1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125
|
<pre>Internet Engineering Task Force (IETF) J. Korhonen, Ed.
Request for Comments: 6618 Nokia Siemens Networks
Category: Experimental B. Patil
ISSN: 2070-1721 Nokia
H. Tschofenig
Nokia Siemens Networks
D. Kroeselberg
Siemens
May 2012
<span class="h1">Mobile IPv6 Security Framework Using Transport Layer Security</span>
<span class="h1">for Communication between the Mobile Node and Home Agent</span>
Abstract
Mobile IPv6 signaling between a Mobile Node (MN) and its Home Agent
(HA) is secured using IPsec. The security association (SA) between
an MN and the HA is established using Internet Key Exchange Protocol
(IKE) version 1 or 2. The security model specified for Mobile IPv6,
which relies on IKE/IPsec, requires interaction between the Mobile
IPv6 protocol component and the IKE/IPsec module of the IP stack.
This document proposes an alternate security framework for Mobile
IPv6 and Dual-Stack Mobile IPv6, which relies on Transport Layer
Security for establishing keying material and other bootstrapping
parameters required to protect Mobile IPv6 signaling and data traffic
between the MN and HA.
Status of This Memo
This document is not an Internet Standards Track specification; it is
published for examination, experimental implementation, and
evaluation.
This document defines an Experimental Protocol for the Internet
community. This document is a product of the Internet Engineering
Task Force (IETF). It represents the consensus of the IETF
community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Not
all documents approved by the IESG are a candidate for any level of
Internet Standard; see <a href="./rfc5741#section-2">Section 2 of RFC 5741</a>.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
<a href="http://www.rfc-editor.org/info/rfc6618">http://www.rfc-editor.org/info/rfc6618</a>.
<span class="grey">Korhonen, et al. Experimental [Page 1]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-2" ></span>
<span class="grey"><a href="./rfc6618">RFC 6618</a> TLS-Based MIPv6 Security Framework May 2012</span>
Copyright Notice
Copyright (c) 2012 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to <a href="https://www.rfc-editor.org/bcp/bcp78">BCP 78</a> and the IETF Trust's Legal
Provisions Relating to IETF Documents
(<a href="http://trustee.ietf.org/license-info">http://trustee.ietf.org/license-info</a>) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
Table of Contents
<a href="#section-1">1</a>. Introduction ....................................................<a href="#page-3">3</a>
<a href="#section-2">2</a>. Terminology and Abbreviations ...................................<a href="#page-4">4</a>
<a href="#section-3">3</a>. Background ......................................................<a href="#page-5">5</a>
<a href="#section-4">4</a>. TLS-Based Security Establishment ................................<a href="#page-5">5</a>
<a href="#section-4.1">4.1</a>. Overview ...................................................<a href="#page-5">5</a>
<a href="#section-4.2">4.2</a>. Architecture ...............................................<a href="#page-7">7</a>
<a href="#section-4.3">4.3</a>. Security Association Management ............................<a href="#page-7">7</a>
<a href="#section-4.4">4.4</a>. Bootstrapping of Additional Mobile IPv6 Parameters .........<a href="#page-9">9</a>
<a href="#section-4.5">4.5</a>. Protecting Traffic between Mobile Node and Home Agent .....<a href="#page-10">10</a>
<a href="#section-5">5</a>. MN-to-HAC Communication ........................................<a href="#page-10">10</a>
<a href="#section-5.1">5.1</a>. Request-Response Message Framing over TLS-Tunnel ..........<a href="#page-10">10</a>
<a href="#section-5.2">5.2</a>. Request-Response Message Content Encoding .................<a href="#page-11">11</a>
<a href="#section-5.3">5.3</a>. Request-Response Message Exchange .........................<a href="#page-12">12</a>
<a href="#section-5.4">5.4</a>. Home Agent Controller Discovery ...........................<a href="#page-13">13</a>
<a href="#section-5.5">5.5</a>. Generic Request-Response Parameters .......................<a href="#page-13">13</a>
<a href="#section-5.5.1">5.5.1</a>. Mobile Node Identifier .............................<a href="#page-13">13</a>
<a href="#section-5.5.2">5.5.2</a>. Authentication Method ..............................<a href="#page-13">13</a>
<a href="#section-5.5.3">5.5.3</a>. Extensible Authentication Protocol Payload .........<a href="#page-14">14</a>
<a href="#section-5.5.4">5.5.4</a>. Status Code ........................................<a href="#page-14">14</a>
<a href="#section-5.5.5">5.5.5</a>. Message Authenticator ..............................<a href="#page-14">14</a>
<a href="#section-5.5.6">5.5.6</a>. Retry After ........................................<a href="#page-14">14</a>
<a href="#section-5.5.7">5.5.7</a>. End of Message Content .............................<a href="#page-14">14</a>
<a href="#section-5.5.8">5.5.8</a>. Random Values ......................................<a href="#page-15">15</a>
<a href="#section-5.6">5.6</a>. Security Association Configuration Parameters .............<a href="#page-15">15</a>
<a href="#section-5.6.1">5.6.1</a>. Security Parameter Index ...........................<a href="#page-15">15</a>
<a href="#section-5.6.2">5.6.2</a>. MN-HA Shared Keys ..................................<a href="#page-16">16</a>
<a href="#section-5.6.3">5.6.3</a>. Security Association Validity Time .................<a href="#page-16">16</a>
<a href="#section-5.6.4">5.6.4</a>. Security Association Scope (SAS) ...................<a href="#page-16">16</a>
<a href="#section-5.6.5">5.6.5</a>. Ciphersuites and Ciphersuite-to-Algorithm Mapping ..17
<a href="#section-5.7">5.7</a>. Mobile IPv6 Bootstrapping Parameters ......................<a href="#page-18">18</a>
<a href="#section-5.7.1">5.7.1</a>. Home Agent Address .................................<a href="#page-18">18</a>
<span class="grey">Korhonen, et al. Experimental [Page 2]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-3" ></span>
<span class="grey"><a href="./rfc6618">RFC 6618</a> TLS-Based MIPv6 Security Framework May 2012</span>
<a href="#section-5.7.2">5.7.2</a>. Mobile IPv6 Service Port Number ....................<a href="#page-18">18</a>
<a href="#section-5.7.3">5.7.3</a>. Home Addresses and Home Network Prefix .............<a href="#page-18">18</a>
<a href="#section-5.7.4">5.7.4</a>. DNS Server .........................................<a href="#page-19">19</a>
<a href="#section-5.8">5.8</a>. Authentication of the Mobile Node .........................<a href="#page-19">19</a>
<a href="#section-5.9">5.9</a>. Extensible Authentication Protocol Methods ................<a href="#page-22">22</a>
<a href="#section-6">6</a>. Mobile Node to Home Agent Communication ........................<a href="#page-23">23</a>
<a href="#section-6.1">6.1</a>. General ...................................................<a href="#page-23">23</a>
<a href="#section-6.2">6.2</a>. PType and Security Parameter Index ........................<a href="#page-25">25</a>
<a href="#section-6.3">6.3</a>. Binding Management Message Formats ........................<a href="#page-25">25</a>
<a href="#section-6.4">6.4</a>. Reverse-Tunneled User Data Packet Formats .................<a href="#page-27">27</a>
<a href="#section-7">7</a>. Route Optimization .............................................<a href="#page-29">29</a>
<a href="#section-8">8</a>. IANA Considerations ............................................<a href="#page-29">29</a>
<a href="#section-8.1">8.1</a>. New Registry: Packet Type .................................<a href="#page-29">29</a>
<a href="#section-8.2">8.2</a>. Status Codes ..............................................<a href="#page-29">29</a>
<a href="#section-8.3">8.3</a>. Port Numbers ..............................................<a href="#page-29">29</a>
<a href="#section-9">9</a>. Security Considerations ........................................<a href="#page-30">30</a>
<a href="#section-9.1">9.1</a>. Discovery of the HAC ......................................<a href="#page-30">30</a>
9.2. Authentication and Key Exchange Executed between
the MN and the HAC ........................................<a href="#page-30">30</a>
<a href="#section-9.3">9.3</a>. Protection of MN and HA Communication .....................<a href="#page-33">33</a>
<a href="#section-9.4">9.4</a>. AAA Interworking ..........................................<a href="#page-35">35</a>
<a href="#section-10">10</a>. Acknowledgements ..............................................<a href="#page-35">35</a>
<a href="#section-11">11</a>. References ....................................................<a href="#page-35">35</a>
<a href="#section-11.1">11.1</a>. Normative References .....................................<a href="#page-35">35</a>
<a href="#section-11.2">11.2</a>. Informative References ...................................<a href="#page-36">36</a>
<span class="h2"><a class="selflink" id="section-1" href="#section-1">1</a>. Introduction</span>
Mobile IPv6 (MIPv6) [<a href="./rfc6275" title=""Mobility Support in IPv6"">RFC6275</a>] signaling, and optionally user traffic,
between a Mobile Node (MN) and Home Agent (HA) are secured by IPsec
[<a href="./rfc4301" title=""Security Architecture for the Internet Protocol"">RFC4301</a>]. The current Mobile IPv6 security architecture is
specified in [<a href="./rfc3776" title=""Using IPsec to Protect Mobile IPv6 Signaling Between Mobile Nodes and Home Agents"">RFC3776</a>] and [<a href="./rfc4877" title=""Mobile IPv6 Operation with IKEv2 and the Revised IPsec Architecture"">RFC4877</a>]. This security model requires a
tight coupling between the Mobile IPv6 protocol part and the IKE(v2)/
IPsec part of the IP stack. Client implementation experience has
shown that the use of IKE(v2)/IPsec with Mobile IPv6 is fairly
complex.
This document proposes an alternate security framework for Mobile
IPv6 and Dual-Stack Mobile IPv6. The objective is to simplify
implementations as well as make it easy to deploy the protocol
without compromising on security. Transport Layer Security (TLS)
[<a href="./rfc5246" title=""The Transport Layer Security (TLS) Protocol Version 1.2"">RFC5246</a>] is widely implemented in almost all major operating systems
and extensively used by various applications. Instead of using IKEv2
to establish security associations, the security framework proposed
in this document is based on TLS-protected messages to exchange keys
and bootstrapping parameters between the MN and a new functional
entity called the "Home Agent Controller" (HAC). The Mobile IPv6
signaling between the mobile node and home agent is subsequently
<span class="grey">Korhonen, et al. Experimental [Page 3]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-4" ></span>
<span class="grey"><a href="./rfc6618">RFC 6618</a> TLS-Based MIPv6 Security Framework May 2012</span>
secured using the resulting keys and negotiated ciphersuite. The HAC
can be co-located with the HA, or it can be an independent entity.
For the latter case, communication between the HAC and HA is not
defined by this document. Such communication could be built on top
of AAA protocols such as Diameter.
The primary advantage of using TLS for the establishment of Mobile
IPv6 security associations as compared to the use of IKEv2 is the
ease of implementation (especially on the mobile nodes) while
providing an equivalent level of security. A solution which
decouples Mobile IPv6 security from IPsec, for securing signaling
messages and user plane traffic, is proposed herein that reduces
client implementation complexity.
