1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621
|
<pre>Internet Engineering Task Force (IETF) JC. Zuniga
Request for Comments: 7028 InterDigital Communications, LLC
Category: Experimental LM. Contreras
ISSN: 2070-1721 Telefonica I+D
CJ. Bernardos
UC3M
S. Jeon
Instituto de Telecomunicacoes
Y. Kim
Soongsil University
September 2013
<span class="h1">Multicast Mobility Routing Optimizations for Proxy Mobile IPv6</span>
Abstract
This document proposes some experimental enhancements to the base
solution to support IP multicasting in a Proxy Mobile IPv6 (PMIPv6)
domain. These enhancements include the use of a multicast tree
mobility anchor as the topological anchor point for multicast
traffic, as well as a direct routing option where the Mobile Access
Gateway can provide access to multicast content in the local network.
The goal of these enhancements is to provide benefits such as
reducing multicast traffic replication and supporting different
PMIPv6 deployment scenarios.
Status of This Memo
This document is not an Internet Standards Track specification; it is
published for examination, experimental implementation, and
evaluation.
This document defines an Experimental Protocol for the Internet
community. This document is a product of the Internet Engineering
Task Force (IETF). It represents the consensus of the IETF
community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Not
all documents approved by the IESG are a candidate for any level of
Internet Standard; see <a href="./rfc5741#section-2">Section 2 of RFC 5741</a>.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
<a href="http://www.rfc-editor.org/info/rfc7028">http://www.rfc-editor.org/info/rfc7028</a>.
<span class="grey">Zuniga, et al. Experimental [Page 1]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-2" ></span>
<span class="grey"><a href="./rfc7028">RFC 7028</a> Multicast Mobility Routing Optimizations September 2013</span>
Copyright Notice
Copyright (c) 2013 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to <a href="https://www.rfc-editor.org/bcp/bcp78">BCP 78</a> and the IETF Trust's Legal
Provisions Relating to IETF Documents
(<a href="http://trustee.ietf.org/license-info">http://trustee.ietf.org/license-info</a>) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
Table of Contents
<a href="#section-1">1</a>. Introduction ....................................................<a href="#page-3">3</a>
<a href="#section-2">2</a>. Terminology .....................................................<a href="#page-4">4</a>
<a href="#section-3">3</a>. Overview ........................................................<a href="#page-5">5</a>
<a href="#section-3.1">3.1</a>. MTMA/Direct Routing Mode Selection .........................<a href="#page-5">5</a>
<a href="#section-3.2">3.2</a>. Multicast Tree Mobility Anchor (Subscription via MTMA) .....<a href="#page-5">5</a>
<a href="#section-3.3">3.3</a>. Direct Routing (Subscription via Direct Routing) ...........<a href="#page-7">7</a>
<a href="#section-4">4</a>. Mobile Access Gateway Operation .................................<a href="#page-9">9</a>
<a href="#section-4.1">4.1</a>. Extensions to Binding Update List Data Structure ...........<a href="#page-9">9</a>
<a href="#section-4.2">4.2</a>. MAG as MLD Proxy ...........................................<a href="#page-9">9</a>
<a href="#section-4.2.1">4.2.1</a>. MTMA Mode (Subscription via MTMA) ...................<a href="#page-9">9</a>
4.2.2. Direct Routing Mode (Subscription via
Direct Routing) ....................................<a href="#page-11">11</a>
<a href="#section-5">5</a>. Local Mobility Anchor Operation ................................<a href="#page-14">14</a>
<a href="#section-5.1">5.1</a>. Dynamic IP Multicast Selector Option ......................<a href="#page-14">14</a>
<a href="#section-5.1.1">5.1.1</a>. Option Application Rules ...........................<a href="#page-14">14</a>
<a href="#section-5.1.2">5.1.2</a>. Option Format ......................................<a href="#page-14">14</a>
<a href="#section-6">6</a>. Multicast Tree Mobility Anchor Operation .......................<a href="#page-16">16</a>
<a href="#section-6.1">6.1</a>. Conceptual Data Structures ................................<a href="#page-17">17</a>
<a href="#section-7">7</a>. Mobile Node Operation ..........................................<a href="#page-17">17</a>
<a href="#section-8">8</a>. IPv4 Support ...................................................<a href="#page-17">17</a>
<a href="#section-9">9</a>. IANA Considerations ............................................<a href="#page-18">18</a>
<a href="#section-10">10</a>. Security Considerations .......................................<a href="#page-18">18</a>
<a href="#section-11">11</a>. Contributors ..................................................<a href="#page-19">19</a>
<a href="#section-12">12</a>. References ....................................................<a href="#page-20">20</a>
<a href="#section-12.1">12.1</a>. Normative References .....................................<a href="#page-20">20</a>
<a href="#section-12.2">12.2</a>. Informative References ...................................<a href="#page-21">21</a>
<a href="#appendix-A">Appendix A</a>. MTMA Deployment Use Cases .............................<a href="#page-22">22</a>
<a href="#appendix-A.1">A.1</a>. PMIPv6 Domain with Ratio 1:1 ...............................<a href="#page-22">22</a>
<a href="#appendix-A.2">A.2</a>. PMIPv6 Domain with Ratio N:1 ...............................<a href="#page-22">22</a>
<a href="#appendix-A.3">A.3</a>. PMIPv6 Domain with Ratio 1:N ...............................<a href="#page-24">24</a>
<a href="#appendix-A.4">A.4</a>. PMIPv6 Domain with H-LMA ...................................<a href="#page-26">26</a>
<span class="grey">Zuniga, et al. Experimental [Page 2]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-3" ></span>
<span class="grey"><a href="./rfc7028">RFC 7028</a> Multicast Mobility Routing Optimizations September 2013</span>
<span class="h2"><a class="selflink" id="section-1" href="#section-1">1</a>. Introduction</span>
Proxy Mobile IPv6 [<a href="./rfc5213" title=""Proxy Mobile IPv6"">RFC5213</a>] is a network-based approach to solving
the IP mobility problem. In a Proxy Mobile IPv6 (PMIPv6) domain, the
Mobile Access Gateway (MAG) behaves as a proxy mobility agent in the
network and performs the mobility management on behalf of the Mobile
Node (MN). The Local Mobility Anchor (LMA) is the home agent for the
MN and the topological anchor point. PMIPv6 was originally designed
for unicast traffic. However, a PMIPv6 domain may handle data from
both unicast and multicast sources.
The Internet Group Management Protocol (IGMPv3) [<a href="./rfc3376" title=""Internet Group Management Protocol, Version 3"">RFC3376</a>] is used by
IPv4 hosts to report their IP multicast group memberships to
neighboring multicast routers. Multicast Listener Discovery Version
2 (MLDv2) [<a href="./rfc3810" title=""Multicast Listener Discovery Version 2 (MLDv2) for IPv6"">RFC3810</a>] is used in a similar way by IPv6 routers to
discover the presence of IPv6 multicast hosts. Also, the IGMP/MLD
proxy specification [<a href="./rfc4605" title=""Internet Group Management Protocol (IGMP) / Multicast Listener Discovery (MLD)-Based Multicast Forwarding ("">RFC4605</a>] allows an intermediate (i.e., edge)
node to appear as a multicast router to downstream hosts and as a
host to upstream multicast routers. IGMP- and MLD-related protocols
however were not originally designed to address the IP mobility of
multicast listeners (i.e., IGMP and MLD protocols were originally
designed for fixed networks).
A base solution to support both IPv4 and IPv6 multicast listener
mobility in a PMIPv6 domain is specified in [<a href="./rfc6224" title=""Base Deployment for Multicast Listener Support in Proxy Mobile IPv6 (PMIPv6) Domains"">RFC6224</a>], which
describes deployment options without modifying mobility and multicast
protocol standards. PMIPv6 allows a mobile access gateway to
establish multiple PMIPv6 tunnels with different local mobility
anchors, e.g., up to one per mobile node. In the presence of
multicast traffic, multiple instances of the same traffic can
converge to the same MAG. Hence, when IP multicasting is applied
into PMIPv6, it may lead to redundant traffic at a MAG. This is the
tunnel convergence problem.
