1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
|
<pre>Internet Engineering Task Force (IETF) J. Merkle
Request for Comments: 7027 secunet Security Networks
Updates: <a href="./rfc4492">4492</a> M. Lochter
Category: Informational BSI
ISSN: 2070-1721 October 2013
<span class="h1">Elliptic Curve Cryptography (ECC) Brainpool Curves</span>
<span class="h1">for Transport Layer Security (TLS)</span>
Abstract
This document specifies the use of several Elliptic Curve
Cryptography (ECC) Brainpool curves for authentication and key
exchange in the Transport Layer Security (TLS) protocol.
Status of This Memo
This document is not an Internet Standards Track specification; it is
published for informational purposes.
This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Not all documents
approved by the IESG are a candidate for any level of Internet
Standard; see <a href="./rfc5741#section-2">Section 2 of RFC 5741</a>.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
<a href="http://www.rfc-editor.org/info/rfc7027">http://www.rfc-editor.org/info/rfc7027</a>.
Copyright Notice
Copyright (c) 2013 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to <a href="https://www.rfc-editor.org/bcp/bcp78">BCP 78</a> and the IETF Trust's Legal
Provisions Relating to IETF Documents
(<a href="http://trustee.ietf.org/license-info">http://trustee.ietf.org/license-info</a>) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
<span class="grey">Merkle & Lochter Informational [Page 1]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-2" ></span>
<span class="grey"><a href="./rfc7027">RFC 7027</a> ECC Brainpool Curves for TLS October 2013</span>
Table of Contents
<a href="#section-1">1</a>. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-2">2</a>
<a href="#section-2">2</a>. Brainpool NamedCurve Types . . . . . . . . . . . . . . . . . . <a href="#page-2">2</a>
<a href="#section-3">3</a>. IANA Considerations . . . . . . . . . . . . . . . . . . . . . . <a href="#page-3">3</a>
<a href="#section-4">4</a>. Security Considerations . . . . . . . . . . . . . . . . . . . . <a href="#page-3">3</a>
<a href="#section-5">5</a>. References . . . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-4">4</a>
<a href="#section-5.1">5.1</a>. Normative References . . . . . . . . . . . . . . . . . . . <a href="#page-4">4</a>
<a href="#section-5.2">5.2</a>. Informative References . . . . . . . . . . . . . . . . . . <a href="#page-4">4</a>
<a href="#appendix-A">Appendix A</a>. Test Vectors . . . . . . . . . . . . . . . . . . . . . <a href="#page-6">6</a>
<a href="#appendix-A.1">A.1</a>. 256-Bit Curve . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-7">7</a>
<a href="#appendix-A.2">A.2</a>. 384-Bit Curve . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-8">8</a>
<a href="#appendix-A.3">A.3</a>. 512-Bit Curve . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-9">9</a>
<span class="h2"><a class="selflink" id="section-1" href="#section-1">1</a>. Introduction</span>
[<a id="ref-RFC5639">RFC5639</a>] specifies a new set of elliptic curve groups over finite
prime fields for use in cryptographic applications. These groups,
denoted as ECC Brainpool curves, were generated in a verifiably
pseudo-random way and comply with the security requirements of
relevant standards from ISO [<a href="#ref-ISO1" title="">ISO1</a>] [<a href="#ref-ISO2" title=""Information Technology - Security Techniques - Cryptographic Techniques Based on Elliptic Curves - Part 2: Digital signatures"">ISO2</a>], ANSI [<a href="#ref-ANSI1" title=""Public Key Cryptography For The Financial Services Industry: The Elliptic Curve Digital Signature Algorithm (ECDSA)"">ANSI1</a>], NIST [<a href="#ref-FIPS" title=""Digital Signature Standard (DSS)"">FIPS</a>],
and SecG [<a href="#ref-SEC2" title=""Recommended Elliptic Curve Domain Parameters"">SEC2</a>].
