1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405
|
<pre>Internet Engineering Task Force (IETF) J. Schaad
Request for Comments: 6955 Soaring Hawk Consulting
Obsoletes: <a href="./rfc2875">2875</a> H. Prafullchandra
Category: Standards Track HyTrust, Inc.
ISSN: 2070-1721 May 2013
<span class="h1">Diffie-Hellman Proof-of-Possession Algorithms</span>
Abstract
This document describes two methods for producing an integrity check
value from a Diffie-Hellman key pair and one method for producing an
integrity check value from an Elliptic Curve key pair. This behavior
is needed for such operations as creating the signature of a Public-
Key Cryptography Standards (PKCS) #10 Certification Request. These
algorithms are designed to provide a Proof-of-Possession of the
private key and not to be a general purpose signing algorithm.
This document obsoletes <a href="./rfc2875">RFC 2875</a>.
Status of This Memo
This is an Internet Standards Track document.
This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Further information on
Internet Standards is available in <a href="./rfc5741#section-2">Section 2 of RFC 5741</a>.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
<a href="http://www.rfc-editor.org/info/rfc6955">http://www.rfc-editor.org/info/rfc6955</a>.
<span class="grey">Schaad & Prafullchandra Standards Track [Page 1]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-2" ></span>
<span class="grey"><a href="./rfc6955">RFC 6955</a> DH POP Algorithms May 2013</span>
Copyright Notice
Copyright (c) 2013 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to <a href="https://www.rfc-editor.org/bcp/bcp78">BCP 78</a> and the IETF Trust's Legal
Provisions Relating to IETF Documents
(<a href="http://trustee.ietf.org/license-info">http://trustee.ietf.org/license-info</a>) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
This document may contain material from IETF Documents or IETF
Contributions published or made publicly available before November
10, 2008. The person(s) controlling the copyright in some of this
material may not have granted the IETF Trust the right to allow
modifications of such material outside the IETF Standards Process.
Without obtaining an adequate license from the person(s) controlling
the copyright in such materials, this document may not be modified
outside the IETF Standards Process, and derivative works of it may
not be created outside the IETF Standards Process, except to format
it for publication as an RFC or to translate it into languages other
than English.
<span class="grey">Schaad & Prafullchandra Standards Track [Page 2]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-3" ></span>
<span class="grey"><a href="./rfc6955">RFC 6955</a> DH POP Algorithms May 2013</span>
Table of Contents
<a href="#section-1">1</a>. Introduction ....................................................<a href="#page-3">3</a>
<a href="#section-1.1">1.1</a>. Changes since <a href="./rfc2875">RFC 2875</a> .....................................<a href="#page-4">4</a>
<a href="#section-1.2">1.2</a>. Requirements Terminology ...................................<a href="#page-5">5</a>
<a href="#section-2">2</a>. Terminology .....................................................<a href="#page-5">5</a>
<a href="#section-3">3</a>. Notation ........................................................<a href="#page-5">5</a>
<a href="#section-4">4</a>. Static DH Proof-of-Possession Process ...........................<a href="#page-6">6</a>
<a href="#section-4.1">4.1</a>. ASN.1 Encoding .............................................<a href="#page-8">8</a>
<a href="#section-5">5</a>. Discrete Logarithm Signature ...................................<a href="#page-11">11</a>
<a href="#section-5.1">5.1</a>. Expanding the Digest Value ................................<a href="#page-11">11</a>
<a href="#section-5.2">5.2</a>. Signature Computation Algorithm ...........................<a href="#page-12">12</a>
<a href="#section-5.3">5.3</a>. Signature Verification Algorithm ..........................<a href="#page-13">13</a>
<a href="#section-5.4">5.4</a>. ASN.1 Encoding ............................................<a href="#page-14">14</a>
<a href="#section-6">6</a>. Static ECDH Proof-of-Possession Process ........................<a href="#page-16">16</a>
<a href="#section-6.1">6.1</a>. ASN.1 Encoding ............................................<a href="#page-18">18</a>
<a href="#section-7">7</a>. Security Considerations ........................................<a href="#page-20">20</a>
<a href="#section-8">8</a>. References .....................................................<a href="#page-21">21</a>
<a href="#section-8.1">8.1</a>. Normative References ......................................<a href="#page-21">21</a>
<a href="#section-8.2">8.2</a>. Informative References ....................................<a href="#page-21">21</a>
<a href="#appendix-A">Appendix A</a>. ASN.1 Modules .........................................<a href="#page-23">23</a>
<a href="#appendix-A.1">A.1</a>. 2008 ASN.1 Module ..........................................<a href="#page-23">23</a>
<a href="#appendix-A.2">A.2</a>. 1988 ASN.1 Module ..........................................<a href="#page-28">28</a>
<a href="#appendix-B">Appendix B</a>. Example of Static DH Proof-of-Possession ..............<a href="#page-30">30</a>
<a href="#appendix-C">Appendix C</a>. Example of Discrete Log Signature .....................<a href="#page-38">38</a>
<span class="h2"><a class="selflink" id="section-1" href="#section-1">1</a>. Introduction</span>
Among the responsibilities of a Certification Authority (CA) in
issuing certificates is a requirement that it verifies the identity
for the entity to which it is issuing a certificate and that the
private key for the public key to be placed in the certificate is in
the possession of that entity. The process of validating that the
private key is held by the requester of the certificate is called
Proof-of-Possession (POP). Further details on why POP is important
can be found in <a href="./rfc4211#appendix-C">Appendix C of RFC 4211</a> [<a href="#ref-CRMF" title=""Internet X.509 Public Key Infrastructure Certificate Request Message Format (CRMF)"">CRMF</a>].
This document is designed to deal with the problem of how to support
POP for encryption-only keys. PKCS #10 [<a href="./rfc2986" title=""PKCS #10: Certification Request Syntax Specification Version 1.7"">RFC2986</a>] and the Certificate
Request Message Format (CRMF) [<a href="#ref-CRMF" title=""Internet X.509 Public Key Infrastructure Certificate Request Message Format (CRMF)"">CRMF</a>] both define syntaxes for
Certification Requests. However, while CRMF supports an alternative
method to support POP for encryption-only keys, PKCS #10 does not.
PKCS #10 assumes that the public key being requested for
certification corresponds to an algorithm that is capable of
producing a POP by a signature operation. Diffie-Hellman (DH) and
Elliptic Curve Diffie-Hellman (ECDH) are key agreement algorithms
and, as such, cannot be directly used for signing or encryption.
<span class="grey">Schaad & Prafullchandra Standards Track [Page 3]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-4" ></span>
<span class="grey"><a href="./rfc6955">RFC 6955</a> DH POP Algorithms May 2013</span>
This document describes a set of three POP algorithms. Two methods
use the key agreement process (one for DH and one for ECDH) to
provide a shared secret as the basis of an integrity check value.
For these methods, the value is constructed for a specific recipient/
verifier by using a public key of that verifier. The third method
uses a modified signature algorithm (for DH). This method allows for
arbitrary verifiers.
It should be noted that we did not create an algorithm that parallels
the Elliptical Curve Digital Signature Algorithm (ECDSA) as was done
for the Digital Signature Algorithm (DSA). When using ECDH, the
common practice is to use one of a set of predefined curves; each of
these curves has been designed to be paired with one of the commonly
used hash algorithms. This differs in practice from the DH case
where the common practice is to generate a set of group parameters,
either on a single machine or for a given community, that are aligned
to encryption algorithms rather than hash algorithms. The
implication is that, if a key has the ability to perform the modified
DSA algorithm for ECDSA, it should be able to use the correct hash
algorithm and perform the regular ECDSA signature algorithm with the
correctly sized hash.
<span class="h3"><a class="selflink" id="section-1.1" href="#section-1.1">1.1</a>. Changes since <a href="./rfc2875">RFC 2875</a></span>
The following changes have been made:
o The Static DH POP algorithm has been rewritten for
parameterization of the hash algorithm and the Message
Authentication Code (MAC) algorithm.
o New instances of the Static DH POP algorithm have been created
using the Hashed Message Authentication Code (HMAC) paired with
the SHA-224, SHA-256, SHA-384, and SHA-512 hash algorithms.
However, the current SHA-1 algorithm remains identical.
o The Discrete Logarithm Signature algorithm has been rewritten for
parameterization of the hash algorithm.
o New instances of the Discrete Logarithm Signature have been
created for the SHA-224, SHA-256, SHA-384, and SHA-512 hash
functions. However, the current SHA-1 algorithm remains
identical.
o A new Static ECDH POP algorithm has been added.
o New instances of the Static ECDH POP algorithm have been created
using HMAC paired with the SHA-224, SHA-256, SHA-384, and SHA-512
hash functions.
<span class="grey">Schaad & Prafullchandra Standards Track [Page 4]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-5" ></span>
<span class="grey"><a href="./rfc6955">RFC 6955</a> DH POP Algorithms May 2013</span>
<span class="h3"><a class="selflink" id="section-1.2" href="#section-1.2">1.2</a>. Requirements Terminology</span>
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [<a href="./rfc2119" title=""Key words for use in RFCs to Indicate Requirement Levels"">RFC2119</a>].
When the words are in lower case they have their natural language
meaning.
<span class="h2"><a class="selflink" id="section-2" href="#section-2">2</a>. Terminology</span>
The following definitions will be used in this document:
DH certificate = a certificate whose SubjectPublicKey is a DH public
value and is signed with any signature algorithm (e.g., RSA or DSA).
ECDH certificate = a certificate whose SubjectPublicKey is an ECDH
public value and is signed with any signature algorithm (e.g., RSA
or ECDSA).
Proof-of-Possession (POP) = a means that provides a method for a
second party to perform an algorithm to establish with some degree of
assurance that the first party does possess and has the ability to
use a private key. The reasoning behind doing POP can be found in
<a href="#appendix-C">Appendix C</a> in [<a href="#ref-CRMF" title=""Internet X.509 Public Key Infrastructure Certificate Request Message Format (CRMF)"">CRMF</a>].
<span class="h2"><a class="selflink" id="section-3" href="#section-3">3</a>. Notation</span>
This section describes mathematical notations, conventions, and
symbols used throughout this document.
a | b : Concatenation of a and b
a ^ b : a raised to the power of b
a mod b : a modulo b
a / b : a divided by b using integer division
a * b : a times b
Depending on context, multiplication may be within
an EC or normal multiplication
KDF(a) : Key Derivation Function producing a value from a
MAC(a, b) : Message Authentication Code function where
a is the key and b is the text
LEFTMOST(a, b) : Return the b left most bits of a
FLOOR(a) : Return n where n is the largest integer such that
n <= a
<span class="grey">Schaad & Prafullchandra Standards Track [Page 5]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-6" ></span>
<span class="grey"><a href="./rfc6955">RFC 6955</a> DH POP Algorithms May 2013</span>
Details on how to implement the HMAC version of a MAC function used
in this document can be found in <a href="./rfc2104">RFC 2104</a> [<a href="./rfc2104" title=""HMAC: Keyed-Hashing for Message Authentication"">RFC2104</a>], <a href="./rfc6234">RFC 6234</a>
[<a href="./rfc6234" title=""US Secure Hash Algorithms (SHA and SHA-based HMAC and HKDF)"">RFC6234</a>], and <a href="./rfc4231">RFC 4231</a> [<a href="./rfc4231" title=""Identifiers and Test Vectors for HMAC- SHA-224, HMAC-SHA-256, HMAC-SHA-384, and HMAC-SHA-512"">RFC4231</a>].
<span class="h2"><a class="selflink" id="section-4" href="#section-4">4</a>. Static DH Proof-of-Possession Process</span>
The Static DH POP algorithm is set up to use a Key Derivation
Function (KDF) and a MAC. This algorithm requires that a common set
of group parameters be used by both the creator and verifier of the
POP value.
The steps for creating a DH POP are:
1. An entity (E) chooses the group parameters for a DH key
agreement.
This is done simply by selecting the group parameters from a
certificate for the recipient of the POP process. A certificate
with the correct group parameters has to be available.
Let the common DH parameters be g and p; and let the DH key pair
from the certificate be known as the recipient (R) key pair (Rpub
and Rpriv).
Rpub = g^x mod p (where x=Rpriv, the private DH value)
2. The entity generates a DH public/private key pair using the group
parameters from step 1.
For an entity (E):
Epriv = DH private value = y
Epub = DH public value = g^y mod p
<span class="grey">Schaad & Prafullchandra Standards Track [Page 6]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-7" ></span>
<span class="grey"><a href="./rfc6955">RFC 6955</a> DH POP Algorithms May 2013</span>
3. The POP computation process will then consist of the following
steps:
(a) The value to be signed (text) is obtained. (For a PKCS #10
object, the value is the DER-encoded
certificationRequestInfo field represented as an octet
string.)
