1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893
|
<pre>Independent Submission M. Boucadair
Request for Comments: 6431 P. Levis
Category: Informational France Telecom
ISSN: 2070-1721 G. Bajko
T. Savolainen
Nokia
T. Tsou
Huawei Technologies (USA)
November 2011
<span class="h1">Huawei Port Range Configuration Options for PPP</span>
<span class="h1">IP Control Protocol (IPCP)</span>
Abstract
This document defines two Huawei IPCP (IP Control Protocol) options
used to convey a set of ports. These options can be used in the
context of port range-based solutions or NAT-based solutions for port
delegation and forwarding purposes.
Status of This Memo
This document is not an Internet Standards Track specification; it is
published for informational purposes.
This is a contribution to the RFC Series, independently of any other
RFC stream. The RFC Editor has chosen to publish this document at
its discretion and makes no statement about its value for
implementation or deployment. Documents approved for publication by
the RFC Editor are not a candidate for any level of Internet
Standard; see <a href="./rfc5741#section-2">Section 2 of RFC 5741</a>.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
<a href="http://www.rfc-editor.org/info/rfc6431">http://www.rfc-editor.org/info/rfc6431</a>.
Copyright Notice
Copyright (c) 2011 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to <a href="https://www.rfc-editor.org/bcp/bcp78">BCP 78</a> and the IETF Trust's Legal
Provisions Relating to IETF Documents
(<a href="http://trustee.ietf.org/license-info">http://trustee.ietf.org/license-info</a>) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document.
<span class="grey">Boucadair, et al. Informational [Page 1]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-2" ></span>
<span class="grey"><a href="./rfc6431">RFC 6431</a> Port Range IPCP Options November 2011</span>
Table of Contents
<a href="#section-1">1</a>. Introduction ....................................................<a href="#page-2">2</a>
<a href="#section-1.1">1.1</a>. Use Cases ..................................................<a href="#page-3">3</a>
<a href="#section-1.2">1.2</a>. Terminology ................................................<a href="#page-3">3</a>
<a href="#section-1.3">1.3</a>. Requirements Language ......................................<a href="#page-4">4</a>
<a href="#section-2">2</a>. Port Range Options ..............................................<a href="#page-4">4</a>
<a href="#section-2.1">2.1</a>. Description of Port Range Value and Port Range Mask ........<a href="#page-4">4</a>
<a href="#section-2.2">2.2</a>. Cryptographically Random Port Range Option .................<a href="#page-6">6</a>
<a href="#section-2.2.1">2.2.1</a>. Random Port Delegation Function .....................<a href="#page-6">6</a>
2.2.2. Description of Cryptographically Random Port
Range Option ........................................<a href="#page-8">8</a>
<a href="#section-2.3">2.3</a>. Illustration Examples .....................................<a href="#page-10">10</a>
<a href="#section-2.3.1">2.3.1</a>. Overview ...........................................<a href="#page-10">10</a>
2.3.2. Successful Flow: Port Range Options Supported
by Both the Client and the Server ..................<a href="#page-10">10</a>
<a href="#section-2.3.3">2.3.3</a>. Port Range Option Not Supported by the Server ......<a href="#page-11">11</a>
<a href="#section-2.3.4">2.3.4</a>. Port Range Option Not Supported by the Client ......<a href="#page-13">13</a>
<a href="#section-3">3</a>. Security Considerations ........................................<a href="#page-14">14</a>
<a href="#section-4">4</a>. Contributors ...................................................<a href="#page-14">14</a>
<a href="#section-5">5</a>. Acknowledgements ...............................................<a href="#page-14">14</a>
<a href="#section-6">6</a>. References .....................................................<a href="#page-14">14</a>
<a href="#section-6.1">6.1</a>. Normative References ......................................<a href="#page-14">14</a>
<a href="#section-6.2">6.2</a>. Informative References ....................................<a href="#page-15">15</a>
<span class="h2"><a class="selflink" id="section-1" href="#section-1">1</a>. Introduction</span>
Within the context of IPv4 address depletion, several solutions have
been investigated to share IPv4 addresses. Two flavors can be
distinguished: NAT-based solutions (e.g., Carrier-Grade NAT (CGN)
[<a href="#ref-CGN-REQS">CGN-REQS</a>]) and port range-based solutions (e.g., [<a href="./rfc6346" title=""The Address plus Port (A+P) Approach to the IPv4 Address Shortage"">RFC6346</a>]
[<a href="#ref-PORT-RANGE-ARCH">PORT-RANGE-ARCH</a>] [<a href="#ref-SAM" title=""Scalable Multihoming across IPv6 Local- Address Routing Zones Global-Prefix/Local-Address Stateless Address Mapping (SAM)"">SAM</a>]). Port range-based solutions do not require
an additional NAT level in the service provider's domain. Several
means may be used to convey port range information.
