______/
LDP LDP BGP RSVP RSVP
Figure 2: Stitched LSP
Consider ingress (A) tracing end-to-end stitched LSP A--F. When an
MPLS echo request reaches router C, there is a FEC stack change
happening at router C. With current LSP ping [<a href="./rfc4379" title=""Detecting Multi-Protocol Label Switched (MPLS) Data Plane Failures"">RFC4379</a>] mechanisms,
there is no way to convey this information to A. Consequently, when
the next echo request reaches router D, router D will know nothing
about the LDP FEC that A is trying to trace.
Thus, the procedures defined in [<a href="./rfc4379" title=""Detecting Multi-Protocol Label Switched (MPLS) Data Plane Failures"">RFC4379</a>] do not make it possible for
the ingress node to:
1. Know that tunneling has occurred.
2. Trace the path of the tunnel.
3. Trace the path of stitched LSPs.
<span class="h2"><a class="selflink" id="section-3" href="#section-3">3</a>. Packet Format</span>
<span class="h3"><a class="selflink" id="section-3.1" href="#section-3.1">3.1</a>. Summary of Changes</span>
In many cases, there is a need to associate additional data in the
MPLS echo reply. In most cases, the additional data needs to be
associated on a per-downstream-neighbor basis. Currently, the MPLS
echo reply contains one Downstream Mapping TLV (DSMAP) per downstream
<span class="grey">Bahadur, et al. Standards Track [Page 5]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-6" ></span>
<span class="grey"><a href="./rfc6424">RFC 6424</a> LSP Ping over MPLS Tunnels November 2011</span>
neighbor. However, the DSMAP format is not extensible; hence, it is
not possible to associate more information with a downstream
neighbor. This document defines a new extensible format for the
DSMAP and provides mechanisms for solving the tunneled LSP ping
problem using the new format. In summary, this document makes the
following TLV changes:
o Addition of new Downstream Detailed Mapping TLV (DDMAP).
o Deprecation of existing Downstream Mapping TLV (DSMAP).
o Addition of Downstream FEC stack change sub-TLV to DDMAP.
<span class="h3"><a class="selflink" id="section-3.2" href="#section-3.2">3.2</a>. New Return Codes</span>
<span class="h4"><a class="selflink" id="section-3.2.1" href="#section-3.2.1">3.2.1</a>. Return Code per Downstream</span>
A new Return Code is being defined "See DDM TLV for Return Code and
Return Subcode" (<a href="#section-6.3">Section 6.3</a>) to indicate that the Return Code is per
Downstream Detailed Mapping TLV (<a href="#section-3.3">Section 3.3</a>). This Return Code MUST
be used only in the message header and MUST be set only in the MPLS
echo reply message. If the Return Code is set in the MPLS echo
request message, then it MUST be ignored. When this Return Code is
set, each Downstream Detailed Mapping TLV MUST have an appropriate
Return Code and Return Subcode. This Return Code MUST be used when
there are multiple downstreams for a given node (such as Point to
Multipoint (P2MP) or Equal Cost Multi-Path (ECMP)), and the node
needs to return a Return Code/Return Subcode for each downstream.
This Return Code MAY be used even when there is only one downstream
for a given node.
<span class="h4"><a class="selflink" id="section-3.2.2" href="#section-3.2.2">3.2.2</a>. Return Code for Stitched LSPs</span>
When a traceroute is being performed on stitched LSPs
(<a href="#section-4.1.2">Section 4.1.2</a>), the stitching point SHOULD indicate the stitching
action to the node performing the trace. This is done by setting the
Return Code to "Label switched with FEC change" (<a href="#section-6.3">Section 6.3</a>). If a
node is performing FEC hiding, then it MAY choose to set the Return
Code to a value (specified in [<a href="./rfc4379" title=""Detecting Multi-Protocol Label Switched (MPLS) Data Plane Failures"">RFC4379</a>]) other than "Label switched
with FEC change". The Return Code "Label switched with FEC change"
MUST NOT be used if no FEC stack sub-TLV (<a href="#section-3.3.1.3">Section 3.3.1.3</a>) is present
in the Downstream Detailed Mapping TLV(s). This new Return Code MAY
be used for hierarchical LSPs (for indicating the start or end of an
outer LSP).
<span class="grey">Bahadur, et al. Standards Track [Page 6]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-7" ></span>
<span class="grey"><a href="./rfc6424">RFC 6424</a> LSP Ping over MPLS Tunnels November 2011</span>
<span class="h3"><a class="selflink" id="section-3.3" href="#section-3.3">3.3</a>. Downstream Detailed Mapping TLV</span>
Type # Value Field
------ ------------
20 Downstream Detailed Mapping
The Downstream Detailed Mapping object is a TLV that MAY be included
in an MPLS echo request message. Only one Downstream Detailed
Mapping object may appear in an echo request. The presence of a
Downstream Detailed Mapping object is a request that Downstream
Detailed Mapping objects be included in the MPLS echo reply. If the
replying router is the destination (Label Edge Router) of the FEC,
then a Downstream Detailed Mapping TLV SHOULD NOT be included in the
MPLS echo reply. Otherwise, the replying router SHOULD include a
Downstream Detailed Mapping object for each interface over which this
FEC could be forwarded.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MTU | Address Type | DS Flags |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Downstream Address (4 or 16 octets) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Downstream Interface Address (4 or 16 octets) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Return Code | Return Subcode| Sub-tlv Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
. .