(b) A shared DH secret is computed as follows:
shared secret = ZZ = g^(x*y) mod p
[This is done by E as Rpub^y and by the recipient as Epub^x,
where Rpub is retrieved from the recipient's DH certificate
(or is provided in the protocol) and Epub is retrieved from
the Certification Request.]
(c) A temporary key K is derived from the shared secret ZZ as
follows:
K = KDF(LeadingInfo | ZZ | TrailingInfo)
LeadingInfo ::= Subject Distinguished Name from
recipient's certificate
TrailingInfo ::= Issuer Distinguished Name from
recipient's certificate
(d) Using the defined MAC function, compute MAC(K, text).
The POP verification process requires the recipient to carry out
steps (a) through (d) and then simply compare the result of step (d)
with what it received as the signature component. If they match,
then the following can be concluded:
(a) The entity possesses the private key corresponding to the public
key in the Certification Request because it needs the private
key to calculate the shared secret; and
(b) Only the recipient that the entity sent the request to could
actually verify the request because it would require its own
private key to compute the same shared secret. In the case
where the recipient is a CA, this protects the entity from
rogue CAs.
<span class="grey">Schaad & Prafullchandra Standards Track [Page 7]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-8" ></span>
<span class="grey"><a href="./rfc6955">RFC 6955</a> DH POP Algorithms May 2013</span>
<span class="h3"><a class="selflink" id="section-4.1" href="#section-4.1">4.1</a>. ASN.1 Encoding</span>
The algorithm outlined above allows for the use of an arbitrary hash
function in computing the temporary key and the MAC algorithm. In
this specification, we define object identifiers for the SHA-1,
SHA-224, SHA-256, SHA-384, and SHA-512 hash values and use HMAC for
the MAC algorithm. The ASN.1 structures associated with the Static
DH POP algorithm are:
DhSigStatic ::= SEQUENCE {
issuerAndSerial IssuerAndSerialNumber OPTIONAL,
hashValue MessageDigest
}
sa-dhPop-static-sha1-hmac-sha1 SIGNATURE-ALGORITHM ::= {
IDENTIFIER id-dhPop-static-sha1-hmac-sha1
VALUE DhSigStatic
PARAMS ARE absent
PUBLIC-KEYS { pk-dh }
}
id-dh-sig-hmac-sha1 OBJECT IDENTIFIER ::= {
id-pkix id-alg(6) 3
}
id-dhPop-static-sha1-hmac-sha1 OBJECT IDENTIFIER ::=
id-dh-sig-hmac-sha1
sa-dhPop-static-sha224-hmac-sha224 SIGNATURE-ALGORITHM ::= {
IDENTIFIER id-alg-dhPop-static-sha224-hmac-sha224
VALUE DhSigStatic
PARAMS ARE absent
PUBLIC-KEYS { pk-dh }
}
id-alg-dhPop-static-sha224-hmac-sha224 OBJECT IDENTIFIER ::= {
id-pkix id-alg(6) 15
}
sa-dhPop-static-sha256-hmac-sha256 SIGNATURE-ALGORITHM ::= {
IDENTIFIER id-alg-dhPop-static-sha256-hmac-sha256
VALUE DhSigStatic
PARAMS ARE absent
PUBLIC-KEYS { pk-dh }
}
<span class="grey">Schaad & Prafullchandra Standards Track [Page 8]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-9" ></span>
<span class="grey"><a href="./rfc6955">RFC 6955</a> DH POP Algorithms May 2013</span>
id-alg-dhPop-static-sha256-hmac-sha256 OBJECT IDENTIFIER ::= {
id-pkix id-alg(6) 16
}
sa-dhPop-static-sha384-hmac-sha384 SIGNATURE-ALGORITHM ::= {
IDENTIFIER id-alg-dhPop-static-sha384-hmac-sha384
VALUE DhSigStatic
PARAMS ARE absent
PUBLIC-KEYS { pk-dh }
}
id-alg-dhPop-static-sha384-hmac-sha384 OBJECT IDENTIFIER ::= {
id-pkix id-alg(6) 17
}
sa-dhPop-static-sha512-hmac-sha512 SIGNATURE-ALGORITHM ::= {
IDENTIFIER id-alg-dhPop-static-sha512-hmac-sha512
VALUE DhSigStatic
PARAMS ARE absent
PUBLIC-KEYS { pk-dh }
}
id-alg-dhPop-static-sha512-hmac-sha512 OBJECT IDENTIFIER ::= {
id-pkix id-alg(6) 18
}
In the above ASN.1, the following items are defined:
DhSigStatic
This ASN.1 type structure holds the information describing the
signature. The structure has the following fields:
issuerAndSerial
This field contains the issuer name and serial number of the
certificate from which the public key was obtained. The
issuerAndSerial field is omitted if the public key did not come
from a certificate.
hashValue
This field contains the result of the MAC operation in
step 3(d) (<a href="#section-4">Section 4</a>).
sa-dhPop-static-sha1-hmac-sha1
An ASN.1 SIGNATURE-ALGORITHM object that associates together the
information describing a signature algorithm. The structure
DhSigStatic represents the signature value, and the parameters
MUST be absent.
<span class="grey">Schaad & Prafullchandra Standards Track [Page 9]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-10" ></span>
<span class="grey"><a href="./rfc6955">RFC 6955</a> DH POP Algorithms May 2013</span>
id-dhPop-static-sha1-hmac-sha1
This OID identifies the Static DH POP algorithm that uses SHA-1 as
the KDF and HMAC-SHA1 as the MAC function. The new OID was
created for naming consistency with the other OIDs defined here.
The value of the OID is the same value as id-dh-sig-hmac-sha1,
which was defined in the previous version of this document
[<a href="./rfc2875" title=""Diffie-Hellman Proof-of-Possession Algorithms"">RFC2875</a>].
sa-dhPop-static-sha224-hmac-sha224
An ASN.1 SIGNATURE-ALGORITHM object that associates together the
information describing this signature algorithm. The structure
DhSigStatic represents the signature value, and the parameters
MUST be absent.
id-dhPop-static-sha224-hmac-sha224
This OID identifies the Static DH POP algorithm that uses SHA-224
as the KDF and HMAC-SHA224 as the MAC function.
sa-dhPop-static-sha256-hmac-sha256
An ASN.1 SIGNATURE-ALGORITHM object that associates together the
information describing this signature algorithm. The structure
DhSigStatic represents the signature value, and the parameters
MUST be absent.
id-dhPop-static-sha256-hmac-sha256
This OID identifies the Static DH POP algorithm that uses SHA-256
as the KDF and HMAC-SHA256 as the MAC function.
sa-dhPop-static-sha384-hmac-sha384
An ASN.1 SIGNATURE-ALGORITHM object that associates together the
information describing this signature algorithm. The structure
DhSigStatic represents the signature value, and the parameters
MUST be absent.
id-dhPop-static-sha384-hmac-sha384
This OID identifies the Static DH POP algorithm that uses SHA-384
as the KDF and HMAC-SHA384 as the MAC function.
sa-dhPop-static-sha512-hmac-sha512
An ASN.1 SIGNATURE-ALGORITHM object that associates together the
information describing this signature algorithm. The structure
DhSigStatic represents the signature value, and the parameters
MUST be absent.
id-dhPop-static-sha512-hmac-sha512
This OID identifies the Static DH POP algorithm that uses SHA-512
as the KDF and HMAC-SHA512 as the MAC function.
<span class="grey">Schaad & Prafullchandra Standards Track [Page 10]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-11" ></span>
<span class="grey"><a href="./rfc6955">RFC 6955</a> DH POP Algorithms May 2013</span>
<span class="h2"><a class="selflink" id="section-5" href="#section-5">5</a>. Discrete Logarithm Signature</span>
When a single set of parameters is used for a large group of keys,
the chance that a collision will occur in the set of keys, either by
accident or design, increases as the number of keys used increases.
A large number of keys from a single parameter set also encourages
the use of brute force methods of attack, as the entire set of keys
in the parameters can be attacked in a single operation rather than
having to attack each key parameter set individually.
For this reason, we need to create a POP for DH keys that does not
require the use of a common set of parameters.
This POP algorithm is based on DSA, but we have removed the
restrictions dealing with the hash and key sizes imposed by the
[<a href="#ref-FIPS-186-3" title=""Digital Signature Standard (DSS)"">FIPS-186-3</a>] standard. The use of this method does impose some
additional restrictions on the set of keys that may be used; however,
if the key-generation algorithm documented in [<a href="./rfc2631" title=""Diffie-Hellman Key Agreement Method"">RFC2631</a>] is used, the
required restrictions are met. The additional restrictions are the
requirement for the existence of a q parameter. Adding the q
parameter is generally accepted as a good practice, as it allows for
checking of small subgroup attacks.
The following definitions are used in the rest of this section:
p is a large prime
g = h^((p-1)/q) mod p,
where h is any integer 1 < h < p-1 such that h^((p-1)/q) mod p > 1
(g has order q mod p)
q is a large prime
j is a large integer such that p = q*j + 1
x is a randomly or pseudo-randomly generated integer with 1 < x < q
y = g^x mod p
HASH is a hash function such that
b = the output size of HASH in bits
Note: These definitions match the ones in [<a href="./rfc2631" title=""Diffie-Hellman Key Agreement Method"">RFC2631</a>].
<span class="h3"><a class="selflink" id="section-5.1" href="#section-5.1">5.1</a>. Expanding the Digest Value</span>
Besides the addition of a q parameter, [<a href="#ref-FIPS-186-3" title=""Digital Signature Standard (DSS)"">FIPS-186-3</a>] also imposes size
restrictions on the parameters. The length of q must be 160 bits
(matching the output length of the SHA-1 digest algorithm), and the
length of p must be 1024 bits. The size restriction on p is
eliminated in this document, but the size restriction on q is
replaced with the requirement that q must be at least b bits in
length. (If the hash function is SHA-1, then b=160 bits and the size
restriction on b is identical with that in [<a href="#ref-FIPS-186-3" title=""Digital Signature Standard (DSS)"">FIPS-186-3</a>].) Given that
<span class="grey">Schaad & Prafullchandra Standards Track [Page 11]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-12" ></span>
<span class="grey"><a href="./rfc6955">RFC 6955</a> DH POP Algorithms May 2013</span>
there is not a random length-hashing algorithm, a hash value of the
message will need to be derived such that the hash is in the range
from 0 to q-1. If the length of q is greater than b, then a method
must be provided to expand the hash.
The method for expanding the digest value used in this section does
not provide any additional security beyond the b bits provided by the
hash algorithm. For this reason, the hash algorithm should be the
largest size possible to match q. The value being signed is
increased mainly to enhance the difficulty of reversing the signature
process.
This algorithm produces m, the value to be signed.
Let L = the size of q (i.e., 2^L <= q < 2^(L+1)).
Let M be the original message to be signed.
Let b be the length of HASH output.
1. Compute d = HASH(M), the digest of the original message.
2. If L == b, then m = d.
3. If L > b, then follow steps (a) through (d) below.
(a) Set n = FLOOR(L / b)
(b) Set m = d, the initial computed digest value
(c) For i = 0 to n - 1
m = m | HASH(m)
(d) m = LEFTMOST(m, L-1)
Thus, the final result of the process meets the criteria that
0 <= m < q.
<span class="h3"><a class="selflink" id="section-5.2" href="#section-5.2">5.2</a>. Signature Computation Algorithm</span>
The signature algorithm produces the pair of values (r, s), which is
the signature. The signature is computed as follows:
Given m, the value to be signed, as well as the parameters defined
earlier in <a href="#section-5">Section 5</a>:
1. Generate a random or pseudo-random integer k, such that
0 < k-1 < q.
2. Compute r = (g^k mod p) mod q.
<span class="grey">Schaad & Prafullchandra Standards Track [Page 12]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-13" ></span>
<span class="grey"><a href="./rfc6955">RFC 6955</a> DH POP Algorithms May 2013</span>
3. If r is zero, repeat from step 1.
4. Compute s = ((k^-1) * (m + x*r)) mod q.
5. If s is zero, repeat from step 1.
<span class="h3"><a class="selflink" id="section-5.3" href="#section-5.3">5.3</a>. Signature Verification Algorithm</span>
The signature verification process is far more complicated than is
normal for DSA, as some assumptions about the validity of parameters
cannot be taken for granted.
Given a value m to be validated, the signature value pair (r, s) and
the parameters for the key:
1. Perform a strong verification that p is a prime number.
2. Perform a strong verification that q is a prime number.
3. Verify that q is a factor of p-1; if any of the above checks
fail, then the signature cannot be verified and must be
considered a failure.