In order to address this issue, this document proposes an
experimental solution, consisting of two complementary enhancements:
multicast anchor and direct routing. The first enhancement makes use
of a Multicast Tree Mobility Anchor (MTMA) as the topological anchor
point for remotely delivering multicast traffic, while the second
enhancement uses direct routing taking advantage of local multicast
source availability, allowing a mobile access gateway to connect
directly to a multicast router for simple access to local content.
Neither of the two schemes has any impact on the mobile node to
support IPv4 and IPv6 multicast listener mobility, nor on the wider
Internet, as they only affect the PMIPv6 domains where they are
deployed. Although references to "MLD proxy" are used in the
document, it should be understood to also include "IGMP/MLD proxy"
functionality (see <a href="#section-8">Section 8</a> for details). The status of this
<span class="grey">Zuniga, et al. Experimental [Page 3]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-4" ></span>
<span class="grey"><a href="./rfc7028">RFC 7028</a> Multicast Mobility Routing Optimizations September 2013</span>
proposal is Experimental. The status of this proposal may be
reconsidered in the future, once more implementation feedback and
deployment experience is gathered, reporting on the performance of
the two proposed schemes as well as operational feedback on scheme
selection.
<span class="h2"><a class="selflink" id="section-2" href="#section-2">2</a>. Terminology</span>
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [<a href="./rfc2119" title=""Key words for use in RFCs to Indicate Requirement Levels"">RFC2119</a>].
This document uses the terminology defined in [<a href="./rfc5213" title=""Proxy Mobile IPv6"">RFC5213</a>], [<a href="./rfc6275" title=""Mobility Support in IPv6"">RFC6275</a>],
and [<a href="./rfc3810" title=""Multicast Listener Discovery Version 2 (MLDv2) for IPv6"">RFC3810</a>]. Specifically, the definition of PMIPv6 domain is
reused from [<a href="./rfc5213" title=""Proxy Mobile IPv6"">RFC5213</a>] and reproduced here for completeness.
Proxy Mobile IPv6 Domain (PMIPv6-Domain): Proxy Mobile IPv6 domain
refers to the network where the mobility management of a mobile
node is handled using the Proxy Mobile IPv6 protocol as defined in
[<a href="./rfc5213" title=""Proxy Mobile IPv6"">RFC5213</a>]. The Proxy Mobile IPv6 domain includes local mobility
anchors and mobile access gateways between which security
associations can be set up and authorization for sending proxy
binding updates on behalf of the mobile nodes can be ensured.
In this document we refine the definition from the point of view of
the kind of traffic served to the MN in the following way:
PMIPv6 unicast domain: PMIPv6 unicast domain refers to the network
covered by one LMA for unicast service. This service supports
mobility as the MN moves from one MAG to another one, both
associated with the same LMA regarding the MN unicast traffic.
PMIPv6 multicast domain: PMIPv6 multicast domain refers to the
network covered by one network element named MTMA (defined below)
for multicast service in such a way that an MN using that service
is not aware of mobility as it moves from one MAG to another.
From the definitions above, it can be stated that a PMIPv6 domain can
have several PMIPv6 unicast domains and PMIPv6 multicast domains.
Additionally, some other definitions are introduced, as follows.
MTMA or multicast tree mobility anchor: An entity working as
topological anchor point for multicast traffic. It manages the
multicast groups subscribed by all (or a subset of) the MAGs in a
PMIPv6 multicast domain, on behalf of the MNs attached to them.
Hence, an MTMA performs the functions of either a designated
multicast router or an MLD proxy.
<span class="grey">Zuniga, et al. Experimental [Page 4]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-5" ></span>
<span class="grey"><a href="./rfc7028">RFC 7028</a> Multicast Mobility Routing Optimizations September 2013</span>
H-LMA or Hybrid-LMA: An entity that is dedicated to both unicast and
multicast services and able to work as both LMA and MTMA
simultaneously.
Direct routing: This scheme uses the native multicast infrastructure
for retrieving multicast data. For an operator having its own
local content, this technique also includes the case where the
content source is directly connected to the MAG.
Subscription via MTMA: Multicast subscription mode in which the
content is retrieved from the remote (or home) MTMA.
Subscription via direct routing: Multicast subscription mode in
which the content is retrieved using direct routing from the local
domain.
<span class="h2"><a class="selflink" id="section-3" href="#section-3">3</a>. Overview</span>
<span class="h3"><a class="selflink" id="section-3.1" href="#section-3.1">3.1</a>. MTMA/Direct Routing Mode Selection</span>
This specification describes two complementary operational modes that
can be used to deliver multicast traffic in a PMIPv6 domain:
multicast tree mobility anchor and direct routing. There are
different approaches that can be followed to perform this operational
mode selection, depending on the operator's preferences and PMIPv6
deployment characteristics. For example, the mode can be manually
configured at the mobile access gateway, according to the multicast
tree deployment in the PMIPv6 domain, following operator's
configuration of the multicast distribution on it. Another option is
the use of dynamic policies, conveyed in the PBU (Proxy Binding
Update) / PBA (Proxy Binding Acknowledgement) signaling using the
Dynamic IP Multicast Selector option described in <a href="#section-5.1">Section 5.1</a>. Next,
each of the two operational modes is introduced.
<span class="h3"><a class="selflink" id="section-3.2" href="#section-3.2">3.2</a>. Multicast Tree Mobility Anchor (Subscription via MTMA)</span>
A multicast tree mobility anchor is used to serve as the mobility
anchor for multicast traffic. The MTMA is either a designated
multicast router or an MLD proxy. Typically, the MTMA will be used
to get access to remote multicast content.
The multicast tree mobility anchor connects to the mobile access
gateway, as described in [<a href="./rfc6224" title=""Base Deployment for Multicast Listener Support in Proxy Mobile IPv6 (PMIPv6) Domains"">RFC6224</a>], and it can reuse native PMIPv6
features such as tunnel establishment and security [<a href="./rfc5213" title=""Proxy Mobile IPv6"">RFC5213</a>],
heartbeat [<a href="./rfc5847" title=""Heartbeat Mechanism for Proxy Mobile IPv6"">RFC5847</a>], etc. Unicast traffic will go normally to the
local mobility anchors in the PMIPv6 domain as described in
[<a href="./rfc5213" title=""Proxy Mobile IPv6"">RFC5213</a>]. A MAG connecting to the MTMA acts as an MLD proxy.
<span class="grey">Zuniga, et al. Experimental [Page 5]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-6" ></span>
<span class="grey"><a href="./rfc7028">RFC 7028</a> Multicast Mobility Routing Optimizations September 2013</span>
This section describes how the MTMA works in scenarios of MN
attachment and multicast mobility. It concentrates on the case of
both LMA and MTMA defining a unique PMIPv6 domain. Some other
deployment scenarios are presented in <a href="#appendix-A">Appendix A</a>.
Figure 1 shows an example of a PMIPv6 domain supporting multicast
mobility. The local mobility anchor is dedicated to unicast traffic,
and the multicast tree mobility anchor is dedicated to multicast
traffic. The MTMA can be considered to be a form of upstream
multicast router with tunnel interfaces allowing subscription via
MTMA for the MNs.
As shown in Figure 1, MAG1 may connect to both unicast (LMA) and
multicast (MTMA) entities. Thus, a given MN may simultaneously
receive both unicast and multicast traffic. In Figure 1, MN1 and MN2
receive unicast traffic, multicast traffic, or both, whereas MN3
receives multicast traffic only.