. List of Sub-TLVs .
. .
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 3: Downstream Detailed Mapping TLV
The Downstream Detailed Mapping TLV format is derived from the
Downstream Mapping TLV format. The key change is that variable
length and optional fields have been converted into sub-TLVs. The
fields have the same use and meaning as in [<a href="./rfc4379" title=""Detecting Multi-Protocol Label Switched (MPLS) Data Plane Failures"">RFC4379</a>]. A summary of
the fields taken from the Downstream Mapping TLV is as below:
Maximum Transmission Unit (MTU)
The MTU is the size in octets of the largest MPLS frame (including
label stack) that fits on the interface to the Downstream Label
Switching Router (LSR).
<span class="grey">Bahadur, et al. Standards Track [Page 7]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-8" ></span>
<span class="grey"><a href="./rfc6424">RFC 6424</a> LSP Ping over MPLS Tunnels November 2011</span>
Address Type
The Address Type indicates if the interface is numbered or
unnumbered. It also determines the length of the Downstream IP
Address and Downstream Interface fields.
DS Flags
The DS Flags field is a bit vector of various flags.
Downstream Address and Downstream Interface Address
IPv4 addresses and interface indices are encoded in 4 octets; IPv6
addresses are encoded in 16 octets. For details regarding setting
the address value, refer to [<a href="./rfc4379" title=""Detecting Multi-Protocol Label Switched (MPLS) Data Plane Failures"">RFC4379</a>].
The newly added sub-TLVs and their fields are as described below.
Return Code
The Return Code is set to zero by the sender. The receiver can
set it to one of the values specified in the "Multi-Protocol Label
Switching (MPLS) Label Switched Paths (LSPs) Ping Parameters"
registry, "Return Codes" sub-registry.
If the receiver sets a non-zero value of the Return Code field in
the Downstream Detailed Mapping TLV, then the receiver MUST also
set the Return Code field in the echo reply header to "See DDM TLV
for Return Code and Return Subcode" (<a href="#section-6.3">Section 6.3</a>). An exception
to this is if the receiver is a bud node [<a href="./rfc4461" title=""Signaling Requirements for Point-to- Multipoint Traffic-Engineered MPLS Label Switched Paths (LSPs)"">RFC4461</a>] and is replying
as both an egress and a transit node with a Return Code of 3
("Replying router is an egress for the FEC at stack-depth <RSC>")
in the echo reply header.
If the Return Code of the echo reply message is not set to either
"See DDM TLV for Return Code and Return Subcode" (<a href="#section-6.3">Section 6.3</a>) or
"Replying router is an egress for the FEC at stack-depth <RSC>",
then the Return Code specified in the Downstream Detailed Mapping
TLV MUST be ignored.
Return Subcode
The Return Subcode is set to zero by the sender. The receiver can
set it to one of the values specified in the "Multi-Protocol Label
Switching (MPLS) Label Switched Paths (LSPs) Ping Parameters"
registry, "Return Codes" sub-registry. This field is filled in
with the stack-depth for those codes that specify the stack-depth.
For all other codes, the Return Subcode MUST be set to zero.
<span class="grey">Bahadur, et al. Standards Track [Page 8]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-9" ></span>
<span class="grey"><a href="./rfc6424">RFC 6424</a> LSP Ping over MPLS Tunnels November 2011</span>
If the Return Code of the echo reply message is not set to either
"See DDM TLV for Return Code and Return Subcode" (<a href="#section-6.3">Section 6.3</a>) or
"Replying router is an egress for the FEC at stack-depth <RSC>",
then the Return Subcode specified in the Downstream Detailed
Mapping TLV MUST be ignored.
Sub-tlv Length
Total length in bytes of the sub-TLVs associated with this TLV.
<span class="h4"><a class="selflink" id="section-3.3.1" href="#section-3.3.1">3.3.1</a>. Sub-TLVs</span>
This section defines the sub-TLVs that MAY be included as part of the
Downstream Detailed Mapping TLV.
Sub-Type Value Field
--------- ------------
1 Multipath data
2 Label stack
3 FEC stack change
<span class="h5"><a class="selflink" id="section-3.3.1.1" href="#section-3.3.1.1">3.3.1.1</a>. Multipath Data Sub-TLV</span>
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Multipath Type | Multipath Length |Reserved (MBZ) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
| (Multipath Information) |
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 4: Multipath Sub-TLV
The multipath data sub-TLV includes Multipath Information. The sub-
TLV fields and their usage is as defined in [<a href="./rfc4379" title=""Detecting Multi-Protocol Label Switched (MPLS) Data Plane Failures"">RFC4379</a>]. A brief
summary of the fields is as below:
Multipath Type
The type of the encoding for the Multipath Information.
