1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
|
<pre>Internet Engineering Task Force (IETF) E. Gray
Request for Comments: 6426 Ericsson
Updates: <a href="./rfc4379">4379</a> N. Bahadur
Category: Standards Track Juniper Networks, Inc.
ISSN: 2070-1721 S. Boutros
Cisco Systems, Inc.
R. Aggarwal
November 2011
<span class="h1">MPLS On-Demand Connectivity Verification and Route Tracing</span>
Abstract
Label Switched Path Ping (LSP ping) is an existing and widely
deployed Operations, Administration, and Maintenance (OAM) mechanism
for Multi-Protocol Label Switching (MPLS) Label Switched Paths
(LSPs). This document describes extensions to LSP ping so that LSP
ping can be used for on-demand connectivity verification of MPLS
Transport Profile (MPLS-TP) LSPs and pseudowires. This document also
clarifies procedures to be used for processing the related OAM
packets. Further, it describes procedures for using LSP ping to
perform connectivity verification and route tracing functions in
MPLS-TP networks. Finally, this document updates <a href="./rfc4379">RFC 4379</a> by adding
a new address type and creating an IANA registry.
Status of This Memo
This is an Internet Standards Track document.
This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Further information on
Internet Standards is available in <a href="./rfc5741#section-2">Section 2 of RFC 5741</a>.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
<a href="http://www.rfc-editor.org/info/rfc6426">http://www.rfc-editor.org/info/rfc6426</a>.
<span class="grey">Gray, et al. Standards Track [Page 1]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-2" ></span>
<span class="grey"><a href="./rfc6426">RFC 6426</a> MPLS On-Demand Connectivity Verification November 2011</span>
Copyright Notice
Copyright (c) 2011 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to <a href="https://www.rfc-editor.org/bcp/bcp78">BCP 78</a> and the IETF Trust's Legal
Provisions Relating to IETF Documents
(<a href="http://trustee.ietf.org/license-info">http://trustee.ietf.org/license-info</a>) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
Table of Contents
<a href="#section-1">1</a>. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-3">3</a>
<a href="#section-1.1">1.1</a>. Conventions Used in This Document . . . . . . . . . . . . <a href="#page-3">3</a>
<a href="#section-1.2">1.2</a>. On-Demand CV for MPLS-TP LSPs Using IP Encapsulation . . . <a href="#page-4">4</a>
1.3. On-Demand CV for MPLS-TP LSPs Using Non-IP
Encapsulation . . . . . . . . . . . . . . . . . . . . . . <a href="#page-4">4</a>
<a href="#section-2">2</a>. LSP Ping Extensions . . . . . . . . . . . . . . . . . . . . . <a href="#page-5">5</a>
<a href="#section-2.1">2.1</a>. New Address Type for Downstream Mapping TLV . . . . . . . <a href="#page-5">5</a>
<a href="#section-2.1.1">2.1.1</a>. DSMAP/DDMAP Non-IP Address Information . . . . . . . . <a href="#page-5">5</a>
<a href="#section-2.2">2.2</a>. Source/Destination Identifier TLV . . . . . . . . . . . . <a href="#page-7">7</a>
<a href="#section-2.2.1">2.2.1</a>. Source/Destination Identifier TLV Format . . . . . . . <a href="#page-7">7</a>
<a href="#section-2.2.2">2.2.2</a>. Source Identifier TLV . . . . . . . . . . . . . . . . <a href="#page-7">7</a>
<a href="#section-2.2.3">2.2.3</a>. Destination Identifier TLV . . . . . . . . . . . . . . <a href="#page-8">8</a>
<a href="#section-2.3">2.3</a>. Identifying Statically Provisioned LSPs and PWs . . . . . <a href="#page-8">8</a>
<a href="#section-2.3.1">2.3.1</a>. Static LSP Sub-TLV . . . . . . . . . . . . . . . . . . <a href="#page-9">9</a>
<a href="#section-2.3.2">2.3.2</a>. Static Pseudowire Sub-TLV . . . . . . . . . . . . . . <a href="#page-10">10</a>
<a href="#section-3">3</a>. Performing On-Demand CV over MPLS-TP LSPs . . . . . . . . . . <a href="#page-10">10</a>
<a href="#section-3.1">3.1</a>. LSP Ping with IP Encapsulation . . . . . . . . . . . . . . <a href="#page-11">11</a>
<a href="#section-3.2">3.2</a>. On-Demand CV with IP Encapsulation, over ACH . . . . . . . <a href="#page-11">11</a>
<a href="#section-3.3">3.3</a>. Non-IP-Based On-Demand CV, Using ACH . . . . . . . . . . . <a href="#page-12">12</a>
<a href="#section-3.4">3.4</a>. Reverse-Path Connectivity Verification . . . . . . . . . . <a href="#page-13">13</a>
<a href="#section-3.4.1">3.4.1</a>. Requesting Reverse-Path Connectivity Verification . . <a href="#page-13">13</a>
<a href="#section-3.4.2">3.4.2</a>. Responder Procedures . . . . . . . . . . . . . . . . . <a href="#page-13">13</a>
<a href="#section-3.4.3">3.4.3</a>. Requester Procedures . . . . . . . . . . . . . . . . . <a href="#page-14">14</a>
<a href="#section-3.5">3.5</a>. P2MP Considerations . . . . . . . . . . . . . . . . . . . <a href="#page-14">14</a>
3.6. Management Considerations for Operation with Static
MPLS-TP . . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-14">14</a>
<a href="#section-3.7">3.7</a>. Generic Associated Channel Label (GAL) Processing . . . . <a href="#page-14">14</a>
<a href="#section-4">4</a>. Performing On-Demand Route Tracing over MPLS-TP LSPs . . . . . <a href="#page-15">15</a>
<a href="#section-4.1">4.1</a>. On-Demand LSP Route Tracing with IP Encapsulation . . . . <a href="#page-15">15</a>
<span class="grey">Gray, et al. Standards Track [Page 2]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-3" ></span>
<span class="grey"><a href="./rfc6426">RFC 6426</a> MPLS On-Demand Connectivity Verification November 2011</span>
<a href="#section-4.2">4.2</a>. Non-IP-Based On-Demand LSP Route Tracing, Using ACH . . . <a href="#page-15">15</a>
4.2.1. Requester Procedure for Sending Echo Request
Packets . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-16">16</a>
4.2.2. Requester Procedure for Receiving Echo Response
Packets . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-16">16</a>
<a href="#section-4.2.3">4.2.3</a>. Responder Procedure . . . . . . . . . . . . . . . . . <a href="#page-16">16</a>
<a href="#section-4.3">4.3</a>. P2MP Considerations . . . . . . . . . . . . . . . . . . . <a href="#page-16">16</a>
<a href="#section-4.4">4.4</a>. ECMP Considerations . . . . . . . . . . . . . . . . . . . <a href="#page-16">16</a>
<a href="#section-5">5</a>. Applicability . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-16">16</a>
<a href="#section-6">6</a>. Security Considerations . . . . . . . . . . . . . . . . . . . <a href="#page-17">17</a>