This document defines the notion of "Port Mask", which is generic and
flexible. Several allocation schemes may be implemented when using a
Port Mask. It proposes a basic mechanism that allows the allocation
of a unique port range to a requesting client. This document defines
Huawei IPCP options to be used to carry port range information.
IPv4 address exhaustion is only provided as an example of the usage
of the PPP IPCP options defined in this document. In particular,
Port Range options may be used independently of the presence of the
IP-Address IPCP Option.
This document adheres to the considerations defined in [<a href="./rfc2153" title=""PPP Vendor Extensions"">RFC2153</a>].
<span class="grey">Boucadair, et al. Informational [Page 2]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-3" ></span>
<span class="grey"><a href="./rfc6431">RFC 6431</a> Port Range IPCP Options November 2011</span>
This document is not a product of the PPPEXT working group.
Note that IPR disclosures apply to this document (see
<a href="https://datatracker.ietf.org/ipr/">https://datatracker.ietf.org/ipr/</a>).
<span class="h3"><a class="selflink" id="section-1.1" href="#section-1.1">1.1</a>. Use Cases</span>
Port Range options can be used in port range-based solutions (e.g.,
[<a href="./rfc6346" title=""The Address plus Port (A+P) Approach to the IPv4 Address Shortage"">RFC6346</a>]) or in a CGN-based solution. These options can be used in
a CGN context to bypass the NAT (i.e., for transparent NAT traversal,
and to avoid involving several NAT levels in the path) or to delegate
one or a set of ports to the requesting client (e.g., to avoid the
ALG (Application Level Gateway), or for port forwarding).
<a href="./rfc6346#section-3.3.1">Section 3.3.1 of [RFC6346]</a> specifies an example of usage of the
options defined in this document.
<span class="h3"><a class="selflink" id="section-1.2" href="#section-1.2">1.2</a>. Terminology</span>
To differentiate between a port range containing a contiguous span of
port numbers and a port range with non-contiguous and possibly random
port numbers, the following denominations are used:
o Contiguous Port Range: A set of port values that form a contiguous
sequence.
o Non-Contiguous Port Range: A set of port values that do not form a
contiguous sequence.
o Random Port Range: A cryptographically random set of port values.
Unless explicitly mentioned, "Port Mask" refers to the tuple (Port
Range Value, Port Range Mask).
In addition, this document makes use of the following terms:
o Delegated port or delegated port range: A port or a range of ports
that belong to an IP address managed by an upstream device (such
as NAT) and that are delegated to a client for use as the source
address and port when sending packets.
o Forwarded port or forwarder port range: A port or a range of ports
that belong to an IP address managed by an upstream device such as
(NAT) and that are statically mapped to the internal IP address of
the client and same port number of the client.
This memo uses the same terminology as [<a href="./rfc1661" title=""The Point-to-Point Protocol (PPP)"">RFC1661</a>].
<span class="grey">Boucadair, et al. Informational [Page 3]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-4" ></span>
<span class="grey"><a href="./rfc6431">RFC 6431</a> Port Range IPCP Options November 2011</span>
<span class="h3"><a class="selflink" id="section-1.3" href="#section-1.3">1.3</a>. Requirements Language</span>
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in <a href="./rfc2119">RFC 2119</a> [<a href="./rfc2119" title=""Key words for use in RFCs to Indicate Requirement Levels"">RFC2119</a>].