4. Verify that r and s are in the range [1, q-1].
5. Compute w = (s^-1) mod q.
6. Compute u1 = m*w mod q.
7. Compute u2 = r*w mod q.
8. Compute v = ((g^u1 * y^u2) mod p) mod q.
9. Compare v and r; if they are the same, then the signature
verified correctly.
<span class="grey">Schaad & Prafullchandra Standards Track [Page 13]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-14" ></span>
<span class="grey"><a href="./rfc6955">RFC 6955</a> DH POP Algorithms May 2013</span>
<span class="h3"><a class="selflink" id="section-5.4" href="#section-5.4">5.4</a>. ASN.1 Encoding</span>
The signature algorithm is parameterized by the hash algorithm. The
ASN.1 structures associated with the Discrete Logarithm Signature
algorithm are:
sa-dhPop-SHA1 SIGNATURE-ALGORITHM ::= {
IDENTIFIER id-alg-dh-pop
VALUE DSA-Sig-Value
PARAMS TYPE DomainParameters ARE preferredAbsent
HASHES { mda-sha1 }
PUBLIC-KEYS { pk-dh }
}
id-alg-dhPop-sha1 OBJECT IDENTIFIER ::= id-alg-dh-pop
id-alg-dh-pop OBJECT IDENTIFIER ::= { id-pkix id-alg(6) 4 }
sa-dhPop-sha224 SIGNATURE-ALGORITHM ::= {
IDENTIFIER id-alg-dhPop-sha224
VALUE DSA-Sig-Value
PARAMS TYPE DomainParameters ARE preferredAbsent
HASHES { mda-sha224 }
PUBLIC-KEYS { pk-dh }
}
id-alg-dhPop-sha224 OBJECT IDENTIFIER ::= {
id-pkix id-alg(6) 5
}
sa-dhPop-sha256 SIGNATURE-ALGORITHM ::= {
IDENTIFIER id-alg-dhPop-sha256
VALUE DSA-Sig-Value
PARAMS TYPE DomainParameters ARE preferredAbsent
HASHES { mda-sha256 }
PUBLIC-KEYS { pk-dh }
}
id-alg-dhPop-sha256 OBJECT IDENTIFIER ::= {
id-pkix id-alg(6) 6
}
<span class="grey">Schaad & Prafullchandra Standards Track [Page 14]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-15" ></span>
<span class="grey"><a href="./rfc6955">RFC 6955</a> DH POP Algorithms May 2013</span>
sa-dhPop-sha384 SIGNATURE-ALGORITHM ::= {
IDENTIFIER id-alg-dhPop-sha384
VALUE DSA-Sig-Value
PARAMS TYPE DomainParameters ARE preferredAbsent
HASHES { mda-sha384 }
PUBLIC-KEYS { pk-dh }
}
id-alg-dhPop-sha384 OBJECT IDENTIFIER ::= {
id-pkix id-alg(6) 7
}
sa-dhPop-sha512 SIGNATURE-ALGORITHM ::= {
IDENTIFIER id-alg-dhPop-sha512
VALUE DSA-Sig-Value
PARAMS TYPE DomainParameters ARE preferredAbsent
HASHES { mda-sha512 }
PUBLIC-KEYS { pk-dh }
}
id-alg-dhPop-sha512 OBJECT IDENTIFIER ::= {
id-pkix id-alg(6) 8
}
In the above ASN.1, the following items are defined:
sa-dhPop-sha1
A SIGNATURE-ALGORITHM object that associates together the
information describing this signature algorithm. The structure
DSA-Sig-Value represents the signature value, and the structure
DomainParameters SHOULD be omitted in the signature but MUST be
present in the associated key request.
id-alg-dhPop-sha1
This OID identifies the Discrete Logarithm Signature using SHA-1
as the hash algorithm. The new OID was created for naming
consistency with the others defined here. The value of the OID is
the same as id-alg-dh-pop, which was defined in the previous
version of this document [<a href="./rfc2875" title=""Diffie-Hellman Proof-of-Possession Algorithms"">RFC2875</a>].
sa-dhPop-sha224
A SIGNATURE-ALGORITHM object that associates together the
information describing this signature algorithm. The structure
DSA-Sig-Value represents the signature value, and the structure
DomainParameters SHOULD be omitted in the signature but MUST be
present in the associated key request.
<span class="grey">Schaad & Prafullchandra Standards Track [Page 15]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-16" ></span>
<span class="grey"><a href="./rfc6955">RFC 6955</a> DH POP Algorithms May 2013</span>
id-alg-dhPop-sha224
This OID identifies the Discrete Logarithm Signature using SHA-224
as the hash algorithm.
sa-dhPop-sha256
A SIGNATURE-ALGORITHM object that associates together the
information describing this signature algorithm. The structure
DSA-Sig-Value represents the signature value, and the structure
DomainParameters SHOULD be omitted in the signature but MUST be
present in the associated key request.
id-alg-dhPop-sha256
This OID identifies the Discrete Logarithm Signature using SHA-256
as the hash algorithm.
sa-dhPop-sha384
A SIGNATURE-ALGORITHM object that associates together the
information describing this signature algorithm. The structure
DSA-Sig-Value represents the signature value, and the structure
DomainParameters SHOULD be omitted in the signature but MUST be
present in the associated key request.
id-alg-dhPop-sha384
This OID identifies the Discrete Logarithm Signature using SHA-384
as the hash algorithm.
sa-dhPop-sha512
A SIGNATURE-ALGORITHM object that associates together the
information describing this signature algorithm. The structure
DSA-Sig-Value represents the signature value, and the structure
DomainParameters SHOULD be omitted in the signature but MUST be
present in the associated key request.
id-alg-dhPop-sha512
This OID identifies the Discrete Logarithm Signature using SHA-512
as the hash algorithm.
<span class="h2"><a class="selflink" id="section-6" href="#section-6">6</a>. Static ECDH Proof-of-Possession Process</span>
The Static ECDH POP algorithm is set up to use a KDF and a MAC. This
algorithm requires that a common set of group parameters be used by
both the creator and the verifier of the POP value. Full details of
how Elliptic Curve Cryptography (ECC) works can be found in <a href="./rfc6090">RFC 6090</a>
[<a href="./rfc6090" title=""Fundamental Elliptic Curve Cryptography Algorithms"">RFC6090</a>].
<span class="grey">Schaad & Prafullchandra Standards Track [Page 16]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-17" ></span>
<span class="grey"><a href="./rfc6955">RFC 6955</a> DH POP Algorithms May 2013</span>
The steps for creating an ECDH POP are:
1. An entity (E) chooses the group parameters for an ECDH key
agreement.
This is done simply by selecting the group parameters from a
certificate for the recipient of the POP process. A certificate
with the correct group parameters has to be available.
The ECDH parameters can be identified either by a named group or
by a set of curve parameters. <a href="./rfc3279#section-2.3.5">Section 2.3.5 of RFC 3279</a>
[<a href="./rfc3279" title=""Algorithms and Identifiers for the Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile"">RFC3279</a>] documents how the parameters are encoded for PKIX
certificates. For PKIX-based applications, the parameters will
almost always be defined by a named group. Designate G as the
group from the ECDH parameters. Let the ECDH key pair associated
with the certificate be known as the recipient key pair (Rpub
and Rpriv).
Rpub = Rpriv * G
2. The entity generates an ECDH public/private key pair using the
parameters from step 1.
For an entity (E):
Epriv = entity private value
Epub = ECDH public point = Epriv * G
3. The POP computation process will then consist of the following
steps:
(a) The value to be signed (text) is obtained. (For a PKCS #10
object, the value is the DER-encoded
certificationRequestInfo field represented as an octet
string.)
(b) A shared ECDH secret is computed as follows:
shared secret point (x, y) = Epriv * Rpub = Rpriv * Epub
shared secret value ZZ is the x coordinate of the computed
point
<span class="grey">Schaad & Prafullchandra Standards Track [Page 17]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-18" ></span>
<span class="grey"><a href="./rfc6955">RFC 6955</a> DH POP Algorithms May 2013</span>
(c) A temporary key K is derived from the shared secret ZZ as
follows:
K = KDF(LeadingInfo | ZZ | TrailingInfo)
LeadingInfo ::= Subject Distinguished Name from certificate
TrailingInfo ::= Issuer Distinguished Name from certificate
(d) Compute MAC(K, text).
The POP verification process requires the recipient to carry out
steps (a) through (d) and then simply compare the result of step (d)
with what it received as the signature component. If they match,
then the following can be concluded:
(a) The entity possesses the private key corresponding to the public
key in the Certification Request because it needed the private
key to calculate the shared secret; and
(b) Only the recipient that the entity sent the request to could
actually verify the request because it would require its own
private key to compute the same shared secret. In the case
where the recipient is a CA, this protects the entity from
rogue CAs.
<span class="h3"><a class="selflink" id="section-6.1" href="#section-6.1">6.1</a>. ASN.1 Encoding</span>
The algorithm outlined above allows for the use of an arbitrary hash
function in computing the temporary key and the MAC value. In this
specification, we define object identifiers for the SHA-1, SHA-224,
SHA-256, SHA-384, and SHA-512 hash values. The ASN.1 structures
associated with the Static ECDH POP algorithm are:
id-alg-ecdhPop-static-sha224-hmac-sha224 OBJECT IDENTIFIER ::= {
id-pkix id-alg(6) 25
}
sa-ecdhPop-sha224-hmac-sha224 SIGNATURE-ALGORITHM ::= {
IDENTIFIER id-alg-ecdhPop-static-sha224-hmac-sha224
VALUE DhSigStatic
PARAMS ARE absent
PUBLIC-KEYS { pk-ec }
}
<span class="grey">Schaad & Prafullchandra Standards Track [Page 18]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-19" ></span>
<span class="grey"><a href="./rfc6955">RFC 6955</a> DH POP Algorithms May 2013</span>
id-alg-ecdhPop-static-sha256-hmac-sha256 OBJECT IDENTIFIER ::= {
id-pkix id-alg(6) 26
}
sa-ecdhPop-sha256-hmac-sha256 SIGNATURE-ALGORITHM ::= {
IDENTIFIER id-alg-ecdhPop-static-sha256-hmac-sha256
VALUE DhSigStatic
PARAMS ARE absent
PUBLIC-KEYS { pk-ec }
}
id-alg-ecdhPop-static-sha384-hmac-sha384 OBJECT IDENTIFIER ::= {
id-pkix id-alg(6) 27
}
sa-ecdhPop-sha384-hmac-sha384 SIGNATURE-ALGORITHM ::= {
IDENTIFIER id-alg-ecdhPop-static-sha384-hmac-sha384
VALUE DhSigStatic
PARAMS ARE absent
PUBLIC-KEYS { pk-ec }
}
id-alg-ecdhPop-static-sha512-hmac-sha512 OBJECT IDENTIFIER ::= {
id-pkix id-alg(6) 28
}
sa-ecdhPop-sha512-hmac-sha512 SIGNATURE-ALGORITHM ::= {
IDENTIFIER id-alg-ecdhPop-static-sha512-hmac-sha512
VALUE DhSigStatic
PARAMS ARE absent
PUBLIC-KEYS { pk-ec }
}
These items reuse the DhSigStatic structure defined in <a href="#section-4">Section 4</a>.
When used with these algorithms, the value to be placed in the field
hashValue is that computed in step 3(d) (<a href="#section-6">Section 6</a>). In the above
ASN.1, the following items are defined:
sa-ecdhPop-static-sha224-hmac-sha224
An ASN.1 SIGNATURE-ALGORITHM object that associates together the
information describing this signature algorithm. The structure
DhSigStatic represents the signature value, and the parameters
MUST be absent.
id-ecdhPop-static-sha224-hmac-sha224
This OID identifies the Static ECDH POP algorithm that uses
SHA-224 as the KDF and HMAC-SHA224 as the MAC function.