<a href="#section-7">7</a>. IANA Considerations . . . . . . . . . . . . . . . . . . . . . <a href="#page-17">17</a>
<a href="#section-7.1">7.1</a>. New Source and Destination Identifier TLVs . . . . . . . . <a href="#page-17">17</a>
<a href="#section-7.2">7.2</a>. New Target FEC Stack Sub-TLVs . . . . . . . . . . . . . . <a href="#page-17">17</a>
<a href="#section-7.3">7.3</a>. New Reverse-Path Target FEC Stack TLV . . . . . . . . . . <a href="#page-18">18</a>
<a href="#section-7.4">7.4</a>. New Pseudowire Associated Channel Type . . . . . . . . . . <a href="#page-18">18</a>
<a href="#section-7.5">7.5</a>. New Downstream Mapping Address Type Registry . . . . . . . <a href="#page-18">18</a>
<a href="#section-8">8</a>. Contributing Authors and Acknowledgements . . . . . . . . . . <a href="#page-19">19</a>
<a href="#section-9">9</a>. References . . . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-20">20</a>
<a href="#section-9.1">9.1</a>. Normative References . . . . . . . . . . . . . . . . . . . <a href="#page-20">20</a>
<a href="#section-9.2">9.2</a>. Informative References . . . . . . . . . . . . . . . . . . <a href="#page-20">20</a>
<span class="h2"><a class="selflink" id="section-1" href="#section-1">1</a>. Introduction</span>
Label Switched Path Ping (LSP ping) [<a href="./rfc4379" title=""Detecting Multi-Protocol Label Switched (MPLS) Data Plane Failures"">RFC4379</a>] is an Operations,
Administration, and Maintenance (OAM) mechanism for Multi-Protocol
Label Switching (MPLS) Label Switched Paths (LSPs). This document
describes extensions to LSP ping so that LSP ping can be used for
on-demand monitoring of MPLS Transport Profile (MPLS-TP) LSPs and
pseudowires. It also clarifies the procedures to be used for
processing the related OAM packets. This document describes how LSP
ping can be used for on-demand connectivity verification (<a href="#section-3">Section 3</a>)
and route tracing (<a href="#section-4">Section 4</a>) functions required in [<a href="./rfc5860" title=""Requirements for Operations, Administration, and Maintenance (OAM) in MPLS Transport Networks"">RFC5860</a>] and
specified in [<a href="./rfc6371" title=""Operations, Administration, and Maintenance Framework for MPLS-Based Transport Networks"">RFC6371</a>].
<span class="h3"><a class="selflink" id="section-1.1" href="#section-1.1">1.1</a>. Conventions Used in This Document</span>
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in
[<a href="./rfc2119" title=""Key words for use in RFCs to Indicate Requirement Levels"">RFC2119</a>].
There is considerable opportunity for confusion in use of the terms
"on-demand connectivity verification" (CV), "on-demand route tracing"
and "LSP ping." In this document, we try to use the terms
consistently as follows:
o LSP ping: refers to the mechanism - particularly as defined and
used in referenced material;
<span class="grey">Gray, et al. Standards Track [Page 3]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-4" ></span>
<span class="grey"><a href="./rfc6426">RFC 6426</a> MPLS On-Demand Connectivity Verification November 2011</span>
o On-demand CV: refers to on-demand connectivity verification and --
where both apply equally -- on-demand route tracing, as
implemented using the LSP ping mechanism extended for support of
MPLS-TP;
o On-demand route tracing: used in those cases where the LSP ping
mechanism (as extended) is used exclusively for route tracing.
From the perspective of on-demand CV and route tracing, we use the
concepts of "Requester" and "Responder" as follows:
o Requester: Originator of an OAM Request message,
o Responder: Entity responding to an OAM Request message.
Since, in this document, all messages are assumed to be carried in an
LSP, all Request messages would be injected at the ingress to an LSP.
A Responder might or might not be at the egress of this same LSP,
given that it could receive Request messages as a result of time-to-
live (TTL) expiry. If a Reply is to be delivered via a reverse-path
LSP, the message would again be inserted at the ingress of that LSP.
<span class="h3"><a class="selflink" id="section-1.2" href="#section-1.2">1.2</a>. On-Demand CV for MPLS-TP LSPs Using IP Encapsulation</span>
LSP ping requires IP addressing on responding Label Switching Routers
(LSRs) for performing OAM on MPLS-signaled LSPs and pseudowires. In
particular, in these cases, LSP ping packets generated by a Requester
are encapsulated in an IP/UDP header with the destination address
from the 127/8 range and then encapsulated in the MPLS label stack
([<a href="./rfc4379" title=""Detecting Multi-Protocol Label Switched (MPLS) Data Plane Failures"">RFC4379</a>] , [<a href="./rfc5884" title=""Bidirectional Forwarding Detection (BFD) for MPLS Label Switched Paths (LSPs)"">RFC5884</a>]). A Responder uses the presence of the 127/8
destination address to identify OAM packets and relies further on the
UDP port number to determine whether the packet is an LSP ping
packet. It is to be noted that this determination does not require
IP forwarding capabilities. It requires the presence of an IP host
stack, which enables responding LSRs to process packets with a
destination address from the 127/8 range. [<a href="./rfc1122" title=""Requirements for Internet Hosts - Communication Layers"">RFC1122</a>] allocates the
127/8 range as "Internal host loopback address" and [<a href="./rfc1812" title=""Requirements for IP Version 4 Routers"">RFC1812</a>] states
that "a router SHOULD NOT forward, except over a loopback interface,
any packet that has a destination address on network 127".
<span class="h3"><a class="selflink" id="section-1.3" href="#section-1.3">1.3</a>. On-Demand CV for MPLS-TP LSPs Using Non-IP Encapsulation</span>
In certain MPLS-TP deployment scenarios, IP addressing might not be
available or use some form of non-IP encapsulation might be preferred
for on-demand CV, route tracing, and BFD packets. In such scenarios,
on-demand CV and/or route tracing SHOULD be run without IP
addressing, using the Associated Channel (ACH) channel type specified
in <a href="#section-3">Section 3</a>.
<span class="grey">Gray, et al. Standards Track [Page 4]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-5" ></span>
<span class="grey"><a href="./rfc6426">RFC 6426</a> MPLS On-Demand Connectivity Verification November 2011</span>
<a href="#section-3.3">Section 3.3</a> and <a href="#section-4.2">Section 4.2</a> describe the theory of operation for
performing on-demand CV over MPLS-TP LSPs with any non-IP
encapsulation.
