1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677
|
<pre>Internet Engineering Task Force (IETF) E. Jankiewicz
Request for Comments: 6434 SRI International, Inc.
Obsoletes: <a href="./rfc4294">4294</a> J. Loughney
Category: Informational Nokia
ISSN: 2070-1721 T. Narten
IBM Corporation
December 2011
<span class="h1">IPv6 Node Requirements</span>
Abstract
This document defines requirements for IPv6 nodes. It is expected
that IPv6 will be deployed in a wide range of devices and situations.
Specifying the requirements for IPv6 nodes allows IPv6 to function
well and interoperate in a large number of situations and
deployments.
This document obsoletes <a href="./rfc4294">RFC 4294</a>.
Status of This Memo
This document is not an Internet Standards Track specification; it is
published for informational purposes.
This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Not all documents
approved by the IESG are a candidate for any level of Internet
Standard; see <a href="./rfc5741#section-2">Section 2 of RFC 5741</a>.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
<a href="http://www.rfc-editor.org/info/rfc6434">http://www.rfc-editor.org/info/rfc6434</a>.
Copyright Notice
Copyright (c) 2011 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to <a href="https://www.rfc-editor.org/bcp/bcp78">BCP 78</a> and the IETF Trust's Legal
Provisions Relating to IETF Documents
(<a href="http://trustee.ietf.org/license-info">http://trustee.ietf.org/license-info</a>) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
<span class="grey">Jankiewicz, et al. Informational [Page 1]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-2" ></span>
<span class="grey"><a href="./rfc6434">RFC 6434</a> IPv6 Node Requirements December 2011</span>
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
This document may contain material from IETF Documents or IETF
Contributions published or made publicly available before November
10, 2008. The person(s) controlling the copyright in some of this
material may not have granted the IETF Trust the right to allow
modifications of such material outside the IETF Standards Process.
Without obtaining an adequate license from the person(s) controlling
the copyright in such materials, this document may not be modified
outside the IETF Standards Process, and derivative works of it may
not be created outside the IETF Standards Process, except to format
it for publication as an RFC or to translate it into languages other
than English.
Table of Contents
<a href="#section-1">1</a>. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-4">4</a>
<a href="#section-1.1">1.1</a>. Scope of This Document . . . . . . . . . . . . . . . . . . <a href="#page-5">5</a>
<a href="#section-1.2">1.2</a>. Description of IPv6 Nodes . . . . . . . . . . . . . . . . <a href="#page-5">5</a>
<a href="#section-2">2</a>. Requirements Language . . . . . . . . . . . . . . . . . . . . <a href="#page-5">5</a>
<a href="#section-3">3</a>. Abbreviations Used in This Document . . . . . . . . . . . . . <a href="#page-5">5</a>
<a href="#section-4">4</a>. Sub-IP Layer . . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-6">6</a>
<a href="#section-5">5</a>. IP Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-7">7</a>
<a href="#section-5.1">5.1</a>. Internet Protocol Version 6 - <a href="./rfc2460">RFC 2460</a> . . . . . . . . . . <a href="#page-7">7</a>
<a href="#section-5.2">5.2</a>. Neighbor Discovery for IPv6 - <a href="./rfc4861">RFC 4861</a> . . . . . . . . . . <a href="#page-8">8</a>
5.3. Default Router Preferences and More-Specific Routes -
<a href="./rfc4191">RFC 4191</a> . . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-9">9</a>
<a href="#section-5.4">5.4</a>. SEcure Neighbor Discovery (SEND) - <a href="./rfc3971">RFC 3971</a> . . . . . . . <a href="#page-9">9</a>
<a href="#section-5.5">5.5</a>. IPv6 Router Advertisement Flags Option - <a href="./rfc5175">RFC 5175</a> . . . . <a href="#page-9">9</a>
<a href="#section-5.6">5.6</a>. Path MTU Discovery and Packet Size . . . . . . . . . . . . <a href="#page-10">10</a>
<a href="#section-5.6.1">5.6.1</a>. Path MTU Discovery - <a href="./rfc1981">RFC 1981</a> . . . . . . . . . . . . <a href="#page-10">10</a>
<a href="#section-5.7">5.7</a>. IPv6 Jumbograms - <a href="./rfc2675">RFC 2675</a> . . . . . . . . . . . . . . . . <a href="#page-10">10</a>
5.8. ICMP for the Internet Protocol Version 6 (IPv6) - <a href="./rfc4443">RFC</a>
<a href="./rfc4443">4443</a> . . . . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-10">10</a>
<a href="#section-5.9">5.9</a>. Addressing . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-11">11</a>
<a href="#section-5.9.1">5.9.1</a>. IP Version 6 Addressing Architecture - <a href="./rfc4291">RFC 4291</a> . . . <a href="#page-11">11</a>
5.9.2. IPv6 Stateless Address Autoconfiguration - <a href="./rfc4862">RFC 4862</a> . 11
5.9.3. Privacy Extensions for Address Configuration in
IPv6 - <a href="./rfc4941">RFC 4941</a> . . . . . . . . . . . . . . . . . . . <a href="#page-12">12</a>
<a href="#section-5.9.4">5.9.4</a>. Default Address Selection for IPv6 - <a href="./rfc3484">RFC 3484</a> . . . . <a href="#page-12">12</a>
5.9.5. Stateful Address Autoconfiguration (DHCPv6) - <a href="./rfc3315">RFC</a>
<a href="./rfc3315">3315</a> . . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-12">12</a>
<a href="#section-5.10">5.10</a>. Multicast Listener Discovery (MLD) for IPv6 . . . . . . . <a href="#page-13">13</a>
6. DHCP versus Router Advertisement Options for Host
Configuration . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-13">13</a>
<a href="#section-7">7</a>. DNS and DHCP . . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-14">14</a>
<span class="grey">Jankiewicz, et al. Informational [Page 2]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-3" ></span>
<span class="grey"><a href="./rfc6434">RFC 6434</a> IPv6 Node Requirements December 2011</span>
<a href="#section-7.1">7.1</a>. DNS . . . . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-14">14</a>
7.2. Dynamic Host Configuration Protocol for IPv6 (DHCPv6)
- <a href="./rfc3315">RFC 3315</a> . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-15">15</a>
<a href="#section-7.2.1">7.2.1</a>. Other Configuration Information . . . . . . . . . . . <a href="#page-15">15</a>
7.2.2. Use of Router Advertisements in Managed
Environments . . . . . . . . . . . . . . . . . . . . . <a href="#page-15">15</a>
7.3. IPv6 Router Advertisement Options for DNS
Configuration - <a href="./rfc6106">RFC 6106</a> . . . . . . . . . . . . . . . . . <a href="#page-15">15</a>
<a href="#section-8">8</a>. IPv4 Support and Transition . . . . . . . . . . . . . . . . . <a href="#page-16">16</a>
<a href="#section-8.1">8.1</a>. Transition Mechanisms . . . . . . . . . . . . . . . . . . <a href="#page-16">16</a>
8.1.1. Basic Transition Mechanisms for IPv6 Hosts and
Routers - <a href="./rfc4213">RFC 4213</a> . . . . . . . . . . . . . . . . . . <a href="#page-16">16</a>
<a href="#section-9">9</a>. Application Support . . . . . . . . . . . . . . . . . . . . . <a href="#page-16">16</a>
<a href="#section-9.1">9.1</a>. Textual Representation of IPv6 Addresses - <a href="./rfc5952">RFC 5952</a> . . . <a href="#page-16">16</a>
<a href="#section-9.2">9.2</a>. Application Programming Interfaces (APIs) . . . . . . . . <a href="#page-16">16</a>
<a href="#section-10">10</a>. Mobility . . . . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-17">17</a>
<a href="#section-11">11</a>. Security . . . . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-17">17</a>
<a href="#section-11.1">11.1</a>. Requirements . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-18">18</a>
<a href="#section-11.2">11.2</a>. Transforms and Algorithms . . . . . . . . . . . . . . . . <a href="#page-19">19</a>
<a href="#section-12">12</a>. Router-Specific Functionality . . . . . . . . . . . . . . . . <a href="#page-19">19</a>
<a href="#section-12.1">12.1</a>. IPv6 Router Alert Option - <a href="./rfc2711">RFC 2711</a> . . . . . . . . . . . <a href="#page-19">19</a>
<a href="#section-12.2">12.2</a>. Neighbor Discovery for IPv6 - <a href="./rfc4861">RFC 4861</a> . . . . . . . . . . <a href="#page-19">19</a>
<a href="#section-12.3">12.3</a>. Stateful Address Autoconfiguration (DHCPv6) - <a href="./rfc3315">RFC 3315</a> . . <a href="#page-19">19</a>
<a href="#section-13">13</a>. Network Management . . . . . . . . . . . . . . . . . . . . . . <a href="#page-20">20</a>
<a href="#section-13.1">13.1</a>. Management Information Base (MIB) Modules . . . . . . . . <a href="#page-20">20</a>
<a href="#section-13.1.1">13.1.1</a>. IP Forwarding Table MIB . . . . . . . . . . . . . . . <a href="#page-20">20</a>
13.1.2. Management Information Base for the Internet
Protocol (IP) . . . . . . . . . . . . . . . . . . . . <a href="#page-20">20</a>
<a href="#section-14">14</a>. Security Considerations . . . . . . . . . . . . . . . . . . . <a href="#page-20">20</a>
<a href="#section-15">15</a>. Authors and Acknowledgments . . . . . . . . . . . . . . . . . <a href="#page-21">21</a>
<a href="#section-15.1">15.1</a>. Authors and Acknowledgments (Current Document) . . . . . . <a href="#page-21">21</a>
<a href="#section-15.2">15.2</a>. Authors and Acknowledgments from <a href="./rfc4279">RFC 4279</a> . . . . . . . . <a href="#page-21">21</a>
<a href="#section-16">16</a>. Appendix: Changes from <a href="./rfc4294">RFC 4294</a> . . . . . . . . . . . . . . . <a href="#page-22">22</a>
<a href="#section-17">17</a>. References . . . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-23">23</a>
<a href="#section-17.1">17.1</a>. Normative References . . . . . . . . . . . . . . . . . . . <a href="#page-23">23</a>
<a href="#section-17.2">17.2</a>. Informative References . . . . . . . . . . . . . . . . . . <a href="#page-26">26</a>
<span class="grey">Jankiewicz, et al. Informational [Page 3]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-4" ></span>
<span class="grey"><a href="./rfc6434">RFC 6434</a> IPv6 Node Requirements December 2011</span>
<span class="h2"><a class="selflink" id="section-1" href="#section-1">1</a>. Introduction</span>
This document defines common functionality required from both IPv6
hosts and routers. Many IPv6 nodes will implement optional or
additional features, but this document collects and summarizes
requirements from other published Standards Track documents in one
place.
This document tries to avoid discussion of protocol details and
references RFCs for this purpose. This document is intended to be an
applicability statement and to provide guidance as to which IPv6
specifications should be implemented in the general case and which
specifications may be of interest to specific deployment scenarios.
This document does not update any individual protocol document RFCs.
Although this document points to different specifications, it should
be noted that in many cases, the granularity of a particular
requirement will be smaller than a single specification, as many
specifications define multiple, independent pieces, some of which may
not be mandatory. In addition, most specifications define both
client and server behavior in the same specification, while many
implementations will be focused on only one of those roles.
