1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373
|
<pre>Internet Engineering Task Force (IETF) G. Pelletier
Request for Comments: 6846 InterDigital Communications
Obsoletes: <a href="./rfc4996">4996</a> K. Sandlund
Category: Standards Track Ericsson
ISSN: 2070-1721 L-E. Jonsson
M. West
Siemens/Roke Manor
January 2013
<span class="h1">RObust Header Compression (ROHC):</span>
<span class="h1">A Profile for TCP/IP (ROHC-TCP)</span>
Abstract
This document specifies a RObust Header Compression (ROHC) profile
for compression of TCP/IP packets. The profile, called ROHC-TCP,
provides efficient and robust compression of TCP headers, including
frequently used TCP options such as selective acknowledgments (SACKs)
and Timestamps.
ROHC-TCP works well when used over links with significant error rates
and long round-trip times. For many bandwidth-limited links where
header compression is essential, such characteristics are common.
This specification obsoletes <a href="./rfc4996">RFC 4996</a>. It fixes a technical issue
with the SACK compression and clarifies other compression methods
used.
Status of This Memo
This is an Internet Standards Track document.
This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Further information on
Internet Standards is available in <a href="./rfc5741#section-2">Section 2 of RFC 5741</a>.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
<a href="http://www.rfc-editor.org/info/rfc6846">http://www.rfc-editor.org/info/rfc6846</a>.
<span class="grey">Pelletier, et al. Standards Track [Page 1]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-2" ></span>
<span class="grey"><a href="./rfc6846">RFC 6846</a> ROHC-TCP January 2013</span>
Copyright Notice
Copyright (c) 2013 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to <a href="https://www.rfc-editor.org/bcp/bcp78">BCP 78</a> and the IETF Trust's Legal
Provisions Relating to IETF Documents
(<a href="http://trustee.ietf.org/license-info">http://trustee.ietf.org/license-info</a>) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
<span class="grey">Pelletier, et al. Standards Track [Page 2]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-3" ></span>
<span class="grey"><a href="./rfc6846">RFC 6846</a> ROHC-TCP January 2013</span>
Table of Contents
<a href="#section-1">1</a>. Introduction ....................................................<a href="#page-5">5</a>
<a href="#section-2">2</a>. Terminology .....................................................<a href="#page-5">5</a>
<a href="#section-3">3</a>. Background ......................................................<a href="#page-7">7</a>
<a href="#section-3.1">3.1</a>. Existing TCP/IP Header Compression Schemes .................<a href="#page-7">7</a>
<a href="#section-3.2">3.2</a>. Classification of TCP/IP Header Fields .....................<a href="#page-8">8</a>
<a href="#section-4">4</a>. Overview of the TCP/IP Profile (Informative) ...................<a href="#page-10">10</a>
<a href="#section-4.1">4.1</a>. General Concepts ..........................................<a href="#page-10">10</a>
<a href="#section-4.2">4.2</a>. Compressor and Decompressor Interactions ..................<a href="#page-10">10</a>
<a href="#section-4.2.1">4.2.1</a>. Compressor Operation ...............................<a href="#page-10">10</a>
<a href="#section-4.2.2">4.2.2</a>. Decompressor Feedback ..............................<a href="#page-11">11</a>
<a href="#section-4.3">4.3</a>. Packet Formats and Encoding Methods .......................<a href="#page-11">11</a>
<a href="#section-4.3.1">4.3.1</a>. Compressing TCP Options ............................<a href="#page-11">11</a>
<a href="#section-4.3.2">4.3.2</a>. Compressing Extension Headers ......................<a href="#page-11">11</a>
<a href="#section-4.4">4.4</a>. Expected Compression Ratios with ROHC-TCP .................<a href="#page-12">12</a>
<a href="#section-5">5</a>. Compressor and Decompressor Logic (Normative) ..................<a href="#page-13">13</a>
<a href="#section-5.1">5.1</a>. Context Initialization ....................................<a href="#page-13">13</a>
<a href="#section-5.2">5.2</a>. Compressor Operation ......................................<a href="#page-13">13</a>
<a href="#section-5.2.1">5.2.1</a>. Compression Logic ..................................<a href="#page-13">13</a>
<a href="#section-5.2.1.1">5.2.1.1</a>. Optimistic Approach .......................<a href="#page-14">14</a>
<a href="#section-5.2.1.2">5.2.1.2</a>. Periodic Context Refreshes ................<a href="#page-14">14</a>
<a href="#section-5.2.2">5.2.2</a>. Feedback Logic .....................................<a href="#page-14">14</a>
<a href="#section-5.2.2.1">5.2.2.1</a>. Optional Acknowledgments (ACKs) ...........<a href="#page-14">14</a>
<a href="#section-5.2.2.2">5.2.2.2</a>. Negative Acknowledgments (NACKs) ..........<a href="#page-15">15</a>
<a href="#section-5.2.3">5.2.3</a>. Context Replication ................................<a href="#page-15">15</a>
<a href="#section-5.3">5.3</a>. Decompressor Operation ....................................<a href="#page-16">16</a>
<a href="#section-5.3.1">5.3.1</a>. Decompressor States and Logic ......................<a href="#page-16">16</a>
<a href="#section-5.3.1.1">5.3.1.1</a>. Reconstruction and Verification ...........<a href="#page-16">16</a>
<a href="#section-5.3.1.2">5.3.1.2</a>. Detecting Context Damage ..................<a href="#page-17">17</a>
<a href="#section-5.3.1.3">5.3.1.3</a>. No Context (NC) State .....................<a href="#page-18">18</a>
<a href="#section-5.3.1.4">5.3.1.4</a>. Static Context (SC) State .................<a href="#page-18">18</a>
<a href="#section-5.3.1.5">5.3.1.5</a>. Full Context (FC) State ...................<a href="#page-19">19</a>
<a href="#section-5.3.2">5.3.2</a>. Feedback Logic .....................................<a href="#page-19">19</a>
<a href="#section-5.3.3">5.3.3</a>. Context Replication ................................<a href="#page-20">20</a>
<a href="#section-6">6</a>. Encodings in ROHC-TCP (Normative) ..............................<a href="#page-20">20</a>
<a href="#section-6.1">6.1</a>. Control Fields in ROHC-TCP ................................<a href="#page-20">20</a>
<a href="#section-6.1.1">6.1.1</a>. Master Sequence Number (MSN) .......................<a href="#page-20">20</a>
<a href="#section-6.1.2">6.1.2</a>. IP-ID Behavior .....................................<a href="#page-21">21</a>
<a href="#section-6.1.3">6.1.3</a>. Explicit Congestion Notification (ECN) .............<a href="#page-22">22</a>
<a href="#section-6.2">6.2</a>. Compressed Header Chains ..................................<a href="#page-22">22</a>
<a href="#section-6.3">6.3</a>. Compressing TCP Options with List Compression .............<a href="#page-24">24</a>
<a href="#section-6.3.1">6.3.1</a>. List Compression ...................................<a href="#page-25">25</a>
<a href="#section-6.3.2">6.3.2</a>. Table-Based Item Compression .......................<a href="#page-26">26</a>
<a href="#section-6.3.3">6.3.3</a>. Encoding of Compressed Lists .......................<a href="#page-26">26</a>
<a href="#section-6.3.4">6.3.4</a>. Item Table Mappings ................................<a href="#page-28">28</a>
<a href="#section-6.3.5">6.3.5</a>. Compressed Lists in Dynamic Chain ..................<a href="#page-30">30</a>
<a href="#section-6.3.6">6.3.6</a>. Irregular Chain Items for TCP Options ..............<a href="#page-30">30</a>
<span class="grey">Pelletier, et al. Standards Track [Page 3]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-4" ></span>
<span class="grey"><a href="./rfc6846">RFC 6846</a> ROHC-TCP January 2013</span>
<a href="#section-6.3.7">6.3.7</a>. Replication of TCP Options .........................<a href="#page-30">30</a>
<a href="#section-6.4">6.4</a>. Profile-Specific Encoding Methods .........................<a href="#page-31">31</a>
<a href="#section-6.4.1">6.4.1</a>. inferred_ip_v4_header_checksum .....................<a href="#page-31">31</a>
<a href="#section-6.4.2">6.4.2</a>. inferred_mine_header_checksum ......................<a href="#page-31">31</a>
<a href="#section-6.4.3">6.4.3</a>. inferred_ip_v4_length ..............................<a href="#page-32">32</a>
<a href="#section-6.4.4">6.4.4</a>. inferred_ip_v6_length ..............................<a href="#page-32">32</a>
<a href="#section-6.4.5">6.4.5</a>. inferred_offset ....................................<a href="#page-33">33</a>
<a href="#section-6.4.6">6.4.6</a>. baseheader_extension_headers .......................<a href="#page-33">33</a>
<a href="#section-6.4.7">6.4.7</a>. baseheader_outer_headers ...........................<a href="#page-34">34</a>
<a href="#section-6.4.8">6.4.8</a>. Scaled Encoding of Fields ..........................<a href="#page-34">34</a>
<a href="#section-6.4.8.1">6.4.8.1</a>. Scaled TCP Sequence Number Encoding .......<a href="#page-35">35</a>
<a href="#section-6.4.8.2">6.4.8.2</a>. Scaled Acknowledgment Number Encoding .....<a href="#page-35">35</a>
<a href="#section-6.5">6.5</a>. Encoding Methods with External Parameters .................<a href="#page-36">36</a>
<a href="#section-7">7</a>. Packet Types (Normative) .......................................<a href="#page-38">38</a>
<a href="#section-7.1">7.1</a>. Initialization and Refresh (IR) Packets ...................<a href="#page-38">38</a>
<a href="#section-7.2">7.2</a>. Context Replication (IR-CR) Packets .......................<a href="#page-40">40</a>
<a href="#section-7.3">7.3</a>. Compressed (CO) Packets ...................................<a href="#page-42">42</a>
<a href="#section-8">8</a>. Header Formats (Normative) .....................................<a href="#page-43">43</a>
<a href="#section-8.1">8.1</a>. Design Rationale for Compressed Base Headers ..............<a href="#page-44">44</a>
<a href="#section-8.2">8.2</a>. Formal Definition of Header Formats .......................<a href="#page-47">47</a>
<a href="#section-8.3">8.3</a>. Feedback Formats and Options ..............................<a href="#page-88">88</a>
<a href="#section-8.3.1">8.3.1</a>. Feedback Formats ...................................<a href="#page-88">88</a>
<a href="#section-8.3.2">8.3.2</a>. Feedback Options ...................................<a href="#page-89">89</a>
<a href="#section-8.3.2.1">8.3.2.1</a>. The REJECT Option .........................<a href="#page-89">89</a>
<a href="#section-8.3.2.2">8.3.2.2</a>. The MSN-NOT-VALID Option ..................<a href="#page-90">90</a>
<a href="#section-8.3.2.3">8.3.2.3</a>. The MSN Option ............................<a href="#page-90">90</a>
<a href="#section-8.3.2.4">8.3.2.4</a>. The CONTEXT_MEMORY Feedback Option ........<a href="#page-91">91</a>
<a href="#section-8.3.2.5">8.3.2.5</a>. Unknown Option Types ......................<a href="#page-91">91</a>
<a href="#section-9">9</a>. Changes from <a href="./rfc4996">RFC 4996</a> ..........................................<a href="#page-91">91</a>
<a href="#section-9.1">9.1</a>. Functional Changes ........................................<a href="#page-91">91</a>
<a href="#section-9.2">9.2</a>. Non-functional Changes ....................................<a href="#page-92">92</a>
<a href="#section-10">10</a>. Security Considerations .......................................<a href="#page-92">92</a>
<a href="#section-11">11</a>. IANA Considerations ...........................................<a href="#page-93">93</a>
<a href="#section-12">12</a>. Acknowledgments ...............................................<a href="#page-93">93</a>
<a href="#section-13">13</a>. References ....................................................<a href="#page-93">93</a>
<a href="#section-13.1">13.1</a>. Normative References .....................................<a href="#page-93">93</a>
<a href="#section-13.2">13.2</a>. Informative References ...................................<a href="#page-94">94</a>
<span class="grey">Pelletier, et al. Standards Track [Page 4]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-5" ></span>
<span class="grey"><a href="./rfc6846">RFC 6846</a> ROHC-TCP January 2013</span>
<span class="h2"><a class="selflink" id="section-1" href="#section-1">1</a>. Introduction</span>
There are several reasons to perform header compression on low- or
medium-speed links for TCP/IP traffic, and these have already been
discussed in [<a href="./rfc2507" title=""IP Header Compression"">RFC2507</a>]. Additional considerations that make
robustness an important objective for a TCP [<a href="./rfc0793" title=""Transmission Control Protocol"">RFC0793</a>] compression
scheme are introduced in [<a href="./rfc4163" title=""RObust Header Compression (ROHC): Requirements on TCP/IP Header Compression"">RFC4163</a>]. Finally, existing TCP/IP header
compression schemes ([<a href="./rfc1144" title=""Compressing TCP/IP headers for low-speed serial links"">RFC1144</a>], [<a href="./rfc2507" title=""IP Header Compression"">RFC2507</a>]) are limited in their
handling of the TCP options field and cannot compress the headers of
handshaking packets (SYNs and FINs).
It is thus desirable for a header compression scheme to be able to
handle loss on the link between the compression and decompression
points as well as loss before the compression point. The header
compression scheme also needs to consider how to efficiently compress
short-lived TCP transfers and TCP options, such as selective
acknowledgments (SACK) ([<a href="./rfc2018" title=""TCP Selective Acknowledgment Options"">RFC2018</a>], [<a href="./rfc2883" title=""An Extension to the Selective Acknowledgement (SACK) Option for TCP"">RFC2883</a>]) and Timestamps
([<a href="./rfc1323" title=""TCP Extensions for High Performance"">RFC1323</a>]). TCP options that may be less frequently used do not
necessarily need to be compressed by the protocol, and instead can be
passed transparently without reducing the overall compression
efficiency of other parts of the TCP header.
The Robust Header Compression (ROHC) Working Group has developed a
header compression framework on top of which various profiles can be
defined for different protocol sets, or for different compression
strategies. This document defines a TCP/IP compression profile for
the ROHC framework [<a href="./rfc5795" title=""The RObust Header Compression (ROHC) Framework"">RFC5795</a>], compliant with the requirements listed
in [<a href="./rfc4163" title=""RObust Header Compression (ROHC): Requirements on TCP/IP Header Compression"">RFC4163</a>].
Specifically, it describes a header compression scheme for TCP/IP
header compression (ROHC-TCP) that is robust against packet loss and
that offers enhanced capabilities, in particular for the compression
of header fields including TCP options. The profile identifier for
TCP/IP compression is 0x0006.
<span class="h2"><a class="selflink" id="section-2" href="#section-2">2</a>. Terminology</span>
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [<a href="./rfc2119" title=""Key words for use in RFCs to Indicate Requirement Levels"">RFC2119</a>].
This document reuses some of the terminology found in [<a href="./rfc5795" title=""The RObust Header Compression (ROHC) Framework"">RFC5795</a>]. In
addition, this document uses or defines the following terms:
<span class="grey">Pelletier, et al. Standards Track [Page 5]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-6" ></span>
<span class="grey"><a href="./rfc6846">RFC 6846</a> ROHC-TCP January 2013</span>
Base context
The base context is a context that has been validated by both the
compressor and the decompressor. A base context can be used as
the reference when building a new context using replication.
Base Context Identifier (Base CID)
The Base CID is the CID that identifies the base context, from
which information needed for context replication can be extracted.
Base header
The Base header is a compressed representation of the innermost IP
and TCP headers of the uncompressed packet.
Chaining of items
A chain groups fields based on similar characteristics. ROHC-TCP
defines chain items for static, dynamic, replicable, or irregular
fields. Chaining is done by appending an item for each header,
e.g., to the chain in their order of appearance in the
uncompressed packet. Chaining is useful to construct compressed
headers from an arbitrary number of any of the protocol headers
for which ROHC-TCP defines a compressed format.
Context Replication (CR)
Context replication is the mechanism that establishes and
initializes a new context based on another existing valid context
(a base context). This mechanism is introduced to reduce the
overhead of the context establishment procedure, and is especially
useful for compression of multiple short-lived TCP connections
that may be occurring simultaneously or near-simultaneously.
ROHC-TCP packet types
ROHC-TCP uses three different packet types: the Initialization and
Refresh (IR) packet type, the Context Replication (IR-CR) packet
type, and the Compressed packet (CO) type.
Short-lived TCP transfer
Short-lived TCP transfers refer to TCP connections transmitting
only small amounts of packets for each single connection.
<span class="grey">Pelletier, et al. Standards Track [Page 6]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-7" ></span>
<span class="grey"><a href="./rfc6846">RFC 6846</a> ROHC-TCP January 2013</span>
<span class="h2"><a class="selflink" id="section-3" href="#section-3">3</a>. Background</span>
This section provides some background information on TCP/IP header
compression. The fundamentals of general header compression can be
found in [<a href="./rfc5795" title=""The RObust Header Compression (ROHC) Framework"">RFC5795</a>]. In the following subsections, two existing
TCP/IP header compression schemes are first described along with a
discussion of their limitations, followed by the classification of
TCP/IP header fields. Finally, some of the characteristics of short-
lived TCP transfers are summarized.
A behavior analysis of TCP/IP header fields is found in [<a href="./rfc4413" title=""TCP/IP Field Behavior"">RFC4413</a>].
<span class="h3"><a class="selflink" id="section-3.1" href="#section-3.1">3.1</a>. Existing TCP/IP Header Compression Schemes</span>
Compressed TCP (CTCP) and IP Header Compression (IPHC) are two
different schemes that may be used to compress TCP/IP headers. Both
schemes transmit only the differences from the previous header in
order to reduce the size of the TCP/IP header.
The CTCP [<a href="./rfc1144" title=""Compressing TCP/IP headers for low-speed serial links"">RFC1144</a>] compressor detects transport-level retransmissions
and sends a header that updates the context completely when they
occur. While CTCP works well over reliable links, it is vulnerable
when used over less reliable links as even a single packet loss
results in loss of synchronization between the compressor and the
decompressor. This in turn leads to the TCP receiver discarding all
remaining packets in the current window because of a checksum error.
This effectively prevents the TCP fast retransmit algorithm [<a href="./rfc5681" title=""TCP Congestion Control"">RFC5681</a>]
from being triggered. In such a case, the compressor must wait until
TCP times out and retransmits a packet to resynchronize.
To reduce the errors due to the inconsistent contexts between
compressor and decompressor when compressing TCP, IPHC [<a href="./rfc2507" title=""IP Header Compression"">RFC2507</a>]
improves somewhat on CTCP by augmenting the repair mechanism of CTCP
with a local repair mechanism called TWICE and with a link-layer
mechanism based on negative acknowledgments to request a header that
updates the context.
The TWICE algorithm assumes that only the Sequence Number field of
TCP segments is changing with the deltas between consecutive packets
being constant in most cases. This assumption is, however, not
always true, especially when TCP Timestamps and SACK options are
used.
The full header request mechanism requires a feedback channel that
may be unavailable in some circumstances. This channel is used to
explicitly request that the next packet be sent with an uncompressed
header to allow resynchronization without waiting for a TCP timeout.
<span class="grey">Pelletier, et al. Standards Track [Page 7]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-8" ></span>
<span class="grey"><a href="./rfc6846">RFC 6846</a> ROHC-TCP January 2013</span>
In addition, this mechanism does not perform well on links with long
round-trip times.
Both CTCP and IPHC are also limited in their handling of the TCP
options field. For IPHC, any change in the options field (caused by
Timestamps or SACK, for example) renders the entire field
uncompressible, while for CTCP, such a change in the options field
effectively disables TCP/IP header compression altogether.
Finally, existing TCP/IP compression schemes do not compress the
headers of handshaking packets (SYNs and FINs). Compressing these
packets may greatly improve the overall header compression ratio for
the cases where many short-lived TCP connections share the same
channel.
<span class="h3"><a class="selflink" id="section-3.2" href="#section-3.2">3.2</a>. Classification of TCP/IP Header Fields</span>
Header compression is possible due to the fact that there is much
redundancy between header field values within packets, especially
between consecutive packets. To utilize these properties for TCP/IP
header compression, it is important to understand the change patterns
of the various header fields.
All fields of the TCP/IP packet header have been classified in detail
in [<a href="./rfc4413" title=""TCP/IP Field Behavior"">RFC4413</a>]. The main conclusion is that most of the header fields
can easily be compressed away since they seldom or never change. The
following fields do, however, require more sophisticated mechanisms:
- IPv4 Identification (16 bits) - IP-ID
- TCP Sequence Number (32 bits) - SN
- TCP Acknowledgment Number (32 bits)
- TCP Reserved ( 4 bits)
- TCP ECN flags ( 2 bits) - ECN
- TCP Window (16 bits)
- TCP Options
o Maximum Segment Size (32 bits) - MSS
o Window Scale (24 bits) - WSCALE
o SACK Permitted (16 bits)
o TCP SACK (80, 144, 208, or 272 bits) - SACK
o TCP Timestamp (80 bits) - TS
The assignment of IP-ID values can be done in various ways, usually
one of sequential, sequential jump, or random, as described in
<a href="./rfc4413#section-4.1.3">Section 4.1.3 of [RFC4413]</a>. Some IPv4 stacks do use a sequential
assignment when generating IP-ID values but do not transmit the
contents of this field in network byte order; instead, it is sent
with the two octets reversed. In this case, the compressor can
<span class="grey">Pelletier, et al. Standards Track [Page 8]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-9" ></span>
<span class="grey"><a href="./rfc6846">RFC 6846</a> ROHC-TCP January 2013</span>
compress the IP-ID field after swapping the bytes. Consequently, the
decompressor also swaps the bytes of the IP-ID after decompression to
regenerate the original IP-ID. With respect to TCP compression, the
analysis in [<a href="./rfc4413" title=""TCP/IP Field Behavior"">RFC4413</a>] reveals that there is no obvious candidate
among the TCP fields suitable to infer the IP-ID.
The change pattern of several TCP fields (Sequence Number,
Acknowledgment Number, Window, etc.) is very hard to predict. Of
particular importance to a TCP/IP header compression scheme is the
understanding of the sequence and acknowledgment numbers [<a href="./rfc4413" title=""TCP/IP Field Behavior"">RFC4413</a>].
Specifically, the TCP Sequence Number can be anywhere within a range
defined by the TCP Window at any point on the path (i.e., wherever a
compressor might be deployed). Missing packets or retransmissions
can cause the TCP Sequence Number to fluctuate within the limits of
this window. The TCP Window also bounds the jumps in acknowledgment
number.
Another important behavior of the TCP/IP header is the dependency
between the sequence number and the acknowledgment number. TCP
connections can be either near-symmetrical or show a strong
asymmetrical bias with respect to the data traffic. In the latter
case, the TCP connections mainly have one-way traffic (Web browsing
and file downloading, for example). This means that on the forward
path (from server to client), only the sequence number is changing
while the acknowledgment number remains constant for most packets; on
the backward path (from client to server), only the acknowledgment
number is changing and the sequence number remains constant for most
packets. A compression scheme for TCP should thus have packet
formats suitable for either cases, i.e., packet formats that can
carry either only sequence number bits, only acknowledgment number
bits, or both.
In addition, TCP flows can be short-lived transfers. Short-lived TCP
transfers will degrade the performance of header compression schemes
that establish a new context by initially sending full headers.
Multiple simultaneous or near simultaneous TCP connections may
exhibit much similarity in header field values and context values
among each other, which would make it possible to reuse information
between flows when initializing a new context. A mechanism to this
end, context replication [<a href="./rfc4164" title=""RObust Header Compression (ROHC): Context Replication for ROHC Profiles"">RFC4164</a>], makes the context establishment
step faster and more efficient, by replicating part of an existing
context to a new flow. The conclusion from [<a href="./rfc4413" title=""TCP/IP Field Behavior"">RFC4413</a>] is that part of
the IP sub-context, some TCP fields, and some context values can be
replicated since they seldom change or change with only a small jump.
<span class="grey">Pelletier, et al. Standards Track [Page 9]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-10" ></span>
<span class="grey"><a href="./rfc6846">RFC 6846</a> ROHC-TCP January 2013</span>
ROHC-TCP also compresses the following headers: IPv6 Destination
Options header [<a href="./rfc2460" title=""Internet Protocol, Version 6 (IPv6) Specification"">RFC2460</a>], IPv6 Routing header [<a href="./rfc2460" title=""Internet Protocol, Version 6 (IPv6) Specification"">RFC2460</a>], IPv6 Hop-by-
Hop Options header [<a href="./rfc2460" title=""Internet Protocol, Version 6 (IPv6) Specification"">RFC2460</a>], Authentication Header (AH) [<a href="./rfc4302" title=""IP Authentication Header"">RFC4302</a>],
Generic Routing Encapsulation (GRE) [<a href="./rfc2784" title=""Generic Routing Encapsulation (GRE)"">RFC2784</a>][RFC2890], and the
Minimal Encapsulation (MINE) header [<a href="./rfc2004" title=""Minimal Encapsulation within IP"">RFC2004</a>].