<span class="h2"><a class="selflink" id="section-2" href="#section-2">2</a>. Port Range Options</span>
This section defines the IPCP Option for port range delegation. The
format of vendor-specific options is defined in [<a href="./rfc2153" title=""PPP Vendor Extensions"">RFC2153</a>]. Below are
the values to be conveyed when the Port Range Option is used:
o Organizationally Unique Identifier (OUI): This field is set to
781DBA (hex).
o Kind: This field is set to F0 (hex).
o Value(s): The content of this field is specified in Sections <a href="#section-2.1">2.1</a>
and 2.2.2.
<span class="h3"><a class="selflink" id="section-2.1" href="#section-2.1">2.1</a>. Description of Port Range Value and Port Range Mask</span>
The Port Range Value and Port Range Mask are used to specify one
range of ports (contiguous or non-contiguous) pertaining to a given
IP address. Concretely, the Port Range Mask and Port Range Value are
used to notify a remote peer about the Port Mask to be applied when
selecting a port value as a source port. The Port Range Value is
used to infer a set of allowed port values. A Port Range Mask
defines a set of ports that all have in common a subset of
pre-positioned bits. This set of ports is also referred to as the
port range.
Two port numbers are said to belong to the same port range if and
only if they have the same Port Range Mask.
A Port Mask is composed of a Port Range Value and a Port Range Mask:
o The Port Range Value indicates the value of the significant bits
of the Port Mask. The Port Range Value is coded as follows:
* The significant bits may take a value of 0 or 1.
* All of the other bits (i.e., non-significant ones) are set
to 0.
o The Port Range Mask indicates, by the bit(s) set to 1, the
position of the significant bits of the Port Range Value.
<span class="grey">Boucadair, et al. Informational [Page 4]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-5" ></span>
<span class="grey"><a href="./rfc6431">RFC 6431</a> Port Range IPCP Options November 2011</span>
This IPCP Configuration Option provides a way to negotiate the Port
Range to be used on the local end of the link. It allows the sender
of the Configure-Request message to state which port range associated
with a given IP address is desired, or to request that the peer
provide the configuration. The peer can provide this information by
NAKing the option, and returning a valid port range (i.e., (Port
Range Value, Port Range Mask)).
If a peer issues a request enclosing the IPCP Port Range Option and
the server does not support this option, the Port Range Option is
rejected by the server.
The set of ports conveyed in an IPCP Port Range Option applies to all
transport protocols.
The set of ports conveyed in an IPCP Port Range Option is revoked
when the link is no longer up (e.g., when Terminate-Request and
Terminate-Ack are exchanged).
The Port Range IPCP option adheres to the format defined in
<a href="./rfc2153#section-2.1">Section 2.1 of [RFC2153]</a>. The "Value(s)" field of the option defined
in [<a href="./rfc2153" title=""PPP Vendor Extensions"">RFC2153</a>] when conveying the Port Range IPCP Option is provided in
Figure 1.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|M| Reserved | Port Range Value |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Port Range Mask |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Most significant bit (MSB) network order is used for encoding the
Port Range Value and Port Range Mask fields.
Figure 1: Format of the Port Range IPCP Option
o M: mode bit. The mode bit indicates the mode for which the port
range is allocated. A value of zero indicates that the port
ranges are delegated, while a value of 1 indicates that the port
ranges are port-forwarded.
o Port Range Value (PRV): The PRV indicates the value of the
significant bits of the Port Mask. By default, no PRV is
assigned.
<span class="grey">Boucadair, et al. Informational [Page 5]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-6" ></span>
<span class="grey"><a href="./rfc6431">RFC 6431</a> Port Range IPCP Options November 2011</span>
o Port Range Mask (PRM): The Port Range Mask indicates the position
of the bits that are used to build the Port Range Value. By
default, no PRM value is assigned. The 1 values in the Port Range
Mask indicate by their position the significant bits of the Port
Range Value.
Figure 2 provides an example of the resulting port range:
- The Port Range Mask is set to 0001010000000000 (5120).
- The Port Range Value is set to 0000010000000000 (1024).