<span class="grey">Schaad & Prafullchandra Standards Track [Page 19]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-20" ></span>
<span class="grey"><a href="./rfc6955">RFC 6955</a> DH POP Algorithms May 2013</span>
sa-ecdhPop-static-sha256-hmac-sha256
An ASN.1 SIGNATURE-ALGORITHM object that associates together the
information describing this signature algorithm. The structure
DhSigStatic represents the signature value, and the parameters
MUST be absent.
id-ecdhPop-static-sha256-hmac-sha256
This OID identifies the Static ECDH POP algorithm that uses
SHA-256 as the KDF and HMAC-SHA256 as the MAC function.
sa-ecdhPop-static-sha384-hmac-sha384
An ASN.1 SIGNATURE-ALGORITHM object that associates together the
information describing this signature algorithm. The structure
DhSigStatic represents the signature value, and the parameters
MUST be absent.
id-ecdhPop-static-sha384-hmac-sha384
This OID identifies the Static ECDH POP algorithm that uses
SHA-384 as the KDF and HMAC-SHA384 as the MAC function.
sa-ecdhPop-static-sha512-hmac-sha512
An ASN.1 SIGNATURE-ALGORITHM object that associates together the
information describing this signature algorithm. The structure
DhSigStatic represents the signature value, and the parameters
MUST be absent.
id-ecdhPop-static-sha512-hmac-sha512
This OID identifies the Static ECDH POP algorithm that uses
SHA-512 as the KDF and HMAC-SHA512 as the MAC function.
<span class="h2"><a class="selflink" id="section-7" href="#section-7">7</a>. Security Considerations</span>
None of the algorithms defined in this document are meant for use in
general purpose situations. These algorithms are designed and
purposed solely for use in doing POP with PKCS #10 and CRMF
constructs.
In the Static DH POP and Static ECDH POP algorithms, an appropriate
value can be produced by either party. Thus, these algorithms only
provide integrity and not origination service. The Discrete
Logarithm Signature algorithm provides both integrity checking and
origination checking.
All the security in this system is provided by the secrecy of the
private keying material. If either sender or recipient private keys
are disclosed, all messages sent or received using those keys are
compromised. Similarly, the loss of a private key results in an
inability to read messages sent using that key.
<span class="grey">Schaad & Prafullchandra Standards Track [Page 20]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-21" ></span>
<span class="grey"><a href="./rfc6955">RFC 6955</a> DH POP Algorithms May 2013</span>
Selection of parameters can be of paramount importance. In the
selection of parameters, one must take into account the community/
group of entities that one wishes to be able to communicate with. In
choosing a set of parameters, one must also be sure to avoid small
groups. [<a href="#ref-FIPS-186-3" title=""Digital Signature Standard (DSS)"">FIPS-186-3</a>] Appendixes A and B.2 contain information on the
selection of parameters for DH. <a href="./rfc6090#section-10">Section 10 of [RFC6090]</a> contains
information on the selection of parameters for ECC. The practices
outlined in these documents will lead to better selection of
parameters.
<span class="h2"><a class="selflink" id="section-8" href="#section-8">8</a>. References</span>
<span class="h3"><a class="selflink" id="section-8.1" href="#section-8.1">8.1</a>. Normative References</span>
[<a id="ref-RFC2104">RFC2104</a>] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC:
Keyed-Hashing for Message Authentication", <a href="./rfc2104">RFC 2104</a>,
February 1997.
[<a id="ref-RFC2119">RFC2119</a>] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", <a href="https://www.rfc-editor.org/bcp/bcp14">BCP 14</a>, <a href="./rfc2119">RFC 2119</a>, March 1997.
[<a id="ref-RFC2631">RFC2631</a>] Rescorla, E., "Diffie-Hellman Key Agreement Method",
<a href="./rfc2631">RFC 2631</a>, June 1999.
[<a id="ref-RFC2986">RFC2986</a>] Nystrom, M. and B. Kaliski, "PKCS #10: Certification
Request Syntax Specification Version 1.7", <a href="./rfc2986">RFC 2986</a>,
November 2000.
[<a id="ref-RFC4231">RFC4231</a>] Nystrom, M., "Identifiers and Test Vectors for HMAC-
SHA-224, HMAC-SHA-256, HMAC-SHA-384, and HMAC-SHA-512",
<a href="./rfc4231">RFC 4231</a>, December 2005.
[<a id="ref-RFC6234">RFC6234</a>] Eastlake, D. and T. Hansen, "US Secure Hash Algorithms
(SHA and SHA-based HMAC and HKDF)", <a href="./rfc6234">RFC 6234</a>, May 2011.
<span class="h3"><a class="selflink" id="section-8.2" href="#section-8.2">8.2</a>. Informative References</span>
[<a id="ref-CRMF">CRMF</a>] Schaad, J., "Internet X.509 Public Key Infrastructure
Certificate Request Message Format (CRMF)", <a href="./rfc4211">RFC 4211</a>,
September 2005.
[<a id="ref-FIPS-186-3">FIPS-186-3</a>] National Institute of Standards and Technology,
"Digital Signature Standard (DSS)", Federal Information
Processing Standards Publication 186-3, June 2009,
<<a href="http://www.nist.gov/">http://www.nist.gov/</a>>.
[<a id="ref-RFC2875">RFC2875</a>] Prafullchandra, H. and J. Schaad, "Diffie-Hellman
Proof-of-Possession Algorithms", <a href="./rfc2875">RFC 2875</a>, July 2000.
<span class="grey">Schaad & Prafullchandra Standards Track [Page 21]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-22" ></span>
<span class="grey"><a href="./rfc6955">RFC 6955</a> DH POP Algorithms May 2013</span>
[<a id="ref-RFC3279">RFC3279</a>] Bassham, L., Polk, W., and R. Housley, "Algorithms and
Identifiers for the Internet X.509 Public Key
Infrastructure Certificate and Certificate Revocation
List (CRL) Profile", <a href="./rfc3279">RFC 3279</a>, April 2002.
[<a id="ref-RFC5912">RFC5912</a>] Hoffman, P. and J. Schaad, "New ASN.1 Modules for the
Public Key Infrastructure Using X.509 (PKIX)",
<a href="./rfc5912">RFC 5912</a>, June 2010.
[<a id="ref-RFC6090">RFC6090</a>] McGrew, D., Igoe, K., and M. Salter, "Fundamental
Elliptic Curve Cryptography Algorithms", <a href="./rfc6090">RFC 6090</a>,
February 2011.
<span class="grey">Schaad & Prafullchandra Standards Track [Page 22]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-23" ></span>
<span class="grey"><a href="./rfc6955">RFC 6955</a> DH POP Algorithms May 2013</span>
<span class="h2"><a class="selflink" id="appendix-A" href="#appendix-A">Appendix A</a>. ASN.1 Modules</span>
<span class="h3"><a class="selflink" id="appendix-A.1" href="#appendix-A.1">A.1</a>. 2008 ASN.1 Module</span>
This appendix contains an ASN.1 module that is conformant with the
2008 version of ASN.1. This module references the object classes
defined by [<a href="./rfc5912" title=""New ASN.1 Modules for the Public Key Infrastructure Using X.509 (PKIX)"">RFC5912</a>] to more completely describe all of the
associations between the elements defined in this document. Where a
difference exists between the module in this section and the 1988
module, the 2008 module is the definitive module.
DH-Sign
{ iso(1) identified-organization(3) dod(6) internet(1)
security(5) mechanisms(5) pkix(7) id-mod(0)
id-mod-dhSign-2012-08(80) }
DEFINITIONS IMPLICIT TAGS ::=
BEGIN
-- EXPORTS ALL
-- The types and values defined in this module are exported for use
-- in the other ASN.1 modules. Other applications may use them
-- for their own purposes.
IMPORTS
SIGNATURE-ALGORITHM
FROM AlgorithmInformation-2009
{ iso(1) identified-organization(3) dod(6) internet(1)
security(5) mechanisms(5) pkix(7) id-mod(0)
id-mod-algorithmInformation-02(58) }
IssuerAndSerialNumber, MessageDigest
FROM CryptographicMessageSyntax-2010
{ iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1)
pkcs-9(9) smime(16) modules(0) id-mod-cms-2009(58) }
DSA-Sig-Value, DomainParameters, ECDSA-Sig-Value,
mda-sha1, mda-sha224, mda-sha256, mda-sha384, mda-sha512,
pk-dh, pk-ec
FROM PKIXAlgs-2009
{ iso(1) identified-organization(3) dod(6) internet(1)
security(5) mechanisms(5) pkix(7) id-mod(0)
id-mod-pkix1-algorithms2008-02(56) }
id-pkix
FROM PKIX1Explicit-2009
{ iso(1) identified-organization(3) dod(6) internet(1)
security(5) mechanisms(5) pkix(7) id-mod(0)
id-mod-pkix1-explicit-02(51) };
<span class="grey">Schaad & Prafullchandra Standards Track [Page 23]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-24" ></span>
<span class="grey"><a href="./rfc6955">RFC 6955</a> DH POP Algorithms May 2013</span>
DhSigStatic ::= SEQUENCE {
issuerAndSerial IssuerAndSerialNumber OPTIONAL,
hashValue MessageDigest
}
sa-dhPop-static-sha1-hmac-sha1 SIGNATURE-ALGORITHM ::= {
IDENTIFIER id-dhPop-static-sha1-hmac-sha1
VALUE DhSigStatic
PARAMS ARE absent
PUBLIC-KEYS { pk-dh }
}
id-dh-sig-hmac-sha1 OBJECT IDENTIFIER ::= {
id-pkix id-alg(6) 3
}
id-dhPop-static-sha1-hmac-sha1 OBJECT IDENTIFIER ::=
id-dh-sig-hmac-sha1
sa-dhPop-static-sha224-hmac-sha224 SIGNATURE-ALGORITHM ::= {
IDENTIFIER id-alg-dhPop-static-sha224-hmac-sha224
VALUE DhSigStatic
PARAMS ARE absent
PUBLIC-KEYS { pk-dh }
}
id-alg-dhPop-static-sha224-hmac-sha224 OBJECT IDENTIFIER ::= {
id-pkix id-alg(6) 15
}
sa-dhPop-static-sha256-hmac-sha256 SIGNATURE-ALGORITHM ::= {
IDENTIFIER id-alg-dhPop-static-sha256-hmac-sha256
VALUE DhSigStatic
PARAMS ARE absent
PUBLIC-KEYS { pk-dh }
}
id-alg-dhPop-static-sha256-hmac-sha256 OBJECT IDENTIFIER ::= {
id-pkix id-alg(6) 16
}
sa-dhPop-static-sha384-hmac-sha384 SIGNATURE-ALGORITHM ::= {
IDENTIFIER id-alg-dhPop-static-sha384-hmac-sha384
VALUE DhSigStatic
PARAMS ARE absent
PUBLIC-KEYS { pk-dh }
}
<span class="grey">Schaad & Prafullchandra Standards Track [Page 24]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-25" ></span>
<span class="grey"><a href="./rfc6955">RFC 6955</a> DH POP Algorithms May 2013</span>
id-alg-dhPop-static-sha384-hmac-sha384 OBJECT IDENTIFIER ::= {
id-pkix id-alg(6) 17
}
sa-dhPop-static-sha512-hmac-sha512 SIGNATURE-ALGORITHM ::= {
IDENTIFIER id-alg-dhPop-static-sha512-hmac-sha512
VALUE DhSigStatic
PARAMS ARE absent
PUBLIC-KEYS { pk-dh }
}
id-alg-dhPop-static-sha512-hmac-sha512 OBJECT IDENTIFIER ::= {
id-pkix id-alg(6) 18
}
sa-dhPop-SHA1 SIGNATURE-ALGORITHM ::= {
IDENTIFIER id-alg-dh-pop
VALUE DSA-Sig-Value
PARAMS TYPE DomainParameters ARE preferredAbsent
HASHES { mda-sha1 }
PUBLIC-KEYS { pk-dh }
}
id-alg-dhPop-sha1 OBJECT IDENTIFIER ::= id-alg-dh-pop
id-alg-dh-pop OBJECT IDENTIFIER ::= { id-pkix id-alg(6) 4 }
sa-dhPop-sha224 SIGNATURE-ALGORITHM ::= {
IDENTIFIER id-alg-dhPop-sha224
VALUE DSA-Sig-Value
PARAMS TYPE DomainParameters ARE preferredAbsent
HASHES { mda-sha224 }
PUBLIC-KEYS { pk-dh }
}
id-alg-dhPop-sha224 OBJECT IDENTIFIER ::= {
id-pkix id-alg(6) 5
}
sa-dhPop-sha256 SIGNATURE-ALGORITHM ::= {
IDENTIFIER id-alg-dhPop-sha256
VALUE DSA-Sig-Value
PARAMS TYPE DomainParameters ARE preferredAbsent
HASHES { mda-sha256 }
PUBLIC-KEYS { pk-dh }
}
<span class="grey">Schaad & Prafullchandra Standards Track [Page 25]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-26" ></span>
<span class="grey"><a href="./rfc6955">RFC 6955</a> DH POP Algorithms May 2013</span>
id-alg-dhPop-sha256 OBJECT IDENTIFIER ::= {
id-pkix id-alg(6) 6
}
sa-dhPop-sha384 SIGNATURE-ALGORITHM ::= {
IDENTIFIER id-alg-dhPop-sha384
VALUE DSA-Sig-Value
PARAMS TYPE DomainParameters ARE preferredAbsent
HASHES { mda-sha384 }
PUBLIC-KEYS { pk-dh }
}
id-alg-dhPop-sha384 OBJECT IDENTIFIER ::= {
id-pkix id-alg(6) 7
}
sa-dhPop-sha512 SIGNATURE-ALGORITHM ::= {
IDENTIFIER id-alg-dhPop-sha512
VALUE DSA-Sig-Value
PARAMS TYPE DomainParameters ARE preferredAbsent
HASHES { mda-sha512 }
PUBLIC-KEYS { pk-dh }
}
id-alg-dhPop-sha512 OBJECT IDENTIFIER ::= {
id-pkix id-alg(6) 8
}
id-alg-ecdhPop-static-sha224-hmac-sha224 OBJECT IDENTIFIER ::= {
id-pkix id-alg(6) 25
}
sa-ecdhPop-sha224-hmac-sha224 SIGNATURE-ALGORITHM ::= {
IDENTIFIER id-alg-ecdhPop-static-sha224-hmac-sha224
VALUE DhSigStatic
PARAMS ARE absent
PUBLIC-KEYS { pk-ec }
}
id-alg-ecdhPop-static-sha256-hmac-sha256 OBJECT IDENTIFIER ::= {
id-pkix id-alg(6) 26
}
<span class="grey">Schaad & Prafullchandra Standards Track [Page 26]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-27" ></span>
<span class="grey"><a href="./rfc6955">RFC 6955</a> DH POP Algorithms May 2013</span>
sa-ecdhPop-sha256-hmac-sha256 SIGNATURE-ALGORITHM ::= {
IDENTIFIER id-alg-ecdhPop-static-sha256-hmac-sha256
VALUE DhSigStatic
PARAMS ARE absent
PUBLIC-KEYS { pk-ec }
}
id-alg-ecdhPop-static-sha384-hmac-sha384 OBJECT IDENTIFIER ::= {
id-pkix id-alg(6) 27
}
sa-ecdhPop-sha384-hmac-sha384 SIGNATURE-ALGORITHM ::= {
IDENTIFIER id-alg-ecdhPop-static-sha384-hmac-sha384
VALUE DhSigStatic
PARAMS ARE absent
PUBLIC-KEYS { pk-ec }
}
id-alg-ecdhPop-static-sha512-hmac-sha512 OBJECT IDENTIFIER ::= {
id-pkix id-alg(6) 28
}
sa-ecdhPop-sha512-hmac-sha512 SIGNATURE-ALGORITHM ::= {
IDENTIFIER id-alg-ecdhPop-static-sha512-hmac-sha512
VALUE DhSigStatic
PARAMS ARE absent
PUBLIC-KEYS { pk-ec }
}
END
<span class="grey">Schaad & Prafullchandra Standards Track [Page 27]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-28" ></span>
<span class="grey"><a href="./rfc6955">RFC 6955</a> DH POP Algorithms May 2013</span>
<span class="h3"><a class="selflink" id="appendix-A.2" href="#appendix-A.2">A.2</a>. 1988 ASN.1 Module</span>
This appendix contains an ASN.1 module that is conformant with the
1988 version of ASN.1, which represents an informational version of
the ASN.1 module for this document. Where a difference exists
between the module in this section and the 2008 module, the 2008
module is the definitive module.