This document defines a minimal level of requirement needed for a
device to provide useful internet service and considers a broad range
of device types and deployment scenarios. Because of the wide range
of deployment scenarios, the minimal requirements specified in this
document may not be sufficient for all deployment scenarios. It is
perfectly reasonable (and indeed expected) for other profiles to
define additional or stricter requirements appropriate for specific
usage and deployment environments. For example, this document does
not mandate that all clients support DHCP, but some deployment
scenarios may deem it appropriate to make such a requirement. For
example, government agencies in the USA have defined profiles for
specialized requirements for IPv6 in target environments (see [<a href="#ref-DODv6" title=""DoD IPv6 Standard Profiles For IPv6 Capable Products Version 5.0"">DODv6</a>]
and [<a href="#ref-USGv6" title=""A Profile for IPv6 in the U.S. Government - Version 1.0"">USGv6</a>]).
As it is not always possible for an implementer to know the exact
usage of IPv6 in a node, an overriding requirement for IPv6 nodes is
that they should adhere to Jon Postel's Robustness Principle: "Be
conservative in what you do, be liberal in what you accept from
others" [<a href="./rfc0793" title=""Transmission Control Protocol"">RFC0793</a>].
<span class="grey">Jankiewicz, et al. Informational [Page 4]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-5" ></span>
<span class="grey"><a href="./rfc6434">RFC 6434</a> IPv6 Node Requirements December 2011</span>
<span class="h3"><a class="selflink" id="section-1.1" href="#section-1.1">1.1</a>. Scope of This Document</span>
IPv6 covers many specifications. It is intended that IPv6 will be
deployed in many different situations and environments. Therefore,
it is important to develop requirements for IPv6 nodes to ensure
interoperability.
This document assumes that all IPv6 nodes meet the minimum
requirements specified here.
<span class="h3"><a class="selflink" id="section-1.2" href="#section-1.2">1.2</a>. Description of IPv6 Nodes</span>
From the Internet Protocol, Version 6 (IPv6) Specification [<a href="./rfc2460" title=""Internet Protocol, Version 6 (IPv6) Specification"">RFC2460</a>],
we have the following definitions:
IPv6 node - a device that implements IPv6.
IPv6 router - a node that forwards IPv6 packets not explicitly
addressed to itself.
IPv6 host - any node that is not a router.
<span class="h2"><a class="selflink" id="section-2" href="#section-2">2</a>. Requirements Language</span>
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in <a href="./rfc2119">RFC 2119</a> [<a href="./rfc2119" title=""Key words for use in RFCs to Indicate Requirement Levels"">RFC2119</a>].
<span class="h2"><a class="selflink" id="section-3" href="#section-3">3</a>. Abbreviations Used in This Document</span>
ATM Asynchronous Transfer Mode
AH Authentication Header
DAD Duplicate Address Detection
ESP Encapsulating Security Payload
ICMP Internet Control Message Protocol
IKE Internet Key Exchange
MIB Management Information Base
MLD Multicast Listener Discovery
MTU Maximum Transmission Unit
<span class="grey">Jankiewicz, et al. Informational [Page 5]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-6" ></span>
<span class="grey"><a href="./rfc6434">RFC 6434</a> IPv6 Node Requirements December 2011</span>
NA Neighbor Advertisement
NBMA Non-Broadcast Multiple Access
ND Neighbor Discovery
NS Neighbor Solicitation
NUD Neighbor Unreachability Detection
PPP Point-to-Point Protocol
<span class="h2"><a class="selflink" id="section-4" href="#section-4">4</a>. Sub-IP Layer</span>
An IPv6 node must include support for one or more IPv6 link-layer
specifications. Which link-layer specifications an implementation
should include will depend upon what link-layers are supported by the
hardware available on the system. It is possible for a conformant
IPv6 node to support IPv6 on some of its interfaces and not on
others.
As IPv6 is run over new layer 2 technologies, it is expected that new
specifications will be issued. In the following, we list some of the
layer 2 technologies for which an IPv6 specification has been
developed. It is provided for informational purposes only and may
not be complete.
- Transmission of IPv6 Packets over Ethernet Networks [<a href="./rfc2464" title=""Transmission of IPv6 Packets over Ethernet Networks"">RFC2464</a>]
- IPv6 over ATM Networks [<a href="./rfc2492" title=""IPv6 over ATM Networks"">RFC2492</a>]
- Transmission of IPv6 Packets over Frame Relay Networks
Specification [<a href="./rfc2590" title=""Transmission of IPv6 Packets over Frame Relay Networks Specification"">RFC2590</a>]
- Transmission of IPv6 Packets over IEEE 1394 Networks [<a href="./rfc3146" title=""Transmission of IPv6 Packets over IEEE 1394 Networks"">RFC3146</a>]
- Transmission of IPv6, IPv4, and Address Resolution Protocol (ARP)
Packets over Fibre Channel [<a href="./rfc4338" title=""Transmission of IPv6, IPv4, and Address Resolution Protocol (ARP) Packets over Fibre Channel"">RFC4338</a>]
- Transmission of IPv6 Packets over IEEE 802.15.4 Networks [<a href="./rfc4944" title=""Transmission of IPv6 Packets over IEEE 802.15.4 Networks"">RFC4944</a>]
- Transmission of IPv6 via the IPv6 Convergence Sublayer over IEEE
802.16 Networks [<a href="./rfc5121" title=""Transmission of IPv6 via the IPv6 Convergence Sublayer over IEEE 802.16 Networks"">RFC5121</a>]
- IP version 6 over PPP [<a href="./rfc5072" title=""IP Version 6 over PPP"">RFC5072</a>]
<span class="grey">Jankiewicz, et al. Informational [Page 6]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-7" ></span>
<span class="grey"><a href="./rfc6434">RFC 6434</a> IPv6 Node Requirements December 2011</span>
In addition to traditional physical link-layers, it is also possible
to tunnel IPv6 over other protocols. Examples include:
- Teredo: Tunneling IPv6 over UDP through Network Address
Translations (NATs) [<a href="./rfc4380" title=""Teredo: Tunneling IPv6 over UDP through Network Address Translations (NATs)"">RFC4380</a>]
- <a href="#section-3">Section 3</a> of "Basic Transition Mechanisms for IPv6 Hosts and
Routers" [<a href="./rfc4213" title=""Basic Transition Mechanisms for IPv6 Hosts and Routers"">RFC4213</a>]
<span class="h2"><a class="selflink" id="section-5" href="#section-5">5</a>. IP Layer</span>
<span class="h3"><a class="selflink" id="section-5.1" href="#section-5.1">5.1</a>. Internet Protocol Version 6 - <a href="./rfc2460">RFC 2460</a></span>
The Internet Protocol Version 6 is specified in [<a href="./rfc2460" title=""Internet Protocol, Version 6 (IPv6) Specification"">RFC2460</a>]. This
specification MUST be supported.
Any unrecognized extension headers or options MUST be processed as
described in <a href="./rfc2460">RFC 2460</a>.
The node MUST follow the packet transmission rules in <a href="./rfc2460">RFC 2460</a>.
Nodes MUST always be able to send, receive, and process fragment
headers. All conformant IPv6 implementations MUST be capable of
sending and receiving IPv6 packets; the forwarding functionality MAY
be supported. Overlapping fragments MUST be handled as described in
[<a href="./rfc5722" title=""Handling of Overlapping IPv6 Fragments"">RFC5722</a>].
<a href="./rfc2460">RFC 2460</a> specifies extension headers and the processing for these
headers.
An IPv6 node MUST be able to process these headers. An exception is
Routing Header type 0 (RH0), which was deprecated by [<a href="./rfc5095" title=""Deprecation of Type 0 Routing Headers in IPv6"">RFC5095</a>] due to
security concerns and which MUST be treated as an unrecognized
routing type.
All nodes SHOULD support the setting and use of the IPv6 Flow Label
field as defined in the IPv6 Flow Label specification [<a href="./rfc6437" title=""IPv6 Flow Label Specification"">RFC6437</a>].
Forwarding nodes such as routers and load distributors MUST NOT
depend only on Flow Label values being uniformly distributed. It is
RECOMMENDED that source hosts support the flow label by setting the
Flow Label field for all packets of a given flow to the same value
chosen from an approximation to a discrete uniform distribution.
<span class="grey">Jankiewicz, et al. Informational [Page 7]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-8" ></span>
<span class="grey"><a href="./rfc6434">RFC 6434</a> IPv6 Node Requirements December 2011</span>
<span class="h3"><a class="selflink" id="section-5.2" href="#section-5.2">5.2</a>. Neighbor Discovery for IPv6 - <a href="./rfc4861">RFC 4861</a></span>
Neighbor Discovery is defined in [<a href="./rfc4861" title=""Neighbor Discovery for IP version 6 (IPv6)"">RFC4861</a>]; the definition was
updated by [<a href="./rfc5942" title=""IPv6 Subnet Model: The Relationship between Links and Subnet Prefixes"">RFC5942</a>]. Neighbor Discovery SHOULD be supported. <a href="./rfc4861">RFC</a>
<a href="./rfc4861">4861</a> states:
Unless specified otherwise (in a document that covers operating IP
over a particular link type) this document applies to all link
types. However, because ND uses link-layer multicast for some of
its services, it is possible that on some link types (e.g., Non-
Broadcast Multi-Access (NBMA) links), alternative protocols or
mechanisms to implement those services will be specified (in the
appropriate document covering the operation of IP over a
particular link type). The services described in this document
that are not directly dependent on multicast, such as Redirects,
next-hop determination, Neighbor Unreachability Detection, etc.,
are expected to be provided as specified in this document. The
details of how one uses ND on NBMA links are addressed in
[<a href="./rfc2491" title=""IPv6 over Non-Broadcast Multiple Access (NBMA) networks"">RFC2491</a>].
Some detailed analysis of Neighbor Discovery follows:
Router Discovery is how hosts locate routers that reside on an
attached link. Hosts MUST support Router Discovery functionality.
Prefix Discovery is how hosts discover the set of address prefixes
that define which destinations are on-link for an attached link.
Hosts MUST support Prefix Discovery.
Hosts MUST also implement Neighbor Unreachability Detection (NUD) for
all paths between hosts and neighboring nodes. NUD is not required
for paths between routers. However, all nodes MUST respond to
unicast Neighbor Solicitation (NS) messages.
Hosts MUST support the sending of Router Solicitations and the
receiving of Router Advertisements. The ability to understand
individual Router Advertisement options is dependent on supporting
the functionality making use of the particular option.
All nodes MUST support the sending and receiving of Neighbor
Solicitation (NS) and Neighbor Advertisement (NA) messages. NS and
NA messages are required for Duplicate Address Detection (DAD).
Hosts SHOULD support the processing of Redirect functionality.
Routers MUST support the sending of Redirects, though not necessarily
for every individual packet (e.g., due to rate limiting). Redirects
are only useful on networks supporting hosts. In core networks
dominated by routers, Redirects are typically disabled. The sending
<span class="grey">Jankiewicz, et al. Informational [Page 8]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-9" ></span>
<span class="grey"><a href="./rfc6434">RFC 6434</a> IPv6 Node Requirements December 2011</span>
of Redirects SHOULD be disabled by default on backbone routers. They
MAY be enabled by default on routers intended to support hosts on
edge networks.
