1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
|
<pre>Internet Engineering Task Force (IETF) G. Hudson
Request for Comments: 6803 MIT Kerberos Consortium
Category: Informational November 2012
ISSN: 2070-1721
<span class="h1">Camellia Encryption for Kerberos 5</span>
Abstract
This document specifies two encryption types and two corresponding
checksum types for the Kerberos cryptosystem framework defined in <a href="./rfc3961">RFC</a>
<a href="./rfc3961">3961</a>. The new types use the Camellia block cipher in CBC mode with
ciphertext stealing and the CMAC algorithm for integrity protection.
Status of This Memo
This document is not an Internet Standards Track specification; it is
published for informational purposes.
This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Not all documents
approved by the IESG are a candidate for any level of Internet
Standard; see <a href="./rfc5741#section-2">Section 2 of RFC 5741</a>.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
<a href="http://www.rfc-editor.org/info/rfc6803">http://www.rfc-editor.org/info/rfc6803</a>.
Copyright Notice
Copyright (c) 2012 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to <a href="https://www.rfc-editor.org/bcp/bcp78">BCP 78</a> and the IETF Trust's Legal
Provisions Relating to IETF Documents
(<a href="http://trustee.ietf.org/license-info">http://trustee.ietf.org/license-info</a>) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
<span class="grey">Hudson Informational [Page 1]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-2" ></span>
<span class="grey"><a href="./rfc6803">RFC 6803</a> Camellia Encryption for Kerberos 5 November 2012</span>
<span class="h2"><a class="selflink" id="section-1" href="#section-1">1</a>. Introduction</span>
The Camellia block cipher, described in [<a href="./rfc3713" title=""A Description of the Camellia Encryption Algorithm"">RFC3713</a>], has a 128-bit
block size and a 128-bit, 192-bit, or 256-bit key size, similar to
AES. This document specifies Kerberos encryption and checksum types
for Camellia using 128-bit or 256-bit keys. The new types conform to
the framework specified in [<a href="./rfc3961" title=""Encryption and Checksum Specifications for Kerberos 5"">RFC3961</a>] but do not use the simplified
profile.
Like the simplified profile, the new types use key derivation to
produce keys for encryption, integrity protection, and checksum
operations. Instead of the key derivation function described in
<a href="./rfc3961#section-5.1">[RFC3961], Section 5.1</a>, the new types use a key derivation function
from the family specified in [<a href="#ref-SP800-108" title=""Recommendation for Key Derivation Using Pseudorandom Functions"">SP800-108</a>].
The new types use the CMAC algorithm for integrity protection and
checksum operations. As a consequence, they do not rely on a hash
algorithm except when generating keys from strings.
Like the AES encryption types [<a href="./rfc3962" title=""Advanced Encryption Standard (AES) Encryption for Kerberos 5"">RFC3962</a>], the new encryption types use
CBC mode with ciphertext stealing [<a href="./rfc3962" title=""Advanced Encryption Standard (AES) Encryption for Kerberos 5"">RFC3962</a>] to avoid the need for
padding. They also use the same PBKDF2 algorithm for key generation
from strings, with a modification to the salt string to ensure that
different keys are generated for Camellia and AES encryption types.
<span class="h2"><a class="selflink" id="section-2" href="#section-2">2</a>. Protocol Key Representation</span>
The Camellia key space is dense, so we use random octet strings
directly as keys. The first bit of the Camellia bit string is the
high bit of the first byte of the random octet string.
<span class="h2"><a class="selflink" id="section-3" href="#section-3">3</a>. Key Derivation</span>
We use a key derivation function from the family specified in
[<a href="#ref-SP800-108" title=""Recommendation for Key Derivation Using Pseudorandom Functions"">SP800-108</a>], Section 5.2, "KDF in Feedback Mode". The PRF parameter
of the key derivation function is CMAC with Camellia-128 or
Camellia-256 as the underlying block cipher; this PRF has an output
size of 128 bits. A block counter is used with a length of 4 bytes,
represented in big-endian order. The length of the output key in
bits (denoted as k) is also represented as a 4-byte string in big-
endian order. The label input to the KDF is the usage constant
supplied to the key derivation function, and the context is unused.
In the following summary, | indicates concatenation. The random-to-
key function is the identity function, as defined in <a href="#section-6">Section 6</a>. The
k-truncate function is defined in <a href="./rfc3961#section-5.1">[RFC3961], Section 5.1</a>.
