1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917
|
<pre>Network Working Group Vinton Cerf
Request for Comments: 675 Yogen Dalal
NIC: 2 Carl Sunshine
INWG: 72 December 1974
<span class="h1">SPECIFICATION OF INTERNET TRANSMISSION CONTROL PROGRAM</span>
December 1974 Version
<span class="h2"><a class="selflink" id="section-1" href="#section-1">1</a>. INTRODUCTION</span>
This document describes the functions to be performed by the
internetwork Transmission Control Program [TCP] and its interface to
programs or users that require its services. Several basic
assumptions are made about process to process communication and these
are listed here without further justification. The interested reader
is referred to [CEKA74, TOML74, BELS74, DALA74, SUNS74] for further
discussion.
The authors would like to acknowledge the contributions of R.
Tomlinson (three way handshake and Initial Sequence Number
Selection), D. Belsnes, J. Burchfiel, M. Galland, R. Kahn, D. Lloyd,
W. Plummer, and J. Postel all of whose good ideas and counsel have
had a beneficial effect (we hope) on this protocol design. In the
early phases of the design work, R. Metcalfe, A. McKenzie, H.
Zimmerman, G. LeLann, and M. Elie were most helpful in explicating
the various issues to be resolved. Of course, we remain responsible
for the remaining errors and misstatements which no doubt lurk in the
nooks and crannies of the text.
Processes are viewed as the active elements of all HOST computers in
a network. Even terminals and files or other I/O media are viewed as
communicating through the use of processes. Thus, all network
communication is viewed as inter-process communication.
Since a process may need to distinguish among several communication
streams between itself and another process [or processes], we imagine
that each process may have a number of PORTs through which it
communicates with the ports of other processes.
Since port names are selected independently by each operating system,
TCP, or user, they may not be unique. To provide for unique names at
each TCP, we concatenate a NETWORK identifier, and a TCP identifier
with a port name to create a SOCKET name which will be unique
throughout all networks connected together.
<span class="grey">Cerf, Dalal & Sunshine [Page 1]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-2" ></span>
<span class="grey"><a href="./rfc675">RFC 675</a> Specification of Internet TCP December 1974</span>
A pair of sockets form a CONNECTION which can be used to carry data
in either direction [i.e. full duplex]. The connection is uniquely
identified by the <local socket, foreign socket> address pair, and
the same local socket can participate in multiple connections to
different foreign sockets [see <a href="#section-2.2">Section 2.2</a>].
Processes exchange finite length LETTERS as a way of communicating;
thus, letter boundaries are significant. However, the length of a
letter may be such that it must be broken into FRAGMENTS before it
can be transmitted to its destination. We assume that the fragments
will normally be reassembled into a letter before being passed to the
receiving process. Throughout this document, it is legitimate to
assume that a fragment contains all or a part of a letter, but that a
fragment never contains parts of more than one letter.
We specifically assume that fragments are transmitted from Host to
Host through means of a PACKET SWITCHING NETWORK [PSN] [ROWE70,
POUZ73]. This assumption is probably unnecessary, since a circuit
switched network could also be used, but for concreteness, we
explicitly assume that the hosts are connected to one or more PACKET
SWITCHES [PS] of a PSN [HEKA7O, POUZ74, SCWI71].
Processes make use of the TCP by handing it letters. The TCP breaks
these into fragments, if necessary, and then embeds each fragment in
an INTERNETWORK PACKET. Each internetwork packet is in turn embedded
in a LOCAL PACKET suitable for transmission from the host to one of
its serving PS. The packet switches may perform further formatting or
other operations to achieve the delivery of the local packet to the
destination Host.
The term LOCAL PACKET is used generically here to mean the formatted
bit string exchanged between a host and a packet switch. The format
of bit strings exchanged between the packet switches in a PSN will
generally not be of concern to us. If an internetwork packet is
destined for a TCP in a foreign PSN, the packet is routed to a
GATEWAY which connects the origin PSN with an intermediate or the
destination PSN. Routing of internetwork packets to the GATEWAY may
be the responsibility of the source TCP or the local PSN, depending
upon the PSN Implementation.
One model of TCP operation is to imagine that there is a basic
GATEWAY associated with each TCP which provides an interface to the
local network. This basic GATEWAY performs routing and packet
reformatting or embedding, and may also implement congestion and
error control between the TCP and GATEWAYS at or intermediate to the
destination TCP.
<span class="grey">Cerf, Dalal & Sunshine [Page 2]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-3" ></span>
<span class="grey"><a href="./rfc675">RFC 675</a> Specification of Internet TCP December 1974</span>
At a GATEWAY between networks, the internetwork packet is unwrapped
from its local packet format and examined to determine through which
network the internetwork packet should travel next. The internetwork
packet is then wrapped in a local packet format suitable to the next
network and passed on to a new packet switch.
A GATEWAY is permitted to break up the fragment carried by an
internetwork packet into smaller fragments if this is necessary for
transmission through the next network. To do this, the GATEWAY
produces a set of internetwork packets, each carrying a new fragment.
The packet format is designed so that the destination TCP may treat
fragments created by the source TCP or by intermediate GATEWAYS
nearly identically.
The TCP is responsible for regulating the flow of internetwork
packets to and from the processes it serves, as a way of preventing
its host from becoming saturated or overloaded with traffic. The TCP
is also responsible for retransmitting unacknowledged packets, and
for detecting duplicates. A consequence of this error
detection/retransmission scheme is that the order of letters received
on a given connection is also maintained [CEKA74, SUNS74]. To perform
these functions, the TCP opens and closes connections between ports
as described in <a href="#section-4.3">Section 4.3</a>. The TCP performs retransmission,
duplicate detection, sequencing, and flow control on all
communication among the processes it serves.
<span class="h2"><a class="selflink" id="section-2" href="#section-2">2</a>. The TCP INTERFACE to the USER</span>
<span class="h3"><a class="selflink" id="section-2.1" href="#section-2.1">2.1</a> The TCP as a POST OFFICE</span>
The TCP acts in many ways like a postal service since it provides a
way for processes to exchange letters with each other. It sometimes
happens that a process may offer some service, but not know in
advance what its correspondents' addresses are. The analogy can be
drawn with a mail order house which opens a post office box which can
accept mail from any source. Unlike the post box, however, once a
letter from a particular correspondent arrives, a port becomes
specific to the correspondent until the owner of the port declares
otherwise.
In addition to acting like a postal service, the TCP insures end-to-
end acknowledgment, error correction, duplicate detection,
sequencing, and flow control.
<span class="grey">Cerf, Dalal & Sunshine [Page 3]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-4" ></span>
<span class="grey"><a href="./rfc675">RFC 675</a> Specification of Internet TCP December 1974</span>
<span class="h3"><a class="selflink" id="section-2.2" href="#section-2.2">2.2</a> Sockets and Addressing</span>
We have borrowed the term SOCKET from the ARPANET terminology
[CACR70, MCKE73]. In general, a socket is the concatenation of a
NETWORK identifier, TCP identifier, and PORT identifier. A CONNECTION
is fully specified by the pair of SOCKETS at each end since the same
local socket may participate in many connections to different foreign
sockets.
Once the connections is specified in the OPEN command [see <a href="#section-2.3.2">section</a>
<a href="#section-2.3.2">2.3.2</a>], the TCP supplies a [short] Local Connection Name by which the
user refers to the connection in subsequent commands. In particular
this facilitates using connections with initially unspecified foreign
sockets.
TCP's are free to associate ports with processes however they choose.
However, several basic concepts seem necessary in an implementation.
There must be well known sockets [WKS] which the TCP associates only
with the "appropriate" processes by some means. We envision that
processes may "own" sockets, and that processes can only initiate
connections on the sockets they own [means for implementing ownership
is a local issue, but we envision a Request Port user call, or a
method of uniquely allocating a group of ports to a given process,
e.g. by associating the high order bits of a port name with a given
process.]
Once initiated, a connection may be passed to another process that
does not own the local socket [e.g. from logger to service process].
Strictly speaking this is a reconnection issue which might be more
elegantly handled by a general reconnection protocol as discussed in
<a href="#section-3.3">section 3.3</a>. To simplify passing a connection within a single TCP,
such "invisible" switches may be allowed as in TENEX systems.
Of course, each connection is associated with exactly one process,
and any attempt to reference that connection by another process will
be signaled as an error by the TCP. This prevents stealing data from
or inserting data into another process' data stream.
A connection is initiated by the rendezvous of an arriving
internetwork packet and a waiting Transmission Control Block [TCB]
created by a user OPEN, SEND, INTERPUPT, or RECEIVE call [see <a href="#section-2.3">section</a>
<a href="#section-2.3">2.3</a>]. The matching of local and foreign socket identifiers determines
when a successful connection has been initiated. The connection
becomes established when sequence numbers have been synchronized in
both directions as described in <a href="#section-4.3.2">section 4.3.2</a>.
<span class="grey">Cerf, Dalal & Sunshine [Page 4]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-5" ></span>
<span class="grey"><a href="./rfc675">RFC 675</a> Specification of Internet TCP December 1974</span>
It is possible to specify a socket only partially by setting the PORT
identifier to zero or setting both the TCP and PORT identifiers to
zero. A socket of all zero is called UNSPECIFIED. The purpose behind
unspecified sockets is to provide a sort of "general delivery"
facility [useful for logger type processes with well known sockets].
There are bounds on the degree of unspecificity of socket
identifiers. TCB's must have fully specified local sockets, although
the foreign socket may be fully or partly unspecified. Arriving
packets must have fully specified sockets.
We employ the following notation:
x.y.z = fully specified socket with x=net, y=TCP, z=port
x.y.u = as above, but unspecified port
x.u.u = as above, but unspecified TCP and port
u.u.u = completely unspecified
with respect to implementation, u = 0 [zero]
We illustrate the principles of matching by giving all cases of
incoming packets which match with existing TCB's. Generally, both
the local (foreign) socket of the TCB and the foreign (local) socket
of the packet must match.
TCB local TCB foreign Packet local Packet foreign
(a) a.b.c e.f.g e.f.g a.b.c
(b) a.b.c e.f.u e.f.g a.b.c
(c) a.b.c e.u.u e.f.g a.b.c
(d) a.b.c u.u.u e.f.g a.b.c
There are no other legal combinations of socket identifiers which
match. Case (d) is typical of the ARPANET well known socket idea in
which the well known socket (a.b.c) LISTENS for a connection from
any (u.u.u) socket. Cases (b) and (c) can be used to restrict
matching to a particular TCP or net.
<span class="grey">Cerf, Dalal & Sunshine [Page 5]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-6" ></span>
<span class="grey"><a href="./rfc675">RFC 675</a> Specification of Internet TCP December 1974</span>
<span class="h3"><a class="selflink" id="section-2.3" href="#section-2.3">2.3</a> TCP USER CALLS</span>
<span class="h4"><a class="selflink" id="section-2.3.1" href="#section-2.3.1">2.3.1</a> A Note on Style</span>
The following sections functionally define the USER/TCP interface.
The notation used is similar to most procedure or function calls in
high level languages, but this usage is not meant to rule out trap
type service calls [e.g. SVC's, UUO's, EMT's,...].
The user calls described below specify the basic functions the TCP
will perform to support interprocess communication. Individual
implementations should define their own exact format, and may
provide combinations or subsets of the basic functions in single
calls. In particular, some implementations may wish to automatically
OPEN a connection on the first SEND, RECEIVE, or INTERRUPT issued by
the user for a given connection.
In providing interprocess communication facilities, the TCP must not
only accept commands, but also return information to the processes
it serves. This communication consists of:
(a) general information about a connection [interrupts, remote
close, binding of unspecified foreign socket].
(b) replies to specific user commands indicating success or various
types of failure.
Although the means for signaling user processes and the exact format
of replies will vary from one implementation to another, it would
promote common understanding and testing if a common set of codes
were adopted. Such a set of Event Codes is described in <a href="#section-2.4">section 2.4</a>.
With respect to error messages, references to "local" and "foreign"
are ambiguous unless it is known whether these refer to the world as
seen by the sender or receiver of the error message. The authors
attempted several different approaches and finally settled on the
convention that these references would be as seen by the receiver of
the message.
<span class="h4"><a class="selflink" id="section-2.3.2" href="#section-2.3.2">2.3.2</a> OPEN CONNECTION</span>
Format: OPEN(local port, foreign socket [, timeout])
We assume that the local TCP is aware of the identity of the
processes it serves and will check the authority of the process to
use the connection specified. Depending upon the implementation of
the TCP, the source network and TCP identifiers will either be
supplied by the TCP or by the processes that serve it [e.g. the
<span class="grey">Cerf, Dalal & Sunshine [Page 6]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-7" ></span>
<span class="grey"><a href="./rfc675">RFC 675</a> Specification of Internet TCP December 1974</span>
program which interfaces the TCP to its packet switch or the packet
switch itself]. These considerations are the result of concern about
security, to the extent that no TCP be able to masquerade as another
one, and so on. Similarly, no process can masquerade as another
without the collusion of the TCP.
If no foreign socket is specified [i.e. the foreign socket parameter
is 0 or not present], then this constitutes a LISTENING local socket
which can accept communication from any foreign socket. Provision is
also made for partial specification of foreign sockets as described
in <a href="#section-2.2">section 2.2</a>.
If the specified connection is already OPEN, an error is returned,
otherwise a full-duplex transmission control block [TCB] is created
and partially filled in with data from the OPEN command parameters.
The TCB format is described in more detail in <a href="#section-4.2.2">section 4.2.2</a>.
No network traffic is generated by the OPEN command. The first SEND
or INTERRUPT by the local user or the foreign user will cause the TCP
to synchronize the connection.
The timeout, if present, permits the caller to set up a timeout for
all letters transmitted on the connection. If a letter is not
successfully transmitted within the timeout period, the user is
notified and may ignore the condition [TCP will continue trying to
transmit] or direct the TCP to close the connection. The present
global default is 30 seconds, and connections which are set up
without specifying another timeout will retransmit every letter for
at least 30 seconds before notifying the user. The retransmission
rate may vary, and is the responsibility of the TCP and not the user.
Most likely, it will be related to the measured time for responses to
return from letters sent.
Depending on the TCP implementation, either a local connection name
will be returned to the user by the TCP, or the user will specify
this local connection name (in which case another parameter is needed
in the call). The local connection name can then be used as a short
hand term for the connection defined by the <local socket, foreign
socket> pair.
Responses from the TCP which may occur as a result of this call are
detailed in <a href="#section-2.4">section 2.4</a>.
<span class="h4"><a class="selflink" id="section-2.3.3" href="#section-2.3.3">2.3.3</a> SEND LETTER</span>
Format: SEND(local connection name, buffer address, byte count, EOL
flag [, timeout])
<span class="grey">Cerf, Dalal & Sunshine [Page 7]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-8" ></span>
<span class="grey"><a href="./rfc675">RFC 675</a> Specification of Internet TCP December 1974</span>
This call causes the data contained in the indicated user buffer to
be sent on the indicated connection. If the connection has not been
opened, the SEND is considered an error. Some implementations may
allow users to SEND first, in which case an automatic OPEN would be
done. If the calling process is not authorized to use this
connection, an error is returned.