"IPv6 Host-to-Router Load Sharing" [<a href="./rfc4311" title=""IPv6 Host-to-Router Load Sharing"">RFC4311</a>] includes additional
recommendations on how to select from a set of available routers.
[<a href="./rfc4311" title=""IPv6 Host-to-Router Load Sharing"">RFC4311</a>] SHOULD be supported.
<span class="h3"><a class="selflink" id="section-5.3" href="#section-5.3">5.3</a>. Default Router Preferences and More-Specific Routes - <a href="./rfc4191">RFC 4191</a></span>
"Default Router Preferences and More-Specific Routes" [<a href="./rfc4191" title=""Default Router Preferences and More-Specific Routes"">RFC4191</a>]
provides support for nodes attached to multiple (different) networks,
each providing routers that advertise themselves as default routers
via Router Advertisements. In some scenarios, one router may provide
connectivity to destinations the other router does not, and choosing
the "wrong" default router can result in reachability failures. In
such cases, <a href="./rfc4191">RFC 4191</a> can help.
Small Office/Home Office (SOHO) deployments supported by routers
adhering to [<a href="./rfc6204" title=""Basic Requirements for IPv6 Customer Edge Routers"">RFC6204</a>] use <a href="./rfc4191">RFC 4191</a> to advertise routes to certain
local destinations. Consequently, nodes that will be deployed in
SOHO environments SHOULD implement <a href="./rfc4191">RFC 4191</a>.
<span class="h3"><a class="selflink" id="section-5.4" href="#section-5.4">5.4</a>. SEcure Neighbor Discovery (SEND) - <a href="./rfc3971">RFC 3971</a></span>
SEND [<a href="./rfc3971" title=""SEcure Neighbor Discovery (SEND)"">RFC3971</a>] and Cryptographically Generated Address (CGA)
[<a href="./rfc3972" title=""Cryptographically Generated Addresses (CGA)"">RFC3972</a>] provide a way to secure the message exchanges of Neighbor
Discovery. SEND is a new technology in that it has no IPv4
counterpart, but it has significant potential to address certain
classes of spoofing attacks. While there have been some
implementations of SEND, there has been only limited deployment
experience to date in using the technology. In addition, the IETF
working group Cga & Send maIntenance (csi) is currently working on
additional extensions intended to make SEND more attractive for
deployment.
At this time, SEND is considered optional, and IPv6 nodes MAY provide
SEND functionality.
<span class="h3"><a class="selflink" id="section-5.5" href="#section-5.5">5.5</a>. IPv6 Router Advertisement Flags Option - <a href="./rfc5175">RFC 5175</a></span>
Router Advertisements include an 8-bit field of single-bit Router
Advertisement flags. The Router Advertisement Flags Option extends
the number of available flag bits by 48 bits. At the time of this
writing, 6 of the original 8 single-bit flags have been assigned,
while 2 remain available for future assignment. No flags have been
defined that make use of the new option, and thus, strictly speaking,
there is no requirement to implement the option today. However,
<span class="grey">Jankiewicz, et al. Informational [Page 9]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-10" ></span>
<span class="grey"><a href="./rfc6434">RFC 6434</a> IPv6 Node Requirements December 2011</span>
implementations that are able to pass unrecognized options to a
higher-level entity that may be able to understand them (e.g., a
user-level process using a "raw socket" facility) MAY take steps to
handle the option in anticipation of a future usage.
<span class="h3"><a class="selflink" id="section-5.6" href="#section-5.6">5.6</a>. Path MTU Discovery and Packet Size</span>
<span class="h4"><a class="selflink" id="section-5.6.1" href="#section-5.6.1">5.6.1</a>. Path MTU Discovery - <a href="./rfc1981">RFC 1981</a></span>
"Path MTU Discovery for IP version 6" [<a href="./rfc1981" title=""Path MTU Discovery for IP version 6"">RFC1981</a>] SHOULD be supported.
From [<a href="./rfc2460" title=""Internet Protocol, Version 6 (IPv6) Specification"">RFC2460</a>]:
It is strongly recommended that IPv6 nodes implement Path MTU
Discovery [<a href="./rfc1981" title=""Path MTU Discovery for IP version 6"">RFC1981</a>], in order to discover and take advantage of
path MTUs greater than 1280 octets. However, a minimal IPv6
implementation (e.g., in a boot ROM) may simply restrict itself to
sending packets no larger than 1280 octets, and omit
implementation of Path MTU Discovery.
The rules in [<a href="./rfc2460" title=""Internet Protocol, Version 6 (IPv6) Specification"">RFC2460</a>] and [<a href="./rfc5722" title=""Handling of Overlapping IPv6 Fragments"">RFC5722</a>] MUST be followed for packet
fragmentation and reassembly.
One operational issue with Path MTU Discovery occurs when firewalls
block ICMP Packet Too Big messages. Path MTU Discovery relies on
such messages to determine what size messages can be successfully
sent. "Packetization Layer Path MTU Discovery" [<a href="./rfc4821" title=""Packetization Layer Path MTU Discovery"">RFC4821</a>] avoids
having a dependency on Packet Too Big messages.
<span class="h3"><a class="selflink" id="section-5.7" href="#section-5.7">5.7</a>. IPv6 Jumbograms - <a href="./rfc2675">RFC 2675</a></span>
IPv6 Jumbograms [<a href="./rfc2675" title=""IPv6 Jumbograms"">RFC2675</a>] are an optional extension that allow the
sending of IP datagrams larger than 65.535 bytes. IPv6 Jumbograms
make use of IPv6 hop-by-hop options and are only suitable on paths in
which every hop and link are capable of supporting Jumbograms (e.g.,
within a campus or datacenter). To date, few implementations exist,
and there is essentially no reported experience from usage.
Consequently, IPv6 Jumbograms [<a href="./rfc2675" title=""IPv6 Jumbograms"">RFC2675</a>] remain optional at this time.
<span class="h3"><a class="selflink" id="section-5.8" href="#section-5.8">5.8</a>. ICMP for the Internet Protocol Version 6 (IPv6) - <a href="./rfc4443">RFC 4443</a></span>
ICMPv6 [<a href="./rfc4443" title=""Internet Control Message Protocol (ICMPv6) for the Internet Protocol Version 6 (IPv6) Specification"">RFC4443</a>] MUST be supported. "Extended ICMP to Support Multi-
Part Messages" [<a href="./rfc4884" title=""Extended ICMP to Support Multi-Part Messages"">RFC4884</a>] MAY be supported.
<span class="grey">Jankiewicz, et al. Informational [Page 10]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-11" ></span>
<span class="grey"><a href="./rfc6434">RFC 6434</a> IPv6 Node Requirements December 2011</span>
<span class="h3"><a class="selflink" id="section-5.9" href="#section-5.9">5.9</a>. Addressing</span>
<span class="h4"><a class="selflink" id="section-5.9.1" href="#section-5.9.1">5.9.1</a>. IP Version 6 Addressing Architecture - <a href="./rfc4291">RFC 4291</a></span>
The IPv6 Addressing Architecture [<a href="./rfc4291" title=""IP Version 6 Addressing Architecture"">RFC4291</a>] MUST be supported.
<span class="h4"><a class="selflink" id="section-5.9.2" href="#section-5.9.2">5.9.2</a>. IPv6 Stateless Address Autoconfiguration - <a href="./rfc4862">RFC 4862</a></span>
Hosts MUST support IPv6 Stateless Address Autoconfiguration as
defined in [<a href="./rfc4862" title=""IPv6 Stateless Address Autoconfiguration"">RFC4862</a>]. Configuration of static address(es) may be
supported as well.
Nodes that are routers MUST be able to generate link-local addresses
as described in [<a href="./rfc4862" title=""IPv6 Stateless Address Autoconfiguration"">RFC4862</a>].
From <a href="./rfc4862">RFC 4862</a>:
The autoconfiguration process specified in this document applies
only to hosts and not routers. Since host autoconfiguration uses
information advertised by routers, routers will need to be
configured by some other means. However, it is expected that
routers will generate link-local addresses using the mechanism
described in this document. In addition, routers are expected to
successfully pass the Duplicate Address Detection procedure
described in this document on all addresses prior to assigning
them to an interface.
All nodes MUST implement Duplicate Address Detection. Quoting from
<a href="./rfc4862#section-5.4">Section 5.4 of RFC 4862</a>:
Duplicate Address Detection MUST be performed on all unicast
addresses prior to assigning them to an interface, regardless of
whether they are obtained through stateless autoconfiguration,
DHCPv6, or manual configuration, with the following [exceptions
noted therein].
"Optimistic Duplicate Address Detection (DAD) for IPv6" [<a href="./rfc4429" title=""Optimistic Duplicate Address Detection (DAD) for IPv6"">RFC4429</a>]
specifies a mechanism to reduce delays associated with generating
addresses via Stateless Address Autoconfiguration [<a href="./rfc4862" title=""IPv6 Stateless Address Autoconfiguration"">RFC4862</a>]. <a href="./rfc4429">RFC</a>
<a href="./rfc4429">4429</a> was developed in conjunction with Mobile IPv6 in order to reduce
the time needed to acquire and configure addresses as devices quickly
move from one network to another, and it is desirable to minimize
transition delays. For general purpose devices, <a href="./rfc4429">RFC 4429</a> remains
optional at this time.
<span class="grey">Jankiewicz, et al. Informational [Page 11]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-12" ></span>
<span class="grey"><a href="./rfc6434">RFC 6434</a> IPv6 Node Requirements December 2011</span>
<span class="h4"><a class="selflink" id="section-5.9.3" href="#section-5.9.3">5.9.3</a>. Privacy Extensions for Address Configuration in IPv6 - <a href="./rfc4941">RFC 4941</a></span>
Privacy Extensions for Stateless Address Autoconfiguration [<a href="./rfc4941" title=""Privacy Extensions for Stateless Address Autoconfiguration in IPv6"">RFC4941</a>]
addresses a specific problem involving a client device whose user is
concerned about its activity or location being tracked. The problem
arises both for a static client and for one that regularly changes
its point of attachment to the Internet. When using Stateless
Address Autoconfiguration [<a href="./rfc4862" title=""IPv6 Stateless Address Autoconfiguration"">RFC4862</a>], the Interface Identifier portion
of formed addresses stays constant and is globally unique. Thus,
although a node's global IPv6 address will change if it changes its
point of attachment, the Interface Identifier portion of those
addresses remains the same, making it possible for servers to track
the location of an individual device as it moves around or its
pattern of activity if it remains in one place. This may raise
privacy concerns as described in [<a href="./rfc4862" title=""IPv6 Stateless Address Autoconfiguration"">RFC4862</a>].
In such situations, <a href="./rfc4941">RFC 4941</a> SHOULD be implemented. In other cases,
such as with dedicated servers in a data center, <a href="./rfc4941">RFC 4941</a> provides
limited or no benefit.
Implementers of <a href="./rfc4941">RFC 4941</a> should be aware that certain addresses are
reserved and should not be chosen for use as temporary addresses.
Consult "Reserved IPv6 Interface Identifiers" [<a href="./rfc5453" title=""Reserved IPv6 Interface Identifiers"">RFC5453</a>] for more
details.