<span class="h2"><a class="selflink" id="section-2" href="#section-2">2</a>. LSP Ping Extensions</span>
<span class="h3"><a class="selflink" id="section-2.1" href="#section-2.1">2.1</a>. New Address Type for Downstream Mapping TLV</span>
[<a id="ref-RFC4379">RFC4379</a>] defines the Downstream Mapping (DSMAP) TLV. [<a href="./rfc6424" title=""Mechanism for Performing Label Switched Path Ping (LSP Ping) over MPLS Tunnels"">RFC6424</a>]
further defines the Downstream Detailed Mapping (DDMAP) TLV. This
document defines the following new address type, which MAY be used in
any DSMAP or DDMAP TLV included in an on-demand CV message:
Type # Address Type K Octets
------ -------------- --------
5 Non IP 12
Figure 1: New Downstream Mapping Address Type
The new address type indicates that no address is present in the
DSMAP or DDMAP TLV. However, IF_Num information (see definition of
"IF_Num" in [<a href="./rfc6370" title=""MPLS Transport Profile (MPLS-TP) Identifiers"">RFC6370</a>]) for both ingress and egress interfaces, as
well as Multipath Information, is included in the format and MAY be
present.
IF_Num values of zero indicate that no IF_Num applies in the field in
which this value appears.
The Multipath Type SHOULD be set to zero (no multipath) when using
this address type.
When this address type is used, on receipt of an LSP ping echo
request, interface verification MUST be bypassed. Thus, the
receiving node SHOULD only perform MPLS label control-plane/
data-plane consistency checks. Note that these consistency checks
include checking the included identifier information.
The new address type is also applicable to the Detailed Downstream
Mapping (DDMAP) TLV defined in [<a href="./rfc6424" title=""Mechanism for Performing Label Switched Path Ping (LSP Ping) over MPLS Tunnels"">RFC6424</a>].
<span class="h4"><a class="selflink" id="section-2.1.1" href="#section-2.1.1">2.1.1</a>. DSMAP/DDMAP Non-IP Address Information</span>
If the DSMAP (or DDMAP) TLV is included when sending on-demand CV
packets using ACH, without IP encapsulation, the following
information MUST be included in any DSMAP or DDMAP TLV that is
included in the packet. This information forms the address portion
of the DSMAP TLV (as defined in [<a href="./rfc4379" title=""Detecting Multi-Protocol Label Switched (MPLS) Data Plane Failures"">RFC4379</a>]) or DDMAP TLV (as defined
in [<a href="./rfc6424" title=""Mechanism for Performing Label Switched Path Ping (LSP Ping) over MPLS Tunnels"">RFC6424</a>] using one of the address information fields defined in
<span class="grey">Gray, et al. Standards Track [Page 5]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-6" ></span>
<span class="grey"><a href="./rfc6426">RFC 6426</a> MPLS On-Demand Connectivity Verification November 2011</span>
[<a id="ref-RFC4379">RFC4379</a>] and extended to include non-IP identifier types in this
document).
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MTU | Address Type | DS Flags |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Ingress IF_Num (4 octets) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Egress IF_Num (4 octets) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Multipath Type| Depth Limit | Multipath Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 2: New DSMAP/DDMAP Address Format
Address Type will be 5 (as shown in <a href="#section-2.1">Section 2.1</a> above).
Ingress IF_Num identifies the ingress interface on the target node.
A value of zero indicates that the interface is not part of the
identifier.
Egress IF_Num identifies the egress interface on the target node. A
value of zero indicates that the interface is not part of the
identifier.
The Multipath Type SHOULD be set to zero (no multipath) when using
this address type.
Including this TLV, with one or the other IF_Num (but not both) set
to a non-zero value, in a request message that also includes a
Destination Identifier TLV (as described in <a href="#section-2.2">Section 2.2</a>), is
sufficient to identify the "per-interface" MIP in <a href="./rfc6370#section-7.3">Section 7.3 of
[RFC6370]</a>.
Inclusion of this TLV with both IF_Num fields set to zero would be
interpreted as specifying neither an ingress, nor an egress,
interface. Note that this is the same as not including the TLV;
hence, including this TLV with both IF_Num values set to zero is NOT
RECOMMENDED.
Including this TLV with both IF_NUM fields set to a non-zero value
will result in the responder sending a Return Code of 5 ("Downstream
Mapping Mis-match") if either IF_Num is incorrect for this LSP or PW.
<span class="grey">Gray, et al. Standards Track [Page 6]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-7" ></span>
<span class="grey"><a href="./rfc6426">RFC 6426</a> MPLS On-Demand Connectivity Verification November 2011</span>
<span class="h3"><a class="selflink" id="section-2.2" href="#section-2.2">2.2</a>. Source/Destination Identifier TLV</span>
<span class="h4"><a class="selflink" id="section-2.2.1" href="#section-2.2.1">2.2.1</a>. Source/Destination Identifier TLV Format</span>
The format for the identifier TLV is the same for both Source and
Destination Identifier TLVs (only the type is different). The format
is as specified in the figure below.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Length = 8 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Global_ID (4 Octets) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Node_ID (4 Octets) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 3: New Source/Destination Identifier Format
Type will be one of either 13 or 14, depending on whether the TLV in
question is a Source or Destination Identifier TLV.
Global_ID is as defined in [<a href="./rfc6370" title=""MPLS Transport Profile (MPLS-TP) Identifiers"">RFC6370</a>].
Node_ID is as defined in [<a href="./rfc6370" title=""MPLS Transport Profile (MPLS-TP) Identifiers"">RFC6370</a>].
<span class="h4"><a class="selflink" id="section-2.2.2" href="#section-2.2.2">2.2.2</a>. Source Identifier TLV</span>
When sending on-demand CV packets using ACH, without IP
encapsulation, there MAY be a need to identify the source of the
packet. This source identifier (Source ID) will be specified via the
Source Identifier TLV, using the Identifier TLV defined in
<a href="#section-2.2.1">Section 2.2.1</a>, containing the information specified above.
An on-demand CV packet MUST NOT include more than one Source
Identifier TLV. The Source Identifier TLV MUST specify the
identifier of the originator of the packet. If more than one such
TLV is present in an on-demand CV request packet, then error 1
(Malformed echo request received; see <a href="./rfc4379#section-3.1">Section 3.1 of [RFC4379]</a>) MUST
be returned, if it is possible to unambiguously identify the source
of the packet.