Headers specific to Mobile IP (for IPv4 or IPv6) do not receive any
special treatment in this document, for reasons similar to those
described in [<a href="./rfc3095" title=""RObust Header Compression (ROHC): Framework and four profiles: RTP, UDP, ESP, and uncompressed"">RFC3095</a>].
<span class="h2"><a class="selflink" id="section-4" href="#section-4">4</a>. Overview of the TCP/IP Profile (Informative)</span>
<span class="h3"><a class="selflink" id="section-4.1" href="#section-4.1">4.1</a>. General Concepts</span>
ROHC-TCP uses the ROHC protocol as described in [<a href="./rfc5795" title=""The RObust Header Compression (ROHC) Framework"">RFC5795</a>]. ROHC-TCP
supports context replication as defined in [<a href="./rfc4164" title=""RObust Header Compression (ROHC): Context Replication for ROHC Profiles"">RFC4164</a>]. Context
replication can be particularly useful for short-lived TCP flows
[<a href="./rfc4413" title=""TCP/IP Field Behavior"">RFC4413</a>].
<span class="h3"><a class="selflink" id="section-4.2" href="#section-4.2">4.2</a>. Compressor and Decompressor Interactions</span>
<span class="h4"><a class="selflink" id="section-4.2.1" href="#section-4.2.1">4.2.1</a>. Compressor Operation</span>
Header compression with ROHC can be conceptually characterized as the
interaction of a compressor with a decompressor state machine. The
compressor's task is to minimally send the information needed to
successfully decompress a packet, based on a certain confidence
regarding the state of the decompressor context.
For ROHC-TCP compression, the compressor normally starts compression
with the initial assumption that the decompressor has no useful
information to process the new flow, and sends Initialization and
Refresh (IR) packets. Alternatively, the compressor may also support
Context Replication (CR) and use IR-CR packets [<a href="./rfc4164" title=""RObust Header Compression (ROHC): Context Replication for ROHC Profiles"">RFC4164</a>], which
attempts to reuse context information related to another flow.
The compressor can then adjust the compression level based on its
confidence that the decompressor has the necessary information to
successfully process the Compressed (CO) packets that it selects. In
other words, the task of the compressor is to ensure that the
decompressor operates in the state that allows decompression of the
most efficient CO packet(s), and to allow the decompressor to move to
that state as soon as possible otherwise.
<span class="grey">Pelletier, et al. Standards Track [Page 10]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-11" ></span>
<span class="grey"><a href="./rfc6846">RFC 6846</a> ROHC-TCP January 2013</span>
<span class="h4"><a class="selflink" id="section-4.2.2" href="#section-4.2.2">4.2.2</a>. Decompressor Feedback</span>
The ROHC-TCP profile can be used in environments with or without
feedback capabilities from decompressor to compressor. ROHC-TCP,
however, assumes that if a ROHC feedback channel is available and if
this channel is used at least once by the decompressor for a specific
ROHC-TCP context, this channel will be used during the entire
compression operation for that context. If the feedback channel
disappears, compression should be restarted.
The reception of either positive acknowledgments (ACKs) or negative
acknowledgments (NACKs) establishes the feedback channel from the
decompressor for the context for which the feedback was received.
Once there is an established feedback channel for a specific context,
the compressor should make use of this feedback to estimate the
current state of the decompressor. This helps in increasing the
compression efficiency by providing the information needed for the
compressor to achieve the necessary confidence level.
The ROHC-TCP feedback mechanism is limited in its applicability by
the number of (least significant bit (LSB) encoded) master sequence
number (MSN) (see <a href="#section-6.1.1">Section 6.1.1</a>) bits used in the FEEDBACK-2 format
(see <a href="#section-8.3">Section 8.3</a>). It is not suitable for a decompressor to use
feedback altogether where the MSN bits in the feedback could wrap
around within one round-trip time. Instead, unidirectional operation
-- where the compressor periodically sends larger context-updating
packets -- is more appropriate.
<span class="h3"><a class="selflink" id="section-4.3" href="#section-4.3">4.3</a>. Packet Formats and Encoding Methods</span>
The packet formats and encoding methods used for ROHC-TCP are defined
using the formal notation [<a href="./rfc4997" title=""Formal Notation for RObust Header Compression (ROHC-FN)"">RFC4997</a>]. The formal notation is used to
provide an unambiguous representation of the packet formats and a
clear definition of the encoding methods.
<span class="h4"><a class="selflink" id="section-4.3.1" href="#section-4.3.1">4.3.1</a>. Compressing TCP Options</span>
The TCP options in ROHC-TCP are compressed using a list compression
encoding that allows option content to be established so that TCP
options can be added to the context without having to send all TCP
options uncompressed.
<span class="h4"><a class="selflink" id="section-4.3.2" href="#section-4.3.2">4.3.2</a>. Compressing Extension Headers</span>
ROHC-TCP compresses the extension headers as listed in <a href="#section-3.2">Section 3.2</a>.
These headers are treated exactly as other headers and thus have a
static chain, a dynamic chain, an irregular chain, and a chain for
context replication (<a href="#section-6.2">Section 6.2</a>).
<span class="grey">Pelletier, et al. Standards Track [Page 11]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-12" ></span>
<span class="grey"><a href="./rfc6846">RFC 6846</a> ROHC-TCP January 2013</span>
This means that headers appearing in or disappearing from the flow
being compressed will lead to changes to the static chain. However,
the change pattern of extension headers is not deemed to impair
compression efficiency with respect to this design strategy.
<span class="h3"><a class="selflink" id="section-4.4" href="#section-4.4">4.4</a>. Expected Compression Ratios with ROHC-TCP</span>
The following table illustrates typical compression ratios that can
be expected when using ROHC-TCP and IPHC [<a href="./rfc2507" title=""IP Header Compression"">RFC2507</a>].
The figures in the table assume that the compression context has
already been properly initialized. For the TS option, the Timestamp
is assumed to change with small values. All TCP options include a
suitable number of No Operation (NOP) options [<a href="./rfc0793" title=""Transmission Control Protocol"">RFC0793</a>] for padding
and/or alignment. Finally, in the examples for IPv4, a sequential
IP-ID behavior is assumed.
Total Header Size (octets)
ROHC-TCP IPHC
Unc. DATA ACK DATA ACK
IPv4+TCP+TS 52 8 8 18 18
IPv4+TCP+TS 52 7 6 16 16 (1)
IPv6+TCP+TS 72 8 7 18 18
IPv6+TCP+no opt 60 6 5 6 6
IPv6+TCP+SACK 80 - 15 - 80 (2)
IPv6+TCP+SACK 80 - 9 - 26 (3)
(1) The payload size of the data stream is constant.
(2) The SACK option appears in the header, but was not present
in the previous packet. Two SACK blocks are assumed.
(3) The SACK option appears in the header, and was also present
in the previous packet (with different SACK blocks).
Two SACK blocks are assumed.
The table below illustrates the typical initial compression ratios
for ROHC-TCP and IPHC. The data stream in the example is assumed to
be IPv4+TCP, with a sequential behavior for the IP-ID. The following
options are assumed present in the SYN packet: TS, MSS, and WSCALE,
with an appropriate number of NOP options.
Total Header Size (octets)
Unc. ROHC-TCP IPHC
1st packet (SYN) 60 49 60
2nd packet 52 12 52
The figures in the table assume that the compressor has received an
acknowledgment from the decompressor before compressing the second
packet, which can be expected when feedback is used in ROHC-TCP.
<span class="grey">Pelletier, et al. Standards Track [Page 12]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-13" ></span>
<span class="grey"><a href="./rfc6846">RFC 6846</a> ROHC-TCP January 2013</span>
This is because in the most common case, the TCP ACKs are expected to
take the same return path, and because TCP does not send more packets
until the TCP SYN packet has been acknowledged.
<span class="h2"><a class="selflink" id="section-5" href="#section-5">5</a>. Compressor and Decompressor Logic (Normative)</span>
<span class="h3"><a class="selflink" id="section-5.1" href="#section-5.1">5.1</a>. Context Initialization</span>
The static context of ROHC-TCP flows can be initialized in either of
two ways:
1. By using an IR packet as in <a href="#section-7.1">Section 7.1</a>, where the profile number
is 0x06 and the static chain ends with the static part of a TCP
header.
2. By replicating an existing context using the mechanism defined by
[<a href="./rfc4164" title=""RObust Header Compression (ROHC): Context Replication for ROHC Profiles"">RFC4164</a>]. This is done with the IR-CR packet defined in
<a href="#section-7.2">Section 7.2</a>, where the profile number is 0x06.
<span class="h3"><a class="selflink" id="section-5.2" href="#section-5.2">5.2</a>. Compressor Operation</span>
<span class="h4"><a class="selflink" id="section-5.2.1" href="#section-5.2.1">5.2.1</a>. Compression Logic</span>
The task of the compressor is to determine what data must be sent
when compressing a TCP/IP packet, so that the decompressor can
successfully reconstruct the original packet based on its current
state. The selection of the type of compressed header to send thus
depends on a number of factors, including:
o The change behavior of header fields in the flow, e.g., conveying
the necessary information within the restrictions of the set of
available packet formats.
o The compressor's level of confidence regarding decompressor state,
e.g., by selecting header formats updating the same type of
information for a number of consecutive packets or from the
reception of decompressor feedback (ACKs and/or NACKs).
o Additional robustness required for the flow, e.g., periodic
refreshes of static and dynamic information using IR and IR-DYN
packets when decompressor feedback is not expected.
The impact of these factors on the compressor's packet type selection
is described in more detail in the following subsections.
<span class="grey">Pelletier, et al. Standards Track [Page 13]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-14" ></span>
<span class="grey"><a href="./rfc6846">RFC 6846</a> ROHC-TCP January 2013</span>
In this section, a "higher compression state" means that less data
will be sent in compressed packets, i.e., smaller compressed headers
are used, while a lower compression state means that a larger amount
of data will be sent using larger compressed headers.
<span class="h5"><a class="selflink" id="section-5.2.1.1" href="#section-5.2.1.1">5.2.1.1</a>. Optimistic Approach</span>
The optimistic approach is the principle by which a compressor sends
the same type of information for a number of packets (consecutively
or not) until it is fairly confident that the decompressor has
received the information. The optimistic approach is useful to
ensure robustness when ROHC-TCP is used to compress packets over
lossy links.
Therefore, if field X in the uncompressed packet changes value, the
compressor MUST use a packet type that contains an encoding for field
X until it has gained confidence that the decompressor has received
at least one packet containing the new value for X. The compressor
SHOULD choose a compressed format with the smallest header that can
convey the changes needed to fulfill the optimistic approach
condition used.
<span class="h5"><a class="selflink" id="section-5.2.1.2" href="#section-5.2.1.2">5.2.1.2</a>. Periodic Context Refreshes</span>
When the optimistic approach is used, there will always be a
possibility of decompression failures since the decompressor may not
have received sufficient information for correct decompression.
Therefore, until the decompressor has established a feedback channel,
the compressor SHOULD periodically move to a lower compression state
and send IR and/or IR-DYN packets. These refreshes can be based on
timeouts, on the number of compressed packets sent for the flow, or
any other strategy specific to the implementation. Once the feedback
channel is established, the decompressor MAY stop performing periodic
refreshes.
<span class="h4"><a class="selflink" id="section-5.2.2" href="#section-5.2.2">5.2.2</a>. Feedback Logic</span>
The semantics of feedback messages, acknowledgments (ACKs) and
negative acknowledgments (NACKs or STATIC-NACKs), are defined in
<a href="./rfc5795#section-5.2.4.1">Section 5.2.4.1 of [RFC5795]</a>.
<span class="h5"><a class="selflink" id="section-5.2.2.1" href="#section-5.2.2.1">5.2.2.1</a>. Optional Acknowledgments (ACKs)</span>
The compressor MAY use acknowledgment feedback (ACKs) to move to a
higher compression state.
<span class="grey">Pelletier, et al. Standards Track [Page 14]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-15" ></span>
<span class="grey"><a href="./rfc6846">RFC 6846</a> ROHC-TCP January 2013</span>
Upon reception of an ACK for a context-updating packet, the
compressor obtains confidence that the decompressor has received the
acknowledged packet and that it has observed changes in the packet
flow up to the acknowledged packet.
This functionality is optional, so a compressor MUST NOT expect to
get such ACKs, even if a feedback channel is available and has been
established for that flow.
<span class="h5"><a class="selflink" id="section-5.2.2.2" href="#section-5.2.2.2">5.2.2.2</a>. Negative Acknowledgments (NACKs)</span>
The compressor uses feedback from the decompressor to move to a lower
compression state (NACKs).
On reception of a NACK feedback, the compressor SHOULD:
o assume that only the static part of the decompressor is valid, and
o re-send all dynamic information (via an IR or IR-DYN packet) the
next time it compresses a packet for the indicated flow
unless it has confidence that information sent after the packet being
acknowledged already provides a suitable response to the NACK
feedback. In addition, the compressor MAY use a CO packet carrying a
7-bit Cyclic Redundancy Check (CRC) if it can determine with enough
confidence what information provides a suitable response to the NACK
feedback.
On reception of a STATIC-NACK feedback, the compressor SHOULD:
o assume that the decompressor has no valid context, and
o re-send all static and all dynamic information (via an IR packet)
the next time it compresses a packet for the indicated flow
unless it has confidence that information sent after the packet that
is being acknowledged already provides a suitable response to the
STATIC-NACK feedback.
<span class="h4"><a class="selflink" id="section-5.2.3" href="#section-5.2.3">5.2.3</a>. Context Replication</span>
A compressor MAY support context replication by implementing the
additional compression and feedback logic defined in [<a href="./rfc4164" title=""RObust Header Compression (ROHC): Context Replication for ROHC Profiles"">RFC4164</a>].
<span class="grey">Pelletier, et al. Standards Track [Page 15]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-16" ></span>
<span class="grey"><a href="./rfc6846">RFC 6846</a> ROHC-TCP January 2013</span>
<span class="h3"><a class="selflink" id="section-5.3" href="#section-5.3">5.3</a>. Decompressor Operation</span>
<span class="h4"><a class="selflink" id="section-5.3.1" href="#section-5.3.1">5.3.1</a>. Decompressor States and Logic</span>
The three states of the decompressor are No Context (NC), Static
Context (SC), and Full Context (FC). The decompressor starts in its
lowest compression state, the NC state. Successful decompression
will always move the decompressor to the FC state. The decompressor
state machine normally never leaves the FC state once it has entered
this state; only repeated decompression failures will force the
decompressor to transit downwards to a lower state.
Below is the state machine for the decompressor. Details of the
transitions between states and decompression logic are given in the
subsections following the figure.
Success
+-->------>------>------>------>------>--+
| |
No Static | No Dynamic Success | Success
+-->--+ | +-->--+ +--->----->---+ +-->--+
| | | | | | | | |
| v | | v | v | v
+-----------------+ +---------------------+ +-------------------+
| No Context (NC) | | Static Context (SC) | | Full Context (FC) |
+-----------------+ +---------------------+ +-------------------+
^ | ^ |
| Static Context | | Context Damage Assumed |
| Damage Assumed | | |
+-----<------<------<-----+ +-----<------<------<-----+
<span class="h5"><a class="selflink" id="section-5.3.1.1" href="#section-5.3.1.1">5.3.1.1</a>. Reconstruction and Verification</span>
When decompressing an IR or an IR-DYN packet, the decompressor MUST
validate the integrity of the received header using CRC-8 validation
[<a href="./rfc5795" title=""The RObust Header Compression (ROHC) Framework"">RFC5795</a>]. If validation fails, the packet MUST NOT be delivered to
upper layers.
Upon receiving an IR-CR packet, the decompressor MUST perform the
actions as specified in [<a href="./rfc4164" title=""RObust Header Compression (ROHC): Context Replication for ROHC Profiles"">RFC4164</a>].
When decompressing other packet types (e.g., CO packets), the
decompressor MUST validate the outcome of the decompression attempt
using CRC verification [<a href="./rfc5795" title=""The RObust Header Compression (ROHC) Framework"">RFC5795</a>]. If verification fails, a
decompressor implementation MAY attempt corrective or repair measures
on the packet, and the result of any attempt MUST be validated using
the CRC verification; otherwise, the packet MUST NOT be delivered to
upper layers.
<span class="grey">Pelletier, et al. Standards Track [Page 16]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-17" ></span>
<span class="grey"><a href="./rfc6846">RFC 6846</a> ROHC-TCP January 2013</span>
When the CRC-8 validation or the CRC verification of the received
header is successful, the decompressor SHOULD update its context with
the information received in the current header; the decompressor then
passes the reconstructed packet to the system's network layer.
Otherwise, the decompressor context MUST NOT be updated.
If the received packet is older than the current reference packet,
e.g., based on the master sequence number (MSN) in the compressed
packet, the decompressor MAY refrain from updating the context using
the information received in the current packet, even if the
correctness of its header was successfully verified.
<span class="h5"><a class="selflink" id="section-5.3.1.2" href="#section-5.3.1.2">5.3.1.2</a>. Detecting Context Damage</span>
All header formats carry a CRC and are context updating. A packet
for which the CRC succeeds updates the reference values of all header
fields, either explicitly (from the information about a field carried
within the compressed header) or implicitly (fields that are inferred
from other fields).
The decompressor may assume that some or the entire context is
invalid, following one or more failures to validate or verify a
header using the CRC. Because the decompressor cannot know the exact
reason(s) for a CRC failure or what field caused it, the validity of
the context hence does not refer to what exact context entry is
deemed valid or not.
Validity of the context rather relates to the detection of a problem
with the context. The decompressor first assumes that the type of
information that most likely caused the failure(s) is the state that
normally changes for each packet, i.e., context damage of the dynamic
part of the context. Upon repeated failures and unsuccessful
repairs, the decompressor then assumes that the entire context,
including the static part, needs to be repaired, i.e., static context
damage.
Context Damage Detection
The assumption of context damage means that the decompressor will
not attempt decompression of a CO header that carries a 3-bit CRC,
and only attempt decompression of IR, IR-DYN, or IR-CR headers or
CO headers protected by a CRC-7.
Static Context Damage Detection
The assumption of static context damage means that the
decompressor refrains from attempting decompression of any type of
header other than the IR header.
<span class="grey">Pelletier, et al. Standards Track [Page 17]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-18" ></span>
<span class="grey"><a href="./rfc6846">RFC 6846</a> ROHC-TCP January 2013</span>
How these assumptions are made, i.e., how context damage is detected,
is open to implementations. It can be based on the residual error
rate, where a low error rate makes the decompressor assume damage
more often than on a high-rate link.
The decompressor implements these assumptions by selecting the type
of compressed header for which it may attempt decompression. In
other words, validity of the context refers to the ability of a
decompressor to attempt or not attempt decompression of specific
packet types.
<span class="h5"><a class="selflink" id="section-5.3.1.3" href="#section-5.3.1.3">5.3.1.3</a>. No Context (NC) State</span>
Initially, while working in the No Context (NC) state, the
decompressor has not yet successfully decompressed a packet.
Allowing decompression:
In the NC state, only packets carrying sufficient information on
the static fields (IR and IR-CR packets) can be decompressed;
otherwise, the packet MUST NOT be decompressed and MUST NOT be
delivered to upper layers.
Feedback logic:
In the NC state, the decompressor should send a STATIC-NACK if a
packet of a type other than IR is received, or if decompression of
an IR packet has failed, subject to the feedback rate limitation
as described in <a href="#section-5.3.2">Section 5.3.2</a>.
Once a packet has been validated and decompressed correctly, the
decompressor MUST transit to the FC state.
<span class="h5"><a class="selflink" id="section-5.3.1.4" href="#section-5.3.1.4">5.3.1.4</a>. Static Context (SC) State</span>
When the decompressor is in the Static Context (SC) state, only the
static part of the decompressor context is valid.
From the SC state, the decompressor moves back to the NC state if
static context damage is detected.
Allowing decompression:
In the SC state, packets carrying sufficient information on the
dynamic fields covered by an 8-bit CRC (e.g., IR and IR-DYN) or CO
packets covered by a 7-bit CRC can be decompressed; otherwise, the
packet MUST NOT be decompressed and MUST NOT be delivered to upper
layers.
<span class="grey">Pelletier, et al. Standards Track [Page 18]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-19" ></span>
<span class="grey"><a href="./rfc6846">RFC 6846</a> ROHC-TCP January 2013</span>
Feedback logic:
In the SC state, the decompressor should send a STATIC-NACK if CRC
validation of an IR/IR-DYN/IR-CR fails and static context damage
is assumed. If any other packet type is received, the
decompressor should send a NACK. Both of the above cases are
subject to the feedback rate limitation as described in
<a href="#section-5.3.2">Section 5.3.2</a>.
Once a packet has been validated and decompressed correctly, the
decompressor MUST transit to the FC state.
<span class="h5"><a class="selflink" id="section-5.3.1.5" href="#section-5.3.1.5">5.3.1.5</a>. Full Context (FC) State</span>
In the Full Context (FC) state, both the static and the dynamic parts
of the decompressor context are valid. From the FC state, the
decompressor moves back to the SC state if context damage is
detected.
Allowing decompression:
In the FC state, decompression can be attempted regardless of the
type of packet received.
Feedback logic:
In the FC state, the decompressor should send a NACK if the
decompression of any packet type fails and context damage is
assumed, subject to the feedback rate limitation as described in
<a href="#section-5.3.2">Section 5.3.2</a>.
<span class="h4"><a class="selflink" id="section-5.3.2" href="#section-5.3.2">5.3.2</a>. Feedback Logic</span>
The decompressor MAY send positive feedback (ACKs) to initially
establish the feedback channel for a particular flow. Either
positive feedback (ACKs) or negative feedback (NACKs) establishes
this channel.
Once the feedback channel is established, the decompressor is
REQUIRED to continue sending NACKs or STATIC-NACKs for as long as the
context is associated with the same profile, in this case with
profile 0x0006, as per the logic defined for each state in
<a href="#section-5.3.1">Section 5.3.1</a>.
The decompressor MAY send ACKs upon successful decompression of any
packet type. In particular, when a packet carrying a significant
context update is correctly decompressed, the decompressor MAY send
an ACK.
<span class="grey">Pelletier, et al. Standards Track [Page 19]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-20" ></span>
<span class="grey"><a href="./rfc6846">RFC 6846</a> ROHC-TCP January 2013</span>
The decompressor should limit the rate at which it sends feedback,
for both ACKs and STATIC-NACK/NACKs, and should avoid sending
unnecessary duplicates of the same type of feedback message that may
be associated to the same event.
<span class="h4"><a class="selflink" id="section-5.3.3" href="#section-5.3.3">5.3.3</a>. Context Replication</span>
ROHC-TCP supports context replication; therefore, the decompressor
MUST implement the additional decompressor and feedback logic defined
in [<a href="./rfc4164" title=""RObust Header Compression (ROHC): Context Replication for ROHC Profiles"">RFC4164</a>].
<span class="h2"><a class="selflink" id="section-6" href="#section-6">6</a>. Encodings in ROHC-TCP (Normative)</span>
<span class="h3"><a class="selflink" id="section-6.1" href="#section-6.1">6.1</a>. Control Fields in ROHC-TCP</span>
In ROHC-TCP, a number of control fields are used by the decompressor
in its interpretation of the format of the packets received from the
compressor.
A control field is a field that is transmitted from the compressor to
the decompressor, but is not part of the uncompressed header. Values
for control fields can be set up in the context of both the
compressor and the decompressor. Once established at the
decompressor, the values of these fields should be kept until updated
by another packet.
<span class="h4"><a class="selflink" id="section-6.1.1" href="#section-6.1.1">6.1.1</a>. Master Sequence Number (MSN)</span>
There is no field in the TCP header that can act as the master
sequence number for TCP compression, as explained in <a href="./rfc4413#section-5.6">[RFC4413],
Section 5.6</a>.
To overcome this problem, ROHC-TCP introduces a control field called
the Master Sequence Number (MSN) field. The MSN field is created at
the compressor, rather than using one of the fields already present
in the uncompressed header. The compressor increments the value of
the MSN by one for each packet that it sends.