<span class="grey">Zuniga, et al. Experimental [Page 6]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-7" ></span>
<span class="grey"><a href="./rfc7028">RFC 7028</a> Multicast Mobility Routing Optimizations September 2013</span>
+--------------+
|Content Source| || - PMIPv6 Tunnel
+--------------+ | - Multicast
| Data Path
|
*** *** *** *** *** *** *** ***
* ** ** ** * * ** ** ** *
* * * *
* Unicast Traffic * * Multicast Traffic *
* * * *
* ** ** ** * * ** ** ** *
*** *** *** ** *** *** *** ***
| |
| |
| |
+-----+ +------+
Unicast | LMA | | MTMA | Multicast
Anchor +-----+ +------+ Anchor
\\ // ||
\\ // ||
\\ // ||
\\ // ||
\\ // ||
\\ // ||
\\ // ||
\\ // ||
\\ // ||
+------+ +------+
| MAG1 | | MAG2 | MLD Proxy
+------+ +------+
| | |
| | |
{MN1} {MN2} {MN3}
Figure 1: Architecture of Multicast Tree Mobility Anchor (MTMA)
<span class="h3"><a class="selflink" id="section-3.3" href="#section-3.3">3.3</a>. Direct Routing (Subscription via Direct Routing)</span>
Direct routing uses a native multicast infrastructure, allowing a
mobile access gateway to directly connect to a multicast router (as
next hop) in the PMIPv6 domain. A MAG acts as an MLD proxy.
The main purpose of direct routing is to provide optimal connectivity
for local content. As a consequence, it replaces the MTMA of the
channel management and data delivery of locally available content.
Unicast traffic will go as normally to the LMAs in the PMIPv6 domain.
<span class="grey">Zuniga, et al. Experimental [Page 7]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-8" ></span>
<span class="grey"><a href="./rfc7028">RFC 7028</a> Multicast Mobility Routing Optimizations September 2013</span>
This section describes how the direct routing works in scenarios of
MN attachment and multicast mobility.
Multicast Tree
:
: || - PMIPv6 Tunnel
+----------+ +----------+ | - Multicast Data Path
| LMA | | MR |
+----------+ +----------+
|| \\ / |
|| \\ / |
|| \\ / |
|| \\ / |
|| \\ / |
|| \\ / |
|| \\ |
|| /\\ |
|| / \\ |
|| / \\ |
|| / \\ |
|| / \\ |
+--------+ +--------+
| MAG1 | | MAG2 | MLD proxy
+--------+ +--------+
: :
+------+ +------+
| MN1 | -----> | MN1 |
+------+ +------+
Figure 2: Architecture for Direct-Routing-Based PMIPv6 Multicasting
Figure 2 shows the architecture for the local routing case using
native multicasting infrastructure [<a href="#ref-PMIP6-REQ" title=""Multicast Support Requirements for Proxy Mobile IPv6"">PMIP6-REQ</a>].
The local mobility anchor is dedicated to unicast traffic, and the
multicast traffic is obtained from an upstream multicast router
present in the PMIPv6 domain. Note that there can be multiple LMAs
for unicast traffic (not shown in Figure 1 for simplicity) in a given
PMIPv6 domain.
As shown in Figure 2, a mobile access gateway may connect to both
unicast (LMA) and multicast routers (MRs). Thus, a given mobile node
may simultaneously receive both unicast and multicast traffic.
As seen in Figure 2, each MAG has a direct connection (i.e., not
using the PMIPv6 tunnel interface) with a multicast router.
Depending on the multicast support on the visited network, different
schemas can be used to provide this direct connection between the
<span class="grey">Zuniga, et al. Experimental [Page 8]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-9" ></span>
<span class="grey"><a href="./rfc7028">RFC 7028</a> Multicast Mobility Routing Optimizations September 2013</span>
MAGs and the multicast router(s), e.g., being connected to the same
shared link or using a tunneling approach, such as Generic Routing
Encapsulation (GRE) tunnels [<a href="./rfc2784" title=""Generic Routing Encapsulation (GRE)"">RFC2784</a>] or Automatic Multicast
Tunneling (AMT) [<a href="#ref-AUTO" title=""Automatic Multicast Tunneling"">AUTO</a>]. To facilitate IGMP/MLD signaling and
multicast traffic forwarding, an MLD proxy function defined in
[<a href="./rfc4605" title=""Internet Group Management Protocol (IGMP) / Multicast Listener Discovery (MLD)-Based Multicast Forwarding ("">RFC4605</a>] SHOULD be implemented in the MAG. There SHOULD be direct
connectivity between the MAG and the local multicast router (or
additional MLD proxy).
<span class="h2"><a class="selflink" id="section-4" href="#section-4">4</a>. Mobile Access Gateway Operation</span>
This section describes the operation of the mobile access gateway,
considering that the MAG incorporates MLD proxy functions as per
[<a href="./rfc4605" title=""Internet Group Management Protocol (IGMP) / Multicast Listener Discovery (MLD)-Based Multicast Forwarding ("">RFC4605</a>].
<span class="h3"><a class="selflink" id="section-4.1" href="#section-4.1">4.1</a>. Extensions to Binding Update List Data Structure</span>
A Binding Update List (BUL) at the MAG, like the one specified in
[<a href="./rfc5213" title=""Proxy Mobile IPv6"">RFC5213</a>], MUST be maintained to handle the relationship between the
serving entities (e.g., MTMA and LMA) and the mobile nodes for both
unicast and multicast traffic.
<span class="h3"><a class="selflink" id="section-4.2" href="#section-4.2">4.2</a>. MAG as MLD Proxy</span>
<span class="h4"><a class="selflink" id="section-4.2.1" href="#section-4.2.1">4.2.1</a>. MTMA Mode (Subscription via MTMA)</span>
In case of subscription via MTMA, all MAGs that are connected to the
MTMA must support the MLD proxy function [<a href="./rfc4605" title=""Internet Group Management Protocol (IGMP) / Multicast Listener Discovery (MLD)-Based Multicast Forwarding ("">RFC4605</a>]. Specifically in
Figure 1, each of the MAG1-MTMA and MAG2-MTMA tunnel interfaces
define an MLD proxy domain. The mobile nodes are considered to be on
the downstream interface of the MLD proxy (of the MAG), and the MTMA
is considered to be on the upstream interface (of the MAG) as per
[<a href="./rfc4605" title=""Internet Group Management Protocol (IGMP) / Multicast Listener Discovery (MLD)-Based Multicast Forwarding ("">RFC4605</a>]. Note that the mobile access gateway could also be an IGMP
proxy.
Figure 3 shows the procedure when MN1 attaches to a MAG, and
establishes associations with the LMA (unicast) and the MTMA
(multicast).
<span class="grey">Zuniga, et al. Experimental [Page 9]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-10" ></span>
<span class="grey"><a href="./rfc7028">RFC 7028</a> Multicast Mobility Routing Optimizations September 2013</span>
MN1 MAG1 LMA MTMA
| (MLD proxy) (Unicast) (Multicast)
MN1 attaches to MAG1 | | |
| | | |
|----Rtr Sol--------->| | |
| |--PBU---->| |
| | | |
| |<----PBA--| |
| | | |
| |=Unicast==| |
| | Tunnel | |
|<---------Rtr Adv----| | |
| | | |
|< ------ Unicast Traffic------->| |
| | | |
| |==Multicast Tunnel===|
| | | |
|<-------MLD Query----| | |
| | | |
MN1 requires | | |
multicast services | | |
| | | |
|----MLD Report (G)-->| | |
| | | |
| |----Aggregated------>|
| | MLD Report (G) |
| | | |
| | | |
|<-----------Multicast Traffic------------->|
| | | |
Figure 3: MN Attachment and Multicast Service Establishment for MTMA
In Figure 3, the MAG first establishes the PMIPv6 tunnel with LMA for
unicast traffic as defined in [<a href="./rfc5213" title=""Proxy Mobile IPv6"">RFC5213</a>] after being triggered by the
Router Solicitation message from MN1. Unicast traffic will then flow
between MN1 and LMA.