If the EOL flag is set, the data is the End Of a Letter, and the EOL
bit will be set in the last packet created from the buffer. If the
EOL f1ag is not set, subsequent SEND's will appear as part of the
same letter. This extended letter facility should be used sparingly
because some TCP's may delay processing packets until an entire
letter is received.
If no foreign socket was specified in the OPEN, but the connection is
established [e.g. because a listening connection has become specific
due to a foreign letter arriving for the local port] then the
designated letter is sent to the implied foreign socket. In general,
users who make use of OPEN with an unspecified foreign socket can
make use of SEND without ever explicitly knowing the foreign socket
address.
However, if a SEND is attempted before the foreign socket becomes
specified, an error will be returned. Users can use the STATUS call
to determine the status of the connection. In some implementations
the TCP may notify the user when an unspecified socket is bound.
If the timeout is specified, then the current default timeout for
this connection is changed to the new one. This can affect not only
all letters sent including and after this one, but also those which
have not yet been sent, since the timeout is kept in the TCB and not
associated with each letter sent. Of course, a time is maintained for
each internetwork packet formed so as to determine how long each of
these has been on the retransmission queue.
In the simplest implementation, SEND would not return control to the
sending process until either the transmission was complete or the
timeout had been exceeded. This simple method is highly subject to
deadlocks and is not recommended. [For example both sides of the
connection try to do SEND's before doing any RECEIVE's.] A more
sophisticated implementation would return immediately to allow the
process to run concurrently with network I/O, and, furthermore, to
allow multiple SENDs to be in progress concurrently. Multiple SENDs
are served in first come, first served order, so the TCP will queue
those it cannot service immediately.
<span class="grey">Cerf, Dalal & Sunshine [Page 8]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-9" ></span>
<span class="grey"><a href="./rfc675">RFC 675</a> Specification of Internet TCP December 1974</span>
NOTA BENE: In order for the process to distinguish among error or
success indications for different letters, the buffer address should
be returned along with the coded response to the SEND request. We
will offer an example event code format in <a href="#section-2.4">section 2.4</a>, showing the
information which should be returned to the calling process.
The semantics of the INTERRUPT call are described later, but this
call can have an effect on letters which have been given to the TCP
but not yet sent. In particular, all such letters are flushed by the
source TCP. Thus one of the responses to a SEND may be "flushed due
to interrupt."
Responses from the TCP which may occur as a result of this call are
detailed in <a href="#section-2.4">section 2.4</a>.
<span class="h4"><a class="selflink" id="section-2.3.4" href="#section-2.3.4">2.3.4</a> RECEIVE LETTER</span>
Format: RECEIVE(local connection name, buffer address, byte count)
This command allocates a receiving buffer associated with the
specified connection. If no OPEN precedes this command or the calling
process is not authorized to use this connection, an error is
returned.
In the simplest implementation, control would not return to the
calling program until either a letter was received, or some error
occurred, but this scheme is highly subject to deadlocks [see <a href="#section-2.3.3">section</a>
<a href="#section-2.3.3">2.3.3</a>]. A more sophisticated implementation would permit several
RECEIVE's to be outstanding at once, These would be filled as letters
arrive. This strategy permits increased throughput, at the cost of a
more elaborate scheme [possibly asynchronous] to notify the calling
program that a letter has been received.
If insufficient buffer space is given to reassemble a complete
letter, an indication that the buffer holds a partial letter will be
given; the buffer will be filled with as much data as it can hold.
The remaining parts of a partly delivered letter will be placed in
buffers as they are made available via successive RECEIVES. If a
number of RECEIVES are outstanding, they may be filled with parts of
a single long letter or with at most one letter each. The event codes
associated with each RECEIVE will indicate what is contained in the
buffer.
To distinguish among several outstanding RECEIVES, and to take care
of the case that a letter is smaller than the buffer supplied, the
event code is accompanied by both a buffer pointer and a byte count
indicating the actual length of the letter received.
<span class="grey">Cerf, Dalal & Sunshine [Page 9]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-10" ></span>
<span class="grey"><a href="./rfc675">RFC 675</a> Specification of Internet TCP December 1974</span>
The semantics of the INTERRUPT system call are discussed later, but
this call can have an effect on outstanding RECEIVES. When the TCP
receives an INTERRUPT, it will flush all data currently queued up
awaiting receipt by the receiving process. If no data is waiting, but
several buffers have been made available by anticipatory RECEIVE
commands, these buffers are returned to the process with an error
indicating that any data that might have been placed in those buffers
has been flushed. This enables the receiving process to synchronize
its RECEIVES with the interrupt. That is, the process can distinguish
between RECEIVES issued before the receipt of the INTERRUPT and these
issued afterwards.
Responses from the TCP which may occur as a result of this call are
detailed in <a href="#section-2.4">section 2.4</a>.
<span class="h4"><a class="selflink" id="section-2.3.5" href="#section-2.3.5">2.3.5</a> CLOSE CONNECTION</span>
Format: CLOSE(local connection name)
This command causes the connection specified to be closed. If the
connection is not open or the calling process is not authorized to
use this connection, an error is returned. Any unfilled receive
buffers or pending send buffers will be returned to the user with
event codes indicating they were aborted due to the CLOSE. Users
should wait for event codes for each SEND before closing the
connection if they wish to be certain that all letters were
successfully delivered.
The user may CLOSE the connection at any time on his own initiative,
or in response to various prompts from the TCP [remote close
executed, transmission timeout exceeded, destination inaccessible].
Because closing a connection requires communication with the foreign
TCP, connections may remain in the closing state for a short time.
Attempts to reopen the connection before the TCP replies to the CLOSE
command will result in errors.
Responses from the TCP which may occur as a result of this call are
detailed in <a href="#section-2.4">section 2.4</a>.
<span class="h4"><a class="selflink" id="section-2.3.6" href="#section-2.3.6">2.3.6</a> INTERRUPT</span>
Format: INTERRUPT(local connection name)
A special control signal is sent to the destination indicating an
interrupt condition. This facility can be used to simulate "break"
signals from terminals or error or completion codes from I/O devices,
for example. The semantics of this signal to the receiving process
<span class="grey">Cerf, Dalal & Sunshine [Page 10]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-11" ></span>
<span class="grey"><a href="./rfc675">RFC 675</a> Specification of Internet TCP December 1974</span>
are unspecified. The receiving TCP will signal the interrupt to the
receiving process immediately upon receipt, and will also flush any
outstanding letters waiting to be delivered. Since it is possib1e to
tell where in the letter stream this command was invoked, it is
possible for the receiving TCP to flush only preceding data. The
sending TCP will flush any letters pending transmission, returning a
special error code to indicate the flush.
If the connection is not open or the calling process is not
authorized to use this connection, an error is returned.
Responses from the TCP which may occur as a result of this call are
detailed in <a href="#section-2.4">section 2.4</a>.
<span class="h4"><a class="selflink" id="section-2.3.7" href="#section-2.3.7">2.3.7</a> STATUS</span>
Format: STATUS(local connection name)
This command returns a data block containing the following
information:
local socket, foreign socket, local connection name, receive window,
send window, connection state, number of letters awaiting
acknowledgment, number of letters pending receipt [including partial
ones], default transmission timeout
Depending on the state of the connection, some of this information
may not be available or meaningful. If the calling process is not
authorized to use this connection, an error is returned. This
prevents unauthorized processes from gaining information about a
connection.
Responses from the TCP which may occur as a result of this call are
detailed in <a href="#section-2.4">section 2.4</a>.
<span class="h3"><a class="selflink" id="section-2.4" href="#section-2.4">2.4</a> TCP TO USER MESSAGES</span>
<span class="h4"><a class="selflink" id="section-2.4.1" href="#section-2.4.1">2.4.1</a> TYPE CODES</span>
All messages include a type code which identifies the type of user
call to which the message applies. Types are:
0 - General message, does not apply to a particular user call
1 - Applies to OPEN
2 - Applies to CLOSE
<span class="grey">Cerf, Dalal & Sunshine [Page 11]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-12" ></span>
<span class="grey"><a href="./rfc675">RFC 675</a> Specification of Internet TCP December 1974</span>
3 - Applies to INTERRUPT
10 - Applies to SEND
20 - Applies to RECEIVE
30 - Applies to STATUS
<span class="h4"><a class="selflink" id="section-2.4.2" href="#section-2.4.2">2.4.2</a> MESSAGE FORMAT [notional]</span>
All messages include the following three fields:
Type code
Local connection name
Event code
For message types 0-3 [General, Open, Close, Interrupt] only these
three fields are necessary.
For message type 10 [Send] one additional field is necessary:
Buffer address
For message type 20 [Receive] three additional fields are necessary:
Buffer address
Byte count
End-of-letter flag
For message type 30 [status] additional data might include;
Local socket, foreign socket
Send window [measures buffer space at foreign TCP]
Receive window [measures buffer space at local TCP]
Connection state [see <a href="#section-4.3.6">section 4.3.6</a>]
Number of letters awaiting acknowledgment
Number of letters awaiting receipt
Retransmission timeout
<span class="grey">Cerf, Dalal & Sunshine [Page 12]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-13" ></span>
<span class="grey"><a href="./rfc675">RFC 675</a> Specification of Internet TCP December 1974</span>
<span class="h4"><a class="selflink" id="section-2.4.3" href="#section-2.4.3">2.4.3</a> EVENT CODES</span>
The event code specifies the particular event that the TCP wishes to
communicate to the user.
In addition to the event code, three flags may be useful to classify
the event into major categories and facilitate event processing by
the user:
E flag: set if event is an error
L/F flag: indicates whether event was generated by Local TCP, or
Foreign TCP or network
P/T flag: indicates whether the event is Permanent or Temporary
[retry may succeed]
Events are encoded into 8 bits with the high order bits set to
indicate the state of the E, L/F, and P/T flags, respectively.
Events specified so far are listed below with their codes and flag
settings. A * means a flag does not apply or can take both values for
this event. Additional events may be defined in the course of
experimentation.
0 0** general success
1 ELP connection illegal for this process
2 OF* unspecified foreign socket has become bound
3 ELP connection not open
4 ELT no room for TCB
5 ELT foreign socket unspecified
6 ELP connection already open
EFP unacceptable SYN [or SYN/ACK] arrived at foreign
TCP. Note: This is not a misprint, the local meaning is different
from foreign.
7 EFP connection does not exist at foreign TCP
8 EFT foreign TCP inaccessible [may have subcases]
9 ELT retransmission timeout
<span class="grey">Cerf, Dalal & Sunshine [Page 13]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-14" ></span>
<span class="grey"><a href="./rfc675">RFC 675</a> Specification of Internet TCP December 1974</span>
10 E*P buffer flushed due to interrupt
11 OF* interrupt to user
12 **P connection closing
13 E** general error
14 E*P connection reset
Possible events for each message type are as follows:
Type 0[general]: 2,11,12,14
Type 1[open]: 0,1,4,6,13
Type 2[close]: 0,1,3,13
Type 3[interrupt]: 0,1,3,5,7,8,9,12,13
Type 10[send]: 0,1,3,5,7,8,9,10,11,12,13
Type 20[receive]: 0,1,3,10,12,13
Type 30[status]: 0,1,13
Note that events 6(foreign), 7, 8 are generated at the foreign TCP or
in the network[s], and these same codes are used in the error field
of the internet packet [see <a href="#section-4.2.1">section 4.2.1</a>].
<span class="h2"><a class="selflink" id="section-3" href="#section-3">3</a>. HIGHER LEVEL PROTOCOLS</span>
<span class="h3"><a class="selflink" id="section-3.1" href="#section-3.1">3.1</a> INTRODUCTION</span>
It is envisioned that the TCP will be able to support higher level
protocols efficiently. It should be easy to interface existing
ARPANET protocols like TELNET and FTP to the TCP.
<span class="h3"><a class="selflink" id="section-3.2" href="#section-3.2">3.2</a> WELL KNOWN SOCKETS</span>
At some point, a set of well known 24 bit port numbers must be
picked. The type of service associated with the well known ports
might include:
(a) Logger
(b) FTP (File transfer protocol)
<span class="grey">Cerf, Dalal & Sunshine [Page 14]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-15" ></span>
<span class="grey"><a href="./rfc675">RFC 675</a> Specification of Internet TCP December 1974</span>
(c) RJE (Remote job entry)
(d) Host status
(e) TTY Test
(f) HELP - descriptive, interactive system documentation
WE RESERVE WELL KNOWN SOCKET 0 (24 bits of 0) for global messages
destined for a particular TCP but not related to any particular
connection. We imagine that this socket would be used for unusual TCP
synchronization (e.g. RESET ALL) or for testing purposes (e.g.
sending letters to TRASHCAN or ECHO). This does not conflict with the
usage that if a socket is 0, it is unspecified, since no user can
SEND, CLOSE, or INTERRUPT on socket 0.
<span class="h3"><a class="selflink" id="section-3.3" href="#section-3.3">3.3</a> RECONNECTION PROTOCOL (RCP)</span>
Port identifiers fall into two categories: permanent and transient.
For example, a Logger process is generally assigned a port identifier
that is fixed and well known. Transient processes will in general
have ID's which are dynamically assigned.
In the distributed processing environment of the network, two
processes that don't have well known port identifiers may often wish
to communicate. This can be achieved with the help of a well known
process using a reconnection protocol. Such a protocol is briefly
outlined using the communication facilities provided by the TCP. It
essentially provides a mechanism by which port identifiers are
exchanged in order to establish a connection between a pair of
sockets.
Such a protoco1 can be used to achieve the dynamic establishment of
new connections in order to have multiple processes solving a problem
cooperatively, or to provide a user process access to a server
process via a logger, when the logger's end of the connection can not
be invisibly passed to the server process.
A paper on this subject by R. Schantz [SCHA74] discusses some of the
issues associated with reconnection, and some of the ideas contained
therein went into the design of the protocol outlined below.
In the ARPANET, a protocol was implemented which would allow a
process to connect to a well known socket, thus making an implicit
request for service, and then be switched to another socket so that
the well known socket could be freed for use by others. Since sockets
<span class="grey">Cerf, Dalal & Sunshine [Page 15]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-16" ></span>
<span class="grey"><a href="./rfc675">RFC 675</a> Specification of Internet TCP December 1974</span>
in our TCP are permitted to have connections with more than one
foreign socket, this facility may not be explicitly needed (i.e.
connections <A,B> and <A,C> are distinguishable).
However. the well known socket may be in one network and the actual
service socket(s) may be in another network (or at least in another
TCP). Thus, the invisible switching of a connection from one port to
another within a TCP may not be sufficient as an "Initial Connection
Protocol". We imagine that a process wishes to use socket N1.T1.Q to
access well known socket N2.T2.P. However, the process associated
with socket N2.T2.P will actually start up a new process somewhere
which will use N3.T3.S as its server socket. The N(i) and T(i) may be
distinct or the same. The user will send to N2.T2.P the relevant user
information such as user name, password, and account. The server will
start up the server process and send to N1.T1.Q the actual service
socket ldentif1er: N3.T3.S. The connection (N1.TI.Q,N2.T2.P) can then
be closed, and the user can do a RECEIVE on (N1.T1.Q,N3.T3.S). The
serving process can SEND on (N3.T3.S,N1.T1.Q). There are many
variations on this scheme, some involving the user process doing a
RECEIVE on a different socket (e.g. (N1.T1.X,U.U.U)) with the server
doing SEND on (N3.T3.S,N1.T1.X). Without showing all the detail of
synchronization of sequence numbers and the like, we can illustrate
the exchange as shown below.