<span class="h4"><a class="selflink" id="section-5.9.4" href="#section-5.9.4">5.9.4</a>. Default Address Selection for IPv6 - <a href="./rfc3484">RFC 3484</a></span>
The rules specified in the Default Address Selection for IPv6
[<a href="./rfc3484" title=""Default Address Selection for Internet Protocol version 6 (IPv6)"">RFC3484</a>] document MUST be implemented. IPv6 nodes will need to deal
with multiple addresses configured simultaneously.
<span class="h4"><a class="selflink" id="section-5.9.5" href="#section-5.9.5">5.9.5</a>. Stateful Address Autoconfiguration (DHCPv6) - <a href="./rfc3315">RFC 3315</a></span>
DHCPv6 [<a href="./rfc3315" title=""Dynamic Host Configuration Protocol for IPv6 (DHCPv6)"">RFC3315</a>] can be used to obtain and configure addresses. In
general, a network may provide for the configuration of addresses
through Router Advertisements, DHCPv6, or both. There will be a wide
range of IPv6 deployment models and differences in address assignment
requirements, some of which may require DHCPv6 for address
assignment. Consequently, all hosts SHOULD implement address
configuration via DHCPv6.
In the absence of a router, IPv6 nodes using DHCP for address
assignment MAY initiate DHCP to obtain IPv6 addresses and other
configuration information, as described in <a href="./rfc4862#section-5.5.2">Section 5.5.2 of
[RFC4862]</a>.
<span class="grey">Jankiewicz, et al. Informational [Page 12]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-13" ></span>
<span class="grey"><a href="./rfc6434">RFC 6434</a> IPv6 Node Requirements December 2011</span>
<span class="h3"><a class="selflink" id="section-5.10" href="#section-5.10">5.10</a>. Multicast Listener Discovery (MLD) for IPv6</span>
Nodes that need to join multicast groups MUST support MLDv1
[<a href="./rfc2710" title=""Multicast Listener Discovery (MLD) for IPv6"">RFC2710</a>]. MLDv1 is needed by any node that is expected to receive
and process multicast traffic. Note that Neighbor Discovery (as used
on most link types -- see <a href="#section-5.2">Section 5.2</a>) depends on multicast and
requires that nodes join Solicited Node multicast addresses.
MLDv2 [<a href="./rfc3810" title=""Multicast Listener Discovery Version 2 (MLDv2) for IPv6"">RFC3810</a>] extends the functionality of MLDv1 by supporting
Source-Specific Multicast. The original MLDv2 protocol [<a href="./rfc3810" title=""Multicast Listener Discovery Version 2 (MLDv2) for IPv6"">RFC3810</a>]
supporting Source-Specific Multicast [<a href="./rfc4607" title=""Source-Specific Multicast for IP"">RFC4607</a>] supports two types of
"filter modes". Using an INCLUDE filter, a node indicates a
multicast group along with a list of senders for the group from which
it wishes to receive traffic. Using an EXCLUDE filter, a node
indicates a multicast group along with a list of senders from which
it wishes to exclude receiving traffic. In practice, operations to
block source(s) using EXCLUDE mode are rarely used but add
considerable implementation complexity to MLDv2. Lightweight MLDv2
[<a href="./rfc5790" title=""Lightweight Internet Group Management Protocol Version 3 (IGMPv3) and Multicast Listener Discovery Version 2 (MLDv2) Protocols"">RFC5790</a>] is a simplified subset of the original MLDv2 specification
that omits EXCLUDE filter mode to specify undesired source(s).
Nodes SHOULD implement either MLDv2 [<a href="./rfc3810" title=""Multicast Listener Discovery Version 2 (MLDv2) for IPv6"">RFC3810</a>] or Lightweight MLDv2
[<a href="./rfc5790" title=""Lightweight Internet Group Management Protocol Version 3 (IGMPv3) and Multicast Listener Discovery Version 2 (MLDv2) Protocols"">RFC5790</a>]. Specifically, nodes supporting applications using Source-
Specific Multicast that expect to take advantage of MLDv2's EXCLUDE
functionality [<a href="./rfc3810" title=""Multicast Listener Discovery Version 2 (MLDv2) for IPv6"">RFC3810</a>] MUST support MLDv2 as defined in [<a href="./rfc3810" title=""Multicast Listener Discovery Version 2 (MLDv2) for IPv6"">RFC3810</a>],
[<a href="./rfc4604" title=""Using Internet Group Management Protocol Version 3 (IGMPv3) and Multicast Listener Discovery Protocol Version 2 (MLDv2) for Source- Specific Multicast"">RFC4604</a>], and [<a href="./rfc4607" title=""Source-Specific Multicast for IP"">RFC4607</a>]. Nodes supporting applications that expect
to only take advantage of MLDv2's INCLUDE functionality as well as
Any-Source Multicast will find it sufficient to support MLDv2 as
defined in [<a href="./rfc5790" title=""Lightweight Internet Group Management Protocol Version 3 (IGMPv3) and Multicast Listener Discovery Version 2 (MLDv2) Protocols"">RFC5790</a>].
If a node only supports applications that use Any-Source Multicast
(i.e, they do not use Source-Specific Multicast), implementing MLDv1
[<a href="./rfc2710" title=""Multicast Listener Discovery (MLD) for IPv6"">RFC2710</a>] is sufficient. In all cases, however, nodes are strongly
encouraged to implement MLDv2 or Lightweight MLDv2 rather than MLDv1,
as the presence of a single MLDv1 participant on a link requires that
all other nodes on the link operate in version 1 compatibility mode.
When MLDv1 is used, the rules in the Source Address Selection for the
Multicast Listener Discovery (MLD) Protocol [<a href="./rfc3590" title=""Source Address Selection for the Multicast Listener Discovery (MLD) Protocol"">RFC3590</a>] MUST be
followed.
<span class="h2"><a class="selflink" id="section-6" href="#section-6">6</a>. DHCP versus Router Advertisement Options for Host Configuration</span>
In IPv6, there are two main protocol mechanisms for propagating
configuration information to hosts: Router Advertisements (RAs) and
DHCP. Historically, RA options have been restricted to those deemed
essential for basic network functioning and for which all nodes are
configured with exactly the same information. Examples include the
<span class="grey">Jankiewicz, et al. Informational [Page 13]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-14" ></span>
<span class="grey"><a href="./rfc6434">RFC 6434</a> IPv6 Node Requirements December 2011</span>
Prefix Information Options, the MTU option, etc. On the other hand,
DHCP has generally been preferred for configuration of more general
parameters and for parameters that may be client-specific. That
said, identifying the exact line on whether a particular option
should be configured via DHCP versus an RA option has not always been
easy. Generally speaking, however, there has been a desire to define
only one mechanism for configuring a given option, rather than
defining multiple (different) ways of configuring the same
information.
One issue with having multiple ways of configuring the same
information is that interoperability suffers if a host chooses one
mechanism but the network operator chooses a different mechanism.
For "closed" environments, where the network operator has significant
influence over what devices connect to the network and thus what
configuration mechanisms they support, the operator may be able to
ensure that a particular mechanism is supported by all connected
hosts. In more open environments, however, where arbitrary devices
may connect (e.g., a WIFI hotspot), problems can arise. To maximize
interoperability in such environments, hosts would need to implement
multiple configuration mechanisms to ensure interoperability.
Originally, in IPv6, configuring information about DNS servers was
performed exclusively via DHCP. In 2007, an RA option was defined
but was published as Experimental [<a href="./rfc5006" title=""IPv6 Router Advertisement Option for DNS Configuration"">RFC5006</a>]. In 2010, "IPv6 Router
Advertisement Options for DNS Configuration" [<a href="./rfc6106" title=""IPv6 Router Advertisement Options for DNS Configuration"">RFC6106</a>] was published
as a Standards Track document. Consequently, DNS configuration
information can now be learned either through DHCP or through RAs.
Hosts will need to decide which mechanism (or whether both) should be
implemented. Specific guidance regarding DNS server discovery is
discussed in <a href="#section-7">Section 7</a>.
<span class="h2"><a class="selflink" id="section-7" href="#section-7">7</a>. DNS and DHCP</span>
<span class="h3"><a class="selflink" id="section-7.1" href="#section-7.1">7.1</a>. DNS</span>
DNS is described in [<a href="./rfc1034" title=""Domain names - concepts and facilities"">RFC1034</a>], [<a href="./rfc1035" title=""Domain names - implementation and specification"">RFC1035</a>], [<a href="./rfc3363" title=""Representing Internet Protocol version 6 (IPv6) Addresses in the Domain Name System (DNS)"">RFC3363</a>], and [<a href="./rfc3596" title=""DNS Extensions to Support IP Version 6"">RFC3596</a>].
Not all nodes will need to resolve names; those that will never need
to resolve DNS names do not need to implement resolver functionality.
However, the ability to resolve names is a basic infrastructure
capability on which applications rely, and most nodes will need to
provide support. All nodes SHOULD implement stub-resolver [<a href="./rfc1034" title=""Domain names - concepts and facilities"">RFC1034</a>]
functionality, as in <a href="./rfc1034#section-5.3.1">[RFC1034], Section 5.3.1</a>, with support for:
- AAAA type Resource Records [<a href="./rfc3596" title=""DNS Extensions to Support IP Version 6"">RFC3596</a>];
- reverse addressing in ip6.arpa using PTR records [<a href="./rfc3596" title=""DNS Extensions to Support IP Version 6"">RFC3596</a>];
<span class="grey">Jankiewicz, et al. Informational [Page 14]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-15" ></span>
<span class="grey"><a href="./rfc6434">RFC 6434</a> IPv6 Node Requirements December 2011</span>
- Extension Mechanisms for DNS (EDNS0) [<a href="./rfc2671" title=""Extension Mechanisms for DNS (EDNS0)"">RFC2671</a>] to allow for DNS
packet sizes larger than 512 octets.
Those nodes are RECOMMENDED to support DNS security extensions
[<a href="./rfc4033" title=""DNS Security Introduction and Requirements"">RFC4033</a>] [<a href="./rfc4034" title=""Resource Records for the DNS Security Extensions"">RFC4034</a>] [<a href="./rfc4035" title=""Protocol Modifications for the DNS Security Extensions"">RFC4035</a>].
Those nodes are NOT RECOMMENDED to support the experimental A6
Resource Records [<a href="./rfc3363" title=""Representing Internet Protocol version 6 (IPv6) Addresses in the Domain Name System (DNS)"">RFC3363</a>].
<span class="h3"><a class="selflink" id="section-7.2" href="#section-7.2">7.2</a>. Dynamic Host Configuration Protocol for IPv6 (DHCPv6) - <a href="./rfc3315">RFC 3315</a></span>
<span class="h4"><a class="selflink" id="section-7.2.1" href="#section-7.2.1">7.2.1</a>. Other Configuration Information</span>
IPv6 nodes use DHCP [<a href="./rfc3315" title=""Dynamic Host Configuration Protocol for IPv6 (DHCPv6)"">RFC3315</a>] to obtain address configuration
information (see <a href="#section-5.9.5">Section 5.9.5</a>) and to obtain additional (non-
address) configuration. If a host implementation supports
applications or other protocols that require configuration that is
only available via DHCP, hosts SHOULD implement DHCP. For
specialized devices on which no such configuration need is present,
DHCP may not be necessary.
