1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741
|
<pre>Internet Engineering Task Force (IETF) D. Borman
Request for Comments: 7323 Quantum Corporation
Obsoletes: <a href="./rfc1323">1323</a> B. Braden
Category: Standards Track University of Southern California
ISSN: 2070-1721 V. Jacobson
Google, Inc.
R. Scheffenegger, Ed.
NetApp, Inc.
September 2014
<span class="h1">TCP Extensions for High Performance</span>
Abstract
This document specifies a set of TCP extensions to improve
performance over paths with a large bandwidth * delay product and to
provide reliable operation over very high-speed paths. It defines
the TCP Window Scale (WS) option and the TCP Timestamps (TS) option
and their semantics. The Window Scale option is used to support
larger receive windows, while the Timestamps option can be used for
at least two distinct mechanisms, Protection Against Wrapped
Sequences (PAWS) and Round-Trip Time Measurement (RTTM), that are
also described herein.
This document obsoletes <a href="./rfc1323">RFC 1323</a> and describes changes from it.
Status of This Memo
This is an Internet Standards Track document.
This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Further information on
Internet Standards is available in <a href="./rfc5741#section-2">Section 2 of RFC 5741</a>.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
<a href="http://www.rfc-editor.org/info/rfc7323">http://www.rfc-editor.org/info/rfc7323</a>.
<span class="grey">Borman, et al. Standards Track [Page 1]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-2" ></span>
<span class="grey"><a href="./rfc7323">RFC 7323</a> TCP Extensions for High Performance September 2014</span>
Copyright Notice
Copyright (c) 2014 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to <a href="https://www.rfc-editor.org/bcp/bcp78">BCP 78</a> and the IETF Trust's Legal
Provisions Relating to IETF Documents
(<a href="http://trustee.ietf.org/license-info">http://trustee.ietf.org/license-info</a>) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
<span class="grey">Borman, et al. Standards Track [Page 2]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-3" ></span>
<span class="grey"><a href="./rfc7323">RFC 7323</a> TCP Extensions for High Performance September 2014</span>
Table of Contents
<a href="#section-1">1</a>. Introduction . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-4">4</a>
<a href="#section-1.1">1.1</a>. TCP Performance . . . . . . . . . . . . . . . . . . . . . <a href="#page-4">4</a>
<a href="#section-1.2">1.2</a>. TCP Reliability . . . . . . . . . . . . . . . . . . . . . <a href="#page-5">5</a>
<a href="#section-1.3">1.3</a>. Using TCP options . . . . . . . . . . . . . . . . . . . . <a href="#page-6">6</a>
<a href="#section-1.4">1.4</a>. Terminology . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-7">7</a>
<a href="#section-2">2</a>. TCP Window Scale Option . . . . . . . . . . . . . . . . . . . <a href="#page-8">8</a>
<a href="#section-2.1">2.1</a>. Introduction . . . . . . . . . . . . . . . . . . . . . . <a href="#page-8">8</a>
<a href="#section-2.2">2.2</a>. Window Scale Option . . . . . . . . . . . . . . . . . . . <a href="#page-8">8</a>
<a href="#section-2.3">2.3</a>. Using the Window Scale Option . . . . . . . . . . . . . . <a href="#page-9">9</a>
<a href="#section-2.4">2.4</a>. Addressing Window Retraction . . . . . . . . . . . . . . <a href="#page-10">10</a>
<a href="#section-3">3</a>. TCP Timestamps Option . . . . . . . . . . . . . . . . . . . . <a href="#page-11">11</a>
<a href="#section-3.1">3.1</a>. Introduction . . . . . . . . . . . . . . . . . . . . . . <a href="#page-11">11</a>
<a href="#section-3.2">3.2</a>. Timestamps Option . . . . . . . . . . . . . . . . . . . . <a href="#page-12">12</a>
<a href="#section-4">4</a>. The RTTM Mechanism . . . . . . . . . . . . . . . . . . . . . <a href="#page-14">14</a>
<a href="#section-4.1">4.1</a>. Introduction . . . . . . . . . . . . . . . . . . . . . . <a href="#page-14">14</a>
