1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
|
<pre>Internet Engineering Task Force (IETF) A. Morton
Request for Comments: 6985 AT&T Labs
Category: Informational July 2013
ISSN: 2070-1721
<span class="h1">IMIX Genome: Specification of Variable Packet Sizes</span>
<span class="h1">for Additional Testing</span>
Abstract
Benchmarking methodologies have always relied on test conditions with
constant packet sizes, with the goal of understanding what network
device capability has been tested. Tests with a constant packet size
reveal device capabilities but differ significantly from the
conditions encountered in operational deployment, so additional tests
are sometimes conducted with a mixture of packet sizes, or "IMIX"
("Internet Mix"). The mixture of sizes a networking device will
encounter is highly variable and depends on many factors. An IMIX
suited for one networking device and deployment will not be
appropriate for another. However, the mix of sizes may be known, and
the tester may be asked to augment the fixed-size tests. To address
this need and the perpetual goal of specifying repeatable test
conditions, this document defines a way to specify the exact
repeating sequence of packet sizes from the usual set of fixed sizes
and from other forms of mixed-size specification.
Status of This Memo
This document is not an Internet Standards Track specification; it is
published for informational purposes.
This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Not all documents
approved by the IESG are a candidate for any level of Internet
Standard; see <a href="./rfc5741#section-2">Section 2 of RFC 5741</a>.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
<a href="http://www.rfc-editor.org/info/rfc6985">http://www.rfc-editor.org/info/rfc6985</a>.
<span class="grey">Morton Informational [Page 1]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-2" ></span>
<span class="grey"><a href="./rfc6985">RFC 6985</a> IMIX Genome July 2013</span>
Copyright Notice
Copyright (c) 2013 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to <a href="https://www.rfc-editor.org/bcp/bcp78">BCP 78</a> and the IETF Trust's Legal
Provisions Relating to IETF Documents
(<a href="http://trustee.ietf.org/license-info">http://trustee.ietf.org/license-info</a>) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
Table of Contents
<a href="#section-1">1</a>. Introduction ....................................................<a href="#page-2">2</a>
<a href="#section-2">2</a>. Requirements Language ...........................................<a href="#page-3">3</a>
<a href="#section-3">3</a>. Scope and Goals .................................................<a href="#page-3">3</a>
<a href="#section-4">4</a>. Specification of the IMIX Genome ................................<a href="#page-4">4</a>
<a href="#section-5">5</a>. Specification of a Custom IMIX ..................................<a href="#page-6">6</a>
<a href="#section-6">6</a>. Reporting Long or Pseudorandom Packet Sequences .................<a href="#page-7">7</a>
<a href="#section-6.1">6.1</a>. Run-Length Encoding ........................................<a href="#page-7">7</a>
<a href="#section-6.2">6.2</a>. Table of Proportions .......................................<a href="#page-7">7</a>
<a href="#section-6.3">6.3</a>. Deterministic Algorithm ....................................<a href="#page-7">7</a>
<a href="#section-6.4">6.4</a>. Pseudorandom Length Algorithm ..............................<a href="#page-8">8</a>
<a href="#section-6.5">6.5</a>. Pseudorandom Sequence Algorithm ............................<a href="#page-8">8</a>
<a href="#section-7">7</a>. Security Considerations .........................................<a href="#page-8">8</a>
<a href="#section-8">8</a>. Acknowledgements ................................................<a href="#page-8">8</a>
<a href="#section-9">9</a>. References ......................................................<a href="#page-9">9</a>
<a href="#section-9.1">9.1</a>. Normative References .......................................<a href="#page-9">9</a>
<a href="#section-9.2">9.2</a>. Informative References .....................................<a href="#page-9">9</a>
<span class="h2"><a class="selflink" id="section-1" href="#section-1">1</a>. Introduction</span>
This memo defines a method to unambiguously specify the sequence of
packet sizes used in a load test.
Benchmarking methodologies [<a href="./rfc2544" title=""Benchmarking Methodology for Network Interconnect Devices"">RFC2544</a>] have always relied on test
conditions with constant packet sizes, with the goal of understanding
what network device capability has been tested. Tests with the
smallest size stress the header processing capacity, and tests with
the largest size stress the overall bit-processing capacity. Tests
with sizes in between may determine the transition between these two
capacities.
