1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781
|
<pre>Internet Engineering Task Force (IETF) M. Mawatari
Request for Comments: 6877 Japan Internet Exchange
Category: Informational M. Kawashima
ISSN: 2070-1721 NEC AccessTechnica, Ltd.
C. Byrne
T-Mobile USA
April 2013
464XLAT: Combination of Stateful and Stateless Translation
Abstract
This document describes an architecture (464XLAT) for providing
limited IPv4 connectivity across an IPv6-only network by combining
existing and well-known stateful protocol translation (as described
in <a href="./rfc6146">RFC 6146</a>) in the core and stateless protocol translation (as
described in <a href="./rfc6145">RFC 6145</a>) at the edge. 464XLAT is a simple and scalable
technique to quickly deploy limited IPv4 access service to IPv6-only
edge networks without encapsulation.
Status of This Memo
This document is not an Internet Standards Track specification; it is
published for informational purposes.
This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Not all documents
approved by the IESG are a candidate for any level of Internet
Standard; see <a href="./rfc5741#section-2">Section 2 of RFC 5741</a>.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
<a href="http://www.rfc-editor.org/info/rfc6877">http://www.rfc-editor.org/info/rfc6877</a>.
<span class="grey">Mawatari, et al. Informational [Page 1]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-2" ></span>
<span class="grey"><a href="./rfc6877">RFC 6877</a> 464XLAT April 2013</span>
Copyright Notice
Copyright (c) 2013 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to <a href="https://www.rfc-editor.org/bcp/bcp78">BCP 78</a> and the IETF Trust's Legal
Provisions Relating to IETF Documents
(<a href="http://trustee.ietf.org/license-info">http://trustee.ietf.org/license-info</a>) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
Table of Contents
<a href="#section-1">1</a>. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-3">3</a>
<a href="#section-2">2</a>. Terminology . . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-3">3</a>
<a href="#section-3">3</a>. Motivation and Uniqueness of 464XLAT . . . . . . . . . . . . . <a href="#page-4">4</a>
<a href="#section-4">4</a>. Network Architecture . . . . . . . . . . . . . . . . . . . . . <a href="#page-4">4</a>
<a href="#section-4.1">4.1</a>. Wireline Network Architecture . . . . . . . . . . . . . . <a href="#page-4">4</a>
<a href="#section-4.2">4.2</a>. Wireless 3GPP Network Architecture . . . . . . . . . . . . <a href="#page-5">5</a>
<a href="#section-5">5</a>. Applicability . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-6">6</a>
<a href="#section-5.1">5.1</a>. Wireline Network Applicability . . . . . . . . . . . . . . <a href="#page-6">6</a>
<a href="#section-5.2">5.2</a>. Wireless 3GPP Network Applicability . . . . . . . . . . . <a href="#page-7">7</a>
<a href="#section-6">6</a>. Implementation Considerations . . . . . . . . . . . . . . . . <a href="#page-7">7</a>
<a href="#section-6.1">6.1</a>. IPv6 Address Format . . . . . . . . . . . . . . . . . . . <a href="#page-7">7</a>
<a href="#section-6.2">6.2</a>. IPv4/IPv6 Address Translation Chart . . . . . . . . . . . <a href="#page-7">7</a>
<a href="#section-6.3">6.3</a>. IPv6 Prefix Handling . . . . . . . . . . . . . . . . . . . <a href="#page-9">9</a>
<a href="#section-6.4">6.4</a>. DNS Proxy Implementation . . . . . . . . . . . . . . . . . <a href="#page-9">9</a>
<a href="#section-6.5">6.5</a>. CLAT in a Gateway . . . . . . . . . . . . . . . . . . . . <a href="#page-9">9</a>
<a href="#section-6.6">6.6</a>. CLAT-to-CLAT Communications . . . . . . . . . . . . . . . <a href="#page-10">10</a>
<a href="#section-7">7</a>. Deployment Considerations . . . . . . . . . . . . . . . . . . <a href="#page-10">10</a>
<a href="#section-7.1">7.1</a>. Traffic Engineering . . . . . . . . . . . . . . . . . . . <a href="#page-10">10</a>
<a href="#section-7.2">7.2</a>. Traffic Treatment Scenarios . . . . . . . . . . . . . . . <a href="#page-10">10</a>
<a href="#section-8">8</a>. Security Considerations . . . . . . . . . . . . . . . . . . . <a href="#page-11">11</a>
<a href="#section-9">9</a>. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-11">11</a>
<a href="#section-10">10</a>. References . . . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-11">11</a>
<a href="#section-10.1">10.1</a>. Normative References . . . . . . . . . . . . . . . . . . . <a href="#page-11">11</a>
<a href="#section-10.2">10.2</a>. Informative References . . . . . . . . . . . . . . . . . . <a href="#page-12">12</a>
<a href="#appendix-A">Appendix A</a>. Examples of IPv4/IPv6 Address Translation . . . . . . <a href="#page-13">13</a>
<span class="grey">Mawatari, et al. Informational [Page 2]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-3" ></span>
<span class="grey"><a href="./rfc6877">RFC 6877</a> 464XLAT April 2013</span>
<span class="h2"><a class="selflink" id="section-1" href="#section-1">1</a>. Introduction</span>
With the exhaustion of the unallocated IPv4 address pools, it will be
difficult for many networks to assign IPv4 addresses to end users.