<span class="grey">Gray, et al. Standards Track [Page 7]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-8" ></span>
<span class="grey"><a href="./rfc6426">RFC 6426</a> MPLS On-Demand Connectivity Verification November 2011</span>
<span class="h4"><a class="selflink" id="section-2.2.3" href="#section-2.2.3">2.2.3</a>. Destination Identifier TLV</span>
When sending on-demand CV packets using ACH, without IP
encapsulation, there MAY be a need to identify the destination of the
packet. This destination identifier (Destination ID) will be
specified via the Destination Identifier TLV, using the Identifier
TLV defined in <a href="#section-2.2.1">Section 2.2.1</a>, containing the information specified
above.
An on-demand CV packet MUST NOT include more than one Destination
Identifier TLV. The Destination Identifier TLV MUST specify the
destination node for the packet. If more than 1 such TLV is present
in an on-demand CV Request packet, then error 1 (Malformed echo
request received; see <a href="./rfc4379#section-3.1">Section 3.1 of [RFC4379]</a>) MUST be returned, if
it is possible to unambiguously identify the source of the packet.
<span class="h3"><a class="selflink" id="section-2.3" href="#section-2.3">2.3</a>. Identifying Statically Provisioned LSPs and PWs</span>
[<a id="ref-RFC4379">RFC4379</a>] specifies how an MPLS LSP under test is identified in an
echo request. A Target FEC Stack TLV is used to identify the LSP.
In order to identify a statically provisioned LSP and PW, new target
FEC Stack sub-TLVs are being defined. The new sub-TLVs are assigned
sub-type identifiers as follows and are described in the following
sections.
Type # Sub-Type # Length Value Field
------ ---------- ------ -----------
1 22 24 Static LSP
1 23 32 Static Pseudowire
Figure 4: New Target FEC Sub-Types
<span class="grey">Gray, et al. Standards Track [Page 8]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-9" ></span>
<span class="grey"><a href="./rfc6426">RFC 6426</a> MPLS On-Demand Connectivity Verification November 2011</span>
<span class="h4"><a class="selflink" id="section-2.3.1" href="#section-2.3.1">2.3.1</a>. Static LSP Sub-TLV</span>
The format of the Static LSP sub-TLV value field is specified in the
following figure. The value fields are taken from the definitions in
[<a href="./rfc6370" title=""MPLS Transport Profile (MPLS-TP) Identifiers"">RFC6370</a>].
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Source Global ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Source Node ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Source Tunnel Number | LSP Number |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Destination Global ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Destination Node ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Destination Tunnel Number | Must be Zero |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 5: Static LSP FEC Sub-TLV
The Source Global ID and Destination Global ID MAY be set to zero.
When set to zero, the field is not applicable.
<span class="grey">Gray, et al. Standards Track [Page 9]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-10" ></span>
<span class="grey"><a href="./rfc6426">RFC 6426</a> MPLS On-Demand Connectivity Verification November 2011</span>
<span class="h4"><a class="selflink" id="section-2.3.2" href="#section-2.3.2">2.3.2</a>. Static Pseudowire Sub-TLV</span>
The format of the Static PW sub-TLV value field is specified in the
following figure.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
+ Service Identifier +
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Source Global ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Source Node ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Source AC-ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Destination Global ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Destination Node ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Destination AC-ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 6: Static PW FEC Sub-TLV
The Service Identifier is a 64-bit unsigned integer that is included
in the first two words, as shown. The Service Identifier identifies
the service associated with the transport path under test. The value
MAY, for example, be an Attachment Group Identifier (AGI), type 0x01,
as defined in [<a href="./rfc4446" title=""IANA Allocations for Pseudowire Edge to Edge Emulation (PWE3)"">RFC4446</a>].
The Source Global ID and Destination Global ID MAY be set to zero.
When either of these fields is set to zero, the corresponding Global
ID is not applicable. This might be done in a scenario where local
scope is sufficient for uniquely identifying services.
The Global ID and Node ID fields are defined in [<a href="./rfc6370" title=""MPLS Transport Profile (MPLS-TP) Identifiers"">RFC6370</a>]. The AC-ID
fields are defined in [<a href="./rfc5003" title=""Attachment Individual Identifier (AII) Types for Aggregation"">RFC5003</a>].
<span class="h2"><a class="selflink" id="section-3" href="#section-3">3</a>. Performing On-Demand CV over MPLS-TP LSPs</span>
This section specifies how on-demand CV can be used in the context of
MPLS-TP LSPs. The on-demand CV function meets the on-demand
connectivity verification requirements specified in <a href="./rfc5860#section-2.2.3">[RFC5860],
Section 2.2.3</a>. This function SHOULD NOT be performed except in the
on-demand mode. This function SHOULD be performed between
<span class="grey">Gray, et al. Standards Track [Page 10]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-11" ></span>
<span class="grey"><a href="./rfc6426">RFC 6426</a> MPLS On-Demand Connectivity Verification November 2011</span>
Maintenance Entity Group End Points (MEPs) and Maintenance Entity
Group Intermediate Points (MIPs) of PWs and LSPs, and between End
Points of PWs, LSPs, and Sections. In order for the on-demand CV
packet to be processed at the desired MIP, the TTL of the MPLS label
MUST be set such that it expires at the MIP to be probed.
[<a id="ref-RFC5586">RFC5586</a>] defines an ACH mechanism for MPLS LSPs. The mechanism is a
generalization of the Associated Channel mechanism that [<a href="./rfc4385" title=""Pseudowire Emulation Edge-to-Edge (PWE3) Control Word for Use over an MPLS PSN"">RFC4385</a>]
defined for use with pseudowires. As a result, it is possible to use
a single Associated Channel Type for either an LSP or pseudowire.
A new Pseudowire Associated Channel Type (0x0025) is defined for use
in performing on-demand connectivity verification. Its use is
described in the following sections.
ACH TLVs SHALL NOT be associated with this channel type.
Except as specifically stated in the sections below, message and TLV
construction procedures for on-demand CV messages are as defined in
[<a href="./rfc4379" title=""Detecting Multi-Protocol Label Switched (MPLS) Data Plane Failures"">RFC4379</a>].
<span class="h3"><a class="selflink" id="section-3.1" href="#section-3.1">3.1</a>. LSP Ping with IP Encapsulation</span>
LSP ping packets, as specified in [<a href="./rfc4379" title=""Detecting Multi-Protocol Label Switched (MPLS) Data Plane Failures"">RFC4379</a>], are sent over the MPLS
LSP for which OAM is being performed and contain an IP/UDP packet
within them. The IP header is not used for forwarding (since LSP
forwarding is done using MPLS). The IP header is used mainly for
addressing and can be used in the context of MPLS-TP LSPs. This form
of on-demand CV OAM MUST be supported for MPLS-TP LSPs when IP
addressing is in use.