For multicast traffic, a multicast tunnel may have been pre-
configured between MAG and MTMA, or may be dynamically established
when the first MN appears at the MAG.
MN1 sends the MLD report message (when required by its upper-layer
applications) as defined in [<a href="./rfc3810" title=""Multicast Listener Discovery Version 2 (MLDv2) for IPv6"">RFC3810</a>] in response to an MLD Query
from MAG (generated as defined by [<a href="./rfc6224" title=""Base Deployment for Multicast Listener Support in Proxy Mobile IPv6 (PMIPv6) Domains"">RFC6224</a>] upon handover). The MAG,
acting as an MLD proxy defined in [<a href="./rfc4605" title=""Internet Group Management Protocol (IGMP) / Multicast Listener Discovery (MLD)-Based Multicast Forwarding ("">RFC4605</a>], will then send an
Aggregated MLD Report to the multicast anchor, MTMA (assuming that
this is a new multicast group that the MAG had not previously
<span class="grey">Zuniga, et al. Experimental [Page 10]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-11" ></span>
<span class="grey"><a href="./rfc7028">RFC 7028</a> Multicast Mobility Routing Optimizations September 2013</span>
subscribed to). Multicast traffic will then flow from the MTMA
towards MN1. The MTMA acts as an MLD Querier, so it will
periodically query each mobile access gateway about the subscriptions
it maintains (not shown in Figure 3).
We next consider a mobility scenario in which MN1 with an ongoing
multicast subscription moves from one MAG to another MAG. According
to the baseline solution signaling method described in [<a href="./rfc6224" title=""Base Deployment for Multicast Listener Support in Proxy Mobile IPv6 (PMIPv6) Domains"">RFC6224</a>],
after MN1 mobility, the new mobile access gateway acting in its role
of MLD proxy will send an MLD Query to the newly observed mobile node
on its downlink. Assuming that the subsequent MLD Report from MN1
requests membership for a new multicast group (from the new MAG's
point of view), this will then result in an Aggregated MLD Report
being sent to the MTMA from the new mobile access gateway. This
message will be sent through a multicast tunnel between the new MAG
and MTMA (pre-established or dynamically established).
When MN1 detaches, the old MAG may keep the multicast tunnel with the
multicast MTMA if there are still other MNs using the multicast
tunnel. Even if there are no mobile nodes currently on the multicast
tunnel, the old MAG may decide to keep the multicast tunnel
temporarily for potential future use.
As discussed above, existing MLD (and MLD proxy) signaling will
handle a large part of the multicast mobility management for the
mobile node.
<span class="h4"><a class="selflink" id="section-4.2.2" href="#section-4.2.2">4.2.2</a>. Direct Routing Mode (Subscription via Direct Routing)</span>
In this case, the MLD proxy instance is configured to obtain the
multicast traffic locally. Figure 4 shows an example of multicast
service establishment. The mobile access gateway first establishes
the PMIPv6 tunnel with the local mobility anchor for unicast traffic
as defined in [<a href="./rfc5213" title=""Proxy Mobile IPv6"">RFC5213</a>] after being triggered by the Router
Solicitation message from the mobile node. Unicast traffic will then
flow between the MN and LMA.
For multicast traffic, it is assumed that the upstream interface of
the MLD proxy instance has been configured pointing to a multicast
router internal to the PMIPv6 domain (or towards an additional MLD
proxy node in the domain), for all the multicast channels (which, in
consequence, have to be local). There should be direct connectivity
between the MAG and the local multicast router (or additional MLD
proxy).
<span class="grey">Zuniga, et al. Experimental [Page 11]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-12" ></span>
<span class="grey"><a href="./rfc7028">RFC 7028</a> Multicast Mobility Routing Optimizations September 2013</span>
MN1 MAG1 LMA MR
| (MLD proxy) (Unicast) (Multicast)
MN1 attaches to MAG1 | | |
| | | |
|----Rtr Sol--------->| | |
| |--PBU------->| |
| | | |
| |<-------PBA--| |
| | | |
| |===Unicast===| |
| | Tunnel | |
|<---------Rtr Adv----| | |
| | | |
|<--------Unicast Traffic---------->| |
| | | |
| | | |
|<-------MLD Query----|<-------------MLD Query----|
| | | |
MN1 requires | | |
multicast services | | |
| | | |
|--MLD Report (G)---->| | |
| | | |
| |----Aggregated------------>|
| | MLD Report (G) |
| | | |
| | | |
|<-------------Multicast Traffic----------------->|
| | | |
Figure 4: Multicast Service Establishment for Direct Routing
Upon detecting node attachment from an incoming interface, the MAG
adds each downstream interface to the MLD proxy instance with an
upstream link to an MR according to the standard MLD proxy operations
[<a href="./rfc4605" title=""Internet Group Management Protocol (IGMP) / Multicast Listener Discovery (MLD)-Based Multicast Forwarding ("">RFC4605</a>] and sends an MLD Query message towards the MN. The mobile
node sends the MLD report message (when required by its upper-layer
applications) in response to an MLD Query from the MAG. Upon
receiving the MLD Report message from each incoming interface, the
MAG checks the MLD proxy instance associated with the downstream
interface and then the MLD Report messages will be aggregated and
forwarded to the upstream link associated with the MR (assuming that
this is a new multicast group that the MAG had not previously
subscribed to). Multicast traffic will then flow from the local
multicast router towards the mobile node.
<span class="grey">Zuniga, et al. Experimental [Page 12]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-13" ></span>
<span class="grey"><a href="./rfc7028">RFC 7028</a> Multicast Mobility Routing Optimizations September 2013</span>
MN1 P-MAG N-MAG LMA MR
| | | | |
| | | | |
|<------------|<-- Multicast Data----------------|
| | . | | |
| | . | | |
| | . | | |
Link Handover | | |
Disconnected Detection | | |
| | | | |
| | | | |
| | MN Attachment | |
| | | | |
| | | | |
|----Rtr Sol------------->| | |
| | | | |
| | |--PBU----->| |
| | | | |
| | |<-----PBA--| |
| | | | |
|<-----------MLD Query----| | |
| | | | |
|----MLD Report---------->| | |
| | | | |
| | |----Aggregated------->|
| | | MLD Report |
| | | | |
|<------------------------|<---Multicast Data----|
| | | | |
Figure 5: Multicast Mobility Signaling for Direct Routing
Figure 5 shows the handover operation procedure for the direct
routing operation mode. When MN1 hands off to the next MAG (N-MAG)
from the previous MAG (P-MAG), the N-MAG detects the newly arrived
attached mobile node and performs binding update procedure by
exchanging PBU/PBA signaling messages with LMA. At the same time, an
MLD proxy instance detecting MN1 transmits an MLD query message to
the mobile node. After receiving the MLD query message, MN1 sends an
MLD report message that includes the multicast group information.
The N-MAG then sends an aggregated MLD report message to the upstream
link associated with the MR. An upstream interface of MLD proxy
instance is chosen towards certain multicast router. The upstream
interface selection can be done according to dynamic policies
conveyed in the Dynamic IP Multicast Selector option (as described in
<a href="#section-5.1">Section 5.1</a>) or according to manually configured policies. Note that
in the base solution defined in [<a href="./rfc6224" title=""Base Deployment for Multicast Listener Support in Proxy Mobile IPv6 (PMIPv6) Domains"">RFC6224</a>], the interface selection is
determined for each MN based on the Binding Update List. When the
<span class="grey">Zuniga, et al. Experimental [Page 13]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-14" ></span>
<span class="grey"><a href="./rfc7028">RFC 7028</a> Multicast Mobility Routing Optimizations September 2013</span>
N-MAG receives the multicast packets from the MR, it then simply
forwards them without tunnel encapsulation. The N-MAG updates MN1's
location information to the LMA by exchanging PBU/PBA signaling
messages.