<a href="#section-4.2">4.2</a>. Updating the RTO Value . . . . . . . . . . . . . . . . . <a href="#page-15">15</a>
<a href="#section-4.3">4.3</a>. Which Timestamp to Echo . . . . . . . . . . . . . . . . . <a href="#page-16">16</a>
<a href="#section-5">5</a>. PAWS - Protection Against Wrapped Sequences . . . . . . . . . <a href="#page-19">19</a>
<a href="#section-5.1">5.1</a>. Introduction . . . . . . . . . . . . . . . . . . . . . . <a href="#page-19">19</a>
<a href="#section-5.2">5.2</a>. The PAWS Mechanism . . . . . . . . . . . . . . . . . . . <a href="#page-19">19</a>
<a href="#section-5.3">5.3</a>. Basic PAWS Algorithm . . . . . . . . . . . . . . . . . . <a href="#page-20">20</a>
<a href="#section-5.4">5.4</a>. Timestamp Clock . . . . . . . . . . . . . . . . . . . . . <a href="#page-22">22</a>
<a href="#section-5.5">5.5</a>. Outdated Timestamps . . . . . . . . . . . . . . . . . . . <a href="#page-24">24</a>
<a href="#section-5.6">5.6</a>. Header Prediction . . . . . . . . . . . . . . . . . . . . <a href="#page-25">25</a>
<a href="#section-5.7">5.7</a>. IP Fragmentation . . . . . . . . . . . . . . . . . . . . <a href="#page-26">26</a>
<a href="#section-5.8">5.8</a>. Duplicates from Earlier Incarnations of Connection . . . <a href="#page-26">26</a>
<a href="#section-6">6</a>. Conclusions and Acknowledgments . . . . . . . . . . . . . . . <a href="#page-27">27</a>
<a href="#section-7">7</a>. Security Considerations . . . . . . . . . . . . . . . . . . . <a href="#page-27">27</a>
<a href="#section-7.1">7.1</a>. Privacy Considerations . . . . . . . . . . . . . . . . . <a href="#page-29">29</a>
<a href="#section-8">8</a>. IANA Considerations . . . . . . . . . . . . . . . . . . . . . <a href="#page-29">29</a>
<a href="#section-9">9</a>. References . . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-30">30</a>
<a href="#section-9.1">9.1</a>. Normative References . . . . . . . . . . . . . . . . . . <a href="#page-30">30</a>
<a href="#section-9.2">9.2</a>. Informative References . . . . . . . . . . . . . . . . . <a href="#page-30">30</a>
<a href="#appendix-A">Appendix A</a>. Implementation Suggestions . . . . . . . . . . . . . <a href="#page-34">34</a>
<a href="#appendix-B">Appendix B</a>. Duplicates from Earlier Connection Incarnations . . <a href="#page-35">35</a>
<a href="#appendix-B.1">B.1</a>. System Crash with Loss of State . . . . . . . . . . . . . <a href="#page-35">35</a>
<a href="#appendix-B.2">B.2</a>. Closing and Reopening a Connection . . . . . . . . . . . <a href="#page-35">35</a>
<a href="#appendix-C">Appendix C</a>. Summary of Notation . . . . . . . . . . . . . . . . <a href="#page-37">37</a>
<a href="#appendix-D">Appendix D</a>. Event Processing Summary . . . . . . . . . . . . . . <a href="#page-38">38</a>
<a href="#appendix-E">Appendix E</a>. Timestamps Edge Cases . . . . . . . . . . . . . . . <a href="#page-44">44</a>
<a href="#appendix-F">Appendix F</a>. Window Retraction Example . . . . . . . . . . . . . <a href="#page-44">44</a>
<a href="#appendix-G">Appendix G</a>. RTO Calculation Modification . . . . . . . . . . . . <a href="#page-45">45</a>
<a href="#appendix-H">Appendix H</a>. Changes from <a href="./rfc1323">RFC 1323</a> . . . . . . . . . . . . . . . <a href="#page-46">46</a>
<span class="grey">Borman, et al. Standards Track [Page 3]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-4" ></span>
<span class="grey"><a href="./rfc7323">RFC 7323</a> TCP Extensions for High Performance September 2014</span>
<span class="h2"><a class="selflink" id="section-1" href="#section-1">1</a>. Introduction</span>
The TCP protocol [<a href="./rfc0793">RFC0793</a>] was designed to operate reliably over
almost any transmission medium regardless of transmission rate,
delay, corruption, duplication, or reordering of segments. Over the
years, advances in networking technology have resulted in ever-higher
transmission speeds, and the fastest paths are well beyond the domain
for which TCP was originally engineered.