An IPv6 node can use the subset of DHCP (described in [<a href="./rfc3736" title=""Stateless Dynamic Host Configuration Protocol (DHCP) Service for IPv6"">RFC3736</a>]) to
obtain other configuration information.
<span class="h4"><a class="selflink" id="section-7.2.2" href="#section-7.2.2">7.2.2</a>. Use of Router Advertisements in Managed Environments</span>
Nodes using the Dynamic Host Configuration Protocol for IPv6 (DHCPv6)
are expected to determine their default router information and on-
link prefix information from received Router Advertisements.
<span class="h3"><a class="selflink" id="section-7.3" href="#section-7.3">7.3</a>. IPv6 Router Advertisement Options for DNS Configuration - <a href="./rfc6106">RFC 6106</a></span>
Router Advertisements have historically limited options to those that
are critical to basic IPv6 functioning. Originally, DNS
configuration was not included as an RA option, and DHCP was the
recommended way to obtain DNS configuration information. Over time,
the thinking surrounding such an option has evolved. It is now
generally recognized that few nodes can function adequately without
having access to a working DNS resolver. [<a href="./rfc5006" title=""IPv6 Router Advertisement Option for DNS Configuration"">RFC5006</a>] was published as
an Experimental document in 2007, and recently, a revised version was
placed on the Standards Track [<a href="./rfc6106" title=""IPv6 Router Advertisement Options for DNS Configuration"">RFC6106</a>].
Implementations SHOULD implement the DNS RA option [<a href="./rfc6106" title=""IPv6 Router Advertisement Options for DNS Configuration"">RFC6106</a>].
<span class="grey">Jankiewicz, et al. Informational [Page 15]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-16" ></span>
<span class="grey"><a href="./rfc6434">RFC 6434</a> IPv6 Node Requirements December 2011</span>
<span class="h2"><a class="selflink" id="section-8" href="#section-8">8</a>. IPv4 Support and Transition</span>
IPv6 nodes MAY support IPv4.
<span class="h3"><a class="selflink" id="section-8.1" href="#section-8.1">8.1</a>. Transition Mechanisms</span>
<span class="h4"><a class="selflink" id="section-8.1.1" href="#section-8.1.1">8.1.1</a>. Basic Transition Mechanisms for IPv6 Hosts and Routers - <a href="./rfc4213">RFC</a></span>
<a href="./rfc4213">4213</a>
If an IPv6 node implements dual stack and tunneling, then [<a href="./rfc4213" title=""Basic Transition Mechanisms for IPv6 Hosts and Routers"">RFC4213</a>]
MUST be supported.
<span class="h2"><a class="selflink" id="section-9" href="#section-9">9</a>. Application Support</span>
<span class="h3"><a class="selflink" id="section-9.1" href="#section-9.1">9.1</a>. Textual Representation of IPv6 Addresses - <a href="./rfc5952">RFC 5952</a></span>
Software that allows users and operators to input IPv6 addresses in
text form SHOULD support "A Recommendation for IPv6 Address Text
Representation" [<a href="./rfc5952" title=""A Recommendation for IPv6 Address Text Representation"">RFC5952</a>].
<span class="h3"><a class="selflink" id="section-9.2" href="#section-9.2">9.2</a>. Application Programming Interfaces (APIs)</span>
There are a number of IPv6-related APIs. This document does not
mandate the use of any, because the choice of API does not directly
relate to on-the-wire behavior of protocols. Implementers, however,
would be advised to consider providing a common API or reviewing
existing APIs for the type of functionality they provide to
applications.
"Basic Socket Interface Extensions for IPv6" [<a href="./rfc3493" title=""Basic Socket Interface Extensions for IPv6"">RFC3493</a>] provides IPv6
functionality used by typical applications. Implementers should note
that <a href="./rfc3493">RFC3493</a> has been picked up and further standardized by the
Portable Operating System Interface (POSIX) [<a href="#ref-POSIX" title=""IEEE Std. 1003.1-2008 Standard for Information Technology -- Portable Operating System Interface (POSIX), ISO/IEC 9945:2009"">POSIX</a>].
"Advanced Sockets Application Program Interface (API) for IPv6"
[<a href="./rfc3542" title=""Advanced Sockets Application Program Interface (API) for IPv6"">RFC3542</a>] provides access to advanced IPv6 features needed by
diagnostic and other more specialized applications.
"IPv6 Socket API for Source Address Selection" [<a href="./rfc5014" title=""IPv6 Socket API for Source Address Selection"">RFC5014</a>] provides
facilities that allow an application to override the default Source
Address Selection rules of [<a href="./rfc3484" title=""Default Address Selection for Internet Protocol version 6 (IPv6)"">RFC3484</a>].
"Socket Interface Extensions for Multicast Source Filters" [<a href="./rfc3678" title=""Socket Interface Extensions for Multicast Source Filters"">RFC3678</a>]
provides support for expressing source filters on multicast group
memberships.
<span class="grey">Jankiewicz, et al. Informational [Page 16]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-17" ></span>
<span class="grey"><a href="./rfc6434">RFC 6434</a> IPv6 Node Requirements December 2011</span>
"Extension to Sockets API for Mobile IPv6" [<a href="./rfc4584" title=""Extension to Sockets API for Mobile IPv6"">RFC4584</a>] provides
application support for accessing and enabling Mobile IPv6 [<a href="./rfc6275" title=""Mobility Support in IPv6"">RFC6275</a>]
features.
<span class="h2"><a class="selflink" id="section-10" href="#section-10">10</a>. Mobility</span>
Mobile IPv6 [<a href="./rfc6275" title=""Mobility Support in IPv6"">RFC6275</a>] and associated specifications [<a href="./rfc3776" title=""Using IPsec to Protect Mobile IPv6 Signaling Between Mobile Nodes and Home Agents"">RFC3776</a>]
[<a href="./rfc4877" title=""Mobile IPv6 Operation with IKEv2 and the Revised IPsec Architecture"">RFC4877</a>] allow a node to change its point of attachment within the
Internet, while maintaining (and using) a permanent address. All
communication using the permanent address continues to proceed as
expected even as the node moves around. The definition of Mobile IP
includes requirements for the following types of nodes:
- mobile nodes
- correspondent nodes with support for route optimization
- home agents
- all IPv6 routers
At the present time, Mobile IP has seen only limited implementation
and no significant deployment, partly because it originally assumed
an IPv6-only environment rather than a mixed IPv4/IPv6 Internet.
Recently, additional work has been done to support mobility in mixed-
mode IPv4 and IPv6 networks [<a href="./rfc5555" title=""Mobile IPv6 Support for Dual Stack Hosts and Routers"">RFC5555</a>].
More usage and deployment experience is needed with mobility before
any specific approach can be recommended for broad implementation in
all hosts and routers. Consequently, [<a href="./rfc6275" title=""Mobility Support in IPv6"">RFC6275</a>], [<a href="./rfc5555" title=""Mobile IPv6 Support for Dual Stack Hosts and Routers"">RFC5555</a>], and
associated standards such as [<a href="./rfc4877" title=""Mobile IPv6 Operation with IKEv2 and the Revised IPsec Architecture"">RFC4877</a>] are considered a MAY at this
time.
<span class="h2"><a class="selflink" id="section-11" href="#section-11">11</a>. Security</span>
This section describes the specification for security for IPv6 nodes.
Achieving security in practice is a complex undertaking. Operational
procedures, protocols, key distribution mechanisms, certificate
management approaches, etc., are all components that impact the level
of security actually achieved in practice. More importantly,
deficiencies or a poor fit in any one individual component can
significantly reduce the overall effectiveness of a particular
security approach.
<span class="grey">Jankiewicz, et al. Informational [Page 17]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-18" ></span>
<span class="grey"><a href="./rfc6434">RFC 6434</a> IPv6 Node Requirements December 2011</span>
IPsec provides channel security at the Internet layer, making it
possible to provide secure communication for all (or a subset of)
communication flows at the IP layer between pairs of internet nodes.
IPsec provides sufficient flexibility and granularity that individual
TCP connections can (selectively) be protected, etc.
Although IPsec can be used with manual keying in some cases, such
usage has limited applicability and is not recommended.
A range of security technologies and approaches proliferate today
(e.g., IPsec, Transport Layer Security (TLS), Secure SHell (SSH),
etc.) No one approach has emerged as an ideal technology for all
needs and environments. Moreover, IPsec is not viewed as the ideal
security technology in all cases and is unlikely to displace the
others.
Previously, IPv6 mandated implementation of IPsec and recommended the
key management approach of IKE. This document updates that
recommendation by making support of the IPsec Architecture [<a href="./rfc4301" title=""Security Architecture for the Internet Protocol"">RFC4301</a>]
a SHOULD for all IPv6 nodes. Note that the IPsec Architecture
requires (e.g., <a href="./rfc4301#section-4.5">Section 4.5 of RFC 4301</a>) the implementation of both
manual and automatic key management. Currently, the default
automated key management protocol to implement is IKEv2 [<a href="./rfc5996" title=""Internet Key Exchange Protocol Version 2 (IKEv2)"">RFC5996</a>].
This document recognizes that there exists a range of device types
and environments where approaches to security other than IPsec can be
justified. For example, special-purpose devices may support only a
very limited number or type of applications, and an application-
specific security approach may be sufficient for limited management
or configuration capabilities. Alternatively, some devices may run
on extremely constrained hardware (e.g., sensors) where the full
IPsec Architecture is not justified.
<span class="h3"><a class="selflink" id="section-11.1" href="#section-11.1">11.1</a>. Requirements</span>
"Security Architecture for the Internet Protocol" [<a href="./rfc4301" title=""Security Architecture for the Internet Protocol"">RFC4301</a>] SHOULD be
supported by all IPv6 nodes. Note that the IPsec Architecture
requires (e.g., <a href="./rfc4301#section-4.5">Section 4.5 of [RFC4301]</a>) the implementation of both
manual and automatic key management. Currently, the default
automated key management protocol to implement is IKEv2. As required
in [<a href="./rfc4301" title=""Security Architecture for the Internet Protocol"">RFC4301</a>], IPv6 nodes implementing the IPsec Architecture MUST
implement ESP [<a href="./rfc4303" title=""IP Encapsulating Security Payload (ESP)"">RFC4303</a>] and MAY implement AH [<a href="./rfc4302" title=""IP Authentication Header"">RFC4302</a>].
<span class="grey">Jankiewicz, et al. Informational [Page 18]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-19" ></span>
<span class="grey"><a href="./rfc6434">RFC 6434</a> IPv6 Node Requirements December 2011</span>
<span class="h3"><a class="selflink" id="section-11.2" href="#section-11.2">11.2</a>. Transforms and Algorithms</span>
The current set of mandatory-to-implement algorithms for the IPsec
Architecture are defined in "Cryptographic Algorithm Implementation
Requirements For ESP and AH" [<a href="./rfc4835" title=""Cryptographic Algorithm Implementation Requirements for Encapsulating Security Payload (ESP) and Authentication Header (AH)"">RFC4835</a>]. IPv6 nodes implementing the
IPsec Architecture MUST conform to the requirements in [<a href="./rfc4835" title=""Cryptographic Algorithm Implementation Requirements for Encapsulating Security Payload (ESP) and Authentication Header (AH)"">RFC4835</a>].