The MSN field has the following two functions:
1. Differentiating between packets when sending feedback data.
2. Inferring the value of incrementing fields such as the IP-ID.
<span class="grey">Pelletier, et al. Standards Track [Page 20]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-21" ></span>
<span class="grey"><a href="./rfc6846">RFC 6846</a> ROHC-TCP January 2013</span>
The MSN field is present in every packet sent by the compressor. The
MSN is LSB encoded within the CO packets, and the 16-bit MSN is sent
in full in IR/IR-DYN packets. The decompressor always sends the MSN
as part of the feedback information. The compressor can later use
the MSN to infer which packet the decompressor is acknowledging.
When the MSN is initialized, it SHOULD be initialized to a random
value. The compressor should only initialize a new MSN for the
initial IR or IR-CR packet sent for a CID that corresponds to a
context that is not already associated with this profile. In other
words, if the compressor reuses the same CID to compress many TCP
flows one after the other, the MSN is not reinitialized but rather
continues to increment monotonically.
For context replication, the compressor does not use the MSN of the
base context when sending the IR-CR packet, unless the replication
process overwrites the base context (i.e., Base CID == CID).
Instead, the compressor uses the value of the MSN if it already
exists in the ROHC-TCP context being associated with the new flow
(CID); otherwise, the MSN is initialized to a new value.
<span class="h4"><a class="selflink" id="section-6.1.2" href="#section-6.1.2">6.1.2</a>. IP-ID Behavior</span>
The IP-ID field of the IPv4 header can have different change
patterns. Conceptually, a compressor monitors changes in the value
of the IP-ID field and selects encoding methods and packet formats
that are the closest match to the observed change pattern.
ROHC-TCP defines different types of compression techniques for the
IP-ID, to provide the flexibility to compress any of the behaviors it
may observe for this field: sequential in network byte order (NBO),
sequential byte-swapped, random (RND), or constant to a value of
zero.
The compressor monitors changes in the value of the IP-ID field for a
number of packets, to identify which one of the above listed
compression alternatives is the closest match to the observed change
pattern. The compressor can then select packet formats and encoding
methods based on the identified field behavior.
If more than one level of IP headers is present, ROHC-TCP can assign
a sequential behavior (NBO or byte-swapped) only to the IP-ID of the
innermost IP header. This is because only this IP-ID can possibly
have a sufficiently close correlation with the MSN (see also
<a href="#section-6.1.1">Section 6.1.1</a>) to compress it as a sequentially changing field.
Therefore, a compressor MUST NOT assign either the sequential (NBO)
or the sequential byte-swapped behavior to tunneling headers.
<span class="grey">Pelletier, et al. Standards Track [Page 21]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-22" ></span>
<span class="grey"><a href="./rfc6846">RFC 6846</a> ROHC-TCP January 2013</span>
The control field for the IP-ID behavior determines which set of
packet formats will be used. These control fields are also used to
determine the contents of the irregular chain item (see <a href="#section-6.2">Section 6.2</a>)
for each IP header.
<span class="h4"><a class="selflink" id="section-6.1.3" href="#section-6.1.3">6.1.3</a>. Explicit Congestion Notification (ECN)</span>
When ECN [<a href="./rfc3168" title=""The Addition of Explicit Congestion Notification (ECN) to IP"">RFC3168</a>] is used once on a flow, the ECN bits could change
quite often. ROHC-TCP maintains a control field in the context to
indicate whether or not ECN is used. This control field is
transmitted in the dynamic chain of the TCP header, and its value can
be updated using specific compressed headers carrying a 7-bit CRC.
When this control field indicates that ECN is being used, items of
all IP and TCP headers in the irregular chain include bits used for
ECN. To preserve octet-alignment, all of the TCP reserved bits are
transmitted and, for outer IP headers, the entire Type of Service/
Traffic Class (TOS/TC) field is included in the irregular chain.
When there is only one IP header present in the packet (i.e., no IP
tunneling is used), this compression behavior allows the compressor
to handle changes in the ECN bits by adding a single octet to the
compressed header.
The reason for including the ECN bits of all IP headers in the
compressed packet when the control field is set is that the profile
needs to efficiently compress flows containing IP tunnels using the
"full-functionality option" of <a href="./rfc3168#section-9.1">Section 9.1 of [RFC3168]</a>. For these
flows, a change in the ECN bits of an inner IP header is propagated
to the outer IP headers. When the "limited-functionality" option is
used, the compressor will therefore sometimes send one octet more
than necessary per tunnel header, but this has been considered a
reasonable trade-off when designing this profile.
<span class="h3"><a class="selflink" id="section-6.2" href="#section-6.2">6.2</a>. Compressed Header Chains</span>
Some packet types use one or more chains containing sub-header
information. The function of a chain is to group fields based on
similar characteristics, such as static, dynamic, or irregular
fields. Chaining is done by appending an item for each header to the
chain in their order of appearance in the uncompressed packet,
starting from the fields in the outermost header.
Chains are defined for all headers compressed by ROHC-TCP, as listed
below. Also listed are the names of the encoding methods used to
encode each of these protocol headers.
<span class="grey">Pelletier, et al. Standards Track [Page 22]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-23" ></span>
<span class="grey"><a href="./rfc6846">RFC 6846</a> ROHC-TCP January 2013</span>
o TCP [<a href="./rfc0793" title=""Transmission Control Protocol"">RFC0793</a>], encoding method: "tcp"
o IPv4 [<a href="./rfc0791" title=""Internet Protocol"">RFC0791</a>], encoding method: "ipv4"
o IPv6 [<a href="./rfc2460" title=""Internet Protocol, Version 6 (IPv6) Specification"">RFC2460</a>], encoding method: "ipv6"
o AH [<a href="./rfc4302" title=""IP Authentication Header"">RFC4302</a>], encoding method: "ah"
o GRE [<a href="./rfc2784" title=""Generic Routing Encapsulation (GRE)"">RFC2784</a>][RFC2890], encoding method: "gre"
o MINE [<a href="./rfc2004" title=""Minimal Encapsulation within IP"">RFC2004</a>], encoding method: "mine"
o IPv6 Destination Options header [<a href="./rfc2460" title=""Internet Protocol, Version 6 (IPv6) Specification"">RFC2460</a>], encoding method:
"ip_dest_opt"
o IPv6 Hop-by-Hop Options header [<a href="./rfc2460" title=""Internet Protocol, Version 6 (IPv6) Specification"">RFC2460</a>], encoding method:
"ip_hop_opt"
o IPv6 Routing header [<a href="./rfc2460" title=""Internet Protocol, Version 6 (IPv6) Specification"">RFC2460</a>], encoding method: "ip_rout_opt"
Static chain:
The static chain consists of one item for each header of the chain
of protocol headers to be compressed, starting from the outermost
IP header and ending with a TCP header. In the formal description
of the packet formats, this static chain item for each header is a
format whose name is suffixed by "_static". The static chain is
only used in IR packets.
Dynamic chain:
The dynamic chain consists of one item for each header of the
chain of protocol headers to be compressed, starting from the
outermost IP header and ending with a TCP header. The dynamic
chain item for the TCP header also contains a compressed list of
TCP options (see <a href="#section-6.3">Section 6.3</a>). In the formal description of the
packet formats, the dynamic chain item for each header type is a
format whose name is suffixed by "_dynamic". The dynamic chain is
used in both IR and IR-DYN packets.
Replicate chain:
The replicate chain consists of one item for each header in the
chain of protocol headers to be compressed, starting from the
outermost IP header and ending with a TCP header. The replicate
chain item for the TCP header also contains a compressed list of
TCP options (see <a href="#section-6.3">Section 6.3</a>). In the formal description of the
packet formats, the replicate chain item for each header type is a
<span class="grey">Pelletier, et al. Standards Track [Page 23]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-24" ></span>
<span class="grey"><a href="./rfc6846">RFC 6846</a> ROHC-TCP January 2013</span>
format whose name is suffixed by "_replicate". Header fields that
are not present in the replicate chain are replicated from the
base context. The replicate chain is only used in the IR-CR
packet.
Irregular chain:
The structure of the irregular chain is analogous to the structure
of the static chain. For each compressed packet, the irregular
chain is appended at the specified location in the general format
of the compressed packets as defined in <a href="#section-7.3">Section 7.3</a>. This chain
also includes the irregular chain items for TCP options as defined
in <a href="#section-6.3.6">Section 6.3.6</a>, which are placed directly after the irregular
chain item of the TCP header, and in the same order as the options
appear in the uncompressed packet. In the formal description of
the packet formats, the irregular chain item for each header type
is a format whose name is suffixed by "_irregular". The irregular
chain is used only in CO packets.
The format of the irregular chain for the innermost IP header
differs from the format of outer IP headers, since this header is
part of the compressed base header.
<span class="h3"><a class="selflink" id="section-6.3" href="#section-6.3">6.3</a>. Compressing TCP Options with List Compression</span>
This section describes in detail how list compression is applied to
the TCP options. In the definition of the packet formats for ROHC-
TCP, the most frequent TCP options have one encoding method each, as
listed in the table below.
+-----------------+------------------------+
| Option name | Encoding method name |
+-----------------+------------------------+
| NOP | tcp_opt_nop |
| EOL | tcp_opt_eol |
| MSS | tcp_opt_mss |
| WINDOW SCALE | tcp_opt_wscale |
| TIMESTAMP | tcp_opt_ts |
| SACK-PERMITTED | tcp_opt_sack_permitted |
| SACK | tcp_opt_sack |
| Generic options | tcp_opt_generic |
+-----------------+------------------------+
Each of these encoding methods has an uncompressed format, a format
suffixed by "_list_item" and a format suffixed by "_irregular". In
some cases, a single encoding method may have multiple "_list_item"
<span class="grey">Pelletier, et al. Standards Track [Page 24]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-25" ></span>
<span class="grey"><a href="./rfc6846">RFC 6846</a> ROHC-TCP January 2013</span>
or "_irregular" formats, in which case bindings inside these formats
determine what format is used. This is further described in the
following sections.
<span class="h4"><a class="selflink" id="section-6.3.1" href="#section-6.3.1">6.3.1</a>. List Compression</span>
The TCP options in the uncompressed packet can be represented as an
ordered list, whose order and presence are usually constant between
packets. The generic structure of such a list is as follows:
+--------+--------+--...--+--------+
list: | item 1 | item 2 | | item n |
+--------+--------+--...--+--------+
To compress this list, ROHC-TCP uses a list compression scheme, which
compresses each of these items individually and combines them into a
compressed list.
The basic principles of list-based compression are the following:
1) When a context is being initialized, a complete representation
of the compressed list of options is transmitted. All options
that have any content are present in the compressed list of items
sent by the compressor.
Then, once the context has been initialized:
2) When the structure AND the content of the list are unchanged,
no information about the list is sent in compressed headers.
3) When the structure of the list is constant, and when only the
content defined within the irregular format for one or more
options is changed, no information about the list needs to be sent
in compressed base headers; the irregular content is sent as part
of the irregular chain, as described in <a href="#section-6.3.6">Section 6.3.6</a>.
4) When the structure of the list changes, a compressed list is
sent in the compressed base header, including a representation of
its structure and order. Content defined within the irregular
format of an option can still be sent as part of the irregular
chain (as described in <a href="#section-6.3.6">Section 6.3.6</a>), provided that the item
content is not part of the compressed list.
<span class="grey">Pelletier, et al. Standards Track [Page 25]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-26" ></span>
<span class="grey"><a href="./rfc6846">RFC 6846</a> ROHC-TCP January 2013</span>
<span class="h4"><a class="selflink" id="section-6.3.2" href="#section-6.3.2">6.3.2</a>. Table-Based Item Compression</span>
The table-based item compression compresses individual items sent in
compressed lists. The compressor assigns a unique identifier,
"Index", to each item, "Item", of a list.
Compressor Logic
The compressor conceptually maintains an item table containing all
items, indexed using "Index". The (Index, Item) pair is sent
together in compressed lists until the compressor gains enough
confidence that the decompressor has observed the mapping between
items and their respective index. Confidence is obtained from the
reception of an acknowledgment from the decompressor, or by
sending (Index, Item) pairs using the optimistic approach. Once
confidence is obtained, the index alone is sent in compressed
lists to indicate the presence of the item corresponding to this
index.
The compressor may reassign an existing index to a new item, by
re-establishing the mapping using the procedure described above.
Decompressor Logic
The decompressor conceptually maintains an item table that
contains all (Index, Item) pairs received. The item table is
updated whenever an (Index, Item) pair is received and
decompression is successfully verified using the CRC. The
decompressor retrieves the item from the table whenever an index
without an accompanying item is received.
If an index without an accompanying item is received and the
decompressor does not have any context for this index, the header
MUST be discarded and a NACK SHOULD be sent.
<span class="h4"><a class="selflink" id="section-6.3.3" href="#section-6.3.3">6.3.3</a>. Encoding of Compressed Lists</span>
Each item present in a compressed list is represented by:
o an index into the table of items
o a presence bit indicating if a compressed representation of the
item is present in the list
o an item (if the presence bit is set)
Decompression of an item will fail if the presence bit is not set and
the decompressor has no entry in the context for that item.
<span class="grey">Pelletier, et al. Standards Track [Page 26]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-27" ></span>
<span class="grey"><a href="./rfc6846">RFC 6846</a> ROHC-TCP January 2013</span>
A compressed list of TCP options uses the following encoding:
0 1 2 3 4 5 6 7
+---+---+---+---+---+---+---+---+
| Reserved |PS | m |
+---+---+---+---+---+---+---+---+
| XI_1, ..., XI_m | m octets, or m * 4 bits
/ --- --- --- ---/
| : Padding : if PS = 0 and m is odd
+---+---+---+---+---+---+---+---+
| |
/ item_1, ..., item_n / variable
| |
+---+---+---+---+---+---+---+---+
Reserved: MUST be set to zero; otherwise, the decompressor MUST
discard the packet.
PS: Indicates size of XI fields:
PS = 0 indicates 4-bit XI fields;
PS = 1 indicates 8-bit XI fields.
m: Number of XI item(s) in the compressed list.
XI_1, ..., XI_m: m XI items. Each XI represents one TCP option in
the uncompressed packet, in the same order as they appear in the
uncompressed packet.
The format of an XI item is as follows:
+---+---+---+---+
PS = 0: | X | Index |
+---+---+---+---+
0 1 2 3 4 5 6 7
+---+---+---+---+---+---+---+---+
PS = 1: | X | Reserved | Index |
+---+---+---+---+---+---+---+---+
<span class="grey">Pelletier, et al. Standards Track [Page 27]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-28" ></span>
<span class="grey"><a href="./rfc6846">RFC 6846</a> ROHC-TCP January 2013</span>
X: Indicates whether the item is present in the list:
X = 1 indicates that the item corresponding to the Index is
sent in the item_1, ..., item_n list;
X = 0 indicates that the item corresponding to the Index is
not sent and is instead included in the irregular chain.
Reserved: MUST be set to zero; otherwise, the decompressor MUST
discard the packet.
Index: An index into the item table. See <a href="#section-6.3.4">Section 6.3.4</a>.
When 4-bit XI items are used, the XI items are placed in octets
in the following manner:
0 1 2 3 4 5 6 7
+---+---+---+---+---+---+---+---+
| XI_k | XI_k + 1 |
+---+---+---+---+---+---+---+---+
Padding: A 4-bit padding field is present when PS = 0 and the
number of XIs is odd. The Padding field MUST be set to zero;
otherwise, the decompressor MUST discard the packet.
Item 1, ..., item n: Each item corresponds to an XI with X = 1 in
XI 1, ..., XI m. The format of the entries in the item list is
described in the table in <a href="#section-6.3">Section 6.3</a>. The compressed format(s)
suffixed by "_list_item" in the encoding methods defines the item
inside the compressed item list.
<span class="h4"><a class="selflink" id="section-6.3.4" href="#section-6.3.4">6.3.4</a>. Item Table Mappings</span>
The item table for TCP options list compression is limited to 16
different items, since it is unlikely that any packet flow will
contain a larger number of unique options.
The mapping between the TCP option type and table indexes are listed
in the table below:
<span class="grey">Pelletier, et al. Standards Track [Page 28]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-29" ></span>
<span class="grey"><a href="./rfc6846">RFC 6846</a> ROHC-TCP January 2013</span>
+-----------------+---------------+
| Option name | Table index |
+-----------------+---------------+
| NOP | 0 |
| EOL | 1 |
| MSS | 2 |
| WINDOW SCALE | 3 |
| TIMESTAMP | 4 |
| SACK-PERMITTED | 5 |
| SACK | 6 |
| Generic options | 7-15 |
+-----------------+---------------+
Some TCP options are used more frequently than others. To simplify
their compression, a part of the item table is reserved for these
option types, as shown on the table above. Both the compressor and
the decompressor MUST use these mappings between item and indexes to
(de)compress TCP options when using list compression.
It is expected that the option types for which an index is reserved
in the item table will only appear once in a list. However, if an
option type is detected twice in the same options list and if both
options have a different content, the compressor should compress the
second occurrence of the option type by mapping it to a generic
compressed option. Otherwise, if the options have the exact same
content, the compressor can still use the same table index for both.
The NOP option
The NOP option can appear more than once in the list. However,
since its value is always the same, no context information needs
to be transmitted. Multiple NOP options can thus be mapped to the
same index. Since the NOP option does not have any content when
compressed as a "_list_item", it will never be present in the item
list. For consistency, the compressor should still establish an
entry in the list by setting the presence bit, as done for the
other type of options.
List compression always preserves the original order of each item
in the decompressed list, whether or not the item is present in
the compressed "_list_item" or if multiple items of the same type
can be mapped to the same index, as for the NOP option.
<span class="grey">Pelletier, et al. Standards Track [Page 29]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-30" ></span>
<span class="grey"><a href="./rfc6846">RFC 6846</a> ROHC-TCP January 2013</span>
The EOL option
The size of the compressed format for the EOL option can be larger
than one octet, and it is defined so that it includes the option
padding. This is because the EOL should terminate the parsing of
the options, but it can also be followed by padding octets that
all have the value zero.
The Generic option
The Generic option can be used to compress any type of TCP option
that does not have a reserved index in the item table.
<span class="h4"><a class="selflink" id="section-6.3.5" href="#section-6.3.5">6.3.5</a>. Compressed Lists in Dynamic Chain</span>
A compressed list for TCP options that is part of the dynamic chain
(e.g., in IR or IR-DYN packets) must have all its list items present,
i.e., all X-bits in the XI list MUST be set.
<span class="h4"><a class="selflink" id="section-6.3.6" href="#section-6.3.6">6.3.6</a>. Irregular Chain Items for TCP Options</span>
The "_list_item" represents the option inside the compressed item
list, and the "_irregular" format is used for the option fields that
are expected to change with each packet. When an item of the
specified type is present in the current context, these irregular
fields are present in each compressed packet, as part of the
irregular chain. Since many of the TCP option types are not expected
to change for the duration of a flow, many of the "_irregular"
formats are empty.
The irregular chain for TCP options is structured analogously to the
structure of the TCP options in the uncompressed packet. If a
compressed list is present in the compressed packet, then the
irregular chain for TCP options must not contain irregular items for
the list items that are transmitted inside the compressed list (i.e.,
items in the list that have the X-bit set in its XI). The items that
are not present in the compressed list, but are present in the
uncompressed list, must have their respective irregular items present
in the irregular chain.
<span class="h4"><a class="selflink" id="section-6.3.7" href="#section-6.3.7">6.3.7</a>. Replication of TCP Options</span>
The entire table of TCP options items is always replicated when using
the IR-CR packet. In the IR-CR packet, the list of options for the
new flow is also transmitted as a compressed list in the IR-CR
packet.
<span class="grey">Pelletier, et al. Standards Track [Page 30]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-31" ></span>
<span class="grey"><a href="./rfc6846">RFC 6846</a> ROHC-TCP January 2013</span>
<span class="h3"><a class="selflink" id="section-6.4" href="#section-6.4">6.4</a>. Profile-Specific Encoding Methods</span>
This section defines encoding methods that are specific to this
profile. These methods are used in the formal definition of the
packet formats in <a href="#section-8">Section 8</a>.
<span class="h4"><a class="selflink" id="section-6.4.1" href="#section-6.4.1">6.4.1</a>. inferred_ip_v4_header_checksum</span>
This encoding method compresses the Header Checksum field of the IPv4
header. This checksum is defined in [<a href="./rfc0791" title=""Internet Protocol"">RFC0791</a>] as follows:
Header Checksum: 16 bits
A checksum on the header only. Since some header fields change
(e.g., time to live), this is recomputed and verified at each
point that the internet header is processed.
The checksum algorithm is:
The checksum field is the 16-bit one's complement of the one's
complement sum of all 16-bit words in the header. For purposes
of computing the checksum, the value of the checksum field is
zero.
As described above, the header checksum protects individual hops from
processing a corrupted header. When almost all IP header information
is compressed away, and when decompression is verified by a CRC
computed over the original header for every compressed packet, there
is no point in having this additional checksum; instead, it can be
recomputed at the decompressor side.
The "inferred_ip_v4_header_checksum" encoding method thus compresses
the IPv4 header checksum down to a size of zero bits. Using this
encoding method, the decompressor infers the value of this field
using the computation above.
This encoding method implicitly assumes that the compressor will not
process a corrupted header; otherwise, it cannot guarantee that the
checksum as recomputed by the decompressor will be bitwise identical
to its original value before compression.
<span class="h4"><a class="selflink" id="section-6.4.2" href="#section-6.4.2">6.4.2</a>. inferred_mine_header_checksum</span>
This encoding method compresses the minimal encapsulation header
checksum. This checksum is defined in [<a href="./rfc2004" title=""Minimal Encapsulation within IP"">RFC2004</a>] as follows:
<span class="grey">Pelletier, et al. Standards Track [Page 31]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-32" ></span>
<span class="grey"><a href="./rfc6846">RFC 6846</a> ROHC-TCP January 2013</span>
Header Checksum
The 16-bit one's complement of the one's complement sum of all
16-bit words in the minimal forwarding header. For purposes of
computing the checksum, the value of the checksum field is
zero. The IP header and IP payload (after the minimal
forwarding header) are not included in this checksum
computation.
The "inferred_mine_header_checksum" encoding method compresses the
minimal encapsulation header checksum down to a size of zero bits,
i.e., no bits are transmitted in compressed headers for this field.
Using this encoding method, the decompressor infers the value of this
field using the above computation.
The motivations and the assumptions for inferring this checksum are
similar to the ones explained above in <a href="#section-6.4.1">Section 6.4.1</a>.
<span class="h4"><a class="selflink" id="section-6.4.3" href="#section-6.4.3">6.4.3</a>. inferred_ip_v4_length</span>
This encoding method compresses the Total Length field of the IPv4
header. The Total Length field of the IPv4 header is defined in
[<a href="./rfc0791" title=""Internet Protocol"">RFC0791</a>] as follows:
Total Length: 16 bits
Total Length is the length of the datagram, measured in octets,
including internet header and data. This field allows the
length of a datagram to be up to 65,535 octets.
The "inferred_ip_v4_length" encoding method compresses the IPv4 Total
Length field down to a size of zero bits. Using this encoding
method, the decompressor infers the value of this field by counting
in octets the length of the entire packet after decompression.
<span class="h4"><a class="selflink" id="section-6.4.4" href="#section-6.4.4">6.4.4</a>. inferred_ip_v6_length</span>
This encoding method compresses the Payload Length field of the IPv6
header. This length field is defined in [<a href="./rfc2460" title=""Internet Protocol, Version 6 (IPv6) Specification"">RFC2460</a>] as follows:
Payload Length: 16-bit unsigned integer
Length of the IPv6 payload, i.e., the rest of the packet
following this IPv6 header, in octets. (Note that any
extension headers present are considered part of the payload,
i.e., included in the length count.)
<span class="grey">Pelletier, et al. Standards Track [Page 32]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-33" ></span>
<span class="grey"><a href="./rfc6846">RFC 6846</a> ROHC-TCP January 2013</span>
The "inferred_ip_v6_length" encoding method compresses the Payload
Length field of the IPv6 header down to a size of zero bits. Using
this encoding method, the decompressor infers the value of this field
by counting in octets the length of the entire packet after
decompression.
<span class="h4"><a class="selflink" id="section-6.4.5" href="#section-6.4.5">6.4.5</a>. inferred_offset</span>
This encoding method compresses the data offset field of the TCP
header.