<span class="grey">Hudson Informational [Page 2]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-3" ></span>
<span class="grey"><a href="./rfc6803">RFC 6803</a> Camellia Encryption for Kerberos 5 November 2012</span>
n = ceiling(k / 128)
K(0) = zeros
K(i) = CMAC(key, K(i-1) | i | constant | 0x00 | k)
DR(key, constant) = k-truncate(K(1) | K(2) | ... | K(n))
KDF-FEEDBACK-CMAC(key, constant) = random-to-key(DR(key, constant))
The constants used for key derivation are the same as those used in
the simplified profile.
<span class="h2"><a class="selflink" id="section-4" href="#section-4">4</a>. Key Generation from Strings</span>
We use a variation on the key generation algorithm specified in
<a href="./rfc3962#section-4">[RFC3962], Section 4</a>.
First, to ensure that different long-term keys are used with Camellia
and AES, we prepend the enctype name to the salt string, separated by
a null byte. The enctype name is "camellia128-cts-cmac" or
"camellia256-cts-cmac" (without the quotes).
Second, the final key derivation step uses the algorithm described in
<a href="#section-3">Section 3</a> instead of the key derivation algorithm used by the
simplified profile.
Third, if no string-to-key parameters are specified, the default
number of iterations is raised to 32768.
saltp = enctype-name | 0x00 | salt
tkey = random-to-key(PBKDF2-HMAC-SHA1(passphrase, saltp,
iter_count, keylength))
key = KDF-FEEDBACK-CMAC(tkey, "kerberos")
<span class="h2"><a class="selflink" id="section-5" href="#section-5">5</a>. CMAC Checksum Algorithm</span>
For integrity protection and checksums, we use the CMAC function
defined in [<a href="#ref-SP800-38B" title=""Recommendation for Block Cipher Modes of Operation: The CMAC Mode for Authentication"">SP800-38B</a>], with Camellia-128 or Camellia-256 as the
underlying block cipher. The output length (Tlen) is 128 bits for
both key sizes.
<span class="h2"><a class="selflink" id="section-6" href="#section-6">6</a>. Encryption Algorithm Parameters</span>
The following parameters, required by <a href="./rfc3961#section-3">[RFC3961], Section 3</a>, apply to
the encryption types camellia128-cts-cmac, which uses a 128-bit
protocol key, and camellia256-cts-cmac, which uses a 256-bit protocol
key.
Protocol key format: as defined in <a href="#section-2">Section 2</a>.
Specific key structure: three protocol format keys: { Kc, Ke, Ki }.
<span class="grey">Hudson Informational [Page 3]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-4" ></span>
<span class="grey"><a href="./rfc6803">RFC 6803</a> Camellia Encryption for Kerberos 5 November 2012</span>
Required checksum mechanism: as defined in <a href="#section-7">Section 7</a>.
Key generation seed length: the key size (128 or 256 bits).
String-to-key function: as defined in <a href="#section-4">Section 4</a>.
Random-to-key function: identity function.
Key-derivation function: as indicated below, with usage represented
as 4 octets in big-endian order.
String-to-key parameter format: 4 octets indicating a 32-bit
iteration count in big-endian order. Implementations may limit the
count as specified in <a href="./rfc3962#section-4">[RFC3962], Section 4</a>.
Default string-to-key parameters: 00 00 80 00.
Kc = KDF-FEEDBACK-CMAC(base-key, usage | 0x99)
Ke = KDF-FEEDBACK-CMAC(base-key, usage | 0xAA)
Ki = KDF-FEEDBACK-CMAC(base-key, usage | 0x55)
Cipher state: a 128-bit CBC initialization vector.
Initial cipher state: all bits zero.
Encryption function: as follows, where E() is Camellia encryption in
CBC-CTS mode, with the next-to-last block used as the CBC-style ivec,
or the last block if there is only one.
conf = Random string of 128 bits
(C, newstate) = E(Ke, conf | plaintext, oldstate)
M = CMAC(Ki, conf | plaintext)
ciphertext = C | M
Decryption function: as follows, where D() is Camellia decryption in
CBC-CTS mode, with the ivec treated as in E(). To separate the
ciphertext into C and M components, use the final 16 bytes for M and
all of the preceding bytes for C.
(C, M) = ciphertext
(P, newIV) = D(Ke, C, oldstate)
if (M != CMAC(Ki, P)) report error
newstate = newIV
Pseudo-random function: as follows.