Preferred cryptographic algorithms often change more frequently than
security protocols. Therefore, implementations MUST allow for
migration to new algorithms, as <a href="./rfc4835">RFC 4835</a> is replaced or updated in
the future.
The current set of mandatory-to-implement algorithms for IKEv2 are
defined in "Cryptographic Algorithms for Use in the Internet Key
Exchange Version 2 (IKEv2)" [<a href="./rfc4307" title=""Cryptographic Algorithms for Use in the Internet Key Exchange Version 2 (IKEv2)"">RFC4307</a>]. IPv6 nodes implementing IKEv2
MUST conform to the requirements in [<a href="./rfc4307" title=""Cryptographic Algorithms for Use in the Internet Key Exchange Version 2 (IKEv2)"">RFC4307</a>] and/or any future
updates or replacements to [<a href="./rfc4307" title=""Cryptographic Algorithms for Use in the Internet Key Exchange Version 2 (IKEv2)"">RFC4307</a>].
<span class="h2"><a class="selflink" id="section-12" href="#section-12">12</a>. Router-Specific Functionality</span>
This section defines general host considerations for IPv6 nodes that
act as routers. Currently, this section does not discuss routing-
specific requirements.
<span class="h3"><a class="selflink" id="section-12.1" href="#section-12.1">12.1</a>. IPv6 Router Alert Option - <a href="./rfc2711">RFC 2711</a></span>
The IPv6 Router Alert Option [<a href="./rfc2711" title=""IPv6 Router Alert Option"">RFC2711</a>] is an optional IPv6 Hop-by-Hop
Header that is used in conjunction with some protocols (e.g., RSVP
[<a href="./rfc2205" title=""Resource ReSerVation Protocol (RSVP) -- Version 1 Functional Specification"">RFC2205</a>] or Multicast Listener Discovery (MLD) [<a href="./rfc2710" title=""Multicast Listener Discovery (MLD) for IPv6"">RFC2710</a>]). The
Router Alert option will need to be implemented whenever protocols
that mandate its usage (e.g., MLD) are implemented. See
<a href="#section-5.10">Section 5.10</a>.
<span class="h3"><a class="selflink" id="section-12.2" href="#section-12.2">12.2</a>. Neighbor Discovery for IPv6 - <a href="./rfc4861">RFC 4861</a></span>
Sending Router Advertisements and processing Router Solicitations
MUST be supported.
<a href="./rfc6275#section-7">Section 7 of [RFC6275]</a> includes some mobility-specific extensions to
Neighbor Discovery. Routers SHOULD implement Sections <a href="#section-7.3">7.3</a> and <a href="#section-7.5">7.5</a>,
even if they do not implement Home Agent functionality.
<span class="h3"><a class="selflink" id="section-12.3" href="#section-12.3">12.3</a>. Stateful Address Autoconfiguration (DHCPv6) - <a href="./rfc3315">RFC 3315</a></span>
A single DHCP server ([<a href="./rfc3315" title=""Dynamic Host Configuration Protocol for IPv6 (DHCPv6)"">RFC3315</a>] or [<a href="./rfc4862" title=""IPv6 Stateless Address Autoconfiguration"">RFC4862</a>]) can provide
configuration information to devices directly attached to a shared
link, as well as to devices located elsewhere within a site.
Communication between a client and a DHCP server located on different
links requires the use of DHCP relay agents on routers.
<span class="grey">Jankiewicz, et al. Informational [Page 19]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-20" ></span>
<span class="grey"><a href="./rfc6434">RFC 6434</a> IPv6 Node Requirements December 2011</span>
In simple deployments, consisting of a single router and either a
single LAN or multiple LANs attached to the single router, together
with a WAN connection, a DHCP server embedded within the router is
one common deployment scenario (e.g., [<a href="./rfc6204" title=""Basic Requirements for IPv6 Customer Edge Routers"">RFC6204</a>]). However, there is
no need for relay agents in such scenarios.
In more complex deployment scenarios, such as within enterprise or
service provider networks, the use of DHCP requires some level of
configuration, in order to configure relay agents, DHCP servers, etc.
In such environments, the DHCP server might even be run on a
traditional server, rather than as part of a router.
Because of the wide range of deployment scenarios, support for DHCP
server functionality on routers is optional. However, routers
targeted for deployment within more complex scenarios (as described
above) SHOULD support relay agent functionality. Note that "Basic
Requirements for IPv6 Customer Edge Routers" [<a href="./rfc6204" title=""Basic Requirements for IPv6 Customer Edge Routers"">RFC6204</a>] requires
implementation of a DHCPv6 server function in IPv6 Customer Edge (CE)
routers.
<span class="h2"><a class="selflink" id="section-13" href="#section-13">13</a>. Network Management</span>
Network management MAY be supported by IPv6 nodes. However, for IPv6
nodes that are embedded devices, network management may be the only
possible way of controlling these nodes.
<span class="h3"><a class="selflink" id="section-13.1" href="#section-13.1">13.1</a>. Management Information Base (MIB) Modules</span>
The following two MIB modules SHOULD be supported by nodes that
support a Simple Network Management Protocol (SNMP) agent.
<span class="h4"><a class="selflink" id="section-13.1.1" href="#section-13.1.1">13.1.1</a>. IP Forwarding Table MIB</span>
The IP Forwarding Table MIB [<a href="./rfc4292" title=""IP Forwarding Table MIB"">RFC4292</a>] SHOULD be supported by nodes
that support an SNMP agent.
<span class="h4"><a class="selflink" id="section-13.1.2" href="#section-13.1.2">13.1.2</a>. Management Information Base for the Internet Protocol (IP)</span>
The IP MIB [<a href="./rfc4293" title=""Management Information Base for the Internet Protocol (IP)"">RFC4293</a>] SHOULD be supported by nodes that support an
SNMP agent.
<span class="h2"><a class="selflink" id="section-14" href="#section-14">14</a>. Security Considerations</span>
This document does not directly affect the security of the Internet,
beyond the security considerations associated with the individual
protocols.
Security is also discussed in <a href="#section-11">Section 11</a> above.
<span class="grey">Jankiewicz, et al. Informational [Page 20]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-21" ></span>
<span class="grey"><a href="./rfc6434">RFC 6434</a> IPv6 Node Requirements December 2011</span>
<span class="h2"><a class="selflink" id="section-15" href="#section-15">15</a>. Authors and Acknowledgments</span>
<span class="h3"><a class="selflink" id="section-15.1" href="#section-15.1">15.1</a>. Authors and Acknowledgments (Current Document)</span>
For this version of the IPv6 Node Requirements document, the authors
would like to thank Hitoshi Asaeda, Brian Carpenter, Tim Chown, Ralph
Droms, Sheila Frankel, Sam Hartman, Bob Hinden, Paul Hoffman, Pekka
Savola, Yaron Sheffer, and Dave Thaler for their comments.
<span class="h3"><a class="selflink" id="section-15.2" href="#section-15.2">15.2</a>. Authors and Acknowledgments from <a href="./rfc4279">RFC 4279</a></span>
The original version of this document (<a href="./rfc4279">RFC 4279</a>) was written by the
IPv6 Node Requirements design team:
Jari Arkko
jari.arkko@ericsson.com
Marc Blanchet
marc.blanchet@viagenie.qc.ca
Samita Chakrabarti
samita.chakrabarti@eng.sun.com
Alain Durand
alain.durand@sun.com
Gerard Gastaud
gerard.gastaud@alcatel.fr
Jun-ichiro Itojun Hagino
itojun@iijlab.net
Atsushi Inoue
inoue@isl.rdc.toshiba.co.jp
Masahiro Ishiyama
masahiro@isl.rdc.toshiba.co.jp
John Loughney
john.loughney@nokia.com
Rajiv Raghunarayan
raraghun@cisco.com
Shoichi Sakane
shouichi.sakane@jp.yokogawa.com
<span class="grey">Jankiewicz, et al. Informational [Page 21]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-22" ></span>
<span class="grey"><a href="./rfc6434">RFC 6434</a> IPv6 Node Requirements December 2011</span>
Dave Thaler
dthaler@windows.microsoft.com
Juha Wiljakka
juha.wiljakka@Nokia.com
The authors would like to thank Ran Atkinson, Jim Bound, Brian
Carpenter, Ralph Droms, Christian Huitema, Adam Machalek, Thomas
Narten, Juha Ollila, and Pekka Savola for their comments. Thanks to
Mark Andrews for comments and corrections on DNS text. Thanks to
Alfred Hoenes for tracking the updates to various RFCs.
<span class="h2"><a class="selflink" id="section-16" href="#section-16">16</a>. Appendix: Changes from <a href="./rfc4294">RFC 4294</a></span>
There have been many editorial clarifications as well as significant
additions and updates. While this section highlights some of the
changes, readers should not rely on this section for a comprehensive
list of all changes.
1. Updated the Introduction to indicate that this document is an
applicability statement and is aimed at general nodes.
2. Significantly updated the section on Mobility protocols, adding
references and downgrading previous SHOULDs to MAYs.
3. Changed Sub-IP Layer section to just list relevant RFCs, and
added some more RFCs.
4. Added section on SEND (it is a MAY).
5. Revised section on Privacy Extensions [<a href="./rfc4941" title=""Privacy Extensions for Stateless Address Autoconfiguration in IPv6"">RFC4941</a>] to add more
nuance to recommendation.
6. Completely revised IPsec/IKEv2 section, downgrading overall
recommendation to a SHOULD.
7. Upgraded recommendation of DHCPv6 to SHOULD.
8. Added background section on DHCP versus RA options, added SHOULD
recommendation for DNS configuration via RAs [<a href="./rfc6106" title=""IPv6 Router Advertisement Options for DNS Configuration"">RFC6106</a>], and
cleaned up DHCP recommendations.
9. Added recommendation that routers implement Sections <a href="#section-7.3">7.3</a> and <a href="#section-7.5">7.5</a>
of [<a href="./rfc6275" title=""Mobility Support in IPv6"">RFC6275</a>].
10. Added pointer to subnet clarification document [<a href="./rfc5942" title=""IPv6 Subnet Model: The Relationship between Links and Subnet Prefixes"">RFC5942</a>].
<span class="grey">Jankiewicz, et al. Informational [Page 22]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-23" ></span>
<span class="grey"><a href="./rfc6434">RFC 6434</a> IPv6 Node Requirements December 2011</span>
11. Added text that "IPv6 Host-to-Router Load Sharing" [<a href="./rfc4311" title=""IPv6 Host-to-Router Load Sharing"">RFC4311</a>]
SHOULD be implemented.
12. Added reference to [<a href="./rfc5722" title=""Handling of Overlapping IPv6 Fragments"">RFC5722</a>] (Overlapping Fragments), and made
it a MUST to implement.
13. Made "A Recommendation for IPv6 Address Text Representation"
[<a href="./rfc5952" title=""A Recommendation for IPv6 Address Text Representation"">RFC5952</a>] a SHOULD.
14. Removed mention of "DNAME" from the discussion about [<a href="./rfc3363" title=""Representing Internet Protocol version 6 (IPv6) Addresses in the Domain Name System (DNS)"">RFC3363</a>].