USER SERVER
1. RECEIVE(N2.T2.P,U.U.U)
1. SEND (N1.T1.Q,N2.T2.P)==>
<== 2. SEND(N2.T2.P,N1.T1.Q)
With "N3.T3.S" as data
2. RECEIVE(N1.T1.Q,N2.T2.P)
3. CLOSE(N1.T1.Q,N2.T2.P)==>
<:= 3. CLOSE(N2.T2.P,N1.T1.Q)
4. RECEIVE(N1.T1.Q,N3.T3.S)
<== 4. SEND(N3.T3.S,N1.T1.Q)
At this point, a connection is open between N1.T1.Q and N3.T3.S. A
variation might be to have the user do an extra RECEIVE on
(N1.T1.X,U.U.U) and have the data "N1.T1.X" be sent in the first user
SEND. Then, the server can start up the real serving process and do a
<span class="grey">Cerf, Dalal & Sunshine [Page 16]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-17" ></span>
<span class="grey"><a href="./rfc675">RFC 675</a> Specification of Internet TCP December 1974</span>
SEND on (N3.T3.S,N1.T1.X) without having to send the "N3.T3.S" data
to the user. Or perhaps both server and receiver exchange this data,
to assure security of the ultimate connection (i.e. some wild process
might try to connect to N1.T1.X if it is merely RECEIVING on foreign
socket U.U.U.).
We do not propose any specific reconnection protocol here, but leave
this to further deliberation, since it is really a user level
protocol issue.
<span class="h2"><a class="selflink" id="section-4" href="#section-4">4</a>. TCP IMPLEMENTATION</span>
<span class="h3"><a class="selflink" id="section-4.1" href="#section-4.1">4.1</a> INTRODUCTION</span>
Conceptually, the TCP is made up of several processes. Some of these
deal with USER/TCP commands, and others with packets arriving from
the network. The TCP also has an internal measurement facility which
can be activated remotely.
Any particular TCP could be viewed in a number of ways. It could be
implemented as an independent process, servicing many user processes.
It could be viewed as a set of re-entrant library routines which
share a common interface to the local PSN, and common buffer storage.
It could even be viewed as a set of processes, some handling the
user, some the input of packets from the net, and some the output of
packets to the net.
<span class="h3"><a class="selflink" id="section-4.2" href="#section-4.2">4.2</a> TCP DATA STRUCTURES</span>
<span class="h4"><a class="selflink" id="section-4.2.1" href="#section-4.2.1">4.2.1</a> INTERNETWORK PACKET FONMAT</span>
8 bits: Internet information
2 bits: Reserved for local PSN use
2 bits: Header format (11 in binary)
4 bits: Protocol version number
8 bits: Header length in octets (32 is the current value)
16 bits: Length of text in octets
32 bits: Packet sequence number
32 bits: Acknowledgment number (i.e. sequence number of next octet
expected).
<span class="grey">Cerf, Dalal & Sunshine [Page 17]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-18" ></span>
<span class="grey"><a href="./rfc675">RFC 675</a> Specification of Internet TCP December 1974</span>
16 bits: Window size (in octets)
16 bits: Control Information
Listed from high to low order:
SYN: Request to synchronize sending sequence numbers
ACK: There is a valid acknowledgment in the 32 bit ACK field
FIN: Sender will stop SENDing and RECEIVEing on this connection
DSN: The sender has stopped using sequence numbers and wants to
initiate a new sequence number for sending.
EOS: This packet is the end of a segment and therefore has a
checksum in the 16 bit checksum field. If this bit is not set, the
16 bit checksum field is to be ignored. The bit is usually set,
but if fragmentation at a GATEWAY occurs, the packets preceding
the last one will not have checksums, and the last packet will
have the checksum for the entire original fragment (segment) as it
was calculated by the sending TCP.
EOL: This packet contains the last fragment of a letter. The EOS
bit will always be set in this case.
INT: The sender wants to INTERRUPT on this connection.
XXX: six (6) unused control bits
OD: three (3) bits of control dispatch:
000: Null (the control octet contents should be ignored}
001: Event Code is present in the control octet. These were
defined in <a href="#section-2.4.3">section 2.4.3</a>.
010: Special Functions
011: Reject (codes as yet undefined)
1XX: Unused
8 bits: Control Data Octet
If CD is 000 then this octet is to be ignored.
<span class="grey">Cerf, Dalal & Sunshine [Page 18]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-19" ></span>
<span class="grey"><a href="./rfc675">RFC 675</a> Specification of Internet TCP December 1974</span>
If CD is 001, this octet contains event codes defined in <a href="#section-2.4.3">section</a>
<a href="#section-2.4.3">2.4.3</a>
If CD is 010, this octet contains a special function code as
defined below:
0: RESET all connections between Source and Destination TCPs
l: RESET the specific connection referenced in this packet
2: ECHO return packet to sender with the special function code
ECHOR (Echo Reply).
3: QUERY Query status of connection referenced in this packet
4: STATUS Reply to QUERY with requested status.
5: ECHOR Echo Reply
6: TRASH Discard packet without acknowledgment
>6: Unused
Note: Special function packets not pertaining to a particular
connection [RESET all, ECHO, ECHOR, and TRASH] are normally
sent using socket zero as described in <a href="#section-3.2">section 3.2</a>.
If CD is 01l, this octet contains an as yet undefined REJECT code.
If CD is 1XX, this octet is undefined.
4 bits: Length of destination network address in 4 bit units (current
value is 1)
4 bits: Destination network address
1010-1111 are addresses of ARPANET, UCL, CYCLADES, NPL, CADC, and
EPSS respectively.
16 bits: Destination TCP address
8 bits: Padding
4 bits: length of source network address in 4 bit units (current
value is 1)
4 bits: source network address (as for destination address)
<span class="grey">Cerf, Dalal & Sunshine [Page 19]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-20" ></span>
<span class="grey"><a href="./rfc675">RFC 675</a> Specification of Internet TCP December 1974</span>
16 bits: Source TCP address
24 bits: Destination port address
24 bits: Source port address
16 bits: Checksum (if EOS bit is set)
<span class="h4"><a class="selflink" id="section-4.2.2" href="#section-4.2.2">4.2.2</a> TRANSMISSION CONTROL BLOCK</span>
It is highly likely that any implementation will include shared data
structures among parts of the TCP and some asynchronous means of
signaling users when letters have been delivered.
One typical data structure is the Transmission Control Block (TCB)
which is created and maintained during the lifetime of a given
connection. The TCB contains the following information (field sizes
are notional only and may vary from one implementation to another):
16 bits: Local connection name
48 bits: Local socket
48 bits: Foreign socket
16 bits: Receive window size in octets
32 bits: Receive left window edge (next sequence number expected)
16 bits: Receive packet buffer size of TCB (may be less than
window)
16 bits: Send window size in octets
32 bits: Send left window edge (earliest unacknowledged octet)
32 bits: Next packet sequence number
16 bits: Send packet buffer size of TCB (may be less than window)
8 bits: Connection state
E/C - 1 if TCP has been synchronized at least once (i.e. has
been established, else O, meaning it is closed; this bit is
reset after FINS are exchanged and the user has done a CLOSE).
The bit is not reset if the connection is only desynchronized
on send or receive or both directions.
<span class="grey">Cerf, Dalal & Sunshine [Page 20]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-21" ></span>
<span class="grey"><a href="./rfc675">RFC 675</a> Specification of Internet TCP December 1974</span>
SS - SYNCed on send side (if set) else desynchronized
SR - SYNCed on receive side (if set, else desynchronized)
16 bits: Special flags
S1 - SYN sent if set
S2 - SYN verified if set
R - SYN received if set
Y - FIN sent if set
C - CLOSE from local user received if set
U - Foreign socket unspecified if set
SDS - Send side DSN sent if set
SDV - Send side DSN verified if set
RDR - Receive side DSN received if set
Initially, all bits are off [no pun intended] (i.e. SS, SR, E/C, S1,
S2, R, F, C, SDS, SDV, RDR =0). When R is set, so is SR. When S1 and
S2 are both set, so is SS. SR is reset when RDR is set. SS is reset
when both SDS and SDV are set. These bits are used to keep track of
connection state and to aid in arriving packet processing (e.g. Can
sequence number be validated? Only if SR is set.).
16 bits: Retransmission timeout (in eighths of a second#]
16 bits: Head of Send buffer queue [buffers SENT from user to TCP,
but not packetized]
16 bits: Tail of Send buffer queue
16 bits: Pointer to last octet packetized in partially packetized
buffer (refers to the buffer at the head of the queue)
16 bits: Head of Send packet queue
16 bits: Tail of Send packet queue
16 bits: Head of Packetized buffer Queue
16 bits: Tail of Packetized buffer queue
<span class="grey">Cerf, Dalal & Sunshine [Page 21]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-22" ></span>
<span class="grey"><a href="./rfc675">RFC 675</a> Specification of Internet TCP December 1974</span>
16 bits: Head of Retransmit packet queue
16 bits: Tail of Retransmit packet queue
16 bits: Head of Receive buffer queue [queue of buffers given by user
to RECEIVE letters, but unfilled]
16 bits: Tail of Receive buffer queue
16 bits: Head of Receive packet queue
16 bits: Tail of receive packet queue
16 bits: Pointer to last contiguous receive packet
16 bits: Pointer to last octet filled in partly filled buffer
16 bits: Pointer to next octet to read from partly emptied packet
[Note: The above two pointers refer to the head of the receive
buffer and receive packet queues respectively]
16 bits: Forward TCB pointer
16 bits: Backward TCB pointer
<span class="h3"><a class="selflink" id="section-4.3" href="#section-4.3">4.3</a> CONNECTION MANAGEMENT</span>
<span class="h4"><a class="selflink" id="section-4.3.1" href="#section-4.3.1">4.3.1</a> INITIAL SEQUENCE NUMBER SELECTION</span>
The protocol places no restriction on a particular connection being
used over and over again. New instances of a connection will be
referred to as incarnations of the connection. The problem that
arises owing to this is, "how does the TCP identify duplicate packets
from previous incarnations of the connection?". This problem becomes
harmfully apparent if the connection is being opened and closed in
quick succession, or if the connection breaks with loss of memory and
is then reestablished.
The essence of the solution [TOML74] is that the initial sequence
number [ISN] must be chosen so that a particular sequence number can
never refer to an "o1d" octet, Once the connection is established the
sequencing mechanism provided by the TCP filters out duplicates.
For an association to be established or initialized, the two TCP's
must synchronize on each other's initial sequence numbers. Hence the
solution requires a suitable mechanism for picking an initial
sequence number [ISN], and a slightly involved handshake to exchange
<span class="grey">Cerf, Dalal & Sunshine [Page 22]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-23" ></span>
<span class="grey"><a href="./rfc675">RFC 675</a> Specification of Internet TCP December 1974</span>
the ISN's. A "three way handshake" is necessary because sequence
numbers are not tied to a global clock in the network, and TCP's may
have different mechanisms for picking the ISN's. The receiver of the
first SYN has no way of knowing whether the packet was an old delayed
one or not, unless it remembers the last sequence number used on the
connection which is not always possible, and so it must ask the
sender to verify this SYN.
The "three way handshake" and the advantages of a "clock-driven"
scheme are discussed in [TOML74]. More on the subject, and algorithms
for implementing the clock-driven scheme can be found in [DALA74].
<span class="h4"><a class="selflink" id="section-4.3.2" href="#section-4.3.2">4.3.2</a> ESTABLISHING A CONNECTION</span>
The "three way handshake" is essentially a unidirectional attempt to
establish the connection, i.e. there is an initiator and a responder.
The TCP's should however be able to establish the connection even if
a simultaneous attempt is made by both TCP's to establish the
connection. Simultaneous attempts are treated like "collisions" in
"Aloha" systems and these conflicts are resolved into unidirectional
attempts to establish the connection. This scheme was adopted because
(i) Connections will normally have a passive and an active end,
and so the mechanism should in most cases be as simple as
possible.
(ii) It is easy to implement as special cases do not have to be
accounted for.
The example below indicates what a three way handshake between TCP's
A and B looks like
A B
--> <SEQ x><SYN> -->
<-- <SEQ y><SYN, ACK x+l> <--
--> <SEQ x+1><ACK y+l><DATA BYTES> -->
The receiver of a "SYN" is able to determine whether the "SYN" was
real (and not an old duplicate) when a positive "ACK" is returned for
the receiver's "SYN,ACK" in response to the "SYN". The sender of a
"SYN" gets verification on receipt of a "SYN,ACK" whose "ACK" part
references the sequence number proposed in the original "SYN" [pun
intended]. If the TCP is in the state where it is waiting for a
response to its SYN, but gets a SYN instead, then it always thinks
this is a collision and goes into the state prior to having sent the
<span class="grey">Cerf, Dalal & Sunshine [Page 23]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-24" ></span>
<span class="grey"><a href="./rfc675">RFC 675</a> Specification of Internet TCP December 1974</span>
SYN, i.e. it forgets that it had sent a SYN. The TCP will try to
establish the connection again after some time, unless it has to
respond to an arriving SYN. Even if the wait times in the two TCPs
are the same, the varying delays in network transmission will usually
be adequate to avoid a collision on the next cycle of attempts to
send SYN.
When establishing a connection, the state of the TCP is represented
by 3 bits --
S1 S2 R
S1 = 1 -- SYN sent
S2 = 1 -- My SYN verified
R = 1 -- SYN received
Some examples of attempts to establish the connection are now shown.
The state of the connection is indicated when a change occurs. We
specifically do not show the cases in which connection
synchronization is carried out with packets containing both SYN and
data. We do this to simplify the explanation, but we do not rule out
an implementation which is capable of dealing with data arriving in
the first packet (it has to be stored temporarily without
acknowledgment or delivery to the user until the arriving SYN has
been verified).
The "three way handshake" now looks like --
A B
------------ ------------
S1 S2 R S1 S2 R
0 0 0 0 0 0
--> <SEQ x><SYN> -->
1 0 0 0 0 1
<-- <SEQ y><SYN, ACK x+l> <--
1 1 1 1 0 1
--> <SEQ x+1><ACK y+1>(DATA OCTETS) -->
1 1 1 1 1 1
<span class="grey">Cerf, Dalal & Sunshine [Page 24]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-25" ></span>
<span class="grey"><a href="./rfc675">RFC 675</a> Specification of Internet TCP December 1974</span>
The scenario for a simultaneous attempt to establish the connection
without the arrival of any delayed duplicates is --
A B
------------ ------------
S1 S2 R S1 S2 R
0 0 0 0 0 0
(M1) 1 0 0 --> <SEQ x><SYN> ...