Kp = KDF-FEEDBACK-CMAC(protocol-key, "prf")
PRF = CMAC(Kp, octet-string)
<span class="grey">Hudson Informational [Page 4]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-5" ></span>
<span class="grey"><a href="./rfc6803">RFC 6803</a> Camellia Encryption for Kerberos 5 November 2012</span>
<span class="h2"><a class="selflink" id="section-7" href="#section-7">7</a>. Checksum Parameters</span>
The following parameters, required by <a href="./rfc3961#section-4">[RFC3961], Section 4</a>, apply to
the checksum types cmac-camellia128 and cmac-camellia256, which are
the associated checksum for camellia128-cts-cmac and camellia256-cts-
cmac, respectively.
Associated cryptosystem: Camellia-128 or Camellia-256 as appropriate
for the checksum type.
get_mic: CMAC(Kc, message).
verify_mic: get_mic and compare.
<span class="h2"><a class="selflink" id="section-8" href="#section-8">8</a>. Security Considerations</span>
Chapter 4 of [<a href="#ref-CRYPTOENG" title=""Cryptography Engineering"">CRYPTOENG</a>] discusses weaknesses of the CBC cipher mode.
An attacker who can observe enough messages generated with the same
key to encounter a collision in ciphertext blocks could recover the
XOR of the plaintexts of the previous blocks. Observing such a
collision becomes likely as the number of blocks observed approaches
2^64. This consideration applies to all previously standardized
Kerberos encryption types and all uses of CBC encryption with 128-bit
block ciphers in other protocols. Kerberos deployments can mitigate
this concern by rolling over keys often enough to make observing 2^64
messages unlikely.
Because the new checksum types are deterministic, an attacker could
pre-compute checksums for a known plain-text message in 2^64 randomly
chosen protocol keys. The attacker could then observe checksums
legitimately computed in different keys until a collision with one of
the pre-computed keys is observed; this becomes likely after the
number of observed checksums approaches 2^64. Observing such a
collision allows the attacker to recover the protocol key. This
consideration applies to most previously standardized Kerberos
checksum types and most uses of 128-bit checksums in other protocols.
Kerberos deployments should not migrate to the Camellia encryption
types simply because they are newer, but should use them only if
business needs require the use of Camellia, or if a serious flaw is
discovered in AES which does not apply to Camellia.
The security considerations described in <a href="./rfc3962#section-8">[RFC3962], Section 8</a>,
regarding the string-to-key algorithm also apply to the Camellia
encryption types.
<span class="grey">Hudson Informational [Page 5]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-6" ></span>
<span class="grey"><a href="./rfc6803">RFC 6803</a> Camellia Encryption for Kerberos 5 November 2012</span>
At the time of writing this document, there are no known weak keys
for Camellia, and no security problem has been found on Camellia (see
[<a href="#ref-NESSIE" title=""New European Schemes for Signatures, Integrity, and Encryption"">NESSIE</a>], [<a href="#ref-CRYPTREC" title=""Cryptography Research and Evaluation Committees"">CRYPTREC</a>], and [<a href="#ref-LNCS5867" title=""New Results on Impossible Different Cryptanalysis of Reduced-Round Camellia-128"">LNCS5867</a>]).
<span class="h2"><a class="selflink" id="section-9" href="#section-9">9</a>. IANA Considerations</span>
IANA has assigned the following numbers from the Encryption Type
Numbers and Checksum Type Numbers registries defined in <a href="./rfc3961#section-11">[RFC3961],
Section 11</a>.