0 1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0| Port Range Mask
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
| | (two significant bits)
v v
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0| Port Range Value
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|x x x 0 x 1 x x x x x x x x x x| Usable ports
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ (x may be set to 0 or 1)
Figure 2: Example of Port Range Mask and Port Range Value
Port values belonging to this port range must have the fourth bit
from the left set to 0, and the sixth bit from the left set to 1.
Only these port values will be used by the peer when enforcing the
configuration conveyed by PPP IPCP.
<span class="h3"><a class="selflink" id="section-2.2" href="#section-2.2">2.2</a>. Cryptographically Random Port Range Option</span>
A cryptographically random Port Range Option may be used as a
mitigation tool against blind attacks such as those described in
[<a href="./rfc6056" title=""Recommendations for Transport- Protocol Port Randomization"">RFC6056</a>].
<span class="h4"><a class="selflink" id="section-2.2.1" href="#section-2.2.1">2.2.1</a>. Random Port Delegation Function</span>
Delegating random ports can be achieved by defining a function that
takes as input a key 'K' and an integer 'x' within the 1024-65535
port range and produces an output 'y' also within the 1024-65535 port
range.
<span class="grey">Boucadair, et al. Informational [Page 6]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-7" ></span>
<span class="grey"><a href="./rfc6431">RFC 6431</a> Port Range IPCP Options November 2011</span>
The cryptographic mechanism uses the 1024-65535 port range rather
than the ephemeral range, 49152-65535, for generating a set of ports
to optimize IPv4 address utilization efficiency (see "Appendix B.
Address Space Multiplicative Factor" of [<a href="./rfc6269" title=""Issues with IP Address Sharing"">RFC6269</a>]). This behavior is
compliant with the recommendation to use the whole 1024-65535 port
range for the ephemeral port selection algorithms (see <a href="./rfc6056#section-3.2">Section 3.2 of
[RFC6056]</a>).
The cryptographic mechanism ensures that the entire 64k port range
can be efficiently distributed to multiple nodes such that when nodes
calculate the ports, the results will never overlap with ports that
other nodes have calculated (property of permutation), and ports in
the reserved range (smaller than 1024) are not used. As the
randomization is done cryptographically, an attacker seeing a node
using some port X cannot determine which other ports the node may be
using (as the attacker does not know the key). Calculation of the
random port list is done as follows:
The cryptographic mechanism uses an encryption function y = E(K,x)
that takes as input a key K (for example, 128 bits) and an integer x
(the plaintext) in the 1024-65535 port range, and produces an output
y (the ciphertext), also an integer in the 1024-65535 port range.
This section describes one such encryption function, but others are
also possible.
The server will select the key K. When the server wants to allocate,
for example, 2048 random ports, it selects a starting point 'a'
(1024 <= a <= 65536-2048) such that the port range (a, a+2048) does
not overlap with any other active client, and calculates the values
E(K,a), E(K,a+1), E(K,a+2), ..., E(K,a+2046), E(K,a+2047). These are
the port numbers allocated for this node. Instead of sending the
port numbers individually, the server just sends the values 'K', 'a',
and '2048'. The client will then repeat the same calculation.
The server SHOULD use a different key K for each IPv4 address it
allocates, to make attacks as difficult as possible. This way,
learning the key K used in IPv4 address IP1 would not help in
attacking IPv4 address IP2 where IP2 is allocated by the same server
to different nodes.
With typical encryption functions (such as AES and DES), the input
(plaintext) and output (ciphertext) are blocks of some fixed size --
for example, 128 bits for AES, and 64 bits for DES. For port
randomization, we need an encryption function whose input and output
is an integer in the 1024-65535 port range.
<span class="grey">Boucadair, et al. Informational [Page 7]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-8" ></span>
<span class="grey"><a href="./rfc6431">RFC 6431</a> Port Range IPCP Options November 2011</span>
One possible way to do this is to use the 'Generalized Feistel
Cipher' [<a href="#ref-CIPHERS" title=""Ciphers with Arbitrary Finite Domains. Topics in Cryptology"">CIPHERS</a>] construction by Black and Rogaway, with AES as the
underlying round function.