<span class="grey">Morton Informational [Page 2]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-3" ></span>
<span class="grey"><a href="./rfc6985">RFC 6985</a> IMIX Genome July 2013</span>
Streams of constant packet size differ significantly from the
conditions encountered in operational deployment, so additional tests
are sometimes conducted with a mixture of packet sizes. The set of
sizes used is often called an Internet Mix, or "IMIX" [<a href="#ref-Spirent" title=""Test Methodology Journal: IMIX (Internet Mix) Journal"">Spirent</a>]
[<a href="#ref-IXIA" title=""Testing PPPoX and L2TP Broadband Access Devices"">IXIA</a>] [<a href="#ref-Agilent" title=""The Journal of Internet Test Methodologies"">Agilent</a>].
The mixture of sizes a networking device will encounter is highly
variable and depends on many factors. An IMIX suited for one
networking device and deployment will not be appropriate for another.
However, the mix of sizes may be known, and the tester may be asked
to augment the fixed-size tests. The references above cite the
original studies and their methodologies. Similar methods can be
used to determine new size mixes present on a link or network. We
note that the architecture for IP Flow Information Export [<a href="./rfc5470" title=""Architecture for IP Flow Information Export"">RFC5470</a>]
provides one method to gather packet-size information on private
networks.
To address this need and the perpetual goal of specifying repeatable
test conditions, this memo proposes a way to specify the exact
repeating sequence of packet sizes from the usual set of fixed sizes:
the IMIX Genome. Other, less exact forms of size specification are
also recommended for extremely complicated or customized size mixes.
We apply the term "genome" to infer that the entire test packet-size
sequence can be replicated if this information is known -- a parallel
to the information needed for biological replication.
This memo takes the position that it cannot be proven for all
circumstances that the sequence of packet sizes does not affect the
test result; thus, a standardized specification of sequence is
valuable.
<span class="h2"><a class="selflink" id="section-2" href="#section-2">2</a>. Requirements Language</span>
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in <a href="./rfc2119">RFC 2119</a> [<a href="./rfc2119" title=""Key words for use in RFCs to Indicate Requirement Levels"">RFC2119</a>].
<span class="h2"><a class="selflink" id="section-3" href="#section-3">3</a>. Scope and Goals</span>
This memo defines a method to unambiguously specify the sequence of
packet sizes that have been used in a load test, assuming that a
relevant mix of sizes is known to the tester and the length of the
repeating sequence is not very long (<100 packets).
The IMIX Genome will allow an exact sequence of packet sizes to be
communicated as a single-line name, resolving the current ambiguity
with results that simply refer to "IMIX". This aspect is critical
because no ability has been demonstrated to extrapolate results from
<span class="grey">Morton Informational [Page 3]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-4" ></span>
<span class="grey"><a href="./rfc6985">RFC 6985</a> IMIX Genome July 2013</span>
one IMIX to another IMIX -- and certainly no ability to extrapolate
results to other circumstances -- even when the mix varies only
slightly from another IMIX.
While documentation of the exact sequence is ideal, the memo also
covers the case where the sequence of sizes is very long or may be
generated by a pseudorandom process.
It is a colossal non-goal to standardize one or more versions of the
IMIX. This topic has been discussed on many occasions on the BMWG
mailing list [<a href="#ref-IMIXonList">IMIXonList</a>]. The goal is to enable customization with
minimal constraints while fostering repeatable testing once the
fixed-size testing is complete. Thus, the requirements presented in
this specification, expressed in [<a href="./rfc2119" title=""Key words for use in RFCs to Indicate Requirement Levels"">RFC2119</a>] terms, are intended for
those performing/reporting laboratory tests to improve clarity and
repeatability.