This document describes an IPv4-over-IPv6 solution as one of the
techniques for IPv4 service extension and encouragement of IPv6
deployment. 464XLAT is not a one-for-one replacement of full IPv4
functionality. The 464XLAT architecture only supports IPv4 in the
client-server model, where the server has a global IPv4 address.
This means it is not fit for IPv4 peer-to-peer communication or
inbound IPv4 connections. 464XLAT builds on IPv6 transport and
includes full any-to-any IPv6 communication.
The 464XLAT architecture described in this document uses IPv4/IPv6
translation standardized in [<a href="./rfc6145" title=""IP/ICMP Translation Algorithm"">RFC6145</a>] and [<a href="./rfc6146" title=""Stateful NAT64: Network Address and Protocol Translation from IPv6 Clients to IPv4 Servers"">RFC6146</a>]. It does not
require DNS64 [<a href="./rfc6147" title=""DNS64: DNS Extensions for Network Address Translation from IPv6 Clients to IPv4 Servers"">RFC6147</a>] since an IPv4 host may simply send IPv4
packets, including packets to an IPv4 DNS server, that will be
translated to IPv6 on the customer-side translator (CLAT) and back to
IPv4 on the provider-side translator (PLAT). 464XLAT networks may
use DNS64 [<a href="./rfc6147" title=""DNS64: DNS Extensions for Network Address Translation from IPv6 Clients to IPv4 Servers"">RFC6147</a>] to enable single stateful translation [<a href="./rfc6146" title=""Stateful NAT64: Network Address and Protocol Translation from IPv6 Clients to IPv4 Servers"">RFC6146</a>]
instead of 464XLAT double translation where possible. The 464XLAT
architecture encourages the IPv6 transition by making IPv4 services
reachable across IPv6-only networks and providing IPv6 and IPv4
connectivity to single-stack IPv4 or IPv6 servers and peers.
<span class="h2"><a class="selflink" id="section-2" href="#section-2">2</a>. Terminology</span>
PLAT: PLAT is provider-side translator (XLAT) that complies with
[<a href="./rfc6146" title=""Stateful NAT64: Network Address and Protocol Translation from IPv6 Clients to IPv4 Servers"">RFC6146</a>]. It translates N:1 global IPv6 addresses to global
IPv4 addresses, and vice versa.
CLAT: CLAT is customer-side translator (XLAT) that complies with
[<a href="./rfc6145" title=""IP/ICMP Translation Algorithm"">RFC6145</a>]. It algorithmically translates 1:1 private IPv4
addresses to global IPv6 addresses, and vice versa. The CLAT
function is applicable to a router or an end-node such as a
mobile phone. The CLAT should perform IP routing and
forwarding to facilitate packets forwarding through the
stateless translation even if it is an end-node. The CLAT as
a common home router or wireless Third Generation Partnership
Project (3GPP) router is expected to perform gateway
functions such as being a DHCP server and DNS proxy for local
clients. The CLAT uses different IPv6 prefixes for CLAT-side
and PLAT-side IPv4 addresses and therefore does not comply
with the sentence "Both IPv4-translatable IPv6 addresses and
IPv4-converted IPv6 addresses SHOULD use the same prefix." in
<span class="grey">Mawatari, et al. Informational [Page 3]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-4" ></span>
<span class="grey"><a href="./rfc6877">RFC 6877</a> 464XLAT April 2013</span>
<a href="./rfc6052#section-3.3">Section 3.3 of [RFC6052]</a>. The CLAT does not facilitate
communications between a local IPv4-only node and an IPv6-
only node on the Internet.