This would look as follows (using pseudo-code):
def E(k, x):
y = Feistel16(k, x)
if y >= 1024:
return y
else:
return E(k, y)
Note that although E(k,x) is recursive, it is guaranteed to
terminate. The average number of iterations is just slightly over 1.
Feistel16 is a 16-bit block cipher:
def Feistel16(k, x):
left = x & 0xff
right = x >> 8
for round = 1 to 3:
temp = left ^ FeistelRound(k, round, right))
left = right
right = temp
return (right << 8) | left
The Feistel round function uses:
def FeistelRound(k, round, x):
msg[0] = round
msg[1] = x
msg[2...15] = 0
return AES(k, msg)[0]
Performance: To generate a list of 2048 port numbers, about 6000
calls to AES are required (i.e., encrypting 96 kilobytes). Thus, it
will not be a problem for any device that can do, for example, HTTPS
(web browsing over Secure Sockets Layer/Transport Layer Security
(SSL/TLS)).
<span class="h4"><a class="selflink" id="section-2.2.2" href="#section-2.2.2">2.2.2</a>. Description of Cryptographically Random Port Range Option</span>
The cryptographically random Port Range IPCP Option adheres to the
format defined in <a href="./rfc2153#section-2.1">Section 2.1 of [RFC2153]</a>. The "Value(s)" field of
the option defined in [<a href="./rfc2153" title=""PPP Vendor Extensions"">RFC2153</a>] when conveying the cryptographically
random Port Range IPCP Option is illustrated in Figure 3.
<span class="grey">Boucadair, et al. Informational [Page 8]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-9" ></span>
<span class="grey"><a href="./rfc6431">RFC 6431</a> Port Range IPCP Options November 2011</span>
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|M| Reserved | function |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| starting point | number of delegated ports |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| key K ...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
... ...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
... ...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 3: Format of the Cryptographically Random Port Range Option
o M: mode bit. The mode bit indicates the mode for which the port
range is allocated. A value of zero indicates that the port
ranges are delegated, while a value of 1 indicates that the port
ranges are port-forwarded.
o Function: A 16-bit field whose value is associated with predefined
encryption functions. This specification associates value 1 with
the predefined function described in <a href="#section-2.2.1">Section 2.2.1</a>.
o Starting Point: A 16-bit value used as an input to the specified
function.
o Number of delegated ports: A 16-bit value specifying the number of
ports delegated to the client for use as source port values.
o Key K: A 128-bit key used as input to the predefined function for
delegated port calculation.
When the option is included in the IPCP Configure-Request, the "Key
K" and "Starting Point" fields SHALL be set to all zeros. The
requester MAY indicate in the "Function" field which encryption
function the requester prefers, and in the "Number of Delegated
Ports" field the number of ports the requester would like to obtain.
If the requester has no preference, it SHALL also set the "Function"
field and/or "Number of Delegated Ports" field to zero.
The usage of the option in IPCP message negotiation (Request/Reject/
Nak/Ack) follows the logic described for Port Mask and Port Range
options in <a href="#section-2.1">Section 2.1</a>.
<span class="grey">Boucadair, et al. Informational [Page 9]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-10" ></span>
<span class="grey"><a href="./rfc6431">RFC 6431</a> Port Range IPCP Options November 2011</span>
<span class="h3"><a class="selflink" id="section-2.3" href="#section-2.3">2.3</a>. Illustration Examples</span>
<span class="h4"><a class="selflink" id="section-2.3.1" href="#section-2.3.1">2.3.1</a>. Overview</span>
The following flows provide examples of the usage of IPCP to convey
the Port Range Option. As illustrated in Figures 4, 5, and 6, IPCP
messages are exchanged between a Host and a BRAS (Broadband Remote
Access Server).
<span class="h4"><a class="selflink" id="section-2.3.2" href="#section-2.3.2">2.3.2</a>. Successful Flow: Port Range Options Supported by Both the Client</span>
<span class="h4"> and the Server</span>
The following message exchange (Figure 4) depicts a successful IPCP
configuration operation where the Port Range IPCP Option is used.