Multipath Length
The length in octets of the Multipath Information.
<span class="grey">Bahadur, et al. Standards Track [Page 9]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-10" ></span>
<span class="grey"><a href="./rfc6424">RFC 6424</a> LSP Ping over MPLS Tunnels November 2011</span>
MBZ
MUST be set to zero when sending; MUST be ignored on receipt.
Multipath Information
Encoded multipath data, according to the Multipath Type.
<span class="h5"><a class="selflink" id="section-3.3.1.2" href="#section-3.3.1.2">3.3.1.2</a>. Label Stack Sub-TLV</span>
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Downstream Label | Protocol |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
. .
. .
. .
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Downstream Label | Protocol |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 5: Label Stack Sub-TLV
The Label stack sub-TLV contains the set of labels in the label stack
as it would have appeared if this router were forwarding the packet
through this interface. Any Implicit Null labels are explicitly
included. The number of label/protocol pairs present in the sub-TLV
is determined based on the sub-TLV data length. The label format and
protocol type are as defined in [<a href="./rfc4379" title=""Detecting Multi-Protocol Label Switched (MPLS) Data Plane Failures"">RFC4379</a>]. When the Downstream
Detailed Mapping TLV is sent in the echo reply, this sub-TLV MUST be
included.
Downstream Label
A Downstream label is 24 bits, in the same format as an MPLS label
minus the Time to Live (TTL) field, i.e., the MSBit of the label
is bit 0, the LSBit is bit 19, the Traffic Class (TC) field
[<a href="./rfc5462" title=""Multiprotocol Label Switching (MPLS) Label Stack Entry: "">RFC5462</a>] is bits 20-22, and S is bit 23. The replying router
SHOULD fill in the TC field and S bit; the LSR receiving the echo
reply MAY choose to ignore these.
Protocol
This specifies the label distribution protocol for the Downstream
label.
<span class="grey">Bahadur, et al. Standards Track [Page 10]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-11" ></span>
<span class="grey"><a href="./rfc6424">RFC 6424</a> LSP Ping over MPLS Tunnels November 2011</span>
<span class="h5"><a class="selflink" id="section-3.3.1.3" href="#section-3.3.1.3">3.3.1.3</a>. FEC Stack Change Sub-TLV</span>
A router MUST include the FEC stack change sub-TLV when the
downstream node in the echo reply has a different FEC Stack than the
FEC Stack received in the echo request. One or more FEC stack change
sub-TLVs MAY be present in the Downstream Detailed Mapping TLV. The
format is as below.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Operation Type | Address Type | FEC-tlv length| Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Remote Peer Address (0, 4 or 16 octets) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
. .
. FEC TLV .
. .
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 6: FEC Stack Change Sub-TLV
Operation Type
The operation type specifies the action associated with the FEC
stack change. The following operation types are defined:
Type # Operation
------ ---------
1 Push
2 Pop
Address Type
The Address Type indicates the remote peer's address type. The
Address Type is set to one of the following values. The length of
the peer address is determined based on the address type. The
address type MAY be different from the address type included in
the Downstream Detailed Mapping TLV. This can happen when the LSP
goes over a tunnel of a different address family. The address
type MAY be set to Unspecified if the peer address is either
unavailable or the transit router does not wish to provide it for
security or administrative reasons.
<span class="grey">Bahadur, et al. Standards Track [Page 11]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-12" ></span>
<span class="grey"><a href="./rfc6424">RFC 6424</a> LSP Ping over MPLS Tunnels November 2011</span>
Type # Address Type Address length
------ ------------ --------------
0 Unspecified 0
1 IPv4 4
2 IPv6 16
FEC TLV Length
Length in bytes of the FEC TLV.
Reserved
This field is reserved for future use and MUST be set to zero.
Remote Peer Address
The remote peer address specifies the remote peer that is the
next-hop for the FEC being currently traced. For example, in the
LDP over RSVP case in Figure 1, router B would respond back with
the address of router D as the remote peer address for the LDP FEC
being traced. This allows the ingress node to provide information
regarding FEC peers. If the operation type is PUSH, the remote
peer address is the address of the peer from which the FEC being
pushed was learned. If the operation type is POP, the remote peer
address MAY be set to Unspecified.
For upstream-assigned labels [<a href="./rfc5331" title=""MPLS Upstream Label Assignment and Context-Specific Label Space"">RFC5331</a>], an operation type of POP
will have a remote peer address (the upstream node that assigned
the label) and this SHOULD be included in the FEC stack change
sub-TLV. The remote peer address MAY be set to Unspecified if the
address needs to be hidden.
FEC TLV
The FEC TLV is present only when the FEC-tlv length field is non-
zero. The FEC TLV specifies the FEC associated with the FEC stack
change operation. This TLV MAY be included when the operation
type is POP. It MUST be included when the operation type is PUSH.
The FEC TLV contains exactly one FEC from the list of FECs
specified in [<a href="./rfc4379" title=""Detecting Multi-Protocol Label Switched (MPLS) Data Plane Failures"">RFC4379</a>]. A Nil FEC MAY be associated with a PUSH
operation if the responding router wishes to hide the details of
the FEC being pushed.