[<a id="ref-RFC4492">RFC4492</a>] defines the usage of elliptic curves for authentication and
key agreement in TLS 1.0 and TLS 1.1; these mechanisms may also be
used with TLS 1.2 [<a href="./rfc5246" title=""The Transport Layer Security (TLS) Protocol Version 1.2"">RFC5246</a>]. While the ASN.1 object identifiers
defined in [<a href="./rfc5639" title=""Elliptic Curve Cryptography (ECC) Brainpool Standard Curves and Curve Generation"">RFC5639</a>] already allow usage of the ECC Brainpool curves
for TLS (client or server) authentication through reference in X.509
certificates according to [<a href="./rfc3279" title=""Algorithms and Identifiers for the Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile"">RFC3279</a>] and [<a href="./rfc5480" title=""Elliptic Curve Cryptography Subject Public Key Information"">RFC5480</a>], their negotiation
for key exchange according to [<a href="./rfc4492" title=""Elliptic Curve Cryptography (ECC) Cipher Suites for Transport Layer Security (TLS)"">RFC4492</a>] requires the definition and
assignment of additional NamedCurve IDs. This document specifies
such values for three curves from [<a href="./rfc5639" title=""Elliptic Curve Cryptography (ECC) Brainpool Standard Curves and Curve Generation"">RFC5639</a>].
<span class="h2"><a class="selflink" id="section-2" href="#section-2">2</a>. Brainpool NamedCurve Types</span>
According to [<a href="./rfc4492" title=""Elliptic Curve Cryptography (ECC) Cipher Suites for Transport Layer Security (TLS)"">RFC4492</a>], the name space NamedCurve is used for the
negotiation of elliptic curve groups for key exchange during a
handshake starting a new TLS session. This document adds new
NamedCurve types to three elliptic curves defined in [<a href="./rfc5639" title=""Elliptic Curve Cryptography (ECC) Brainpool Standard Curves and Curve Generation"">RFC5639</a>] as
follows:
enum {
brainpoolP256r1(26),
brainpoolP384r1(27),
brainpoolP512r1(28)
} NamedCurve;
These curves are suitable for use with Datagram TLS [<a href="./rfc6347" title=""Datagram Transport Layer Security Version 1.2"">RFC6347</a>].
<span class="grey">Merkle & Lochter Informational [Page 2]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-3" ></span>
<span class="grey"><a href="./rfc7027">RFC 7027</a> ECC Brainpool Curves for TLS October 2013</span>
Test vectors for a Diffie-Hellman key exchange using these elliptic
curves are provided in <a href="#appendix-A">Appendix A</a>.
<span class="h2"><a class="selflink" id="section-3" href="#section-3">3</a>. IANA Considerations</span>
IANA has assigned numbers for the ECC Brainpool curves listed in
<a href="#section-2">Section 2</a> in the "EC Named Curve" [<a href="#ref-IANA-TLS" title=""Transport Layer Security (TLS) Parameters"">IANA-TLS</a>] registry of the
"Transport Layer Security (TLS) Parameters" registry as follows:
+-------+-----------------+---------+-----------+
| Value | Description | DTLS-OK | Reference |
+-------+-----------------+---------+-----------+
| 26 | brainpoolP256r1 | Y | <a href="./rfc7027">RFC 7027</a> |
| 27 | brainpoolP384r1 | Y | <a href="./rfc7027">RFC 7027</a> |
| 28 | brainpoolP512r1 | Y | <a href="./rfc7027">RFC 7027</a> |
+-------+-----------------+---------+-----------+
Table 1
<span class="h2"><a class="selflink" id="section-4" href="#section-4">4</a>. Security Considerations</span>
The security considerations of [<a href="./rfc5246" title=""The Transport Layer Security (TLS) Protocol Version 1.2"">RFC5246</a>] apply to the ECC Brainpool
curves described in this document.
The confidentiality, authenticity, and integrity of the TLS
communication is limited by the weakest cryptographic primitive
applied. In order to achieve a maximum security level when using one
of the elliptic curves from Table 1 for authentication and/or key
exchange in TLS, the key derivation function; the algorithms and key
lengths of symmetric encryption; and message authentication (as well
as the algorithm, bit length, and hash function used for signature
generation) should be chosen according to the recommendations of
[<a href="#ref-NIST800-57" title=""Recommendation for Key Management - Part 1: General (Revised)"">NIST800-57</a>] and [<a href="./rfc5639" title=""Elliptic Curve Cryptography (ECC) Brainpool Standard Curves and Curve Generation"">RFC5639</a>]. Furthermore, the private Diffie-Hellman
keys should be selected with the same bit length as the order of the
group generated by the base point G and with approximately maximum
entropy.