+-----+ +-----+
| Host| | BRAS|
+-----+ +-----+
| |
| (1) IPCP Configure-Request |
| IP ADDRESS=0.0.0.0 |
| PORT RANGE VALUE=0 |
| PORT RANGE MASK=0 |
|===============================================>|
| |
| (2) IPCP Configure-Nak |
| IP ADDRESS=a.b.c.d |
| PORT RANGE VALUE=80 |
| PORT RANGE MASK=496 |
|<===============================================|
| |
| (3) IPCP Configure-Request |
| IP ADDRESS=a.b.c.d |
| PORT RANGE VALUE=80 |
| PORT RANGE MASK=496 |
|===============================================>|
| |
| (4) IPCP Configure-Ack |
| IP ADDRESS=a.b.c.d |
| PORT RANGE VALUE=80 |
| PORT RANGE MASK=496 |
|<===============================================|
| |
Figure 4: Successful Flow
<span class="grey">Boucadair, et al. Informational [Page 10]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-11" ></span>
<span class="grey"><a href="./rfc6431">RFC 6431</a> Port Range IPCP Options November 2011</span>
The main steps of this flow are listed below:
(1) The Host sends a first Configure-Request, which includes the
set of options it desires to negotiate. All of these
configuration options are negotiated simultaneously. In this
step, the Configure-Request carries information about the IP
address, the Port Range Value, and the Port Range Mask. The
IP-Address Option is set to 0.0.0.0, the Port Range Value is
set to 0, and the Port Range Mask is set to 0.
(2) The BRAS sends back a Configure-Nak and sets the enclosed
options to its preferred values. In this step, the
IP-Address Option is set to a.b.c.d, the Port Range Value is
set to 80, and the Port Range Mask is set to 496.
(3) The Host re-sends a Configure-Request requesting that the
IP-Address Option be set to a.b.c.d, the Port Range Value be
set to 80, and the Port Range Mask be set to 496.
(4) The BRAS sends a Configure-Ack message.
As a result of this exchange, the Host is configured to use a.b.c.d
as its local IP address, and the following 128 contiguous port ranges
resulting from the Port Mask (Port Range Value == 0, Port Range Mask
== 496):
- from 80 to 95
- from 592 to 607
- ...
- from 65104 to 65119
<span class="h4"><a class="selflink" id="section-2.3.3" href="#section-2.3.3">2.3.3</a>. Port Range Option Not Supported by the Server</span>
Figure 5 depicts an exchange of messages where the BRAS does not
support the IPCP Port Range Option.
<span class="grey">Boucadair, et al. Informational [Page 11]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-12" ></span>
<span class="grey"><a href="./rfc6431">RFC 6431</a> Port Range IPCP Options November 2011</span>
+-----+ +-----+
| Host| | BRAS|
+-----+ +-----+
| |
| (1) IPCP Configure-Request |
| IP ADDRESS=0.0.0.0 |
| PORT RANGE VALUE=0 |
| PORT RANGE MASK=0 |
|===============================================>|
| |
| (2) IPCP Configure-Reject |
| PORT RANGE VALUE=0 |
| PORT RANGE MASK=0 |
|<===============================================|
| |
| (3) IPCP Configure-Request |
| IP ADDRESS=0.0.0.0 |
|===============================================>|
| |
| (4) IPCP Configure-Nak |
| IP ADDRESS=a.b.c.d |
|<===============================================|
| |
| (5) IPCP Configure-Request |
| IP ADDRESS=a.b.c.d |
|===============================================>|
| |
| (6) IPCP Configure-Ack |
| IP ADDRESS=a.b.c.d |
|<===============================================|
| |
Figure 5: Failed Flow: Port Range Option Not Supported by the Server
The main steps of this flow are listed below:
(1) The Host sends a first Configure-Request, which includes the
set of options it desires to negotiate. All of these
configuration options are negotiated simultaneously. In this
step, the Configure-Request carries the codes of the
IP-Address, Port Range Value, and Port Range Mask options.