<span class="h2"><a class="selflink" id="section-3" href="#section-3">3</a>. Motivation and Uniqueness of 464XLAT</span>
The list below describes the motivation for 464XLAT and its unique
characteristics.
o 464XLAT has minimal IPv4 resource requirements and maximum IPv4
efficiency through statistical multiplexing.
o No new protocols are required; there is quick deployment.
o IPv6-only networks are simpler and therefore less expensive to
operate than dual-stack networks.
o 464XLAT has consistent native IP-based monitoring and traffic
engineering. Capacity-planning techniques can be applied without
the indirection or obfuscation of a tunnel.
<span class="h2"><a class="selflink" id="section-4" href="#section-4">4</a>. Network Architecture</span>
Examples of 464XLAT architectures are shown in the figures in the
following sections.
Wireline Network Architecture can be used in situations where there
are clients behind the CLAT, regardless of the type of access service
-- for example, fiber to the home (FTTH), Data Over Cable Service
Interface Specification (DOCSIS), or WiFi.
Wireless 3GPP Network Architecture can be used in situations where a
client terminates the wireless access network and possibly acts as a
router with tethered clients.
<span class="h3"><a class="selflink" id="section-4.1" href="#section-4.1">4.1</a>. Wireline Network Architecture</span>
The private IPv4 host in this diagram can reach global IPv4 hosts via
translation on both the CLAT and PLAT. On the other hand, the IPv6
host can reach other IPv6 hosts on the Internet directly without
translation. This means that the Customer Premises Equipment (CPE) /
CLAT can not only have the function of a CLAT but also the function
of an IPv6 native router for native IPv6 traffic. In this diagram,
the v4p host behind the CLAT has [<a href="./rfc1918" title=""Address Allocation for Private Internets"">RFC1918</a>] addresses.
<span class="grey">Mawatari, et al. Informational [Page 4]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-5" ></span>
<span class="grey"><a href="./rfc6877">RFC 6877</a> 464XLAT April 2013</span>
+------+
| v6 |
| host |
+--+---+
|
.---+---.
/ \
/ IPv6 \
| Internet |
\ /
`----+----'
|
+------+ | .---+---. .------.
| v6 +---+ +------+ / \ +------+ / \
| host | | | | / IPv6 \ | | / IPv4 \
+------+ +---+ CLAT +---+ Network +---+ PLAT +---+ Internet |
+--------+ | | | \ / | | \ /
| v4p/v6 +-+ +------+ `---------' +------+ `----+----'
| host | | |
+--------+ | +--+---+
+------+ | | v4g |
| v4p +---+ | host |
| host | | +------+
+------+ |
<- v4p -> XLAT <--------- v6 --------> XLAT <- v4g ->
v6 : Global IPv6
v4p : Private IPv4
v4g : Global IPv4
Figure 1: Wireline Network Topology
<span class="h3"><a class="selflink" id="section-4.2" href="#section-4.2">4.2</a>. Wireless 3GPP Network Architecture</span>
The CLAT function on the User Equipment (UE) provides an [<a href="./rfc1918" title=""Address Allocation for Private Internets"">RFC1918</a>]
address and IPv4 default route to the local node's network stack.
The applications on the UE can use the private IPv4 address for
reaching global IPv4 hosts via translation on both the CLAT and the
PLAT. On the other hand, reaching IPv6 hosts (including hosts
presented via DNS64 [<a href="./rfc6147" title=""DNS64: DNS Extensions for Network Address Translation from IPv6 Clients to IPv4 Servers"">RFC6147</a>]) does not require the CLAT function on
the UE.
Presenting a private IPv4 network for tethering via NAT44 and
stateless translation on the UE is also an application of the CLAT.