Implementations of elliptic curve cryptography for TLS may be
susceptible to side-channel attacks. Particular care should be taken
for implementations that internally transform curve points to points
on the corresponding "twisted curve", using the map (x',y') = (x*Z^2,
y*Z^3) with the coefficient Z specified for that curve in [<a href="./rfc5639" title=""Elliptic Curve Cryptography (ECC) Brainpool Standard Curves and Curve Generation"">RFC5639</a>],
in order to take advantage of an efficient arithmetic based on the
twisted curve's special parameters (A = -3). Although the twisted
curve itself offers the same level of security as the corresponding
random curve (through mathematical equivalence), an arithmetic based
on small curve parameters may be harder to protect against side-
<span class="grey">Merkle & Lochter Informational [Page 3]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-4" ></span>
<span class="grey"><a href="./rfc7027">RFC 7027</a> ECC Brainpool Curves for TLS October 2013</span>
channel attacks. General guidance on resistance of elliptic curve
cryptography implementations against side-channel-attacks is given in
[<a href="#ref-BSI1" title=""Minimum Requirements for Evaluating Side-Channel Attack Resistance of Elliptic Curve Implementations"">BSI1</a>] and [<a href="#ref-HMV" title=""Guide to Elliptic Curve Cryptography"">HMV</a>].
<span class="h2"><a class="selflink" id="section-5" href="#section-5">5</a>. References</span>
<span class="h3"><a class="selflink" id="section-5.1" href="#section-5.1">5.1</a>. Normative References</span>
[<a id="ref-IANA-TLS">IANA-TLS</a>] Internet Assigned Numbers Authority, "Transport Layer
Security (TLS) Parameters",
<<a href="http://www.iana.org/assignments/tls-parameters">http://www.iana.org/assignments/tls-parameters</a>>.
[<a id="ref-RFC4492">RFC4492</a>] Blake-Wilson, S., Bolyard, N., Gupta, V., Hawk, C., and
B. Moeller, "Elliptic Curve Cryptography (ECC) Cipher
Suites for Transport Layer Security (TLS)", <a href="./rfc4492">RFC 4492</a>,
May 2006.
[<a id="ref-RFC5246">RFC5246</a>] Dierks, T. and E. Rescorla, "The Transport Layer
Security (TLS) Protocol Version 1.2", <a href="./rfc5246">RFC 5246</a>,
August 2008.
[<a id="ref-RFC5639">RFC5639</a>] Lochter, M. and J. Merkle, "Elliptic Curve Cryptography
(ECC) Brainpool Standard Curves and Curve Generation",
<a href="./rfc5639">RFC 5639</a>, March 2010.
[<a id="ref-RFC6347">RFC6347</a>] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
Security Version 1.2", <a href="./rfc6347">RFC 6347</a>, January 2012.
<span class="h3"><a class="selflink" id="section-5.2" href="#section-5.2">5.2</a>. Informative References</span>
[<a id="ref-ANSI1">ANSI1</a>] American National Standards Institute, "Public Key
Cryptography For The Financial Services Industry: The
Elliptic Curve Digital Signature Algorithm (ECDSA)",
ANSI X9.62, 2005.
[<a id="ref-BSI1">BSI1</a>] Bundesamt fuer Sicherheit in der Informationstechnik,
"Minimum Requirements for Evaluating Side-Channel
Attack Resistance of Elliptic Curve Implementations",
July 2011.
[<a id="ref-FIPS">FIPS</a>] National Institute of Standards and Technology,
"Digital Signature Standard (DSS)", FIPS PUB 186-2,
December 1998.
[<a id="ref-HMV">HMV</a>] Hankerson, D., Menezes, A., and S. Vanstone, "Guide to
Elliptic Curve Cryptography", Springer Verlag, 2004.
<span class="grey">Merkle & Lochter Informational [Page 4]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-5" ></span>
<span class="grey"><a href="./rfc7027">RFC 7027</a> ECC Brainpool Curves for TLS October 2013</span>
[<a id="ref-ISO1">ISO1</a>] International Organization for Standardization,
"Information Technology - Security Techniques - Digital
Signatures with Appendix - Part 3: Discrete Logarithm
Based Mechanisms", ISO/IEC 14888-3, 2006.
[<a id="ref-ISO2">ISO2</a>] International Organization for Standardization,
"Information Technology - Security Techniques -
Cryptographic Techniques Based on Elliptic Curves -
Part 2: Digital signatures", ISO/IEC 15946-2, 2002.