The security framework proposed in this document is not intended to
replace the currently specified architecture that relies on IPsec and
IKEv2. It provides an alternative solution that is more optimal for
certain deployment scenarios. This and other alternative security
models have been considered by the MEXT working group at the IETF,
and it has been decided that the alternative solutions should be
published as Experimental RFCs, so that more implementation and
deployment experience with these models can be gathered. The status
of this proposal may be reconsidered in the future if it becomes
clear that it is superior to others.
<span class="h2"><a class="selflink" id="section-2" href="#section-2">2</a>. Terminology and Abbreviations</span>
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [<a href="./rfc2119" title=""Key words for use in RFCs to Indicate Requirement Levels"">RFC2119</a>].
Home Agent Controller (HAC):
The home agent controller is a node responsible for bootstrapping
Mobile IPv6 security associations between a mobile node and one or
more home agents. The home agent controller also provides key
distribution to both mobile nodes and home agents. Mobile IPv6
bootstrapping is also performed by the HA in addition to the
security association bootstrapping between the mobile node and
home agent controller.
Binding Management Messages:
Mobile IPv6 signaling messages between a mobile node and a home
agent, correspondent node, or mobility access point to manage the
bindings are referred to as binding management messages. Binding
Updates (BUs) and Binding Acknowledgement (BA) messages are
examples of binding management messages.
<span class="grey">Korhonen, et al. Experimental [Page 4]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-5" ></span>
<span class="grey"><a href="./rfc6618">RFC 6618</a> TLS-Based MIPv6 Security Framework May 2012</span>
<span class="h2"><a class="selflink" id="section-3" href="#section-3">3</a>. Background</span>
Mobile IPv6 design and specification began in the mid-to-late 90s.
The security architecture of Mobile IPv6 was based on the
understanding that IPsec is an inherent and integral part of the IPv6
stack and any protocol that needs security should use IPsec unless
there is a good reason not to. As a result of this mindset, the
Mobile IP6 protocol relied on the use of IPsec for security between
the MN and HA. Reusing security components that are an integral part
of the IP stack is a good design objective for any protocol; however,
in the case of Mobile IPv6, it increases implementation complexity.
It should be noted that Mobile IPv4 [<a href="./rfc5944" title=""IP Mobility Support for IPv4, Revised"">RFC5944</a>], for example, does not
use IPsec for security and instead has specified its own security
solution. Mobile IPv4 has been implemented and deployed on a
reasonably large scale and the security model has proven itself to be
sound.
Mobile IPv6 standardization was completed in 2005 along with the
security architecture using IKE/IPsec specified in <a href="./rfc3776">RFC 3776</a>
[<a href="./rfc3776" title=""Using IPsec to Protect Mobile IPv6 Signaling Between Mobile Nodes and Home Agents"">RFC3776</a>]. With the evolution to IKEv2 [<a href="./rfc5996" title=""Internet Key Exchange Protocol Version 2 (IKEv2)"">RFC5996</a>], Mobile IPv6
security has also been updated to rely on the use of IKEv2 [<a href="./rfc4877" title=""Mobile IPv6 Operation with IKEv2 and the Revised IPsec Architecture"">RFC4877</a>].
Implementation exercises of Mobile IPv6 and Dual-Stack Mobile IPv6
[<a href="./rfc5555" title=""Mobile IPv6 Support for Dual Stack Hosts and Routers"">RFC5555</a>] have identified the complexity of using IPsec and IKEv2 in
conjunction with Mobile IPv6. Implementing Mobile IPv6 with IPsec
and IKEv2 requires modifications to both the IPsec and IKEv2
components, due to the communication models that Mobile IPv6 uses and
the changing IP addresses. For further details, see <a href="./rfc3776#section-7.1">Section 7.1 in
[RFC3776]</a>.
This document proposes a security framework based on TLS-protected
establishment of Mobile IPv6 security associations, which reduces
implementation complexity while maintaining an equivalent (to IKEv2/
IPsec) level of security.
<span class="h2"><a class="selflink" id="section-4" href="#section-4">4</a>. TLS-Based Security Establishment</span>
<span class="h3"><a class="selflink" id="section-4.1" href="#section-4.1">4.1</a>. Overview</span>
The security architecture proposed in this document relies on a
secure TLS session established between the MN and the HAC for mutual
authentication and MN-HA security association bootstrapping.
Authentication of the HAC is done via standard TLS operation wherein
the HAC uses a TLS server certificate as its credentials. MN
authentication is done by the HAC via signaling messages that are
secured by the TLS connection. Any Extensible Authentication
Protocol (EAP) method or Pre-Shared Key (PSK) can be used for
authenticating the MN to the HAC. Upon successful completion of
authentication, the HAC generates keys that are delivered to the MN
<span class="grey">Korhonen, et al. Experimental [Page 5]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-6" ></span>
<span class="grey"><a href="./rfc6618">RFC 6618</a> TLS-Based MIPv6 Security Framework May 2012</span>
through the secure TLS channel. The same keys are also provided to
the assigned HA. The HAC also provides the MN with MIPv6
bootstrapping information such as the IPv6 and IPv4 address of the
HA, the home network prefix, the IPv6 and/or IPv4 Home Address (HoA),
and DNS server address.
The MN and HA use security associations based on the keys and
Security Parameter Indexes (SPIs) generated by the HAC and delivered
to the MN and HA to secure signaling and optionally user plane
traffic. Figure 1 below is an illustration of the process.
Signaling messages and user plane traffic between the MN and HA are
always UDP encapsulated. The packet formats for the signaling and
user plane traffic is described in Sections <a href="#section-6.3">6.3</a> and <a href="#section-6.4">6.4</a>.
MN HAC HA
-- --- --
| | |
| /-------------------------\ | |
|/ \| |
|\ TLS session setup /| |
| \-------------------------/ | |
| | |
| /-------------------------\ | |
|/ MN Authentication \| |
|\ /| |
| \-------------------------/ | |
| | |
| /-------------------------\ | |
|/ HAC provisions the MN \| |
|\ keys, SPI, & MIPv6 parms /| |
| \-------------------------/ | |
| |--MNID, keys, SPI->|
| | |
| /--------------------------------------------\ |
|/ MN-HA SA established; Secures \ |
|\ signaling and optionally user traffic / |
| \--------------------------------------------/ |
| |
|------------BU(encrypted)----------------------->|
| |
|<---------BAck(encrypted)------------------------|
Figure 1: High-Level Architecture
<span class="grey">Korhonen, et al. Experimental [Page 6]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-7" ></span>
<span class="grey"><a href="./rfc6618">RFC 6618</a> TLS-Based MIPv6 Security Framework May 2012</span>
<span class="h3"><a class="selflink" id="section-4.2" href="#section-4.2">4.2</a>. Architecture</span>
The TLS-based security architecture is shown in Figure 2. The
signaling message exchange between the MN and the HAC is protected by
TLS. It should be noted that an HAC, a AAA server, and an HA are
logically separate entities and can be collocated in all possible
combinations. There MUST be a strong trust relationship between the
HA and the HAC, and the communication between them MUST be both
integrity and confidentially protected.
+------+ +------+ +------+
|Mobile| TLS |Home | AAA | AAA |
| Node |<----------->|Agent |<---------->|Server|
| | |Contrl| | |
+------+ +------+ +------+
^ ^ ^
| | |
| BU/BA/../ | e.g., AAA | AAA
| (Data) | |
| v |
| +---------+ |
| | MIPv6 | |
+--------------->| Home |<-------------+
| Agent(s)|
+---------+
Figure 2: TLS-Based Security Architecture Overview
<span class="h3"><a class="selflink" id="section-4.3" href="#section-4.3">4.3</a>. Security Association Management</span>
Once the MN has contacted the HAC and mutual authentication has taken
place between the MN and the HAC, the HAC securely provisions the MN
with all security-related information inside the TLS protected
tunnel. This security-related information constitutes a security
association (SA) between the MN and the HA. The created SA MUST NOT
be tied to the Care-of Address (CoA) of the MN.
The HAC may proactively distribute the SA information to HAs, or the
HA may query the SA information from the HAC once the MN contacts the
HA. If the HA requests SA information from the HAC, then the HA MUST
be able to query/index the SA information from the HAC based on the
SPI identifying the correct security association between the MN and
the HA.
<span class="grey">Korhonen, et al. Experimental [Page 7]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-8" ></span>
<span class="grey"><a href="./rfc6618">RFC 6618</a> TLS-Based MIPv6 Security Framework May 2012</span>
The HA may want the MN to re-establish the SA even if the existing SA
is still valid. The HA can indicate this to the MN using a dedicated
Status Code in a BA (value set to REINIT_SA_WITH_HAC). As a result,
the MN SHOULD contact the HAC prior to the SA timing out, and the HAC
would provision the MN and HAs with a new SA to be used subsequently.
The SA established between MN and HAC SHALL contain at least the
following information:
Mobility SPI:
This parameter is an SPI used by the MN and the HA to index the SA
between the MN and the HA. The HAC is responsible for assigning
SPIs to MNs. There is only one SPI for both binding management
messaging and possible user data protection. The same SPI is used
for both directions between the MN and the HA. The SPI values are
assigned by the HAC. The HAC MUST ensure uniqueness of the SPI
values across all MNs controlled by the HAC.
MN-HA keys for ciphering:
A pair of symmetric keys (MN -> HA, HA -> MN) used for ciphering
Mobile IPv6 traffic between the MN and the HA. The HAC is
responsible for generating these keys. The key generation
algorithm is specific to the HAC implementation.
MN-HA shared key for integrity protection:
A pair of symmetric keys (MN -> HA, HA -> MN) used for integrity
protecting Mobile IPv6 traffic between the MN and the HA. This
includes both binding management messages and reverse-tunneled
user data traffic between the MN and the HA. The HAC is
responsible for generating these keys. The key generation
algorithm is specific to the HAC implementation. In the case of
combined algorithms, a separate integrity protection key is not
needed and may be omitted, i.e., the encryption keys SHALL be
used.
Security association validity time:
This parameter represents the validity time for the security
association. The HAC is responsible for defining the lifetime
value based on its policies. The lifetime may be in the order of
hours or weeks. The MN MUST re-contact the HAC before the SA
validity time ends.
<span class="grey">Korhonen, et al. Experimental [Page 8]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-9" ></span>
<span class="grey"><a href="./rfc6618">RFC 6618</a> TLS-Based MIPv6 Security Framework May 2012</span>
Security association scope:
This parameter defines whether the security association is applied
to Mobile IPv6 signaling messages only or to both Mobile IPv6
signaling messages and data traffic.
Selected ciphersuite:
This parameter is the ciphersuite used to protect the traffic
between the MN and the HA. This includes both binding management
messages and reverse-tunneled user data traffic between the MN and
the HA. The selected algorithms SHOULD be one of the mutually
supported ciphersuites of the negotiated TLS version between the
MN and the HAC. The HAC is responsible for choosing the mutually
supported ciphersuite that complies with the policy of the HAC.
Obviously, the HAs under HAC's management must have at least one
ciphersuite with the HAC in common and need to be aware of the
implemented ciphersuites. The selected ciphersuite is the same
for both directions (MN -> HA and HA -> MN).