<span class="grey">Mawatari, et al. Informational [Page 5]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-6" ></span>
<span class="grey"><a href="./rfc6877">RFC 6877</a> 464XLAT April 2013</span>
+------+
| v6 |
| host |
+--+---+
|
.---+---.
/ \
/ IPv6 \
| Internet |
\ /
UE / Mobile Phone `---------'
+----------------------+ |
| +----+ | | .---+---. .------.
| | v6 +----+ +------+ / \ +------+ / \
| +----+ | | | / IPv6 PDP \ | | / IPv4 \
| +---+ CLAT +---+ Mobile Core +---+ PLAT +--+ Internet |
| | | | \ GGSN / | | \ /
| | +------+ \ ' +------+ `----+---'
| +-----+ | | `-------' |
| | v4p +---+ | +--+---+
| +-----+ | | | v4g |
+----------------------+ | host |
+------+
<- v4p -> XLAT <--------- v6 --------> XLAT <- v4g ->
v6 : Global IPv6
v4p : Private IPv4
v4g : Global IPv4
PDP : Packet Data Protocol
GGSN : Gateway GPRS Support Node
Figure 2: Wireless 3GPP Network Topology
<span class="h2"><a class="selflink" id="section-5" href="#section-5">5</a>. Applicability</span>
<span class="h3"><a class="selflink" id="section-5.1" href="#section-5.1">5.1</a>. Wireline Network Applicability</span>
When an Internet Service Provider (ISP) has IPv6 access service and
provides 464XLAT, the ISP can provide outgoing IPv4 service to end
users across an IPv6 access network. The result is that edge network
growth is no longer tightly coupled to the availability of scarce
IPv4 addresses.
If another ISP operates the PLAT, the edge ISP is only required to
deploy an IPv6 access network. All ISPs do not need IPv4 access
networks. They can migrate their access network to a simple and
highly scalable IPv6-only environment.
<span class="grey">Mawatari, et al. Informational [Page 6]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-7" ></span>
<span class="grey"><a href="./rfc6877">RFC 6877</a> 464XLAT April 2013</span>
<span class="h3"><a class="selflink" id="section-5.2" href="#section-5.2">5.2</a>. Wireless 3GPP Network Applicability</span>
At the time of writing, in April 2013, the vast majority of mobile
networks are compliant to Pre-Release 9 3GPP standards. In Pre-
Release 9 3GPP networks, Global System for Mobile Communications
(GSM) and Universal Mobile Telecommunications System (UMTS) networks
must signal and support both IPv4 and IPv6 Packet Data Protocol (PDP)
attachments to access IPv4 and IPv6 network destinations [<a href="./rfc6459" title=""IPv6 in 3rd Generation Partnership Project (3GPP) Evolved Packet System (EPS)"">RFC6459</a>].
Since there are two PDPs required to support two address families,
this is double the number of PDPs required to support the status quo
of one address family, which is IPv4.
For the cases of connecting to an IPv4 literal or IPv4 socket that
require IPv4 connectivity, the CLAT function on the UE provides a
private IPv4 address and IPv4 default route on the host for the
applications to reference and bind to. Connections sourced from the
IPv4 interface are immediately routed to the CLAT function and passed
to the IPv6-only mobile network, destined for the PLAT. In summary,
the UE performs the CLAT function that does a stateless translation
[<a href="./rfc6145" title=""IP/ICMP Translation Algorithm"">RFC6145</a>], but only when required by an IPv4-only scenario such as
IPv4 literals or IPv4-only sockets. The mobile network has a PLAT
that does stateful translation [<a href="./rfc6146" title=""Stateful NAT64: Network Address and Protocol Translation from IPv6 Clients to IPv4 Servers"">RFC6146</a>].
464XLAT works with today's existing systems as much as possible.
464XLAT is compatible with existing solutions for network-based deep
packet inspection like 3GPP standardized Policy and Charging Control
(PCC) [<a href="#ref-TS.23203" title=""Policy and charging control architecture"">TS.23203</a>].
<span class="h2"><a class="selflink" id="section-6" href="#section-6">6</a>. Implementation Considerations</span>
<span class="h3"><a class="selflink" id="section-6.1" href="#section-6.1">6.1</a>. IPv6 Address Format</span>
The IPv6 address format in 464XLAT is defined in <a href="./rfc6052#section-2.2">Section 2.2 of
[RFC6052]</a>.