<span class="grey">Bahadur, et al. Standards Track [Page 12]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-13" ></span>
<span class="grey"><a href="./rfc6424">RFC 6424</a> LSP Ping over MPLS Tunnels November 2011</span>
FEC stack change sub-TLV operation rules are as follows:
a. A FEC stack change sub-TLV containing a PUSH operation MUST NOT
be followed by a FEC stack change sub-TLV containing a POP
operation.
b. One or more POP operations MAY be followed by one or more PUSH
operations.
c. One FEC stack change sub-TLV MUST be included per FEC stack
change. For example, if 2 labels are going to be pushed, then
one FEC stack change sub-TLV MUST be included for each FEC.
d. A FEC splice operation (an operation where one FEC ends and
another FEC starts, see Figure 7) MUST be performed by including
a POP type FEC stack change sub-TLV followed by a PUSH type FEC
stack change sub-TLV.
e. A Downstream detailed mapping TLV containing only one FEC stack
change sub-TLV with Pop operation is equivalent to IS_EGRESS
(Return Code 3, [<a href="./rfc4379" title=""Detecting Multi-Protocol Label Switched (MPLS) Data Plane Failures"">RFC4379</a>]) for the outermost FEC in the FEC
stack. The ingress router performing the MPLS traceroute MUST
treat such a case as an IS_EGRESS for the outermost FEC.
<span class="h3"><a class="selflink" id="section-3.4" href="#section-3.4">3.4</a>. Deprecation of Downstream Mapping TLV</span>
This document deprecates the Downstream Mapping TLV. LSP ping
procedures should now use the Downstream Detailed Mapping TLV.
Detailed procedures regarding interoperability between the deprecated
TLV and the new TLV are specified in <a href="#section-4.4">Section 4.4</a>.
<span class="h2"><a class="selflink" id="section-4" href="#section-4">4</a>. Performing MPLS Traceroute on Tunnels</span>
This section describes the procedures to be followed by an LSP
ingress node and LSP transit nodes when performing MPLS traceroute
over MPLS tunnels.
<span class="h3"><a class="selflink" id="section-4.1" href="#section-4.1">4.1</a>. Transit Node Procedure</span>
<span class="h4"><a class="selflink" id="section-4.1.1" href="#section-4.1.1">4.1.1</a>. Addition of a New Tunnel</span>
A transit node (Figure 1) knows when the FEC being traced is going to
enter a tunnel at that node. Thus, it knows about the new outer FEC.
All transit nodes that are the origination point of a new tunnel
SHOULD add the FEC stack change sub-TLV (<a href="#section-3.3.1.3">Section 3.3.1.3</a>) to the
Downstream Detailed Mapping TLV (Figure 3) in the echo reply. The
transit node SHOULD add one FEC stack change sub-TLV of operation
type PUSH, per new tunnel being originated at the transit node.
<span class="grey">Bahadur, et al. Standards Track [Page 13]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-14" ></span>
<span class="grey"><a href="./rfc6424">RFC 6424</a> LSP Ping over MPLS Tunnels November 2011</span>
A transit node that sends a Downstream FEC stack change sub-TLV in
the echo reply SHOULD fill the address of the remote peer; which is
the peer of the current LSP being traced. If the transit node does
not know the address of the remote peer, it MUST set the address type
to Unspecified.
The Label stack sub-TLV MUST contain one additional label per FEC
being PUSHed. The label MUST be encoded as per Figure 5. The label
value MUST be the value used to switch the data traffic. If the
tunnel is a transparent pipe to the node, i.e. the data-plane trace
will not expire in the middle of the new tunnel, then a FEC stack
change sub-TLV SHOULD NOT be added and the Label stack sub-TLV SHOULD
NOT contain a label corresponding to the hidden tunnel.
If the transit node wishes to hide the nature of the tunnel from the
ingress of the echo request, then it MAY not want to send details
about the new tunnel FEC to the ingress. In such a case, the transit
node SHOULD use the Nil FEC. The echo reply would then contain a FEC
stack change sub-TLV with operation type PUSH and a Nil FEC. The
value of the label in the Nil FEC MUST be set to zero. The remote
peer address type MUST be set to Unspecified. The transit node
SHOULD add one FEC stack change sub-TLV of operation type PUSH, per
new tunnel being originated at the transit node. The Label stack
sub-TLV MUST contain one additional label per FEC being PUSHed. The
label value MUST be the value used to switch the data traffic.
<span class="h4"><a class="selflink" id="section-4.1.2" href="#section-4.1.2">4.1.2</a>. Transition between Tunnels</span>
A B C D E F
o -------- o -------- o --------- o -------- o ------- o
\_____/ \______/ \______/ \______/ \_______/
LDP LDP BGP RSVP RSVP
Figure 7: Stitched LSPs
In the above figure, we have three separate LSP segments stitched at
C and D. Node C SHOULD include two FEC stack change sub-TLVs. One
with a POP operation for the LDP FEC and one with the PUSH operation
for the BGP FEC. Similarly, node D SHOULD include two FEC stack
change sub-TLVs, one with a POP operation for the BGP FEC and one
with a PUSH operation for the RSVP FEC. Nodes C and D SHOULD set the
Return Code to "Label switched with FEC change" (<a href="#section-6.3">Section 6.3</a>) to
indicate change in FEC being traced.