Sequence numbers:
A monotonically increasing unsigned sequence number used in all
protected packets exchanged between the MN and the HA in the same
direction. Sequence numbers are maintained per direction, so each
SA includes two independent sequence numbers (MN -> HA, HA -> MN).
The initial sequence number for each direction MUST always be set
to 0 (zero). Sequence numbers cycle to 0 (zero) when increasing
beyond their maximum defined value.
<span class="h3"><a class="selflink" id="section-4.4" href="#section-4.4">4.4</a>. Bootstrapping of Additional Mobile IPv6 Parameters</span>
When the MN contacts the HAC to distribute the security-related
information, the HAC may also provision the MN with various MIPv6-
related bootstrapping information. Bootstrapping of the following
information SHOULD at least be possible:
Home Agent IP Address:
The IPv6 and IPv4 address of the home agent assigned by the HAC.
Mobile IPv6 Service Port Number:
The port number where the HA is listening to UDP [<a href="./rfc0768" title=""User Datagram Protocol"">RFC0768</a>]
packets.
<span class="grey">Korhonen, et al. Experimental [Page 9]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-10" ></span>
<span class="grey"><a href="./rfc6618">RFC 6618</a> TLS-Based MIPv6 Security Framework May 2012</span>
Home Address:
The IPv6 and/or IPv4 home address assigned to the mobile node by
the HAC.
Home Link Prefix:
Concerns the IPv6 Home link prefix and the associated prefix
length.
DNS Server Address:
The address of a DNS server that can be reached via the HA. DNS
queries in certain cases cannot be routed to the DNS servers
assigned by the access network to which the MN is attached; hence,
an additional DNS server address that is reachable via the HA
needs to be configured.
The MIPv6-related bootstrapping information is delivered from the HAC
to the MN over the same TLS protected tunnel as the security related
information.
<span class="h3"><a class="selflink" id="section-4.5" href="#section-4.5">4.5</a>. Protecting Traffic between Mobile Node and Home Agent</span>
The same integrity and confidentiality algorithms MUST be used to
protect both binding management messages and reverse-tunneled user
data traffic between the MN and the HA. Generally, all binding
management messages (BUs, BAs, and so on) MUST be integrity protected
and SHOULD be confidentially protected. The reverse-tunneled user
data traffic SHOULD be equivalently protected. Generally, the
requirements stated in [<a href="./rfc6275" title=""Mobility Support in IPv6"">RFC6275</a>] concerning the protection of the
traffic between the MN and the HA also apply to the mechanisms
defined by this specification.
<span class="h2"><a class="selflink" id="section-5" href="#section-5">5</a>. MN-to-HAC Communication</span>
<span class="h3"><a class="selflink" id="section-5.1" href="#section-5.1">5.1</a>. Request-Response Message Framing over TLS-Tunnel</span>
The MN and the HAC communicate with each other using a simple
lockstep request-response protocol that is run inside the protected
TLS-tunnel. A generic message container framing for the request
messages and for the response messages is defined. The message
containers are only meant to be exchanged on top of a connection-
oriented TLS-layer. Therefore, the end of message exchange is
determined by the other end closing the transport connection
(assuming the "application layer" has also indicated the completion
of the message exchange). The peer initiating the TLS connection is
<span class="grey">Korhonen, et al. Experimental [Page 10]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-11" ></span>
<span class="grey"><a href="./rfc6618">RFC 6618</a> TLS-Based MIPv6 Security Framework May 2012</span>
always sending "Requests", and the peer accepting the TLS connection
is always sending "Responses". The format of the message container
is shown in Figure 3.
All data inside the Content portion of the message container MUST be
encoded using octets. Fragmentation of message containers is not
supported, which means one request or response at the "application
layer" MUST NOT exceed the maximum size allowed by the message
container format.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Ver | Rsrvd | Identifier | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Content portion.. ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 3: Request-Response Message Container
The 3-bit Ver field identifies the protocol version. The current
version is 0, i.e., all bits are set to a value of 0 (zero).
The Rsrvd field MUST be set to a value of 0 (zero),
The Identifier field is meant to match requests and responses. The
valid Identifier values are between 1-255. The value 0 MUST NOT be
used. The first request for each communication session between the
MN and the HAC MUST have the Identifier values set to 1.
The Length field tells the length of the Content portion of the
container (i.e., Reserved octet, Identifier octet, and Length field
are excluded). The Content portion length MUST always be at least
one octet and up to 65535 octets. The value is in network order.
<span class="h3"><a class="selflink" id="section-5.2" href="#section-5.2">5.2</a>. Request-Response Message Content Encoding</span>
The encoding of the message content is similar to HTTP header
encoding and complies with the augmented Backus-Naur Form (BNF)
defined in <a href="./rfc2616#section-2.1">Section 2.1 of [RFC2616]</a>. All presented hexadecimal
numbers are in network byte order. From now on, we use the TypeValue
header (TV-header) term to refer to request-response message content
HTTP-like headers.
<span class="grey">Korhonen, et al. Experimental [Page 11]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-12" ></span>
<span class="grey"><a href="./rfc6618">RFC 6618</a> TLS-Based MIPv6 Security Framework May 2012</span>
<span class="h3"><a class="selflink" id="section-5.3" href="#section-5.3">5.3</a>. Request-Response Message Exchange</span>
The message exchange between the MN and the HAC is a simple lockstep
request-response type as stated in <a href="#section-5.1">Section 5.1</a>. A request message
includes a monotonically increasing Identifier value that is copied
to the corresponding response message. Each request MUST have a
different Identifier value. Hence, a reliable connection-oriented
transport below the message container framing is assumed. The number
of request-response message exchanges MUST NOT exceed 255.
Each new communication session between the MN and the HAC MUST reset
the Identifier value to 1. The MN is also the peer that always sends
only request messages and the HAC only sends response messages. Once
the request-response message exchange completes, the HAC and the MN
MUST close the transport connection and the corresponding TLS-tunnel.
In the case of an HAC-side error, the HAC MUST send a response back
to an MN with an appropriate status code and then close the transport
connection.
The first request message - MHAuth-Init - (i.e., the Identifier is 1)
MUST always contain at least the following parameters:
MN-Identity - See <a href="#section-5.5.1">Section 5.5.1</a>.
Authentication Method - See <a href="#section-5.5.2">Section 5.5.2</a>.
The first response message - MHAuth-Init - (i.e., the Identifier is
1) MUST contain at minimum the following parameters:
Selected authentication Method - See <a href="#section-5.5.2">Section 5.5.2</a>.
The last request message from the MN side - MHAuth-Done - MUST
contain the following parameters:
Security association scope - See <a href="#section-5.6.4">Section 5.6.4</a>.
Proposed ciphersuites - See <a href="#section-5.6.5">Section 5.6.5</a>.
Message Authenticator - See <a href="#section-5.5.5">Section 5.5.5</a>.
The last response message - MHAuth-Done - that ends the request-
response message exchange MUST contain the following parameters:
Status Code - See <a href="#section-5.5.4">Section 5.5.4</a>.
Message Authenticator - See <a href="#section-5.5.5">Section 5.5.5</a>.
<span class="grey">Korhonen, et al. Experimental [Page 12]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-13" ></span>
<span class="grey"><a href="./rfc6618">RFC 6618</a> TLS-Based MIPv6 Security Framework May 2012</span>
In the case of successful authentication, the following additional
parameters:
Selected ciphersuite - See <a href="#section-5.6.5">Section 5.6.5</a>.
Security association scope - See <a href="#section-5.6.4">Section 5.6.4</a>.
The rest of the security association data - See <a href="#section-5.6">Section 5.6</a>.
<span class="h3"><a class="selflink" id="section-5.4" href="#section-5.4">5.4</a>. Home Agent Controller Discovery</span>
All bootstrapping information, whether for setting up the SA or for
bootstrapping MIPv6-specific information, is exchanged between the MN
and the HAC using the framing protocol defined in <a href="#section-5.1">Section 5.1</a>. The
IP address of the HAC MAY be statically configured in the MN or
alternatively MAY be dynamically discovered using DNS. In the case
of DNS-based HAC discovery, the MN queries either an A/AAAA or a SRV
record for the HAC IP address. The actual domain name used in
queries is up to the deployment to decide and out of scope of this
specification.
<span class="h3"><a class="selflink" id="section-5.5" href="#section-5.5">5.5</a>. Generic Request-Response Parameters</span>
The grammar used in the following sections is the augmented Backus-
Naur Form (BNF), the same as that used by HTTP [<a href="./rfc2616" title=""Hypertext Transfer Protocol -- HTTP/1.1"">RFC2616</a>].
<span class="h4"><a class="selflink" id="section-5.5.1" href="#section-5.5.1">5.5.1</a>. Mobile Node Identifier</span>
An identifier that identifies an MN. The Mobile Node Identifier is
in the form of a Network Access Identifier (NAI) [<a href="./rfc4282" title=""The Network Access Identifier"">RFC4282</a>].
mn-id = "mn-id" ":" <a href="./rfc4282">RFC4282</a>-NAI CRLF
<span class="h4"><a class="selflink" id="section-5.5.2" href="#section-5.5.2">5.5.2</a>. Authentication Method</span>
The HAC is the peer that mandates the authentication method. The MN
sends its authentication method proposal to the HAC. The HAC, upon
receipt of the MN proposal, returns the selected authentication
method. The MN MUST propose at least one authentication method. The
HAC MUST select exactly one authentication method or return an error
and then close the connection.