<span class="h3"><a class="selflink" id="section-6.2" href="#section-6.2">6.2</a>. IPv4/IPv6 Address Translation Chart</span>
This chart offers an explanation about address translation
architecture using a combination of stateful translation at the PLAT
and stateless translation at the CLAT. The client on this chart is
delegated an IPv6 prefix from a prefix delegation mechanism such as
DHCPv6 Prefix Delegation (DHCPv6-PD) [<a href="./rfc3633" title=""IPv6 Prefix Options for Dynamic Host Configuration Protocol (DHCP) version 6"">RFC3633</a>]; therefore, it has a
dedicated IPv6 prefix for translation.
<span class="grey">Mawatari, et al. Informational [Page 7]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-8" ></span>
<span class="grey"><a href="./rfc6877">RFC 6877</a> 464XLAT April 2013</span>
Destination IPv4 address
+----------------------------+
| Global IPv4 address |
| assigned to IPv4 server |
+--------+ +----------------------------+
| IPv4 | Source IPv4 address
| server | +----------------------------+
+--------+ | Global IPv4 address |
^ | assigned to IPv4 PLAT pool |
| +----------------------------+
+--------+
| PLAT | Stateful XLATE(IPv4:IPv6=1:n)
+--------+
^
|
(IPv6 cloud)
Destination IPv6 address
+--------------------------------------------------------------+
| IPv4-embedded IPv6 address |
| defined in <a href="./rfc6052#section-2.2">Section 2.2 of RFC 6052</a> |
+--------------------------------------------------------------+
Source IPv6 address
+--------------------------------------------------------------+
| IPv4-embedded IPv6 address |
| defined in <a href="./rfc6052#section-2.2">Section 2.2 of RFC 6052</a> |
+--------------------------------------------------------------+
(IPv6 cloud)
^
|
+--------+
| CLAT | Stateless XLATE(IPv4:IPv6=1:1)
+--------+
^ Destination IPv4 address
| +----------------------------+
+--------+ | Global IPv4 address |
| IPv4 | | assigned to IPv4 server |
| client | +----------------------------+
+--------+ Source IPv4 address
+----------------------------+
| Private IPv4 address |
| assigned to IPv4 client |
+----------------------------+
Figure 3: Case of Enabling Only Stateless XLATE on CLAT
<span class="grey">Mawatari, et al. Informational [Page 8]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-9" ></span>
<span class="grey"><a href="./rfc6877">RFC 6877</a> 464XLAT April 2013</span>
<span class="h3"><a class="selflink" id="section-6.3" href="#section-6.3">6.3</a>. IPv6 Prefix Handling</span>
There are two relevant IPv6 prefixes that the CLAT must be aware of.
First, CLAT must know its own IPv6 prefixes. The CLAT should acquire
a /64 for the uplink interface, a /64 for all downlink interfaces,
and a dedicated /64 prefix for the purpose of sending and receiving
statelessly translated packets. When a dedicated /64 prefix is not
available for translation from DHCPv6-PD [<a href="./rfc3633" title=""IPv6 Prefix Options for Dynamic Host Configuration Protocol (DHCP) version 6"">RFC3633</a>], the CLAT may
perform NAT44 for all IPv4 LAN packets so that all the LAN-originated
IPv4 packets appear from a single IPv4 address and are then
statelessly translated to one interface IPv6 address that is claimed
by the CLAT via the Neighbor Discovery Protocol (NDP) and defended
with Duplicate Address Detection (DAD).
Second, the CLAT must discover the PLAT-side translation IPv6 prefix
used as a destination of the PLAT. The CLAT will use this prefix as
the destination of all translation packets that require stateful
translation to the IPv4 Internet. It may discover the PLAT-side
translation prefix using [<a href="#ref-Discovery-Heuristic">Discovery-Heuristic</a>]. In the future, some
other mechanisms, such as a new DHCPv6 option, will possibly be
defined to communicate the PLAT-side translation prefix.