If node C wishes to perform FEC hiding, it SHOULD respond back with
two FEC stack change sub-TLVs, one POP followed by one PUSH. The POP
operation MAY either exclude the FEC TLV (by setting the FEC TLV
length to 0) or set the FEC TLV to contain the LDP FEC. The PUSH
<span class="grey">Bahadur, et al. Standards Track [Page 14]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-15" ></span>
<span class="grey"><a href="./rfc6424">RFC 6424</a> LSP Ping over MPLS Tunnels November 2011</span>
operation SHOULD have the FEC TLV containing the Nil FEC. The Return
Code SHOULD be set to "Label switched with FEC change".
If node C performs FEC hiding and node D also performs FEC hiding,
then node D MAY choose to not send any FEC stack change sub-TLVs in
the echo reply since the number of labels has not changed (for the
downstream of node D) and the FEC type also has not changed (Nil
FEC). In such a case, node D MUST NOT set the Return Code to "Label
switched with FEC change". If node D performs FEC hiding, then node
F will respond as IS_EGRESS for the Nil FEC. The ingress (node A)
will know that IS_EGRESS corresponds to the end-to-end LSP.
A B C D E F
o -------- o -------- o --------- o --------- o --------- o
\_____/ |\____________________/ |\_______/
LDP |\ RSVP-A | LDP
| \_______________________________/|
| RSVP-B |
\________________________________/
LDP
Figure 8: Hierarchical LSPs
In the above figure, we have an end-to-end LDP LSP between nodes A
and F. The LDP LSP goes over RSVP LSP RSVP-B. LSP RSVP-B itself
goes over another RSVP LSP RSVP-A. When node A initiates a
traceroute for the end-to-end LDP LSP, then following sequence of FEC
stack change sub-TLVs will be performed
Node B:
Respond with two FEC stack change sub-TLVs: PUSH RSVP-B, PUSH RSVP-A.
Node D:
Respond with Return Code 3 when RSVP-A is the top of FEC stack. When
the echo request contains RSVP-B as top of stack, respond with
Downstream information for node E and an appropriate Return Code.
<span class="grey">Bahadur, et al. Standards Track [Page 15]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-16" ></span>
<span class="grey"><a href="./rfc6424">RFC 6424</a> LSP Ping over MPLS Tunnels November 2011</span>
If node B is performing tunnel hiding, then:
Node B:
Respond with two FEC stack change sub-TLVs: PUSH Nil FEC, PUSH Nil
FEC.
Node D:
If D determines that the Nil FEC corresponds to RSVP-A, which
terminates at D, then it SHOULD respond with Return Code 3. D can
also respond with FEC stack change sub-TLV: POP (since D knows that
number of labels towards next-hop is decreasing). Both responses
would be valid.
A B C D E F G
o -------- o -------- o ------ o ------ o ----- o ----- o
LDP LDP BGP \ RSVP RSVP / LDP
\_____________/
LDP
Figure 9: Stitched Hierarchical LSPs
In the above case, node D will send three FEC stack change sub-TLVs.
One POP (for the BGP FEC) followed by two PUSHes (one for LDP and one
for RSVP). Nodes C and D SHOULD set the Return Code to "Label
switched with FEC change" (<a href="#section-6.3">Section 6.3</a>) to indicate change in FEC
being traced.
<span class="h4"><a class="selflink" id="section-4.1.3" href="#section-4.1.3">4.1.3</a>. Modification to FEC Validation Procedure on Transit</span>
<a href="./rfc4379#section-4.4">Section 4.4 of [RFC4379]</a> specifies Target FEC stack validation
procedures. This document enhances the FEC validation procedures as
follows. If the outermost FEC of the target FEC stack is the Nil
FEC, then the node MUST skip the target FEC validation completely.
This is to support FEC hiding, in which the outer hidden FEC can be
the Nil FEC.
<span class="h3"><a class="selflink" id="section-4.2" href="#section-4.2">4.2</a>. Modification to FEC Validation Procedure on Egress</span>
<a href="./rfc4379#section-4.4">Section 4.4 of [RFC4379]</a> specifies Target FEC stack validation
procedures. This document enhances the FEC validation procedures as
follows. If the outermost FEC of the Target FEC stack is the Nil
FEC, then the node MUST skip the target FEC validation completely.
This is to support FEC hiding, in which the outer hidden FEC can be
the Nil FEC.
<span class="grey">Bahadur, et al. Standards Track [Page 16]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-17" ></span>
<span class="grey"><a href="./rfc6424">RFC 6424</a> LSP Ping over MPLS Tunnels November 2011</span>
<span class="h3"><a class="selflink" id="section-4.3" href="#section-4.3">4.3</a>. Ingress Node Procedure</span>
It is the responsibility of an ingress node to understand tunnel
within tunnel semantics and LSP stitching semantics when performing a
MPLS traceroute. This section describes the ingress node procedure
based on the kind of reply an ingress node receives from a transit
node.