auth-method = "auth-method" ":" a-method *("," a-method) CRLF
a-method =
"psk" ; PSK-based authentication
| "eap" ; EAP-based authentication
<span class="grey">Korhonen, et al. Experimental [Page 13]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-14" ></span>
<span class="grey"><a href="./rfc6618">RFC 6618</a> TLS-Based MIPv6 Security Framework May 2012</span>
<span class="h4"><a class="selflink" id="section-5.5.3" href="#section-5.5.3">5.5.3</a>. Extensible Authentication Protocol Payload</span>
Each Extensible Authentication Protocol (EAP) [<a href="./rfc3748" title=""Extensible Authentication Protocol (EAP)"">RFC3748</a>] message is an
encoded string of hexadecimal numbers. The "eap-payload" is
completely transparent as to which EAP-method or EAP message is
carried inside it. The "eap-payload" can appear in both request and
response messages:
eap-payload = "eap-payload" ":" 1*(HEX HEX) CRLF
<span class="h4"><a class="selflink" id="section-5.5.4" href="#section-5.5.4">5.5.4</a>. Status Code</span>
The "status-code" MUST only be present in the response message that
ends the request-response message exchange. The "status-code"
follows the principles of HTTP and the definitions found in <a href="./rfc2616#section-10">Section</a>
<a href="./rfc2616#section-10">10 of RFC 2616</a> also apply for these status codes listed below:
status-code = "status-code" ":" status-value CRLF
status-value =
"100" ; Continue
| "200" ; OK
| "400" ; Bad Request
| "401" ; Unauthorized
| "500" ; Internal Server Error
| "501" ; Not Implemented
| "503" ; Service Unavailable
| "504" ; Gateway Time-out
<span class="h4"><a class="selflink" id="section-5.5.5" href="#section-5.5.5">5.5.5</a>. Message Authenticator</span>
The "auth" header contains data used for authentication purposes. It
MUST be the last TV-header in the message and calculated over the
whole message till the start of the "msg-header":
msg-auth = "auth" ":" 1*(HEX HEX) CRLF
<span class="h4"><a class="selflink" id="section-5.5.6" href="#section-5.5.6">5.5.6</a>. Retry After</span>
retry-after = "retry-after" ":" <a href="./rfc1123">rfc1123</a>-date CRLF
<span class="h4"><a class="selflink" id="section-5.5.7" href="#section-5.5.7">5.5.7</a>. End of Message Content</span>
end-of-message = 2CRLF
<span class="grey">Korhonen, et al. Experimental [Page 14]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-15" ></span>
<span class="grey"><a href="./rfc6618">RFC 6618</a> TLS-Based MIPv6 Security Framework May 2012</span>
<span class="h4"><a class="selflink" id="section-5.5.8" href="#section-5.5.8">5.5.8</a>. Random Values</span>
Random numbers generated by the MN and the HAC, respectively. The
length of the random number MUST be 32 octets (before TV-header
encoding):
mn-rand = "mn-rand" ":" 32(HEX HEX) CRLF
hac-rand = "hac-rand" ":" 32(HEX HEX) CRLF
<span class="h3"><a class="selflink" id="section-5.6" href="#section-5.6">5.6</a>. Security Association Configuration Parameters</span>
During the Mobile IPv6 bootstrapping, the MN and the HAC negotiate a
single ciphersuite for protecting the traffic between the MN and the
HA. The allowed ciphersuites for this specification are a subset of
those in TLS version 1.2 (see <a href="./rfc5246#appendix-A.5">Appendix A.5 of [RFC5246]</a>) per
<a href="#section-5.6.5">Section 5.6.5</a>. This might appear as a constraint as the HA and the
HAC may have implemented different ciphersuites. These two nodes
are, however, assumed to belong to the same administrative domain.
In order to avoid exchanging supported MN-HA ciphersuites in the MN-
HAC protocol and to reuse the TLS ciphersuite negotiation procedure,
we make this simplifying assumption. The selected ciphersuite MUST
provide integrity and confidentiality protection.
<a href="#section-5.6.5">Section 5.6.5</a> provides the mapping from the TLS ciphersuites to the
integrity and encryption algorithms allowed for MN-HA protection.
This mapping mainly ignores the authentication algorithm part that is
not required within the context of this specification. For example,
[<a href="./rfc5246" title=""The Transport Layer Security (TLS) Protocol Version 1.2"">RFC5246</a>] defines a number of AES-based ciphersuites for TLS
including 'TLS_RSA_WITH_AES_128_CBC_SHA'. For this specification,
the relevant part is 'AES_128_CBC_SHA'.
All the parameters described in the following sections apply only to
a request-response protocol response message to the MN. The MN has
no way of affecting the provisioning decision of the HAC.
<span class="h4"><a class="selflink" id="section-5.6.1" href="#section-5.6.1">5.6.1</a>. Security Parameter Index</span>
The 28-bit unsigned SPI number identifies the SA used between the MN
and the HA. The value 0 (zero) is reserved and MUST NOT be used.
Therefore, values ranging from 1 to 268435455 are valid.
The TV-header corresponding to the SPI number is as follows:
mip6-spi = "mip6-spi" ":" 1*DIGIT CRLF
<span class="grey">Korhonen, et al. Experimental [Page 15]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-16" ></span>
<span class="grey"><a href="./rfc6618">RFC 6618</a> TLS-Based MIPv6 Security Framework May 2012</span>
<span class="h4"><a class="selflink" id="section-5.6.2" href="#section-5.6.2">5.6.2</a>. MN-HA Shared Keys</span>
The MN-HA shared integrity (ikey) and encryption (ekey) keys are used
to protect the traffic between the MN and the HA. The length of
these keys depend on the selected ciphersuite.
The TV-headers that carry these two parameters are the following:
mip6-mn-to-ha-ikey = "mip6-mn-to-ha-ikey" ":" 1*(HEX HEX) CRLF
mip6-ha-to-mn-ikey = "mip6-ha-to-mn-ikey" ":" 1*(HEX HEX) CRLF
mip6-mn-to-ha-ekey = "mip6-mn-to-ha-ekey" ":" 1*(HEX HEX) CRLF
mip6-ha-to-mn-ekey = "mip6-ha-to-mn-ekey" ":" 1*(HEX HEX) CRLF
<span class="h4"><a class="selflink" id="section-5.6.3" href="#section-5.6.3">5.6.3</a>. Security Association Validity Time</span>
The end of the SA validity time is encoded using the "<a href="./rfc1123">rfc1123</a>-date"
format, as defined in <a href="./rfc2616#section-3.3.1">Section 3.3.1 of [RFC2616]</a>.
The TV-header corresponding to the SA validity time value is as
follows:
mip6-sa-validity-end = "mip6-sa-validity-end" ":" <a href="./rfc1123">rfc1123</a>-date CRLF
<span class="h4"><a class="selflink" id="section-5.6.4" href="#section-5.6.4">5.6.4</a>. Security Association Scope (SAS)</span>
The SA is applied either to Mobile IPv6 signaling messages only or to
both Mobile IPv6 signaling messages and data traffic. This policy
MUST be agreed between the MN and HA prior to using the SA.
Otherwise, the receiving side will be unaware of whether the SA
applies to data traffic and hence unable to decide how to act when
receiving unprotected packets of PType 1 (see <a href="#section-6.4">Section 6.4</a>).
mip6-sas = "mip6-sas" ":" 1DIGIT CRLF
where a value of "O" indicates that the SA does not protect data
traffic and a value of "1" indicates that all data traffic MUST be
protected by the SA. If the mip6-sas value of an SA is set to 1, any
packet received with a PType value that does not match the mip6-sas
value of the SA MUST be silently discarded.
The HAC is the peer that mandates the used security association
scope. The MN sends its proposal to the HAC, but eventually the
security association scope returned from the HAC defines the used
scope.
<span class="grey">Korhonen, et al. Experimental [Page 16]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-17" ></span>
<span class="grey"><a href="./rfc6618">RFC 6618</a> TLS-Based MIPv6 Security Framework May 2012</span>
<span class="h4"><a class="selflink" id="section-5.6.5" href="#section-5.6.5">5.6.5</a>. Ciphersuites and Ciphersuite-to-Algorithm Mapping</span>
The ciphersuite negotiation between HAC and MN uses a subset of the
TLS 1.2 ciphersuites and follows the TLS 1.2 numeric representation
defined in <a href="./rfc5246#appendix-A.5">Appendix A.5 of [RFC5246]</a>. The TV-headers corresponding
to the selected ciphersuite and ciphersuite list are the following:
mip6-ciphersuite = "mip6-ciphersuite" ":" csuite CRLF
csuite = "{" suite "}"
suite =
"00" "," "02" ; CipherSuite NULL_SHA = {0x00,0x02}
| "00" "," "3B" ; CipherSuite NULL_SHA256 = {0x00,0x3B}
| "00" "," "0A" ; CipherSuite 3DES_EDE_CBC_SHA = {0x00,0x0A}
| "00" "," "2F" ; CipherSuite AES_128_CBC_SHA = {0x00,0x2F}
| "00" "," "3C" ; CipherSuite AES_128_CBC_SHA256 = {0x00,0x3C}
mip6-suitelist = "mip6-suitelist" ":" csuite *("," csuite) CRLF
All other Ciphersuite values are reserved.
The following integrity algorithms MUST be supported by all
implementations:
HMAC-SHA1-96 [<a href="./rfc2404" title=""The Use of HMAC-SHA-1-96 within ESP and AH"">RFC2404</a>]
AES-XCBC-MAC-96 [<a href="./rfc3566" title=""The AES-XCBC-MAC-96 Algorithm and Its Use With IPsec"">RFC3566</a>]
The binding management messages between the MN and HA MUST be
integrity protected. Implementations MUST NOT use a NULL integrity
algorithm.
The following encryption algorithms MUST be supported:
NULL [<a href="./rfc2410" title=""The NULL Encryption Algorithm and Its Use With IPsec"">RFC2410</a>]
TripleDES-CBC [<a href="./rfc2451" title=""The ESP CBC-Mode Cipher Algorithms"">RFC2451</a>]
AES-CBC with 128-bit keys [<a href="./rfc3602" title=""The AES-CBC Cipher Algorithm and Its Use with IPsec"">RFC3602</a>]
Traffic between MN and HA MAY be encrypted. Any integrity-only
Ciphersuite makes use of the NULL encryption algorithm.
Note: This document does not consider combined algorithms. The
following table provides the mapping of each ciphersuite to a
combination of integrity and encryption algorithms that are part of
the negotiated SA between MN and HA.
<span class="grey">Korhonen, et al. Experimental [Page 17]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-18" ></span>
<span class="grey"><a href="./rfc6618">RFC 6618</a> TLS-Based MIPv6 Security Framework May 2012</span>
+-------------------+-----------------+--------------------------+
|Ciphersuite |Integ. Algorithm |Encr. Algorithm |
+-------------------+-----------------+--------------------------+
|NULL_SHA |HMAC-SHA1-96 |NULL |
|NULL_SHA256 |AES-XCBC-MAC-96 |NULL |
|3DES_EDE_CBC_SHA |HMAC-SHA1-96 |TripleDES-CBC |
|AES_128_CBC_SHA |HMAC-SHA1-96 |AES-CBC with 128-bit keys |
|AES_128_CBC_SHA256 |AES-XCBC-MAC-96 |AES-CBC with 128-bit keys |
+-------------------+----------------+---------------------------+
Ciphersuite-to-Algorithm Mapping
<span class="h3"><a class="selflink" id="section-5.7" href="#section-5.7">5.7</a>. Mobile IPv6 Bootstrapping Parameters</span>
In parallel with the SA bootstrapping, the HAC SHOULD provision the
MN with relevant MIPv6-related bootstrapping information.
The following generic BNFs are used to form IP addresses and
prefixes. They are used in subsequent sections.
ip6-addr = 7( word ":" ) word CRLF
word = 1*4HEX
ip6-prefix = ip6-addr "/" 1*2DIGIT
ip4-addr = 1*3DIGIT "." 1*3DIGIT "." 1*3DIGIT "." 1*3DIGIT
ip4-subnet = ip4-addr "/" 1*2DIGIT
<span class="h4"><a class="selflink" id="section-5.7.1" href="#section-5.7.1">5.7.1</a>. Home Agent Address</span>
The HAC MAY provision the MN with an IPv4 or an IPv6 address of an
HA, or both.
mip6-haa-ip6 = "mip6-haa-ip6" ":" ip6-addr CRLF
mip6-haa-ip4 = "mip6-haa-ip4" ":" ip4-addr CRLF
<span class="h4"><a class="selflink" id="section-5.7.2" href="#section-5.7.2">5.7.2</a>. Mobile IPv6 Service Port Number</span>
The HAC SHOULD provision the MN with an UDP port number, where the HA
expects to receive UDP packets. If this parameter is not present,
then the IANA reserved port number (mipv6tls) MUST be used instead.
mip6-port = "mip6-port" ":" 1*5DIGIT CRLF
<span class="h4"><a class="selflink" id="section-5.7.3" href="#section-5.7.3">5.7.3</a>. Home Addresses and Home Network Prefix</span>
The HAC MAY provision the MN with an IPv4 or an IPv6 home address, or
both. The HAC MAY also provision the MN with its home network
prefix.