15. Numerous updates to reflect newer versions of IPv6 documents,
including [<a href="./rfc4443" title=""Internet Control Message Protocol (ICMPv6) for the Internet Protocol Version 6 (IPv6) Specification"">RFC4443</a>], [<a href="./rfc4291" title=""IP Version 6 Addressing Architecture"">RFC4291</a>], [<a href="./rfc3596" title=""DNS Extensions to Support IP Version 6"">RFC3596</a>], and [<a href="./rfc4213" title=""Basic Transition Mechanisms for IPv6 Hosts and Routers"">RFC4213</a>].
16. Removed discussion of "Managed" and "Other" flags in RAs. There
is no consensus at present on how to process these flags, and
discussion of their semantics was removed in the most recent
update of Stateless Address Autoconfiguration [<a href="./rfc4862" title=""IPv6 Stateless Address Autoconfiguration"">RFC4862</a>].
17. Added many more references to optional IPv6 documents.
18. Made "A Recommendation for IPv6 Address Text Representation"
[<a href="./rfc5952" title=""A Recommendation for IPv6 Address Text Representation"">RFC5952</a>] a SHOULD.
19. Added reference to [<a href="./rfc5722" title=""Handling of Overlapping IPv6 Fragments"">RFC5722</a>] (Overlapping Fragments), and made
it a MUST to implement.
20. Updated MLD section to include reference to Lightweight MLD
[<a href="./rfc5790" title=""Lightweight Internet Group Management Protocol Version 3 (IGMPv3) and Multicast Listener Discovery Version 2 (MLDv2) Protocols"">RFC5790</a>].
21. Added SHOULD recommendation for "Default Router Preferences and
More-Specific Routes" [<a href="./rfc4191" title=""Default Router Preferences and More-Specific Routes"">RFC4191</a>].
22. Made "IPv6 Flow Label Specification" [<a href="./rfc6437" title=""IPv6 Flow Label Specification"">RFC6437</a>] a SHOULD.
<span class="h2"><a class="selflink" id="section-17" href="#section-17">17</a>. References</span>
<span class="h3"><a class="selflink" id="section-17.1" href="#section-17.1">17.1</a>. Normative References</span>
[<a id="ref-RFC1034">RFC1034</a>] Mockapetris, P., "Domain names - concepts and facilities",
STD 13, <a href="./rfc1034">RFC 1034</a>, November 1987.
[<a id="ref-RFC1035">RFC1035</a>] Mockapetris, P., "Domain names - implementation and
specification", STD 13, <a href="./rfc1035">RFC 1035</a>, November 1987.
[<a id="ref-RFC1981">RFC1981</a>] McCann, J., Deering, S., and J. Mogul, "Path MTU Discovery
for IP version 6", <a href="./rfc1981">RFC 1981</a>, August 1996.
<span class="grey">Jankiewicz, et al. Informational [Page 23]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-24" ></span>
<span class="grey"><a href="./rfc6434">RFC 6434</a> IPv6 Node Requirements December 2011</span>
[<a id="ref-RFC2119">RFC2119</a>] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", <a href="https://www.rfc-editor.org/bcp/bcp14">BCP 14</a>, <a href="./rfc2119">RFC 2119</a>, March 1997.
[<a id="ref-RFC2460">RFC2460</a>] Deering, S. and R. Hinden, "Internet Protocol, Version 6
(IPv6) Specification", <a href="./rfc2460">RFC 2460</a>, December 1998.
[<a id="ref-RFC2671">RFC2671</a>] Vixie, P., "Extension Mechanisms for DNS (EDNS0)",
<a href="./rfc2671">RFC 2671</a>, August 1999.
[<a id="ref-RFC2710">RFC2710</a>] Deering, S., Fenner, W., and B. Haberman, "Multicast
Listener Discovery (MLD) for IPv6", <a href="./rfc2710">RFC 2710</a>,
October 1999.
[<a id="ref-RFC2711">RFC2711</a>] Partridge, C. and A. Jackson, "IPv6 Router Alert Option",
<a href="./rfc2711">RFC 2711</a>, October 1999.
[<a id="ref-RFC3315">RFC3315</a>] Droms, R., Bound, J., Volz, B., Lemon, T., Perkins, C.,
and M. Carney, "Dynamic Host Configuration Protocol for
IPv6 (DHCPv6)", <a href="./rfc3315">RFC 3315</a>, July 2003.
[<a id="ref-RFC3484">RFC3484</a>] Draves, R., "Default Address Selection for Internet
Protocol version 6 (IPv6)", <a href="./rfc3484">RFC 3484</a>, February 2003.
[<a id="ref-RFC3590">RFC3590</a>] Haberman, B., "Source Address Selection for the Multicast
Listener Discovery (MLD) Protocol", <a href="./rfc3590">RFC 3590</a>,
September 2003.
[<a id="ref-RFC3596">RFC3596</a>] Thomson, S., Huitema, C., Ksinant, V., and M. Souissi,
"DNS Extensions to Support IP Version 6", <a href="./rfc3596">RFC 3596</a>,
October 2003.
[<a id="ref-RFC3736">RFC3736</a>] Droms, R., "Stateless Dynamic Host Configuration Protocol
(DHCP) Service for IPv6", <a href="./rfc3736">RFC 3736</a>, April 2004.
[<a id="ref-RFC3810">RFC3810</a>] Vida, R. and L. Costa, "Multicast Listener Discovery
Version 2 (MLDv2) for IPv6", <a href="./rfc3810">RFC 3810</a>, June 2004.
[<a id="ref-RFC4033">RFC4033</a>] Arends, R., Austein, R., Larson, M., Massey, D., and S.
Rose, "DNS Security Introduction and Requirements",
<a href="./rfc4033">RFC 4033</a>, March 2005.
[<a id="ref-RFC4034">RFC4034</a>] Arends, R., Austein, R., Larson, M., Massey, D., and S.
Rose, "Resource Records for the DNS Security Extensions",
<a href="./rfc4034">RFC 4034</a>, March 2005.
[<a id="ref-RFC4035">RFC4035</a>] Arends, R., Austein, R., Larson, M., Massey, D., and S.
Rose, "Protocol Modifications for the DNS Security
Extensions", <a href="./rfc4035">RFC 4035</a>, March 2005.
<span class="grey">Jankiewicz, et al. Informational [Page 24]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-25" ></span>
<span class="grey"><a href="./rfc6434">RFC 6434</a> IPv6 Node Requirements December 2011</span>
[<a id="ref-RFC4213">RFC4213</a>] Nordmark, E. and R. Gilligan, "Basic Transition Mechanisms
for IPv6 Hosts and Routers", <a href="./rfc4213">RFC 4213</a>, October 2005.
[<a id="ref-RFC4291">RFC4291</a>] Hinden, R. and S. Deering, "IP Version 6 Addressing
Architecture", <a href="./rfc4291">RFC 4291</a>, February 2006.
[<a id="ref-RFC4292">RFC4292</a>] Haberman, B., "IP Forwarding Table MIB", <a href="./rfc4292">RFC 4292</a>,
April 2006.
[<a id="ref-RFC4293">RFC4293</a>] Routhier, S., "Management Information Base for the
Internet Protocol (IP)", <a href="./rfc4293">RFC 4293</a>, April 2006.
[<a id="ref-RFC4301">RFC4301</a>] Kent, S. and K. Seo, "Security Architecture for the
Internet Protocol", <a href="./rfc4301">RFC 4301</a>, December 2005.
[<a id="ref-RFC4303">RFC4303</a>] Kent, S., "IP Encapsulating Security Payload (ESP)",
<a href="./rfc4303">RFC 4303</a>, December 2005.
[<a id="ref-RFC4307">RFC4307</a>] Schiller, J., "Cryptographic Algorithms for Use in the
Internet Key Exchange Version 2 (IKEv2)", <a href="./rfc4307">RFC 4307</a>,
December 2005.
[<a id="ref-RFC4311">RFC4311</a>] Hinden, R. and D. Thaler, "IPv6 Host-to-Router Load
Sharing", <a href="./rfc4311">RFC 4311</a>, November 2005.
[<a id="ref-RFC4443">RFC4443</a>] Conta, A., Deering, S., and M. Gupta, "Internet Control
Message Protocol (ICMPv6) for the Internet Protocol
Version 6 (IPv6) Specification", <a href="./rfc4443">RFC 4443</a>, March 2006.
[<a id="ref-RFC4604">RFC4604</a>] Holbrook, H., Cain, B., and B. Haberman, "Using Internet
Group Management Protocol Version 3 (IGMPv3) and Multicast
Listener Discovery Protocol Version 2 (MLDv2) for Source-
Specific Multicast", <a href="./rfc4604">RFC 4604</a>, August 2006.
[<a id="ref-RFC4607">RFC4607</a>] Holbrook, H. and B. Cain, "Source-Specific Multicast for
IP", <a href="./rfc4607">RFC 4607</a>, August 2006.
[<a id="ref-RFC4835">RFC4835</a>] Manral, V., "Cryptographic Algorithm Implementation
Requirements for Encapsulating Security Payload (ESP) and
Authentication Header (AH)", <a href="./rfc4835">RFC 4835</a>, April 2007.
[<a id="ref-RFC4861">RFC4861</a>] Narten, T., Nordmark, E., Simpson, W., and H. Soliman,
"Neighbor Discovery for IP version 6 (IPv6)", <a href="./rfc4861">RFC 4861</a>,
September 2007.
[<a id="ref-RFC4862">RFC4862</a>] Thomson, S., Narten, T., and T. Jinmei, "IPv6 Stateless
Address Autoconfiguration", <a href="./rfc4862">RFC 4862</a>, September 2007.
<span class="grey">Jankiewicz, et al. Informational [Page 25]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-26" ></span>
<span class="grey"><a href="./rfc6434">RFC 6434</a> IPv6 Node Requirements December 2011</span>
[<a id="ref-RFC4941">RFC4941</a>] Narten, T., Draves, R., and S. Krishnan, "Privacy
Extensions for Stateless Address Autoconfiguration in
IPv6", <a href="./rfc4941">RFC 4941</a>, September 2007.
[<a id="ref-RFC5095">RFC5095</a>] Abley, J., Savola, P., and G. Neville-Neil, "Deprecation
of Type 0 Routing Headers in IPv6", <a href="./rfc5095">RFC 5095</a>,
December 2007.
[<a id="ref-RFC5453">RFC5453</a>] Krishnan, S., "Reserved IPv6 Interface Identifiers",
<a href="./rfc5453">RFC 5453</a>, February 2009.
[<a id="ref-RFC5722">RFC5722</a>] Krishnan, S., "Handling of Overlapping IPv6 Fragments",
<a href="./rfc5722">RFC 5722</a>, December 2009.
[<a id="ref-RFC5790">RFC5790</a>] Liu, H., Cao, W., and H. Asaeda, "Lightweight Internet
Group Management Protocol Version 3 (IGMPv3) and Multicast
Listener Discovery Version 2 (MLDv2) Protocols", <a href="./rfc5790">RFC 5790</a>,
February 2010.
[<a id="ref-RFC5942">RFC5942</a>] Singh, H., Beebee, W., and E. Nordmark, "IPv6 Subnet
Model: The Relationship between Links and Subnet
Prefixes", <a href="./rfc5942">RFC 5942</a>, July 2010.