Encryption types
+-------+----------------------+-----------+
| etype | encryption type | Reference |
+-------+----------------------+-----------+
| 25 | camellia128-cts-cmac | [<a href="./rfc6803">RFC6803</a>] |
| 26 | camellia256-cts-cmac | [<a href="./rfc6803">RFC6803</a>] |
+-------+----------------------+-----------+
Checksum types
+---------------+------------------+---------------+-----------+
| sumtype value | Checksum type | checksum size | Reference |
+---------------+------------------+---------------+-----------+
| 17 | cmac-camellia128 | 16 | [<a href="./rfc6803">RFC6803</a>] |
| 18 | cmac-camellia256 | 16 | [<a href="./rfc6803">RFC6803</a>] |
+---------------+------------------+---------------+-----------+
<span class="h2"><a class="selflink" id="section-10" href="#section-10">10</a>. Test Vectors</span>
Sample results for string-to-key conversion:
Iteration count = 1
Pass phrase = "password"
Salt = "ATHENA.MIT.EDUraeburn"
128-bit Camellia key:
57 D0 29 72 98 FF D9 D3 5D E5 A4 7F B4 BD E2 4B
256-bit Camellia key:
B9 D6 82 8B 20 56 B7 BE 65 6D 88 A1 23 B1 FA C6
82 14 AC 2B 72 7E CF 5F 69 AF E0 C4 DF 2A 6D 2C
<span class="grey">Hudson Informational [Page 6]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-7" ></span>
<span class="grey"><a href="./rfc6803">RFC 6803</a> Camellia Encryption for Kerberos 5 November 2012</span>
Iteration count = 2
Pass phrase = "password"
Salt = "ATHENA.MIT.EDUraeburn"
128-bit Camellia key:
73 F1 B5 3A A0 F3 10 F9 3B 1D E8 CC AA 0C B1 52
256-bit Camellia key:
83 FC 58 66 E5 F8 F4 C6 F3 86 63 C6 5C 87 54 9F
34 2B C4 7E D3 94 DC 9D 3C D4 D1 63 AD E3 75 E3
Iteration count = 1200
Pass phrase = "password"
Salt = "ATHENA.MIT.EDUraeburn"
128-bit Camellia key:
8E 57 11 45 45 28 55 57 5F D9 16 E7 B0 44 87 AA
256-bit Camellia key:
77 F4 21 A6 F2 5E 13 83 95 E8 37 E5 D8 5D 38 5B
4C 1B FD 77 2E 11 2C D9 20 8C E7 2A 53 0B 15 E6
Iteration count = 5
Pass phrase = "password"
Salt=0x1234567878563412
128-bit Camellia key:
00 49 8F D9 16 BF C1 C2 B1 03 1C 17 08 01 B3 81
256-bit Camellia key:
11 08 3A 00 BD FE 6A 41 B2 F1 97 16 D6 20 2F 0A
FA 94 28 9A FE 8B 27 A0 49 BD 28 B1 D7 6C 38 9A
Iteration count = 1200
Pass phrase = (64 characters)
"XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX"
Salt="pass phrase equals block size"
128-bit Camellia key:
8B F6 C3 EF 70 9B 98 1D BB 58 5D 08 68 43 BE 05
256-bit Camellia key:
11 9F E2 A1 CB 0B 1B E0 10 B9 06 7A 73 DB 63 ED
46 65 B4 E5 3A 98 D1 78 03 5D CF E8 43 A6 B9 B0
Iteration count = 1200
Pass phrase = (65 characters)
"XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX"
Salt = "pass phrase exceeds block size"
128-bit Camellia key:
57 52 AC 8D 6A D1 CC FE 84 30 B3 12 87 1C 2F 74
256-bit Camellia key:
61 4D 5D FC 0B A6 D3 90 B4 12 B8 9A E4 D5 B0 88
B6 12 B3 16 51 09 94 67 9D DB 43 83 C7 12 6D DF
<span class="grey">Hudson Informational [Page 7]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-8" ></span>
<span class="grey"><a href="./rfc6803">RFC 6803</a> Camellia Encryption for Kerberos 5 November 2012</span>
Iteration count = 50