<span class="h2"><a class="selflink" id="section-5" href="#section-5">5</a>. Local Mobility Anchor Operation</span>
This section includes a new mobility option to support dynamic
policies on subscription via MTMA/direct routing based on the local
mobility anchor conveying the required info to the mobile access
gateway in the proxy binding acknowledgement message.
<span class="h3"><a class="selflink" id="section-5.1" href="#section-5.1">5.1</a>. Dynamic IP Multicast Selector Option</span>
<span class="h4"><a class="selflink" id="section-5.1.1" href="#section-5.1.1">5.1.1</a>. Option Application Rules</span>
A new TLV-encoded mobility option, the Dynamic IP Multicast Selector
option, is defined for use with the proxy binding acknowledgement
message exchanged between an LMA and a MAG to convey dynamic policies
on subscription via MTMA/direct routing. This option is used for
exchanging the IP addresses of both the group subscribed to by the
MN, and the source(s) delivering it, as well as the applicable filter
mode. This information is carried by using directly the Multicast
Address Record format defined in [<a href="./rfc3810" title=""Multicast Listener Discovery Version 2 (MLDv2) for IPv6"">RFC3810</a>]. There can be multiple
"Dynamic IP Multicast Selector" options present in the message, up to
one for each active subscription maintained by the MN.
<span class="h4"><a class="selflink" id="section-5.1.2" href="#section-5.1.2">5.1.2</a>. Option Format</span>
The format of this new option is as follows:
<span class="grey">Zuniga, et al. Experimental [Page 14]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-15" ></span>
<span class="grey"><a href="./rfc7028">RFC 7028</a> Multicast Mobility Routing Optimizations September 2013</span>
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Protocol |M| Reserved |Nr of Mcast Address Records (N)|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
+ Multicast Address Record [1] +
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
+ Multicast Address Record [2] +
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| . |
| . |
| . |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
+ Multicast Address Record [N] +
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type:
54
Length:
8-bit unsigned integer indicating the length of the option in
octets, excluding the type and length fields.
Protocol:
Field used to identify the multicast membership protocol in use,
and the corresponding format of the next Multicast Address Record.
This field maps the type codification used in the original MLD
specifications for the Report message, namely for MLDv2 [<a href="./rfc3810" title=""Multicast Listener Discovery Version 2 (MLDv2) for IPv6"">RFC3810</a>]
the Protocol value MUST be 143, whereas for MLDv1 [<a href="./rfc2710" title=""Multicast Listener Discovery (MLD) for IPv6"">RFC2710</a>] the
Protocol value MUST be 131.
Dynamic IP Multicast Selector Mode Flag (M-bit):
This field indicates the subscription via MTMA/direct routing
mode. If the (M) flag value is set to a value of (1), it is an
indication that the IP multicast traffic associated with the
multicast group(s) identified by the Multicast Address Record(s)
<span class="grey">Zuniga, et al. Experimental [Page 15]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-16" ></span>
<span class="grey"><a href="./rfc7028">RFC 7028</a> Multicast Mobility Routing Optimizations September 2013</span>
in this mobility option SHOULD be routed locally (subscription via
direct routing mode). If the (M) flag value is set to a value of
(0), it is an indication that IP multicast traffic associated with
the multicast group(s) identified by the Multicast Address Record
in this mobility option(s) SHOULD be routed to the home network,
via the MTMA (subscription via MTMA mode). The mobile access
gateway MAY also choose to use static pre-established policies
instead of following the indications provided by the local
mobility anchor. All other IP traffic associated with the mobile
node is managed according to a default policy configured at the
PMIPv6 multicast domain.
Reserved:
This field is unused for now. The value MUST be initialized to 0
by the sender and MUST be ignored by the receiver.
Nr of Mcast Address Records (N)
16-bit unsigned integer indicating the number of Mcast Address
Records (N) present in this option.
Multicast Address Record:
Multicast subscription information corresponding to a single
multicast address as defined in [<a href="./rfc3810" title=""Multicast Listener Discovery Version 2 (MLDv2) for IPv6"">RFC3810</a>], or as defined in
[<a href="./rfc2710" title=""Multicast Listener Discovery (MLD) for IPv6"">RFC2710</a>] for MLDv1.
<span class="h2"><a class="selflink" id="section-6" href="#section-6">6</a>. Multicast Tree Mobility Anchor Operation</span>
The MTMA provides connectivity to the multicast infrastructure out of
the PMIPv6 domain. The MTMA itself either could act as an additional
MLD proxy (only in the case where all the connected mobile access
gateways act also as MLD proxies), reporting to a further node an
aggregated view of the subscriptions in a PMIPv6 multicast domain, or
can act as a designated multicast router for all the MAGs in a PMIPv6
multicast domain. The multicast tree mobility anchor will then
request the multicast content on behalf of the MAGs (and mobile nodes
behind them). In addition, the MTMA will create and maintain the
corresponding multicast forwarding states per each tunnel interface
towards the MAGs. Whatever the role played, when the MAGs act as MLD
proxy, the MTMA becomes the MLD querier of the MLD proxy instance
located in each MAG.
<span class="grey">Zuniga, et al. Experimental [Page 16]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-17" ></span>
<span class="grey"><a href="./rfc7028">RFC 7028</a> Multicast Mobility Routing Optimizations September 2013</span>
<span class="h3"><a class="selflink" id="section-6.1" href="#section-6.1">6.1</a>. Conceptual Data Structures</span>
The multicast tree mobility anchor does not directly interact with
the mobile nodes attached to any of the mobile access gateways. The
MTMA only manages the multicast groups subscribed per MAG on behalf
of the MNs attached to it. Having this in mind, the relevant
information to be stored in the MTMA should be the tunnel interface
identifier (tunnel-if-id) of the bidirectional tunnel for multicast
between the MTMA and every MAG (e.g., similar to what is stated in
[<a href="./rfc5213" title=""Proxy Mobile IPv6"">RFC5213</a>] for the unicast case), the IP addresses of the multicast
group delivered per tunnel to each of the MAGs, and the IP addresses
of the sources injecting the multicast traffic per tunnel to the
multicast domain defined by the MTMA.
<span class="h2"><a class="selflink" id="section-7" href="#section-7">7</a>. Mobile Node Operation</span>
The mobile node operation is not impacted by the existence of an MTMA
as anchor for the multicast traffic being subscribed or the use of
direct routing. The MN will act according to the stated operations
in [<a href="./rfc5213" title=""Proxy Mobile IPv6"">RFC5213</a>] and [<a href="./rfc6224" title=""Base Deployment for Multicast Listener Support in Proxy Mobile IPv6 (PMIPv6) Domains"">RFC6224</a>].
This document considers that every mobile node requesting multicast-
only services is previously registered in a PMIPv6 unicast domain to
get a unicast IP address. The registration can also be required for
several purposes such as remote management, billing, multicast
configuration, etc.
A given mobile node's policy profile information must be updated to
be able to store the IPv6 addresses of both the local mobility anchor
and multicast tree mobility anchor, the later for the subscription
via MTMA case.
<span class="h2"><a class="selflink" id="section-8" href="#section-8">8</a>. IPv4 Support</span>
This document does not introduce any IPv4-specific issue regarding
[<a href="./rfc5844" title=""IPv4 Support for Proxy Mobile IPv6"">RFC5844</a>]. In order for the solution to support IPv4, all the
described network elements (i.e., MAG, MTMA, and MR) must support
IGMP. In this case, the functionalities of the MAG and MTMA would be
as described in [<a href="./rfc6224" title=""Base Deployment for Multicast Listener Support in Proxy Mobile IPv6 (PMIPv6) Domains"">RFC6224</a>], with the MTMA replicating the requirements
described for the LMA. For the case of the MR, it must also be dual-
stack (i.e., IPv6/IPv4) enabled.