[<a id="ref-RFC5952">RFC5952</a>] Kawamura, S. and M. Kawashima, "A Recommendation for IPv6
Address Text Representation", <a href="./rfc5952">RFC 5952</a>, August 2010.
[<a id="ref-RFC5996">RFC5996</a>] Kaufman, C., Hoffman, P., Nir, Y., and P. Eronen,
"Internet Key Exchange Protocol Version 2 (IKEv2)",
<a href="./rfc5996">RFC 5996</a>, September 2010.
[<a id="ref-RFC6106">RFC6106</a>] Jeong, J., Park, S., Beloeil, L., and S. Madanapalli,
"IPv6 Router Advertisement Options for DNS Configuration",
<a href="./rfc6106">RFC 6106</a>, November 2010.
[<a id="ref-RFC6204">RFC6204</a>] Singh, H., Beebee, W., Donley, C., Stark, B., and O.
Troan, "Basic Requirements for IPv6 Customer Edge
Routers", <a href="./rfc6204">RFC 6204</a>, April 2011.
[<a id="ref-RFC6437">RFC6437</a>] Amante, S., Carpenter, B., Jiang, S., and J. Rajahalme,
"IPv6 Flow Label Specification", <a href="./rfc6437">RFC 6437</a>, November 2011.
<span class="h3"><a class="selflink" id="section-17.2" href="#section-17.2">17.2</a>. Informative References</span>
[<a id="ref-DODv6">DODv6</a>] DISR IPv6 Standards Technical Working Group, "DoD IPv6
Standard Profiles For IPv6 Capable Products Version 5.0",
July 2010,
<<a href="http://jitc.fhu.disa.mil/apl/ipv6/pdf/disr_ipv6_50.pdf">http://jitc.fhu.disa.mil/apl/ipv6/pdf/disr_ipv6_50.pdf</a>>.
<span class="grey">Jankiewicz, et al. Informational [Page 26]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-27" ></span>
<span class="grey"><a href="./rfc6434">RFC 6434</a> IPv6 Node Requirements December 2011</span>
[<a id="ref-POSIX">POSIX</a>] IEEE, "IEEE Std. 1003.1-2008 Standard for Information
Technology -- Portable Operating System Interface (POSIX),
ISO/IEC 9945:2009", <<a href="http://www.ieee.org">http://www.ieee.org</a>>.
[<a id="ref-RFC0793">RFC0793</a>] Postel, J., "Transmission Control Protocol", STD 7,
<a href="./rfc793">RFC 793</a>, September 1981.
[<a id="ref-RFC2205">RFC2205</a>] Braden, B., Zhang, L., Berson, S., Herzog, S., and S.
Jamin, "Resource ReSerVation Protocol (RSVP) -- Version 1
Functional Specification", <a href="./rfc2205">RFC 2205</a>, September 1997.
[<a id="ref-RFC2464">RFC2464</a>] Crawford, M., "Transmission of IPv6 Packets over Ethernet
Networks", <a href="./rfc2464">RFC 2464</a>, December 1998.
[<a id="ref-RFC2491">RFC2491</a>] Armitage, G., Schulter, P., Jork, M., and G. Harter, "IPv6
over Non-Broadcast Multiple Access (NBMA) networks",
<a href="./rfc2491">RFC 2491</a>, January 1999.
[<a id="ref-RFC2492">RFC2492</a>] Armitage, G., Schulter, P., and M. Jork, "IPv6 over ATM
Networks", <a href="./rfc2492">RFC 2492</a>, January 1999.
[<a id="ref-RFC2590">RFC2590</a>] Conta, A., Malis, A., and M. Mueller, "Transmission of
IPv6 Packets over Frame Relay Networks Specification",
<a href="./rfc2590">RFC 2590</a>, May 1999.
[<a id="ref-RFC2675">RFC2675</a>] Borman, D., Deering, S., and R. Hinden, "IPv6 Jumbograms",
<a href="./rfc2675">RFC 2675</a>, August 1999.
[<a id="ref-RFC3146">RFC3146</a>] Fujisawa, K. and A. Onoe, "Transmission of IPv6 Packets
over IEEE 1394 Networks", <a href="./rfc3146">RFC 3146</a>, October 2001.
[<a id="ref-RFC3363">RFC3363</a>] Bush, R., Durand, A., Fink, B., Gudmundsson, O., and T.
Hain, "Representing Internet Protocol version 6 (IPv6)
Addresses in the Domain Name System (DNS)", <a href="./rfc3363">RFC 3363</a>,
August 2002.
[<a id="ref-RFC3493">RFC3493</a>] Gilligan, R., Thomson, S., Bound, J., McCann, J., and W.
Stevens, "Basic Socket Interface Extensions for IPv6",
<a href="./rfc3493">RFC 3493</a>, February 2003.
[<a id="ref-RFC3542">RFC3542</a>] Stevens, W., Thomas, M., Nordmark, E., and T. Jinmei,
"Advanced Sockets Application Program Interface (API) for
IPv6", <a href="./rfc3542">RFC 3542</a>, May 2003.
[<a id="ref-RFC3678">RFC3678</a>] Thaler, D., Fenner, B., and B. Quinn, "Socket Interface
Extensions for Multicast Source Filters", <a href="./rfc3678">RFC 3678</a>,
January 2004.
<span class="grey">Jankiewicz, et al. Informational [Page 27]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-28" ></span>
<span class="grey"><a href="./rfc6434">RFC 6434</a> IPv6 Node Requirements December 2011</span>
[<a id="ref-RFC3776">RFC3776</a>] Arkko, J., Devarapalli, V., and F. Dupont, "Using IPsec to
Protect Mobile IPv6 Signaling Between Mobile Nodes and
Home Agents", <a href="./rfc3776">RFC 3776</a>, June 2004.
[<a id="ref-RFC3971">RFC3971</a>] Arkko, J., Kempf, J., Zill, B., and P. Nikander, "SEcure
Neighbor Discovery (SEND)", <a href="./rfc3971">RFC 3971</a>, March 2005.
[<a id="ref-RFC3972">RFC3972</a>] Aura, T., "Cryptographically Generated Addresses (CGA)",
<a href="./rfc3972">RFC 3972</a>, March 2005.
[<a id="ref-RFC4191">RFC4191</a>] Draves, R. and D. Thaler, "Default Router Preferences and
More-Specific Routes", <a href="./rfc4191">RFC 4191</a>, November 2005.
[<a id="ref-RFC4302">RFC4302</a>] Kent, S., "IP Authentication Header", <a href="./rfc4302">RFC 4302</a>,
December 2005.
[<a id="ref-RFC4338">RFC4338</a>] DeSanti, C., Carlson, C., and R. Nixon, "Transmission of
IPv6, IPv4, and Address Resolution Protocol (ARP) Packets
over Fibre Channel", <a href="./rfc4338">RFC 4338</a>, January 2006.
[<a id="ref-RFC4380">RFC4380</a>] Huitema, C., "Teredo: Tunneling IPv6 over UDP through
Network Address Translations (NATs)", <a href="./rfc4380">RFC 4380</a>,
February 2006.
[<a id="ref-RFC4429">RFC4429</a>] Moore, N., "Optimistic Duplicate Address Detection (DAD)
for IPv6", <a href="./rfc4429">RFC 4429</a>, April 2006.
[<a id="ref-RFC4584">RFC4584</a>] Chakrabarti, S. and E. Nordmark, "Extension to Sockets API
for Mobile IPv6", <a href="./rfc4584">RFC 4584</a>, July 2006.
[<a id="ref-RFC4821">RFC4821</a>] Mathis, M. and J. Heffner, "Packetization Layer Path MTU
Discovery", <a href="./rfc4821">RFC 4821</a>, March 2007.
[<a id="ref-RFC4877">RFC4877</a>] Devarapalli, V. and F. Dupont, "Mobile IPv6 Operation with
IKEv2 and the Revised IPsec Architecture", <a href="./rfc4877">RFC 4877</a>,
April 2007.
[<a id="ref-RFC4884">RFC4884</a>] Bonica, R., Gan, D., Tappan, D., and C. Pignataro,
"Extended ICMP to Support Multi-Part Messages", <a href="./rfc4884">RFC 4884</a>,
April 2007.
[<a id="ref-RFC4944">RFC4944</a>] Montenegro, G., Kushalnagar, N., Hui, J., and D. Culler,
"Transmission of IPv6 Packets over IEEE 802.15.4
Networks", <a href="./rfc4944">RFC 4944</a>, September 2007.
[<a id="ref-RFC5006">RFC5006</a>] Jeong, J., Park, S., Beloeil, L., and S. Madanapalli,
"IPv6 Router Advertisement Option for DNS Configuration",
<a href="./rfc5006">RFC 5006</a>, September 2007.
<span class="grey">Jankiewicz, et al. Informational [Page 28]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-29" ></span>
<span class="grey"><a href="./rfc6434">RFC 6434</a> IPv6 Node Requirements December 2011</span>
[<a id="ref-RFC5014">RFC5014</a>] Nordmark, E., Chakrabarti, S., and J. Laganier, "IPv6
Socket API for Source Address Selection", <a href="./rfc5014">RFC 5014</a>,
September 2007.
[<a id="ref-RFC5072">RFC5072</a>] S.Varada, Haskins, D., and E. Allen, "IP Version 6 over
PPP", <a href="./rfc5072">RFC 5072</a>, September 2007.
[<a id="ref-RFC5121">RFC5121</a>] Patil, B., Xia, F., Sarikaya, B., Choi, JH., and S.
Madanapalli, "Transmission of IPv6 via the IPv6
Convergence Sublayer over IEEE 802.16 Networks", <a href="./rfc5121">RFC 5121</a>,
February 2008.
[<a id="ref-RFC5555">RFC5555</a>] Soliman, H., "Mobile IPv6 Support for Dual Stack Hosts and
Routers", <a href="./rfc5555">RFC 5555</a>, June 2009.
[<a id="ref-RFC6275">RFC6275</a>] Perkins, C., Johnson, D., and J. Arkko, "Mobility Support
in IPv6", <a href="./rfc6275">RFC 6275</a>, July 2011.
[<a id="ref-USGv6">USGv6</a>] National Institute of Standards and Technology, "A Profile
for IPv6 in the U.S. Government - Version 1.0", July 2008,
<<a href="http://www.antd.nist.gov/usgv6/usgv6-v1.pdf">http://www.antd.nist.gov/usgv6/usgv6-v1.pdf</a>>.
<span class="grey">Jankiewicz, et al. Informational [Page 29]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-30" ></span>
<span class="grey"><a href="./rfc6434">RFC 6434</a> IPv6 Node Requirements December 2011</span>
Authors' Addresses
Ed Jankiewicz
SRI International, Inc.
333 Ravenswood Ave.
Menlo Park, CA 94025
USA
Phone: +1 443 502 5815
EMail: edward.jankiewicz@sri.com
John Loughney
Nokia
200 South Mathilda Ave.
Sunnyvale, CA 94086
USA
Phone: +1 650 283 8068
EMail: john.loughney@nokia.com
Thomas Narten
IBM Corporation
3039 Cornwallis Ave.
PO Box 12195
Research Triangle Park, NC 27709-2195
USA
Phone: +1 919 254 7798
EMail: narten@us.ibm.com
Jankiewicz, et al. Informational [Page 30]
</pre>
|