<span class="h4"><a class="selflink" id="section-4.3.1" href="#section-4.3.1">4.3.1</a>. Processing Downstream Detailed Mapping TLV</span>
Downstream Detailed Mapping TLV should be processed in the same way
as the Downstream Mapping TLV, defined in <a href="./rfc4379#section-4.4">Section 4.4 of [RFC4379]</a>.
This section describes the procedures for processing the new elements
introduced in this document.
<span class="h5"><a class="selflink" id="section-4.3.1.1" href="#section-4.3.1.1">4.3.1.1</a>. Stack Change Sub-TLV Not Present</span>
This would be the default behavior as described in [<a href="./rfc4379" title=""Detecting Multi-Protocol Label Switched (MPLS) Data Plane Failures"">RFC4379</a>]. The
ingress node MUST perform MPLS echo reply processing as per the
procedures in [<a href="./rfc4379" title=""Detecting Multi-Protocol Label Switched (MPLS) Data Plane Failures"">RFC4379</a>].
<span class="h5"><a class="selflink" id="section-4.3.1.2" href="#section-4.3.1.2">4.3.1.2</a>. Stack Change Sub-TLV(s) Present</span>
If one or more FEC stack change sub-TLVs (<a href="#section-3.3.1.3">Section 3.3.1.3</a>) are
received in the MPLS echo reply, the ingress node SHOULD process them
and perform some validation.
The FEC stack changes are associated with a downstream neighbor and
along a particular path of the LSP. Consequently, the ingress will
need to maintain a FEC stack per path being traced (in case of
multipath). All changes to the FEC stack resulting from the
processing of FEC stack change sub-TLV(s) should be applied only for
the path along a given downstream neighbor. The following algorithm
should be followed for processing FEC stack change sub-TLVs.
<span class="grey">Bahadur, et al. Standards Track [Page 17]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-18" ></span>
<span class="grey"><a href="./rfc6424">RFC 6424</a> LSP Ping over MPLS Tunnels November 2011</span>
push_seen = FALSE
fec_stack_depth = current-depth-of-fec-stack-being-traced
saved_fec_stack = current_fec_stack
while (sub-tlv = get_next_sub_tlv(downstream_detailed_map_tlv))
if (sub-tlv == NULL) break
if (sub-tlv.type == FEC-Stack-Change) {
if (sub-tlv.operation == POP) {
if (push_seen) {
Drop the echo reply
current_fec_stack = saved_fec_stack
return
}
if (fec_stack_depth == 0) {
Drop the echo reply
current_fec_stack = saved_fec_stack
return
}
Pop FEC from FEC stack being traced
fec_stack_depth--;
}
if (sub-tlv.operation == PUSH) {
push_seen = 1
Push FEC on FEC stack being traced
fec_stack_depth++;
}
}
}
if (fec_stack_depth == 0) {
Drop the echo reply
current_fec_stack = saved_fec_stack
return
}
Figure 10: FEC Stack Change Sub-TLV Processing Guideline
<span class="grey">Bahadur, et al. Standards Track [Page 18]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-19" ></span>
<span class="grey"><a href="./rfc6424">RFC 6424</a> LSP Ping over MPLS Tunnels November 2011</span>
The next MPLS echo request along the same path should use the
modified FEC stack obtained after processing the FEC stack change
sub-TLVs. A non-Nil FEC guarantees that the next echo request along
the same path will have the Downstream Detailed Mapping TLV validated
for IP address, Interface address, and label stack mismatches.
If the top of the FEC stack is a Nil FEC and the MPLS echo reply does
not contain any FEC stack change sub-TLVs, then it does not
necessarily mean that the LSP has not started traversing a different
tunnel. It could be that the LSP associated with the Nil FEC
terminated at a transit node and at the same time a new LSP started
at the same transit node. The Nil FEC would now be associated with
the new LSP (and the ingress has no way of knowing this). Thus, it
is not possible to build an accurate hierarchical LSP topology if a
traceroute contains Nil FECs.
<span class="h4"><a class="selflink" id="section-4.3.2" href="#section-4.3.2">4.3.2</a>. Modifications to Handling a Return Code 3 Reply.</span>
The procedures above allow the addition of new FECs to the original
FEC being traced. Consequently, a reply from a downstream node with
Return Code 3 (IS_EGRESS) may not necessarily be for the FEC being
traced. It could be for one of the new FECs that was added. On
receipt of an IS_EGRESS reply, the LSP ingress should check if the
depth of Target FEC sent to the node that just responded, was the
same as the depth of the FEC that was being traced. If it was not,
then it should pop an entry from the Target FEC stack and resend the
request with the same TTL (as previously sent). The process of
popping a FEC is to be repeated until either the LSP ingress receives
a non-IS_EGRESS reply or until all the additional FECs added to the
FEC stack have already been popped. Using an IS_EGRESS reply, an
ingress can build a map of the hierarchical LSP structure traversed
by a given FEC.