(M2) 0 0 0 <-- <SEQ y><SYN) <-- 1 0 0
(M1) B returns no SYN sent --> 0 0 0
(M1) 1 0 0 --> <SEQ z><SYN> * --> 0 0 1
(M3) 1 1 1 <-- <SEQ y+1><SYN,ACK z+1> <-- 1 0 1
(M4) 1 1 1 --> <SEQ z+1><ACK y+1><DATA> --> 1 1 1
Note: "..." means that a message does not arrive, but is delayed
in the network. State changes are upon arrival or upon departure
of a given message, as the case may be. Packets containing the SYN
or INT or DSN bits implicitly contain a "dummy" data octet which
is never delivered to the user, but which causes the packet
sequence numbers to be incremented by 1 even if no real data is
sent. This permits the acknowledgment of these controls without
acknowledging receipt of any data which might also have been
carried in the packet. A packet containing a FIN bit has a dummy
octet following the last octet of data (if any) in the packet.
* Once in state 000 sender selects new ISN z when attempting to
establish the connection again.
<span class="h4"><a class="selflink" id="section-4.3.3" href="#section-4.3.3">4.3.3</a> HALF-OPEN CONNECTIONS</span>
An established connection is said to be a "half-open" connection if
one of the TCP's has closed the connection at its end without the
knowledge of the other, or if the two ends of the connection have
become desynchronized owing to a crash that resulted in loss of
memory. Such connections will automatically become reset if an
attempt is made to send data in either direction. However, half-open
connections are expected to be unusual, and the recovery procedure is
somewhat involved.
<span class="grey">Cerf, Dalal & Sunshine [Page 25]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-26" ></span>
<span class="grey"><a href="./rfc675">RFC 675</a> Specification of Internet TCP December 1974</span>
If one end of the connection no longer exists, then any attempt by
the other user to send any data on it will result in the sender
receiving the event code "Connection does not exist at foreign TCP".
Such an error message should indicate to the user process that
something is wrong and it is expected to CLOSE the connection.
Assume that two user processes A and B are communicating with one
another when a crash occurs causing loss of memory to B's TCP.
Depending on the operating system supporting B's TCP, it is likely
that some error recovery mechanism exists. When the TCP is up again B
is likely to start again from the beginning or from a recovery point.
As a result B will probably try to OPEN the connection again or try
to SEND on the connection it believes open. In the latter case 1t
receives the error message "connection not open" from the local TCP.
In an attempt to establish the connection B's TCP will send a packet
containing SYN. A's TCP thinks that the connection is already
established and so will respond with the error "unacceptable SYN (or
SYN/ACK) arrived at foreign TCP". B's TCP knows that this refers to
the SYN it just sent out, and so should reset the connection and
inform the user process of this fact.
It may happen that B is passive and only wants to receive data. In
this case A's data will not reach B because the TCP at B thinks the
connection is not established. As a result A'S TCP will timeout and
send a QRY to B's TCP. B's TCP will send STATUS saying the connection
is not synched. A's TCP will treat this as if an implicit CLOSE had
occurred and tell the user process, A, that the connection is
closing. A is expected to respond with a CLOSE command to his TCP.
However, A's TCP does not send a FIN to B's TCP, since it would not
be accepted anyway on the unsynced connection. Eventually A will try
to reopen the connection or B will give up and CLOSE. If B CLOSES,
B's TCP will simply delete the connection since it was not
established as far as B's TCP is concerned. No message will be sent
to A'S TCP as a result.
<span class="h4"><a class="selflink" id="section-4.3.4" href="#section-4.3.4">4.3.4</a> RESYNCHRONIZING A CONNECTION</span>
Details of resynchronization have not yet been specified since the
need for this should be infrequent in the initial testing stages.
<span class="h4"><a class="selflink" id="section-4.3.5" href="#section-4.3.5">4.3.5</a> CLOSING A CONNECTION</span>
There are essentially three cases:
a) The user initiates by telling the TCP to CLOSE the connection
b) The remote TCP initiates by sending a FIN control signal
<span class="grey">Cerf, Dalal & Sunshine [Page 26]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-27" ></span>
<span class="grey"><a href="./rfc675">RFC 675</a> Specification of Internet TCP December 1974</span>
c) Both users CLOSE simultaneously
Two bits are used to maintain control over the closing of a
connection: these are called the "FIN sent" bit [F] and the "USER
Closed" bit, [C] respectively. The control procedure uses these two
bits to assure that the connection is properly closed.
Case 1: Local user initiates the close
In this case, both the F and C bits are initially zero, but the C
bit is set immediately upon receipt of the user call "CLOSE." When
the FIN is sent out by the TCP, the F bit is set. All pending
RECEIVES are terminated and the user is told that they have been
prematurely terminated ("connection closing"} without data.
Similarly, any pending SENDS are terminated with the same
response, "connection closing."
Several responses may arrive as the result of sending a FIN. The
one which is generally expected is a matching FIN. When this is
received, the TCB CAN BE ELIMINATED. If a "connection does not
exist at foreign TCP" message comes in response to the FIN, then
the TCB can likewise be eliminated. If no response is forthcoming,
or if "Foreign TCP inaccessible" arrives then the resolution is
moot. One might simply timeout and discard the TCB. Since the
local user wants to CLOSE anyway, this is probably satisfactory,
although it will leave a potential "half-open" connection at the
other side. We deal with half open connections in <a href="#section-4.3.3">section 4.3.3</a>.
When the acknowledging FIN arrives after the connection state bits
are set (F=1, C=1), then the TCB can be deleted.
Case 2: TCP receives a FIN from the network
First of all, a FIN must have a sequence number which lies in the
valid receive window. If not, it is discarded and the left window
edge is sent as acknowledgment. If the FIN can be processed, it is
handled (possibly out of order, since it is taken as an imperative
to shut down the connection). All pending RECEIVES and SENDS are
responded to by showing that they were terminated by the other
side's close request (i.e. "connection closing"). The user is also
told by an unsolicited event or signal that the connection has
been closed (in some systems, the user might have to request
STATUS to get this information). Finally, the TCP sends FIN in
response.
Thus, because a FIN arrived, a FIN is sent back, so the F bit is
set. However, the TCB stays around until the local user does a
CLOSE in acknowledgment of the unsolicited signal that the
<span class="grey">Cerf, Dalal & Sunshine [Page 27]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-28" ></span>
<span class="grey"><a href="./rfc675">RFC 675</a> Specification of Internet TCP December 1974</span>
connection has been closed by the other side. Thus, the C bit
remains unset until this happens. If the C and F bits go from (F=1
C=O) to (F=l, C=1), then the connection is closed and the TCB can
be removed.
Case 3: both users close simultaneously
If this happens, both connections will be in the (F=1, C=1) state.
When the FINs arrive, the connections w11i be shut down. If one
FIN fails to arrive, we have two choices. One is to insist on
acknowledgments for FINs, in which case the missing one will be
retransmitted. Another is merely to permit the half-open
connection to remain (we prefer this solution}. It can timeout
independently and go away after a while. If an attempt is made to
reestablish the connection, the initiator will discover the
existence of the open connection since an "inappropriate SYN
received" message will be sent by the TCP which holds the "half-
open" connection. The receiver of this message can tell the other
TCP to reset the connection. We cannot permit the holder of the
half-open connection to reset automatically on receipt of the SYN
since its receipt is not necessarily prima facie evidence of a
half open connection. (The SYN could be a delayed duplicate.)
<span class="h4"><a class="selflink" id="section-4.3.6" href="#section-4.3.6">4.3.6</a>. CONNECTION STATE and its relation to USER and INCOMING CONTROL</span>
<span class="h4"> REQUESTS</span>
In order to formalize the action taken by the TCP when it receives
commands from the User, or Control information from the network, we
define a connection to be in one of 7 states at any instant. These
are known as the TCB Major States. Each Major State is simply a
convenient name for a particular setting or group of settings of the
state bits, as follows:
S1 S2 R U F C # name
- - - - - - 0 no TCB
0 0 0 0/1 0 0 1 unsync
1 0 0 0 0 0 2 SYN sent
1 0 1 0/1 0 0 3 SYN received
1 1 1 0 0 0 4 established
1 0/1 1 0/1 1 1 5 FIN wait
1 1 1 0 1 0 6 FIN received
<span class="grey">Cerf, Dalal & Sunshine [Page 28]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-29" ></span>
<span class="grey"><a href="./rfc675">RFC 675</a> Specification of Internet TCP December 1974</span>
The connection moves from state to state as shown below. The
transition from one state to another will be represented as
[X, Y]<cause><action>
which means that there is a transition from state X to state Y owing
to <cause>. The action taken by the TCP is specified as <action>. We
use this notation to give the important state transitions, often
simplifying the cause and action fields to take into account a number
of situations. Figure 1 illustrates these transitions in traditional
state diagram form. <a href="#section-4.4.6">Section 4.4.6</a> and <a href="#section-4.4.7">section 4.4.7</a> fully specify the
effect of all User commands and Control information arriving from the
network.
[0,l] <OPEN> <create TCB>
[1,2] <SEND,INTERRUPT, or collision timeout> <send SYN>
[1,3] <SYN arrives> <send SYN,ACK>
[1,0] <CLOSE> <remove TCB>
[2,1] <SYN arrives (collision)> <set timeout, forget SYNs>
[2,0] <CLOSE> <remove TCB>
[2,4] <appropriate SYN,ACK arrives> <send ACK>
[3,4] <appropriate ACK arrives> <none>
[3,1] <error arrives or timeout> <(forget SYN)>
[3,5] <CLOSE> <send FIN>
[4,5] <CLOSE> <send FIN>
[4,6] <appropriate FIN arrives> <send FIN, inform user>
[5,0] <FIN or error arrives, or timeout> <remove TCB>
[6,0] <CLOSE> <remove TCB>
<span class="h3"><a class="selflink" id="section-4.4" href="#section-4.4">4.4</a> STRUCTURE 0F THE TCP</span>
4.4.l INTRODUCTION [See figure 2.1]
There are many possible implementations of the TCP. We offer one
conceptual framework in which to view the various algorithms that
<span class="grey">Cerf, Dalal & Sunshine [Page 29]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-30" ></span>
<span class="grey"><a href="./rfc675">RFC 675</a> Specification of Internet TCP December 1974</span>
make up the TCP design. In our concept, the TCP is written in two
parts, an interrupt or signal driven part (consisting of four
processes), and a reentrant library of subroutines or system calls
which interface the user process to the TCP. The subroutines
communicate with the interrupt part through shared data structures
(TCB's, shared buffer queues etc.). The four processes are the Output
Packet Handler which sends packets to the packet switch; the
Packetizer which formats letters into internet packets; the Input
Packet Handler which processes incoming packets; and the Reassembler
which builds letters for users.
The ultimate bottleneck is the pipe through which arriving and
departing packets must travel. This is the Host/Packet Switch
interface. The interrupt driven TCP shares among all TCB's its
limited packet buffer resources for sending and receiving packets.
From the standpoint of controlling buffer congestion, it appears
better to TREAT INCOMING PACKETS WITH HIGHER PRIORITY THAN OUTGOING
PACKETS. That is, packet buffers which can be released by copying
their contents into user buffers clearly help to reduce congestion.
Neither the packetizer nor the input packet handler should be allowed
to take up all available packet buffer space; an analogous problem
arises in the IMP in the allocation of store and forward, and
reassembly buffer space. One policy is to permit neither contender
more than, say, two-thirds of the space. The buffer allocation
routines can enforce these limits and reject buffer requests as
needed. Conceptually, the scheduler can monitor the amounts of
storage dedicated to the input and output routines, and can force
either to sleep if its buffer allocation exceeds the limit.
As an example, we can consider what happens when a user executes a
SEND call to the TCP service routines. The buffer containing the
letter is placed on a SEND buffer queue associated with the user's
TCB. A 'packetizer' process is awakened to look through all the TCB's
for 'packetizing' work. The packetizer will keep a roving pointer
through the TCB list which enables it to pick up new buffers from the
TCB queue and packetize them into output buffers. The packetizer
takes no more than one letter at a time from any single TCB. The
packetizer attempts to maintain a non-empty queue of output packets
so that the output handler will not fall idle waiting for the
packetizing operation. However, since arriving packets compete with
departing packets, care must be taken to prevent either class from
occupying all of the shared packet buffer space. Similarly since the
TCB's all compete for space in service to their connections, neither
input nor output packet space should be dominated by any one TCB.
When a packet is created, it is placed on a FIFO SEND packet queue
associated with its origin TCB. The packetizer wakes the output
handler and then continues to packetize a few more buffers, perhaps,
<span class="grey">Cerf, Dalal & Sunshine [Page 30]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-31" ></span>
<span class="grey"><a href="./rfc675">RFC 675</a> Specification of Internet TCP December 1974</span>
before going to sleep. The output handler is awakened either by a
'hungry' packet switch or by the packetizer; in either case, it uses
a roving TCB pointer to select the next TCB for service. The send
packet queue can be used as a 'work queue' for the output handler.
After a packet has been sent, but usually before an ACK is returned,
the output handler moves the packet to a retransmission queue
associated with each TCB.
Retransmission timeouts can refer to specific packets and the
retransmission list can be searched for the specific packet. If an
ACK is received, the retransmission entry can be removed from the
retransmit queue. The send packet queue contains only packets waiting
to be sent for the first time. INTERRUPT requests can remove entries
in both the send packet queue and the retransmit packet queue.
Since packets are never in more than one queue at a time, it appears
possible for INT, FIN or RESET commands to remove packets from the
receive, send, or retransmit packet queues with the assurance that an
already issued signal to enter the reassembler, the packetizer or the
output handler will not be confusing.
Handling the INTERRUPT and CLOSE functions can however require some
care to avoid confusing the scheduler, and the various processes. The
scheduler must maintain status information for the processes. This
information includes the current TCB being serviced. When an
INTERRUPT is issued by a local process, the output queue of letters
associated with the local port reference is to be deleted. The
packetizer, for example, may however be working at that time on the
same queue. As usual, simultaneous reading and writing of the TCB
queue pointers must be inhibited through some sort of semaphore or
lockout mechanism. When the packetizer wants to serve the next send
buffer queue, it must lock out all other access to the queue, remove
the head of the queue (assuming of course that there are enough
buffers for packetization), advance the head of the queue, and then
unlock access to the queue.
If the packetizer keeps only a TCB pointer in a global place called
CPTCB (current packetizer TCB address), and always uses the address
in CPTCB to find the TCB in which to examine the send buffer queue,
then removal of the output buffer queue does not require changes to
any working storage belonging to the packetizer. Even more important,
the arrival and processing of a RESET or CLOSE, which clears the
system of a given TCB, can update the CPTCB pointer, as long as the
removal does not occur while the packetizer is still working on the
TCB.