The "inferred_offset" encoding method is used on the Data Offset
field of the TCP header. This field is defined in [<a href="./rfc0793" title=""Transmission Control Protocol"">RFC0793</a>] as:
Data Offset: 4 bits
The number of 32-bit words in the TCP header. This indicates
where the data begins. The TCP header (even one including
options) is an integral number of 32 bits long.
The "inferred_offset" encoding method compresses the Data Offset
field of the TCP header down to a size of zero bits. Using this
encoding method, the decompressor infers the value of this field by
first decompressing the TCP options list, and by then setting:
data offset = (options length / 4) + 5
The equation above uses integer arithmetic.
<span class="h4"><a class="selflink" id="section-6.4.6" href="#section-6.4.6">6.4.6</a>. baseheader_extension_headers</span>
In CO packets (see <a href="#section-7.3">Section 7.3</a>), the innermost IP header and the TCP
header are combined to create a compressed base header. In some
cases, the IP header will have a number of extension headers between
itself and the TCP header.
To remain formally correct, the base header must define some
representation of these extension headers, which is what this
encoding method is used for. This encoding method skips over all the
extension headers and does not encode any of the fields. Changed
fields in these headers are encoded in the irregular chain.
<span class="grey">Pelletier, et al. Standards Track [Page 33]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-34" ></span>
<span class="grey"><a href="./rfc6846">RFC 6846</a> ROHC-TCP January 2013</span>
<span class="h4"><a class="selflink" id="section-6.4.7" href="#section-6.4.7">6.4.7</a>. baseheader_outer_headers</span>
This encoding method, as well as the baseheader_extension_headers
encoding method described above, is needed for the specification to
remain formally correct. It is used in CO packets (see <a href="#section-7.3">Section 7.3</a>)
to describe tunneling IP headers and their respective extension
headers (i.e., all headers located before the innermost IP header).
This encoding method skips over all the fields in these headers and
does not perform any encoding. Changed fields in outer headers are
instead handled by the irregular chain.
<span class="h4"><a class="selflink" id="section-6.4.8" href="#section-6.4.8">6.4.8</a>. Scaled Encoding of Fields</span>
Some header fields will exhibit a change pattern where the field
increases by a constant value or by multiples of the same value.
Examples of fields that may have this behavior are the TCP Sequence
Number and the TCP Acknowledgment Number. For such fields, ROHC-TCP
provides the means to downscale the field value before applying LSB
encoding, which allows the compressor to transmit fewer bits.
To be able to use scaled encoding, the field is required to fulfill
the following equation:
unscaled_value = scaling_factor * scaled_value + residue
To use the scaled encoding, the compressor must be confident that the
decompressor has established values for the "residue" and the
"scaling_factor", so that it can correctly decompress the field when
only an LSB-encoded "scaled_value" is present in the compressed
packet.
Once the compressor is confident that the value of the scaling_factor
and the value of the residue have been established in the
decompressor, the compressor may send compressed packets using the
scaled representation of the field. The compressor MUST NOT use
scaled encoding with the value of the scaling_factor set to zero.
If the compressor detects that the value of the residue has changed,
or if the compressor uses a different value for the scaling factor,
it MUST NOT use scaled encoding until it is confident that the
decompressor has received the new value(s) of these fields.
When the unscaled value of the field wraps around, the value of the
residue is likely to change, even if the scaling_factor remains
constant. In such a case, the compressor must act in the same way as
for any other change in the residue.
<span class="grey">Pelletier, et al. Standards Track [Page 34]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-35" ></span>
<span class="grey"><a href="./rfc6846">RFC 6846</a> ROHC-TCP January 2013</span>
The following subsections describe how the scaled encoding is applied
to specific fields in ROHC-TCP, in particular, how the scaling_factor
and residue values are established for the different fields.
<span class="h5"><a class="selflink" id="section-6.4.8.1" href="#section-6.4.8.1">6.4.8.1</a>. Scaled TCP Sequence Number Encoding</span>
For some TCP flows, such as data transfers, the payload size will be
constant over periods of time. For such flows, the TCP Sequence
Number is bound to increase by multiples of the payload size between
packets, which means that this field can be a suitable target for
scaled encoding. When using this encoding, the payload size will be
used as the scaling factor (i.e., as the value for scaling_factor) of
this encoding. This means that the scaling factor does not need to
be explicitly transmitted, but is instead inferred from the length of
the payload in the compressed packet.
Establishing scaling_factor:
The scaling factor is established by sending unscaled TCP Sequence
Number bits, so that the decompressor can infer the scaling_factor
from the payload size.
Establishing residue:
The residue is established identically as the scaling_factor,
i.e., by sending unscaled TCP Sequence Number bits.
A detailed specification of how the TCP Sequence Number uses the
scaled encoding can be found in the definitions of the packet
formats, in <a href="#section-8.2">Section 8.2</a>.
<span class="h5"><a class="selflink" id="section-6.4.8.2" href="#section-6.4.8.2">6.4.8.2</a>. Scaled Acknowledgment Number Encoding</span>
Similar to the pattern exhibited by the TCP Sequence Number, the
expected increase in the TCP Acknowledgment Number is often constant
and is therefore suitable for scaled encoding.
For the TCP Acknowledgment Number, the scaling factor depends on the
size of packets flowing in the opposite direction; this information
might not be available to the compressor/decompressor pair. For this
reason, ROHC-TCP uses an explicitly transmitted scaling factor to
compress the TCP Acknowledgment Number.
<span class="grey">Pelletier, et al. Standards Track [Page 35]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-36" ></span>
<span class="grey"><a href="./rfc6846">RFC 6846</a> ROHC-TCP January 2013</span>
Establishing scaling_factor:
The scaling factor is established by explicitly transmitting the
value of the scaling factor (called ack_stride in the formal
notation in <a href="#section-8.2">Section 8.2</a>) to the decompressor, using one of the
packet types that can carry this information.
Establishing residue:
The scaling residue is established by sending unscaled TCP
Acknowledgment Number bits, so that the decompressor can infer its
value from the unscaled value and the scaling factor (ack_stride).
A detailed specification of how the TCP Acknowledgment Number uses
the scaled encoding can be found in the definitions of the packet
formats, in <a href="#section-8.2">Section 8.2</a>.
The compressor MAY use the scaled acknowledgment number encoding;
what value it will use as the scaling factor is up to the compressor
implementation. In the case where there is a co-located decompressor
processing packets of the same TCP flow in the opposite direction,
the scaling factor for the sequence number used for that flow can be
used by the compressor to determine a suitable scaling factor for the
TCP Acknowledgment number for this flow.
<span class="h3"><a class="selflink" id="section-6.5" href="#section-6.5">6.5</a>. Encoding Methods with External Parameters</span>
A number of encoding methods in <a href="#section-8.2">Section 8.2</a> have one or more
arguments for which the derivation of the parameter's value is
outside the scope of the ROHC-FN specification of the header formats.
This section lists the encoding methods together with a definition of
each of their parameters.
o ipv6(is_innermost, ttl_irregular_chain_flag, ip_inner_ecn):
is_innermost: This Boolean flag is set to true when processing
the innermost IP header; otherwise, it is set to false.
ttl_irregular_chain_flag: This parameter must be set to the
value that was used for the corresponding
"ttl_irregular_chain_flag" parameter of the "co_baseheader"
encoding method (as defined below) when extracting the
irregular chain for a compressed header; otherwise, it is set
to zero and ignored for other types of chains.
ip_inner_ecn: This parameter is bound by the encoding method;
therefore, it should be undefined when calling this encoding
method. This value is then used to bind the corresponding
<span class="grey">Pelletier, et al. Standards Track [Page 36]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-37" ></span>
<span class="grey"><a href="./rfc6846">RFC 6846</a> ROHC-TCP January 2013</span>
parameter in the "tcp" encoding method, as its value is needed
when processing the irregular chain for TCP. See the
definition of the "ip_inner_ecn" parameter for the "tcp"
encoding method below.
o ipv4(is_innermost, ttl_irregular_chain_flag, ip_inner_ecn,
ip_id_behavior_value):
See definition of arguments for "ipv6" above.
ip_id_behavior_value: Set to a 2-bit integer value, using one
of the constants whose name begins with the prefix
IP_ID_BEHAVIOR_ and as defined in <a href="#section-8.2">Section 8.2</a>.
o tcp_opt_eol(nbits):
nbits: This parameter is set to the length of the padding data
located after the EOL option type octet to the end of the TCP
options in the uncompressed header.
o tcp_opt_sack(ack_value):
ack_value: Set to the value of the Acknowledgment Number field
of the TCP header.
o tcp(payload_size, ack_stride_value, ip_inner_ecn):
payload_size: Set to the length (in octets) of the payload
following the TCP header.
ack_stride_value: This parameter is the scaling factor used
when scaling the TCP Acknowledgment Number. Its value is set
by the compressor implementation. See <a href="#section-6.4.8.2">Section 6.4.8.2</a> for
recommendations on how to set this value.
ip_inner_ecn: This parameter binds with the value given to the
corresponding "ip_inner_ecn" parameter by the "ipv4" or the
"ipv6" encoding method when processing the innermost IP header
of this packet. See also the definition of the "ip_inner_ecn"
parameter to the "ipv6" and "ipv4" encoding method above.
o co_baseheader(payload_size, ack_stride_value,
ttl_irregular_chain_flag, ip_id_behavior_value):
payload_size: Set to the length (in octets) of the payload
following the TCP header.
<span class="grey">Pelletier, et al. Standards Track [Page 37]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-38" ></span>
<span class="grey"><a href="./rfc6846">RFC 6846</a> ROHC-TCP January 2013</span>
ack_stride_value: This parameter is the scaling factor used
when scaling the TCP Acknowledgment Number. Its value is set
by the compressor implementation. See <a href="#section-6.4.8.2">Section 6.4.8.2</a> for
recommendations on how to set this value.
ttl_irregular_chain_flag: This parameter is set to one if the
TTL/Hop Limit of an outer header has changed compared to its
reference in the context; otherwise, it is set to zero. The
value used for this parameter is also used for the
"ttl_irregular_chain_flag" argument for the "ipv4" and "ipv6"
encoding methods when processing the irregular chain, as
defined above for the "ipv6" and "ipv4" encoding methods.
ip_id_behavior_value: Set to a 2-bit integer value, using one
of the constants whose name begins with the prefix
IP_ID_BEHAVIOR_ and as defined in <a href="#section-8.2">Section 8.2</a>.
<span class="h2"><a class="selflink" id="section-7" href="#section-7">7</a>. Packet Types (Normative)</span>
ROHC-TCP uses three different packet types: the Initialization and
Refresh (IR) packet type, the Context Replication (IR-CR) packet
type, and the Compressed (CO) packet type.
Each packet type defines a number of packet formats: two packet
formats are defined for the IR type, one packet format is defined for
the IR-CR type, and two sets of eight base header formats are defined
for the CO type with one additional format that is common to both
sets.
The profile identifier for ROHC-TCP is 0x0006.
<span class="h3"><a class="selflink" id="section-7.1" href="#section-7.1">7.1</a>. Initialization and Refresh (IR) Packets</span>
ROHC-TCP uses the basic structure of the ROHC IR and IR-DYN packets
as defined in [<a href="./rfc5795" title=""The RObust Header Compression (ROHC) Framework"">RFC5795</a>] (Sections <a href="#section-5.2.2.1">5.2.2.1</a> and <a href="#section-5.2.2.2">5.2.2.2</a>, respectively).
Packet type: IR
This packet type communicates the static part and the dynamic part
of the context.
For the ROHC-TCP IR packet, the value of the x bit MUST be set to
one. It has the following format, which corresponds to the
"Header" and "Payload" fields described in <a href="./rfc5795#section-5.2.1">Section 5.2.1 of
[RFC5795]</a>:
<span class="grey">Pelletier, et al. Standards Track [Page 38]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-39" ></span>
<span class="grey"><a href="./rfc6846">RFC 6846</a> ROHC-TCP January 2013</span>
0 1 2 3 4 5 6 7
--- --- --- --- --- --- --- ---
: Add-CID octet : if for small CIDs and (CID != 0)
+---+---+---+---+---+---+---+---+
| 1 1 1 1 1 1 0 1 | IR type octet
+---+---+---+---+---+---+---+---+
: :
/ 0-2 octets of CID / 1-2 octets if for large CIDs
: :
+---+---+---+---+---+---+---+---+
| Profile = 0x06 | 1 octet
+---+---+---+---+---+---+---+---+
| CRC | 1 octet
+---+---+---+---+---+---+---+---+
| |
/ Static chain / variable length
| |
- - - - - - - - - - - - - - - -
| |
/ Dynamic chain / variable length
| |
- - - - - - - - - - - - - - - -
| |
/ Payload / variable length
| |
- - - - - - - - - - - - - - - -
CRC: 8-bit CRC, computed according to <a href="./rfc5795#section-5.3.1.1">Section 5.3.1.1 of
[RFC5795]</a>. The CRC covers the entire IR header, thus excluding
payload, padding, and feedback, if any.
Static chain: See <a href="#section-6.2">Section 6.2</a>.
Dynamic chain: See <a href="#section-6.2">Section 6.2</a>.
Payload: The payload of the corresponding original packet, if any.
The payload consists of all data after the last octet of the TCP
header to the end of the uncompressed packet. The presence of a
payload is inferred from the packet length.
Packet type: IR-DYN
This packet type communicates the dynamic part of the context.
The ROHC-TCP IR-DYN packet has the following format, which
corresponds to the "Header" and "Payload" fields described in
<a href="./rfc5795#section-5.2.1">Section 5.2.1 of [RFC5795]</a>:
<span class="grey">Pelletier, et al. Standards Track [Page 39]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-40" ></span>
<span class="grey"><a href="./rfc6846">RFC 6846</a> ROHC-TCP January 2013</span>
0 1 2 3 4 5 6 7
--- --- --- --- --- --- --- ---
: Add-CID octet : if for small CIDs and (CID != 0)
+---+---+---+---+---+---+---+---+
| 1 1 1 1 1 0 0 0 | IR-DYN type octet
+---+---+---+---+---+---+---+---+
: :
/ 0-2 octets of CID / 1-2 octets if for large CIDs
: :
+---+---+---+---+---+---+---+---+
| Profile = 0x06 | 1 octet
+---+---+---+---+---+---+---+---+
| CRC | 1 octet
+---+---+---+---+---+---+---+---+
| |
/ Dynamic chain / variable length
| |
- - - - - - - - - - - - - - - -
| |
/ Payload / variable length
| |
- - - - - - - - - - - - - - - -
CRC: 8-bit CRC, computed according to <a href="./rfc5795#section-5.3.1.1">Section 5.3.1.1 of
[RFC5795]</a>. The CRC covers the entire IR-DYN header, thus
excluding payload, padding, and feedback, if any.
Dynamic chain: See <a href="#section-6.2">Section 6.2</a>.
Payload: The payload of the corresponding original packet, if any.
The payload consists of all data after the last octet of the TCP
header to end of the uncompressed packet. The presence of a
payload is inferred from the packet length.
<span class="h3"><a class="selflink" id="section-7.2" href="#section-7.2">7.2</a>. Context Replication (IR-CR) Packets</span>
Context replication requires a dedicated IR packet format that
uniquely identifies the IR-CR packet for the ROHC-TCP profile. This
section defines the profile-specific part of the IR-CR packet
[<a href="./rfc4164" title=""RObust Header Compression (ROHC): Context Replication for ROHC Profiles"">RFC4164</a>].
Packet type: IR-CR
This packet type communicates a reference to a base context along
with the static and dynamic parts of the replicated context that
differs from the base context.
<span class="grey">Pelletier, et al. Standards Track [Page 40]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-41" ></span>
<span class="grey"><a href="./rfc6846">RFC 6846</a> ROHC-TCP January 2013</span>
The ROHC-TCP IR-CR packet follows the general format of the ROHC
IR-CR packet, as defined in <a href="./rfc4164#section-3.5.2">[RFC4164], Section 3.5.2</a>. With
consideration to the extensibility of the IR packet type defined in
[<a href="./rfc5795" title=""The RObust Header Compression (ROHC) Framework"">RFC5795</a>], the ROHC-TCP profile supports context replication through
the profile-specific part of the IR packet. This is achieved using
the bit (x) left in the IR header for "Profile specific information".
For ROHC-TCP, this bit is defined as a flag indicating whether this
packet is an IR packet or an IR-CR packet. For the ROHC-TCP IR-CR
packet, the value of the x bit MUST be set to zero.
The ROHC-TCP IR-CR has the following format, which corresponds to the
"Header" and "Payload" fields described in <a href="./rfc5795#section-5.2.1">Section 5.2.1 of
[RFC5795]</a>:
0 1 2 3 4 5 6 7
--- --- --- --- --- --- --- ---
: Add-CID octet : if for small CIDs and (CID != 0)
+---+---+---+---+---+---+---+---+
| 1 1 1 1 1 1 0 0 | IR-CR type octet
+---+---+---+---+---+---+---+---+
: :
/ 0-2 octets of CID / 1-2 octets if for large CIDs
: :
+---+---+---+---+---+---+---+---+
| Profile = 0x06 | 1 octet
+---+---+---+---+---+---+---+---+
| CRC | 1 octet
+---+---+---+---+---+---+---+---+
| B | CRC7 | 1 octet
+---+---+---+---+---+---+---+---+
: Reserved | Base CID : 1 octet, for small CID, if B=1
+---+---+---+---+---+---+---+---+
: :
/ Base CID / 1-2 octets, for large CIDs,
: : if B=1
+---+---+---+---+---+---+---+---+
| |
/ Replicate chain / variable length
| |
- - - - - - - - - - - - - - - -
| |
/ Payload / variable length
| |
- - - - - - - - - - - - - - - -
<span class="grey">Pelletier, et al. Standards Track [Page 41]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-42" ></span>
<span class="grey"><a href="./rfc6846">RFC 6846</a> ROHC-TCP January 2013</span>
B: B = 1 indicates that the Base CID field is present.
CRC: This CRC covers the entire IR-CR header, thus excluding
payload, padding, and feedback, if any. This 8-bit CRC is
calculated according to <a href="./rfc5795#section-5.3.1.1">Section 5.3.1.1 of [RFC5795]</a>.
CRC7: The CRC over the original, uncompressed, header. Calculated
according to <a href="./rfc4164#section-3.5.1.1">Section 3.5.1.1 of [RFC4164]</a>.
Reserved: MUST be set to zero; otherwise, the decompressor MUST
discard the packet.
Base CID: CID of base context. Encoded according to <a href="./rfc4164#section-3.5.3">[RFC4164],
Section 3.5.3</a>.
Replicate chain: See <a href="#section-6.2">Section 6.2</a>.
Payload: The payload of the corresponding original packet, if any.
The presence of a payload is inferred from the packet length.
<span class="h3"><a class="selflink" id="section-7.3" href="#section-7.3">7.3</a>. Compressed (CO) Packets</span>
The ROHC-TCP CO packets communicate irregularities in the packet
header. All CO packets carry a CRC and can update the context.
The general format for a compressed TCP header is as follows, which
corresponds to the "Header" and "Payload" fields described in <a href="./rfc5795#section-5.2.1">Section</a>
<a href="./rfc5795#section-5.2.1">5.2.1 of [RFC5795]</a>:
<span class="grey">Pelletier, et al. Standards Track [Page 42]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-43" ></span>
<span class="grey"><a href="./rfc6846">RFC 6846</a> ROHC-TCP January 2013</span>
0 1 2 3 4 5 6 7
--- --- --- --- --- --- --- ---
: Add-CID octet : if for small CIDs and CID 1-15
+---+---+---+---+---+---+---+---+
| First octet of base header | (with type indication)
+---+---+---+---+---+---+---+---+
: :
/ 0, 1, or 2 octets of CID / 1-2 octets if large CIDs
: :
+---+---+---+---+---+---+---+---+
/ Remainder of base header / variable number of octets
+---+---+---+---+---+---+---+---+
: Irregular chain :
/ (including irregular chain / variable
: items for TCP options) :
--- --- --- --- --- --- --- ---
| |
/ Payload / variable length
| |
- - - - - - - - - - - - - - - -
Base header: The complete set of base headers is defined in
<a href="#section-8">Section 8</a>.
Irregular chain: See Sections <a href="#section-6.2">6.2</a> and <a href="#section-6.3.6">6.3.6</a>.
Payload: The payload of the corresponding original packet, if any.
The presence of a payload is inferred from the packet length.
<span class="h2"><a class="selflink" id="section-8" href="#section-8">8</a>. Header Formats (Normative)</span>
This section describes the set of compressed TCP/IP packet formats.
The normative description of the packet formats is given using the
formal notation for ROHC profiles defined in [<a href="./rfc4997" title=""Formal Notation for RObust Header Compression (ROHC-FN)"">RFC4997</a>]. The formal
description of the packet formats specifies all of the information
needed to compress and decompress a header relative to the context.
In particular, the notation provides a list of all the fields present
in the uncompressed and compressed TCP/IP headers, and defines how to
map from each uncompressed packet to its compressed equivalent and
vice versa.
<span class="grey">Pelletier, et al. Standards Track [Page 43]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-44" ></span>
<span class="grey"><a href="./rfc6846">RFC 6846</a> ROHC-TCP January 2013</span>
<span class="h3"><a class="selflink" id="section-8.1" href="#section-8.1">8.1</a>. Design Rationale for Compressed Base Headers</span>
The compressed header formats are defined as two separate sets: one
set for the packets where the innermost IP header contains a
sequential IP-ID (either network byte order or byte swapped), and one
set for the packets without sequential IP-ID (either random, zero, or
no IP-ID).
These two sets of header formats are referred to as the "sequential"
and the "random" set of header formats, respectively.
In addition, there is one compressed format that is common to both
sets of header formats and that can thus be used regardless of the
type of IP-ID behavior. This format can transmit rarely changing
fields and also send the frequently changing fields coded in variable
lengths. It can also change the value of control fields such as
IP-ID behavior and ECN behavior.
All compressed base headers contain a 3-bit CRC, unless they update
control fields such as "ip_id_behavior" or "ecn_used" that affect the
interpretation of subsequent headers. Headers that can modify these
control fields carry a 7-bit CRC instead.
When discussing LSB-encoded fields below, "p" equals the
"offset_param" and "k" equals the "num_lsbs_param" in [<a href="./rfc4997" title=""Formal Notation for RObust Header Compression (ROHC-FN)"">RFC4997</a>].
The encoding methods used in the compressed base headers are based on
the following design criteria:
o MSN
Since the MSN is a number generated by the compressor, it only
needs to be large enough to ensure robust operation and to
accommodate a small amount of reordering [<a href="./rfc4163" title=""RObust Header Compression (ROHC): Requirements on TCP/IP Header Compression"">RFC4163</a>]. Therefore,
each compressed base header has an MSN field that is LSB-
encoded with k=4 and p=4 to handle a reordering depth of up to
4 packets. Additional guidance to improve robustness when
reordering is possible can be found in [<a href="./rfc4224" title=""RObust Header Compression (ROHC): ROHC over Channels That Can Reorder Packets"">RFC4224</a>].
o TCP Sequence Number
ROHC-TCP has the capability to handle bulk data transfers
efficiently, for which the sequence number is expected to
increase by about 1460 octets (which can be represented by 11
bits). For the compressed base headers to handle
retransmissions (i.e., negative delta to the sequence number),
<span class="grey">Pelletier, et al. Standards Track [Page 44]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-45" ></span>
<span class="grey"><a href="./rfc6846">RFC 6846</a> ROHC-TCP January 2013</span>
the LSB interpretation interval has to handle negative offsets
about as large as positive offsets, which means that one more
bit is needed.
Also, for ROHC-TCP to be robust to losses, two additional bits
are added to the LSB encoding of the sequence number. This
means that the base headers should contain at least 14 bits of
LSB-encoded sequence number when present. According to the
logic above, the LSB offset value is set to be as large as the
positive offset, i.e., p = 2^(k-1)-1.
o TCP Acknowledgment Number
The design criterion for the acknowledgment number is similar
to that of the TCP Sequence Number. However, often only every
other data packet is acknowledged, which means that the
expected delta value is twice as large as for sequence numbers.
Therefore, at least 15 bits of acknowledgment number should be
used in compressed base headers. Since the acknowledgment
number is expected to constantly increase, and the only
exception to this is packet reordering (either on the ROHC
channel [<a href="./rfc3759" title=""RObust Header Compression (ROHC): Terminology and Channel Mapping Examples"">RFC3759</a>] or prior to the compression point), the
negative offset for LSB encoding is set to be 1/4 of the total
interval, i.e., p = 2^(k-2)-1.
o TCP Window
The TCP Window field is expected to increase in increments of
similar size as the TCP Sequence Number; therefore, the design
criterion for the TCP window is to send at least 14 bits when
used.
o IP-ID
For the "sequential" set of packet formats, all the compressed
base headers contain LSB-encoded IP-ID offset bits, where the
offset is the difference between the value of the MSN field and
the value of the IP-ID field. The requirement is that at least
3 bits of IP-ID should always be present, but it is preferable
to use 4 to 7 bits. When k=3 then p=1, and if k>3 then p=3
since the offset is expected to increase most of the time.