<span class="h4"><a class="selflink" id="section-4.3.3" href="#section-4.3.3">4.3.3</a>. Handling of New Return Codes</span>
When the MPLS echo reply Return Code is "Label switched with FEC
change" (<a href="#section-3.2.2">Section 3.2.2</a>), the ingress node SHOULD manipulate the FEC
stack as per the FEC stack change sub-TLVs contained in the
downstream detailed mapping TLV. A transit node can use this Return
Code for stitched LSPs and for hierarchical LSPs. In case of ECMP or
P2MP, there could be multiple paths and Downstream Detailed Mapping
TLVs with different Return Codes (<a href="#section-3.2.1">Section 3.2.1</a>). The ingress node
should build the topology based on the Return Code per ECMP path/P2MP
branch.
<span class="grey">Bahadur, et al. Standards Track [Page 19]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-20" ></span>
<span class="grey"><a href="./rfc6424">RFC 6424</a> LSP Ping over MPLS Tunnels November 2011</span>
<span class="h3"><a class="selflink" id="section-4.4" href="#section-4.4">4.4</a>. Handling Deprecated Downstream Mapping TLV</span>
The Downstream Mapping TLV has been deprecated. Applications should
now use the Downstream Detailed Mapping TLV. The following
procedures SHOULD be used for backward compatibility with routers
that do not support the Downstream Detailed Mapping TLV.
o The Downstream Mapping TLV and the Downstream Detailed Mapping TLV
MUST never be sent together in the same MPLS echo request or in
the same MPLS echo reply.
o If the echo request contains a Downstream Detailed Mapping TLV and
the corresponding echo reply contains a Return Code 2 ("One or
more of the TLVs was not understood"), then the sender of the echo
request MAY resend the echo request with the Downstream Mapping
TLV (instead of the Downstream Detailed Mapping TLV). In cases
where a detailed reply is needed, the sender can choose to ignore
the router that does not support the Downstream Detailed Mapping
TLV.
o If the echo request contains a Downstream Mapping TLV, then a
Downstream Detailed Mapping TLV MUST NOT be sent in the echo
reply. This is to handle the case that the sender of the echo
request does not support the new TLV. The echo reply MAY contain
Downstream Mapping TLV(s).
o If echo request forwarding is in use (such that the echo request
is processed at an intermediate LSR and then forwarded on), then
the intermediate router is responsible for making sure that the
TLVs being used among the ingress, intermediate and destination
are consistent. The intermediate router MUST NOT forward an echo
request or an echo reply containing a Downstream Detailed Mapping
TLV if it itself does not support that TLV.
<span class="h2"><a class="selflink" id="section-5" href="#section-5">5</a>. Security Considerations</span>
1. If a network operator wants to prevent tracing inside a tunnel,
one can use the Pipe Model [<a href="./rfc3443" title=""Time To Live (TTL) Processing in Multi-Protocol Label Switching (MPLS) Networks"">RFC3443</a>], i.e., hide the outer MPLS
tunnel by not propagating the MPLS TTL into the outer tunnel (at
the start of the outer tunnel). By doing this, MPLS traceroute
packets will not expire in the outer tunnel and the outer tunnel
will not get traced.
2. If one doesn't wish to expose the details of the new outer LSP,
then the Nil FEC can be used to hide those details. Using the
Nil FEC ensures that the trace progresses without false negatives
and all transit nodes (of the new outer tunnel) perform some
minimal validations on the received MPLS echo requests.
<span class="grey">Bahadur, et al. Standards Track [Page 20]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-21" ></span>
<span class="grey"><a href="./rfc6424">RFC 6424</a> LSP Ping over MPLS Tunnels November 2011</span>
Other security considerations, as discussed in [<a href="./rfc4379" title=""Detecting Multi-Protocol Label Switched (MPLS) Data Plane Failures"">RFC4379</a>], are also
applicable to this document.
<span class="h2"><a class="selflink" id="section-6" href="#section-6">6</a>. IANA Considerations</span>
<span class="h3"><a class="selflink" id="section-6.1" href="#section-6.1">6.1</a>. New TLV</span>
IANA has assigned a TLV type value to the following TLV from the
"Multiprotocol Label Switching Architecture (MPLS) Label Switched
Paths (LSPs) Ping Parameters" registry, "TLVs and sub-TLVs" sub-
registry.
Downstream Detailed Mapping TLV (see <a href="#section-3.3">Section 3.3</a>): 20.