Although references to "MLD proxy" have been used in the document, it
should be understood to also include "IGMP/MLD proxy" functionality.
Regarding the Dynamic IP Multicast Selector Option format, it SHOULD
consider IPv4 compatibility in the following way:
<span class="grey">Zuniga, et al. Experimental [Page 17]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-18" ></span>
<span class="grey"><a href="./rfc7028">RFC 7028</a> Multicast Mobility Routing Optimizations September 2013</span>
Protocol field:
For IPv4, this field maps the type codification used in the
original IGMP specifications for the Report message, in the
following way:
It MUST be 0x12 in case of using IGMPv1.
It MUST be 0x16 in case of using IGMPv2.
It MUST be 0x22 in case of using IGMPv3.
Multicast Address Record field:
This field takes different formats depending on the IGMP version
being used by the MN, as follows:
* For IGMPv1, it takes the format given by the Group Address in
[<a href="./rfc1112" title=""Host extensions for IP multicasting"">RFC1112</a>].
* For IGMPv2, it takes the format given by the Group Address in
[<a href="./rfc2236" title=""Internet Group Management Protocol, Version 2"">RFC2236</a>].
* For IGMPv3, it takes the format given by the Group Record in
[<a href="./rfc3376" title=""Internet Group Management Protocol, Version 3"">RFC3376</a>].
<span class="h2"><a class="selflink" id="section-9" href="#section-9">9</a>. IANA Considerations</span>
This document defines a new mobility option, the Dynamic IP Multicast
Selector, which has been assigned the Type 54 by IANA. The Type
value for these options has been assigned from the same numbering
space as allocated for the other mobility options, as defined in
[<a href="./rfc6275" title=""Mobility Support in IPv6"">RFC6275</a>]: <a href="http://www.iana.org/assignments/mobility-parameters">http://www.iana.org/assignments/mobility-parameters</a>.
<span class="h2"><a class="selflink" id="section-10" href="#section-10">10</a>. Security Considerations</span>
This document describes two complementary operational modes that can
be used to deliver multicast traffic in a PMIPv6 domain: multicast
anchor and direct routing. Different approaches are described in the
document to decide which operational mode is selected: i) the use of
pre-configured/pre-provisioned policies at the mobile access gateway,
or ii) the use of dynamic policies. Approach ii) could introduce a
potential security issue if the protocol signaling is not properly
secured. The use of the Dynamic IP Multicast Selector option
described in the document requires message integrity protection and
source authentication. Hence, the IPsec security mechanism
<span class="grey">Zuniga, et al. Experimental [Page 18]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-19" ></span>
<span class="grey"><a href="./rfc7028">RFC 7028</a> Multicast Mobility Routing Optimizations September 2013</span>
recommended by Proxy Mobile IPv6 [<a href="./rfc5213" title=""Proxy Mobile IPv6"">RFC5213</a>] MUST be used to secure the
Dynamic IP Multicast Selector option conveyed in the PBA (Proxy
Binding Acknowledgement).
This document does not introduce any additional security threats
beyond the current security considerations of PMIPv6 [<a href="./rfc5213" title=""Proxy Mobile IPv6"">RFC5213</a>], MLD
[<a href="./rfc3810" title=""Multicast Listener Discovery Version 2 (MLDv2) for IPv6"">RFC3810</a>], IGMP [<a href="./rfc3376" title=""Internet Group Management Protocol, Version 3"">RFC3376</a>], and IGMP/MLD Proxying [<a href="./rfc4605" title=""Internet Group Management Protocol (IGMP) / Multicast Listener Discovery (MLD)-Based Multicast Forwarding ("">RFC4605</a>].
<span class="h2"><a class="selflink" id="section-11" href="#section-11">11</a>. Contributors</span>
The following individuals made significant contributions to this
document.
Akbar Rahman
InterDigital Communications, LLC
EMail: akbar.rahman@interdigital.com
Ignacio Soto
Universidad Carlos III de Madrid
EMail: isoto@it.uc3m.es
<span class="grey">Zuniga, et al. Experimental [Page 19]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-20" ></span>
<span class="grey"><a href="./rfc7028">RFC 7028</a> Multicast Mobility Routing Optimizations September 2013</span>
<span class="h2"><a class="selflink" id="section-12" href="#section-12">12</a>. References</span>
<span class="h3"><a class="selflink" id="section-12.1" href="#section-12.1">12.1</a>. Normative References</span>
[<a id="ref-RFC1112">RFC1112</a>] Deering, S., "Host extensions for IP multicasting",
STD 5, <a href="./rfc1112">RFC 1112</a>, August 1989.
[<a id="ref-RFC2119">RFC2119</a>] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", <a href="https://www.rfc-editor.org/bcp/bcp14">BCP 14</a>, <a href="./rfc2119">RFC 2119</a>, March 1997.
[<a id="ref-RFC2236">RFC2236</a>] Fenner, W., "Internet Group Management Protocol, Version
2", <a href="./rfc2236">RFC 2236</a>, November 1997.
[<a id="ref-RFC2710">RFC2710</a>] Deering, S., Fenner, W., and B. Haberman, "Multicast
Listener Discovery (MLD) for IPv6", <a href="./rfc2710">RFC 2710</a>,
October 1999.
[<a id="ref-RFC2784">RFC2784</a>] Farinacci, D., Li, T., Hanks, S., Meyer, D., and P.
Traina, "Generic Routing Encapsulation (GRE)", <a href="./rfc2784">RFC 2784</a>,
March 2000.
[<a id="ref-RFC3376">RFC3376</a>] Cain, B., Deering, S., Kouvelas, I., Fenner, B., and A.
Thyagarajan, "Internet Group Management Protocol,
Version 3", <a href="./rfc3376">RFC 3376</a>, October 2002.
[<a id="ref-RFC3810">RFC3810</a>] Vida, R. and L. Costa, "Multicast Listener Discovery
Version 2 (MLDv2) for IPv6", <a href="./rfc3810">RFC 3810</a>, June 2004.
[<a id="ref-RFC4605">RFC4605</a>] Fenner, B., He, H., Haberman, B., and H. Sandick,
"Internet Group Management Protocol (IGMP) / Multicast
Listener Discovery (MLD)-Based Multicast Forwarding
("IGMP/MLD Proxying")", <a href="./rfc4605">RFC 4605</a>, August 2006.
[<a id="ref-RFC5213">RFC5213</a>] Gundavelli, S., Leung, K., Devarapalli, V., Chowdhury,
K., and B. Patil, "Proxy Mobile IPv6", <a href="./rfc5213">RFC 5213</a>,
August 2008.
[<a id="ref-RFC5844">RFC5844</a>] Wakikawa, R. and S. Gundavelli, "IPv4 Support for Proxy
Mobile IPv6", <a href="./rfc5844">RFC 5844</a>, May 2010.
[<a id="ref-RFC5847">RFC5847</a>] Devarapalli, V., Koodli, R., Lim, H., Kant, N.,
Krishnan, S., and J. Laganier, "Heartbeat Mechanism for
Proxy Mobile IPv6", <a href="./rfc5847">RFC 5847</a>, June 2010.
[<a id="ref-RFC6275">RFC6275</a>] Perkins, C., Johnson, D., and J. Arkko, "Mobility
Support in IPv6", <a href="./rfc6275">RFC 6275</a>, July 2011.
<span class="grey">Zuniga, et al. Experimental [Page 20]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-21" ></span>
<span class="grey"><a href="./rfc7028">RFC 7028</a> Multicast Mobility Routing Optimizations September 2013</span>
<span class="h3"><a class="selflink" id="section-12.2" href="#section-12.2">12.2</a>. Informative References</span>
[<a id="ref-AUTO">AUTO</a>] Bumgardner, G., <a style="text-decoration: none" href='https://www.google.com/search?sitesearch=datatracker.ietf.org%2Fdoc%2Fhtml%2F&q=inurl:draft-+%22Automatic+Multicast+Tunneling%22'>"Automatic Multicast Tunneling"</a>, Work in
Progress, July 2013.