<span class="grey">Korhonen, et al. Experimental [Page 18]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-19" ></span>
<span class="grey"><a href="./rfc6618">RFC 6618</a> TLS-Based MIPv6 Security Framework May 2012</span>
mip6-ip6-hoa = "mip6-ip6-hoa" ":" ip6-addr CRLF
mip6-ip4-hoa = "mip6-ip4-hoa" ":" ip4-addr CRLF
mip6-ip6-hnp = "mip6-ip6-hnp" ":" ip6-prefix CRLF
mip6-ip4-hnp = "mip6-ip4-hnp" ":" ip4-subnet CRLF
<span class="h4"><a class="selflink" id="section-5.7.4" href="#section-5.7.4">5.7.4</a>. DNS Server</span>
The HAC may also provide the MN with DNS server configuration
options. These DNS servers are reachable via the home agent.
dns-ip6 = "dns-ip6" ":" ip6-addr CRLF
dns-ip4 = "dns-ip4" ":" ip4-addr CRLF
<span class="h3"><a class="selflink" id="section-5.8" href="#section-5.8">5.8</a>. Authentication of the Mobile Node</span>
This section describes the basic operation required for the MN-HAC
mutual authentication and the channel binding. The authentication
protocol described as part of this section is a simple exchange that
follows the Generalized Pre-Shared Key (GPSK) exchange used by EAP-
GPSK [<a href="./rfc5433" title=""Extensible Authentication Protocol - Generalized Pre-Shared Key (EAP-GPSK) Method"">RFC5433</a>]. It is secured by the TLS tunnel and is
cryptographically bound to the TLS tunnel through channel binding
based on [<a href="./rfc5056" title=""On the Use of Channel Bindings to Secure Channels"">RFC5056</a>] and on the channel binding type 'tls-server-
endpoint' described in [<a href="./rfc5929" title=""Channel Bindings for TLS"">RFC5929</a>]. As a result of the channel binding
type, this method can only be used with TLS ciphersuites that use
server certificates and the Certificate handshake message. For
example, TLS ciphersuites based on PSK or anonymous authentication
cannot be used.
The authentication exchange MUST be performed through the encrypted
TLS tunnel. It performs mutual authentication between the MN and the
HAC based on a PSK or based on an EAP-method (see <a href="#section-5.9">Section 5.9</a>). Note
that an HAC MUST NOT allow MNs to renegotiate TLS sessions. The PSK
protocol is described in this section. It consists of the message
exchanges (MHAuth-Init, MHAuth-Mid, MHAuth-Done) in which both sides
exchange nonces and their identities, and compute and exchange a
message authenticator 'auth' over the previously exchanged values,
keyed with the pre-shared key. The MHAuth-Done messages are used to
deal with error situations. Key binding with the TLS tunnel is
ensured by channel binding of the type "tls-server-endpoint" as
described by [<a href="./rfc5929" title=""Channel Bindings for TLS"">RFC5929</a>] where the hash of the TLS server certificate
serves as input to the 'auth' calculation of the MHAuth messages.
Note: The authentication exchange is based on the GPSK exchange used
by EAP-GPSK. In comparison to GPSK, it does not support exchanging
an encrypted container (it always runs through an already protected
TLS tunnel). Furthermore, the initial request of the authentication
exchange (MHAuth-Init) is sent by the MN (client side) and is
<span class="grey">Korhonen, et al. Experimental [Page 19]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-20" ></span>
<span class="grey"><a href="./rfc6618">RFC 6618</a> TLS-Based MIPv6 Security Framework May 2012</span>
comparable to EAP-Response/Identity, which reverses the roles of
request and response messages compared to EAP-GPSK. Figure 4 shows a
successful protocol exchange.
MN HAC
| |
| Request/MHAuth-Init (...) |
|------------------------------------------------------>|
| |
| Response/MHAuth-Init (...) |
|<------------------------------------------------------|
| |
| Request/MHAuth-Done (...) |
|------------------------------------------------------>|
| |
| Response/MHAuth-Done (...) |
|<------------------------------------------------------|
| |
Figure 4: Authentication of the Mobile Node Using Shared Secrets
1) Request/MHAuth-Init: (MN -> HAC)
mn-id, mn-rand, auth-method=psk
2) Response/MHAuth-Init: (MN <- HAC)
[mn-rand, hac-rand, auth-method=psk, [status],] auth
3) Request/MHAuth-Done: (MN -> HAC)
mn-rand, hac-rand, sa-scope, ciphersuite-list, auth
4) Response/MHAuth-Done: (MN <- HAC)
[sa-scope, sa-data, ciphersuite, bootstrapping-data,] mn-rand,
hac-rand, status, auth
Where 'auth' for MN -> HAC direction is as follows:
auth = HMAC-SHA256(PSK, "MN" | msg-octets | CB-octets)
Where 'auth' for MN <- HAC direction is as follows:
auth = HMAC-SHA256(PSK, "HAC" | msg-octets | CB-octets)
In the above, "MN" is 2 ASCII characters without null termination and
"HAC" is 3 ASCII characters without null termination.
<span class="grey">Korhonen, et al. Experimental [Page 20]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-21" ></span>
<span class="grey"><a href="./rfc6618">RFC 6618</a> TLS-Based MIPv6 Security Framework May 2012</span>
The length "mn-rand", "hac-rand" is 32 octets. Note that "|"
indicates concatenation and optional parameters are shown in square
brackets [..]. The square brackets can be nested.
The shared secret PSK can be variable length. 'msg-octets' includes
all payload parameters of the respective message to be signed except
the 'auth' payload. CB-octets is the channel binding input to the
auth calculation that is the "TLS-server-endpoint" channel binding
type. The content and algorithm (only required for the "TLS-server-
endpoint" type) are the same as described in [<a href="./rfc5929" title=""Channel Bindings for TLS"">RFC5929</a>].
The MN starts by selecting a random number 'mn-rand' and choosing a
list of supported authentication methods coded in 'auth-method'. The
MN sends its identity 'mn-id', 'mn-rand', and 'auth-method' to the
HAC in MHAuth-Init. The decision of which authentication method to
offer and which to pick is policy and implementation dependent and,
therefore, outside the scope of this document.
In MHAuth-Done, the HAC sends a random number 'hac-rand' and the
selected ciphersuite. The selection MUST be one of the MN-supported
ciphersuites as received in 'ciphersuite-list'. Furthermore, it
repeats the received parameters of the MHAuth-Init message 'mn-rand'.
It computes a message authenticator 'auth' over all the transmitted
parameters except 'auth' itself. The HAC calculates 'auth' over all
parameters and appends it to the message.
The MN verifies the received Message Authentication Code (MAC) and
the consistency of the identities, nonces, and ciphersuite parameters
transmitted in MHAuth-Auth. In case of successful verification, the
MN computes a MAC over the session parameter and returns it to the
HAC in MHAuth-Done. The HAC verifies the received MAC and the
consistency of the identities, nonces, and ciphersuite parameters
transmitted in MHAuth-Init. If the verification is successful,
MHAuth-Done is prepared and sent by the HAC to confirm successful
completion of the exchange.
<span class="grey">Korhonen, et al. Experimental [Page 21]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-22" ></span>
<span class="grey"><a href="./rfc6618">RFC 6618</a> TLS-Based MIPv6 Security Framework May 2012</span>
<span class="h3"><a class="selflink" id="section-5.9" href="#section-5.9">5.9</a>. Extensible Authentication Protocol Methods</span>
Basic operation required for the MN-HAC mutual authentication using
EAP-based methods.
MN HAC
| |
| Request/MHAuth-Init (...) |
|------------------------------------------------------>|
| |
| Response/MHAuth-Init (..., |
| eap-payload=EAP-Request/Identity) |
|<------------------------------------------------------|
| |
| Request/MHAuth-Mid (eap-payload= |
| EAP-Response/Identity) |
|------------------------------------------------------>|
| |
| Response/MHAuth-Mid (eap-payload=EAP-Request/...) |
|<------------------------------------------------------|
| |
: :
: ..EAP-method specific exchanges.. :
: :
| |
| Request/MHAuth-Done (eap-payload=EAP-Response/..., |
| ..., auth) |
|------------------------------------------------------>|
| |
| Response/MHAuth-Done (eap-payload=EAP-Success, |
| ..., auth) |
|<------------------------------------------------------|
| |
Figure 5: Authentication of the Mobile Node Using EAP
1) Request/MHAuth-Init: (MN -> HAC)
mn-id, mn-rand, auth-method=eap
2) Response/MHAuth-Init: (MN <- HAC)
[auth-method=eap, eap, [status,]] auth
3) Request/MHAuth-Mid: (MN -> HAC)
eap, auth
<span class="grey">Korhonen, et al. Experimental [Page 22]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-23" ></span>
<span class="grey"><a href="./rfc6618">RFC 6618</a> TLS-Based MIPv6 Security Framework May 2012</span>
4) Response/MHAuth-Mid: (MN <- HAC)
eap, auth
MHAuth-Mid exchange is repeated as many times as needed by the
used EAP-method.
5) Request/MHAuth-Done: (MN -> HAC)
sa-scope, ciphersuite-list, eap, auth
6) Response/MHAuth-Done: (MN <- HAC)
[sa-scope, sa-data, ciphersuite, bootstrapping-data,] eap,
status, auth
Where 'auth' for MN -> HAC direction is as follows:
auth = HMAC-SHA256(shared-key, "MN" | msg-octets | CB-octets)
Where 'auth' for MN <- HAC direction is as follows:
auth = HMAC-SHA256(shared-key, "HAC" | msg-octets | CB-octets)
In the above, "MN" is 2 ASCII characters without null termination and
"HAC" is 3 ASCII characters without null termination.
In MHAuth-Init and MHAuth-Mid messages, shared-key is set to "1". If
the EAP-method is key-deriving and creates a shared Master Session
Key (MSK) as a side effect of Authentication shared-key MUST be the
MSK in all MHAuth-Done messages. This MSK MUST NOT be used for any
other purpose. In case the EAP method does not generate an MSK,
shared-key is set to "1".
'msg-octets' includes all payload parameters of the respective
message to be signed except the 'auth' payload. CB-octets is the
channel binding input to the AUTH calculation that is the "TLS-
server-endpoint" channel binding type. The content and algorithm
(only required for the "TLS-server-endpoint" type) are the same as
described in [<a href="./rfc5929" title=""Channel Bindings for TLS"">RFC5929</a>].