DH-Sign
{ iso(1) identified-organization(3) dod(6) internet(1)
security(5) mechanisms(5) pkix(7) id-mod(0)
id-mod-dhSign-2012-88(79) }
DEFINITIONS IMPLICIT TAGS ::=
BEGIN
-- EXPORTS ALL
-- The types and values defined in this module are exported for use
-- in the other ASN.1 modules. Other applications may use them
-- for their own purposes.
IMPORTS
IssuerAndSerialNumber, MessageDigest
FROM CryptographicMessageSyntax2004
{ iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1)
pkcs-9(9) smime(16) modules(0) cms-2004(24) }
id-pkix
FROM PKIX1Explicit88
{ iso(1) identified-organization(3) dod(6) internet(1)
security(5) mechanisms(5) pkix(7) id-mod(0)
id-pkix1-explicit(18) }
Dss-Sig-Value, DomainParameters
FROM PKIX1Algorithms88
{ iso(1) identified-organization(3) dod(6) internet(1)
security(5) mechanisms(5) pkix(7) id-mod(0)
id-mod-pkix1-algorithms(17) };
id-dh-sig-hmac-sha1 OBJECT IDENTIFIER ::= {id-pkix id-alg(6) 3}
DhSigStatic ::= SEQUENCE {
issuerAndSerial IssuerAndSerialNumber OPTIONAL,
hashValue MessageDigest
}
id-alg-dh-pop OBJECT IDENTIFIER ::= { id-pkix id-alg(6) 4 }
<span class="grey">Schaad & Prafullchandra Standards Track [Page 28]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-29" ></span>
<span class="grey"><a href="./rfc6955">RFC 6955</a> DH POP Algorithms May 2013</span>
id-dhPop-static-sha1-hmac-sha1 OBJECT IDENTIFIER ::=
id-dh-sig-hmac-sha1
id-alg-dhPop-static-sha224-hmac-sha224 OBJECT IDENTIFIER ::= {
id-pkix id-alg(6) 15 }
id-alg-dhPop-static-sha256-hmac-sha256 OBJECT IDENTIFIER ::= {
id-pkix id-alg(6) 16 }
id-alg-dhPop-static-sha384-hmac-sha384 OBJECT IDENTIFIER ::= {
id-pkix id-alg(6) 17 }
id-alg-dhPop-static-sha512-hmac-sha512 OBJECT IDENTIFIER ::= {
id-pkix id-alg(6) 18 }
id-alg-dhPop-sha1 OBJECT IDENTIFIER ::= id-alg-dh-pop
id-alg-dhPop-sha224 OBJECT IDENTIFIER ::= {
id-pkix id-alg(6) 5 }
id-alg-dhPop-sha256 OBJECT IDENTIFIER ::= {
id-pkix id-alg(6) 6 }
id-alg-dhPop-sha384 OBJECT IDENTIFIER ::= {
id-pkix id-alg(6) 7 }
id-alg-dhPop-sha512 OBJECT IDENTIFIER ::= {
id-pkix id-alg(6) 8 }
id-alg-ecdhPop-static-sha224-hmac-sha224 OBJECT IDENTIFIER ::= {
id-pkix id-alg(6) 25 }
id-alg-ecdhPop-static-sha256-hmac-sha256 OBJECT IDENTIFIER ::= {
id-pkix id-alg(6) 26 }
id-alg-ecdhPop-static-sha384-hmac-sha384 OBJECT IDENTIFIER ::= {
id-pkix id-alg(6) 27 }
id-alg-ecdhPop-static-sha512-hmac-sha512 OBJECT IDENTIFIER ::= {
id-pkix id-alg(6) 28 }
END
<span class="grey">Schaad & Prafullchandra Standards Track [Page 29]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-30" ></span>
<span class="grey"><a href="./rfc6955">RFC 6955</a> DH POP Algorithms May 2013</span>
<span class="h2"><a class="selflink" id="appendix-B" href="#appendix-B">Appendix B</a>. Example of Static DH Proof-of-Possession</span>
The following example follows the steps described earlier in
<a href="#section-4">Section 4</a>.
Step 1. Establishing common DH parameters: Assume the parameters are
as in the DER-encoded certificate. The certificate contains a DH
public key signed by a CA with a DSA signing key.
0 30 939: SEQUENCE {
4 30 872: SEQUENCE {
8 A0 3: [0] {
10 02 1: INTEGER 2
: }
13 02 6: INTEGER
: 00 DA 39 B6 E2 CB
21 30 11: SEQUENCE {
23 06 7: OBJECT IDENTIFIER dsaWithSha1 (1 2 840 10040 4 3)
32 05 0: NULL
: }
34 30 72: SEQUENCE {
36 31 11: SET {
38 30 9: SEQUENCE {
40 06 3: OBJECT IDENTIFIER countryName (2 5 4 6)
45 13 2: PrintableString 'US'
: }
: }
49 31 17: SET {
51 30 15: SEQUENCE {
53 06 3: OBJECT IDENTIFIER organizationName (2 5 4 10)
58 13 8: PrintableString 'XETI Inc'
: }
: }
68 31 16: SET {
70 30 14: SEQUENCE {
72 06 3: OBJECT IDENTIFIER organizationalUnitName (2 5 4
11)
77 13 7: PrintableString 'Testing'
: }
: }
86 31 20: SET {
88 30 18: SEQUENCE {
90 06 3: OBJECT IDENTIFIER commonName (2 5 4 3)
95 13 11: PrintableString 'Root DSA CA'
: }
: }
: }
<span class="grey">Schaad & Prafullchandra Standards Track [Page 30]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-31" ></span>
<span class="grey"><a href="./rfc6955">RFC 6955</a> DH POP Algorithms May 2013</span>
<span class="h2"><a class="selflink" id="section-108" href="#section-108">108</a> 30 </span>30: SEQUENCE {
<span class="h2"><a class="selflink" id="section-110" href="#section-110">110</a> 17 </span>13: UTCTime '990914010557Z'
<span class="h2"><a class="selflink" id="section-125" href="#section-125">125</a> 17 </span>13: UTCTime '991113010557Z'
: }
<span class="h2"><a class="selflink" id="section-140" href="#section-140">140</a> 30 </span>70: SEQUENCE {
<span class="h2"><a class="selflink" id="section-142" href="#section-142">142</a> 31 </span>11: SET {
<span class="h2"><a class="selflink" id="section-144" href="#section-144">144</a> 30 </span> 9: SEQUENCE {
<span class="h2"><a class="selflink" id="section-146" href="#section-146">146</a> 06 </span> 3: OBJECT IDENTIFIER countryName (2 5 4 6)
<span class="h2"><a class="selflink" id="section-151" href="#section-151">151</a> 13 </span> 2: PrintableString 'US'
: }
: }
<span class="h2"><a class="selflink" id="section-155" href="#section-155">155</a> 31 </span>17: SET {
<span class="h2"><a class="selflink" id="section-157" href="#section-157">157</a> 30 </span>15: SEQUENCE {
<span class="h2"><a class="selflink" id="section-159" href="#section-159">159</a> 06 </span> 3: OBJECT IDENTIFIER organizationName (2 5 4 10)
<span class="h2"><a class="selflink" id="section-164" href="#section-164">164</a> 13 </span> 8: PrintableString 'XETI Inc'
: }
: }
<span class="h2"><a class="selflink" id="section-174" href="#section-174">174</a> 31 </span>16: SET {
<span class="h2"><a class="selflink" id="section-176" href="#section-176">176</a> 30 </span>14: SEQUENCE {
<span class="h2"><a class="selflink" id="section-178" href="#section-178">178</a> 06 </span> 3: OBJECT IDENTIFIER organizationalUnitName (2 5 4
11)
<span class="h2"><a class="selflink" id="section-183" href="#section-183">183</a> 13 </span> 7: PrintableString 'Testing'
: }
: }
<span class="h2"><a class="selflink" id="section-192" href="#section-192">192</a> 31 </span>18: SET {
<span class="h2"><a class="selflink" id="section-194" href="#section-194">194</a> 30 </span>16: SEQUENCE {
<span class="h2"><a class="selflink" id="section-196" href="#section-196">196</a> 06 </span> 3: OBJECT IDENTIFIER commonName (2 5 4 3)
<span class="h2"><a class="selflink" id="section-201" href="#section-201">201</a> 13 </span> 9: PrintableString 'DH TestCA'
: }
: }
: }
<span class="h2"><a class="selflink" id="section-212" href="#section-212">212</a> 30 577: </span> SEQUENCE {
<span class="h2"><a class="selflink" id="section-216" href="#section-216">216</a> 30 438: </span> SEQUENCE {
<span class="h2"><a class="selflink" id="section-220" href="#section-220">220</a> 06 </span> 7: OBJECT IDENTIFIER dhPublicKey (1 2 840 10046 2 1)
<span class="h2"><a class="selflink" id="section-229" href="#section-229">229</a> 30 425: </span> SEQUENCE {
<span class="h2"><a class="selflink" id="section-233" href="#section-233">233</a> 02 129: </span> INTEGER
: 00 94 84 E0 45 6C 7F 69 51 62 3E 56 80 7C 68 E7
: C5 A9 9E 9E 74 74 94 ED 90 8C 1D C4 E1 4A 14 82
: F5 D2 94 0C 19 E3 B9 10 BB 11 B9 E5 A5 FB 8E 21
: 51 63 02 86 AA 06 B8 21 36 B6 7F 36 DF D1 D6 68
: 5B 79 7C 1D 5A 14 75 1F 6A 93 75 93 CE BB 97 72