<span class="grey">Cerf, Dalal & Sunshine [Page 31]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-32" ></span>
<span class="grey"><a href="./rfc675">RFC 675</a> Specification of Internet TCP December 1974</span>
Incoming packets are examined by the input packet handler. Here they
are checked for valid connection sockets, and acknowledgments are
processed, causing packets to be removed, possibly, from the SEND or
RETRANSMIT packet queues as needed. As an example, consider the
receipt of a valid FIN request on a particular TCB. If a FIN had not
been sent before (i.e. F bit not set), then a FIN packet is
constructed and sent after having cleared out the SEND buffer and
SEND packet queues as well as the RETRANSMIT queue. Otherwise, if the
F and C bits are both set, all queues are emptied and the TCB is
returned to free storage.
Packets which should be reassembled into letters and sent to users
are queued by the input packet handler, on the receive packet queue,
for processing by the reassembly process. The reassembler looks at
its FIFO work queue and tries to move packets into user buffers which
are queued up in an input buffer queue on each TCB. If a packet has
arrived out of order, it can be queued for processing in the correct
sequence. Each time a packet is moved into a user buffer, the left
window edge of the receiving TCB is moved to the right so that
outgoing packets can carry the correct ACK information. If the SEND
buffer queue is empty, then the reassembler creates a packet to carry
the ACK.
As packets are moved 1nto buffers and they are filled, the buffers
are dequeued from the RECEIVE buffer queue and passed to the user.
The reassembler can also be awakened by the RECEIVE user call should
it have a non-empty receive packet queue with an empty RECEIVE buffer
queue. The awakened reassembler goes to work on each TCB, keeping a
roving pointer, and sleeping if a cycle is made of all TCB's without
finding any work.
<span class="h4"><a class="selflink" id="section-4.4.2" href="#section-4.4.2">4.4.2</a> INPUT PACKET HANDLER [See figure 2.2]</span>
The Input Packet Handler is awakened when a packet arrives from the
network. It first verifies that the packet is for an existing TCB
(i.e. the local and foreign socket numbers are matched with those of
existing TCB's). If this fails, an error message is constructed and
queued on the send packet queue of a dummy TCB. A signal is also sent
to the output packet handler. Generally, things to be transmitted
from the dummy TCB have a default retransmission timeout of zero, and
will not be retransmitted. (We use the idea of a dummy TCB so that
all packets containing errors, or RESET can be sent by the output
packet handler, instead of having the originator of them interface to
the net. These packets, it will be noticed, do not belong to any
TCB).
<span class="grey">Cerf, Dalal & Sunshine [Page 32]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-33" ></span>
<span class="grey"><a href="./rfc675">RFC 675</a> Specification of Internet TCP December 1974</span>
The input packet handler looks out for control or error information
and acts appropriately. <a href="#section-4.4.7">Section 4.4.7</a> discusses this in greater
detail, but as an example, if the incoming packet is a RESET request
of any kind (i.e. all connections from designated TCP or given
connection), and is believable, then the input packet handler clears
out the related TCB(s), empties the send and receive packet queues,
and prepares error returns for outstanding user SEND(s) and
RECEIVE(s) on each reset TCB. The TCB's are marked unused and
returned to storage. If the RESET refers to an unknown connection, it
is ignored.
Any ACK's contained in incoming packets are used to update the send
left window edge, and to remove the ACK'ed packets from the TCB
retransmit packet queue. If the packet being removed was the end of a
user buffer, then the buffer must be dequeued from the packetized
buffer queue, and the User informed. The packetizer is also signaled.
Only one signal, or one for each packet, will have to be sent,
depending on the scheduling scheme for the processes. See <a href="#section-4.4.7">section</a>
<a href="#section-4.4.7">4.4.7</a> for a detailed discussion.
The packet sequence number, the current receive window size, and the
receive left window edge determine whether the packet lies within the
window or outside of it.
Let W = window size
S = size of sequence number space
L = left window edge
R = L+W-1 = right window edge
x = sequence number to be tested
For any sequence number, x, if
(R-x) mod S <= W
then x is within the window.
A packet should be rejected only if all of it lies outside the
window. This is easily tested by letting x be, first the packet
sequence number, and then the sum of packet sequence number and
packet text length, less one. If the packet lies outside the window,
and there are no packets waiting to be sent, then the input packet
handler should construct a dummy ACK and queue it for output on the
<span class="grey">Cerf, Dalal & Sunshine [Page 33]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-34" ></span>
<span class="grey"><a href="./rfc675">RFC 675</a> Specification of Internet TCP December 1974</span>
send packet queue, and signal the output packet handler. Successfully
received packets are placed on the receive packet queue in the
appropriate sequence order, and the reassembler signaled.
The packet window check can not be made if the associated TCB is not
in the 'established' state, so care must be taken to check for
control and TCB state before doing the window check.
<span class="h4"><a class="selflink" id="section-4.4.3" href="#section-4.4.3">4.4.3</a> REASSEMBLER [See figure 2.3]</span>
The Reassembler process is activated by both the Input Packet Handler
and the RECEIVE user call. While the reassembler is asleep, if
multiple signals arrive, all but one can be discarded. This is
important as the reassembler does not know the source of the signal.
This is so in order that "dangling" signals from work in TCB's that
have subsequently been removed don't confuse it. Each signal simply
means that there may be work to be done. If the reassembler is awake
when a signal arrives, it may be necessary to put 1t in a
"hyperawake" state so that even if the reassembler tries to quit, the
scheduler will run it one more time.
When the reassembler is awakened it looks at the receive packet queue
for each TCB. If there are some packets there then it sees whether
the RECEIVE buffer queue is empty. If it is then the reassembler
gives up on this TCB and goes on to the next one, otherwise if the
first packet matches the left window edge, then the packet can be
moved into the User's buffer. The reassembler keeps transferring
packets into the User's buffer until the letter is completely
transferred, or something causes it to stop. Note that a buffer may
be partly filled and then a sequence 'hole' is encountered in the
receive packet queue. The reassembler must mark progress so that the
buffer can be filled up starting at the right place when the 'hole'
is filled. Similarly a packet might be only partially emptied when a
buffer is filled, so progress in the packet must be marked.
If a letter was successfully transferred to a User buffer then the
reassembler signals the User that a letter has arrived and dequeues
the buffer associated with it from the TCB RECEIVE buffer queue. If
the buffer is filled then the User is signaled and the buffer
dequeued as before. The event code indicates whether the buffer
contains all or part of a letter, as described in <a href="#section-2.4">section 2.4</a>.
In every case when a packet is delivered to a buffer, the receive
left window edge is updated, and the packetizer is signaled. This
updating must take account of the extra octet included in the
sequencing for certain control functions [SYN, INT, FIN, DSN]. If the
send packet queue is empty then the reassembler must create a packet
to carry the ACK, and place it on the send packet queue.
<span class="grey">Cerf, Dalal & Sunshine [Page 34]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-35" ></span>
<span class="grey"><a href="./rfc675">RFC 675</a> Specification of Internet TCP December 1974</span>
Note that the reassembler never works on a TCB for more than one User
buffer's worth of time, in order to give all TCB's equal service.
Scheduling of the reassembler is a big issue, but perhaps running to
completion will be satisfactory, or else it can be time sliced. In
the latter case it will continue from where it left off, but a new
signal may have arrived producing some possible work. This work will
be processed as part of the old incomplete signal, and so some
wasteful processing may occur when the reassembler wakes up again.
This is the general problem of trying to implement a protocol that is
fundamentally asynchronous, but at least it is immune to harmful
race-conditions. E.g. if we were to have the reassembler 'remove' the
signal that caused it to wake up, just before it went to sleep (in
order that new arriving ones were discarded) then a new signal may
arrive at a critical time causing 1t not to be recognized; thus
leaving some work pending, and this may result in a deadlock [see
previous comments on "hyperawake" state].
<span class="h4"><a class="selflink" id="section-4.4.4" href="#section-4.4.4">4.4.4</a> PACKETIZER [See figure 2.4]</span>
The Packetizer process gets work from both the Input Packet Handler
and the SEND user call. The signal from the SEND user call indicates
that there is something new to send, while the one from the input
packet handler indicates that more TCP buffers may be available from
delivered packets. This latter signal is to prevent deadlocks in
certain kind of scheduling schemes. We assume the same treatment of
signals as discussed in <a href="#section-4.4.3">section 4.4.3</a>.
When the packetizer is awakened it looks at the SEND buffer queue for
each TCB. If there is a new or partial letter awaiting packetization,
it tries to packetize the letter, TCB buffer and window permitting.
It packetizes no more than one letter for a TCB before servicing
another TCB. For every packet produced it signals the output packet
handler (to prevent deadlock in a time sliced scheduling scheme). If
a 'run till completion' scheme is used then one signal only need be
produced, the first time a packet is produced since awakening. If
packetization is not possible the packetizer goes on to the next TCB.
If a partial buffer was transferred then the packetizer must mark
progress in the SEND buffer queue. Completely packetized buffers are
dequeued from the SEND buffer queue, and placed on a Packetized
buffer queue, so that the buffer can be returned to the user when an
ACK for the last bit is received.
When the packetizer packetizes a letter it must see whether it is the
first piece of data being sent on the connection, in which case it
must include the SYN bit. Some implementations may not permit data to
be sent with SYN and others may discard any data received with SYN.
<span class="grey">Cerf, Dalal & Sunshine [Page 35]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-36" ></span>
<span class="grey"><a href="./rfc675">RFC 675</a> Specification of Internet TCP December 1974</span>
The Packetizer goes to sleep if it finds no more work at any TCB.
<span class="h4"><a class="selflink" id="section-4.4.5" href="#section-4.4.5">4.4.5</a> OUTPUT PACKET HANDLER [see figure 2.5]</span>
When activated by the packetizer, or the input packet handler, or
some of the user call routines, the Output Packet Handler attempts to
transmit packets on the net (may involve going through some other
network interface program). It looks at the TCB's in turn,
transmitting some packets from the send packet queue. These are
dequeued and put on the retransmit queue along with the time when
they should be retransmitted.
All data packets that are transmitted have the latest receive left
window edge in the ACK field. Error and control messages may have no
ACK [ACK bit off], or set the ACK field to refer to a received
packet's sequence number.
The RETRANSMIT PROCESS:
This process can either be viewed as a separate process, or as part
of the output packet handler. Its implementation can vary; it could
either perform its function, by being woken up at regular intervals,
or when the retransmission time occurs for every packet put on the
retransmit queue. In the first case the retransmit queue for each TCB
is examined to see if there is anything to retransmit. If there is, a
packet is placed on the send packet queue of the corresponding TCB.
The output packet handler is also signaled.
Another "demon" process monitors all user Send buffers and
retransmittable control messages sent on each connection, but not yet
acknowledged. If the global retransmission timeout is exceeded for
any of these, the User is notified and he may choose to continue or
close the connection. A QUERY packet may also be sent to ascertain
the state of the connection [this facilitates recovery from half open
connections as described in <a href="#section-4.3.3">section 4.3.3</a>].
<span class="h4"><a class="selflink" id="section-4.4.6" href="#section-4.4.6">4.4.6</a> USER CALL PROCESSING</span>
OPEN [See figure 3.1]
1. If the process calling does not own the specified local socket,
return with <type 1><ELP 1 "connection illegal for this process">.
2. If no foreign socket is specified, construct a new TCB and add
it to the list of existing TCB's. Select a new local connection
name and return it along with <type 1><OLP 0 "success">. If there
is no room for the TCB, respond with <type 1><ELT 4 "No room for
TCB">.
<span class="grey">Cerf, Dalal & Sunshine [Page 36]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-37" ></span>
<span class="grey"><a href="./rfc675">RFC 675</a> Specification of Internet TCP December 1974</span>
3. If a foreign socket is specified, verify that there is no
existing TCB with the same <local socket, foreign socket> pair
(i.e. same connection), otherwise return <type l><ELP 6
"connection already open">. If there is no TCB space, return as in
(2), otherwise, create the TCB and link it with the others,
returning a local connection name with the success event code.
Note: if a TCB is created, be sure to copy the timeout parameter
into it, and set the "U" bit to 0 if a foreign socket is
specified, else set U to 1 (to show unspecified foreign socket).
SEND [see figure 3.2]
1. Search for TCB with local connection name specified. If none
found, return <type 10><ELP 3 "connection not open">
2. If TCB is found, check foreign socket specification. If not set
(i.e. U = 1 in TCB), return <type 10><ELT 5 "foreign socket
unspecified">. If the connection is in the "closing" state (i.e.
state 5 or 6), return <type 3><ELP 12 "connection closing"> and do
not process the buffer.
3. Put the buffer on the Send buffer queue and signal the
packetizer that there is work to do.
INTERRUPT [see figure 3.3]
1. Validate existence of the referenced connection, sending out
error messages of the form <type 3><ELP 3 "connection not open">
or <type 3><ELT 5 "foreign socket unspecified"> as appropriate. If
the local connection refers to a connection not accessible to the
process interrupting, send <type 3><ELP 1 "connection illegal for
this process">.
2. If the connection is in the "closing" state (i.e. states 5 or
6), return <type 3><ELT 12 "connection closing"> and do not send
an INT packet to the destination.
3. Any pending SEND buffers should be returned with <type 10><ELP
10 "buffer flushed due to interrupt">. An INT packet should be
created and placed on the output packet queue, and the output
packet handler should be signaled.
RECEIVE [See figure 3.4]
1. If the caller does not have access to the referenced local
connection name, return <type 20><ELP 1 "connection illegal for
this process">. And if the connection is not open, return <type
<span class="grey">Cerf, Dalal & Sunshine [Page 37]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-38" ></span>
<span class="grey"><a href="./rfc675">RFC 675</a> Specification of Internet TCP December 1974</span>
20><ELP 3 "connection not open"). If the connection is in the
closing state (e.g. a FIN has been received or a user CLOSE is
being processed), return <type 20><ELP 12 "connection closing">.
2. Otherwise, put the buffer on the receive buffer queue and
signal the reassembler that buffer space is available.
CLOSE [See figure 3.5]
1. If the connection is not accessible to the caller, return <type
2><ELP 1 "connection illegal for this process">. If there is no
such connection respond with <type 2><ELP 3 "connection not
open">.
2. If the R bit is 0 (i.e. connection is in state 1 or 2), simply
remove the TCB.
3. If the R bit is set and the F bit is set, then remove the TCB.
4. Otherwise, if the R bit is set, but F is 0 (i.e. states 3 or
4), return all buffers to the User with <type x><ELP 12
"connection closing">, clear all output and input packet queues
for this connection, create a FIN packet, and signal the output
packet handler. Set the C and F bits to show this action.
STATUS [See figure 3.6]
1. If the connection is illegal for the caller to access, send
<type 30><ELP 1 "connection illegal for this process">.
2. If the connection does not exist, return <type 30><ELP 3
"connection not open">.
3. Otherwise set status information from the TCB and return it via
<type 30><O-T 0 "status data...">.
<span class="h4"><a class="selflink" id="section-4.4.7" href="#section-4.4.7">4.4.7</a> NETWORK CONTROL PROCESSING</span>
The Input Packet Handler examines the header to see if there is any
control information or error codes present. We do not discuss the
action taken for various special function codes, as it is often
implementation dependent, but we describe those that affect the state
of the connection. After initial screening by the IPC [see <a href="#section-4.4.2">section</a>
<a href="#section-4.4.2">4.4.2</a> and figure 2.2], control and error packets are processed as
shown in figures 4.l-4.7. [ACK and data processing is done within the
IPC.]