<span class="h3"><a class="selflink" id="section-6.2" href="#section-6.2">6.2</a>. New Sub-TLV Types and Associated Registry</span>
IANA has registered the Sub-Type field of Downstream Detailed Mapping
TLV. The valid range for this is 0-65535. Assignments in the range
0-16383 and 32768-49161 are made via Standards Action as defined in
[<a href="./rfc3692" title=""Assigning Experimental and Testing Numbers Considered Useful"">RFC3692</a>]; assignments in the range 16384-31743 and 49162-64511 are
made via Specification Required [<a href="./rfc4379" title=""Detecting Multi-Protocol Label Switched (MPLS) Data Plane Failures"">RFC4379</a>]; values in the range 31744-
32767 and 64512-65535 are for Vendor Private Use, and MUST NOT be
allocated. If a sub-TLV has a Type that falls in the range for
Vendor Private Use, the Length MUST be at least 4, and the first four
octets MUST be that vendor's SMI Enterprise Code, in network octet
order. The rest of the Value field is private to the vendor.
IANA has assigned the following sub-TLV types (see <a href="#section-3.3.1">Section 3.3.1</a>):
Multipath data: 1
Label stack: 2
FEC stack change: 3
<span class="h3"><a class="selflink" id="section-6.3" href="#section-6.3">6.3</a>. New Return Codes</span>
IANA has assigned new Return Code values from the "Multi-Protocol
Label Switching (MPLS) Label Switched Paths (LSPs) Ping Parameters"
registry, "Return Codes" sub-registry, as follows using a Standards
Action value.
Value Meaning
----- -------
14 See DDM TLV for Return Code and Return Subcode
15 Label switched with FEC change
<span class="grey">Bahadur, et al. Standards Track [Page 21]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-22" ></span>
<span class="grey"><a href="./rfc6424">RFC 6424</a> LSP Ping over MPLS Tunnels November 2011</span>
<span class="h2"><a class="selflink" id="section-7" href="#section-7">7</a>. Acknowledgements</span>
The authors would like to thank Yakov Rekhter and Adrian Farrel for
their suggestions on the document.
<span class="h2"><a class="selflink" id="section-8" href="#section-8">8</a>. References</span>
<span class="h3"><a class="selflink" id="section-8.1" href="#section-8.1">8.1</a>. Normative References</span>
[<a id="ref-RFC2119">RFC2119</a>] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", <a href="https://www.rfc-editor.org/bcp/bcp14">BCP 14</a>, <a href="./rfc2119">RFC 2119</a>, March 1997.
[<a id="ref-RFC3692">RFC3692</a>] Narten, T., "Assigning Experimental and Testing Numbers
Considered Useful", <a href="https://www.rfc-editor.org/bcp/bcp82">BCP 82</a>, <a href="./rfc3692">RFC 3692</a>, January 2004.
[<a id="ref-RFC4379">RFC4379</a>] Kompella, K. and G. Swallow, "Detecting Multi-Protocol
Label Switched (MPLS) Data Plane Failures", <a href="./rfc4379">RFC 4379</a>,
February 2006.
<span class="h3"><a class="selflink" id="section-8.2" href="#section-8.2">8.2</a>. Informative References</span>
[<a id="ref-RFC3443">RFC3443</a>] Agarwal, P. and B. Akyol, "Time To Live (TTL) Processing
in Multi-Protocol Label Switching (MPLS) Networks",
<a href="./rfc3443">RFC 3443</a>, January 2003.
[<a id="ref-RFC4461">RFC4461</a>] Yasukawa, S., "Signaling Requirements for Point-to-
Multipoint Traffic-Engineered MPLS Label Switched Paths
(LSPs)", <a href="./rfc4461">RFC 4461</a>, April 2006.
[<a id="ref-RFC5150">RFC5150</a>] Ayyangar, A., Kompella, K., Vasseur, JP., and A. Farrel,
"Label Switched Path Stitching with Generalized
Multiprotocol Label Switching Traffic Engineering (GMPLS
TE)", <a href="./rfc5150">RFC 5150</a>, February 2008.
[<a id="ref-RFC5331">RFC5331</a>] Aggarwal, R., Rekhter, Y., and E. Rosen, "MPLS Upstream
Label Assignment and Context-Specific Label Space",
<a href="./rfc5331">RFC 5331</a>, August 2008.
[<a id="ref-RFC5462">RFC5462</a>] Andersson, L. and R. Asati, "Multiprotocol Label Switching
(MPLS) Label Stack Entry: "EXP" Field Renamed to "Traffic
Class" Field", <a href="./rfc5462">RFC 5462</a>, February 2009.
<span class="grey">Bahadur, et al. Standards Track [Page 22]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-23" ></span>
<span class="grey"><a href="./rfc6424">RFC 6424</a> LSP Ping over MPLS Tunnels November 2011</span>
Authors' Addresses
Nitin Bahadur
Juniper Networks, Inc.
1194 N. Mathilda Avenue
Sunnyvale, CA 94089
US
Phone: +1 408 745 2000
EMail: nitinb@juniper.net
URI: www.juniper.net
Kireeti Kompella
Juniper Networks, Inc.
1194 N. Mathilda Avenue
Sunnyvale, CA 94089
US
Phone: +1 408 745 2000
EMail: kireeti@juniper.net
URI: www.juniper.net
George Swallow
Cisco Systems
1414 Massachusetts Ave
Boxborough, MA 01719
US
EMail: swallow@cisco.com
URI: www.cisco.com
Bahadur, et al. Standards Track [Page 23]
</pre>
|