Each set of header formats contains eight different compressed base
headers. The reason for having this large number of header formats
is that the TCP Sequence Number, TCP Acknowledgment Number, and TCP
Window are frequently changing in a non-linear pattern.
<span class="grey">Pelletier, et al. Standards Track [Page 45]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-46" ></span>
<span class="grey"><a href="./rfc6846">RFC 6846</a> ROHC-TCP January 2013</span>
The design of the header formats is derived from the field behavior
analysis found in [<a href="./rfc4413" title=""TCP/IP Field Behavior"">RFC4413</a>].
All of the compressed base headers transmit LSB-encoded MSN bits, the
TCP Push flag, and a CRC, and in addition to this, all the base
headers in the sequential packet format set contain LSB-encoded IP-ID
bits.
The following header formats exist in both the sequential and random
packet format sets:
o Format 1: This header format carries changes to the TCP Sequence
Number and is expected to be used on the downstream of a data
transfer.
o Format 2: This header format carries the TCP Sequence Number in
scaled form and is expected to be useful for the downstream of a
data transfer where the payload size is constant for multiple
packets.
o Format 3: This header format carries changes in the TCP
Acknowledgment Number and is expected to be useful for the
acknowledgment direction of a data transfer.
o Format 4: This header format is similar to format 3, but carries a
scaled TCP Acknowledgment Number.
o Format 5: This header format carries both the TCP Sequence Number
and the TCP Acknowledgment Number and is expected to be useful for
flows that send data in both directions.
o Format 6: This header format is similar to format 5, but carries
the TCP Sequence Number in scaled form, when the payload size is
static for certain intervals in a data flow.
o Format 7: This header format carries changes to both the TCP
Acknowledgment Number and the TCP Window and is expected to be
useful for the acknowledgment flows of data connections.
o Format 8: This header format is used to convey changes to some of
the more seldom changing fields in the TCP flow, such as ECN
behavior, RST/SYN/FIN flags, the TTL/Hop Limit, and the TCP
options list. This format carries a 7-bit CRC, since it can
change the structure of the contents of the irregular chain for
subsequent packets. Note that this can be seen as a reduced form
of the common packet format.
<span class="grey">Pelletier, et al. Standards Track [Page 46]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-47" ></span>
<span class="grey"><a href="./rfc6846">RFC 6846</a> ROHC-TCP January 2013</span>
o Common header format: The common header format can be used for all
kinds of IP-ID behavior and should be useful when some of the more
rarely changing fields in the IP or TCP header change. Since this
header format can update control fields that decide how the
decompressor interprets packets, it carries a 7-bit CRC to reduce
the probability of context corruption. This header can basically
convey changes to any of the dynamic fields in the IP and TCP
headers, and it uses a large set of flags to provide information
about which fields are present in the header format.
<span class="h3"><a class="selflink" id="section-8.2" href="#section-8.2">8.2</a>. Formal Definition of Header Formats</span>
// NOTE: The irregular, static, and dynamic chains (see <a href="#section-6.2">Section 6.2</a>)
// are defined across multiple encoding methods and are embodied
// in the correspondingly named formats within those encoding
// methods. In particular, note that the static and dynamic
// chains ordinarily go together. The uncompressed fields are
// defined across these two formats combined, rather than in one
// or the other of them. The irregular chain items are likewise
// combined with a baseheader format.
////////////////////////////////////////////
// Constants
////////////////////////////////////////////
IP_ID_BEHAVIOR_SEQUENTIAL = 0;
IP_ID_BEHAVIOR_SEQUENTIAL_SWAPPED = 1;
IP_ID_BEHAVIOR_RANDOM = 2;
IP_ID_BEHAVIOR_ZERO = 3;
////////////////////////////////////////////
// Global control fields
////////////////////////////////////////////
CONTROL {
ecn_used [ 1 ];
msn [ 16 ];
// ip_id fields are for innermost IP header only
ip_id_offset [ 16 ];
ip_id_behavior_innermost [ 2 ];
// ACK-related
ack_stride [ 32 ];
ack_number_scaled [ 32 ];
ack_number_residue [ 32 ];
seq_number_scaled [ 32 ];
seq_number_residue [ 32 ];
}
<span class="grey">Pelletier, et al. Standards Track [Page 47]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-48" ></span>
<span class="grey"><a href="./rfc6846">RFC 6846</a> ROHC-TCP January 2013</span>
///////////////////////////////////////////////
// Encoding methods not specified in FN syntax
///////////////////////////////////////////////
list_tcp_options "defined in <a href="#section-6.3.3">Section 6.3.3</a>";
inferred_ip_v4_header_checksum "defined in <a href="#section-6.4.1">Section 6.4.1</a>";
inferred_mine_header_checksum "defined in <a href="#section-6.4.2">Section 6.4.2</a>";
inferred_ip_v4_length "defined in <a href="#section-6.4.3">Section 6.4.3</a>";
inferred_ip_v6_length "defined in <a href="#section-6.4.4">Section 6.4.4</a>";
inferred_offset "defined in <a href="#section-6.4.5">Section 6.4.5</a>";
baseheader_extension_headers "defined in <a href="#section-6.4.6">Section 6.4.6</a>";
baseheader_outer_headers "defined in <a href="#section-6.4.7">Section 6.4.7</a>";
////////////////////////////////////////////
// General encoding methods
////////////////////////////////////////////
static_or_irreg(flag, width)
{
UNCOMPRESSED {
field [ width ];
}
COMPRESSED irreg_enc {
field =:= irregular(width) [ width ];
ENFORCE(flag == 1);
}
COMPRESSED static_enc {
field =:= static [ 0 ];
ENFORCE(flag == 0);
}
}
zero_or_irreg(flag, width)
{
UNCOMPRESSED {
field [ width ];
}
COMPRESSED non_zero {
field =:= irregular(width) [ width ];
ENFORCE(flag == 0);
}
COMPRESSED zero {
field =:= uncompressed_value(width, 0) [ 0 ];
ENFORCE(flag == 1);
<span class="grey">Pelletier, et al. Standards Track [Page 48]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-49" ></span>
<span class="grey"><a href="./rfc6846">RFC 6846</a> ROHC-TCP January 2013</span>
}
}
variable_length_32_enc(flag)
{
UNCOMPRESSED {
field [ 32 ];
}
COMPRESSED not_present {
field =:= static [ 0 ];
ENFORCE(flag == 0);
}
COMPRESSED lsb_8_bit {
field =:= lsb(8, 63) [ 8 ];
ENFORCE(flag == 1);
}
COMPRESSED lsb_16_bit {
field =:= lsb(16, 16383) [ 16 ];
ENFORCE(flag == 2);
}
COMPRESSED irreg_32_bit {
field =:= irregular(32) [ 32 ];
ENFORCE(flag == 3);
}
}
optional32(flag)
{
UNCOMPRESSED {
item [ 0, 32 ];
}
COMPRESSED present {
item =:= irregular(32) [ 32 ];
ENFORCE(flag == 1);
}
COMPRESSED not_present {
item =:= compressed_value(0, 0) [ 0 ];
ENFORCE(flag == 0);
}
}
lsb_7_or_31
<span class="grey">Pelletier, et al. Standards Track [Page 49]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-50" ></span>
<span class="grey"><a href="./rfc6846">RFC 6846</a> ROHC-TCP January 2013</span>
{
UNCOMPRESSED {
item [ 32 ];
}
COMPRESSED lsb_7 {
discriminator =:= '0' [ 1 ];
item =:= lsb(7, 8) [ 7 ];
}
COMPRESSED lsb_31 {
discriminator =:= '1' [ 1 ];
item =:= lsb(31, 256) [ 31 ];
}
}
opt_lsb_7_or_31(flag)
{
UNCOMPRESSED {
item [ 0, 32 ];
}
COMPRESSED present {
item =:= lsb_7_or_31 [ 8, 32 ];
ENFORCE(flag == 1);
}
COMPRESSED not_present {
item =:= compressed_value(0, 0) [ 0 ];
ENFORCE(flag == 0);
}
}
crc3(data_value, data_length)
{
UNCOMPRESSED {
}
COMPRESSED {
crc_value =:=
crc(3, 0x06, 0x07, data_value, data_length) [ 3 ];
}
}
crc7(data_value, data_length)
{
UNCOMPRESSED {
}
<span class="grey">Pelletier, et al. Standards Track [Page 50]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-51" ></span>
<span class="grey"><a href="./rfc6846">RFC 6846</a> ROHC-TCP January 2013</span>
COMPRESSED {
crc_value =:=
crc(7, 0x79, 0x7f, data_value, data_length) [ 7 ];
}
}
one_bit_choice
{
UNCOMPRESSED {
field [ 1 ];
}
COMPRESSED zero {
field [ 1 ];
ENFORCE(field.UVALUE == 0);
}
COMPRESSED nonzero {
field [ 1 ];
ENFORCE(field.UVALUE == 1);
}
}
// Encoding method for updating a scaled field and its associated
// control fields. Should be used both when the value is scaled
// or unscaled in a compressed format.
// Does not have an uncompressed side.
field_scaling(stride_value, scaled_value, unscaled_value, residue_value)
{
UNCOMPRESSED {
// Nothing
}
COMPRESSED no_scaling {
ENFORCE(stride_value == 0);
ENFORCE(residue_value == unscaled_value);
ENFORCE(scaled_value == 0);
}
COMPRESSED scaling_used {
ENFORCE(stride_value != 0);
ENFORCE(residue_value == (unscaled_value % stride_value));
ENFORCE(unscaled_value ==
scaled_value * stride_value + residue_value);
}
}
<span class="grey">Pelletier, et al. Standards Track [Page 51]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-52" ></span>
<span class="grey"><a href="./rfc6846">RFC 6846</a> ROHC-TCP January 2013</span>
////////////////////////////////////////////
// IPv6 Destination options header
////////////////////////////////////////////
ip_dest_opt
{
UNCOMPRESSED {
next_header [ 8 ];
length [ 8 ];
value [ length.UVALUE * 64 + 48 ];
}
DEFAULT {
length =:= static;
next_header =:= static;
value =:= static;
}
COMPRESSED dest_opt_static {
next_header =:= irregular(8) [ 8 ];
length =:= irregular(8) [ 8 ];
}
COMPRESSED dest_opt_dynamic {
value =:=
irregular(length.UVALUE * 64 + 48) [ length.UVALUE * 64 + 48 ];
}
COMPRESSED dest_opt_0_replicate {
discriminator =:= '00000000' [ 8 ];
}
COMPRESSED dest_opt_1_replicate {
discriminator =:= '10000000' [ 8 ];
length =:= irregular(8) [ 8 ];
value =:=
irregular(length.UVALUE*64+48) [ length.UVALUE * 64 + 48 ];
}
COMPRESSED dest_opt_irregular {
}
}
////////////////////////////////////////////
// IPv6 Hop-by-Hop options header
////////////////////////////////////////////
ip_hop_opt
{
<span class="grey">Pelletier, et al. Standards Track [Page 52]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-53" ></span>
<span class="grey"><a href="./rfc6846">RFC 6846</a> ROHC-TCP January 2013</span>
UNCOMPRESSED {
next_header [ 8 ];
length [ 8 ];
value [ length.UVALUE * 64 + 48 ];
}
DEFAULT {
length =:= static;
next_header =:= static;
value =:= static;
}
COMPRESSED hop_opt_static {
next_header =:= irregular(8) [ 8 ];
length =:= irregular(8) [ 8 ];
}
COMPRESSED hop_opt_dynamic {
value =:=
irregular(length.UVALUE*64+48) [ length.UVALUE * 64 + 48 ];
}
COMPRESSED hop_opt_0_replicate {
discriminator =:= '00000000' [ 8 ];
}
COMPRESSED hop_opt_1_replicate {
discriminator =:= '10000000' [ 8 ];
length =:= irregular(8) [ 8 ];
value =:=
irregular(length.UVALUE*64+48) [ length.UVALUE * 64 + 48 ];
}
COMPRESSED hop_opt_irregular {
}
}
////////////////////////////////////////////
// IPv6 Routing header
////////////////////////////////////////////
ip_rout_opt
{
UNCOMPRESSED {
next_header [ 8 ];
length [ 8 ];
value [ length.UVALUE * 64 + 48 ];
}
<span class="grey">Pelletier, et al. Standards Track [Page 53]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-54" ></span>
<span class="grey"><a href="./rfc6846">RFC 6846</a> ROHC-TCP January 2013</span>
DEFAULT {
length =:= static;
next_header =:= static;
value =:= static;
}
COMPRESSED rout_opt_static {
next_header =:= irregular(8) [ 8 ];
length =:= irregular(8) [ 8 ];
value =:=
irregular(length.UVALUE*64+48) [ length.UVALUE * 64 + 48 ];
}
COMPRESSED rout_opt_dynamic {
}
COMPRESSED rout_opt_0_replicate {
discriminator =:= '00000000' [ 8 ];
}
COMPRESSED rout_opt_0_replicate {
discriminator =:= '10000000' [ 8 ];
length =:= irregular(8) [ 8 ];
value =:=
irregular(length.UVALUE*64+48) [ length.UVALUE * 64 + 48 ];
}
COMPRESSED rout_opt_irregular {
}
}
////////////////////////////////////////////
// GRE Header
////////////////////////////////////////////
optional_checksum(flag_value)
{
UNCOMPRESSED {
value [ 0, 16 ];
reserved1 [ 0, 16 ];
}
COMPRESSED cs_present {
value =:= irregular(16) [ 16 ];
reserved1 =:= uncompressed_value(16, 0) [ 0 ];
ENFORCE(flag_value == 1);
}
COMPRESSED not_present {
<span class="grey">Pelletier, et al. Standards Track [Page 54]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-55" ></span>
<span class="grey"><a href="./rfc6846">RFC 6846</a> ROHC-TCP January 2013</span>
value =:= compressed_value(0, 0) [ 0 ];
reserved1 =:= compressed_value(0, 0) [ 0 ];
ENFORCE(flag_value == 0);
}
}
gre_proto
{
UNCOMPRESSED {
protocol [ 16 ];
}
COMPRESSED ether_v4 {
discriminator =:= compressed_value(1, 0) [ 1 ];
protocol =:= uncompressed_value(16, 0x0800) [ 0 ];
}
COMPRESSED ether_v6 {
discriminator =:= compressed_value(1, 1) [ 1 ];
protocol =:= uncompressed_value(16, 0x86DD) [ 0 ];
}
}
gre
{
UNCOMPRESSED {
c_flag [ 1 ];
r_flag =:= uncompressed_value(1, 0) [ 1 ];
k_flag [ 1 ];
s_flag [ 1 ];
reserved0 =:= uncompressed_value(9, 0) [ 9 ];
version =:= uncompressed_value(3, 0) [ 3 ];
protocol [ 16 ];
checksum_and_res [ 0, 32 ];
key [ 0, 32 ];
sequence_number [ 0, 32 ];
}
DEFAULT {
c_flag =:= static;
k_flag =:= static;
s_flag =:= static;
protocol =:= static;
key =:= static;
sequence_number =:= static;
}
COMPRESSED gre_static {
<span class="grey">Pelletier, et al. Standards Track [Page 55]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-56" ></span>
<span class="grey"><a href="./rfc6846">RFC 6846</a> ROHC-TCP January 2013</span>
ENFORCE((c_flag.UVALUE == 1 && checksum_and_res.ULENGTH == 32)
|| checksum_and_res.ULENGTH == 0);
ENFORCE((s_flag.UVALUE == 1 && sequence_number.ULENGTH == 32)
|| sequence_number.ULENGTH == 0);
protocol =:= gre_proto [ 1 ];
c_flag =:= irregular(1) [ 1 ];
k_flag =:= irregular(1) [ 1 ];
s_flag =:= irregular(1) [ 1 ];
padding =:= compressed_value(4, 0) [ 4 ];
key =:= optional32(k_flag.UVALUE) [ 0, 32 ];
}
COMPRESSED gre_dynamic {
checksum_and_res =:=
optional_checksum(c_flag.UVALUE) [ 0, 16 ];
sequence_number =:= optional32(s_flag.UVALUE) [ 0, 32 ];
}
COMPRESSED gre_0_replicate {
discriminator =:= '00000000' [ 8 ];
checksum_and_res =:=
optional_checksum(c_flag.UVALUE) [ 0, 16 ];
sequence_number =:=
optional32(s_flag.UVALUE) [ 0, 8, 32 ];
}
COMPRESSED gre_1_replicate {
discriminator =:= '10000' [ 5 ];
c_flag =:= irregular(1) [ 1 ];
k_flag =:= irregular(1) [ 1 ];
s_flag =:= irregular(1) [ 1 ];
checksum_and_res =:=
optional_checksum(c_flag.UVALUE) [ 0, 16 ];
key =:= optional32(k_flag.UVALUE) [ 0, 32 ];
sequence_number =:= optional32(s_flag.UVALUE) [ 0, 32 ];
}
COMPRESSED gre_irregular {
checksum_and_res =:=
optional_checksum(c_flag.UVALUE) [ 0, 16 ];
sequence_number =:=
opt_lsb_7_or_31(s_flag.UVALUE) [ 0, 8, 32 ];
}
}
/////////////////////////////////////////////
// MINE header
/////////////////////////////////////////////
<span class="grey">Pelletier, et al. Standards Track [Page 56]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-57" ></span>
<span class="grey"><a href="./rfc6846">RFC 6846</a> ROHC-TCP January 2013</span>
mine
{
UNCOMPRESSED {
next_header [ 8 ];
s_bit [ 1 ];
res_bits [ 7 ];
checksum [ 16 ];
orig_dest [ 32 ];
orig_src [ 0, 32 ];
}
DEFAULT {
next_header =:= static;
s_bit =:= static;
res_bits =:= static;
checksum =:= inferred_mine_header_checksum;
orig_dest =:= static;
orig_src =:= static;
}
COMPRESSED mine_static {
next_header =:= irregular(8) [ 8 ];
s_bit =:= irregular(1) [ 1 ];
// Reserved bits are included to achieve byte-alignment
res_bits =:= irregular(7) [ 7 ];
orig_dest =:= irregular(32) [ 32 ];
orig_src =:= optional32(s_bit.UVALUE) [ 0, 32 ];
}
COMPRESSED mine_dynamic {
}
COMPRESSED mine_0_replicate {
discriminator =:= '00000000' [ 8 ];
}
COMPRESSED mine_1_replicate {
discriminator =:= '10000000' [ 8 ];
s_bit =:= irregular(1) [ 1 ];
res_bits =:= irregular(7) [ 7 ];
orig_dest =:= irregular(32) [ 32 ];
orig_src =:= optional32(s_bit.UVALUE) [ 0, 32 ];
}
COMPRESSED mine_irregular {
}
}
<span class="grey">Pelletier, et al. Standards Track [Page 57]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-58" ></span>
<span class="grey"><a href="./rfc6846">RFC 6846</a> ROHC-TCP January 2013</span>
/////////////////////////////////////////////
// Authentication Header (AH)
/////////////////////////////////////////////
ah
{
UNCOMPRESSED {
next_header [ 8 ];
length [ 8 ];
res_bits [ 16 ];
spi [ 32 ];
sequence_number [ 32 ];
icv [ length.UVALUE*32-32 ];
}
DEFAULT {
next_header =:= static;
length =:= static;
res_bits =:= static;
spi =:= static;
sequence_number =:= static;
}
COMPRESSED ah_static {
next_header =:= irregular(8) [ 8 ];
length =:= irregular(8) [ 8 ];
spi =:= irregular(32) [ 32 ];
}
COMPRESSED ah_dynamic {
res_bits =:= irregular(16) [ 16 ];
sequence_number =:= irregular(32) [ 32 ];
icv =:=
irregular(length.UVALUE*32-32) [ length.UVALUE*32-32 ];
}
COMPRESSED ah_0_replicate {
discriminator =:= '00000000' [ 8 ];
sequence_number =:= irregular(32) [ 32 ];
icv =:=
irregular(length.UVALUE*32-32) [ length.UVALUE*32-32 ];
}
COMPRESSED ah_1_replicate {
discriminator =:= '10000000' [ 8 ];
length =:= irregular(8) [ 8 ];
res_bits =:= irregular(16) [ 16 ];
spi =:= irregular(32) [ 32 ];
<span class="grey">Pelletier, et al. Standards Track [Page 58]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-59" ></span>
<span class="grey"><a href="./rfc6846">RFC 6846</a> ROHC-TCP January 2013</span>
sequence_number =:= irregular(32) [ 32 ];
icv =:=
irregular(length.UVALUE*32-32) [ length.UVALUE*32-32 ];
}
COMPRESSED ah_irregular {
sequence_number =:= lsb_7_or_31 [ 8, 32 ];
icv =:=
irregular(length.UVALUE*32-32) [ length.UVALUE*32-32 ];
}
}
/////////////////////////////////////////////
// IPv6 Header
/////////////////////////////////////////////
fl_enc
{
UNCOMPRESSED {
flow_label [ 20 ];
}
COMPRESSED fl_zero {
discriminator =:= '0' [ 1 ];
flow_label =:= uncompressed_value(20, 0) [ 0 ];
reserved =:= '0000' [ 4 ];
}
COMPRESSED fl_non_zero {
discriminator =:= '1' [ 1 ];
flow_label =:= irregular(20) [ 20 ];
}
}
// The is_innermost flag is true if this is the innermost IP header
// If extracting the irregular chain for a compressed packet:
// - ttl_irregular_chain_flag must have the same value as it had when
// processing co_baseheader.
// - ip_inner_ecn is bound in this encoding method and the value that
// it gets bound to should be passed to the tcp encoding method
// For other formats than the irregular chain, these two are ignored
ipv6(is_innermost, ttl_irregular_chain_flag, ip_inner_ecn)
{
UNCOMPRESSED {
version =:= uncompressed_value(4, 6) [ 4 ];
dscp [ 6 ];
ip_ecn_flags [ 2 ];
flow_label [ 20 ];
<span class="grey">Pelletier, et al. Standards Track [Page 59]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-60" ></span>
<span class="grey"><a href="./rfc6846">RFC 6846</a> ROHC-TCP January 2013</span>
payload_length [ 16 ];
next_header [ 8 ];
ttl_hopl [ 8 ];
src_addr [ 128 ];
dst_addr [ 128 ];
}
DEFAULT {
dscp =:= static;
ip_ecn_flags =:= static;
flow_label =:= static;
payload_length =:= inferred_ip_v6_length;
next_header =:= static;
ttl_hopl =:= static;
src_addr =:= static;
dst_addr =:= static;
}
COMPRESSED ipv6_static {
version_flag =:= '1' [ 1 ];
reserved =:= '00' [ 2 ];
flow_label =:= fl_enc [ 5, 21 ];
next_header =:= irregular(8) [ 8 ];
src_addr =:= irregular(128) [ 128 ];
dst_addr =:= irregular(128) [ 128 ];
}
COMPRESSED ipv6_dynamic {
dscp =:= irregular(6) [ 6 ];
ip_ecn_flags =:= irregular(2) [ 2 ];
ttl_hopl =:= irregular(8) [ 8 ];
}
COMPRESSED ipv6_replicate {
dscp =:= irregular(6) [ 6 ];
ip_ecn_flags =:= irregular(2) [ 2 ];
reserved =:= '000' [ 3 ];
flow_label =:= fl_enc [ 5, 21 ];
}
COMPRESSED ipv6_outer_without_ttl_irregular {
dscp =:= static_or_irreg(ecn_used.UVALUE, 6) [ 0, 6 ];
ip_ecn_flags =:= static_or_irreg(ecn_used.UVALUE, 2) [ 0, 2 ];
ENFORCE(ttl_irregular_chain_flag == 0);
ENFORCE(is_innermost == false);
}
COMPRESSED ipv6_outer_with_ttl_irregular {
<span class="grey">Pelletier, et al. Standards Track [Page 60]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-61" ></span>
<span class="grey"><a href="./rfc6846">RFC 6846</a> ROHC-TCP January 2013</span>
dscp =:= static_or_irreg(ecn_used.UVALUE, 6) [ 0, 6 ];
ip_ecn_flags =:= static_or_irreg(ecn_used.UVALUE, 2) [ 0, 2 ];
ttl_hopl =:= irregular(8) [ 8 ];
ENFORCE(ttl_irregular_chain_flag == 1);
ENFORCE(is_innermost == false);
}
COMPRESSED ipv6_innermost_irregular {
ENFORCE(ip_inner_ecn == ip_ecn_flags.UVALUE);
ENFORCE(is_innermost == true);
}
}
/////////////////////////////////////////////
// IPv4 Header
/////////////////////////////////////////////
ip_id_enc_dyn(behavior)
{
UNCOMPRESSED {
ip_id [ 16 ];
}
COMPRESSED ip_id_seq {
ENFORCE((behavior == IP_ID_BEHAVIOR_SEQUENTIAL) ||
(behavior == IP_ID_BEHAVIOR_SEQUENTIAL_SWAPPED));
ENFORCE(ip_id_offset.UVALUE == ip_id.UVALUE - msn.UVALUE);
ip_id =:= irregular(16) [ 16 ];
}
COMPRESSED ip_id_random {
ENFORCE(behavior == IP_ID_BEHAVIOR_RANDOM);
ip_id =:= irregular(16) [ 16 ];
}
COMPRESSED ip_id_zero {
ENFORCE(behavior == IP_ID_BEHAVIOR_ZERO);
ip_id =:= uncompressed_value(16, 0) [ 0 ];
}
}
ip_id_enc_irreg(behavior)
{
UNCOMPRESSED {
ip_id [ 16 ];
}
COMPRESSED ip_id_seq {
<span class="grey">Pelletier, et al. Standards Track [Page 61]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-62" ></span>
<span class="grey"><a href="./rfc6846">RFC 6846</a> ROHC-TCP January 2013</span>
ENFORCE(behavior == IP_ID_BEHAVIOR_SEQUENTIAL);
}
COMPRESSED ip_id_seq_swapped {
ENFORCE(behavior == IP_ID_BEHAVIOR_SEQUENTIAL_SWAPPED);
}
COMPRESSED ip_id_rand {
ip_id =:= irregular(16) [ 16 ];
ENFORCE(behavior == IP_ID_BEHAVIOR_RANDOM);
}
COMPRESSED ip_id_zero {
ip_id =:= uncompressed_value(16, 0) [ 0 ];
ENFORCE(behavior == IP_ID_BEHAVIOR_ZERO);
}
}
// The is_innermost flag is true if this is the innermost IP header
// If extracting the irregular chain for a compressed packet:
// - ttl_irregular_chain_flag must have the same value as it had when
// processing co_baseheader.