<span class="h2"><a class="selflink" id="section-6" href="#section-6">6</a>. Mobile Node to Home Agent Communication</span>
<span class="h3"><a class="selflink" id="section-6.1" href="#section-6.1">6.1</a>. General</span>
The following subsections describe the packet formats used for the
traffic between the MN and the HA. This traffic includes binding
management messages (for example, BU and BA messages), reverse-
<span class="grey">Korhonen, et al. Experimental [Page 23]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-24" ></span>
<span class="grey"><a href="./rfc6618">RFC 6618</a> TLS-Based MIPv6 Security Framework May 2012</span>
tunneled and encrypted user data, and reverse-tunneled plaintext user
data. This specification defines a generic packet format, where
everything is encapsulated inside UDP. See Sections <a href="#section-6.3">6.3</a> and <a href="#section-6.4">6.4</a> for
detailed illustrations of the corresponding packet formats.
The Mobile IPv6 service port number is where the HA expects to
receive UDP packets. The same port number is used for both binding
management messages and user data packets. The reason for
multiplexing data and control messages over the same port number is
due to the possibility of Network Address and Port Translators
located along the path between the MN and the HA. The Mobile IPv6
service MAY use any ephemeral port number as the UDP source port, and
it MUST use the Mobile IPv6 service port number as the UDP
destination port. The Mobile IPv6 service port is dynamically
assigned to the MN during the bootstrapping phase (i.e., the mip6-
port parameter) or, in absence of the bootstrapping parameter, the
IANA reserved port (mipv6tls) MUST be used.
The encapsulating UDP header is immediately followed by a 4-bit
Packet Type (PType) field that defines whether the packet contains an
encrypted mobility management message, an encrypted user data packet,
or a plaintext user data packet.
The Packet Type field is followed by a 28-bit SPI value, which
identifies the correct SA concerning the encrypted packet. For any
packet that is neither integrity protected nor encrypted (i.e., no SA
is applied by the originator), the SPI MUST be set to 0 (zero).
Mobility management messages MUST always be at least integrity
protected. Hence, mobility management messages MUST NOT be sent with
an SPI value of 0 (zero).
There is always only one SPI per MN-HA mobility session and the same
SPI is used for all types of protected packets independent of the
direction.
The SPI value is followed by a 32-bit Sequence Number value that is
used to identify retransmissions of protected messages (integrity
protected or both integrity protected and encrypted, see Figures 7
and 8) . Each endpoint in the security association maintains two
"current" Sequence Numbers: the next one to be used for a packet it
initiates and the next one it expects to see in a packet from the
other end. If the MN and the HA ends initiate very different numbers
of messages, the Sequence Numbers in the two directions can be very
different. In the case data protection is not used (see Figure 9),
the Sequence Number MUST be set to 0 (zero). Note that the HA SHOULD
initiate a re-establishment of the SA before any of the Sequence
Number cycle.
<span class="grey">Korhonen, et al. Experimental [Page 24]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-25" ></span>
<span class="grey"><a href="./rfc6618">RFC 6618</a> TLS-Based MIPv6 Security Framework May 2012</span>
Finally, the Sequence Number field is followed by the data portion,
whose content is identified by the Packet Type. The data portion may
be protected.
<span class="h3"><a class="selflink" id="section-6.2" href="#section-6.2">6.2</a>. PType and Security Parameter Index</span>
The PType is a 4-bit field that indicates the Packet Type (PType) of
the UDP encapsulated packet. The PType is followed by a 28-bit SPI
value. The PType and the SPI fields are treated as one 32-bit field
during the integrity protection calculation.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| PType | SPI |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 6: Security Parameter Index with Packet Type
A SPI value of 0 (zero) indicates a plaintext packet. If the packet
is integrity protected or both integrity protected and encrypted, the
SPI value MUST be different from 0. When the SPI value is set to 0,
then the PType MUST also be 0.
<span class="h3"><a class="selflink" id="section-6.3" href="#section-6.3">6.3</a>. Binding Management Message Formats</span>
The binding management messages that are only meant to be exchanged
between the MN and the HA MUST be integrity protected and MAY be
encrypted. They MUST use the packet format shown in Figure 7.
All packets that are specific to the Mobile IPv6 protocol, contain a
Mobility Header (as defined in <a href="./rfc6275#section-6.1.1">Section 6.1.1. of RFC 6275</a>) and are
used between the MN and the HA shall use the packet format shown in
Figure 7. (This means that some Mobile IPv6 mobility management
messages, such as the Home Test Init (HoTI) message, are treated as
data packets and using encapsulation described in <a href="#section-6.4">Section 6.4</a> and
shown in Figures 8 and 9).
<span class="grey">Korhonen, et al. Experimental [Page 25]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-26" ></span>
<span class="grey"><a href="./rfc6618">RFC 6618</a> TLS-Based MIPv6 Security Framework May 2012</span>
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
: IPv4 or IPv6 header (src-addr=Xa, dst-addr=Ya) :
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
: UDP header (src-port=Xp,dst-port=Yp) :
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ------
|PType=8| SPI | ^Int.
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |Cov-
| Sequence Number | |ered
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | ----
| Payload Data (variable) | | ^
: : | |
| | |Conf.
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |Cov-
| | Padding (0-255 bytes) | |ered
+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | |
| | Pad Length | Next Header | v v
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ------
| Integrity Check Value-ICV (variable) |
: :
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 7: UDP-Encapsulated Binding Management Message Format
The PType value 8 (eight) identifies that the UDP-encapsulated packet
contains a Mobility Header (defined by <a href="./rfc6275">RFC 6275</a>) and other relevant
IPv6 extension headers. Note, there is no additional IP header
inside the encapsulated part. The Next Header field MUST be set to
value of the first encapsulated header. The encapsulated headers
follow the natural IPv6 and Mobile IPv6 extension header alignment
and formatting rules.
The Padding, Pad Length, Next Header, and ICV fields follow the rules
of <a href="#section-2.4">Section 2.4</a> to 2.8 of [<a href="./rfc4303" title=""IP Encapsulating Security Payload (ESP)"">RFC4303</a>] unless otherwise stated in this
document. For an SPI value of 0 (zero) that indicates an unprotected
packet, the Padding, Pad Length, Next Header, and ICV fields MUST NOT
be present.
The source and destination IP addresses of the outer IP header (i.e.,
the src-addr and the dst-addr in Figure 7) use the current CoA of the
MN and the HA address.
<span class="grey">Korhonen, et al. Experimental [Page 26]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-27" ></span>
<span class="grey"><a href="./rfc6618">RFC 6618</a> TLS-Based MIPv6 Security Framework May 2012</span>
<span class="h3"><a class="selflink" id="section-6.4" href="#section-6.4">6.4</a>. Reverse-Tunneled User Data Packet Formats</span>
There are two types of reverse-tunneled user data packets between the
MN and the HA: those that are integrity protected and/or encrypted
and those that are sent in the clear. The MN or the HA decides
whether to apply integrity protection and/or encryption to a packet
or to send it in the clear based on the mip6-sas value in the SA. If
the mip6-sas is set to 1, the originator MUST NOT send any user data
packets in the clear, and the receiver MUST silently discard any
packet with the PType set to 0 (unprotected). It is RECOMMENDED that
confidentiality and integrity protection of user data traffic be
applied. The reverse-tunneled IPv4 or IPv6 user data packets are
encapsulated as is inside the 'Payload Data' shown in Figures 8 and
9.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
: IPv4 or IPv6 header (src-addr=Xa, dst-addr=Ya) :
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
: UDP header (src-port=Xp,dst-port=Yp) :
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|PType=1| SPI | ^Int.
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |Cov-
| Sequence Number | |ered
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | ----
| Payload Data (variable) | | ^
: : | |
| | |Conf.
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |Cov-
| | Padding (0-255 bytes) | |ered
+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | |
| | Pad Length | Next Header | v v
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ------
| Integrity Check Value-ICV (variable) |
: :
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 8: UDP-Encapsulated Protected User Data Packet Format
<span class="grey">Korhonen, et al. Experimental [Page 27]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-28" ></span>
<span class="grey"><a href="./rfc6618">RFC 6618</a> TLS-Based MIPv6 Security Framework May 2012</span>
The PType value 1 (one) identifies that the UDP-encapsulated packet
contains an encrypted-tunneled IPv4/IPv6 user data packet. The Next
Header field header MUST be set to value corresponding the tunneled
IP packet (e.g., 41 for IPv6).
The Padding, Pad Length, Next Header, and ICV fields follow the rules
of <a href="#section-2.4">Section 2.4</a> to 2.8 of [<a href="./rfc4303" title=""IP Encapsulating Security Payload (ESP)"">RFC4303</a>] unless otherwise stated in this
document. For an SPI value of 0 (zero) that indicates an unprotected
packet, the Padding, Pad Length, Next Header, and ICV fields MUST NOT
be present.
The source and destination IP addresses of the outer IP header (i.e.,
the src-addr and the dst-addr in Figure 8) use the current CoA of the
MN and the HA address. The ESP-protected inner IP header, which is
not shown in Figure 8, uses the home address of the MN and the
correspondent node (CN) address.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
: IPv4 or IPv6 header (src-addr=Xa, dst-addr=Ya) :
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
: UDP header (src-port=Xp,dst-port=Yp) :
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|PType=0| 0 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 0 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
: Payload Data (plain IPv4 or IPv6 Packet) :
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 9: UDP-Encapsulated Non-Protected User Data Packet Format
The PType value 0 (zero) identifies that the UDP-encapsulated packet
contains a plaintext-tunneled IPv4/IPv6 user data packet. Also, the
SPI and the Sequence Number fields MUST be set to 0 (zero).
The source and destination IP addresses of the outer IP header (i.e.,
the src-addr and the dst-addr in Figure 9) use the current CoA of the
MN and the HA address. The plaintext inner IP header uses the home
address of the MN and the CN address.
<span class="grey">Korhonen, et al. Experimental [Page 28]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-29" ></span>
<span class="grey"><a href="./rfc6618">RFC 6618</a> TLS-Based MIPv6 Security Framework May 2012</span>
<span class="h2"><a class="selflink" id="section-7" href="#section-7">7</a>. Route Optimization</span>
Mobile IPv6 route optimization as described in [<a href="./rfc6275" title=""Mobility Support in IPv6"">RFC6275</a>] is not
affected by this specification. Route optimization is possible only
between an IPv6 MN and CN. UDP encapsulation of signaling and data
traffic is only between the MN and HA. The return routability
signaling messages such as HoTI/HoT and CoTI/CoT [<a href="./rfc6275" title=""Mobility Support in IPv6"">RFC6275</a>] are
treated as data packets and encapsulation, when needed, is per the
description in <a href="#section-6.4">Section 6.4</a> of this specification. The data packets
between an MN and CN that have successfully completed the return
routability test and created the appropriate entries in their binding
cache are not UDP encapsulated using the packet formats defined in
this specification but follow the [<a href="./rfc6275" title=""Mobility Support in IPv6"">RFC6275</a>] specification.
<span class="h2"><a class="selflink" id="section-8" href="#section-8">8</a>. IANA Considerations</span>
<span class="h3"><a class="selflink" id="section-8.1" href="#section-8.1">8.1</a>. New Registry: Packet Type</span>
IANA has created a new registry under the [<a href="./rfc6275" title=""Mobility Support in IPv6"">RFC6275</a>] Mobile IPv6
parameters registry for the Packet Type as described in <a href="#section-6.1">Section 6.1</a>.