: 8A F0 0F 23 9D 47 F6 D4 B3 C7 F0 F4 E6 F6 2B C2
: 32 E1 89 67 BE 7E 06 AE F8 D0 01 6B 8B 2A F5 02
: D7 B6 A8 63 94 83 B0 1B 31 7D 52 1A DE E5 03 85
: 27
<span class="grey">Schaad & Prafullchandra Standards Track [Page 31]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-32" ></span>
<span class="grey"><a href="./rfc6955">RFC 6955</a> DH POP Algorithms May 2013</span>
<span class="h2"><a class="selflink" id="section-365" href="#section-365">365</a> 02 128: </span> INTEGER
: 26 A6 32 2C 5A 2B D4 33 2B 5C DC 06 87 53 3F 90
: 06 61 50 38 3E D2 B9 7D 81 1C 12 10 C5 0C 53 D4
: 64 D1 8E 30 07 08 8C DD 3F 0A 2F 2C D6 1B 7F 57
: 86 D0 DA BB 6E 36 2A 18 E8 D3 BC 70 31 7A 48 B6
: 4E 18 6E DD 1F 22 06 EB 3F EA D4 41 69 D9 9B DE
: 47 95 7A 72 91 D2 09 7F 49 5C 3B 03 33 51 C8 F1
: 39 9A FF 04 D5 6E 7E 94 3D 03 B8 F6 31 15 26 48
: 95 A8 5C DE 47 88 B4 69 3A 00 A7 86 9E DA D1 CD
<span class="h2"><a class="selflink" id="section-496" href="#section-496">496</a> 02 </span>33: INTEGER
: 00 E8 72 FA 96 F0 11 40 F5 F2 DC FD 3B 5D 78 94
: B1 85 01 E5 69 37 21 F7 25 B9 BA 71 4A FC 60 30
: FB
<span class="h2"><a class="selflink" id="section-531" href="#section-531">531</a> 02 </span>97: INTEGER
: 00 A3 91 01 C0 A8 6E A4 4D A0 56 FC 6C FE 1F A7
: B0 CD 0F 94 87 0C 25 BE 97 76 8D EB E5 A4 09 5D
: AB 83 CD 80 0B 35 67 7F 0C 8E A7 31 98 32 85 39
: 40 9D 11 98 D8 DE B8 7F 86 9B AF 8D 67 3D B6 76
: B4 61 2F 21 E1 4B 0E 68 FF 53 3E 87 DD D8 71 56
: 68 47 DC F7 20 63 4B 3C 5F 78 71 83 E6 70 9E E2
: 92
<span class="h2"><a class="selflink" id="section-630" href="#section-630">630</a> 30 </span>26: SEQUENCE {
<span class="h2"><a class="selflink" id="section-632" href="#section-632">632</a> 03 </span>21: BIT STRING 0 unused bits
: 1C D5 3A 0D 17 82 6D 0A 81 75 81 46 10 8E 3E DB
: 09 E4 98 34
<span class="h2"><a class="selflink" id="section-655" href="#section-655">655</a> 02 </span> 1: INTEGER 55
: }
: }
: }
<span class="h2"><a class="selflink" id="section-658" href="#section-658">658</a> 03 132: </span> BIT STRING 0 unused bits
: 02 81 80 5F CF 39 AD 62 CF 49 8E D1 CE 66 E2 B1
: E6 A7 01 4D 05 C2 77 C8 92 52 42 A9 05 A4 DB E0
: 46 79 50 A3 FC 99 3D 3D A6 9B A9 AD BC 62 1C 69
: B7 11 A1 C0 2A F1 85 28 F7 68 FE D6 8F 31 56 22
: 4D 0A 11 6E 72 3A 02 AF 0E 27 AA F9 ED CE 05 EF
: D8 59 92 C0 18 D7 69 6E BD 70 B6 21 D1 77 39 21
: E1 AF 7A 3A CF 20 0A B4 2C 69 5F CF 79 67 20 31
: 4D F2 C6 ED 23 BF C4 BB 1E D1 71 40 2C 07 D6 F0
: 8F C5 1A
: }
<span class="h2"><a class="selflink" id="section-793" href="#section-793">793</a> A3 </span>85: [3] {
<span class="h2"><a class="selflink" id="section-795" href="#section-795">795</a> 30 </span>83: SEQUENCE {
<span class="h2"><a class="selflink" id="section-797" href="#section-797">797</a> 30 </span>29: SEQUENCE {
<span class="h2"><a class="selflink" id="section-799" href="#section-799">799</a> 06 </span> 3: OBJECT IDENTIFIER subjectKeyIdentifier (2 5 29 14)
<span class="h2"><a class="selflink" id="section-804" href="#section-804">804</a> 04 </span>22: OCTET STRING
: 04 14 80 DF 59 88 BF EB 17 E1 AD 5E C6 40 A3 42
: E5 AC D3 B4 88 78
: }
<span class="grey">Schaad & Prafullchandra Standards Track [Page 32]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-33" ></span>
<span class="grey"><a href="./rfc6955">RFC 6955</a> DH POP Algorithms May 2013</span>
<span class="h2"><a class="selflink" id="section-828" href="#section-828">828</a> 30 </span>34: SEQUENCE {
<span class="h2"><a class="selflink" id="section-830" href="#section-830">830</a> 06 </span> 3: OBJECT IDENTIFIER authorityKeyIdentifier (2 5 29
35)
<span class="h2"><a class="selflink" id="section-835" href="#section-835">835</a> 01 </span> 1: BOOLEAN TRUE
<span class="h2"><a class="selflink" id="section-838" href="#section-838">838</a> 04 </span>24: OCTET STRING
: 30 16 80 14 6A 23 37 55 B9 FD 81 EA E8 4E D3 C9
: B7 09 E5 7B 06 E3 68 AA
: }
<span class="h2"><a class="selflink" id="section-864" href="#section-864">864</a> 30 </span>14: SEQUENCE {
<span class="h2"><a class="selflink" id="section-866" href="#section-866">866</a> 06 </span> 3: OBJECT IDENTIFIER keyUsage (2 5 29 15)
<span class="h2"><a class="selflink" id="section-871" href="#section-871">871</a> 01 </span> 1: BOOLEAN TRUE
<span class="h2"><a class="selflink" id="section-874" href="#section-874">874</a> 04 </span> 4: OCTET STRING
: 03 02 03 08
: }
: }
: }
: }
<span class="h2"><a class="selflink" id="section-880" href="#section-880">880</a> 30 </span>11: SEQUENCE {
<span class="h2"><a class="selflink" id="section-882" href="#section-882">882</a> 06 </span> 7: OBJECT IDENTIFIER dsaWithSha1 (1 2 840 10040 4 3)
<span class="h2"><a class="selflink" id="section-891" href="#section-891">891</a> 05 </span> 0: NULL
: }
<span class="h2"><a class="selflink" id="section-893" href="#section-893">893</a> 03 </span>48: BIT STRING 0 unused bits
: 30 2D 02 14 7C 6D D2 CA 1E 32 D1 30 2E 29 66 BC
: 06 8B 60 C7 61 16 3B CA 02 15 00 8A 18 DD C1 83
: 58 29 A2 8A 67 64 03 92 AB 02 CE 00 B5 94 6A
: }
Step 2. End entity/user generates a DH key pair using the parameters
from the CA certificate.
End entity DH public key:
Y: 13 63 A1 85 04 8C 46 A8 88 EB F4 5E A8 93 74 AE
FD AE 9E 96 27 12 65 C4 4C 07 06 3E 18 FE 94 B8
A8 79 48 BD 2E 34 B6 47 CA 04 30 A1 EC 33 FD 1A
0B 2D 9E 50 C9 78 0F AE 6A EC B5 6B 6A BE B2 5C
DA B2 9F 78 2C B9 77 E2 79 2B 25 BF 2E 0B 59 4A
93 4B F8 B3 EC 81 34 AE 97 47 52 E0 A8 29 98 EC
D1 B0 CA 2B 6F 7A 8B DB 4E 8D A5 15 7E 7E AF 33
62 09 9E 0F 11 44 8C C1 8D A2 11 9E 53 EF B2 E8
End entity DH private key:
X: 32 CC BD B4 B7 7C 44 26 BB 3C 83 42 6E 7D 1B 00
86 35 09 71 07 A0 A4 76 B8 DB 5F EC 00 CE 6F C3
<span class="grey">Schaad & Prafullchandra Standards Track [Page 33]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-34" ></span>
<span class="grey"><a href="./rfc6955">RFC 6955</a> DH POP Algorithms May 2013</span>
Step 3. Compute the shared secret ZZ.
56 b6 01 39 42 8e 09 16 30 b0 31 4d 12 90 af 03
c7 92 65 c2 9c ba 88 bb 0a d5 94 02 ed 6f 54 cb
22 e5 94 b4 d6 60 72 bc f6 a5 2b 18 8d df 28 72
ac e0 41 dd 3b 03 2a 12 9e 5d bd 72 a0 1e fb 6b
ee c5 b2 16 59 ee 12 00 3b c8 e0 cb c5 08 8e 2d
40 5f 2d 37 62 8c 4f bb 49 76 69 3c 9e fc 2c f7
f9 50 c1 b9 f7 01 32 4c 96 b9 c3 56 c0 2c 1b 77
3f 2f 36 e8 22 c8 2e 07 76 d0 4f 7f aa d5 c0 59
Step 4. Compute K and the signature.
LeadingInfo: DER-encoded Subject/Requester Distinguished Name (DN),
as in the generated Certificate Signing Request
30 46 31 0B 30 09 06 03 55 04 06 13 02 55 53 31
11 30 0F 06 03 55 04 0A 13 08 58 45 54 49 20 49
6E 63 31 10 30 0E 06 03 55 04 0B 13 07 54 65 73
74 69 6E 67 31 12 30 10 06 03 55 04 03 13 09 44
48 20 54 65 73 74 43 41
TrailingInfo: DER-encoded Issuer/recipient DN (from the certificate
described in step 1)
30 48 31 0B 30 09 06 03 55 04 06 13 02 55 53 31
11 30 0F 06 03 55 04 0A 13 08 58 45 54 49 20 49
6E 63 31 10 30 0E 06 03 55 04 0B 13 07 54 65 73
74 69 6E 67 31 14 30 12 06 03 55 04 03 13 0B 52
6F 6F 74 20 44 53 41 20 43 41
K:
B1 91 D7 DB 4F C5 EF EF AC 9A C5 44 5A 6D 42 28
DC 70 7B DA
<span class="grey">Schaad & Prafullchandra Standards Track [Page 34]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-35" ></span>
<span class="grey"><a href="./rfc6955">RFC 6955</a> DH POP Algorithms May 2013</span>
TBS: the "text" for computing the SHA-1 HMAC.