<span class="h2"><a class="selflink" id="section-4" href="#section-4">4</a>. Specification of the IMIX Genome</span>
The IMIX Genome is specified in the following format:
IMIX - 123456...<a href="#page-x">x</a>
where each number is replaced by the letter corresponding to the size
of the packet at that position in the sequence. The following table
gives the letter encoding for the [<a href="./rfc2544" title=""Benchmarking Methodology for Network Interconnect Devices"">RFC2544</a>] standard sizes (64, 128,
256, 512, 1024, 1280, and 1518 bytes) and "jumbo" sizes (2112, 9000,
and 16000 bytes). Note that the 4-octet Ethernet frame check
sequence may fail to detect bit errors in the larger jumbo frames
[<a href="#ref-Jumbo1" title=""Gigabit Ethernet Jumbo Frames, and why you should care"">Jumbo1</a>] [<a href="#ref-Jumbo2" title=""The Ethernet CRC limits packets to about 12 kBytes. (NOT)"">Jumbo2</a>].
+--------------+--------------------+
| Size (Bytes) | Genome Code Letter |
+--------------+--------------------+
| 64 | a |
| 128 | b |
| 256 | c |
| 512 | d |
| 1024 | e |
| 1280 | f |
| 1518 | g |
| 2112 | h |
| 9000 | i |
| 16000 | j |
| MTU | z |
+--------------+--------------------+
<span class="grey">Morton Informational [Page 4]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-5" ></span>
<span class="grey"><a href="./rfc6985">RFC 6985</a> IMIX Genome July 2013</span>
For example, a five-packet sequence with sizes 64,64,64,1280,1518
would be designated:
IMIX - aaafg
If z (MTU) is used, the tester MUST specify the length of the MTU in
the report.
While this approach allows some flexibility, there are also
constraints.
o Packet sizes not defined by <a href="./rfc2544">RFC 2544</a> would need to be approximated
by those available in the table.
o The genome for very long sequences can become undecipherable by
humans.
Some questions testers must ask and answer when using the IMIX Genome
are:
1. Multiple source-destination address pairs: Is the IMIX sequence
applicable to each pair, across multiple pairs in sets, or across
all pairs?
2. Multiple tester ports: Is the IMIX sequence applicable to each
port, across multiple ports in sets, or across all ports?
The chosen configuration would be expressed in the following general
form:
+-------------------+------------------------+---------------------+
| Source Address + | Destination Address + | Corresponding IMIX |
| Port AND/OR Blade | Port AND/OR Blade | |
+-------------------+------------------------+---------------------+
| x.x.x.x Blade2 | y.y.y.y Blade3 | IMIX - aaafg |
+-------------------+------------------------+---------------------+
where testers can specify the IMIX used between any two entities in
the test architecture (and "Blade" is a component in a multi-
component device chassis).
<span class="grey">Morton Informational [Page 5]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-6" ></span>
<span class="grey"><a href="./rfc6985">RFC 6985</a> IMIX Genome July 2013</span>
<span class="h2"><a class="selflink" id="section-5" href="#section-5">5</a>. Specification of a Custom IMIX</span>
This section describes how to specify an IMIX with locally selected
packet sizes.
The custom IMIX is specified in the following format:
CUSTOM IMIX - 123456...<a href="#page-x">x</a>
where each number is replaced by the letter corresponding to the size
of the packet at that position in the sequence. The tester MUST
complete the following table, giving the letter encoding for each
size used, where each set of three lower-case letters would be
replaced by the integer size in octets.
+--------------+--------------------+
| Size (Bytes) | Custom Code Letter |
+--------------+--------------------+
| aaa | A |
| bbb | B |
| ccc | C |
| ddd | D |
| eee | E |
| fff | F |
| ggg | G |
| etc. | up to Z |
+--------------+--------------------+
For example, a five-packet sequence with sizes
aaa=64,aaa=64,aaa=64,ggg=1020,ggg=1020 would be designated:
CUSTOM IMIX - AAAGG
<span class="grey">Morton Informational [Page 6]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-7" ></span>
<span class="grey"><a href="./rfc6985">RFC 6985</a> IMIX Genome July 2013</span>
<span class="h2"><a class="selflink" id="section-6" href="#section-6">6</a>. Reporting Long or Pseudorandom Packet Sequences</span>
When the IMIX Genome cannot be used (when the sheer length of the
sequence would make the genome unmanageable), five options are
possible, as noted in the following subsections.