Description | Value
----------------------------------+----------------------------------
non-encrypted IP packet | 0
encrypted IP packet | 1
mobility header | 8
Following the allocation policies from [<a href="./rfc5226" title="">RFC5226</a>], new values for the
Packet Type AVP MUST be assigned based on the "RFC Required" policy.
<span class="h3"><a class="selflink" id="section-8.2" href="#section-8.2">8.2</a>. Status Codes</span>
A new Status Code (to be used in BA messages) is reserved for the
cases where the HA wants to indicate to the MN that it needs to
re-establish the SA information with the HAC. The following value is
reserved in the [<a href="./rfc6275" title=""Mobility Support in IPv6"">RFC6275</a>] Status Codes registry:
REINIT_SA_WITH_HAC 176
<span class="h3"><a class="selflink" id="section-8.3" href="#section-8.3">8.3</a>. Port Numbers</span>
A new port number (mipv6tls) for UDP packets is reserved from the
existing PORT NUMBERS registry.
mipv6tls 7872
<span class="grey">Korhonen, et al. Experimental [Page 29]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-30" ></span>
<span class="grey"><a href="./rfc6618">RFC 6618</a> TLS-Based MIPv6 Security Framework May 2012</span>
<span class="h2"><a class="selflink" id="section-9" href="#section-9">9</a>. Security Considerations</span>
This document describes and uses a number of building blocks that
introduce security mechanisms and need to interwork in a secure
manner.
The following building blocks are considered from a security point of
view:
1. Discovery of the HAC
2. Authentication and MN-HA SA establishment executed between the MN
and the HAC (PSK- or EAP-based) through a TLS tunnel
3. Protection of MN-HA communication
4. AAA interworking
<span class="h3"><a class="selflink" id="section-9.1" href="#section-9.1">9.1</a>. Discovery of the HAC</span>
No dynamic procedure for discovering the HAC by the MN is described
in this document. As such, no specific security considerations apply
to the scope of this document.
<span class="h3"><a class="selflink" id="section-9.2" href="#section-9.2">9.2</a>. Authentication and Key Exchange Executed between the MN and the</span>
<span class="h3"> HAC</span>
This document describes a simple authentication and MN-HA SA
negotiation exchange over TLS. The TLS procedures remain unchanged;
however, channel binding is provided.
Authentication: Server-side certificate-based authentication MUST be
performed using TLS version 1.2 [<a href="./rfc5246" title=""The Transport Layer Security (TLS) Protocol Version 1.2"">RFC5246</a>]. The MN MUST verify the
HAC's TLS server certificate, using either the subjectAltName
extension [<a href="./rfc5280" title=""Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile"">RFC5280</a>] dNSName identities as described in [<a href="./rfc6125" title=""Representation and Verification of Domain-Based Application Service Identity within Internet Public Key Infrastructure Using X.509 (PKIX) Certificates in the Context of Transport Layer Security (TLS)"">RFC6125</a>]
or subjectAltName iPAddress identities. In case of iPAddress
identities, the MN MUST check the IP address of the TLS connection
against these iPAddress identities and SHOULD reject the
connection if none of the iPAddress identities match the
connection. In case of dNSName identities, the rules and
guidelines defined in [<a href="./rfc6125" title=""Representation and Verification of Domain-Based Application Service Identity within Internet Public Key Infrastructure Using X.509 (PKIX) Certificates in the Context of Transport Layer Security (TLS)"">RFC6125</a>] apply here, with the following
considerations:
* Support for DNS-ID identifier type (the dNSName identity in the
subjectAltName extension) is REQUIRED in the HAC and the MN TLS
implementations.
<span class="grey">Korhonen, et al. Experimental [Page 30]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-31" ></span>
<span class="grey"><a href="./rfc6618">RFC 6618</a> TLS-Based MIPv6 Security Framework May 2012</span>
* DNS names in the HAC server certificates MUST NOT contain the
wildcard character "*".
* The CN-ID MUST NOT be used for authentication within the rules
described in [<a href="./rfc6125" title=""Representation and Verification of Domain-Based Application Service Identity within Internet Public Key Infrastructure Using X.509 (PKIX) Certificates in the Context of Transport Layer Security (TLS)"">RFC6125</a>].
* The MN MUST set its "reference identifier" to the DNS name of
the HAC.
The client-side authentication may depend on the specific
deployment and is therefore not mandated. Note that TLS-PSK
[<a href="./rfc4279" title=""Pre-Shared Key Ciphersuites for Transport Layer Security (TLS)"">RFC4279</a>] cannot be used in conjunction with the methods described
in Sections <a href="#section-5.8">5.8</a> and <a href="#section-5.9">5.9</a> of this document due to the limitations of
the channel binding type used.
Through the protected TLS tunnel, an additional authentication
exchange is performed that provides client-side or mutual
authentication and exchanges SA parameters and optional
configuration data to be used in the subsequent protection of
MN-HA communication. The additional authentication exchange can
be either PSK-based (<a href="#section-5.8">Section 5.8</a>) or EAP-based (<a href="#section-5.9">Section 5.9</a>).
Both exchanges are always performed within the protected TLS
tunnel and MUST NOT be used as standalone protocols.
The simple PSK-based authentication exchange provides mutual
authentication and follows the GPSK exchange used by EAP-GPSK
[<a href="./rfc5433" title=""Extensible Authentication Protocol - Generalized Pre-Shared Key (EAP-GPSK) Method"">RFC5433</a>] and has similar properties, although some features of
GPSK like the exchange of a protected container are not supported.
The EAP-based authentication exchange simply defines message
containers to allow carrying the EAP packets between the MN and
the HAC. In principle, any EAP method can be used. However, it
is strongly recommended to use only EAP methods that provide
mutual authentication and that derive keys including an MSK in
compliance with [<a href="./rfc3748" title=""Extensible Authentication Protocol (EAP)"">RFC3748</a>].
Both exchanges use channel binding with the TLS tunnel. The
channel binding type 'TLS-server-endpoint' per [<a href="./rfc5929" title=""Channel Bindings for TLS"">RFC5929</a>] MUST be
used.
Dictionary Attacks: All messages of the authentication exchanges
specified in this document are protected by TLS. However, any
implementation SHOULD assume that the properties of the
authentication exchange are the same as for GPSK [<a href="./rfc5433" title=""Extensible Authentication Protocol - Generalized Pre-Shared Key (EAP-GPSK) Method"">RFC5433</a>], in
case the PSK-based method per <a href="#section-5.8">Section 5.8</a> is used, and are the
same as those of the underlying EAP method, in case the EAP-based
exchange per <a href="#section-5.9">Section 5.9</a> is used.
<span class="grey">Korhonen, et al. Experimental [Page 31]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-32" ></span>
<span class="grey"><a href="./rfc6618">RFC 6618</a> TLS-Based MIPv6 Security Framework May 2012</span>
Replay Protection: The underlying TLS protection provides protection
against replays.
Key Derivation and Key Strength: For TLS, the TLS-specific
considerations apply unchanged. For the authentication exchanges
defined in this document, no key derivation step is performed as
the MN-HA keys are generated by the HAC and are distributed to the
MN through the secure TLS connection.
Key Control: No joint key control for MN-HA keys is provided by this
version of the specification.
Lifetime: The TLS-protected authentication exchange between the MN
and the HAC is only to bootstrap keys and other parameters for
usage with MN-HA security. The SAs that contain the keys have an
associated lifetime. The usage of Transport Layer Security (TLS)
Session Resumption without Server-Side State, described in
[<a href="./rfc5077" title=""Transport Layer Security (TLS) Session Resumption without Server-Side State"">RFC5077</a>], provides the ability for the MN to minimize the latency
of future exchanges towards the HA without having to keep state at
the HA itself.
Denial-of-Service (DoS) Resistance: The level of resistance against
DoS attacks SHOULD be considered the same as for common TLS
operation, as TLS is used unchanged. For the PSK-based
authentication exchange, no additional factors are known. For the
EAP-based authentication exchange, any considerations regarding
DoS resistance specific to the chosen EAP method are expected to
be applicable and need to be taken into account.
Session Independence: Each individual TLS protocol run is
independent from any previous exchange based on the security
properties of the TLS handshake protocol. However, several PSK-
or EAP-based authentication exchanges can be performed across the
same TLS connection.
Fragmentation: TLS runs on top of TCP and no fragmentation-specific
considerations apply to the MN-HAC authentication exchanges.
Channel Binding: Both the PSK and the EAP-based exchanges use
channel binding with the TLS tunnel. The channel binding type
'TLS-server-endpoint' per [<a href="./rfc5929" title=""Channel Bindings for TLS"">RFC5929</a>] MUST be used.
Fast Reconnect: This protocol provides session resumption as part of
TLS and optionally the support for [<a href="./rfc5077" title=""Transport Layer Security (TLS) Session Resumption without Server-Side State"">RFC5077</a>]. No fast reconnect
is supported for the PSK-based authentication exchange. For the
EAP-based authentication exchange, availability of fast reconnect
depends on the EAP method used.
<span class="grey">Korhonen, et al. Experimental [Page 32]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-33" ></span>
<span class="grey"><a href="./rfc6618">RFC 6618</a> TLS-Based MIPv6 Security Framework May 2012</span>
Identity Protection: Based on the security properties of the TLS
tunnel, passive user identity protection is provided. An attacker
acting as man-in-the-middle in the TLS connection would be able to
observe the MN identity value sent in MHAuth-Init messages.
Protected Ciphersuite Negotiation: This protocol provides
ciphersuite negotiation based on TLS.
Confidentiality: Confidentiality protection of payloads exchanged
between the MN and the HAC are protected with the TLS Record
Layer. TLS ciphersuites with confidentiality and integrity
protection MUST be negotiated and used in order to exchange
security sensitive material inside the TLS connection.
Cryptographic Binding: No cryptographic bindings are provided by
this protocol specified in this document.
Perfect Forward Secrecy: Perfect forward secrecy is provided with
appropriate TLS ciphersuites.
Key confirmation: Key confirmation of the keys established with TLS
is provided by the TLS Record Layer when the keys are used to
protect the subsequent TLS exchange.
<span class="h3"><a class="selflink" id="section-9.3" href="#section-9.3">9.3</a>. Protection of MN and HA Communication</span>
Authentication: Data origin authentication is provided for the
communication between the MN and the HA. The chosen level of
security of this authentication depends on the selected
ciphersuite. Entity authentication is offered by the MN to HAC
protocol exchange.
Dictionary Attacks: The concept of dictionary attacks is not
applicable to the MN-HA communication as the keying material used
for this communication is randomly created by the HAC and its
length depends on the chosen cryptographic algorithms.
Replay Protection: Replay protection for the communication between
the MN and the HA is provided based on sequence numbers and
follows the design of IPsec ESP.
Key Derivation and Key Strength: The strength of the keying material
established for the communication between the MN and the HA is
selected based on the negotiated ciphersuite (based on the MN-HAC
exchange) and the key created by the HAC. The randomness
requirements for security described in [<a href="./rfc4086" title=""Randomness Requirements for Security"">RFC4086</a>] are applicable to
the key generation by the HAC.
<span class="grey">Korhonen, et al. Experimental [Page 33]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-34" ></span>
<span class="grey"><a href="./rfc6618">RFC 6618</a> TLS-Based MIPv6 Security Framework May 2012</span>
Key Control: The keying material established during the MN-HAC
protocol exchange for subsequent protection of the MN-HA
communication is created by the HA and therefore no joint key
control is provided for it.