30 82 02 98 02 01 00 30 4E 31 0B 30 09 06 03 55
04 06 13 02 55 53 31 11 30 0F 06 03 55 04 0A 13
08 58 45 54 49 20 49 6E 63 31 10 30 0E 06 03 55
04 0B 13 07 54 65 73 74 69 6E 67 31 1A 30 18 06
03 55 04 03 13 11 50 4B 49 58 20 45 78 61 6D 70
6C 65 20 55 73 65 72 30 82 02 41 30 82 01 B6 06
07 2A 86 48 CE 3E 02 01 30 82 01 A9 02 81 81 00
94 84 E0 45 6C 7F 69 51 62 3E 56 80 7C 68 E7 C5
A9 9E 9E 74 74 94 ED 90 8C 1D C4 E1 4A 14 82 F5
D2 94 0C 19 E3 B9 10 BB 11 B9 E5 A5 FB 8E 21 51
63 02 86 AA 06 B8 21 36 B6 7F 36 DF D1 D6 68 5B
79 7C 1D 5A 14 75 1F 6A 93 75 93 CE BB 97 72 8A
F0 0F 23 9D 47 F6 D4 B3 C7 F0 F4 E6 F6 2B C2 32
E1 89 67 BE 7E 06 AE F8 D0 01 6B 8B 2A F5 02 D7
B6 A8 63 94 83 B0 1B 31 7D 52 1A DE E5 03 85 27
02 81 80 26 A6 32 2C 5A 2B D4 33 2B 5C DC 06 87
53 3F 90 06 61 50 38 3E D2 B9 7D 81 1C 12 10 C5
0C 53 D4 64 D1 8E 30 07 08 8C DD 3F 0A 2F 2C D6
1B 7F 57 86 D0 DA BB 6E 36 2A 18 E8 D3 BC 70 31
7A 48 B6 4E 18 6E DD 1F 22 06 EB 3F EA D4 41 69
D9 9B DE 47 95 7A 72 91 D2 09 7F 49 5C 3B 03 33
51 C8 F1 39 9A FF 04 D5 6E 7E 94 3D 03 B8 F6 31
15 26 48 95 A8 5C DE 47 88 B4 69 3A 00 A7 86 9E
DA D1 CD 02 21 00 E8 72 FA 96 F0 11 40 F5 F2 DC
FD 3B 5D 78 94 B1 85 01 E5 69 37 21 F7 25 B9 BA
71 4A FC 60 30 FB 02 61 00 A3 91 01 C0 A8 6E A4
4D A0 56 FC 6C FE 1F A7 B0 CD 0F 94 87 0C 25 BE
97 76 8D EB E5 A4 09 5D AB 83 CD 80 0B 35 67 7F
0C 8E A7 31 98 32 85 39 40 9D 11 98 D8 DE B8 7F
86 9B AF 8D 67 3D B6 76 B4 61 2F 21 E1 4B 0E 68
FF 53 3E 87 DD D8 71 56 68 47 DC F7 20 63 4B 3C
5F 78 71 83 E6 70 9E E2 92 30 1A 03 15 00 1C D5
3A 0D 17 82 6D 0A 81 75 81 46 10 8E 3E DB 09 E4
98 34 02 01 37 03 81 84 00 02 81 80 13 63 A1 85
04 8C 46 A8 88 EB F4 5E A8 93 74 AE FD AE 9E 96
27 12 65 C4 4C 07 06 3E 18 FE 94 B8 A8 79 48 BD
2E 34 B6 47 CA 04 30 A1 EC 33 FD 1A 0B 2D 9E 50
C9 78 0F AE 6A EC B5 6B 6A BE B2 5C DA B2 9F 78
2C B9 77 E2 79 2B 25 BF 2E 0B 59 4A 93 4B F8 B3
EC 81 34 AE 97 47 52 E0 A8 29 98 EC D1 B0 CA 2B
6F 7A 8B DB 4E 8D A5 15 7E 7E AF 33 62 09 9E 0F
11 44 8C C1 8D A2 11 9E 53 EF B2 E8
<span class="grey">Schaad & Prafullchandra Standards Track [Page 35]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-36" ></span>
<span class="grey"><a href="./rfc6955">RFC 6955</a> DH POP Algorithms May 2013</span>
Certification Request:
0 30 793: SEQUENCE {
4 30 664: SEQUENCE {
8 02 1: INTEGER 0
11 30 78: SEQUENCE {
13 31 11: SET {
15 30 9: SEQUENCE {
17 06 3: OBJECT IDENTIFIER countryName (2 5 4 6)
22 13 2: PrintableString 'US'
: }
: }
26 31 17: SET {
28 30 15: SEQUENCE {
30 06 3: OBJECT IDENTIFIER organizationName (2 5 4 10)
35 13 8: PrintableString 'XETI Inc'
: }
: }
45 31 16: SET {
47 30 14: SEQUENCE {
49 06 3: OBJECT IDENTIFIER organizationalUnitName (2 5 4
11)
54 13 7: PrintableString 'Testing'
: }
: }
63 31 26: SET {
65 30 24: SEQUENCE {
67 06 3: OBJECT IDENTIFIER commonName (2 5 4 3)
72 13 17: PrintableString 'PKIX Example User'
: }
: }
: }
91 30 577: SEQUENCE {
95 30 438: SEQUENCE {
99 06 7: OBJECT IDENTIFIER dhPublicKey (1 2 840 10046 2 1)
108 30 425: SEQUENCE {
112 02 129: INTEGER
: 00 94 84 E0 45 6C 7F 69 51 62 3E 56 80 7C 68 E7
: C5 A9 9E 9E 74 74 94 ED 90 8C 1D C4 E1 4A 14 82
: F5 D2 94 0C 19 E3 B9 10 BB 11 B9 E5 A5 FB 8E 21
: 51 63 02 86 AA 06 B8 21 36 B6 7F 36 DF D1 D6 68
: 5B 79 7C 1D 5A 14 75 1F 6A 93 75 93 CE BB 97 72
: 8A F0 0F 23 9D 47 F6 D4 B3 C7 F0 F4 E6 F6 2B C2
: 32 E1 89 67 BE 7E 06 AE F8 D0 01 6B 8B 2A F5 02
: D7 B6 A8 63 94 83 B0 1B 31 7D 52 1A DE E5 03 85
: 27
<span class="grey">Schaad & Prafullchandra Standards Track [Page 36]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-37" ></span>
<span class="grey"><a href="./rfc6955">RFC 6955</a> DH POP Algorithms May 2013</span>
244 02 128: INTEGER
: 26 A6 32 2C 5A 2B D4 33 2B 5C DC 06 87 53 3F 90
: 06 61 50 38 3E D2 B9 7D 81 1C 12 10 C5 0C 53 D4
: 64 D1 8E 30 07 08 8C DD 3F 0A 2F 2C D6 1B 7F 57
: 86 D0 DA BB 6E 36 2A 18 E8 D3 BC 70 31 7A 48 B6
: 4E 18 6E DD 1F 22 06 EB 3F EA D4 41 69 D9 9B DE
: 47 95 7A 72 91 D2 09 7F 49 5C 3B 03 33 51 C8 F1
: 39 9A FF 04 D5 6E 7E 94 3D 03 B8 F6 31 15 26 48
: 95 A8 5C DE 47 88 B4 69 3A 00 A7 86 9E DA D1 CD
375 02 33: INTEGER
: 00 E8 72 FA 96 F0 11 40 F5 F2 DC FD 3B 5D 78 94
: B1 85 01 E5 69 37 21 F7 25 B9 BA 71 4A FC 60 30
: FB
410 02 97: INTEGER
: 00 A3 91 01 C0 A8 6E A4 4D A0 56 FC 6C FE 1F A7
: B0 CD 0F 94 87 0C 25 BE 97 76 8D EB E5 A4 09 5D
: AB 83 CD 80 0B 35 67 7F 0C 8E A7 31 98 32 85 39
: 40 9D 11 98 D8 DE B8 7F 86 9B AF 8D 67 3D B6 76
: B4 61 2F 21 E1 4B 0E 68 FF 53 3E 87 DD D8 71 56
: 68 47 DC F7 20 63 4B 3C 5F 78 71 83 E6 70 9E E2
: 92
509 30 26: SEQUENCE {
511 03 21: BIT STRING 0 unused bits
: 1C D5 3A 0D 17 82 6D 0A 81 75 81 46 10 8E 3E
: DB 09 E4 98 34
534 02 1: INTEGER 55
: }
: }
: }
537 03 132: BIT STRING 0 unused bits
: 02 81 80 13 63 A1 85 04 8C 46 A8 88 EB F4 5E A8
: 93 74 AE FD AE 9E 96 27 12 65 C4 4C 07 06 3E 18
: FE 94 B8 A8 79 48 BD 2E 34 B6 47 CA 04 30 A1 EC
: 33 FD 1A 0B 2D 9E 50 C9 78 0F AE 6A EC B5 6B 6A
: BE B2 5C DA B2 9F 78 2C B9 77 E2 79 2B 25 BF 2E
: 0B 59 4A 93 4B F8 B3 EC 81 34 AE 97 47 52 E0 A8
: 29 98 EC D1 B0 CA 2B 6F 7A 8B DB 4E 8D A5 15 7E
: 7E AF 33 62 09 9E 0F 11 44 8C C1 8D A2 11 9E 53
: EF B2 E8
: }
: }
672 30 12: SEQUENCE {
674 06 8: OBJECT IDENTIFIER dh-sig-hmac-sha1 (1 3 6 1 5 5 7 6 3)
684 05 0: NULL
: }
<span class="grey">Schaad & Prafullchandra Standards Track [Page 37]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-38" ></span>
<span class="grey"><a href="./rfc6955">RFC 6955</a> DH POP Algorithms May 2013</span>
686 03 109: BIT STRING 0 unused bits
: 30 6A 30 52 30 48 31 0B 30 09 06 03 55 04 06 13
: 02 55 53 31 11 30 0F 06 03 55 04 0A 13 08 58 45
: 54 49 20 49 6E 63 31 10 30 0E 06 03 55 04 0B 13
: 07 54 65 73 74 69 6E 67 31 14 30 12 06 03 55 04
: 03 13 0B 52 6F 6F 74 20 44 53 41 20 43 41 02 06
: 00 DA 39 B6 E2 CB 04 14 2D 05 77 FE 5E 8F 65 F5
: AF AD C9 5C 9B 02 C0 A8 88 29 61 63
: }
Signature verification requires CA's private key, the CA certificate,
and the generated Certification Request.
CA DH private key:
x: 3E 5D AD FD E5 F4 6B 1B 61 5E 18 F9 0B 84 74 a7
52 1E D6 92 BC 34 94 56 F3 0C BE DA 67 7A DD 7D
<span class="h2"><a class="selflink" id="appendix-C" href="#appendix-C">Appendix C</a>. Example of Discrete Log Signature</span>
Step 1. Generate a DH key with length of q being 256 bits.