<span class="h3"><a class="selflink" id="section-6.1" href="#section-6.1">6.1</a>. Run-Length Encoding</span>
When a sequence can be decomposed into a series of short repeating
sequences, then a run-length encoding approach MAY be specified as
shown in the table below (using the single lower-case letter Genome
Codes from <a href="#section-4">Section 4</a>):
+------------------------------+----------------------+
| Count of Repeating Sequences | Packet-Size Sequence |
+------------------------------+----------------------+
| 20 | abcd |
| 5 | ggga |
| 10 | dcba |
+------------------------------+----------------------+
The run-length encoding approach is also applicable to the custom
IMIX as described in <a href="#section-5">Section 5</a> (where the single upper-case letter
Genome Codes would be used instead).
<span class="h3"><a class="selflink" id="section-6.2" href="#section-6.2">6.2</a>. Table of Proportions</span>
When the sequence is designed to vary within some proportional
constraints, a table simply giving the proportions of each size MAY
be used instead.
+-----------+---------------------+---------------------------+
| IP Length | Percentage of Total | Length(s) at Other Layers |
+-----------+---------------------+---------------------------+
| 64 | 23 | 82 |
| 128 | 67 | 146 |
| 1000 | 10 | 1018 |
+-----------+---------------------+---------------------------+
Note that the table of proportions also allows non-standard packet
sizes but trades the short genome specification and ability to
specify the exact sequence for other flexibilities.
<span class="h3"><a class="selflink" id="section-6.3" href="#section-6.3">6.3</a>. Deterministic Algorithm</span>
If a deterministic packet-size generation method is used (such as a
monotonic increase by 1 octet from start value to MTU), then the
generation algorithm SHOULD be reported.
<span class="grey">Morton Informational [Page 7]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-8" ></span>
<span class="grey"><a href="./rfc6985">RFC 6985</a> IMIX Genome July 2013</span>
<span class="h3"><a class="selflink" id="section-6.4" href="#section-6.4">6.4</a>. Pseudorandom Length Algorithm</span>
If a pseudorandom length generation capability is used, then the
generation algorithm SHOULD be reported with the results along with
the seed value used. We also recognize the opportunity to randomize
inter-packet spacing from a test sender as well as the size, and both
spacing and length pseudorandom generation algorithms and seeds
SHOULD be reported when used.
<span class="h3"><a class="selflink" id="section-6.5" href="#section-6.5">6.5</a>. Pseudorandom Sequence Algorithm</span>
Finally, we note another possibility: a pseudorandom sequence
generates an index to the table of packet lengths, and the generation
algorithm SHOULD be reported with the results, along with the seed
value if used.
<span class="h2"><a class="selflink" id="section-7" href="#section-7">7</a>. Security Considerations</span>
Benchmarking activities as described in this memo are limited to
technology characterization using controlled stimuli in a laboratory
environment, with dedicated address space and other constraints
[<a href="./rfc2544" title=""Benchmarking Methodology for Network Interconnect Devices"">RFC2544</a>].
The benchmarking network topology will be an independent test setup
and MUST NOT be connected to devices that may forward the test
traffic into a production network or misroute traffic to the test
management network.
Further, benchmarking is performed on a "black-box" basis, relying
solely on measurements observable external to the Device Under Test
(DUT) or System Under Test (SUT).
Special capabilities SHOULD NOT exist in the DUT/SUT specifically for
benchmarking purposes. Any implications for network security arising
from the DUT/SUT SHOULD be identical in the lab and in production
networks.
<span class="h2"><a class="selflink" id="section-8" href="#section-8">8</a>. Acknowledgements</span>
Thanks to Sarah Banks, Aamer Akhter, Steve Maxwell, and Scott Bradner
for their reviews and comments. Ilya Varlashkin suggested the
run-length encoding approach in <a href="#section-6.1">Section 6.1</a>.