The on-demand CV echo response message MUST be sent on the reverse
path of the LSP. The reply MUST contain IP/UDP headers followed by
the on-demand CV payload. The destination address in the IP header
MUST be set to that of the sender of the echo request message. The
source address in the IP header MUST be set to a valid address of the
replying node.
<span class="h3"><a class="selflink" id="section-3.2" href="#section-3.2">3.2</a>. On-Demand CV with IP Encapsulation, over ACH</span>
IP encapsulated on-demand CV packets MAY be sent over the MPLS LSP
using the control channel (ACH). The IP ACH type specified in
[<a href="./rfc4385" title=""Pseudowire Emulation Edge-to-Edge (PWE3) Control Word for Use over an MPLS PSN"">RFC4385</a>] MUST be used in such a case. The IP header is used mainly
for addressing and can be used in the context of MPLS-TP LSPs.
Note that the application-level control channel in this case is the
reverse path of the LSP (or Pseudowire) using ACH.
<span class="grey">Gray, et al. Standards Track [Page 11]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-12" ></span>
<span class="grey"><a href="./rfc6426">RFC 6426</a> MPLS On-Demand Connectivity Verification November 2011</span>
The on-demand CV echo response message MUST be sent on the reverse
path of the LSP. The response in this case SHOULD use ACH and SHOULD
be IP encapsulated.
If IP encapsulated, the destination address in the IP header MUST be
set to that of the sender of the echo request message, and the source
address in the IP header MUST be set to a valid address of the
replying node.
<span class="h3"><a class="selflink" id="section-3.3" href="#section-3.3">3.3</a>. Non-IP-Based On-Demand CV, Using ACH</span>
The OAM procedures defined in [<a href="./rfc4379" title=""Detecting Multi-Protocol Label Switched (MPLS) Data Plane Failures"">RFC4379</a>] require the use of IP
addressing, and in some cases IP routing, to perform OAM functions.
When the ACH header is used, IP addressing and routing is not needed.
This section describes procedures for performing on-demand CV without
a dependency on IP addressing and routing.
In the non-IP case, when using on-demand CV via LSP ping with the ACH
header, the on-demand CV request payload MUST directly follow the ACH
header, and the LSP ping Reply mode [<a href="./rfc4379" title=""Detecting Multi-Protocol Label Switched (MPLS) Data Plane Failures"">RFC4379</a>] in the LSP ping echo
request SHOULD be set to 4 (Reply via application level control
channel).
Note that the application-level control channel in this case is the
reverse path of the LSP (or pseudowire) using ACH.
The requesting node MAY attach a Source Identifier TLV (<a href="#section-2.2">Section 2.2</a>)
to identify the node originating the request.
If the Reply mode indicated in an on-demand CV Request is 4 (Reply
via application level control channel), the on-demand CV reply
message MUST be sent on the reverse path of the LSP using ACH. The
on-demand CV payload MUST directly follow the ACH header, and IP
and/or UDP headers MUST NOT be attached. The responding node MAY
attach a Source Identifier TLV to identify the node sending the
response.
If a node receives an MPLS echo request packet over ACH, without IP/
UDP headers, with a reply mode of 4, and if that node does not have a
return MPLS LSP path to the echo request source, then the node SHOULD
drop the echo request packet and not attempt to send a response.
If a node receives an MPLS echo request with a reply mode other than
4 (Reply via application level control channel), and if the node
supports that reply mode, then it MAY respond using that reply mode.
If the node does not support the reply mode requested, or is unable
to reply using the requested reply mode in any specific instance, the
<span class="grey">Gray, et al. Standards Track [Page 12]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-13" ></span>
<span class="grey"><a href="./rfc6426">RFC 6426</a> MPLS On-Demand Connectivity Verification November 2011</span>
node MUST drop the echo request packet and not attempt to send a
response.
<span class="h3"><a class="selflink" id="section-3.4" href="#section-3.4">3.4</a>. Reverse-Path Connectivity Verification</span>
<span class="h4"><a class="selflink" id="section-3.4.1" href="#section-3.4.1">3.4.1</a>. Requesting Reverse-Path Connectivity Verification</span>
A new Global flag, Validate Reverse Path (R), is being defined in the
LSP ping packet header. When this flag is set in the echo request,
the Responder SHOULD return reverse-path FEC information, as
described in <a href="#section-3.4.2">Section 3.4.2</a>.
The R flag MUST NOT be set in the echo response.
The Global Flags field is now a bit vector with the following format:
0 1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MBZ |R|T|V|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 7: Global Flags Field
The V flag is defined in [<a href="./rfc4379" title=""Detecting Multi-Protocol Label Switched (MPLS) Data Plane Failures"">RFC4379</a>]. The T flag is defined in
[<a href="./rfc6425" title=""Detecting Data-Plane Failures in Point-to-Multipoint MPLS - Extensions to LSP Ping"">RFC6425</a>]. The R flag is defined in this document.
The Validate FEC Stack (V) flag MAY be set in the echo response when
reverse-path connectivity verification is being performed.
<span class="h4"><a class="selflink" id="section-3.4.2" href="#section-3.4.2">3.4.2</a>. Responder Procedures</span>
When the R flag is set in the echo request, the responding node
SHOULD attach a Reverse-path Target FEC Stack TLV in the echo
response. The requesting node (on receipt of the response) can use
the Reverse-path Target FEC Stack TLV to perform reverse-path
connectivity verification. For co-routed bidirectional LSPs, the
Reverse-path Target FEC Stack used for the on-demand CV will be the
same in both the forward and reverse path of the LSP. For associated
bidirectional LSPs, the Target FEC Stack MAY be different for the
reverse path.
The format of the Reverse-path Target FEC Stack TLV is the same as
that of the Target FEC Stack TLV defined in [<a href="./rfc4379" title=""Detecting Multi-Protocol Label Switched (MPLS) Data Plane Failures"">RFC4379</a>]. The rules for
creating a Target FEC Stack TLV also apply to the Reverse-path Target
FEC Stack TLV.
<span class="grey">Gray, et al. Standards Track [Page 13]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-14" ></span>
<span class="grey"><a href="./rfc6426">RFC 6426</a> MPLS On-Demand Connectivity Verification November 2011</span>
Type Meaning
-------- ------------------------------------
16 Reverse-path Target FEC Stack
Figure 8: Reverse-Path Target FEC Stack TLV Type
<span class="h4"><a class="selflink" id="section-3.4.3" href="#section-3.4.3">3.4.3</a>. Requester Procedures</span>
On receipt of the echo response, the requesting node MUST perform the
following checks:
1. Perform interface and label-stack validation to ensure that the
packet is received on the reverse path of the bidirectional LSP.