p:
94 84 E0 45 6C 7F 69 51 62 3E 56 80 7C 68 E7 C5
A9 9E 9E 74 74 94 ED 90 8C 1D C4 E1 4A 14 82 F5
D2 94 0C 19 E3 B9 10 BB 11 B9 E5 A5 FB 8E 21 51
63 02 86 AA 06 B8 21 36 B6 7F 36 DF D1 D6 68 5B
79 7C 1D 5A 14 75 1F 6A 93 75 93 CE BB 97 72 8A
F0 0F 23 9D 47 F6 D4 B3 C7 F0 F4 E6 F6 2B C2 32
E1 89 67 BE 7E 06 AE F8 D0 01 6B 8B 2A F5 02 D7
B6 A8 63 94 83 B0 1B 31 7D 52 1A DE E5 03 85 27
q:
E8 72 FA 96 F0 11 40 F5 F2 DC FD 3B 5D 78 94 B1
85 01 E5 69 37 21 F7 25 B9 BA 71 4A FC 60 30 FB
g:
26 A6 32 2C 5A 2B D4 33 2B 5C DC 06 87 53 3F 90
06 61 50 38 3E D2 B9 7D 81 1C 12 10 C5 0C 53 D4
64 D1 8E 30 07 08 8C DD 3F 0A 2F 2C D6 1B 7F 57
86 D0 DA BB 6E 36 2A 18 E8 D3 BC 70 31 7A 48 B6
4E 18 6E DD 1F 22 06 EB 3F EA D4 41 69 D9 9B DE
47 95 7A 72 91 D2 09 7F 49 5C 3B 03 33 51 C8 F1
39 9A FF 04 D5 6E 7E 94 3D 03 B8 F6 31 15 26 48
95 A8 5C DE 47 88 B4 69 3A 00 A7 86 9E DA D1 CD
<span class="grey">Schaad & Prafullchandra Standards Track [Page 38]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-39" ></span>
<span class="grey"><a href="./rfc6955">RFC 6955</a> DH POP Algorithms May 2013</span>
j:
A3 91 01 C0 A8 6E A4 4D A0 56 FC 6C FE 1F A7 B0
CD 0F 94 87 0C 25 BE 97 76 8D EB E5 A4 09 5D AB
83 CD 80 0B 35 67 7F 0C 8E A7 31 98 32 85 39 40
9D 11 98 D8 DE B8 7F 86 9B AF 8D 67 3D B6 76 B4
61 2F 21 E1 4B 0E 68 FF 53 3E 87 DD D8 71 56 68
47 DC F7 20 63 4B 3C 5F 78 71 83 E6 70 9E E2 92
y:
5F CF 39 AD 62 CF 49 8E D1 CE 66 E2 B1 E6 A7 01
4D 05 C2 77 C8 92 52 42 A9 05 A4 DB E0 46 79 50
A3 FC 99 3D 3D A6 9B A9 AD BC 62 1C 69 B7 11 A1
C0 2A F1 85 28 F7 68 FE D6 8F 31 56 22 4D 0A 11
6E 72 3A 02 AF 0E 27 AA F9 ED CE 05 EF D8 59 92
C0 18 D7 69 6E BD 70 B6 21 D1 77 39 21 E1 AF 7A
3A CF 20 0A B4 2C 69 5F CF 79 67 20 31 4D F2 C6
ED 23 BF C4 BB 1E D1 71 40 2C 07 D6 F0 8F C5 1A
seed:
1C D5 3A 0D 17 82 6D 0A 81 75 81 46 10 8E 3E DB
09 E4 98 34
C:
00000037
x:
3E 5D AD FD E5 F4 6B 1B 61 5E 18 F9 0B 84 74 a7
52 1E D6 92 BC 34 94 56 F3 0C BE DA 67 7A DD 7D
Step 2. Form the value to be signed and hash with SHA1. The result
of the hash for this example is:
5f a2 69 b6 4b 22 91 22 6f 4c fe 68 ec 2b d1 c6
d4 21 e5 2c
Step 3. The hash value needs to be expanded, since |q| = 256. This
is done by hashing the hash with SHA1 and appending it to the
original hash. The value after this step is:
5f a2 69 b6 4b 22 91 22 6f 4c fe 68 ec 2b d1 c6
d4 21 e5 2c 64 92 8b c9 5e 34 59 70 bd 62 40 ad
6f 26 3b f7 1c a3 b2 cb
<span class="grey">Schaad & Prafullchandra Standards Track [Page 39]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-40" ></span>
<span class="grey"><a href="./rfc6955">RFC 6955</a> DH POP Algorithms May 2013</span>
Next, the first 255 bits of this value are taken to be the resulting
"hash" value. Note that in this case a shift of one bit right is
done, since the result is to be treated as an integer:
2f d1 34 db 25 91 48 91 37 a6 7f 34 76 15 e8 e3
6a 10 f2 96 32 49 45 e4 af 1a 2c b8 5e b1 20 56
Step 4. The signature value is computed. In this case, you get the
values:
r:
A1 B5 B4 90 01 34 6B A0 31 6A 73 F5 7D F6 5C 14
43 52 D2 10 BF 86 58 87 F7 BC 6E 5A 77 FF C3 4B
s:
59 40 45 BC 6F 0D DC FF 9D 55 40 1E C4 9E 51 3D
66 EF B2 FF 06 40 9A 39 68 75 81 F7 EC 9E BE A1
The encoded signature value is then:
30 45 02 21 00 A1 B5 B4 90 01 34 6B A0 31 6A 73
F5 7D F6 5C 14 43 52 D2 10 BF 86 58 87 F7 BC 6E
5A 77 FF C3 4B 02 20 59 40 45 BC 6F 0D DC FF 9D
55 40 1E C4 9E 51 3D 66 EF B2 FF 06 40 9A 39 68
75 81 F7 EC 9E BE A1
Result:
30 82 02 c2 30 82 02 67 02 01 00 30 1b 31 19 30
17 06 03 55 04 03 13 10 49 45 54 46 20 50 4b 49
58 20 53 41 4d 50 4c 45 30 82 02 41 30 82 01 b6
06 07 2a 86 48 ce 3e 02 01 30 82 01 a9 02 81 81
00 94 84 e0 45 6c 7f 69 51 62 3e 56 80 7c 68 e7
c5 a9 9e 9e 74 74 94 ed 90 8c 1d c4 e1 4a 14 82
f5 d2 94 0c 19 e3 b9 10 bb 11 b9 e5 a5 fb 8e 21
51 63 02 86 aa 06 b8 21 36 b6 7f 36 df d1 d6 68
5b 79 7c 1d 5a 14 75 1f 6a 93 75 93 ce bb 97 72
8a f0 0f 23 9d 47 f6 d4 b3 c7 f0 f4 e6 f6 2b c2
32 e1 89 67 be 7e 06 ae f8 d0 01 6b 8b 2a f5 02
d7 b6 a8 63 94 83 b0 1b 31 7d 52 1a de e5 03 85
27 02 81 80 26 a6 32 2c 5a 2b d4 33 2b 5c dc 06
87 53 3f 90 06 61 50 38 3e d2 b9 7d 81 1c 12 10
c5 0c 53 d4 64 d1 8e 30 07 08 8c dd 3f 0a 2f 2c
d6 1b 7f 57 86 d0 da bb 6e 36 2a 18 e8 d3 bc 70
31 7a 48 b6 4e 18 6e dd 1f 22 06 eb 3f ea d4 41
69 d9 9b de 47 95 7a 72 91 d2 09 7f 49 5c 3b 03
33 51 c8 f1 39 9a ff 04 d5 6e 7e 94 3d 03 b8 f6
31 15 26 48 95 a8 5c de 47 88 b4 69 3a 00 a7 86
9e da d1 cd 02 21 00 e8 72 fa 96 f0 11 40 f5 f2
<span class="grey">Schaad & Prafullchandra Standards Track [Page 40]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-41" ></span>
<span class="grey"><a href="./rfc6955">RFC 6955</a> DH POP Algorithms May 2013</span>
dc fd 3b 5d 78 94 b1 85 01 e5 69 37 21 f7 25 b9
ba 71 4a fc 60 30 fb 02 61 00 a3 91 01 c0 a8 6e
a4 4d a0 56 fc 6c fe 1f a7 b0 cd 0f 94 87 0c 25
be 97 76 8d eb e5 a4 09 5d ab 83 cd 80 0b 35 67
7f 0c 8e a7 31 98 32 85 39 40 9d 11 98 d8 de b8
7f 86 9b af 8d 67 3d b6 76 b4 61 2f 21 e1 4b 0e
68 ff 53 3e 87 dd d8 71 56 68 47 dc f7 20 63 4b
3c 5f 78 71 83 e6 70 9e e2 92 30 1a 03 15 00 1c
d5 3a 0d 17 82 6d 0a 81 75 81 46 10 8e 3e db 09
e4 98 34 02 01 37 03 81 84 00 02 81 80 5f cf 39
ad 62 cf 49 8e d1 ce 66 e2 b1 e6 a7 01 4d 05 c2
77 c8 92 52 42 a9 05 a4 db e0 46 79 50 a3 fc 99
3d 3d a6 9b a9 ad bc 62 1c 69 b7 11 a1 c0 2a f1
85 28 f7 68 fe d6 8f 31 56 22 4d 0a 11 6e 72 3a
02 af 0e 27 aa f9 ed ce 05 ef d8 59 92 c0 18 d7
69 6e bd 70 b6 21 d1 77 39 21 e1 af 7a 3a cf 20
0a b4 2c 69 5f cf 79 67 20 31 4d f2 c6 ed 23 bf
c4 bb 1e d1 71 40 2c 07 d6 f0 8f c5 1a a0 00 30
0c 06 08 2b 06 01 05 05 07 06 04 05 00 03 47 00
30 44 02 20 54 d9 43 8d 0f 9d 42 03 d6 09 aa a1
9a 3c 17 09 ae bd ee b3 d1 a0 00 db 7d 8c b8 e4
56 e6 57 7b 02 20 44 89 b1 04 f5 40 2b 5f e7 9c
f9 a4 97 50 0d ad c3 7a a4 2b b2 2d 5d 79 fb 38
8a b4 df bb 88 bc
Decoded version of result:
0 30 707: SEQUENCE {
4 30 615: SEQUENCE {
8 02 1: INTEGER 0
11 30 27: SEQUENCE {
13 31 25: SET {
15 30 23: SEQUENCE {
17 06 3: OBJECT IDENTIFIER commonName (2 5 4 3)
22 13 16: PrintableString 'IETF PKIX SAMPLE'
: }
: }
: }
40 30 577: SEQUENCE {
44 30 438: SEQUENCE {
48 06 7: OBJECT IDENTIFIER dhPublicNumber (1 2 840 10046 2
1)
<span class="grey">Schaad & Prafullchandra Standards Track [Page 41]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-42" ></span>
<span class="grey"><a href="./rfc6955">RFC 6955</a> DH POP Algorithms May 2013</span>
57 30 425: SEQUENCE {
61 02 129: INTEGER
: 00 94 84 E0 45 6C 7F 69 51 62 3E 56 80 7C 68 E7
: C5 A9 9E 9E 74 74 94 ED 90 8C 1D C4 E1 4A 14 82
: F5 D2 94 0C 19 E3 B9 10 BB 11 B9 E5 A5 FB 8E 21
: 51 63 02 86 AA 06 B8 21 36 B6 7F 36 DF D1 D6 68
: 5B 79 7C 1D 5A 14 75 1F 6A 93 75 93 CE BB 97 72
: 8A F0 0F 23 9D 47 F6 D4 B3 C7 F0 F4 E6 F6 2B C2
: 32 E1 89 67 BE 7E 06 AE F8 D0 01 6B 8B 2A F5 02
: D7 B6 A8 63 94 83 B0 1B 31 7D 52 1A DE E5 03 85
: 27
193 02 128: INTEGER
: 26 A6 32 2C 5A 2B D4 33 2B 5C DC 06 87 53 3F 90
: 06 61 50 38 3E D2 B9 7D 81 1C 12 10 C5 0C 53 D4
: 64 D1 8E 30 07 08 8C DD 3F 0A 2F 2C D6 1B 7F 57
: 86 D0 DA BB 6E 36 2A 18 E8 D3 BC 70 31 7A 48 B6
: 4E 18 6E DD 1F 22 06 EB 3F EA D4 41 69 D9 9B DE
: 47 95 7A 72 91 D2 09 7F 49 5C 3B 03 33 51 C8 F1
: 39 9A FF 04 D5 6E 7E 94 3D 03 B8 F6 31 15 26 48
: 95 A8 5C DE 47 88 B4 69 3A 00 A7 86 9E DA D1 CD
324 02 33: INTEGER
: 00 E8 72 FA 96 F0 11 40 F5 F2 DC FD 3B 5D 78 94
: B1 85 01 E5 69 37 21 F7 25 B9 BA 71 4A FC 60 30
: FB
359 02 97: INTEGER
: 00 A3 91 01 C0 A8 6E A4 4D A0 56 FC 6C FE 1F A7
: B0 CD 0F 94 87 0C 25 BE 97 76 8D EB E5 A4 09 5D
: AB 83 CD 80 0B 35 67 7F 0C 8E A7 31 98 32 85 39
: 40 9D 11 98 D8 DE B8 7F 86 9B AF 8D 67 3D B6 76
: B4 61 2F 21 E1 4B 0E 68 FF 53 3E 87 DD D8 71 56
: 68 47 DC F7 20 63 4B 3C 5F 78 71 83 E6 70 9E E2
: 92
458 30 26: SEQUENCE {
460 03 21: BIT STRING 0 unused bits
: 1C D5 3A 0D 17 82 6D 0A 81 75 81 46 10 8E 3E DB
: 09 E4 98 34
483 02 1: INTEGER 55
: }
: }
: }
<span class="grey">Schaad & Prafullchandra Standards Track [Page 42]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-43" ></span>
<span class="grey"><a href="./rfc6955">RFC 6955</a> DH POP Algorithms May 2013</span>
486 03 132: BIT STRING 0 unused bits
: 02 81 80 5F CF 39 AD 62 CF 49 8E D1 CE 66 E2 B1
: E6 A7 01 4D 05 C2 77 C8 92 52 42 A9 05 A4 DB E0
: 46 79 50 A3 FC 99 3D 3D A6 9B A9 AD BC 62 1C 69
: B7 11 A1 C0 2A F1 85 28 F7 68 FE D6 8F 31 56 22
: 4D 0A 11 6E 72 3A 02 AF 0E 27 AA F9 ED CE 05 EF
: D8 59 92 C0 18 D7 69 6E BD 70 B6 21 D1 77 39 21
: E1 AF 7A 3A CF 20 0A B4 2C 69 5F CF 79 67 20 31
: 4D F2 C6 ED 23 BF C4 BB 1E D1 71 40 2C 07 D6 F0
: 8F C5 1A
: }
621 A0 0: [0]
: }
623 30 12: SEQUENCE {
625 06 8: OBJECT IDENTIFIER '1 3 6 1 5 5 7 6 4'
635 05 0: NULL
: }
637 03 72: BIT STRING 0 unused bits
: 30 45 02 21 00 A1 B5 B4 90 01 34 6B A0 31 6A 73
: F5 7D F6 5C 14 43 52 D2 10 BF 86 58 87 F7 BC 6E
: 5A 77 FF C3 4B 02 20 59 40 45 BC 6F 0D DC FF 9D
: 55 40 1E C4 9E 51 3D 66 EF B2 FF 06 40 9A 39 68
: 75 81 F7 EC 9E BE A1
: }
Authors' Addresses
Jim Schaad
Soaring Hawk Consulting
EMail: ietf@augustcellars.com
Hemma Prafullchandra
HyTrust, Inc.
1975 W. El Camino Real, Suite 203
Mountain View, CA 94040
USA
Phone: (650) 681-8100
EMail: HPrafullchandra@hytrust.com
Schaad & Prafullchandra Standards Track [Page 43]
</pre>
|