// - ip_inner_ecn is bound in this encoding method and the value that
// it gets bound to should be passed to the tcp encoding method
// For other formats than the irregular chain, these two are ignored
ipv4(is_innermost, ttl_irregular_chain_flag, ip_inner_ecn,
ip_id_behavior_value)
{
UNCOMPRESSED {
version =:= uncompressed_value(4, 4) [ 4 ];
hdr_length =:= uncompressed_value(4, 5) [ 4 ];
dscp [ 6 ];
ip_ecn_flags [ 2 ];
length =:= inferred_ip_v4_length [ 16 ];
ip_id [ 16 ];
rf =:= uncompressed_value(1, 0) [ 1 ];
df [ 1 ];
mf =:= uncompressed_value(1, 0) [ 1 ];
frag_offset =:= uncompressed_value(13, 0) [ 13 ];
ttl_hopl [ 8 ];
protocol [ 8 ];
checksum =:= inferred_ip_v4_header_checksum [ 16 ];
src_addr [ 32 ];
dst_addr [ 32 ];
}
CONTROL {
ENFORCE(reorder_ratio.UVALUE == reorder_ratio_value);
<span class="grey">Pelletier, et al. Standards Track [Page 62]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-63" ></span>
<span class="grey"><a href="./rfc6846">RFC 6846</a> ROHC-TCP January 2013</span>
ENFORCE(innermost_ip.UVALUE == is_innermost);
ip_id_behavior_outer [ 2 ];
innermost_ip [ 1 ];
}
DEFAULT {
dscp =:= static;
ip_ecn_flags =:= static;
df =:= static;
ttl_hopl =:= static;
protocol =:= static;
src_addr =:= static;
dst_addr =:= static;
ip_id_behavior_outer =:= static;
}
COMPRESSED ipv4_static {
version_flag =:= '0' [ 1 ];
reserved =:= '0000000' [ 7 ];
protocol =:= irregular(8) [ 8 ];
src_addr =:= irregular(32) [ 32 ];
dst_addr =:= irregular(32) [ 32 ];
}
COMPRESSED ipv4_innermost_dynamic {
ENFORCE(is_innermost == 1);
ENFORCE(ip_id_behavior_innermost.UVALUE == ip_id_behavior_value);
reserved =:= '00000' [ 5 ];
df =:= irregular(1) [ 1 ];
ip_id_behavior_innermost =:= irregular(2) [ 2 ];
dscp =:= irregular(6) [ 6 ];
ip_ecn_flags =:= irregular(2) [ 2 ];
ttl_hopl =:= irregular(8) [ 8 ];
ip_id =:=
ip_id_enc_dyn(ip_id_behavior_innermost.UVALUE) [ 0, 16 ];
}
COMPRESSED ipv4_outer_dynamic {
ENFORCE(is_innermost == 0);
ENFORCE(ip_id_behavior_outer.UVALUE == ip_id_behavior_value);
reserved =:= '00000' [ 5 ];
df =:= irregular(1) [ 1 ];
ip_id_behavior_outer =:= irregular(2) [ 2 ];
dscp =:= irregular(6) [ 6 ];
ip_ecn_flags =:= irregular(2) [ 2 ];
ttl_hopl =:= irregular(8) [ 8 ];
ip_id =:=
ip_id_enc_dyn(ip_id_behavior_outer.UVALUE) [ 0, 16 ];
<span class="grey">Pelletier, et al. Standards Track [Page 63]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-64" ></span>
<span class="grey"><a href="./rfc6846">RFC 6846</a> ROHC-TCP January 2013</span>
}
COMPRESSED ipv4_innermost_replicate {
ENFORCE(is_innermost == 1);
ENFORCE(ip_id_behavior_innermost.UVALUE == ip_id_behavior_value);
reserved =:= '0000' [ 4 ];
ip_id_behavior_innermost =:= irregular(2) [ 2 ];
ttl_flag =:= irregular(1) [ 1 ];
df =:= irregular(1) [ 1 ];
dscp =:= irregular(6) [ 6 ];
ip_ecn_flags =:= irregular(2) [ 2 ];
ip_id =:=
ip_id_enc_dyn(ip_id_behavior_innermost.UVALUE) [ 0, 16 ];
ttl_hopl =:=
static_or_irreg(ttl_flag.UVALUE, 8) [ 0, 8 ];
}
COMPRESSED ipv4_outer_replicate {
ENFORCE(is_innermost == 0);
ENFORCE(ip_id_behavior_outer.UVALUE == ip_id_behavior_value);
reserved =:= '0000' [ 4 ];
ip_id_behavior_outer =:= irregular(2) [ 2 ]
ttl_flag =:= irregular(1) [ 1 ];
df =:= irregular(1) [ 1 ];
dscp =:= irregular(6) [ 6 ];
ip_ecn_flags =:= irregular(2) [ 2 ];
ip_id =:=
ip_id_enc_dyn(ip_id_behavior_outer.UVALUE) [ 0, 16 ];
ttl_hopl =:=
static_or_irreg(ttl_flag.UVALUE, 8) [ 0, 8 ];
}
COMPRESSED ipv4_outer_without_ttl_irregular {
ENFORCE(is_innermost == 0);
ip_id =:=
ip_id_enc_irreg(ip_id_behavior_outer.UVALUE) [ 0, 16 ];
dscp =:= static_or_irreg(ecn_used.UVALUE, 6) [ 0, 6 ];
ip_ecn_flags =:= static_or_irreg(ecn_used.UVALUE, 2) [ 0, 2 ];
ENFORCE(ttl_irregular_chain_flag == 0);
}
COMPRESSED ipv4_outer_with_ttl_irregular {
ENFORCE(is_innermost == 0);
ip_id =:=
ip_id_enc_irreg(ip_id_behavior_outer.UVALUE) [ 0, 16 ];
dscp =:= static_or_irreg(ecn_used.UVALUE, 6) [ 0, 6 ];
ip_ecn_flags =:= static_or_irreg(ecn_used.UVALUE, 2) [ 0, 2 ];
ttl_hopl =:= irregular(8) [ 8 ];
<span class="grey">Pelletier, et al. Standards Track [Page 64]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-65" ></span>
<span class="grey"><a href="./rfc6846">RFC 6846</a> ROHC-TCP January 2013</span>
ENFORCE(ttl_irregular_chain_flag == 1);
}
COMPRESSED ipv4_innermost_irregular {
ENFORCE(is_innermost == 1);
ip_id =:=
ip_id_enc_irreg(ip_id_behavior_innermost.UVALUE) [ 0, 16 ];
ENFORCE(ip_inner_ecn == ip_ecn_flags.UVALUE);
}
}
/////////////////////////////////////////////
// TCP Options
/////////////////////////////////////////////
// nbits is bound to the remaining length (in bits) of TCP
// options, including the EOL type byte.
tcp_opt_eol(nbits)
{
UNCOMPRESSED {
type =:= uncompressed_value(8, 0) [ 8 ];
padding =:=
uncompressed_value(nbits-8, 0) [ nbits-8 ];
}
CONTROL {
pad_len [ 8 ];
}
COMPRESSED eol_list_item {
pad_len =:= compressed_value(8, nbits-8) [ 8 ];
}
COMPRESSED eol_irregular {
pad_len =:= static;
ENFORCE(nbits-8 == pad_len.UVALUE);
}
}
tcp_opt_nop
{
UNCOMPRESSED {
type =:= uncompressed_value(8, 1) [ 8 ];
}
COMPRESSED nop_list_item {
}
<span class="grey">Pelletier, et al. Standards Track [Page 65]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-66" ></span>
<span class="grey"><a href="./rfc6846">RFC 6846</a> ROHC-TCP January 2013</span>
COMPRESSED nop_irregular {
}
}
tcp_opt_mss
{
UNCOMPRESSED {
type =:= uncompressed_value(8, 2) [ 8 ];
length =:= uncompressed_value(8, 4) [ 8 ];
mss [ 16 ];
}
COMPRESSED mss_list_item {
mss =:= irregular(16) [ 16 ];
}
COMPRESSED mss_irregular {
mss =:= static;
}
}
tcp_opt_wscale
{
UNCOMPRESSED {
type =:= uncompressed_value(8, 3) [ 8 ];
length =:= uncompressed_value(8, 3) [ 8 ];
wscale [ 8 ];
}
COMPRESSED wscale_list_item {
wscale =:= irregular(8) [ 8 ];
}
COMPRESSED wscale_irregular {
wscale =:= static;
}
}
ts_lsb
{
UNCOMPRESSED {
tsval [ 32 ];
}
COMPRESSED tsval_7 {
discriminator =:= '0' [ 1 ];
tsval =:= lsb(7, -1) [ 7 ];
}
<span class="grey">Pelletier, et al. Standards Track [Page 66]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-67" ></span>
<span class="grey"><a href="./rfc6846">RFC 6846</a> ROHC-TCP January 2013</span>
COMPRESSED tsval_14 {
discriminator =:= '10' [ 2 ];
tsval =:= lsb(14, -1) [ 14 ];
}
COMPRESSED tsval_21 {
discriminator =:= '110' [ 3 ];
tsval =:= lsb(21, 0x00040000) [ 21 ];
}
COMPRESSED tsval_29 {
discriminator =:= '111' [ 3 ];
tsval =:= lsb(29, 0x04000000) [ 29 ];
}
}
tcp_opt_ts
{
UNCOMPRESSED {
type =:= uncompressed_value(8, 8) [ 8 ];
length =:= uncompressed_value(8, 10) [ 8 ];
tsval [ 32 ];
tsecho [ 32 ];
}
COMPRESSED tsopt_list_item {
tsval =:= irregular(32) [ 32 ];
tsecho =:= irregular(32) [ 32 ];
}
COMPRESSED tsopt_irregular {
tsval =:= ts_lsb [ 8, 16, 24, 32 ];
tsecho =:= ts_lsb [ 8, 16, 24, 32 ];
}
}
sack_pure_lsb(base)
{
UNCOMPRESSED {
sack_field [ 32 ];
}
CONTROL {
ENFORCE(sack_field.CVALUE == (sack_field.UVALUE - base));
}
COMPRESSED lsb_15 {
ENFORCE(sack_field.CVALUE == sack_field.CVALUE <= 0x7fff);
discriminator =:= '0' [ 1 ];
sack_field [ 15 ];
<span class="grey">Pelletier, et al. Standards Track [Page 67]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-68" ></span>
<span class="grey"><a href="./rfc6846">RFC 6846</a> ROHC-TCP January 2013</span>
}
COMPRESSED lsb_22 {
ENFORCE(sack_field.CVALUE == sack_field.CVALUE <= 0x3fffff);
discriminator =:= '10' [ 2 ];
sack_field [ 22 ];
}
COMPRESSED lsb_29 {
ENFORCE(sack_field.CVALUE == sack_field.CVALUE <= 0x1fffffff);
discriminator =:= '110' [ 3 ];
sack_field [ 29 ];
}
COMPRESSED full_offset {
discriminator =:= '11111111' [ 8 ];
sack_field [ 32 ];
}
}
sack_block(reference)
{
UNCOMPRESSED {
block_start [ 32 ];
block_end [ 32 ];
}
COMPRESSED {
block_start =:=
sack_pure_lsb(reference) [ 16, 24, 32, 40 ];
block_end =:=
sack_pure_lsb(block_start.UVALUE) [ 16, 24, 32, 40 ];
}
}
// The value of the parameter is set to the ack_number value
// of the TCP header
tcp_opt_sack(ack_value)
{
UNCOMPRESSED {
type =:= uncompressed_value(8, 5) [ 8 ];
length [ 8 ];
block_1 [ 64 ];
block_2 [ 0, 64 ];
block_3 [ 0, 64 ];
block_4 [ 0, 64 ];
}
<span class="grey">Pelletier, et al. Standards Track [Page 68]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-69" ></span>
<span class="grey"><a href="./rfc6846">RFC 6846</a> ROHC-TCP January 2013</span>
DEFAULT {
length =:= static;
block_2 =:= uncompressed_value(0, 0);
block_3 =:= uncompressed_value(0, 0);
block_4 =:= uncompressed_value(0, 0);
}
COMPRESSED sack1_list_item {
discriminator =:= '00000001';
block_1 =:= sack_block(ack_value);
ENFORCE(length.UVALUE == 10);
}
COMPRESSED sack2_list_item {
discriminator =:= '00000010';
block_1 =:= sack_block(ack_value);
block_2 =:= sack_block(block_1.UVALUE && 0xFFFFFFFF);
ENFORCE(length.UVALUE == 18);
}
COMPRESSED sack3_list_item {
discriminator =:= '00000011';
block_1 =:= sack_block(ack_value);
block_2 =:= sack_block(block_1.UVALUE && 0xFFFFFFFF);
block_3 =:= sack_block(block_2.UVALUE && 0xFFFFFFFF);
ENFORCE(length.UVALUE == 26);
}
COMPRESSED sack4_list_item {
discriminator =:= '00000100';
block_1 =:= sack_block(ack_value);
block_2 =:= sack_block(block_1.UVALUE && 0xFFFFFFFF);
block_3 =:= sack_block(block_2.UVALUE && 0xFFFFFFFF);
block_4 =:= sack_block(block_3.UVALUE && 0xFFFFFFFF);
ENFORCE(length.UVALUE == 34);
}
COMPRESSED sack_unchanged_irregular {
discriminator =:= '00000000';
block_1 =:= static;
block_2 =:= static;
block_3 =:= static;
block_4 =:= static;
}
COMPRESSED sack1_irregular {
discriminator =:= '00000001';
block_1 =:= sack_block(ack_value);
<span class="grey">Pelletier, et al. Standards Track [Page 69]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-70" ></span>
<span class="grey"><a href="./rfc6846">RFC 6846</a> ROHC-TCP January 2013</span>
ENFORCE(length.UVALUE == 10);
}
COMPRESSED sack2_irregular {
discriminator =:= '00000010';
block_1 =:= sack_block(ack_value);
block_2 =:= sack_block(block_1.UVALUE && 0xFFFFFFFF);
ENFORCE(length.UVALUE == 18);
}
COMPRESSED sack3_irregular {
discriminator =:= '00000011';
block_1 =:= sack_block(ack_value);
block_2 =:= sack_block(block_1.UVALUE && 0xFFFFFFFF);
block_3 =:= sack_block(block_1.UVALUE && 0xFFFFFFFF);
ENFORCE(length.UVALUE == 26);
}
COMPRESSED sack4_irregular {
discriminator =:= '00000100';
block_1 =:= sack_block(ack_value);
block_2 =:= sack_block(block_1.UVALUE && 0xFFFFFFFF);
block_3 =:= sack_block(block_2.UVALUE && 0xFFFFFFFF);
block_4 =:= sack_block(block_3.UVALUE && 0xFFFFFFFF);
ENFORCE(length.UVALUE == 34);
}
}
tcp_opt_sack_permitted
{
UNCOMPRESSED {
type =:= uncompressed_value(8, 4) [ 8 ];
length =:= uncompressed_value(8, 2) [ 8 ];
}
COMPRESSED sack_permitted_list_item {
}
COMPRESSED sack_permitted_irregular {
}
}
tcp_opt_generic
{
UNCOMPRESSED {
type [ 8 ];
length_msb =:= uncompressed_value(1, 0) [ 1 ];
length_lsb [ 7 ];
<span class="grey">Pelletier, et al. Standards Track [Page 70]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-71" ></span>
<span class="grey"><a href="./rfc6846">RFC 6846</a> ROHC-TCP January 2013</span>
contents [ length_lsb.UVALUE*8-16 ];
}
CONTROL {
option_static [ 1 ];
}
DEFAULT {
type =:= static;
length_lsb =:= static;
contents =:= static;
}
COMPRESSED generic_list_item {
type =:= irregular(8) [ 8 ];
option_static =:= one_bit_choice [ 1 ];
length_lsb =:= irregular(7) [ 7 ];
contents =:=
irregular(length_lsb.UVALUE*8-16) [ length_lsb.UVALUE*8-16 ];
}
// Used when context of option has option_static set to one
COMPRESSED generic_static_irregular {
ENFORCE(option_static.UVALUE == 1);
}
// An item that can change, but currently is unchanged
COMPRESSED generic_stable_irregular {
discriminator =:= '11111111' [ 8 ];
ENFORCE(option_static.UVALUE == 0);
}
// An item that is assumed to change constantly.
// Length is not allowed to change here, since a length change is
// most likely to cause new NOPs or an EOL length change.
COMPRESSED generic_full_irregular {
discriminator =:= '00000000' [ 8 ];
contents =:=
irregular(length_lsb.UVALUE*8-16) [ length_lsb.UVALUE*8-16 ];
ENFORCE(option_static.UVALUE == 0);
}
}
tcp_list_presence_enc(presence)
{
UNCOMPRESSED {
tcp_options;
}
<span class="grey">Pelletier, et al. Standards Track [Page 71]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-72" ></span>
<span class="grey"><a href="./rfc6846">RFC 6846</a> ROHC-TCP January 2013</span>
COMPRESSED list_not_present {
tcp_options =:= static [ 0 ];
ENFORCE(presence == 0);
}
COMPRESSED list_present {
tcp_options =:= list_tcp_options [ VARIABLE ];
ENFORCE(presence == 1);
}
}
/////////////////////////////////////////////
// TCP Header
/////////////////////////////////////////////
port_replicate(flags)
{
UNCOMPRESSED {
port [ 16 ];
}
COMPRESSED port_static_enc {
port =:= static [ 0 ];
ENFORCE(flags == 0b00);
}
COMPRESSED port_lsb8 {
port =:= lsb(8, 64) [ 8 ];
ENFORCE(flags == 0b01);
}
COMPRESSED port_irr_enc {
port =:= irregular(16) [ 16 ];
ENFORCE(flags == 0b10);
}
}
tcp_irreg_ip_ecn(ip_inner_ecn)
{
UNCOMPRESSED {
ip_ecn_flags [ 2 ];
}
COMPRESSED ecn_present {
// This field does not exist in the uncompressed header
// and therefore cannot use uncompressed_value.