2. If the Reverse-path Target FEC Stack TLV is present in the echo
response, then perform FEC validation.
The verification in this case is performed as described for the
Target FEC Stack in <a href="./rfc4379#section-3.6">Section 3.6 of [RFC4379]</a>.
If any of the validations fail, then the requesting node MUST drop
the echo response and SHOULD log and/or report an error.
<span class="h3"><a class="selflink" id="section-3.5" href="#section-3.5">3.5</a>. P2MP Considerations</span>
[<a id="ref-RFC6425">RFC6425</a>] describes how LSP ping can be used for OAM on P2MP LSPs
with IP encapsulation. This MUST be supported for MPLS-TP P2MP LSPs
when IP addressing is used. When IP addressing is not used, then the
procedures described in <a href="#section-3.3">Section 3.3</a> can be applied to P2MP MPLS-TP
LSPs as well.
<span class="h3"><a class="selflink" id="section-3.6" href="#section-3.6">3.6</a>. Management Considerations for Operation with Static MPLS-TP</span>
Support for on-demand CV on a static MPLS-TP LSP or pseudowire MAY
require manageable objects to allow, for instance, configuring
operating parameters such as identifiers associated with the
statically configured LSP or PW.
The specifics of this manageability requirement are out-of-scope in
this document and SHOULD be addressed in appropriate management
specifications.
<span class="h3"><a class="selflink" id="section-3.7" href="#section-3.7">3.7</a>. Generic Associated Channel Label (GAL) Processing</span>
At the Requester, when encapsulating the LSP echo request (LSP ping)
packet (with the IP ACH, or the Non IP ACH, codepoint), a GAL MUST be
added before adding the MPLS LSP label, and sending the LSP Ping echo
request packet in-band in the MPLS LSP.
<span class="grey">Gray, et al. Standards Track [Page 14]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-15" ></span>
<span class="grey"><a href="./rfc6426">RFC 6426</a> MPLS On-Demand Connectivity Verification November 2011</span>
The GAL MUST NOT be considered as part of the MPLS label stack that
requires verification by the Responder. For this reason, a Nil FEC
TLV MUST NOT be added or associated with the GAL.
The GAL MUST NOT be included in DSMAP or DDMAP TLVs.
Interface and Label Stack TLVs MUST include the whole label stack
including the GAL.
<span class="h2"><a class="selflink" id="section-4" href="#section-4">4</a>. Performing On-Demand Route Tracing over MPLS-TP LSPs</span>
This section specifies how on-demand CV route tracing can be used in
the context of MPLS-TP LSPs. The on-demand CV route tracing function
meets the route tracing requirement specified in [<a href="./rfc5860" title=""Requirements for Operations, Administration, and Maintenance (OAM) in MPLS Transport Networks"">RFC5860</a>], <a href="#section-2.2.3">Section</a>
<a href="#section-2.2.3">2.2.3</a>.
This function SHOULD be performed on-demand. This function SHOULD be
performed between End Points and Intermediate Points of PWs and LSPs,
and between End Points of PWs, LSPs and Sections.
When performing on-demand CV route tracing, the requesting node
inserts a Downstream Mapping TLV to get the downstream node
information and to enable LSP verification along the transit nodes.
The Downstream Mapping TLV can be used as is for performing route
tracing. If IP addressing is not in use, then the Address Type field
in the Downstream Mapping TLV can be set to "Non IP" (<a href="#section-2.1">Section 2.1</a>).
The Downstream Mapping TLV address type field can be extended to
include other address types as needed.
<span class="h3"><a class="selflink" id="section-4.1" href="#section-4.1">4.1</a>. On-Demand LSP Route Tracing with IP Encapsulation</span>
The mechanics of on-demand CV route tracing are similar to those
described for ping in <a href="#section-3.1">Section 3.1</a>. On-demand route tracing packets
sent by the Requester MUST follow procedures described in [<a href="./rfc4379" title=""Detecting Multi-Protocol Label Switched (MPLS) Data Plane Failures"">RFC4379</a>].
This form of on-demand CV OAM MUST be supported for MPLS-TP LSPs,
when IP addressing is used.
<span class="h3"><a class="selflink" id="section-4.2" href="#section-4.2">4.2</a>. Non-IP-Based On-Demand LSP Route Tracing, Using ACH</span>
This section describes procedures for performing LSP route tracing
when using LSP ping with the ACH header and without any dependency on
IP addressing. The procedures specified in <a href="#section-3.3">Section 3.3</a> with regards
to the Source Identifier TLV apply to LSP route tracing as well.
<span class="grey">Gray, et al. Standards Track [Page 15]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-16" ></span>
<span class="grey"><a href="./rfc6426">RFC 6426</a> MPLS On-Demand Connectivity Verification November 2011</span>
<span class="h4"><a class="selflink" id="section-4.2.1" href="#section-4.2.1">4.2.1</a>. Requester Procedure for Sending Echo Request Packets</span>
On-demand route tracing packets sent by the Requester MUST adhere to
the format described in <a href="#section-3.3">Section 3.3</a>. MPLS-TTL expiry (as described
in [<a href="./rfc4379" title=""Detecting Multi-Protocol Label Switched (MPLS) Data Plane Failures"">RFC4379</a>]) will be used to direct the packets to specific nodes
along the LSP path.
<span class="h4"><a class="selflink" id="section-4.2.2" href="#section-4.2.2">4.2.2</a>. Requester Procedure for Receiving Echo Response Packets</span>
The on-demand CV route tracing responses will be received on the LSP
itself, and the presence of an ACH header with channel type of on-
demand CV is an indicator that the packet contains an on-demand CV
payload.
<span class="h4"><a class="selflink" id="section-4.2.3" href="#section-4.2.3">4.2.3</a>. Responder Procedure</span>
When an echo request reaches the Responder, the presence of the ACH
channel type of on-demand CV will indicate that the packet contains
on-demand CV data. The on-demand CV data, the label stack, and the
destination identifier are sufficient to identify the LSP associated
with the echo request packet. If there is an error and the node is
unable to identify the LSP on which the echo response would be sent,
the node MUST drop the echo request packet and not send any response
back. All responses MUST always be sent on an LSP path using the ACH
header and ACH channel type of on-demand CV.
<span class="h3"><a class="selflink" id="section-4.3" href="#section-4.3">4.3</a>. P2MP Considerations</span>
[<a id="ref-RFC6425">RFC6425</a>] describes how LSP ping can be used for OAM on P2MP LSPs.
This MUST be supported for MPLS-TP P2MP LSPs when IP addressing is
used. When IP addressing is not used, then the procedures described
in <a href="#section-4.2">Section 4.2</a> can be applied to P2MP MPLS-TP LSPs as well.