[<a id="ref-NIST800-57">NIST800-57</a>] National Institute of Standards and Technology,
"Recommendation for Key Management - Part 1: General
(Revised)", NIST Special Publication 800-57,
March 2007.
[<a id="ref-RFC3279">RFC3279</a>] Bassham, L., Polk, W., and R. Housley, "Algorithms and
Identifiers for the Internet X.509 Public Key
Infrastructure Certificate and Certificate Revocation
List (CRL) Profile", <a href="./rfc3279">RFC 3279</a>, April 2002.
[<a id="ref-RFC5480">RFC5480</a>] Turner, S., Brown, D., Yiu, K., Housley, R., and T.
Polk, "Elliptic Curve Cryptography Subject Public Key
Information", <a href="./rfc5480">RFC 5480</a>, March 2009.
[<a id="ref-SEC1">SEC1</a>] Certicom Research, "Elliptic Curve Cryptography",
Standards for Efficient Cryptography (SEC) 1,
September 2000.
[<a id="ref-SEC2">SEC2</a>] Certicom Research, "Recommended Elliptic Curve Domain
Parameters", Standards for Efficient Cryptography
(SEC) 2, September 2000.
<span class="grey">Merkle & Lochter Informational [Page 5]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-6" ></span>
<span class="grey"><a href="./rfc7027">RFC 7027</a> ECC Brainpool Curves for TLS October 2013</span>
<span class="h2"><a class="selflink" id="appendix-A" href="#appendix-A">Appendix A</a>. Test Vectors</span>
This section provides some test vectors for example Diffie-Hellman
key exchanges using each of the curves defined in Table 1. The
following notation is used in the subsequent sections:
d_A: the secret key of party A
x_qA: the x-coordinate of the public key of party A
y_qA: the y-coordinate of the public key of party A
d_B: the secret key of party B
x_qB: the x-coordinate of the public key of party B
y_qB: the y-coordinate of the public key of party B
x_Z: the x-coordinate of the shared secret that results from
completion of the Diffie-Hellman computation, i.e., the hex
representation of the pre-master secret
y_Z: the y-coordinate of the shared secret that results from
completion of the Diffie-Hellman computation
The field elements x_qA, y_qA, x_qB, y_qB, x_Z, and y_Z are
represented as hexadecimal values using the FieldElement-to-
OctetString conversion method specified in [<a href="#ref-SEC1" title=""Elliptic Curve Cryptography"">SEC1</a>].
<span class="grey">Merkle & Lochter Informational [Page 6]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-7" ></span>
<span class="grey"><a href="./rfc7027">RFC 7027</a> ECC Brainpool Curves for TLS October 2013</span>
<span class="h3"><a class="selflink" id="appendix-A.1" href="#appendix-A.1">A.1</a>. 256-Bit Curve</span>
Curve brainpoolP256r1
dA =
81DB1EE100150FF2EA338D708271BE38300CB54241D79950F77B063039804F1D
x_qA =
44106E913F92BC02A1705D9953A8414DB95E1AAA49E81D9E85F929A8E3100BE5
y_qA =
8AB4846F11CACCB73CE49CBDD120F5A900A69FD32C272223F789EF10EB089BDC
dB =
55E40BC41E37E3E2AD25C3C6654511FFA8474A91A0032087593852D3E7D76BD3
x_qB =
8D2D688C6CF93E1160AD04CC4429117DC2C41825E1E9FCA0ADDD34E6F1B39F7B
y_qB =
990C57520812BE512641E47034832106BC7D3E8DD0E4C7F1136D7006547CEC6A
x_Z =
89AFC39D41D3B327814B80940B042590F96556EC91E6AE7939BCE31F3A18BF2B
y_Z =
49C27868F4ECA2179BFD7D59B1E3BF34C1DBDE61AE12931648F43E59632504DE