Pass phrase = g-clef (0xf09d849e)
Salt = "EXAMPLE.COMpianist"
128-bit Camellia key:
CC 75 C7 FD 26 0F 1C 16 58 01 1F CC 0D 56 06 16
256-bit Camellia key:
16 3B 76 8C 6D B1 48 B4 EE C7 16 3D F5 AE D7 0E
20 6B 68 CE C0 78 BC 06 9E D6 8A 7E D3 6B 1E CC
Sample results for key derivation:
128-bit Camellia key:
57 D0 29 72 98 FF D9 D3 5D E5 A4 7F B4 BD E2 4B
Kc value for key usage 2 (constant = 0x0000000299):
D1 55 77 5A 20 9D 05 F0 2B 38 D4 2A 38 9E 5A 56
Ke value for key usage 2 (constant = 0x00000002AA):
64 DF 83 F8 5A 53 2F 17 57 7D 8C 37 03 57 96 AB
Ki value for key usage 2 (constant = 0x0000000255):
3E 4F BD F3 0F B8 25 9C 42 5C B6 C9 6F 1F 46 35
256-bit Camellia key:
B9 D6 82 8B 20 56 B7 BE 65 6D 88 A1 23 B1 FA C6
82 14 AC 2B 72 7E CF 5F 69 AF E0 C4 DF 2A 6D 2C
Kc value for key usage 2 (constant = 0x0000000299):
E4 67 F9 A9 55 2B C7 D3 15 5A 62 20 AF 9C 19 22
0E EE D4 FF 78 B0 D1 E6 A1 54 49 91 46 1A 9E 50
Ke value for key usage 2 (constant = 0x00000002AA):
41 2A EF C3 62 A7 28 5F C3 96 6C 6A 51 81 E7 60
5A E6 75 23 5B 6D 54 9F BF C9 AB 66 30 A4 C6 04
Ki value for key usage 2 (constant = 0x0000000255):
FA 62 4F A0 E5 23 99 3F A3 88 AE FD C6 7E 67 EB
CD 8C 08 E8 A0 24 6B 1D 73 B0 D1 DD 9F C5 82 B0
Sample encryptions (all using the default cipher state):
Plaintext: (empty)
128-bit Camellia key:
1D C4 6A 8D 76 3F 4F 93 74 2B CB A3 38 75 76 C3
Random confounder:
B6 98 22 A1 9A 6B 09 C0 EB C8 55 7D 1F 1B 6C 0A
Ciphertext:
C4 66 F1 87 10 69 92 1E DB 7C 6F DE 24 4A 52 DB
0B A1 0E DC 19 7B DB 80 06 65 8C A3 CC CE 6E B8
<span class="grey">Hudson Informational [Page 8]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-9" ></span>
<span class="grey"><a href="./rfc6803">RFC 6803</a> Camellia Encryption for Kerberos 5 November 2012</span>
Plaintext: 1
Random confounder:
6F 2F C3 C2 A1 66 FD 88 98 96 7A 83 DE 95 96 D9
128-bit Camellia key:
50 27 BC 23 1D 0F 3A 9D 23 33 3F 1C A6 FD BE 7C
Ciphertext:
84 2D 21 FD 95 03 11 C0 DD 46 4A 3F 4B E8 D6 DA
88 A5 6D 55 9C 9B 47 D3 F9 A8 50 67 AF 66 15 59
B8
Plaintext: 9 bytesss
Random confounder:
A5 B4 A7 1E 07 7A EE F9 3C 87 63 C1 8F DB 1F 10
128-bit Camellia key:
A1 BB 61 E8 05 F9 BA 6D DE 8F DB DD C0 5C DE A0
Ciphertext:
61 9F F0 72 E3 62 86 FF 0A 28 DE B3 A3 52 EC 0D
0E DF 5C 51 60 D6 63 C9 01 75 8C CF 9D 1E D3 3D
71 DB 8F 23 AA BF 83 48 A0
Plaintext: 13 bytes byte
Random confounder:
19 FE E4 0D 81 0C 52 4B 5B 22 F0 18 74 C6 93 DA
128-bit Camellia key:
2C A2 7A 5F AF 55 32 24 45 06 43 4E 1C EF 66 76
Ciphertext:
B8 EC A3 16 7A E6 31 55 12 E5 9F 98 A7 C5 00 20
5E 5F 63 FF 3B B3 89 AF 1C 41 A2 1D 64 0D 86 15
C9 ED 3F BE B0 5A B6 AC B6 76 89 B5 EA
Plaintext: 30 bytes bytes bytes bytes byt
Random confounder:
CA 7A 7A B4 BE 19 2D AB D6 03 50 6D B1 9C 39 E2
128-bit Camellia key:
78 24 F8 C1 6F 83 FF 35 4C 6B F7 51 5B 97 3F 43
Ciphertext:
A2 6A 39 05 A4 FF D5 81 6B 7B 1E 27 38 0D 08 09
0C 8E C1 F3 04 49 6E 1A BD CD 2B DC D1 DF FC 66
09 89 E1 17 A7 13 DD BB 57 A4 14 6C 15 87 CB A4
35 66 65 59 1D 22 40 28 2F 58 42 B1 05 A5