<span class="h3"><a class="selflink" id="section-4.4" href="#section-4.4">4.4</a>. ECMP Considerations</span>
On-demand CV using ACH SHOULD NOT be used when there is ECMP (Equal
Cost Multi-Path) for a given LSP. The inclusion of the additional
ACH header can modify the hashing behavior for OAM packets that could
result in incorrect monitoring of the path taken by data traffic.
<span class="h2"><a class="selflink" id="section-5" href="#section-5">5</a>. Applicability</span>
The procedures specified in this document for non-IP encapsulation
apply to MPLS-TP transport paths. This includes LSPs and PWs when IP
encapsulation is not desired. However, when IP addressing is used,
as in non MPLS-TP LSPs, procedures specified in [<a href="./rfc4379" title=""Detecting Multi-Protocol Label Switched (MPLS) Data Plane Failures"">RFC4379</a>] MUST be
used.
<span class="grey">Gray, et al. Standards Track [Page 16]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-17" ></span>
<span class="grey"><a href="./rfc6426">RFC 6426</a> MPLS On-Demand Connectivity Verification November 2011</span>
<span class="h2"><a class="selflink" id="section-6" href="#section-6">6</a>. Security Considerations</span>
This document does not itself introduce any new security
considerations. Those discussed in [<a href="./rfc4379" title=""Detecting Multi-Protocol Label Switched (MPLS) Data Plane Failures"">RFC4379</a>] are applicable to this
document.
Unlike typical deployment scenarios identified in [<a href="./rfc4379" title=""Detecting Multi-Protocol Label Switched (MPLS) Data Plane Failures"">RFC4379</a>], however,
likely deployments of on-demand CV for transport paths involves a
strong possibility that the techniques in this document may be used
across MPLS administrative boundaries. Where this may occur, it is
RECOMMENDED that on-demand OAM is configured as necessary to ensure
that Source Identifier TLVs are included in on-demand CV messages.
This will allow implementations to filter OAM messages arriving from
an unexpected or unknown source.
<span class="h2"><a class="selflink" id="section-7" href="#section-7">7</a>. IANA Considerations</span>
<span class="h3"><a class="selflink" id="section-7.1" href="#section-7.1">7.1</a>. New Source and Destination Identifier TLVs</span>
IANA has assigned the following TLV types from the "Multi-Protocol
Label Switching (MPLS) Label Switched Paths (LSPs) Ping Parameters"
registry, "TLVs and sub-TLVs" sub-registry (from the "Standards
Action" TLV type range):
Length
Type # TLV Name Octets Reference
------ ----------------- ------ ---------------------------
13 Source ID 8 this document (<a href="#section-2.2">Section 2.2</a>)
14 Destination ID 8 this document (<a href="#section-2.2">Section 2.2</a>)
Figure 9: New Source and Destination Identifier TLV Types
<span class="h3"><a class="selflink" id="section-7.2" href="#section-7.2">7.2</a>. New Target FEC Stack Sub-TLVs</span>
<a href="#section-2.3">Section 2.3</a> defines 2 new sub-TLV types for inclusion within the LSP
ping [<a href="./rfc4379" title=""Detecting Multi-Protocol Label Switched (MPLS) Data Plane Failures"">RFC4379</a>] Target FEC Stack TLV (1).
IANA has assigned sub-type values to the following sub-TLVs from the
"Multi-Protocol Label Switching Architecture (MPLS) Label Switched
Paths (LSPs) Ping Parameters" registry, "TLVs and sub-TLVs" sub-
registry.
Value Meaning Reference
----- ------------------- -----------------------------
22 Static LSP this document (<a href="#section-2.4.1">Section 2.4.1</a>)
23 Static Pseudowire this document (<a href="#section-2.4.2">Section 2.4.2</a>)
<span class="grey">Gray, et al. Standards Track [Page 17]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-18" ></span>
<span class="grey"><a href="./rfc6426">RFC 6426</a> MPLS On-Demand Connectivity Verification November 2011</span>
<span class="h3"><a class="selflink" id="section-7.3" href="#section-7.3">7.3</a>. New Reverse-Path Target FEC Stack TLV</span>
<a href="#section-3.4.2">Section 3.4.2</a> defines a new TLV type for inclusion in the LSP ping
packet.
IANA has assigned a type value to the TLV from the "Multi-Protocol
Label Switching Architecture (MPLS) Label Switched Paths (LSPs) Ping
Parameters" registry, "TLVs and sub-TLVs" sub-registry.
Type Meaning Reference
----- -------------------------- ---------------------------
16 Reverse-path Target FEC this document (<a href="#section-3.4">Section 3.4</a>)
Stack TLV
The sub-TLV space and assignments for this TLV will be the same as
that for the Target FEC Stack TLV. Sub-types for the Target FEC
Stack TLV and the Reverse-path Target FEC Stack TLV MUST be kept the
same. Any new sub-type added to the Target FEC Stack TLV MUST apply
to the Reverse-path Target FEC Stack TLV as well.
<span class="h3"><a class="selflink" id="section-7.4" href="#section-7.4">7.4</a>. New Pseudowire Associated Channel Type</span>
On-demand connectivity verification requires a unique Associated
Channel Type. IANA has assigned a PW ACH Type from the "Pseudowire
Associated Channel Types" registry as described below:
Value Description TLV Follows Reference
------ ------------- ----------- -------------------------
0x0025 On-Demand CV No this document (<a href="#section-3">Section 3</a>)
ACH TLVs SHALL NOT be associated with this channel type.
<span class="h3"><a class="selflink" id="section-7.5" href="#section-7.5">7.5</a>. New Downstream Mapping Address Type Registry</span>
[<a id="ref-RFC4379">RFC4379</a>] defined several registries. It also defined some value
assignments without explicitly asking for IANA to create a registry
to support additional value assignments. One such case is in
defining address types associated with the Downstream Mapping (DSMAP)
TLV.
This document extends <a href="./rfc4379">RFC 4379</a> by defining a new address type for use
with the Downstream Mapping and Downstream Detailed Mapping TLVs.
Recognizing that the absence of a registry makes it possible to have
collisions of "address-type" usages, IANA has established a new
registry -- associated with both [<a href="./rfc4379" title=""Detecting Multi-Protocol Label Switched (MPLS) Data Plane Failures"">RFC4379</a>] and this document -- that
initially allocates the following assignments:
<span class="grey">Gray, et al. Standards Track [Page 18]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-19" ></span>
<span class="grey"><a href="./rfc6426">RFC 6426</a> MPLS On-Demand Connectivity Verification November 2011</span>
Type # Address Type K Octets Reference
------ ------------ -------- --------------------------
1 IPv4 Numbered 16 <a href="./rfc4379">RFC 4379</a>
2 IPv4 Unnumbered 16 <a href="./rfc4379">RFC 4379</a>
3 IPv6 Numbered 40 <a href="./rfc4379">RFC 4379</a>
4 IPv6 Unnumbered 28 <a href="./rfc4379">RFC 4379</a>
5 Non IP 12 this document (Sect. 2.1.1)
Downstream Mapping Address Type Registry
Because the field in this case is an 8-bit field, the allocation
policy for this registry is "Standards Action."