<span class="h3"><a class="selflink" id="section-6.4" href="#section-6.4">6.4</a>. DNS Proxy Implementation</span>
The CLAT should implement a DNS proxy as defined in [<a href="./rfc5625" title=""DNS Proxy Implementation Guidelines"">RFC5625</a>]. The
case of an IPv4-only node behind the CLAT querying an IPv4 DNS server
is undesirable since it requires both stateful and stateless
translation for each DNS lookup. The CLAT should set itself as the
DNS server via DHCP or other means and should proxy DNS queries for
IPv4 and IPv6 LAN clients. Using the CLAT-enabled home router or UE
as a DNS proxy is a normal consumer gateway function and simplifies
the traffic flow so that only IPv6 native queries are made across the
access network. DNS queries from the client that are not sent to the
DNS proxy on the CLAT must be allowed and are translated and
forwarded just like any other IP traffic.
<span class="h3"><a class="selflink" id="section-6.5" href="#section-6.5">6.5</a>. CLAT in a Gateway</span>
The CLAT feature can be implemented in a common home router or mobile
phone that has a tethering feature. Routers with a CLAT feature
should also provide common router services such as DHCP of [<a href="./rfc1918" title=""Address Allocation for Private Internets"">RFC1918</a>]
addresses, DHCPv6, NDP with Router Advertisement, and DNS service.
<span class="grey">Mawatari, et al. Informational [Page 9]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-10" ></span>
<span class="grey"><a href="./rfc6877">RFC 6877</a> 464XLAT April 2013</span>
<span class="h3"><a class="selflink" id="section-6.6" href="#section-6.6">6.6</a>. CLAT-to-CLAT Communications</span>
464XLAT is a hub and spoke architecture focused on enabling IPv4-only
services over IPv6-only networks. Interactive Connectivity
Establishment (ICE) [<a href="./rfc5245" title=""Interactive Connectivity Establishment (ICE): A Protocol for Network Address Translator (NAT) Traversal for Offer/Answer Protocols"">RFC5245</a>] may be used to support peer-to-peer
communication within a 464XLAT network.
<span class="h2"><a class="selflink" id="section-7" href="#section-7">7</a>. Deployment Considerations</span>
<span class="h3"><a class="selflink" id="section-7.1" href="#section-7.1">7.1</a>. Traffic Engineering</span>
Even if the ISP for end users is different from the PLAT provider
(e.g., another ISP), it can implement traffic engineering
independently from the PLAT provider. Detailed reasons are below:
1. The ISP for end users can figure out the IPv4 destination address
from the translated IPv6 packet header, so it can implement
traffic engineering based on the IPv4 destination address (e.g.,
traffic monitoring for each IPv4 destination address, packet
filtering for each IPv4 destination address, etc.). The
tunneling methods do not have such an advantage, without any deep
packet inspection for processing the inner IPv4 packet of the
tunnel packet.
2. If the ISP for end users can assign an IPv6 prefix greater than
/64 to each subscriber, this 464XLAT architecture can separate
the IPv6 prefix for native IPv6 packets and the XLAT prefixes for
IPv4/IPv6 translation packets. Accordingly, it can identify the
type of packets ("native IPv6 packets" and "IPv4/IPv6 translation
packets") and implement traffic engineering based on the IPv6
prefix.
<span class="h3"><a class="selflink" id="section-7.2" href="#section-7.2">7.2</a>. Traffic Treatment Scenarios</span>
The below table outlines how different permutations of connectivity
are treated in the 464XLAT architecture.
Note: 464XLAT double translation treatment will be stateless when a
dedicated /64 is available for translation on the CLAT. Otherwise,
the CLAT will have both stateful and stateless since it requires
NAT44 from the LAN to a single IPv4 address and then stateless
translation to a single IPv6 address.
<span class="grey">Mawatari, et al. Informational [Page 10]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-11" ></span>
<span class="grey"><a href="./rfc6877">RFC 6877</a> 464XLAT April 2013</span>
+--------+-------------+-----------------------+-------------+
| Server | Application | Traffic Treatment | Location of |
| | and Host | | Translation |
+--------+-------------+-----------------------+-------------+
| IPv6 | IPv6 | End-to-End IPv6 | None |
+--------+-------------+-----------------------+-------------+
| IPv4 | IPv6 | Stateful Translation | PLAT |
+--------+-------------+-----------------------+-------------+
| IPv4 | IPv4 | 464XLAT | PLAT/CLAT |
+--------+-------------+-----------------------+-------------+
Traffic Treatment Scenarios
<span class="h2"><a class="selflink" id="section-8" href="#section-8">8</a>. Security Considerations</span>
To implement a PLAT, see the security considerations presented in
<a href="./rfc6146#section-5">Section 5 of [RFC6146]</a>.