<span class="grey">Hudson Informational [Page 9]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-10" ></span>
<span class="grey"><a href="./rfc6803">RFC 6803</a> Camellia Encryption for Kerberos 5 November 2012</span>
Plaintext: (empty)
Random confounder:
3C BB D2 B4 59 17 94 10 67 F9 65 99 BB 98 92 6C
256-bit Camellia key:
B6 1C 86 CC 4E 5D 27 57 54 5A D4 23 39 9F B7 03
1E CA B9 13 CB B9 00 BD 7A 3C 6D D8 BF 92 01 5B
Ciphertext:
03 88 6D 03 31 0B 47 A6 D8 F0 6D 7B 94 D1 DD 83
7E CC E3 15 EF 65 2A FF 62 08 59 D9 4A 25 92 66
Plaintext: 1
Random confounder:
DE F4 87 FC EB E6 DE 63 46 D4 DA 45 21 BB A2 D2
256-bit Camellia key:
1B 97 FE 0A 19 0E 20 21 EB 30 75 3E 1B 6E 1E 77
B0 75 4B 1D 68 46 10 35 58 64 10 49 63 46 38 33
Ciphertext:
2C 9C 15 70 13 3C 99 BF 6A 34 BC 1B 02 12 00 2F
D1 94 33 87 49 DB 41 35 49 7A 34 7C FC D9 D1 8A
12
Plaintext: 9 bytesss
Random confounder:
AD 4F F9 04 D3 4E 55 53 84 B1 41 00 FC 46 5F 88
256-bit Camellia key:
32 16 4C 5B 43 4D 1D 15 38 E4 CF D9 BE 80 40 FE
8C 4A C7 AC C4 B9 3D 33 14 D2 13 36 68 14 7A 05
Ciphertext:
9C 6D E7 5F 81 2D E7 ED 0D 28 B2 96 35 57 A1 15
64 09 98 27 5B 0A F5 15 27 09 91 3F F5 2A 2A 9C
8E 63 B8 72 F9 2E 64 C8 39
Plaintext: 13 bytes byte
Random confounder:
CF 9B CA 6D F1 14 4E 0C 0A F9 B8 F3 4C 90 D5 14
256-bit Camellia key:
B0 38 B1 32 CD 8E 06 61 22 67 FA B7 17 00 66 D8
8A EC CB A0 B7 44 BF C6 0D C8 9B CA 18 2D 07 15
Ciphertext:
EE EC 85 A9 81 3C DC 53 67 72 AB 9B 42 DE FC 57
06 F7 26 E9 75 DD E0 5A 87 EB 54 06 EA 32 4C A1
85 C9 98 6B 42 AA BE 79 4B 84 82 1B EE
<span class="grey">Hudson Informational [Page 10]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-11" ></span>
<span class="grey"><a href="./rfc6803">RFC 6803</a> Camellia Encryption for Kerberos 5 November 2012</span>
Plaintext: 30 bytes bytes bytes bytes byt
Random confounder:
64 4D EF 38 DA 35 00 72 75 87 8D 21 68 55 E2 28
256-bit Camellia key:
CC FC D3 49 BF 4C 66 77 E8 6E 4B 02 B8 EA B9 24
A5 46 AC 73 1C F9 BF 69 89 B9 96 E7 D6 BF BB A7
Ciphertext:
0E 44 68 09 85 85 5F 2D 1F 18 12 52 9C A8 3B FD
8E 34 9D E6 FD 9A DA 0B AA A0 48 D6 8E 26 5F EB
F3 4A D1 25 5A 34 49 99 AD 37 14 68 87 A6 C6 84
57 31 AC 7F 46 37 6A 05 04 CD 06 57 14 74
Sample checksums:
Plaintext: abcdefghijk
Checksum type: cmac-camellia128
128-bit Camellia key:
1D C4 6A 8D 76 3F 4F 93 74 2B CB A3 38 75 76 C3
Key usage: 7
Checksum:
11 78 E6 C5 C4 7A 8C 1A E0 C4 B9 C7 D4 EB 7B 6B
Plaintext: ABCDEFGHIJKLMNOPQRSTUVWXYZ
Checksum type: cmac-camellia128
128-bit Camellia key:
50 27 BC 23 1D 0F 3A 9D 23 33 3F 1C A6 FD BE 7C
Key usage: 8
Checksum:
D1 B3 4F 70 04 A7 31 F2 3A 0C 00 BF 6C 3F 75 3A
Plaintext: 123456789
Checksum type: cmac-camellia256
256-bit Camellia key:
B6 1C 86 CC 4E 5D 27 57 54 5A D4 23 39 9F B7 03
1E CA B9 13 CB B9 00 BD 7A 3C 6D D8 BF 92 01 5B
Key usage: 9
Checksum:
87 A1 2C FD 2B 96 21 48 10 F0 1C 82 6E 77 44 B1
Plaintext: !@#$%^&*()!@#$%^&*()!@#$%^&*()
Checksum type: cmac-camellia256
256-bit Camellia key:
32 16 4C 5B 43 4D 1D 15 38 E4 CF D9 BE 80 40 FE
8C 4A C7 AC C4 B9 3D 33 14 D2 13 36 68 14 7A 05
Key usage: 10
Checksum:
3F A0 B4 23 55 E5 2B 18 91 87 29 4A A2 52 AB 64