Key Naming: For the MN-HA communication, the security associations
are indexed with the help of the SPI and additionally based on the
direction (inbound communication or outbound communication).
Lifetime: The lifetime of the MN-HA security associations is based
on the value in the mip6-sa-validity-end header field exchanged
during the MN-HAC exchange. The HAC controls the SA lifetime.
DoS Resistance: For the communication between the MN and the HA,
there are no heavy cryptographic operations (such as public key
computations). As such, there are no DoS concerns.
Session Independence: Sessions are independent from each other when
new keys are created via the MN-HAC protocol. A new MN-HAC
protocol run produces fresh and unique keying material for
protection of the MN-HA communication.
Fragmentation: There is no additional fragmentation support provided
beyond what is offered by the network layer.
Channel Binding: Channel binding is not applicable to the MN-HA
communication.
Fast Reconnect: The concept of fast reconnect is not applicable to
the MN-HA communication.
Identity Protection: User identities SHOULD NOT be exchanged between
the MN and the HA. In the case where binding management messages
contain the user identity, the messages SHOULD be confidentiality
protected.
Protected Ciphersuite Negotiation: The MN-HAC protocol provides
protected ciphersuite negotiation through a secure TLS connection.
Confidentiality: Confidentiality protection of payloads exchanged
between the MN and the HAC (for Mobile IPv6 signaling and
optionally for the data traffic) is provided utilizing algorithms
negotiated during the MN-HAC exchange.
Cryptographic Binding: No cryptographic bindings are provided by
this protocol specified in this document.
<span class="grey">Korhonen, et al. Experimental [Page 34]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-35" ></span>
<span class="grey"><a href="./rfc6618">RFC 6618</a> TLS-Based MIPv6 Security Framework May 2012</span>
Perfect Forward Secrecy: Perfect forward secrecy is provided when
the MN bootstraps new keying material with the help of the MN-HAC
protocol (assuming that a proper TLS ciphersuite is used).
Key Confirmation: Key confirmation of the MN-HA keying material
conveyed from the HAC to the MN is provided when the first packets
are exchanged between the MN and the HA (in both directions as two
different keys are used).
<span class="h3"><a class="selflink" id="section-9.4" href="#section-9.4">9.4</a>. AAA Interworking</span>
The AAA backend infrastructure interworking is not defined in this
document and is therefore out of scope.
<span class="h2"><a class="selflink" id="section-10" href="#section-10">10</a>. Acknowledgements</span>
The authors would like to thank Pasi Eronen, Domagoj Premec, Julien
Laganier, Jari Arkko, Stephen Farrell, Peter Saint-Andre and
Christian Bauer for their comments.
<span class="h2"><a class="selflink" id="section-11" href="#section-11">11</a>. References</span>
<span class="h3"><a class="selflink" id="section-11.1" href="#section-11.1">11.1</a>. Normative References</span>
[<a id="ref-RFC2119">RFC2119</a>] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", <a href="https://www.rfc-editor.org/bcp/bcp14">BCP 14</a>, <a href="./rfc2119">RFC 2119</a>, March 1997.
[<a id="ref-RFC2404">RFC2404</a>] Madson, C. and R. Glenn, "The Use of HMAC-SHA-1-96 within
ESP and AH", <a href="./rfc2404">RFC 2404</a>, November 1998.
[<a id="ref-RFC2410">RFC2410</a>] Glenn, R. and S. Kent, "The NULL Encryption Algorithm and
Its Use With IPsec", <a href="./rfc2410">RFC 2410</a>, November 1998.
[<a id="ref-RFC2451">RFC2451</a>] Pereira, R. and R. Adams, "The ESP CBC-Mode Cipher
Algorithms", <a href="./rfc2451">RFC 2451</a>, November 1998.
[<a id="ref-RFC2616">RFC2616</a>] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
Transfer Protocol -- HTTP/1.1", <a href="./rfc2616">RFC 2616</a>, June 1999.
[<a id="ref-RFC3566">RFC3566</a>] Frankel, S. and H. Herbert, "The AES-XCBC-MAC-96 Algorithm
and Its Use With IPsec", <a href="./rfc3566">RFC 3566</a>, September 2003.
[<a id="ref-RFC3602">RFC3602</a>] Frankel, S., Glenn, R., and S. Kelly, "The AES-CBC Cipher
Algorithm and Its Use with IPsec", <a href="./rfc3602">RFC 3602</a>,
September 2003.
<span class="grey">Korhonen, et al. Experimental [Page 35]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-36" ></span>
<span class="grey"><a href="./rfc6618">RFC 6618</a> TLS-Based MIPv6 Security Framework May 2012</span>
[<a id="ref-RFC4282">RFC4282</a>] Aboba, B., Beadles, M., Arkko, J., and P. Eronen, "The
Network Access Identifier", <a href="./rfc4282">RFC 4282</a>, December 2005.
[<a id="ref-RFC5056">RFC5056</a>] Williams, N., "On the Use of Channel Bindings to Secure
Channels", <a href="./rfc5056">RFC 5056</a>, November 2007.
[<a id="ref-RFC5226">RFC5226</a>] Narten, T. and H. Alvestrand, "Guidelines for Writing an
IANA Considerations Section in RFCs", <a href="https://www.rfc-editor.org/bcp/bcp26">BCP 26</a>, <a href="./rfc5226">RFC 5226</a>,
May 2008.
[<a id="ref-RFC5246">RFC5246</a>] Dierks, T. and E. Rescorla, "The Transport Layer Security
(TLS) Protocol Version 1.2", <a href="./rfc5246">RFC 5246</a>, August 2008.
[<a id="ref-RFC5280">RFC5280</a>] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
Housley, R., and W. Polk, "Internet X.509 Public Key
Infrastructure Certificate and Certificate Revocation List
(CRL) Profile", <a href="./rfc5280">RFC 5280</a>, May 2008.
[<a id="ref-RFC5929">RFC5929</a>] Altman, J., Williams, N., and L. Zhu, "Channel Bindings
for TLS", <a href="./rfc5929">RFC 5929</a>, July 2010.
[<a id="ref-RFC6275">RFC6275</a>] Perkins, C., Johnson, D., and J. Arkko, "Mobility Support
in IPv6", <a href="./rfc6275">RFC 6275</a>, July 2011.
<span class="h3"><a class="selflink" id="section-11.2" href="#section-11.2">11.2</a>. Informative References</span>
[<a id="ref-RFC0768">RFC0768</a>] Postel, J., "User Datagram Protocol", STD 6, <a href="./rfc768">RFC 768</a>,
August 1980.
[<a id="ref-RFC3748">RFC3748</a>] Aboba, B., Blunk, L., Vollbrecht, J., Carlson, J., and H.
Levkowetz, "Extensible Authentication Protocol (EAP)",
<a href="./rfc3748">RFC 3748</a>, June 2004.
[<a id="ref-RFC3776">RFC3776</a>] Arkko, J., Devarapalli, V., and F. Dupont, "Using IPsec to
Protect Mobile IPv6 Signaling Between Mobile Nodes and
Home Agents", <a href="./rfc3776">RFC 3776</a>, June 2004.
[<a id="ref-RFC4086">RFC4086</a>] Eastlake, D., Schiller, J., and S. Crocker, "Randomness
Requirements for Security", <a href="https://www.rfc-editor.org/bcp/bcp106">BCP 106</a>, <a href="./rfc4086">RFC 4086</a>, June 2005.
[<a id="ref-RFC4279">RFC4279</a>] Eronen, P. and H. Tschofenig, "Pre-Shared Key Ciphersuites
for Transport Layer Security (TLS)", <a href="./rfc4279">RFC 4279</a>,
December 2005.
[<a id="ref-RFC4301">RFC4301</a>] Kent, S. and K. Seo, "Security Architecture for the
Internet Protocol", <a href="./rfc4301">RFC 4301</a>, December 2005.
<span class="grey">Korhonen, et al. Experimental [Page 36]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-37" ></span>
<span class="grey"><a href="./rfc6618">RFC 6618</a> TLS-Based MIPv6 Security Framework May 2012</span>
[<a id="ref-RFC4303">RFC4303</a>] Kent, S., "IP Encapsulating Security Payload (ESP)",
<a href="./rfc4303">RFC 4303</a>, December 2005.
[<a id="ref-RFC4877">RFC4877</a>] Devarapalli, V. and F. Dupont, "Mobile IPv6 Operation with
IKEv2 and the Revised IPsec Architecture", <a href="./rfc4877">RFC 4877</a>,
April 2007.
[<a id="ref-RFC5077">RFC5077</a>] Salowey, J., Zhou, H., Eronen, P., and H. Tschofenig,
"Transport Layer Security (TLS) Session Resumption without
Server-Side State", <a href="./rfc5077">RFC 5077</a>, January 2008.
[<a id="ref-RFC5433">RFC5433</a>] Clancy, T. and H. Tschofenig, "Extensible Authentication
Protocol - Generalized Pre-Shared Key (EAP-GPSK) Method",
<a href="./rfc5433">RFC 5433</a>, February 2009.
[<a id="ref-RFC5555">RFC5555</a>] Soliman, H., "Mobile IPv6 Support for Dual Stack Hosts and
Routers", <a href="./rfc5555">RFC 5555</a>, June 2009.
[<a id="ref-RFC5944">RFC5944</a>] Perkins, C., "IP Mobility Support for IPv4, Revised",
<a href="./rfc5944">RFC 5944</a>, November 2010.
[<a id="ref-RFC5996">RFC5996</a>] Kaufman, C., Hoffman, P., Nir, Y., and P. Eronen,
"Internet Key Exchange Protocol Version 2 (IKEv2)",
<a href="./rfc5996">RFC 5996</a>, September 2010.
[<a id="ref-RFC6125">RFC6125</a>] Saint-Andre, P. and J. Hodges, "Representation and
Verification of Domain-Based Application Service Identity
within Internet Public Key Infrastructure Using X.509
(PKIX) Certificates in the Context of Transport Layer
Security (TLS)", <a href="./rfc6125">RFC 6125</a>, March 2011.
<span class="grey">Korhonen, et al. Experimental [Page 37]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-38" ></span>
<span class="grey"><a href="./rfc6618">RFC 6618</a> TLS-Based MIPv6 Security Framework May 2012</span>
Authors' Addresses
Jouni Korhonen (editor)
Nokia Siemens Networks
Linnoitustie 6
Espoo FIN-02600
Finland
EMail: jouni.nospam@gmail.com
Basavaraj Patil
Nokia
6021 Connection Drive
Irving, TX 75039
USA
EMail: basavaraj.patil@nokia.com
Hannes Tschofenig
Nokia Siemens Networks
Linnoitustie 6
Espoo 02600
Finland
Phone: +358 (50) 4871445
EMail: Hannes.Tschofenig@gmx.net
Dirk Kroeselberg
Siemens
Otto-Hahn-Ring 6
Munich 81739
Germany
EMail: dirk.kroeselberg@siemens.com
Korhonen, et al. Experimental [Page 38]
</pre>
|