The IP-Address Option is set to 0.0.0.0, the Port Range Value
is set to 0, and the Port Range Mask is set to 0.
(2) The BRAS sends back a Configure-Reject to decline the Port
Range Option.
<span class="grey">Boucadair, et al. Informational [Page 12]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-13" ></span>
<span class="grey"><a href="./rfc6431">RFC 6431</a> Port Range IPCP Options November 2011</span>
(3) The Host sends a Configure-Request, which includes only the
codes of the IP-Address Option. In this step, the IP-Address
Option is set to 0.0.0.0.
(4) The BRAS sends back a Configure-Nak and sets the enclosed
option to its preferred value. In this step, the IP-Address
Option is set to a.b.c.d.
(5) The Host re-sends a Configure-Request requesting that the
IP-Address Option be set to a.b.c.d.
(6) The BRAS sends a Configure-Ack message.
As a result of this exchange, the Host is configured to use a.b.c.d
as its local IP address. This IP address is not a shared IP address.
<span class="h4"><a class="selflink" id="section-2.3.4" href="#section-2.3.4">2.3.4</a>. Port Range Option Not Supported by the Client</span>
Figure 6 depicts exchanges where only shared IP addresses are
assigned to end-users' devices. The server is configured to assign
only shared IP addresses. If Port Range options are not enclosed in
the configuration request, the request is rejected, and the
requesting peer will be unable to access the service.
+-----+ +-----+
| Host| | BRAS|
+-----+ +-----+
| |
| (1) IPCP Configure-Request |
| IP ADDRESS=0.0.0.0 |
|===============================================>|
| |
| (2) IPCP Protocol-Reject |
|<===============================================|
| |
Figure 6: Port Range Option Not Supported by the Client
The main steps of this flow are listed below:
(1) The Host sends a Configure-Request requesting that the
IP-Address Option be set to 0.0.0.0, and without enclosing
the Port Range Option.
(2) The BRAS sends a Protocol-Reject message.
As a result of this exchange, the Host is not able to access the
service.
<span class="grey">Boucadair, et al. Informational [Page 13]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-14" ></span>
<span class="grey"><a href="./rfc6431">RFC 6431</a> Port Range IPCP Options November 2011</span>
<span class="h2"><a class="selflink" id="section-3" href="#section-3">3</a>. Security Considerations</span>
This document does not introduce any security issues in addition to
those related to PPP. Service providers should use authentication
mechanisms such as the Challenge Handshake Authentication Protocol
(CHAP) [<a href="./rfc1994" title=""PPP Challenge Handshake Authentication Protocol (CHAP)"">RFC1994</a>] or PPP link encryption [<a href="./rfc1968" title=""The PPP Encryption Control Protocol (ECP)"">RFC1968</a>].
The use of small and non-random port ranges may increase host
exposure to attacks, as described in [<a href="./rfc6056" title=""Recommendations for Transport- Protocol Port Randomization"">RFC6056</a>]. This risk can be
reduced by using larger port ranges, by using the random Port Range
Option, or by activating means to improve the robustness of TCP
against blind in-window attacks [<a href="./rfc5961" title=""Improving TCP's Robustness to Blind In-Window Attacks"">RFC5961</a>].
<span class="h2"><a class="selflink" id="section-4" href="#section-4">4</a>. Contributors</span>
Jean-Luc Grimault and Alain Villefranque contributed to this
document.
<span class="h2"><a class="selflink" id="section-5" href="#section-5">5</a>. Acknowledgements</span>
The authors would like to thank C. Jacquenet, J. Carlson, B.
Carpenter, M. Townsley, and J. Arkko for their review.
<span class="h2"><a class="selflink" id="section-6" href="#section-6">6</a>. References</span>
<span class="h3"><a class="selflink" id="section-6.1" href="#section-6.1">6.1</a>. Normative References</span>
[<a id="ref-RFC1661">RFC1661</a>] Simpson, W., Ed., "The Point-to-Point Protocol (PPP)",
STD 51, <a href="./rfc1661">RFC 1661</a>, July 1994.