[<a id="ref-MLDPROXY">MLDPROXY</a>] Asaeda, H. and S. Jeon, "Multiple Upstream Interface
Support for IGMP/MLD Proxy", Work in Progress,
February 2013.
[<a id="ref-MUIIMP">MUIIMP</a>] Zhang, H. and T. Schmidt, "Multi-Upstream Interfaces
IGMP/MLD Proxy", Work in Progress, July 2013.
[<a id="ref-MULTIMOB">MULTIMOB</a>] Schmidt, T., Gao, S., Zhang, H., and M. Waehlisch,
"Mobile Multicast Sender Support in Proxy Mobile IPv6
(PMIPv6) Domains", Work in Progress, July 2013.
[<a id="ref-PMIP6-REQ">PMIP6-REQ</a>] Deng, H., Chen, G., Schmidt, T., Seite, P., and P. Yang,
"Multicast Support Requirements for Proxy Mobile IPv6",
Work in Progress, July 2009.
[<a id="ref-RFC6224">RFC6224</a>] Schmidt, T., Waehlisch, M., and S. Krishnan, "Base
Deployment for Multicast Listener Support in Proxy
Mobile IPv6 (PMIPv6) Domains", <a href="./rfc6224">RFC 6224</a>, April 2011.
[<a id="ref-UPSTREAM">UPSTREAM</a>] Contreras, LM., Bernardos, CJ., and JC. Zuniga,
"Extension of the MLD proxy functionality to support
multiple upstream interfaces", Work in Progress,
February 2013.
<span class="grey">Zuniga, et al. Experimental [Page 21]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-22" ></span>
<span class="grey"><a href="./rfc7028">RFC 7028</a> Multicast Mobility Routing Optimizations September 2013</span>
<span class="h2"><a class="selflink" id="appendix-A" href="#appendix-A">Appendix A</a>. MTMA Deployment Use Cases</span>
This informative appendix describes, from the network architecture
point of view, several deployment options considering the MTMA.
These options can be distinguished in terms of the number of LMAs and
MTMAs present in a PMIPv6 domain and the service relationship that a
set of MNs gets from them, in the form of a "LMA : MTMA" ratio.
According to that, it is possible to differentiate the following
approaches:
o A set of MNs is served in a PMIPv6 domain by two entities, one
MTMA for multicast service, and one LMA for unicast, in such a way
that the ratio is 1:1 (one common PMIPv6 unicast and multicast
domain).
o A set of MNs is served in a PMIPv6 domain by several entities, one
MTMA for multicast service, while the others (LMAs) for unicast,
in such a way that the ratio is N:1 (N PMIPv6 unicast domains
coexist with a unique multicast domain).
o A set of MNs is served in a PMIPv6 domain by several entities, one
LMA for unicast, while the others (MTMAs) are devoted to multicast
service, in such a way that the ratio is 1:N (one single PMIPv6
unicast domain coexists with multiple multicast domains).
Scenarios with an N:M ratio are considered to be a combination of the
previous ones.
<span class="h3"><a class="selflink" id="appendix-A.1" href="#appendix-A.1">A.1</a>. PMIPv6 Domain with Ratio 1:1</span>
This approach refers to the architecture presented in Figure 1.
Within this approach, a common set of MNs is served by a couple of
entities, one LMA for unicast and one MTMA for multicast. All the
MNs of the set are served by these two elements as they move in the
PMIPv6 domain.
<span class="h3"><a class="selflink" id="appendix-A.2" href="#appendix-A.2">A.2</a>. PMIPv6 Domain with Ratio N:1</span>
This approach refers to the situation where a common set of MNs is
served by a unique MTMA for multicast service, but simultaneously
there are subsets from that group of MNs that are served by distinct
LMAs for unicast service as they move in the PMIPv6 domain. Each
particular MN association with the LMAs (unicast) and MTMA
(multicast) remains always the same as it moves in the PMIPv6 domain.
Figure 6 shows the scenario here described.
<span class="grey">Zuniga, et al. Experimental [Page 22]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-23" ></span>
<span class="grey"><a href="./rfc7028">RFC 7028</a> Multicast Mobility Routing Optimizations September 2013</span>
+----------------+ +----------------+
|Content Source A| |Content Source B|
+----------------+ +----------------+
| |
| |
*** *** *** *** *** *** *** *** *** *** ***
* ** ** ** ** ** ** ** ** ** ** *
* *
* Fixed Internet *
* (Unicast & Multicast Traffic) *
* ** ** ** ** ** ** ** ** ** ** *
*** *** *** *** *** *** *** *** *** *** ***
| | |
| | |
| | |
+------+ +-----------------+ +------+
| LMA1 | | MTMA2 | | LMA3 |
+------+ +-----------------+ +------+
|| \\ oo oo oo oo // ||
|| \\ oo oo oo oo // ||
|| \\ oo oo oo oo // ||
|| \\ oo oo oo oo // ||
|| \\oo oo oo oo // ||
|| \\ oo oo oo// ||
|| oo\\ oo oo // ||
|| oo \\ oo oo //oo ||
|| oo \\ oo oo // oo ||
|| oo \\ oo oo // oo ||
+------+ +--------+ +--------+ +--------+
| MAG1 | | MAG2 | | MAG3 | | MAG4 |
+------+ +--------+ +--------+ +--------+
| | | | | | | |
| | | | | | | |
{MN10} {MN11} {MN20} {MN21} {MN30} {MN31} {MN40} {MN41}
Figure 6: PMIPv6 Domain with Ratio N:1
Figure 6 proposes an architecture where there are two entities acting
as LMAs, LMA1 and LMA3, while there is another one, named MTMA2,
working as multicast tree mobility anchor. LMA1 and LMA3 constitute
two distinct unicast domains, whereas MTMA2 forms a single multicast
domain. The tunnels among MAGs and LMAs represented by lines ("||")
indicate a tunnel transporting unicast traffic, while the tunnels
among MAGs and MTMA2 depicted with circles ("o") show a tunnel
transporting multicast traffic.
In the figure, it can be observed that all the MNs are served by
MTMA2 for the incoming multicast traffic from sources A or B.
<span class="grey">Zuniga, et al. Experimental [Page 23]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-24" ></span>
<span class="grey"><a href="./rfc7028">RFC 7028</a> Multicast Mobility Routing Optimizations September 2013</span>
However, there are different subsets regarding unicast traffic, which
maintain distinct associations within the PMIPv6 domain. For
instance, the subset formed by MN10, MN11, MN20, and MN21 is served
by LMA1 for unicast, and the rest of MNs are served by LMA3. For the
scenario described above, the association between each MN and the
corresponding LMA and MTMA is permanently maintained.
<span class="h3"><a class="selflink" id="appendix-A.3" href="#appendix-A.3">A.3</a>. PMIPv6 Domain with Ratio 1:N</span>
This approach is related to a scenario where a common group of MNs is
served by a unique LMA for unicast service, but simultaneously there
are subsets from that group of MNs that are served by distinct MTMAs
for multicast service as they move in the PMIPv6 domain. Different
MTMAs might be associated with serving different multicast groups.
These associations remain the same even if the MNs move within the
PMIPv6 domain.
Figure 7 shows the scenario here described.