<span class="grey">Cerf, Dalal & Sunshine [Page 38]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-39" ></span>
<span class="grey"><a href="./rfc675">RFC 675</a> Specification of Internet TCP December 1974</span>
<span class="h4"><a class="selflink" id="section-4.4.8" href="#section-4.4.8">4.4.8</a> TCP ERROR HANDLING</span>
Error messages have CD=001 and do not carry user data. Depending on
the error, zero or more octets of error information will be carried
in the packet text field. We explicitly assume that this data is
restricted in length so as to fall below the GATEWAY fragmentation
threshold (probably 512 bits of data and header). Errors generally
refer to specific connections, so the source and destination socket
identifiers are relevant here. The ACK field of an error packet
contains the sequence number of the packet that caused the error, and
the ACK bit is off. [RESET and STATUS special functions may use the
ACK field in the same way.] This allows the receiver of an error
message to determine which packet caused the error. Error packets are
not ACK'ed or retransmitted.
<span class="h3"><a class="selflink" id="section-4.5" href="#section-4.5">4.5</a>. BUFFER AND WINDOW ALLOCATION</span>
<span class="h4"><a class="selflink" id="section-4.5.1" href="#section-4.5.1">4.5.1</a> INTRODUCTION</span>
The TCP manages buffer and window allocation on connections for two
main purposes: equitably sharing limited TCP buffer space among all
connections (multiplexing function), and limiting attempts to send
packets, so that the receiver is not swamped (flow control function).
For further details on the operation and advantages of the window
mechanism see CEKA74.
Good allocation schemes are one of the hardest problems of TCP
design, and much experimentation must be done to develop efficient
and effective algorithms. Hence the following suggestions are merely
initial thoughts. Different implementations are encouraged with the
hope that results can be compared and better schemes developed.
Several of the measurements discussed in a later section are aimed at
providing information on the performance of allocation mechanisms.
This should aid in determining significant parameters and evaluating
alternate schemes.
<span class="h4"><a class="selflink" id="section-4.5.2" href="#section-4.5.2">4.5.2</a> The SEND Side</span>
The window is determined by the receiver. Currently the sender has no
control over the SEND window size, and never transmits beyond the
right window edge. There exists the possibility of specifying two
more special function codes so that the sender can request the
receiver to INCREASE or DECREASE the window size, without specifying
by how much. The receiver, of course, needn't satisfy this request.
<span class="grey">Cerf, Dalal & Sunshine [Page 39]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-40" ></span>
<span class="grey"><a href="./rfc675">RFC 675</a> Specification of Internet TCP December 1974</span>
Buffers must be allocated for outgoing packets from a TCP buffer
pool. The TCP may not be willing to allocate a full window's worth of
buffers, so buffer space for a connection may be less than what the
window would permit. No deadlocks are possible even if there is
insufficient buffer or window space for one letter, since the
receiver will ACK parts of letters as they are put into the user's
buffer, thus advancing the window and freeing buffers for the
remainder of the letter.
It is not mandatory that the TCP buffer outgoing packets until
acknowledgments for them are received, since it is possible to
reconstruct them from the actual letters sent by the user.
However, for purposes of retransmission and processing efficiency it
is very convenient to do.
<span class="h4"><a class="selflink" id="section-4.5.3" href="#section-4.5.3">4.5.3</a> The RECEIVE Side</span>
At the receiving side there are two requirements for buffering:
(l) Rate Discrepancy:
If the sender produces data much faster or much slower than the
receiver consumes it, little buffering is needed to maintain the
receiver at near maximum rate of operation. Simple queuing
analysis indicates that when the production and consumption
(arrival and service) rates are similar in magnitude, more
buffering is needed to reduce the effect of stochastic or bursty
arrivals and to keep the receiver busy.
(2) Disorderly Arrivals:
When packets arrive out of order, they must be buffered until the
missing packets arrive so that packets (or letters) are delivered
in sequence. We do not advocate the philosophy that they be
discarded, unless they have to be, otherwise a poor effective
bandwidth may be observed. Path length, packet size, traffic
level, routing, timeouts, window size, and other factors affect
the amount by which packets come out of order. This is expected to
be a major area of investigation.
The considerations for choosing an appropriate window are as follows:
Suppose that the receiver knows the sender's retransmission timeout,
also, that the receiver's acceptance rate is 'U' bits/sec, and the
window size is 'W' bits. Ignoring line errors and other traffic, the
sender transmits at a rate between W/K and the maximum line rate (the
sender can send a window's worth of data each timeout period).
<span class="grey">Cerf, Dalal & Sunshine [Page 40]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-41" ></span>
<span class="grey"><a href="./rfc675">RFC 675</a> Specification of Internet TCP December 1974</span>
If W/K is greater than U, the difference must be retransmissions
which is undesirable, so the window should be reduced to W', such
that W'/K is approximately equal to U. This may mean that the entire
bandwidth of the transmission channel is not being used, but it is
the fastest rate at which the receiver is accepting data, and the
line capacity is free for other users. This is exactly the same case
where the rates of the sender and receiver were almost equal, and so
more buffering is needed. Thus we see that line utilization and
retransmissions can be traded off against buffering.
If the receiver does not accept data fast enough (by not performing
sufficient RECEIVES) the sender may continue retransmitting since
unaccepted data will not be ACK'ed. In this case the receiver should
reduce the window size to "throttle" the sender and inhibit useless
retransmissions.
Receiver window control:
If the user at the receiving side is not accepting data, the
window should be reduced to zero. In particular, if all TCP
incoming packet buffers for a connection are filled with received
packets, the window must go to zero to prevent retransmissions
until the user accepts some packets.
Short term flow control:
Let F = the number of user receive buffers filled
B = the total user receive buffers
W = the long-term or nominal window size
W' = the window size returned to the sender
then a possible value for W' is
W' = W*[1-F/B]**a
The value of 'a' should be greater than one, in order to shut the
window faster as buffers run out. The values of W' and F actually
used could be averages of recent values, in order to get smooth
control. Note that W' is constantly being recomputed, while the
value of W, which sets the upper limit of W', only changes slowly
in response to other factors.
The value of W can be large (up to half the sequence number space)
to allow for good throughput on high delay channels. The sender
needn't allocate W worth of buffer space anyway. The long-term
<span class="grey">Cerf, Dalal & Sunshine [Page 41]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-42" ></span>
<span class="grey"><a href="./rfc675">RFC 675</a> Specification of Internet TCP December 1974</span>
variation of W to match flow requirements may be a separate
question
This short-term mechanism for flow control allows some buffering in
the two TCP's at either end, (as much as they are willing), and the
rest in the user process at the send side where the data is being
created. Hence the cost of buffering to smooth out bursty traffic is
borne partly by the TCP's, and partly by the user at the send side.
None of it is borne by the communication subnet.
<span class="h2"><a class="selflink" id="section-5" href="#section-5">5</a>. NETWORK MEASUREMENT PLANS FOR TCP</span>
<span class="h3"><a class="selflink" id="section-5.1" href="#section-5.1">5.1</a> USERLEVEL DIAGNOSTICS</span>
We have in mind a program which will exercise a given TCP, causing it
to cycle through a number of states; opening, closing, and
transmitting on a variety of connections. This program will collect
statistics and will generally try to detect deviation from TCP
functional specifications. Clearly there will have to be a copy of
this program both at the local site being tested and some site which
has a certified TCP. So we will have to produce a specification for
this user level diagnostic program also.
There needs to be a master and a slave side to all this so the master
can tell the slave what's going wrong with the test.
<span class="h3"><a class="selflink" id="section-5.2" href="#section-5.2">5.2</a> SINGLE CONNECTION MEASUREMENTS</span>
Round trip delay times
Time from moment the packet is sent by the TCP to the time that
the ACK is received by the TCP.
Time from the moment the USER issues the SEND to the time that the
USER gets the successful return code.
Note: packet size should be used to distinguish from one set of
round trip times and another.
Network destination, and current configuration and traffic load
may also be issues of importance that must be taken into
account.
What if the destination TCP decides to queue up ACKs and send a
single ACK after a while? How does this affect round trip
statistics?
<span class="grey">Cerf, Dalal & Sunshine [Page 42]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-43" ></span>
<span class="grey"><a href="./rfc675">RFC 675</a> Specification of Internet TCP December 1974</span>
What about out of order arrivals and the bunched ACK for all of
them?
The histogram of round trip times include retransmission times
and these must be taken into account in the analysis and
evaluation of the collected data.
Packet size statistics
Histogram of packet length in both directions on the full duplex
connection.
Histogram of letter size in both directions.
Measure of disorderly arrival
Distance from the first octet of arriving packet to the left
window edge. A histogram of this measure gives an idea of the out
of order nature of packet arrivals. It will be 0 for packets
arriving in order.
Retransmission Histogram
Effective throughput
This is the effective rate at which the left edge of the window
advances. The time interval over which the measure is made is a
parameter of the measurement experiment. The shorter the interval,
the more bursty we would expect the measure to be.
It is possible to measure effective data throughput in both
directions from one TCP by observing the rate at which the left
window edge is moving on ACK sent and received for the two
windows.
Since throughput is largely dependent upon buffer allocation and
window size, we must record these values also. Varying window for
a fixed file transmission might be a good way to discover the
sensitivity of throughput to window size.
Output measurement
The throughput measurement is for data only, but includes
retransmission. The output rate should include all octets
transmitted and will give a measure of retransmission overhead.
Output rate also includes packet format overhead octets as well as
data.
<span class="grey">Cerf, Dalal & Sunshine [Page 43]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-44" ></span>
<span class="grey"><a href="./rfc675">RFC 675</a> Specification of Internet TCP December 1974</span>
Utilization
The effective throughput divided by the output rate gives a
measure of utilization of the communication connection.
Window and buffer allocation measurements
Histogram of letters outstanding, measured at the instant of SEND
receipt by TCP from user or at instant of arrival of a letter for
a receiving user.
Buffers in use on the SEND side upon packet departure into the
net; buffers in use on the RECEIVE side upon delivery of packet
into a USER Buffer.
<span class="h3"><a class="selflink" id="section-5.3" href="#section-5.3">5.3</a> MULTICONNECTION MEASUREMENTS</span>
Statistics on User Commands sent to the local TCP
Statistics of error or success codes returned [histogram of each type
of error or return response]
Statistics of control bit use
Counter for each control bit over all packets emitted by the TCP
and another for packets accepted
Count data carrying packets
Count ACK packets with no data
Error packets distribution by error type code received from the net
and sent out into the net
<span class="h3"><a class="selflink" id="section-5.4" href="#section-5.4">5.4</a> MEASUREMENT IMPLEMENTATION PHILOSOPHY</span>
We view the measurement process as something which occurs internal to
the TCP but which is controllable from outside. A well known socket
owned by the TCP can be used to accept control which will select one
or more measurement classes to be collected. The data would be
periodically sent to a designated foreign socket which would absorb
the data for later processing, in the manner currently used in the
ARPANET IMPs. Each measurement class has its own data packet format
to make the job of parsing and analyzing the data easier.
<span class="grey">Cerf, Dalal & Sunshine [Page 44]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-45" ></span>
<span class="grey"><a href="./rfc675">RFC 675</a> Specification of Internet TCP December 1974</span>
We would restrict access to TCP measurement control to a few
designated sites [e.g. NMC, SU-DSL, BBN]. This is easily done by
setting up listening control connections on partially specified
foreign sockets.
<span class="h2"><a class="selflink" id="section-6" href="#section-6">6</a>. SCHEDULE OF IMPLEMENTATION</span>
<span class="h2"><a class="selflink" id="section-7" href="#section-7">7</a>. REFERENCES</span>
1. CEKA74
V. Cerf and R. Kahn, "A Protocol For Packet Network
Intercommunication," IEEE Transactions on Communication, vol. C-
2O, No. 5. May 1974, pp. 637-648.
2. CERF74
V. Cerf, "An Assessment of ARPANET Protocols," in Proceedings of
the Jerusalem Conference on Information Technology, July l974
[RFC#635, INWG Note # ***].
3.CESU74
V. Cerf and C. Sunshine, "Protocols and Gateways for the
Interconnection of Packet Switching Networks," Proc. of the
Subconference on Computer Nets, Seventh Hawaii International
Conference on Systems Science, January 1974.
4. HEKA70
F. Heart, R.E. Kahn, et al, "The Interface Message Processor for
the ARPA Computer Network," AFIPS 1970 SJCC Proceedings, vol. 36,
Atlantic City, AFIPS Press, New Jersey, pp. 551-567.
5. POUZ74
L. Pouzin, "CIGALE, the packet switching machine of the CYCLADES
computer network," Proceedings of the IFIP74 Congress, Stockholm,
Sweden.
6. ROWE74
L. Roberts and B. Wessler, "Computer Network Development to
achieve resource sharing," AFIPS 1970, SJCC Proceedings, vol. 36,
Atlantic City, AFIPS Press, New Jersey, pp. 543-549.
<span class="grey">Cerf, Dalal & Sunshine [Page 45]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-46" ></span>
<span class="grey"><a href="./rfc675">RFC 675</a> Specification of Internet TCP December 1974</span>
7. POUZ73
L. Pouzin, "Presentation and major design aspects of the CYCLADES
Computer Network," Data Networks: Analysis and Design, Third Data
Communications Symposium, St. Petersburg, Florida, November 1973,
pp. 80-87.
8. SCWI71
R. Scantlebury and P.T. Wilkinson, "The Design of a Switching
System to allow remote Access to Computer Services by other
computers and Terminal Devices," Second Symposium on Problems in
the Optimization of Data Communication Systems Proceedings, Palo
Alto, California, 0ctober 1971, pp. 160-167.
9. POST72
J. Postel, "Official Initial Connection Protocol," Current Network
Protocols, Network Information Center, Stanford Research
Institute, Menlo Park, California. January 1972 (NIC 7101).
10. CACR70
C.S. Carr, S.D. Crocker, and V.G. Cerf, "Host-Host Communication
Protocol in the ARPA Network," AFIPS Conference Proceedings, vol.
36, 1970 SJCC, AFIPS Press, Montvale, N.J.
11. ZIEL74
H. Zimmerman and M. Elie, "Transport Protocol. Standard Host-Host
Protocol for heterogeneous computer networks," INWG#61, April
1974.
12. CRHE72
S. D. Crocker, J. F. Heafner, R. M. Metcalfe and J. B. Postel,
"Function-oriented protocols for the ARPA Computer Network," AFIPS
Conference Proceedings, vol. 41, 1972 FJCC, AFIPS Press, Montvale,
N.J.
13. DALA74
Y. Dalal, "More on selecting sequence numbers," INWG Protocol Note
#4, October 1974.
<span class="grey">Cerf, Dalal & Sunshine [Page 46]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-47" ></span>
<span class="grey"><a href="./rfc675">RFC 675</a> Specification of Internet TCP December 1974</span>
14. SUNS74
C. Sunshine, "Issues in communication protocol design -- formal
correctness." INWG Protocol Note #5, October 1974
BELS74
D. Belsnes, "Note on single message communication," INWG Protocol
Note #3. September 1974.