<span class="h2"><a class="selflink" id="section-8" href="#section-8">8</a>. Contributing Authors and Acknowledgements</span>
The following individuals contributed materially to this document:
o Thomas D. Nadeau, CA Technologies
o Nurit Sprecher, Nokia Siemens Networks
o Yaacov Weingarten, Nokia Siemens Networks
In addition, we would like to thank the following individuals for
their efforts in reviewing and commenting on the document:
o Adrian Farrel
o Alexander Vaishtein
o David Sinicrope (Routing Directorate)
o Greg Mirsky
o Hideki Endo
o Huub van Helvoort
o Joel Halpern (Routing Directorate)
o Loa Andersson
o Mach Chen
o Mahesh Akula
o Sam Aldrin
<span class="grey">Gray, et al. Standards Track [Page 19]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-20" ></span>
<span class="grey"><a href="./rfc6426">RFC 6426</a> MPLS On-Demand Connectivity Verification November 2011</span>
o Sandra Murphy (Security Directorate)
o Yaacov Weingarten
o Yoshinori Koike
o Zhenlong Cui
<span class="h2"><a class="selflink" id="section-9" href="#section-9">9</a>. References</span>
<span class="h3"><a class="selflink" id="section-9.1" href="#section-9.1">9.1</a>. Normative References</span>
[<a id="ref-RFC2119">RFC2119</a>] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", <a href="https://www.rfc-editor.org/bcp/bcp14">BCP 14</a>, <a href="./rfc2119">RFC 2119</a>, March 1997.
[<a id="ref-RFC4379">RFC4379</a>] Kompella, K. and G. Swallow, "Detecting Multi-Protocol
Label Switched (MPLS) Data Plane Failures", <a href="./rfc4379">RFC 4379</a>,
February 2006.
[<a id="ref-RFC4385">RFC4385</a>] Bryant, S., Swallow, G., Martini, L., and D. McPherson,
"Pseudowire Emulation Edge-to-Edge (PWE3) Control Word for
Use over an MPLS PSN", <a href="./rfc4385">RFC 4385</a>, February 2006.
[<a id="ref-RFC5586">RFC5586</a>] Bocci, M., Vigoureux, M., and S. Bryant, "MPLS Generic
Associated Channel", <a href="./rfc5586">RFC 5586</a>, June 2009.
[<a id="ref-RFC6370">RFC6370</a>] Bocci, M., Swallow, G., and E. Gray, "MPLS Transport
Profile (MPLS-TP) Identifiers", <a href="./rfc6370">RFC 6370</a>, September 2011.
[<a id="ref-RFC6424">RFC6424</a>] Bahadur, N., Kompella, K., and G. Swallow, "Mechanism for
Performing Label Switched Path Ping (LSP Ping) over MPLS
Tunnels", <a href="./rfc6424">RFC 6424</a>, November 2011.
[<a id="ref-RFC6425">RFC6425</a>] Saxena, S., Swallow, G., Ali, Z., Farrel, A., Yasukawa,
S., and T. Nadeau, "Detecting Data-Plane Failures in
Point-to-Multipoint MPLS - Extensions to LSP Ping",
<a href="./rfc6425">RFC 6425</a>, November 2011.
<span class="h3"><a class="selflink" id="section-9.2" href="#section-9.2">9.2</a>. Informative References</span>
[<a id="ref-RFC1122">RFC1122</a>] Braden, R., "Requirements for Internet Hosts -
Communication Layers", STD 3, <a href="./rfc1122">RFC 1122</a>, October 1989.
[<a id="ref-RFC1812">RFC1812</a>] Baker, F., "Requirements for IP Version 4 Routers",
<a href="./rfc1812">RFC 1812</a>, June 1995.
[<a id="ref-RFC4446">RFC4446</a>] Martini, L., "IANA Allocations for Pseudowire Edge to Edge
Emulation (PWE3)", <a href="https://www.rfc-editor.org/bcp/bcp116">BCP 116</a>, <a href="./rfc4446">RFC 4446</a>, April 2006.
<span class="grey">Gray, et al. Standards Track [Page 20]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-21" ></span>
<span class="grey"><a href="./rfc6426">RFC 6426</a> MPLS On-Demand Connectivity Verification November 2011</span>
[<a id="ref-RFC5003">RFC5003</a>] Metz, C., Martini, L., Balus, F., and J. Sugimoto,
"Attachment Individual Identifier (AII) Types for
Aggregation", <a href="./rfc5003">RFC 5003</a>, September 2007.
[<a id="ref-RFC5860">RFC5860</a>] Vigoureux, M., Ward, D., and M. Betts, "Requirements for
Operations, Administration, and Maintenance (OAM) in MPLS
Transport Networks", <a href="./rfc5860">RFC 5860</a>, May 2010.
[<a id="ref-RFC5884">RFC5884</a>] Aggarwal, R., Kompella, K., Nadeau, T., and G. Swallow,
"Bidirectional Forwarding Detection (BFD) for MPLS Label
Switched Paths (LSPs)", <a href="./rfc5884">RFC 5884</a>, June 2010.
[<a id="ref-RFC6371">RFC6371</a>] Busi, I. and D. Allan, "Operations, Administration, and
Maintenance Framework for MPLS-Based Transport Networks",
<a href="./rfc6371">RFC 6371</a>, September 2011.
<span class="grey">Gray, et al. Standards Track [Page 21]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-22" ></span>
<span class="grey"><a href="./rfc6426">RFC 6426</a> MPLS On-Demand Connectivity Verification November 2011</span>
Authors' Addresses
Eric Gray
Ericsson
900 Chelmsford Street
Lowell, MA 01851
US
Phone: +1 978 275 7470
EMail: eric.gray@ericsson.com
Nitin Bahadur
Juniper Networks, Inc.
1194 N. Mathilda Avenue
Sunnyvale, CA 94089
US
Phone: +1 408 745 2000
EMail: nitinb@juniper.net
URI: www.juniper.net
Sami Boutros
Cisco Systems, Inc.
3750 Cisco Way
San Jose, CA 95134
US
EMail: sboutros@cisco.com
Rahul Aggarwal
EMail: raggarwa_1@yahoo.com
Gray, et al. Standards Track [Page 22]
</pre>
|