<span class="grey">Merkle & Lochter Informational [Page 7]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-8" ></span>
<span class="grey"><a href="./rfc7027">RFC 7027</a> ECC Brainpool Curves for TLS October 2013</span>
<span class="h3"><a class="selflink" id="appendix-A.2" href="#appendix-A.2">A.2</a>. 384-Bit Curve</span>
Curve brainpoolP384r1
dA = 1E20F5E048A5886F1F157C74E91BDE2B98C8B52D58E5003D57053FC4B0BD6
5D6F15EB5D1EE1610DF870795143627D042
x_qA = 68B665DD91C195800650CDD363C625F4E742E8134667B767B1B47679358
8F885AB698C852D4A6E77A252D6380FCAF068
y_qA = 55BC91A39C9EC01DEE36017B7D673A931236D2F1F5C83942D049E3FA206
07493E0D038FF2FD30C2AB67D15C85F7FAA59
dB = 032640BC6003C59260F7250C3DB58CE647F98E1260ACCE4ACDA3DD869F74E
01F8BA5E0324309DB6A9831497ABAC96670
x_qB = 4D44326F269A597A5B58BBA565DA5556ED7FD9A8A9EB76C25F46DB69D19
DC8CE6AD18E404B15738B2086DF37E71D1EB4
y_qB = 62D692136DE56CBE93BF5FA3188EF58BC8A3A0EC6C1E151A21038A42E91
85329B5B275903D192F8D4E1F32FE9CC78C48
x_Z = 0BD9D3A7EA0B3D519D09D8E48D0785FB744A6B355E6304BC51C229FBBCE2
39BBADF6403715C35D4FB2A5444F575D4F42
y_Z = 0DF213417EBE4D8E40A5F76F66C56470C489A3478D146DECF6DF0D94BAE9
E598157290F8756066975F1DB34B2324B7BD
<span class="grey">Merkle & Lochter Informational [Page 8]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-9" ></span>
<span class="grey"><a href="./rfc7027">RFC 7027</a> ECC Brainpool Curves for TLS October 2013</span>
<span class="h3"><a class="selflink" id="appendix-A.3" href="#appendix-A.3">A.3</a>. 512-Bit Curve</span>
Curve brainpoolP512r1
dA = 16302FF0DBBB5A8D733DAB7141C1B45ACBC8715939677F6A56850A38BD87B
D59B09E80279609FF333EB9D4C061231FB26F92EEB04982A5F1D1764CAD5766542
2
x_qA = 0A420517E406AAC0ACDCE90FCD71487718D3B953EFD7FBEC5F7F27E28C6
149999397E91E029E06457DB2D3E640668B392C2A7E737A7F0BF04436D11640FD0
9FD
y_qA = 72E6882E8DB28AAD36237CD25D580DB23783961C8DC52DFA2EC138AD472
A0FCEF3887CF62B623B2A87DE5C588301EA3E5FC269B373B60724F5E82A6AD147F
DE7
dB = 230E18E1BCC88A362FA54E4EA3902009292F7F8033624FD471B5D8ACE49D1
2CFABBC19963DAB8E2F1EBA00BFFB29E4D72D13F2224562F405CB80503666B2542
9
x_qB = 9D45F66DE5D67E2E6DB6E93A59CE0BB48106097FF78A081DE781CDB31FC
E8CCBAAEA8DD4320C4119F1E9CD437A2EAB3731FA9668AB268D871DEDA55A54731
99F
y_qB = 2FDC313095BCDD5FB3A91636F07A959C8E86B5636A1E930E8396049CB48
1961D365CC11453A06C719835475B12CB52FC3C383BCE35E27EF194512B7187628
5FA
x_Z = A7927098655F1F9976FA50A9D566865DC530331846381C87256BAF322624
4B76D36403C024D7BBF0AA0803EAFF405D3D24F11A9B5C0BEF679FE1454B21C4CD
1F
y_Z = 7DB71C3DEF63212841C463E881BDCF055523BD368240E6C3143BD8DEF8B3
B3223B95E0F53082FF5E412F4222537A43DF1C6D25729DDB51620A832BE6A26680
A2
<span class="grey">Merkle & Lochter Informational [Page 9]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-10" ></span>
<span class="grey"><a href="./rfc7027">RFC 7027</a> ECC Brainpool Curves for TLS October 2013</span>
Authors' Addresses
Johannes Merkle
secunet Security Networks
Mergenthaler Allee 77
65760 Eschborn
Germany
Phone: +49 201 5454 3091
EMail: johannes.merkle@secunet.com
Manfred Lochter
Bundesamt fuer Sicherheit in der Informationstechnik (BSI)
Postfach 200363
53133 Bonn
Germany
Phone: +49 228 9582 5643
EMail: manfred.lochter@bsi.bund.de
Merkle & Lochter Informational [Page 10]
</pre>
|