<span class="grey">Morton Informational [Page 8]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-9" ></span>
<span class="grey"><a href="./rfc6985">RFC 6985</a> IMIX Genome July 2013</span>
<span class="h2"><a class="selflink" id="section-9" href="#section-9">9</a>. References</span>
<span class="h3"><a class="selflink" id="section-9.1" href="#section-9.1">9.1</a>. Normative References</span>
[<a id="ref-RFC2119">RFC2119</a>] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", <a href="https://www.rfc-editor.org/bcp/bcp14">BCP 14</a>, <a href="./rfc2119">RFC 2119</a>, March 1997.
[<a id="ref-RFC2544">RFC2544</a>] Bradner, S. and J. McQuaid, "Benchmarking Methodology for
Network Interconnect Devices", <a href="./rfc2544">RFC 2544</a>, March 1999.
<span class="h3"><a class="selflink" id="section-9.2" href="#section-9.2">9.2</a>. Informative References</span>
[<a id="ref-Agilent">Agilent</a>] Agilent, "The Journal of Internet Test Methodologies",
September 2007, <<a href="http://www.ixiacom.com/pdfs/test_plans/agilent_journal_of_internet_test_methodologies.pdf">http://www.ixiacom.com/pdfs/test_plans/</a>
<a href="http://www.ixiacom.com/pdfs/test_plans/agilent_journal_of_internet_test_methodologies.pdf">agilent_journal_of_internet_test_methodologies.pdf</a>>.
[<a id="ref-IMIXonList">IMIXonList</a>]
IETF Benchmarking Methodology Working Group, "Discussion
on IMIX", October 2003, <<a href="http://www.ietf.org/mail-archive/web/bmwg/current/msg00691.html">http://www.ietf.org/mail-archive/</a>
<a href="http://www.ietf.org/mail-archive/web/bmwg/current/msg00691.html">web/bmwg/current/msg00691.html</a>>.
[<a id="ref-IXIA">IXIA</a>] IXIA, "Testing PPPoX and L2TP Broadband Access Devices",
2004, <<a href="http://www.ixiacom.com/library/test_plans/display?skey=testing_pppox">http://www.ixiacom.com/library/test_plans/</a>
<a href="http://www.ixiacom.com/library/test_plans/display?skey=testing_pppox">display?skey=testing_pppox</a>>.
[<a id="ref-Jumbo1">Jumbo1</a>] Dykstra, P., "Gigabit Ethernet Jumbo Frames, and why you
should care", WareOnEarth Communications, Inc., December
1999, <<a href="http://sd.wareonearth.com/~phil/jumbo.html">http://sd.wareonearth.com/~phil/jumbo.html</a>>.
[<a id="ref-Jumbo2">Jumbo2</a>] Mathis, M., "The Ethernet CRC limits packets to about
12 kBytes. (NOT)", Pittsburgh Supercomputing Center,
April 2003,
<<a href="http://staff.psc.edu/mathis/MTU/arguments.html#crc">http://staff.psc.edu/mathis/MTU/arguments.html#crc</a>>.
[<a id="ref-RFC5470">RFC5470</a>] Sadasivan, G., Brownlee, N., Claise, B., and J. Quittek,
"Architecture for IP Flow Information Export", <a href="./rfc5470">RFC 5470</a>,
March 2009.
[<a id="ref-Spirent">Spirent</a>] Spirent, "Test Methodology Journal: IMIX (Internet Mix)
Journal", January 2006, <<a href="http://gospirent.com/whitepaper/IMIX%20Test%20Methodolgy%20Journal.pdf">http://gospirent.com/whitepaper/</a>
<a href="http://gospirent.com/whitepaper/IMIX%20Test%20Methodolgy%20Journal.pdf">IMIX%20Test%20Methodolgy%20Journal.pdf</a>>.
<span class="grey">Morton Informational [Page 9]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-10" ></span>
<span class="grey"><a href="./rfc6985">RFC 6985</a> IMIX Genome July 2013</span>
Author's Address
Al Morton
AT&T Labs
200 Laurel Avenue South
Middletown, NJ 07748
USA
Phone: +1 732 420 1571
Fax: +1 732 368 1192
EMail: acmorton@att.com
URI: <a href="http://home.comcast.net/~acmacm/">http://home.comcast.net/~acmacm/</a>
Morton Informational [Page 10]
</pre>
|