16. TOML74
R. Tomlinson, "Selecting sequence numbers," INWG Protocol Note #2,
September 1974.
17. SCHA74
R. Schantz, "Reconnection Protocol", private communication;
available from Schantz at BBN.
18. POUZ74A
L. Pouzin, "A proposal for interconnecting packet switching
networks, INWG Note #60, March 1974 [also submitted to EUROCOMP
74].
19. DLMG74
D. Lloyd, M. Galland, and P. T. Kirstein, "Aims and objectives of
internetwork experiments," to be published as an INWG Experiments
Note.
20. MCKE73
A. McKenzie, "Host-Host Protocol for the ARPANET," NIC # 8246,
Stanford Research Institute [also in ARPANET Protocols Notebook
NIC 7104].
21. BELS74A
D. Belsnes, "Flow control in packet switching networks," INWG Note
#63, October 1974.
<span class="grey">Cerf, Dalal & Sunshine [Page 47]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-48" ></span>
<span class="grey"><a href="./rfc675">RFC 675</a> Specification of Internet TCP December 1974</span>
FIGURE 1: TCB Major States
0-no TCB
\____________________________________________________________/
OPEN | A CLOSE CLOSE A
---------- | | ---------- ---------- |
set up TCB | | remove TCB remove TCB |
| | |
| | collision retry, |
SYN arrives __V____|__ SEND, INTER |
------------- / S1=0 \ ---------------- |
send SYN, ACK | S2=0 F=0 | send SYN |
______________________| R=0 C=0 |_____________________ |
| | U=0/1 | | |
| | | SYN arrives | |
| error,timeout | 1-OPEN | ----------- | |
| ------------- \__________/ collision; | |
| clear TCB A A set timeout | |
| _____________________| |_____________________ | |
__V____|__ _|___V__|_
/ S1=1 \ / S1=1 \
| S2=0 F=0 | | S2=0 F=0 |
| R=1 C=0 | SYN, ACK arrives | R=0 C=0 |
| U=0/1 | ACK arrives ---------------- | U=0 |
| | ----------- send ACK | |
| 3-SYN rcvd |_________________ _________________| 2-SYN sent |
\__________/ | | \__________/
| __V_____V__
| / S1=1 \
| CLOSE | S2=1 F=0 |
| -------- | R=1 C=0 | FIN arrives
| send FIN | U=0 | -------------------
| | | tell user, send FIN
| ________________|4-established|______________________
| | CLOSE \___________/ |
| | ------- |
__V_____V_ send FIN _______V__
/ S1=1 \ / S1=1 \
| S2=0/1 F=1 | timeout or | S2=1 F=1 |
| R=1 C=1 | FIN, error, arrives CLOSE | R=1 C=0 |
| U=0/1 | ------------------- ---------- | U=0 |
| | remove TCB remove TCB | |
| 5-FIN wait |_____________________ _____________| 6-FIN rcvd |
\__________/ | | \__________/
| |
____________________________V_____V_______________________
/ \
0-no TCB
<span class="grey">Cerf, Dalal & Sunshine [Page 48]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-49" ></span>
<span class="grey"><a href="./rfc675">RFC 675</a> Specification of Internet TCP December 1974</span>
FIGURE 2.1: Structure of the TCP
| _____________ _______________ |
| | | | | |
| | | | INPUT PACKET |<---->|
| | REASSEMBLER | | HANDLER | |
| |_____________| |_______________| |
| |_______________ | |
| | | |
| _________ | | |
| | | __V_________V____ | NETWORK
|<=====| SYSTEM | | | | or
| | CALLS |<========| TCB's |<========| some
USERS |=====>| or | | and | | NETWORK
| | USER |========>|ASSOCIATED QUEUES|========>| INTERFACE
|<---->|INTERFACE| |_________________| | PROGRAM
| |_________| A A |
| | | |
| ______________| | |
| _______|_____ _______|_______ |
| | | | | |
| | PACKETIZER | | OUTPUT PACKET | |
| | | | HANDLER |<---->|
| |_____________| |_______________| |
| |
=======> Logical or physical flow of data (packets/letters)
-------> "Interaction"
NOTE: The signalling of processes by others is not shown
<span class="grey">Cerf, Dalal & Sunshine [Page 49]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-50" ></span>
<span class="grey"><a href="./rfc675">RFC 675</a> Specification of Internet TCP December 1974</span>
FIGURE 2.2a: ________
Address Check / Begin \
\________/
|
_V_
.' '.
.' packet '.
.' foreign '.
___________________.' socket matches '.
| no '. a TCB local .'
| '. socket .'
| '. ? .'
| '.___.'
| | yes
| _V_
| .' '.
| .' packet '. ___
| .'local socket '. / \
| .' matches fully '.____\| YES |
| '. specified TCB .' / \___/
| '.fgn socket .'
| '. ? .'
_V_ '.___.'
.' '. | no
.' SYN, '. _V_
.'FIN,INT,DSN, '. .' '.
_____.'or text length>0 './_____ .' matches '.
| no '. or QUERY .' \ | .'partly spec. '.
| '. .' |___.' or unspec. TCB '.
| '. ? .' no '. foreign .'
| '.___.' '. socket .'
| | yes '. ? .'
| __________V_________ '.___.'
| | | | yes
| | Create error 7 | _V_
| | packet. Signal OPH | .' '.
| |____________________| .' packet '.
| | ______.' has SYN set '.
| ____V____ | no '. .'
| | | | '. ? .'
|_________\| discard |/________| '.___.'
/|_________|\ |
| _V_
_V_ / \
/ \ | YES |
| NO | \___/
\___/
<span class="grey">Cerf, Dalal & Sunshine [Page 50]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-51" ></span>
<span class="grey"><a href="./rfc675">RFC 675</a> Specification of Internet TCP December 1974</span>
FIGURE 2.2b-1: _______
Input Packet Handler / Begin \
\_______/
|
________________________________________\|/_________________________
| A /|\ |
| | | |
| | _V_ |
| | .' '. _______ |
| | .' input '. | go to | |
| | .' packet '.____\| sleep | |
| | '.available.' no /|_______| |
| | '.__?__.' |
| | | yes |
| | _V_ |
| | .' '. |
| .->SPECIAL FUNCT. Fig 4.7 | .'address'. |
| | .->ERR Fig 4.5,4.6 |___.' check OK '. |
| | | .->SYN Fig 4.1,4.2 no '. ? .' |
| | | | .->INT Fig 4.3 '._____.' |
| | | | | .->FIN Fig 4.4 | yes ________|_
| | | | | | _V_ | discard |
| _|_|_|_|_|___________ .' '. |(or queue)|
| | | .' error '. |__________|
|<-| Control Processing |/_________.'or control '. A
|____________________|\ yes '. ? .' |
| '._____.' |
| (INT with data) | no |
| | |
V _V_ |
to "X" .' '. . |
in Fig 2.2b-2 .'(estab)'. .' '. |
_____.' R=S1=S2=1 '.----->.'seq.#'.--->|
| yes '. ? .' no '.OK .' no |
| '._____.' '.' |
| | yes |
| _______________ | |
| | Set S2=1, U=0 | V |
| | Notify user | .'. |
|<--| with event 2 | .'ACK'. |
| | if U was 1 |<-----'. OK .'--->'
| |_______________| yes '. .' no
| '
V
to "Y"
in Fig 2.2b-2
<span class="grey">Cerf, Dalal & Sunshine [Page 51]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-52" ></span>
<span class="grey"><a href="./rfc675">RFC 675</a> Specification of Internet TCP December 1974</span>
FIGURE 2.2b-2: Input Packet Handler (continued)
"Y"
|
.'. _V_
.'txt'. .' '. ______________________________
.'lgth>0 '. .'within '. |Use ACK to advance send window|
,<----'. or DSN .'<---'. window .'--->|Release ACK'ed packets from |
| no '. ? .' no '. ? .' yes |retransmit or send queues. If |
| '._.' '._.' |any packet had EB bit set |
| | yes |remove buffer from Packetized |
| ________V____________________ |buffer queue and inform user |
| |Create ACK packet. Put on | |(success). Signal Packetizer. |
|<-|Send packet queue. Signal OPH| |______________________________|
| |_____________________________| |
| |
| _____________________________________________|
| |
| |
| | "X"
| | |
| _V_ _V_ _____________________
| .' '. .'TCB'. |Put packet on |
| .' text '. yes .'Receive'. yes |Receive packet queue |
| .' length>0 '.-------->.' buffer '.------>|in the right order. |
| '. or DSN .' A '.available.' |Signal Reassembler. |
| '. ? .' | '. ? .' |_____________________|
| '._.' | '._.' |
| | no | | no |
| | | _V_ |
|________\| | .' '. |
/| | .' seq # '. ________ |
| | .' of packet '. yes |Discard | |
| | '. highest so .'---->|packet |----->|
| | '. far .' |________| |
| | '. ? .' |
| | '._.' |
| | | no |
| | _______V______________ |
| | |Discard packet with | |
| |_____|highest seq. no from | |
| |Receive packet queue. | |
| |______________________| |
| |
|_____________________________________________________|
|
V
to "Begin" in Fig 2.2b-1
<span class="grey">Cerf, Dalal & Sunshine [Page 52]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-53" ></span>
<span class="grey"><a href="./rfc675">RFC 675</a> Specification of Internet TCP December 1974</span>
FIGURE 2.3-1: Reassembler
_______
/ Begin \
\_______/
|
|
|<----------------------------------------------.
| _____ | yes
______V_____ .' '. _|_
|Get ready | .' Receive '. yes .'any'.
|for next TCB|--------->.'Packet Queue '.-------->.' more '.
|____________| A '. empty ? .' A '.work?.'
| '._______.' | '._.'
| | no | | no
"R"------>---------' __V__ | ____V____
.' is '. | | Go to |
.' packet '. | | Sleep |
.--<----------------------'.DSN with no.' | |_________|
| yes '. data? .' |
| '.___.' |
| | no |
| __V__ |
| .' '. |
| .' Receive '. yes |
| .'Buffer Queue '.--->|
| '. empty ? .' |
| ________________ '._______.' |
| |Copy from packet| | no |<-------------"S"
| |to buffer until | __V__ |
| |one is exhausted| .'First'. |
| |Update receive | yes .' packet '. no |
| |window. |<----.'matches Recv '.--->'
| |________________| '.left window.'
| | '. edge ?.'
| __V__ '.___.'
| .'Send '.
| .' Packet '. yes _____________________________
| .' Queue empty '.---->|Create ACK packet containing |
| '. ? .' |new window. Signal OPH. |
| '._______.' |_____________________________|
| no | |
| | |
| '--------------------------->|
| |
V V
to "T" to "U"
in Fig 2.3-2 in Fig 2.3-2
<span class="grey">Cerf, Dalal & Sunshine [Page 53]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-54" ></span>
<span class="grey"><a href="./rfc675">RFC 675</a> Specification of Internet TCP December 1974</span>
FIGURE 2.3-2: Reassembler (continued)
"T" "U"
| |
| | _____________
___V____ ___ __V__ |Mark progress|
|process | yes .' '. yes .'whole'. no |in packet. |
| DSN |<-----.' DSN '.<-----.' packet '.--->|Return buffer|--->.
|________| '. set?.' '.copied?.' |to user. | |
| '._.' '.___.' |_____________| |
| | no |
'--------------->| |
| |
__V__ __________________________ |
.' EOL '. yes |Return buffer to user. | |
'. set? .'--------->|Return packet to free |--->|
'.___.' |storage. Signal Packetizer| |
no | |__________________________| |
| A |
__V__ | |
.' full'. | |
'. buffer.'--------------' |
'.___.' yes |
| no |
| |
___________________V__________________ |
|Mark progress in buffer. Return packet| |
|to free storage. Signal Packetizer. | ,--------'
|______________________________________| |
| |
| |
V V
to "R" in Fig 2.3-1 to "S" in Fig 2.3-1
<span class="grey">Cerf, Dalal & Sunshine [Page 54]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-55" ></span>
<span class="grey"><a href="./rfc675">RFC 675</a> Specification of Internet TCP December 1974</span>
FIGURE 2.4: Packetizer
_______ ________________________
/ Begin \____________\| Get ready for next TCB |/___________________
\_______/ /|________________________|\ |
| |
__V__ _____ |
.'Send '. .' any '. |
no .' Buffer '. yes .' more '. yes |
.-------------'. Queue .'---->'. work .'-----'
| '.empty? .' A '. ? .'
____________V____________ '.___.' | '.___.'
|Pick packet size depend- | | | no
,-->|ing on send buffer, TCB | | ______V______
| |buffer space, window, etc| | | go to sleep |
| |_________________________| | |_____________|
| | |
| __V__ |
| .'Send '. |
| .' window '. no |
| '.has room ? .'--------------------->|
| '._______.' |
| | yes |
| __V__ |
| .' TCB '. |
| .' buffer '. no |
| .'space avail- '.---------------------'
| '. able ? .' A
| '._______.' |
| | yes |
| _____________V____________ _________|_______ ____________
| |Copy from Send buffer to | |Move buffer from | |Set EOL bit |
| |packet until packet full. | |Send queue to |<--|in packet |
| |Put packet on Send packet | |packetized queue | |header |
| |queue. Signal OPH. | |_________________| |____________|
| |__________________________| A A
| | | no |
| __V__ __|__ |
| .'whole'. .' EOL '. |
| .' Send '. yes .' set in '. yes |
| '. buffer .'----------->'. Send .'-----------'
| '.copied?.' '.buffer?.'
| '.___.' '.___.'
| | no
| _____________V__________
| |Note in TCB where in |
--|Send buffer we stopped. |
|________________________|
<span class="grey">Cerf, Dalal & Sunshine [Page 55]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-56" ></span>
<span class="grey"><a href="./rfc675">RFC 675</a> Specification of Internet TCP December 1974</span>
FIGURE 2.5a:
Output Packet Handler
_______
/ Begin \
\_______/
|
|<--------------------------.
____________V___________ |
| Get ready for next TCB | |
|________________________| |
| |
,------------------------------------>| |
| __V__ _____ |
| _____ .'Send '. .' any '. |
| yes .' ACK '. no .' Buffer '. yes .' more '. yes |
| .-----'.bit set.'<------'. Queue .'---->'. work .'-----'
| | '.___.' '.empty? .' A '. ? .'
| | no |________ '.___.' | '.___.'
| | |__________ | | no
| ____V__________________ | | |
| |Put latest receive left| ________v______ | ______V______
| |window edge in ACK. |->|Transmit packet| | | go to sleep |
| |_______________________| |_______________| | |_____________|
| | |
| ________________ __V__ |
| |Return packet to| .'pckt '. |_________________
| |buffer pool as | no .'seq # to '. |
| |it has been |<------.'rgt of Send '. |
| |ACKed | '.left window.' |
| |________________| '. edge .' |
| | '.___.' |
| | | yes |
| | _______________V________________ |
| | |Move packet to retransmit queue;| |
| | |set new retrans. time for it. | |
| | |________________________________| |
| | | |
| '---------------------->| |
| __V__ |
| no .'Time '. yes |
-------------------------------.'to switch'.---------------------'
'.TCB's? .'