[<a id="ref-RFC1968">RFC1968</a>] Meyer, G., "The PPP Encryption Control Protocol (ECP)",
<a href="./rfc1968">RFC 1968</a>, June 1996.
[<a id="ref-RFC1994">RFC1994</a>] Simpson, W., "PPP Challenge Handshake Authentication
Protocol (CHAP)", <a href="./rfc1994">RFC 1994</a>, August 1996.
[<a id="ref-RFC2119">RFC2119</a>] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", <a href="https://www.rfc-editor.org/bcp/bcp14">BCP 14</a>, <a href="./rfc2119">RFC 2119</a>, March 1997.
[<a id="ref-RFC2153">RFC2153</a>] Simpson, W., "PPP Vendor Extensions", <a href="./rfc2153">RFC 2153</a>, May 1997.
[<a id="ref-RFC5961">RFC5961</a>] Ramaiah, A., Stewart, R., and M. Dalal, "Improving TCP's
Robustness to Blind In-Window Attacks", <a href="./rfc5961">RFC 5961</a>,
August 2010.
<span class="grey">Boucadair, et al. Informational [Page 14]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-15" ></span>
<span class="grey"><a href="./rfc6431">RFC 6431</a> Port Range IPCP Options November 2011</span>
<span class="h3"><a class="selflink" id="section-6.2" href="#section-6.2">6.2</a>. Informative References</span>
[<a id="ref-CGN-REQS">CGN-REQS</a>]
Perreault, S., Ed., Yamagata, I., Miyakawa, S., Nakagawa,
A., and H. Ashida, "Common requirements for Carrier Grade
NAT (CGN)", Work in Progress, October 2011.
[<a id="ref-CIPHERS">CIPHERS</a>] Black, J. and P. Rogaway, "Ciphers with Arbitrary Finite
Domains. Topics in Cryptology", CT-RSA 2002, Lecture
Notes in Computer Science, vol. 2271, 2002.
[<a id="ref-PORT-RANGE-ARCH">PORT-RANGE-ARCH</a>]
Boucadair, M., Ed., Levis, P., Bajko, G., and T.
Savolainen, "IPv4 Connectivity Access in the Context of
IPv4 Address Exhaustion: Port Range based IP
Architecture", Work in Progress, July 2009.
[<a id="ref-RFC6056">RFC6056</a>] Larsen, M. and F. Gont, "Recommendations for Transport-
Protocol Port Randomization", <a href="https://www.rfc-editor.org/bcp/bcp156">BCP 156</a>, <a href="./rfc6056">RFC 6056</a>,
January 2011.
[<a id="ref-RFC6269">RFC6269</a>] Ford, M., Ed., Boucadair, M., Durand, A., Levis, P., and
P. Roberts, "Issues with IP Address Sharing", <a href="./rfc6269">RFC 6269</a>,
June 2011.
[<a id="ref-RFC6346">RFC6346</a>] Bush, R., Ed., "The Address plus Port (A+P) Approach to
the IPv4 Address Shortage", <a href="./rfc6346">RFC 6346</a>, August 2011.
[<a id="ref-SAM">SAM</a>] Despres, R., "Scalable Multihoming across IPv6 Local-
Address Routing Zones Global-Prefix/Local-Address
Stateless Address Mapping (SAM)", Work in Progress,
July 2009.
<span class="grey">Boucadair, et al. Informational [Page 15]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-16" ></span>
<span class="grey"><a href="./rfc6431">RFC 6431</a> Port Range IPCP Options November 2011</span>
Authors' Addresses
Mohamed Boucadair
France Telecom
Rennes 35000
France
EMail: mohamed.boucadair@orange.com
Pierre Levis
France Telecom
Caen
France
EMail: pierre.levis@orange.com
Gabor Bajko
Nokia
EMail: gabor.bajko@nokia.com
Teemu Savolainen
Nokia
EMail: teemu.savolainen@nokia.com
Tina Tsou
Huawei Technologies (USA)
2330 Central Expressway
Santa Clara, CA 95050
USA
Phone: +1 408 330 4424
EMail: tina.tsou.zouting@huawei.com
Boucadair, et al. Informational [Page 16]
</pre>
|