To implement a CLAT, see the security considerations presented in
<a href="./rfc6145#section-7">Section 7 of [RFC6145]</a>. The CLAT may comply with [<a href="./rfc6092" title=""Recommended Simple Security Capabilities in Customer Premises Equipment (CPE) for Providing Residential IPv6 Internet Service"">RFC6092</a>].
<span class="h2"><a class="selflink" id="section-9" href="#section-9">9</a>. Acknowledgements</span>
The authors would like to thank JPIX NOC members, JPIX 464XLAT trial
service members, Seiichi Kawamura, Dan Drown, Brian Carpenter, Rajiv
Asati, Washam Fan, Behcet Sarikaya, Jan Zorz, Tatsuya Oishi, Lorenzo
Colitti, Erik Kline, Ole Troan, Maoke Chen, Gang Chen, Tom Petch,
Jouni Korhonen, Bjoern A. Zeeb, Hemant Singh, Vizdal Ales, Mark ZZZ
Smith, Mikael Abrahamsson, Tore Anderson, Teemu Savolainen, Alexandru
Petrescu, Gert Doering, Victor Kuarsingh, Ray Hunter, James Woodyatt,
Tom Taylor, and Remi Despres for their helpful comments. We also
would like to thank Fred Baker and Joel Jaeggli for their support.
<span class="h2"><a class="selflink" id="section-10" href="#section-10">10</a>. References</span>
<span class="h3"><a class="selflink" id="section-10.1" href="#section-10.1">10.1</a>. Normative References</span>
[<a id="ref-RFC6052">RFC6052</a>] Bao, C., Huitema, C., Bagnulo, M., Boucadair, M., and X.
Li, "IPv6 Addressing of IPv4/IPv6 Translators", <a href="./rfc6052">RFC 6052</a>,
October 2010.
[<a id="ref-RFC6145">RFC6145</a>] Li, X., Bao, C., and F. Baker, "IP/ICMP Translation
Algorithm", <a href="./rfc6145">RFC 6145</a>, April 2011.
[<a id="ref-RFC6146">RFC6146</a>] Bagnulo, M., Matthews, P., and I. van Beijnum, "Stateful
NAT64: Network Address and Protocol Translation from IPv6
Clients to IPv4 Servers", <a href="./rfc6146">RFC 6146</a>, April 2011.
<span class="grey">Mawatari, et al. Informational [Page 11]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-12" ></span>
<span class="grey"><a href="./rfc6877">RFC 6877</a> 464XLAT April 2013</span>
<span class="h3"><a class="selflink" id="section-10.2" href="#section-10.2">10.2</a>. Informative References</span>
[<a id="ref-Discovery-Heuristic">Discovery-Heuristic</a>]
Savolainen, T., Korhonen, J., and D. Wing, "Discovery of
the IPv6 Prefix Used for IPv6 Address Synthesis", Work
in Progress, March 2013.
[<a id="ref-RFC1918">RFC1918</a>] Rekhter, Y., Moskowitz, R., Karrenberg, D., Groot, G., and
E. Lear, "Address Allocation for Private Internets",
<a href="https://www.rfc-editor.org/bcp/bcp5">BCP 5</a>, <a href="./rfc1918">RFC 1918</a>, February 1996.
[<a id="ref-RFC3633">RFC3633</a>] Troan, O. and R. Droms, "IPv6 Prefix Options for Dynamic
Host Configuration Protocol (DHCP) version 6", <a href="./rfc3633">RFC 3633</a>,
December 2003.
[<a id="ref-RFC5245">RFC5245</a>] Rosenberg, J., "Interactive Connectivity Establishment
(ICE): A Protocol for Network Address Translator (NAT)
Traversal for Offer/Answer Protocols", <a href="./rfc5245">RFC 5245</a>,
April 2010.
[<a id="ref-RFC5625">RFC5625</a>] Bellis, R., "DNS Proxy Implementation Guidelines",
<a href="https://www.rfc-editor.org/bcp/bcp152">BCP 152</a>, <a href="./rfc5625">RFC 5625</a>, August 2009.