'.___.'
<span class="grey">Cerf, Dalal & Sunshine [Page 56]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-57" ></span>
<span class="grey"><a href="./rfc675">RFC 675</a> Specification of Internet TCP December 1974</span>
FIGURE 2.5b:
Retransmit Process
_______
/ Begin \
\_______/
|
|<----------------------------------.
____________V___________ |
| Get ready for next TCB | |
|________________________| |
| |
.-------------------------------->| |
| __V__ |
| .' Any '. _____ |
| .'packet's '. .' any '. |
| .'retrans. time'. no .' more '. yes |
| '. has occurred .'----->'. work .'-----'
| '. for this .' '. ? .'
| '. TCB ? .' '.___.'
| '.___.' |
| | yes | no
| | ______V______
| ________V________ | go to sleep |
| |Move packet to | |_____________|
'------------------------|Send Packet |
|queue. Signal OPH|
|_________________|
<span class="grey">Cerf, Dalal & Sunshine [Page 57]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-58" ></span>
<span class="grey"><a href="./rfc675">RFC 675</a> Specification of Internet TCP December 1974</span>
FIGURE 3.1:
OPEN
_______
/ Begin \
\_______/
|
__V__
.'User '. _______
.'permitted'. no | |
.' access to '.---->|error 1|------------.
'.this local .' |_______| |
'.socket?.' |
'.___.' |
| yes |
__V__ |
.' fgn '. |
yes .' socket '. no |
.-----'. specified .'----. |
| '. ? .' | |
__V__ '.___.' __V__ _______ |
_______ .'conn-'. .'space'. no | | |
| | yes .' ection '. '.for TCB.'---->|error 4|-->|
,-|error 6|<----'. already .' '.___.' |_______| |
| |_______| '.exists?.' | yes |
| '.___.' | |
| | no ____V__________ |
| _______ __V__ |Create TCB. Set| |
| | | no .'space'. |S1=S2=R=F=C=1 | |
|<-|error 4|<-----'.for TCB.' |Set U=1 | |
| |_______| '.___.' |_______________| |
| | yes | |
| | | |
| _________V__________ | |
| |Create TCB. Set U=0 | | |
| |Set S1=S2=R=F=C=1 | | |
| |____________________| | |
| | | |
| '-------------.-------------' |
| | |
| _____________________V__________________ |
| |Return local connection name and Success| |
| |________________________________________| |
| | |
----------------------------------->|<--------------------------------'
____V___
/ Return \
\________/
<span class="grey">Cerf, Dalal & Sunshine [Page 58]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-59" ></span>
<span class="grey"><a href="./rfc675">RFC 675</a> Specification of Internet TCP December 1974</span>
FIGURE 3.2:
SEND
_______
/ Begin \
\_______/
|
__V__
.'conn-'.
.' ection '. _________
.' legal for '. no | |
'. this process .'---------->| error 1 |-----------.
'. ? .' |_________| |
'._______.' |
| yes |
__V__ |
.'conn-'. _________ |
.' ection '. no | | |
.' open '.----------->| error 3 |---------->|
'. ? .' |_________| |
'._______.' |
| yes |
__V__ |
.' fgn '. _________ |
.' socket '. no | | |
'. specified .'------------>| error 5 |---------->|
'.(U=0)? .' |_________| |
'.___.' |
| yes |
__V__ |
.'conn-'. _________ |
.' ection '. yes | | |
'. closing ? .'------------>| error 12|---------->|
'.(F,C=1).' |_________| |
'.___.' |
| no |
____________________V________________________________ |
|Put buffer on Send Buffer queue and signal Packetizer| |
|_____________________________________________________| |
| |
|<-----------------------------------------'
____V___
/ Return \
\________/
<span class="grey">Cerf, Dalal & Sunshine [Page 59]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-60" ></span>
<span class="grey"><a href="./rfc675">RFC 675</a> Specification of Internet TCP December 1974</span>
FIGURE 3.3:
INTERRUPT
_______
/ Begin \
\_______/
|
|
V
Same as SEND
| |
| |
____________________V_________________________ |
|Return any pending Send buffers with code 10. | |
|Create INT packet on outgoing packet queue. | |
|Signal Output Packet Handler. | |
|______________________________________________| |
| |
|<-----------------------------------------'
____V___
/ Return \
\________/
<span class="grey">Cerf, Dalal & Sunshine [Page 60]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-61" ></span>
<span class="grey"><a href="./rfc675">RFC 675</a> Specification of Internet TCP December 1974</span>
FIGURE 3.4:
RECEIVE
_______
/ Begin \
\_______/
|
__V__
.'conn-'.
.' ection '. _________
.' legal for '. no | |
'. this process .'---------->| error 1 |-----------.
'. ? .' |_________| |
'._______.' |
| yes |
_V_ |
.' '. |
.' '. |
.'connection '. |
.' state '. |
:___________________: _________ |
| | | | | |
1-4 | 5,6 | 0 '-------------------->| error 3 |-->|
| '---------------------. |_________| |
__________V__________ | |
|Put buffer on Receive| | _________ |
|Buffer queue. Signal | | | | |
|Reassembler | '----->| error 12|-->|
|_____________________| |_________| |
| |
|<------------------------------------------------'
____V___
/ Return \
\________/
<span class="grey">Cerf, Dalal & Sunshine [Page 61]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-62" ></span>
<span class="grey"><a href="./rfc675">RFC 675</a> Specification of Internet TCP December 1974</span>
FIGURE 3.5:
CLOSE
_______
/ Begin \
\_______/
|
__V__
.'conn-'.
.' ection '. _________
.' legal for '. no | |
'. this process .'---------->| error 1 |-----------.
'. ? .' |_________| |
'._______.' |
| yes |
_V_ |
.' '. |
.' '. |
.'connection '. |
.' state '. |
:___________________: _________ |
5| |3,4 |1,2,6 |0 | | |
| | | '------------------>| error 3 |-->|
,------------' | '-------------------. |_________| |
| ______________V______________________ | |
| |Return all buffers to user with error| | ___________ |
| |12; clear all packet queues, create | | |Remove TCB | |
| |FIN packet, signal Output Packet | '--->|Return |--->|
| |Handler, set C=F=1 | |Success | |
| |_____________________________________| |___________| |
| | |
--------------------->|<----------------------------------------'
____V___
/ Return \
\________/
<span class="grey">Cerf, Dalal & Sunshine [Page 62]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-63" ></span>
<span class="grey"><a href="./rfc675">RFC 675</a> Specification of Internet TCP December 1974</span>
FIGURE 3.6:
STATUS
_______
/ Begin \
\_______/
|
__V__
.'conn-'.
.' ection '. _________
.' legal for '. no | |
'. this process .'---------->| error 1 |-----------.
'. ? .' |_________| |
'._______.' |
| yes |
__V__ __________ |
.'conn-'. |Return | |
.' ection '. no |state=0 or| |
'. open ? .'------------>|error 3 |--------->|
'._______.' |__________| |
| yes |
___________V___________ |
|Fill in reply from TCB.| |
|Return Success to user.| |
|_______________________| |
| |
|<-----------------------------------------'
____V___
/ Return \
\________/
<span class="grey">Cerf, Dalal & Sunshine [Page 63]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-64" ></span>
<span class="grey"><a href="./rfc675">RFC 675</a> Specification of Internet TCP December 1974</span>
FIGURE 4.1:
SYN (no ACK)
_______
/ Begin \
\_______/
|
_V_
.' '.
.' '.
.' S1, S2, R '.
.' ? '.
:___________________: 1,1,1 _________
__________ | | | | (states 4-6) | |
|Treat as a| 1,0,1 | | | '------------->| error 6 |-->.
|duplicate.|<-----------' | | |_________| |
|Retransmit| | | 1.0,0 |
|SYN, ACK | 0,0,0 | | (Syn sent) ________________ |
|__________| (listening) | '------------>|Collision: Clear| |
| | |S1, set timeout,| |
| _____________________V________________ |remove SYN from |-->|
| |Set R=S1=1. If U=1 set foreign socket | |retransmit queue| |
| |in TCB to match packet local socket. | |________________| |
| |Send SYN, ACK. Signal OPH. Fill in TCB| |
| |with send window, receive sequence #. | |
| |______________________________________| |
| | |
| | |
'----------------------->|<---------------------------------------'
___V__
/ Done \
\______/
<span class="grey">Cerf, Dalal & Sunshine [Page 64]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-65" ></span>
<span class="grey"><a href="./rfc675">RFC 675</a> Specification of Internet TCP December 1974</span>
FIGURE 4.2:
SYN,ACK
_______
/ Begin \
\_______/
|
__V__
.' '.
.' State 2 '. no
'.S1=1;S2=R=0.'----------------.
'. ? .' |
'.___.' |
| yes |
__V__ _______V______
.' ACK '. no | |
.' correct '.-------->| send error 6 |
'. ? .' |______________|
'.___.' |
| yes |
_________V_________ |
|Set S2=R=1. Process| |
|ACK. Send ACK. | |
|___________________| |
| |
|<----------------------'
___V__
/ Done \
\______/
<span class="grey">Cerf, Dalal & Sunshine [Page 65]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-66" ></span>
<span class="grey"><a href="./rfc675">RFC 675</a> Specification of Internet TCP December 1974</span>
FIGURE 4.3:
INT (from net)
_______ ____________
/ Begin \____\|Process ACK |
\_______/ /|(may set S2)|------.
|____________| |
|
__V__
____________ .' in '.
| Discard | no .' state 4 '.
.<-------| (or queue) |<-------'. S1=S2=R=1 .'
| |____________| '. F=0 ? .'
| '.___.'
| | yes
| __V__
| ____________ .' '.
| | ACK and | no .' within '.
|<-------| discard |<-------'. window .'
| |____________| '. ? .'
| '.___.'
| | yes
| ____________________________V_______________
| |Move Receive Left window edge to sequence |
| |number of INT. Return event 10 with any |
| |pending Receive buffers. Ruturn event 11 to |
| |user. Send ACK for INT. |
| |____________________________________________|
| |
| __V__
| see yes .'data '.
| Figure<----------.' in this '.
| 2.2 '.packet?.'
| '.___.'
| | no
'------------------------------------>|
___V__
/ Done \
\______/
<span class="grey">Cerf, Dalal & Sunshine [Page 66]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-67" ></span>
<span class="grey"><a href="./rfc675">RFC 675</a> Specification of Internet TCP December 1974</span>
FIGURE 4.4:
FIN
_______ ____________
/ Begin \____\|Process ACK |
\_______/ /|(may set S2)|------.
|____________| |
|
__V__
.' '.
no .'S1=S2=R=1'.
.--------------'. (estab- .'
| '.lished).'
| '.___.'
| | yes
| __V__
______V_____ .' '.
| | no .' within '.
.-----------------| discard |<-------'. window .'
| |____________| '. ? .'
| '.___.'
| | yes
| __V__
| (state 4) 0 .'F bit'. 1 (state 5)
| .------------'. value .'------------.
| | '.___.' |
| _________________________V________ |
| |Return all user buffers (event 12)| _____________________V__
| |Clear all packet queues. Send FIN | |Return success to User's|
| |packet. Set F=1. Inform user | |CLOSE. Remove TCB. |
| |"connection closing" (event 12) | |________________________|
| |__________________________________| |
| | |
'----------------->|<-----------------------------------'
___V__
/ Done \
\______/
<span class="grey">Cerf, Dalal & Sunshine [Page 67]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-68" ></span>
<span class="grey"><a href="./rfc675">RFC 675</a> Specification of Internet TCP December 1974</span>
FIGURE 4.5:
Error 6 (bad SYN)
_______
/ Begin \
\_______/
|
|
__V__
.' '.
.'refers to'.
.'current pckt?'. _________
.'(ACK matches seq '. no | |
'. # of packet on .'----------------->| discard |-----------.
'.retrans or send.' |_________| |
'. queues?) .' |
'._______.' |
| yes |
| |
_V_ |
.' '. 1 (state 3) |
.' value '.--------------------------------. |
'. of R.' bad SYN,ACK | |
'._.' | |
| | |
| 0 (state 2) | |
| bad SYN | |
__________________V__________________ _______V______ |
|Other side is established. Send RESET| |Clear S1, R | |
|(put error packet's seq. # in ACK | |Remove SYN,ACK| |
|field. Return all user buffers with | |from retrans | |
|code 14. Inform user with event 14 | |queue. | |
|_____________________________________| |______________| |
| | |
| V |
|<--------------------------------------------------'
___V__
/ Done \
\______/
<span class="grey">Cerf, Dalal & Sunshine [Page 68]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-69" ></span>
<span class="grey"><a href="./rfc675">RFC 675</a> Specification of Internet TCP December 1974</span>
FIGURE 4.6:
Error 7,8
_______
/ Begin \
\_______/
|
__V__
.' '.
.'refers to'. _________
.' current '. no | |
'. packet (check .'---------------->| discard |-----------.
'. ACK)? .' A |_________| |
'._______.' | |
| yes | |
_V_ | |
.' '. | |
.' '. | |
.'connection '. | |
.' state '. | |
:___________________: | |
4| 5| 3| 2| 6| | |
.-------' | | | '------' |
| | | '-----------------------------. |
| | '-------------. | |
| | | | |
___V___ ____V_______ ______V_______ ________V_________ |
|Pass to| |Remove TCB. | |Clear S1, R. | |Discard. SYN will | |
|user | |Return | |Remove SYN,ACK| |be retrans to | |
|_______| |success to | |from transmit | |avoid receiver | |
| |user's CLOSE| |queue (go to | |having to queue it| |
| |____________| |state 1). | |__________________| |
| | |______________| | |
| V | V |
'------------------------------>|<---------------------------------'
___V__
/ Done \
\______/
<span class="grey">Cerf, Dalal & Sunshine [Page 69]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-70" ></span>
<span class="grey"><a href="./rfc675">RFC 675</a> Specification of Internet TCP December 1974</span>
FIGURE 4.7:
RESET
_______
/ Begin \
\_______/
|
__V__
no .'Reset'. yes
.------------'. All ? .'------------------.
| '.___.' |
| _________V_________
| |Clear all TCB's for|
| |foreign TCP. Inform|
| |users with event 14|
| |___________________|
__V__ |
.' Is '. _________ |
.' RESET '. no | | |
.'believable ? '.------->| discard |------------->|
'.(check ACK .' |_________| |
'.field) .' |
'.___.' |
| yes |
________________V________________ |
|Clear all queues for this TCB. | |
|Return event 14 for user buffers.| |
|Inform User with event 14. | |
|_________________________________| |
| |
|<----------------------------------------'
___V__
/ Done \
\______/
[ This RFC was put into machine readable form for entry ]
[ into the online RFC archives by Alex McKenzie with ]
[ support from GTE, formerly BBN Corp. 2/2000 ]
Cerf, Dalal & Sunshine [Page 70]
</pre>
|