ip_ecn_flags =:=
compressed_value(2, ip_inner_ecn) [ 2 ];
<span class="grey">Pelletier, et al. Standards Track [Page 72]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-73" ></span>
<span class="grey"><a href="./rfc6846">RFC 6846</a> ROHC-TCP January 2013</span>
ENFORCE(ecn_used.UVALUE == 1);
}
COMPRESSED ecn_not_present {
ip_ecn_flags =:= static [ 0 ];
ENFORCE(ecn_used.UVALUE == 0);
}
}
rsf_index_enc
{
UNCOMPRESSED {
rsf_flag [ 3 ];
}
COMPRESSED none {
rsf_idx =:= '00' [ 2 ];
rsf_flag =:= uncompressed_value(3, 0x00);
}
COMPRESSED rst_only {
rsf_idx =:= '01' [ 2 ];
rsf_flag =:= uncompressed_value(3, 0x04);
}
COMPRESSED syn_only {
rsf_idx =:= '10' [ 2 ];
rsf_flag =:= uncompressed_value(3, 0x02);
}
COMPRESSED fin_only {
rsf_idx =:= '11' [ 2 ];
rsf_flag =:= uncompressed_value(3, 0x01);
}
}
optional_2bit_padding(used_flag)
{
UNCOMPRESSED {
}
COMPRESSED used {
padding =:= compressed_value(2, 0x0) [ 2 ];
ENFORCE(used_flag == 1);
}
COMPRESSED unused {
padding =:= compressed_value(0, 0x0);
<span class="grey">Pelletier, et al. Standards Track [Page 73]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-74" ></span>
<span class="grey"><a href="./rfc6846">RFC 6846</a> ROHC-TCP January 2013</span>
ENFORCE(used_flag == 0);
}
}
// ack_stride_value is the user-selected stride for scaling the
// TCP ack_number
// ip_inner_ecn is the value bound when processing the innermost
// IP header (ipv4 or ipv6 encoding method)
tcp(payload_size, ack_stride_value, ip_inner_ecn)
{
UNCOMPRESSED {
src_port [ 16 ];
dst_port [ 16 ];
seq_number [ 32 ];
ack_number [ 32 ];
data_offset [ 4 ];
tcp_res_flags [ 4 ];
tcp_ecn_flags [ 2 ];
urg_flag [ 1 ];
ack_flag [ 1 ];
psh_flag [ 1 ];
rsf_flags [ 3 ];
window [ 16 ];
checksum [ 16 ];
urg_ptr [ 16 ];
options [ (data_offset.UVALUE-5)*32 ];
}
CONTROL {
dummy_field_s =:= field_scaling(payload_size,
seq_number_scaled.UVALUE, seq_number.UVALUE,
seq_number_residue.UVALUE) [ 0 ];
dummy_field_a =:= field_scaling(ack_stride.UVALUE,
ack_number_scaled.UVALUE, ack_number.UVALUE,
ack_number_residue.UVALUE) [ 0 ];
ENFORCE(ack_stride.UVALUE == ack_stride_value);
}
INITIAL {
ack_stride =:= uncompressed_value(16, 0);
}
DEFAULT {
src_port =:= static;
dst_port =:= static;
seq_number =:= static;
ack_number =:= static;
data_offset =:= inferred_offset;
<span class="grey">Pelletier, et al. Standards Track [Page 74]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-75" ></span>
<span class="grey"><a href="./rfc6846">RFC 6846</a> ROHC-TCP January 2013</span>
tcp_res_flags =:= static;
tcp_ecn_flags =:= static;
urg_flag =:= static;
ack_flag =:= uncompressed_value(1, 1);
rsf_flags =:= uncompressed_value(3, 0);
window =:= static;
urg_ptr =:= static;
ack_stride =:= static;
ack_number_scaled =:= static;
seq_number_scaled =:= static;
ack_number_residue =:= static;
seq_number_residue =:= static;
}
COMPRESSED tcp_static {
src_port =:= irregular(16) [ 16 ];
dst_port =:= irregular(16) [ 16 ];
}
COMPRESSED tcp_dynamic {
ecn_used =:= one_bit_choice [ 1 ];
ack_stride_flag =:= irregular(1) [ 1 ];
ack_zero =:= irregular(1) [ 1 ];
urp_zero =:= irregular(1) [ 1 ];
tcp_res_flags =:= irregular(4) [ 4 ];
tcp_ecn_flags =:= irregular(2) [ 2 ];
urg_flag =:= irregular(1) [ 1 ];
ack_flag =:= irregular(1) [ 1 ];
psh_flag =:= irregular(1) [ 1 ];
rsf_flags =:= irregular(3) [ 3 ];
msn =:= irregular(16) [ 16 ];
seq_number =:= irregular(32) [ 32 ];
ack_number =:=
zero_or_irreg(ack_zero.CVALUE, 32) [ 0, 32 ];
window =:= irregular(16) [ 16 ];
checksum =:= irregular(16) [ 16 ];
urg_ptr =:=
zero_or_irreg(urp_zero.CVALUE, 16) [ 0, 16 ];
ack_stride =:=
static_or_irreg(ack_stride_flag.CVALUE, 16) [ 0, 16 ];
options =:= list_tcp_options [ VARIABLE ];
}
COMPRESSED tcp_replicate {
reserved =:= '0' [ 1 ];
window_presence =:= irregular(1) [ 1 ];
list_present =:= irregular(1) [ 1 ];
src_port_presence =:= irregular(2) [ 2 ];
<span class="grey">Pelletier, et al. Standards Track [Page 75]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-76" ></span>
<span class="grey"><a href="./rfc6846">RFC 6846</a> ROHC-TCP January 2013</span>
dst_port_presence =:= irregular(2) [ 2 ];
ack_stride_flag =:= irregular(1) [ 1 ];
ack_presence =:= irregular(1) [ 1 ];
urp_presence =:= irregular(1) [ 1 ];
urg_flag =:= irregular(1) [ 1 ];
ack_flag =:= irregular(1) [ 1 ];
psh_flag =:= irregular(1) [ 1 ];
rsf_flags =:= rsf_index_enc [ 2 ];
ecn_used =:= one_bit_choice [ 1 ];
msn =:= irregular(16) [ 16 ];
seq_number =:= irregular(32) [ 32 ];
src_port =:=
port_replicate(src_port_presence) [ 0, 8, 16 ];
dst_port =:=
port_replicate(dst_port_presence) [ 0, 8, 16 ];
window =:=
static_or_irreg(window_presence, 16) [ 0, 16 ];
urg_point =:=
static_or_irreg(urp_presence, 16) [ 0, 16 ];
ack_number =:=
static_or_irreg(ack_presence, 32) [ 0, 32 ];
ecn_padding =:=
optional_2bit_padding(ecn_used.CVALUE) [ 0, 2 ];
tcp_res_flags =:=
static_or_irreg(ecn_used.CVALUE, 4) [ 0, 4 ];
tcp_ecn_flags =:=
static_or_irreg(ecn_used.CVALUE, 2) [ 0, 2 ];
checksum =:= irregular(16) [ 16 ];
ack_stride =:=
static_or_irreg(ack_stride_flag.CVALUE, 16) [ 0, 16 ];
options =:=
tcp_list_presence_enc(list_present.CVALUE) [ VARIABLE ];
}
COMPRESSED tcp_irregular {
ip_ecn_flags =:= tcp_irreg_ip_ecn(ip_inner_ecn) [ 0, 2 ];
tcp_res_flags =:=
static_or_irreg(ecn_used.CVALUE, 4) [ 0, 4 ];
tcp_ecn_flags =:=
static_or_irreg(ecn_used.CVALUE, 2) [ 0, 2 ];
checksum =:= irregular(16) [ 16 ];
}
}
///////////////////////////////////////////////////
// Encoding methods used in compressed base headers
///////////////////////////////////////////////////
<span class="grey">Pelletier, et al. Standards Track [Page 76]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-77" ></span>
<span class="grey"><a href="./rfc6846">RFC 6846</a> ROHC-TCP January 2013</span>
dscp_enc(flag)
{
UNCOMPRESSED {
dscp [ 6 ];
}
COMPRESSED static_enc {
dscp =:= static [ 0 ];
ENFORCE(flag == 0);
}
COMPRESSED irreg {
dscp =:= irregular(6) [ 6 ];
padding =:= compressed_value(2, 0) [ 2 ];
ENFORCE(flag == 1);
}
}
ip_id_lsb(behavior, k, p)
{
UNCOMPRESSED {
ip_id [ 16 ];
}
CONTROL {
ip_id_nbo [ 16 ];
}
COMPRESSED nbo {
ip_id_offset =:= lsb(k, p) [ k ];
ENFORCE(behavior == IP_ID_BEHAVIOR_SEQUENTIAL);
ENFORCE(ip_id_offset.UVALUE == ip_id.UVALUE - msn.UVALUE);
}
COMPRESSED non_nbo {
ip_id_offset =:= lsb(k, p) [ k ];
ENFORCE(behavior == IP_ID_BEHAVIOR_SEQUENTIAL_SWAPPED);
ENFORCE(ip_id_nbo.UVALUE ==
(ip_id.UVALUE / 256) + (ip_id.UVALUE % 256) * 256);
ENFORCE(ip_id_nbo.ULENGTH == 16);
ENFORCE(ip_id_offset.UVALUE == ip_id_nbo.UVALUE - msn.UVALUE);
}
}
optional_ip_id_lsb(behavior, indicator)
{
UNCOMPRESSED {
ip_id [ 16 ];
<span class="grey">Pelletier, et al. Standards Track [Page 77]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-78" ></span>
<span class="grey"><a href="./rfc6846">RFC 6846</a> ROHC-TCP January 2013</span>
}
COMPRESSED short {
ip_id =:= ip_id_lsb(behavior, 8, 3) [ 8 ];
ENFORCE((behavior == IP_ID_BEHAVIOR_SEQUENTIAL) ||
(behavior == IP_ID_BEHAVIOR_SEQUENTIAL_SWAPPED));
ENFORCE(indicator == 0);
}
COMPRESSED long {
ip_id =:= irregular(16) [ 16 ];
ENFORCE((behavior == IP_ID_BEHAVIOR_SEQUENTIAL) ||
(behavior == IP_ID_BEHAVIOR_SEQUENTIAL_SWAPPED));
ENFORCE(indicator == 1);
ENFORCE(ip_id_offset.UVALUE == ip_id.UVALUE - msn.UVALUE);
}
COMPRESSED not_present {
ENFORCE((behavior == IP_ID_BEHAVIOR_RANDOM) ||
(behavior == IP_ID_BEHAVIOR_ZERO));
}
}
dont_fragment(version)
{
UNCOMPRESSED {
df [ 1 ];
}
COMPRESSED v4 {
df =:= irregular(1) [ 1 ];
ENFORCE(version == 4);
}
COMPRESSED v6 {
df =:= compressed_value(1, 0) [ 1 ];
ENFORCE(version == 6);
}
}
//////////////////////////////////
// Actual start of compressed packet formats
// Important note:
// The base header is the compressed representation
// of the innermost IP header AND the TCP header.
//////////////////////////////////
// ttl_irregular_chain_flag is set by the user if the TTL/Hop Limit
// of an outer header has changed. The same value must be passed as
<span class="grey">Pelletier, et al. Standards Track [Page 78]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-79" ></span>
<span class="grey"><a href="./rfc6846">RFC 6846</a> ROHC-TCP January 2013</span>
// an argument to the ipv4/ipv6 encoding methods when extracting
// the irregular chain items.
co_baseheader(payload_size, ack_stride_value,
ttl_irregular_chain_flag, ip_id_behavior_value)
{
UNCOMPRESSED v4 {
outer_headers =:= baseheader_outer_headers [ VARIABLE ];
version =:= uncompressed_value(4, 4) [ 4 ];
header_length =:= uncompressed_value(4, 5) [ 4 ];
dscp [ 6 ];
ip_ecn_flags [ 2 ];
length [ 16 ];
ip_id [ 16 ];
rf =:= uncompressed_value(1, 0) [ 1 ];
df [ 1 ];
mf =:= uncompressed_value(1, 0) [ 1 ];
frag_offset =:= uncompressed_value(13, 0) [ 13 ];
ttl_hopl [ 8 ];
next_header [ 8 ];
checksum [ 16 ];
src_addr [ 32 ];
dest_addr [ 32 ];
extension_headers =:= baseheader_extension_headers [ VARIABLE ];
src_port [ 16 ];
dest_port [ 16 ];
seq_number [ 32 ];
ack_number [ 32 ];
data_offset [ 4 ];
tcp_res_flags [ 4 ];
tcp_ecn_flags [ 2 ];
urg_flag [ 1 ];
ack_flag [ 1 ];
psh_flag [ 1 ];
rsf_flags [ 3 ];
window [ 16 ];
tcp_checksum [ 16 ];
urg_ptr [ 16 ];
options [ (data_offset.UVALUE-5)*32 ];
}
UNCOMPRESSED v6 {
ENFORCE(ip_id_behavior_innermost.UVALUE == IP_ID_BEHAVIOR_RANDOM);
outer_headers =:= baseheader_outer_headers [ VARIABLE ];
version =:= uncompressed_value(4, 6) [ 4 ];
dscp [ 6 ];
ip_ecn_flags [ 2 ];
flow_label [ 20 ];
payload_length [ 16 ];
<span class="grey">Pelletier, et al. Standards Track [Page 79]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-80" ></span>
<span class="grey"><a href="./rfc6846">RFC 6846</a> ROHC-TCP January 2013</span>
next_header [ 8 ];
ttl_hopl [ 8 ];
src_addr [ 128 ];
dest_addr [ 128 ];
extension_headers =:= baseheader_extension_headers [ VARIABLE ];
src_port [ 16 ];
dest_port [ 16 ];
seq_number [ 32 ];
ack_number [ 32 ];
data_offset [ 4 ];
tcp_res_flags [ 4 ];
tcp_ecn_flags [ 2 ];
urg_flag [ 1 ];
ack_flag [ 1 ];
psh_flag [ 1 ];
rsf_flags [ 3 ];
window [ 16 ];
tcp_checksum [ 16 ];
urg_ptr [ 16 ];
options [ (data_offset.UVALUE-5)*32 ];
df =:= uncompressed_value(0,0) [ 0 ];
ip_id =:= uncompressed_value(0,0) [ 0 ];
}
CONTROL {
dummy_field_s =:= field_scaling(payload_size,
seq_number_scaled.UVALUE, seq_number.UVALUE,
seq_number_residue.UVALUE) [ 0 ];
dummy_field_a =:= field_scaling(ack_stride.UVALUE,
ack_number_scaled.UVALUE, ack_number.UVALUE,
ack_number_residue.UVALUE) [ 0 ];
ENFORCE(ack_stride.UVALUE == ack_stride_value);
ENFORCE(ip_id_behavior_innermost.UVALUE == ip_id_behavior_value);
}
INITIAL {
ack_stride =:= uncompressed_value(16, 0);
}
DEFAULT {
tcp_ecn_flags =:= static;
data_offset =:= inferred_offset;
tcp_res_flags =:= static;
rsf_flags =:= uncompressed_value(3, 0);
dest_port =:= static;
dscp =:= static;
src_port =:= static;
urg_flag =:= uncompressed_value(1, 0);
<span class="grey">Pelletier, et al. Standards Track [Page 80]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-81" ></span>
<span class="grey"><a href="./rfc6846">RFC 6846</a> ROHC-TCP January 2013</span>
window =:= static;
dest_addr =:= static;
version =:= static;
ttl_hopl =:= static;
src_addr =:= static;
df =:= static;
ack_number =:= static;
urg_ptr =:= static;
seq_number =:= static;
ack_flag =:= uncompressed_value(1, 1);
// The default for "options" is case 2) and 3) from
// the list in <a href="#section-6.3.1">Section 6.3.1</a> (i.e., nothing present in the
// baseheader itself).
payload_length =:= inferred_ip_v6_length;
checksum =:= inferred_ip_v4_header_checksum;
length =:= inferred_ip_v4_length;
flow_label =:= static;
next_header =:= static;
ip_ecn_flags =:= static;
// The tcp_checksum has no default,
// it is considered a part of tcp_irregular
ip_id_behavior_innermost =:= static;
ecn_used =:= static;
ack_stride =:= static;
ack_number_scaled =:= static;
seq_number_scaled =:= static;
ack_number_residue =:= static;
seq_number_residue =:= static;
// Default is to have no TTL in irregular chain
// Can only be nonzero if co_common is used
ENFORCE(ttl_irregular_chain_flag == 0);
}
////////////////////////////////////////////
// Common compressed packet format
////////////////////////////////////////////
COMPRESSED co_common {
discriminator =:= '1111101' [ 7 ];
ttl_hopl_outer_flag =:=
compressed_value(1, ttl_irregular_chain_flag) [ 1 ];
ack_flag =:= irregular(1) [ 1 ];
psh_flag =:= irregular(1) [ 1 ];
rsf_flags =:= rsf_index_enc [ 2 ];
msn =:= lsb(4, 4) [ 4 ];
seq_indicator =:= irregular(2) [ 2 ];
ack_indicator =:= irregular(2) [ 2 ];
<span class="grey">Pelletier, et al. Standards Track [Page 81]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-82" ></span>
<span class="grey"><a href="./rfc6846">RFC 6846</a> ROHC-TCP January 2013</span>
ack_stride_indicator =:= irregular(1) [ 1 ];
window_indicator =:= irregular(1) [ 1 ];
ip_id_indicator =:= irregular(1) [ 1 ];
urg_ptr_present =:= irregular(1) [ 1 ];
reserved =:= compressed_value(1, 0) [ 1 ];
ecn_used =:= one_bit_choice [ 1 ];
dscp_present =:= irregular(1) [ 1 ];
ttl_hopl_present =:= irregular(1) [ 1 ];
list_present =:= irregular(1) [ 1 ];
ip_id_behavior_innermost =:= irregular(2) [ 2 ];
urg_flag =:= irregular(1) [ 1 ];
df =:= dont_fragment(version.UVALUE) [ 1 ];
header_crc =:= crc7(THIS.UVALUE, THIS.ULENGTH) [ 7 ];
seq_number =:=
variable_length_32_enc(seq_indicator.CVALUE) [ 0, 8, 16, 32 ];
ack_number =:=
variable_length_32_enc(ack_indicator.CVALUE) [ 0, 8, 16, 32 ];
ack_stride =:=
static_or_irreg(ack_stride_indicator.CVALUE, 16) [ 0, 16 ];
window =:=
static_or_irreg(window_indicator.CVALUE, 16) [ 0, 16 ];
ip_id =:=
optional_ip_id_lsb(ip_id_behavior_innermost.UVALUE,
ip_id_indicator.CVALUE) [ 0, 8, 16 ];
urg_ptr =:=
static_or_irreg(urg_ptr_present.CVALUE, 16) [ 0, 16 ];
dscp =:=
dscp_enc(dscp_present.CVALUE) [ 0, 8 ];
ttl_hopl =:=
static_or_irreg(ttl_hopl_present.CVALUE, 8) [ 0, 8 ];
options =:=
tcp_list_presence_enc(list_present.CVALUE) [ VARIABLE ];
}
// Send LSBs of sequence number
COMPRESSED rnd_1 {
discriminator =:= '101110' [ 6 ];
seq_number =:= lsb(18, 65535) [ 18 ];
msn =:= lsb(4, 4) [ 4 ];
psh_flag =:= irregular(1) [ 1 ];
header_crc =:= crc3(THIS.UVALUE, THIS.ULENGTH) [ 3 ];
ENFORCE((ip_id_behavior_innermost.UVALUE ==
IP_ID_BEHAVIOR_RANDOM) ||
(ip_id_behavior_innermost.UVALUE == IP_ID_BEHAVIOR_ZERO));
}
// Send scaled sequence number LSBs
COMPRESSED rnd_2 {
<span class="grey">Pelletier, et al. Standards Track [Page 82]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-83" ></span>
<span class="grey"><a href="./rfc6846">RFC 6846</a> ROHC-TCP January 2013</span>
discriminator =:= '1100' [ 4 ];
seq_number_scaled =:= lsb(4, 7) [ 4 ];
msn =:= lsb(4, 4) [ 4 ];
psh_flag =:= irregular(1) [ 1 ];
header_crc =:= crc3(THIS.UVALUE, THIS.ULENGTH) [ 3 ];
ENFORCE(payload_size != 0);
ENFORCE((ip_id_behavior_innermost.UVALUE ==
IP_ID_BEHAVIOR_RANDOM) ||
(ip_id_behavior_innermost.UVALUE == IP_ID_BEHAVIOR_ZERO));
}
// Send acknowledgment number LSBs
COMPRESSED rnd_3 {
discriminator =:= '0' [ 1 ];
ack_number =:= lsb(15, 8191) [ 15 ];
msn =:= lsb(4, 4) [ 4 ];
psh_flag =:= irregular(1) [ 1 ];
header_crc =:= crc3(THIS.UVALUE, THIS.ULENGTH) [ 3 ];
ENFORCE((ip_id_behavior_innermost.UVALUE ==
IP_ID_BEHAVIOR_RANDOM) ||
(ip_id_behavior_innermost.UVALUE == IP_ID_BEHAVIOR_ZERO));
}
// Send acknowledgment number scaled
COMPRESSED rnd_4 {
discriminator =:= '1101' [ 4 ];
ack_number_scaled =:= lsb(4, 3) [ 4 ];
msn =:= lsb(4, 4) [ 4 ];
psh_flag =:= irregular(1) [ 1 ];
header_crc =:= crc3(THIS.UVALUE, THIS.ULENGTH) [ 3 ];
ENFORCE(ack_stride.UVALUE != 0);
ENFORCE((ip_id_behavior_innermost.UVALUE ==
IP_ID_BEHAVIOR_RANDOM) ||
(ip_id_behavior_innermost.UVALUE == IP_ID_BEHAVIOR_ZERO));
}
// Send ACK and sequence number
COMPRESSED rnd_5 {
discriminator =:= '100' [ 3 ];
psh_flag =:= irregular(1) [ 1 ];
msn =:= lsb(4, 4) [ 4 ];
header_crc =:= crc3(THIS.UVALUE, THIS.ULENGTH) [ 3 ];
seq_number =:= lsb(14, 8191) [ 14 ];
ack_number =:= lsb(15, 8191) [ 15 ];
ENFORCE((ip_id_behavior_innermost.UVALUE ==
IP_ID_BEHAVIOR_RANDOM) ||
(ip_id_behavior_innermost.UVALUE == IP_ID_BEHAVIOR_ZERO));
}
<span class="grey">Pelletier, et al. Standards Track [Page 83]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-84" ></span>
<span class="grey"><a href="./rfc6846">RFC 6846</a> ROHC-TCP January 2013</span>
// Send both ACK and scaled sequence number LSBs
COMPRESSED rnd_6 {
discriminator =:= '1010' [ 4 ];
header_crc =:= crc3(THIS.UVALUE, THIS.ULENGTH) [ 3 ];
psh_flag =:= irregular(1) [ 1 ];
ack_number =:= lsb(16, 16383) [ 16 ];
msn =:= lsb(4, 4) [ 4 ];
seq_number_scaled =:= lsb(4, 7) [ 4 ];
ENFORCE(payload_size != 0);
ENFORCE((ip_id_behavior_innermost.UVALUE ==
IP_ID_BEHAVIOR_RANDOM) ||
(ip_id_behavior_innermost.UVALUE == IP_ID_BEHAVIOR_ZERO));
}
// Send ACK and window
COMPRESSED rnd_7 {
discriminator =:= '101111' [ 6 ];
ack_number =:= lsb(18, 65535) [ 18 ];
window =:= irregular(16) [ 16 ];
msn =:= lsb(4, 4) [ 4 ];
psh_flag =:= irregular(1) [ 1 ];
header_crc =:= crc3(THIS.UVALUE, THIS.ULENGTH) [ 3 ];
ENFORCE((ip_id_behavior_innermost.UVALUE ==
IP_ID_BEHAVIOR_RANDOM) ||
(ip_id_behavior_innermost.UVALUE == IP_ID_BEHAVIOR_ZERO));
}
// An extended packet type for seldom-changing fields
// Can send LSBs of TTL, RSF flags, change ECN behavior, and
// options list
COMPRESSED rnd_8 {
discriminator =:= '10110' [ 5 ];
rsf_flags =:= rsf_index_enc [ 2 ];
list_present =:= irregular(1) [ 1 ];
header_crc =:= crc7(THIS.UVALUE, THIS.ULENGTH) [ 7 ];
msn =:= lsb(4, 4) [ 4 ];
psh_flag =:= irregular(1) [ 1 ];
ttl_hopl =:= lsb(3, 3) [ 3 ];
ecn_used =:= one_bit_choice [ 1 ];
seq_number =:= lsb(16, 65535) [ 16 ];
ack_number =:= lsb(16, 16383) [ 16 ];
options =:=
tcp_list_presence_enc(list_present.CVALUE) [ VARIABLE ];
ENFORCE((ip_id_behavior_innermost.UVALUE ==
IP_ID_BEHAVIOR_RANDOM) ||
(ip_id_behavior_innermost.UVALUE == IP_ID_BEHAVIOR_ZERO));
}
<span class="grey">Pelletier, et al. Standards Track [Page 84]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-85" ></span>
<span class="grey"><a href="./rfc6846">RFC 6846</a> ROHC-TCP January 2013</span>
// Send LSBs of sequence number
COMPRESSED seq_1 {
discriminator =:= '1010' [ 4 ];
ip_id =:= ip_id_lsb(ip_id_behavior_innermost.UVALUE, 4, 3) [ 4 ];
seq_number =:= lsb(16, 32767) [ 16 ];
msn =:= lsb(4, 4) [ 4 ];
psh_flag =:= irregular(1) [ 1 ];
header_crc =:= crc3(THIS.UVALUE, THIS.ULENGTH) [ 3 ];
ENFORCE((ip_id_behavior_innermost.UVALUE ==
IP_ID_BEHAVIOR_SEQUENTIAL) ||
(ip_id_behavior_innermost.UVALUE ==
IP_ID_BEHAVIOR_SEQUENTIAL_SWAPPED));
}
// Send scaled sequence number LSBs
COMPRESSED seq_2 {
discriminator =:= '11010' [ 5 ];
ip_id =:=
ip_id_lsb(ip_id_behavior_innermost.UVALUE, 7, 3) [ 7 ];
seq_number_scaled =:= lsb(4, 7) [ 4 ];
msn =:= lsb(4, 4) [ 4 ];
psh_flag =:= irregular(1) [ 1 ];
header_crc =:= crc3(THIS.UVALUE, THIS.ULENGTH) [ 3 ];
ENFORCE(payload_size != 0);
ENFORCE((ip_id_behavior_innermost.UVALUE ==
IP_ID_BEHAVIOR_SEQUENTIAL) ||
(ip_id_behavior_innermost.UVALUE ==
IP_ID_BEHAVIOR_SEQUENTIAL_SWAPPED));
}
// Send acknowledgment number LSBs
COMPRESSED seq_3 {
discriminator =:= '1001' [ 4 ];
ip_id =:= ip_id_lsb(ip_id_behavior_innermost.UVALUE, 4, 3) [ 4 ];
ack_number =:= lsb(16, 16383) [ 16 ];
msn =:= lsb(4, 4) [ 4 ];
psh_flag =:= irregular(1) [ 1 ];
header_crc =:= crc3(THIS.UVALUE, THIS.ULENGTH) [ 3 ];
ENFORCE((ip_id_behavior_innermost.UVALUE ==
IP_ID_BEHAVIOR_SEQUENTIAL) ||
(ip_id_behavior_innermost.UVALUE ==
IP_ID_BEHAVIOR_SEQUENTIAL_SWAPPED));
}
// Send scaled acknowledgment number scaled
COMPRESSED seq_4 {
discriminator =:= '0' [ 1 ];
ack_number_scaled =:= lsb(4, 3) [ 4 ];
<span class="grey">Pelletier, et al. Standards Track [Page 85]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-86" ></span>
<span class="grey"><a href="./rfc6846">RFC 6846</a> ROHC-TCP January 2013</span>
// Due to having very few ip_id bits, no negative offset
ip_id =:= ip_id_lsb(ip_id_behavior_innermost.UVALUE, 3, 1) [ 3 ];
msn =:= lsb(4, 4) [ 4 ];
psh_flag =:= irregular(1) [ 1 ];
header_crc =:= crc3(THIS.UVALUE, THIS.ULENGTH) [ 3 ];
ENFORCE(ack_stride.UVALUE != 0);
ENFORCE((ip_id_behavior_innermost.UVALUE ==
IP_ID_BEHAVIOR_SEQUENTIAL) ||
(ip_id_behavior_innermost.UVALUE ==
IP_ID_BEHAVIOR_SEQUENTIAL_SWAPPED));
}
// Send ACK and sequence number
COMPRESSED seq_5 {
discriminator =:= '1000' [ 4 ];
ip_id =:= ip_id_lsb(ip_id_behavior_innermost.UVALUE, 4, 3) [ 4 ];
ack_number =:= lsb(16, 16383) [ 16 ];
seq_number =:= lsb(16, 32767) [ 16 ];
msn =:= lsb(4, 4) [ 4 ];
psh_flag =:= irregular(1) [ 1 ];
header_crc =:= crc3(THIS.UVALUE, THIS.ULENGTH) [ 3 ];
ENFORCE((ip_id_behavior_innermost.UVALUE ==
IP_ID_BEHAVIOR_SEQUENTIAL) ||
(ip_id_behavior_innermost.UVALUE ==
IP_ID_BEHAVIOR_SEQUENTIAL_SWAPPED));
}
// Send both ACK and scaled sequence number LSBs
COMPRESSED seq_6 {
discriminator =:= '11011' [ 5 ];
seq_number_scaled =:= lsb(4, 7) [ 4 ];
ip_id =:= ip_id_lsb(ip_id_behavior_innermost.UVALUE, 7, 3) [ 7 ];
ack_number =:= lsb(16, 16383) [ 16 ];
msn =:= lsb(4, 4) [ 4 ];
psh_flag =:= irregular(1) [ 1 ];
header_crc =:= crc3(THIS.UVALUE, THIS.ULENGTH) [ 3 ];
ENFORCE(payload_size != 0);
ENFORCE((ip_id_behavior_innermost.UVALUE ==
IP_ID_BEHAVIOR_SEQUENTIAL) ||
(ip_id_behavior_innermost.UVALUE ==
IP_ID_BEHAVIOR_SEQUENTIAL_SWAPPED));
}
// Send ACK and window
COMPRESSED seq_7 {
discriminator =:= '1100' [ 4 ];
window =:= lsb(15, 16383) [ 15 ];
ip_id =:= ip_id_lsb(ip_id_behavior_innermost.UVALUE, 5, 3) [ 5 ];
<span class="grey">Pelletier, et al. Standards Track [Page 86]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-87" ></span>
<span class="grey"><a href="./rfc6846">RFC 6846</a> ROHC-TCP January 2013</span>
ack_number =:= lsb(16, 32767) [ 16 ];
msn =:= lsb(4, 4) [ 4 ];
psh_flag =:= irregular(1) [ 1 ];
header_crc =:= crc3(THIS.UVALUE, THIS.ULENGTH) [ 3 ];
ENFORCE((ip_id_behavior_innermost.UVALUE ==
IP_ID_BEHAVIOR_SEQUENTIAL) ||
(ip_id_behavior_innermost.UVALUE ==
IP_ID_BEHAVIOR_SEQUENTIAL_SWAPPED));
}
// An extended packet type for seldom-changing fields
// Can send LSBs of TTL, RSF flags, change ECN behavior, and
// options list
COMPRESSED seq_8 {
discriminator =:= '1011' [ 4 ];
ip_id =:= ip_id_lsb(ip_id_behavior_innermost.UVALUE, 4, 3) [ 4 ];
list_present =:= irregular(1) [ 1 ];
header_crc =:= crc7(THIS.UVALUE, THIS.ULENGTH) [ 7 ];
msn =:= lsb(4, 4) [ 4 ];
psh_flag =:= irregular(1) [ 1 ];
ttl_hopl =:= lsb(3, 3) [ 3 ];
ecn_used =:= one_bit_choice [ 1 ];
ack_number =:= lsb(15, 8191) [ 15 ];
rsf_flags =:= rsf_index_enc [ 2 ];
seq_number =:= lsb(14, 8191) [ 14 ];
options =:=
tcp_list_presence_enc(list_present.CVALUE) [ VARIABLE ];
ENFORCE((ip_id_behavior_innermost.UVALUE ==
IP_ID_BEHAVIOR_SEQUENTIAL) ||
(ip_id_behavior_innermost.UVALUE ==
IP_ID_BEHAVIOR_SEQUENTIAL_SWAPPED));
}
}
<span class="grey">Pelletier, et al. Standards Track [Page 87]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-88" ></span>
<span class="grey"><a href="./rfc6846">RFC 6846</a> ROHC-TCP January 2013</span>
<span class="h3"><a class="selflink" id="section-8.3" href="#section-8.3">8.3</a>. Feedback Formats and Options</span>
<span class="h4"><a class="selflink" id="section-8.3.1" href="#section-8.3.1">8.3.1</a>. Feedback Formats</span>
This section describes the feedback formats for the ROHC-TCP profile,
following the general ROHC feedback format described in <a href="./rfc5795#section-5.2.4">Section 5.2.4
of [RFC5795]</a>.