[<a id="ref-RFC6092">RFC6092</a>] Woodyatt, J., "Recommended Simple Security Capabilities in
Customer Premises Equipment (CPE) for Providing
Residential IPv6 Internet Service", <a href="./rfc6092">RFC 6092</a>,
January 2011.
[<a id="ref-RFC6147">RFC6147</a>] Bagnulo, M., Sullivan, A., Matthews, P., and I. van
Beijnum, "DNS64: DNS Extensions for Network Address
Translation from IPv6 Clients to IPv4 Servers", <a href="./rfc6147">RFC 6147</a>,
April 2011.
[<a id="ref-RFC6459">RFC6459</a>] Korhonen, J., Soininen, J., Patil, B., Savolainen, T.,
Bajko, G., and K. Iisakkila, "IPv6 in 3rd Generation
Partnership Project (3GPP) Evolved Packet System (EPS)",
<a href="./rfc6459">RFC 6459</a>, January 2012.
[<a id="ref-TS.23203">TS.23203</a>] 3GPP, "Policy and charging control architecture", 3GPP
TS 23.203 10.7.0, June 2012.
<span class="grey">Mawatari, et al. Informational [Page 12]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-13" ></span>
<span class="grey"><a href="./rfc6877">RFC 6877</a> 464XLAT April 2013</span>
<span class="h2"><a class="selflink" id="appendix-A" href="#appendix-A">Appendix A</a>. Examples of IPv4/IPv6 Address Translation</span>
The following is an example of IPv4/IPv6 address translation on the
464XLAT architecture.
In the case that an IPv6 prefix greater than /64 is assigned to an
end user by such as DHCPv6-PD [<a href="./rfc3633" title=""IPv6 Prefix Options for Dynamic Host Configuration Protocol (DHCP) version 6"">RFC3633</a>], the CLAT can use a dedicated
/64 from the assigned IPv6 prefix.
Host & configuration value
+------------------------------+
| IPv4 server |
| [198.51.100.1] | IP packet header
+------------------------------+ +--------------------------------+
^ | Destination IP address |
| | [198.51.100.1] |
| | Source IP address |
| | [192.0.2.1] |
+------------------------------+ +--------------------------------+
| PLAT | ^
| IPv4 pool address | |
| [192.0.2.1 - 192.0.2.100] | |
| PLAT-side XLATE IPv6 prefix | |
| [2001:db8:1234::/96] | |
+------------------------------+ +--------------------------------+
^ | Destination IP address |
| | [2001:db8:1234::198.51.100.1] |
| | Source IP address |
| | [2001:db8:aaaa::192.168.1.2] |
+------------------------------+ +--------------------------------+
| CLAT | ^
| PLAT-side XLATE IPv6 prefix | |
| [2001:db8:1234::/96] | |
| CLAT-side XLATE IPv6 prefix | |
| [2001:db8:aaaa::/96] | |
+------------------------------+ +--------------------------------+
^ | Destination IP address |
| | [198.51.100.1] |
| | Source IP address |
| | [192.168.1.2] |
+------------------------------+ +--------------------------------+
| IPv4 client |
| [192.168.1.2/24] |
+------------------------------+
Delegated IPv6 prefix for client: 2001:db8:aaaa::/56
<span class="grey">Mawatari, et al. Informational [Page 13]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-14" ></span>
<span class="grey"><a href="./rfc6877">RFC 6877</a> 464XLAT April 2013</span>
Authors' Addresses
Masataka Mawatari
Japan Internet Exchange Co., Ltd.
KDDI Otemachi Building 19F, 1-8-1 Otemachi,
Chiyoda-ku, Tokyo 100-0004
JAPAN
Phone: +81 3 3243 9579
EMail: mawatari@jpix.ad.jp
Masanobu Kawashima
NEC AccessTechnica, Ltd.
800, Shimomata
Kakegawa-shi, Shizuoka 436-8501
JAPAN
Phone: +81 537 22 8274
EMail: kawashimam@vx.jp.nec.com
Cameron Byrne
T-Mobile USA
Bellevue, Washington 98006
USA
EMail: cameron.byrne@t-mobile.com
Mawatari, et al. Informational [Page 14]
</pre>
|