<span class="grey">Hudson Informational [Page 11]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-12" ></span>
<span class="grey"><a href="./rfc6803">RFC 6803</a> Camellia Encryption for Kerberos 5 November 2012</span>
<span class="h2"><a class="selflink" id="section-11" href="#section-11">11</a>. References</span>
<span class="h3"><a class="selflink" id="section-11.1" href="#section-11.1">11.1</a>. Normative References</span>
[<a id="ref-RFC3713">RFC3713</a>] Matsui, M., Nakajima, J., and S. Moriai, "A Description
of the Camellia Encryption Algorithm", <a href="./rfc3713">RFC 3713</a>,
April 2004.
[<a id="ref-RFC3961">RFC3961</a>] Raeburn, K., "Encryption and Checksum Specifications for
Kerberos 5", <a href="./rfc3961">RFC 3961</a>, February 2005.
[<a id="ref-RFC3962">RFC3962</a>] Raeburn, K., "Advanced Encryption Standard (AES)
Encryption for Kerberos 5", <a href="./rfc3962">RFC 3962</a>, February 2005.
[<a id="ref-SP800-108">SP800-108</a>] Chen, L., "Recommendation for Key Derivation Using
Pseudorandom Functions", NIST Special Publication 800&
nhby;108, October 2009.
[<a id="ref-SP800-38B">SP800-38B</a>] Dworkin, M., "Recommendation for Block Cipher Modes of
Operation: The CMAC Mode for Authentication", NIST
Special Publication 800-38B, October 2009.
<span class="h3"><a class="selflink" id="section-11.2" href="#section-11.2">11.2</a>. Informative References</span>
[<a id="ref-CRYPTOENG">CRYPTOENG</a>] Schneier, B., "Cryptography Engineering", March 2010.
[<a id="ref-CRYPTREC">CRYPTREC</a>] Information-technology Promotion Agency (IPA), Japan,
"Cryptography Research and Evaluation Committees",
<<a href="http://www.ipa.go.jp/security/enc/CRYPTREC/index-e.html">http://www.ipa.go.jp/security/enc/CRYPTREC/</a>
<a href="http://www.ipa.go.jp/security/enc/CRYPTREC/index-e.html">index-e.html</a>>.
[<a id="ref-LNCS5867">LNCS5867</a>] Mala, H., Shakiba, M., Dakhilalian, M., and G.
Bagherikaram, "New Results on Impossible Different
Cryptanalysis of Reduced-Round Camellia-128", Lecture
Notes in Computer Science, Vol. 5867, November 2009,
<<a href="http://www.springerlink.com/content/e55783u422436g77/">http://www.springerlink.com/content/e55783u422436g77/</a>>.
[<a id="ref-NESSIE">NESSIE</a>] The NESSIE Project, "New European Schemes for
Signatures, Integrity, and Encryption",
<<a href="http://www.cosic.esat.kuleuven.be/nessie/">http://www.cosic.esat.kuleuven.be/nessie/</a>>.
<span class="grey">Hudson Informational [Page 12]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-13" ></span>
<span class="grey"><a href="./rfc6803">RFC 6803</a> Camellia Encryption for Kerberos 5 November 2012</span>
<span class="h2"><a class="selflink" id="appendix-A" href="#appendix-A">Appendix A</a>. Acknowledgements</span>
The author would like to thank Ken Raeburn, Satoru Kanno, Jeffrey
Hutzelman, Nico Williams, Sam Hartman, and Tom Yu for their help in
reviewing and providing feedback on this document.
Author's Address
Greg Hudson
MIT Kerberos Consortium
EMail: ghudson@mit.edu
Hudson Informational [Page 13]
</pre>
|