All feedback formats carry a field labeled MSN. The MSN field
contains LSBs of the MSN control field described in <a href="#section-6.1.1">Section 6.1.1</a>.
The sequence number to use is the MSN corresponding to the last
header that was successfully CRC-8 validated or CRC verified.
FEEDBACK-1
0 1 2 3 4 5 6 7
+---+---+---+---+---+---+---+---+
| MSN |
+---+---+---+---+---+---+---+---+
MSN: The LSB-encoded master sequence number.
A FEEDBACK-1 is an ACK. In order to send a NACK or a STATIC-NACK,
FEEDBACK-2 must be used.
FEEDBACK-2
0 1 2 3 4 5 6 7
+---+---+---+---+---+---+---+---+
|Acktype| MSN |
+---+---+---+---+---+---+---+---+
| MSN |
+---+---+---+---+---+---+---+---+
| CRC |
+---+---+---+---+---+---+---+---+
/ Feedback options /
+---+---+---+---+---+---+---+---+
Acktype:
0 = ACK
1 = NACK
2 = STATIC-NACK
3 is reserved (MUST NOT be used for parsability)
<span class="grey">Pelletier, et al. Standards Track [Page 88]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-89" ></span>
<span class="grey"><a href="./rfc6846">RFC 6846</a> ROHC-TCP January 2013</span>
MSN: The LSB-encoded master sequence number.
CRC: 8-bit CRC computed over the entire feedback element (as
defined in <a href="./rfc5795#section-5.3.1.1">Section 5.3.1.1 of [RFC5795]</a>). For the purpose of
computing the CRC, the CRC field is zero. The CRC is calculated
using the polynomial defined in [<a href="./rfc5795" title=""The RObust Header Compression (ROHC) Framework"">RFC5795</a>].
Feedback options: A variable number of feedback options, see
<a href="#section-8.3.2">Section 8.3.2</a>. Options may appear in any order.
A FEEDBACK-2 of type NACK or STATIC-NACK is always implicitly an
acknowledgment for a successfully decompressed packet, which packet
corresponds to the MSN of the feedback element, unless the MSN-NOT-
VALID option (<a href="#section-8.3.2.2">Section 8.3.2.2</a>) appears in the feedback element.
The FEEDBACK-2 format always carries a CRC and is thus more robust
than the FEEDBACK-1 format. When receiving FEEDBACK-2, the
compressor MUST verify the information by computing the CRC and by
comparing the result with the CRC carried in the feedback format. If
the two are not identical, the feedback element MUST be discarded.
<span class="h4"><a class="selflink" id="section-8.3.2" href="#section-8.3.2">8.3.2</a>. Feedback Options</span>
A ROHC-TCP feedback option has variable length and the following
general format:
0 1 2 3 4 5 6 7
+---+---+---+---+---+---+---+---+
| Opt Type | Opt Len |
+---+---+---+---+---+---+---+---+
/ option data / Opt Length (octets)
+---+---+---+---+---+---+---+---+
Each ROHC-TCP feedback option can appear at most once within a
FEEDBACK-2.
<span class="h5"><a class="selflink" id="section-8.3.2.1" href="#section-8.3.2.1">8.3.2.1</a>. The REJECT Option</span>
The REJECT option informs the compressor that the decompressor does
not have sufficient resources to handle the flow.
+---+---+---+---+---+---+---+---+
| Opt Type = 2 | Opt Len = 0 |
+---+---+---+---+---+---+---+---+
<span class="grey">Pelletier, et al. Standards Track [Page 89]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-90" ></span>
<span class="grey"><a href="./rfc6846">RFC 6846</a> ROHC-TCP January 2013</span>
When receiving a REJECT option, the compressor MUST stop compressing
the packet flow, and SHOULD refrain from attempting to increase the
number of compressed packet flows for some time. The REJECT option
MUST NOT appear more than once in the FEEDBACK-2 format; otherwise,
the compressor MUST discard the entire feedback element.
<span class="h5"><a class="selflink" id="section-8.3.2.2" href="#section-8.3.2.2">8.3.2.2</a>. The MSN-NOT-VALID Option</span>
The MSN-NOT-VALID option indicates that the MSN of the feedback is
not valid.
+---+---+---+---+---+---+---+---+
| Opt Type = 3 | Opt Len = 0 |
+---+---+---+---+---+---+---+---+
A compressor MUST ignore the MSN of the feedback element when this
option is present. Consequently, a NACK or a STATIC-NACK feedback
type sent with the MSN-NOT-VALID option is equivalent to a STATIC-
NACK with respect to the semantics of the feedback message.
The MSN-NOT-VALID option MUST NOT appear more than once in the
FEEDBACK-2 format and MUST NOT appear in the same feedback element as
the MSN option; otherwise, the compressor MUST discard the entire
feedback element.
<span class="h5"><a class="selflink" id="section-8.3.2.3" href="#section-8.3.2.3">8.3.2.3</a>. The MSN Option</span>
The MSN option provides 2 additional bits of MSN.
+---+---+---+---+---+---+---+---+
| Opt Type = 4 | Opt Len = 1 |
+---+---+---+---+---+---+---+---+
| MSN | Reserved |
+---+---+---+---+---+---+---+---+
These 2 bits are the least significant bits of the MSN and are thus
concatenated with the 14 bits already present in the FEEDBACK-2
format.
The MSN option MUST NOT appear more than once in the FEEDBACK-2
format and MUST NOT appear in the same feedback element as the MSN-
NOT-VALID option; otherwise, the compressor MUST discard the entire
feedback element.
<span class="grey">Pelletier, et al. Standards Track [Page 90]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-91" ></span>
<span class="grey"><a href="./rfc6846">RFC 6846</a> ROHC-TCP January 2013</span>
<span class="h5"><a class="selflink" id="section-8.3.2.4" href="#section-8.3.2.4">8.3.2.4</a>. The CONTEXT_MEMORY Feedback Option</span>
The CONTEXT_MEMORY option means that the decompressor does not have
sufficient memory resources to handle the context of the packet flow,
as the flow is currently compressed.
0 1 2 3 4 5 6 7
+---+---+---+---+---+---+---+---+
| Opt Type = 9 | Opt Len = 0 |
+---+---+---+---+---+---+---+---+
When receiving a CONTEXT_MEMORY option, the compressor SHOULD take
actions to compress the packet flow in a way that requires less
decompressor memory resources, or stop compressing the packet flow.
The CONTEXT_MEMORY option MUST NOT appear more than once in the
FEEDBACK-2 format; otherwise, the compressor MUST discard the entire
feedback element.
<span class="h5"><a class="selflink" id="section-8.3.2.5" href="#section-8.3.2.5">8.3.2.5</a>. Unknown Option Types</span>
If an option type unknown to the compressor is encountered, the
compressor MUST continue parsing the rest of the FEEDBACK element,
which is possible since the length of the option is explicit, but
MUST otherwise ignore the unknown option.
<span class="h2"><a class="selflink" id="section-9" href="#section-9">9</a>. Changes from <a href="./rfc4996">RFC 4996</a></span>
This RFC revises <a href="./rfc4996">RFC 4996</a>. It is mostly backwards-compatible with
<a href="./rfc4996">RFC 4996</a>, except for two cases that did not interoperate as described
below.
<span class="h3"><a class="selflink" id="section-9.1" href="#section-9.1">9.1</a>. Functional Changes</span>
o The SACK option compression in [<a href="./rfc4996" title=""RObust Header Compression (ROHC): A Profile for TCP/IP (ROHC-TCP)"">RFC4996</a>] assumed that multiple
SACK blocks within the same option would be in sorted order so
that the block starts were LSB-encoded from the end of the
previous block. This meant that SACK blocks that are not in
sorted order could be impossible to compress in some cases.
Therefore, the SACK compression in the formal notation has changed
and therefore also the bits-on-the-wire.
o The ESP NULL header compression has been deprecated due to
interoperability problems with needing to know information from
the trailer. The ESP NULL compression was already removed from
ROHCv2 [<a href="./rfc5225" title=""RObust Header Compression Version 2 (ROHCv2): Profiles for RTP, UDP, IP, ESP and UDP-Lite"">RFC5225</a>] for the same reason and it was considered better
to remove it from this profile rather than try to fix the
interoperability issue.
<span class="grey">Pelletier, et al. Standards Track [Page 91]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-92" ></span>
<span class="grey"><a href="./rfc6846">RFC 6846</a> ROHC-TCP January 2013</span>
<span class="h3"><a class="selflink" id="section-9.2" href="#section-9.2">9.2</a>. Non-functional Changes</span>
o The way sequential IP-ID compression was described in the FN code
was incorrect and the code used for ROHCv2 [<a href="./rfc5225" title=""RObust Header Compression Version 2 (ROHCv2): Profiles for RTP, UDP, IP, ESP and UDP-Lite"">RFC5225</a>] has been
imported into this specification (e.g., offset is made into a
global control field). This does not change the bits-on-the-wire.
The only change is how this encoding is described in the formal
notation, not how the compression occurs.
o Default encoding for the 'df' and 'ip_id' fields have been added
for IPv6 with 0-bit uncompressed format to clarify that these
never appear in IPv6.
o The scaled encoding of the Acknowledgment Number and Sequence
Number were incorrectly described in the FN code in [<a href="./rfc4996" title=""RObust Header Compression (ROHC): A Profile for TCP/IP (ROHC-TCP)"">RFC4996</a>] and
have been updated in the same style as in ROHCv2 [<a href="./rfc5225" title=""RObust Header Compression Version 2 (ROHCv2): Profiles for RTP, UDP, IP, ESP and UDP-Lite"">RFC5225</a>]. This
does not change the bits-on-the-wire, only the way the compression
is described in the FN code.
o The external arguments to ipv4 and co_baseheader have been
updated. This is again only a change for FN correctness and does
not affect interoperability.
o Errata for [<a href="./rfc4996" title=""RObust Header Compression (ROHC): A Profile for TCP/IP (ROHC-TCP)"">RFC4996</a>] related to minor errors in the FN and textual
errors have also been corrected.
<span class="h2"><a class="selflink" id="section-10" href="#section-10">10</a>. Security Considerations</span>
A malfunctioning or malicious header compressor could cause the
header decompressor to reconstitute packets that do not match the
original packets but still have valid IP and TCP headers, and
possibly also valid TCP checksums. Such corruption may be detected
with end-to-end authentication and integrity mechanisms that will not
be affected by the compression. Moreover, this header compression
scheme uses an internal checksum for verification of reconstructed
headers. This reduces the probability of producing decompressed
headers not matching the original ones without this being noticed.
Denial-of-service attacks are possible if an intruder can introduce
(for example) bogus IR, CO, or FEEDBACK packets onto the link and
thereby cause compression efficiency to be reduced. However, an
intruder having the ability to inject arbitrary packets at the link
layer in this manner raises additional security issues that dwarf
those related to the use of header compression.
<span class="grey">Pelletier, et al. Standards Track [Page 92]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-93" ></span>
<span class="grey"><a href="./rfc6846">RFC 6846</a> ROHC-TCP January 2013</span>
<span class="h2"><a class="selflink" id="section-11" href="#section-11">11</a>. IANA Considerations</span>
The reference for the ROHC profile identifier 0x0006 has been updated
to reference this document instead of <a href="./rfc4996">RFC 4996</a>.
A ROHC profile identifier has been reserved by IANA for the profile
defined in this document. Profiles 0x0000-0x0005 have previously
been reserved; this profile is 0x0006. As for previous ROHC
profiles, profile numbers 0xnn06 have been reserved for future
updates of this profile.
Profile Usage Document
identifier
0x0006 ROHC TCP [<a href="./rfc6846">RFC6846</a>]
0xnn06 Reserved
<span class="h2"><a class="selflink" id="section-12" href="#section-12">12</a>. Acknowledgments</span>
The authors would like to thank Qian Zhang, Hong Bin Liao, Richard
Price, and Fredrik Lindstroem for their work with early versions of
this specification. Thanks also to Robert Finking and Carsten
Bormann for valuable input and to Carl Knutsson and Gilbert Strom for
suggestions and review of the updates made in this document.
Additional thanks: this document was reviewed during working group
last-call by committed reviewers Joe Touch and Ted Faber, as well as
by Sally Floyd, who provided a review at the request of the Transport
Area Directors.
<span class="h2"><a class="selflink" id="section-13" href="#section-13">13</a>. References</span>
<span class="h3"><a class="selflink" id="section-13.1" href="#section-13.1">13.1</a>. Normative References</span>
[<a id="ref-RFC0791">RFC0791</a>] Postel, J., "Internet Protocol", STD 5, <a href="./rfc791">RFC 791</a>,
September 1981.
[<a id="ref-RFC0793">RFC0793</a>] Postel, J., "Transmission Control Protocol", STD 7,
<a href="./rfc793">RFC 793</a>, September 1981.
[<a id="ref-RFC2004">RFC2004</a>] Perkins, C., "Minimal Encapsulation within IP", <a href="./rfc2004">RFC 2004</a>,
October 1996.
[<a id="ref-RFC2119">RFC2119</a>] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", <a href="https://www.rfc-editor.org/bcp/bcp14">BCP 14</a>, <a href="./rfc2119">RFC 2119</a>, March 1997.
[<a id="ref-RFC2460">RFC2460</a>] Deering, S. and R. Hinden, "Internet Protocol, Version 6
(IPv6) Specification", <a href="./rfc2460">RFC 2460</a>, December 1998.
<span class="grey">Pelletier, et al. Standards Track [Page 93]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-94" ></span>
<span class="grey"><a href="./rfc6846">RFC 6846</a> ROHC-TCP January 2013</span>
[<a id="ref-RFC2784">RFC2784</a>] Farinacci, D., Li, T., Hanks, S., Meyer, D., and P.
Traina, "Generic Routing Encapsulation (GRE)", <a href="./rfc2784">RFC 2784</a>,
March 2000.
[<a id="ref-RFC2890">RFC2890</a>] Dommety, G., "Key and Sequence Number Extensions to GRE",
<a href="./rfc2890">RFC 2890</a>, September 2000.
[<a id="ref-RFC4164">RFC4164</a>] Pelletier, G., "RObust Header Compression (ROHC): Context
Replication for ROHC Profiles", <a href="./rfc4164">RFC 4164</a>, August 2005.
[<a id="ref-RFC4302">RFC4302</a>] Kent, S., "IP Authentication Header", <a href="./rfc4302">RFC 4302</a>,
December 2005.
[<a id="ref-RFC4997">RFC4997</a>] Finking, R. and G. Pelletier, "Formal Notation for RObust
Header Compression (ROHC-FN)", <a href="./rfc4997">RFC 4997</a>, July 2007.
[<a id="ref-RFC5795">RFC5795</a>] Sandlund, K., Pelletier, G., and L-E. Jonsson, "The RObust
Header Compression (ROHC) Framework", <a href="./rfc5795">RFC 5795</a>,
March 2010.
<span class="h3"><a class="selflink" id="section-13.2" href="#section-13.2">13.2</a>. Informative References</span>
[<a id="ref-RFC1144">RFC1144</a>] Jacobson, V., "Compressing TCP/IP headers for low-speed
serial links", <a href="./rfc1144">RFC 1144</a>, February 1990.
[<a id="ref-RFC1323">RFC1323</a>] Jacobson, V., Braden, B., and D. Borman, "TCP Extensions
for High Performance", <a href="./rfc1323">RFC 1323</a>, May 1992.
[<a id="ref-RFC2018">RFC2018</a>] Mathis, M., Mahdavi, J., Floyd, S., and A. Romanow, "TCP
Selective Acknowledgment Options", <a href="./rfc2018">RFC 2018</a>, October 1996.
[<a id="ref-RFC2507">RFC2507</a>] Degermark, M., Nordgren, B., and S. Pink, "IP Header
Compression", <a href="./rfc2507">RFC 2507</a>, February 1999.
[<a id="ref-RFC2883">RFC2883</a>] Floyd, S., Mahdavi, J., Mathis, M., and M. Podolsky, "An
Extension to the Selective Acknowledgement (SACK) Option
for TCP", <a href="./rfc2883">RFC 2883</a>, July 2000.
[<a id="ref-RFC3095">RFC3095</a>] Bormann, C., Burmeister, C., Degermark, M., Fukushima, H.,
Hannu, H., Jonsson, L-E., Hakenberg, R., Koren, T., Le,
K., Liu, Z., Martensson, A., Miyazaki, A., Svanbro, K.,
Wiebke, T., Yoshimura, T., and H. Zheng, "RObust Header
Compression (ROHC): Framework and four profiles: RTP, UDP,
ESP, and uncompressed", <a href="./rfc3095">RFC 3095</a>, July 2001.
[<a id="ref-RFC3168">RFC3168</a>] Ramakrishnan, K., Floyd, S., and D. Black, "The Addition
of Explicit Congestion Notification (ECN) to IP",
<a href="./rfc3168">RFC 3168</a>, September 2001.
<span class="grey">Pelletier, et al. Standards Track [Page 94]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-95" ></span>
<span class="grey"><a href="./rfc6846">RFC 6846</a> ROHC-TCP January 2013</span>
[<a id="ref-RFC3759">RFC3759</a>] Jonsson, L-E., "RObust Header Compression (ROHC):
Terminology and Channel Mapping Examples", <a href="./rfc3759">RFC 3759</a>,
April 2004.
[<a id="ref-RFC4163">RFC4163</a>] Jonsson, L-E., "RObust Header Compression (ROHC):
Requirements on TCP/IP Header Compression", <a href="./rfc4163">RFC 4163</a>,
August 2005.
[<a id="ref-RFC4224">RFC4224</a>] Pelletier, G., Jonsson, L-E., and K. Sandlund, "RObust
Header Compression (ROHC): ROHC over Channels That Can
Reorder Packets", <a href="./rfc4224">RFC 4224</a>, January 2006.
[<a id="ref-RFC4413">RFC4413</a>] West, M. and S. McCann, "TCP/IP Field Behavior", <a href="./rfc4413">RFC 4413</a>,
March 2006.
[<a id="ref-RFC4996">RFC4996</a>] Pelletier, G., Sandlund, K., Jonsson, L-E., and M. West,
"RObust Header Compression (ROHC): A Profile for TCP/IP
(ROHC-TCP)", <a href="./rfc4996">RFC 4996</a>, July 2007.
[<a id="ref-RFC5225">RFC5225</a>] Pelletier, G. and K. Sandlund, "RObust Header Compression
Version 2 (ROHCv2): Profiles for RTP, UDP, IP, ESP and
UDP-Lite", <a href="./rfc5225">RFC 5225</a>, April 2008.
[<a id="ref-RFC5681">RFC5681</a>] Allman, M., Paxson, V., and E. Blanton, "TCP Congestion
Control", <a href="./rfc5681">RFC 5681</a>, September 2009.
<span class="grey">Pelletier, et al. Standards Track [Page 95]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-96" ></span>
<span class="grey"><a href="./rfc6846">RFC 6846</a> ROHC-TCP January 2013</span>
Authors' Addresses
Ghyslain Pelletier
InterDigital Communications
1000, Sherbrooke Street West, 10th floor
Montreal, Quebec H3A 3G4
Canada
Phone: +46 (0) 70 609 27 73
EMail: ghyslain.pelletier@interdigital.com
Kristofer Sandlund
Ericsson
Box 920
Lulea SE-971 28
Sweden
Phone: +46 (0) 8 404 41 58
EMail: kristofer.sandlund@ericsson.com
Lars-Erik Jonsson
Optand 737
Ostersund SE-831 92
Sweden
Phone: +46 70 365 20 58
EMail: lars-erik@lejonsson.com
Mark A West
Siemens/Roke Manor
Roke Manor Research Ltd.
Romsey, Hampshire SO51 0ZN
UK
Phone: +44 1794 833311
EMail: mark.a.west@roke.co.uk
URI: <a href="http://www.roke.co.uk">http://www.roke.co.uk</a>
Pelletier, et al. Standards Track [Page 96]
</pre>
|