<span class="grey">Zuniga, et al. Experimental [Page 24]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-25" ></span>
<span class="grey"><a href="./rfc7028">RFC 7028</a> Multicast Mobility Routing Optimizations September 2013</span>
+----------------+ +----------------+
|Content Source A| |Content Source B|
+----------------+ +----------------+
| |
| ******************** |
( ) * * ( )
( ) * Fixed Internet * ( )
( ) * (Unicast Traffic) * ( )
( ) * * ( )
( ) ******************** ( )
| | |
| | |
+------+ +--------------+ +------+
| MTMA1| | LMA2 | | MTMA3|
+------+ +--------------+ +------+
oo oo // \\ ^^ ^^
oo oo // \\ ^^ ^^
oo oo // \\ ^^ ^^
oo oo // \\ ^^ ^^
oo oo/ ^^ ^^
oo //oo ^^ \\ ^^
oo // oo ^^ \\ ^^
oo // oo \\ ^^
oo // ^^ oo \\ ^^
oo // ^^ oo \^^
+-------------+ +-------------+
| \ / | | \ | |
| ~o~~~~o~ | | ~o~~~~o~ |
| ( MLD w ) | | ( MLD w ) |
| ( multip ) | | ( multip ) |
| ( i/f ) | | ( i/f ) |
| ~~~~~~~~ | | ~~~~~~~~ |
| | | |
| MAG1 | | MAG2 |
/+-------------+ +-------------+\
| | | | | |
| | | | | |
{MN10} {MN11} {MN12} {MN20} {MN21} {MN22}
Figure 7: PMIPv6 Domain with Ratio 1:N
Figure 7 proposes an architecture where the LMA2 is the unique LMA
for a certain group of MNs, while there are two other entities, MTMA1
and MTMA3, acting as MTMAs for different subsets of multicast
content. MTMA1 and MTMA3 constitute two distinct multicast domains,
whereas LMA2 forms a single unicast domain. Each MTMA could be
devoted to carry on a different content (for instance, MTMA1 for
source A and MTMA3 for source B). Looking at the figure, all MNs are
<span class="grey">Zuniga, et al. Experimental [Page 25]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-26" ></span>
<span class="grey"><a href="./rfc7028">RFC 7028</a> Multicast Mobility Routing Optimizations September 2013</span>
served by LMA2 for unicast, while they might be simultaneously served
by MTMA1 and MTMA3, depending on the multicast content. For the
scenario described above, the association between multicast content
and MTMA is permanently maintained. Note that this scenario would
require support for MLD proxy with multiple interfaces [<a href="#ref-MULTIMOB" title=""Mobile Multicast Sender Support in Proxy Mobile IPv6 (PMIPv6) Domains"">MULTIMOB</a>],
[<a href="#ref-UPSTREAM" title=""Extension of the MLD proxy functionality to support multiple upstream interfaces"">UPSTREAM</a>], [<a href="#ref-MLDPROXY" title=""Multiple Upstream Interface Support for IGMP/MLD Proxy"">MLDPROXY</a>], [<a href="#ref-MUIIMP" title=""Multi-Upstream Interfaces IGMP/MLD Proxy"">MUIIMP</a>] at the MAGs.
<span class="h3"><a class="selflink" id="appendix-A.4" href="#appendix-A.4">A.4</a>. PMIPv6 Domain with H-LMA</span>
The H-LMA is defined as an entity that simultaneously transports
unicast and multicast service, that is, it simultaneously works as
LMA and MTMA. In the context of the MTMA solution, an H-LMA can play
the role of MTMA for an entire group of MNs in a PMIPv6 domain, while
acting simultaneously as LMA for a subset of them. Figure 8 adapts
the PMIPv6 domain with ratio N:1 scenario of Figure 6 to the case
where MTMA2 is an H-LMA, which serves multicast traffic to all the
MNs in the picture, and simultaneously, it is able to serve unicast
traffic to the subset formed by MN21 and MN30.
<span class="grey">Zuniga, et al. Experimental [Page 26]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-27" ></span>
<span class="grey"><a href="./rfc7028">RFC 7028</a> Multicast Mobility Routing Optimizations September 2013</span>
+----------------+ +----------------+
|Content Source A| |Content Source B|
+----------------+ +----------------+
| |
| |
*** *** *** *** *** *** *** *** *** *** ***
* ** ** ** ** ** ** ** ** ** ** *
* *
* Fixed Internet *
* (Unicast & Multicast Traffic) *
* ** ** ** ** ** ** ** ** ** ** *
*** *** *** *** *** *** *** *** *** *** ***
| | |
| | |
| | |
+------+ +-----------------+ +------+
| LMA1 | | H-LMA | | LMA3 |
+------+ +-----------------+ +------+
|| \\ oo db db oo // ||
|| \\ oo db db oo // ||
|| \\ oo db db oo // ||
|| \\ oo db db oo // ||
|| \\oo db db oo // ||
|| \\ db db oo// ||
|| oo\\ db db // ||
|| oo \\ db db //oo ||
|| oo \\ db db // oo ||
|| oo \\ db db // oo ||
+------+ +--------+ +--------+ +--------+
| MAG1 | | MAG2 | | MAG3 | | MAG4 |
+------+ +--------+ +--------+ +--------+
| | | | | | | |
| | | | | | | |
{MN10} {MN11} {MN20} {MN21} {MN30} {MN31} {MN40} {MN41}
Figure 8: PMIPv6 Domain with H-LMA
Figure 8 presents a PMIPv6 network where there are two pure unicast
LMAs, LMA1, and LMA3, and a hybrid LMA, labeled as H-LMA in the
figure. The H-LMA is an MTMA from the perspective of MAG1 and MAG4.
The tunnels among MAGs and LMAs represented by lines ("||") indicate
a tunnel transporting exclusively unicast traffic, the tunnels
depicted with circles ("o") show a tunnel transporting exclusively
multicast traffic, and the tunnels with mixed lines and circles
("db") describe a tunnel transporting both types of traffic
simultaneously.
<span class="grey">Zuniga, et al. Experimental [Page 27]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-28" ></span>
<span class="grey"><a href="./rfc7028">RFC 7028</a> Multicast Mobility Routing Optimizations September 2013</span>
All of the MNs in the figure receive the multicast traffic from H-LMA
(one single multicast domain), but it is possible to distinguish
three subsets from the unicast service perspective (that is, three
unicast domains). The first subset is the one formed by MN10, MN11,
and MN20, which receives unicast traffic from LMA1. A second subset
is the one formed by MN21 and MN30, which receives unicast traffic
from H-LMA. And finally, a third subset is built on MN31, MN40, and
MN41, which receives unicast traffic from LMA3. For the scenario
described above, the association between each MN and the
corresponding LMA and H-LMA is permanently maintained.
<span class="grey">Zuniga, et al. Experimental [Page 28]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-29" ></span>
<span class="grey"><a href="./rfc7028">RFC 7028</a> Multicast Mobility Routing Optimizations September 2013</span>
Authors' Addresses
Juan Carlos Zuniga
InterDigital Communications, LLC
1000 Sherbrooke Street West, 10th floor
Montreal, Quebec H3A 3G4
Canada
EMail: JuanCarlos.Zuniga@InterDigital.com
URI: <a href="http://www.InterDigital.com/">http://www.InterDigital.com/</a>
Luis M. Contreras
Telefonica I+D
Don Ramon de la Cruz, 82-84
Madrid 28006
Spain
EMail: lmcm@tid.es
Carlos J. Bernardos
Universidad Carlos III de Madrid
Av. Universidad, 30
Leganes, Madrid 28911
Spain
Phone: +34 91624 6236
EMail: cjbc@it.uc3m.es
URI: <a href="http://www.it.uc3m.es/cjbc/">http://www.it.uc3m.es/cjbc/</a>
Seil Jeon
Instituto de Telecomunicacoes
Campus Universitario de Santiago
Aveiro 3810-193
Portugal
EMail: seiljeon@av.it.pt
URI: <a href="https://atnog.av.it.pt/~sjeon/">https://atnog.av.it.pt/~sjeon/</a>
Younghan Kim
Soongsil University
Sangdo-dong, Dongjak-gu
Seoul 511
Republic of Korea
EMail: yhkim@dcn.ssu.ac.kr
URI: <a href="http://dcnlab.ssu.ac.kr/">http://dcnlab.ssu.ac.kr/</a>
Zuniga, et al. Experimental [Page 29]
</pre>
|