This document defines a set of modest extensions to TCP to extend the
domain of its application to match the increasing network capability.
It is an update to and obsoletes [<a href="./rfc1323" title=""TCP Extensions for High Performance"">RFC1323</a>], which in turn is based
upon and obsoletes [<a href="./rfc1072" title=""TCP extensions for long-delay paths"">RFC1072</a>] and [<a href="./rfc1185" title=""TCP Extension for High-Speed Paths"">RFC1185</a>].
Changes between [<a href="./rfc1323" title=""TCP Extensions for High Performance"">RFC1323</a>] and this document are detailed in
<a href="#appendix-H">Appendix H</a>. These changes are partly due to errata in [<a href="./rfc1323" title=""TCP Extensions for High Performance"">RFC1323</a>], and
partly due to the improved understanding of how the involved
components interact.
For brevity, the full discussions of the merits and history behind
the TCP options defined within this document have been omitted.
[<a href="./rfc1323" title=""TCP Extensions for High Performance"">RFC1323</a>] should be consulted for reference. It is recommended that
a modern TCP stack implements and make use of the extensions
described in this document.
<span class="h3"><a class="selflink" id="section-1.1" href="#section-1.1">1.1</a>. TCP Performance</span>
TCP performance problems arise when the bandwidth * delay product is
large. A network having such paths is referred to as a "long, fat
network" (LFN).
There are two fundamental performance problems with basic TCP over
LFN paths:
(1) Window Size Limit
The TCP header uses a 16-bit field to report the receive window
size to the sender. Therefore, the largest window that can be
used is 2^16 = 64 KiB. For LFN paths where the bandwidth *
delay product exceeds 64 KiB, the receive window limits the
maximum throughput of the TCP connection over the path, i.e.,
the amount of unacknowledged data that TCP can send in order to
keep the pipeline full.
<span class="grey">Borman, et al. Standards Track [Page 4]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-5" ></span>
<span class="grey"><a href="./rfc7323">RFC 7323</a> TCP Extensions for High Performance September 2014</span>
To circumvent this problem, <a href="#section-2">Section 2</a> of this memo defines a TCP
option, "Window Scale", to allow windows larger than 2^16. This
option defines an implicit scale factor, which is used to
multiply the window size value found in a TCP header to obtain
the true window size.
It must be noted that the use of large receive windows increases
the chance of too quickly wrapping sequence numbers, as
described below in <a href="#section-1.2">Section 1.2</a>, (1).
(2) Recovery from Losses
Packet losses in an LFN can have a catastrophic effect on
throughput.
To generalize the Fast Retransmit / Fast Recovery mechanism to
handle multiple packets dropped per window, Selective
Acknowledgments are required. Unlike the normal cumulative
acknowledgments of TCP, Selective Acknowledgments give the
sender a complete picture of which segments are queued at the
receiver and which have not yet arrived.
Selective Acknowledgments and their use are specified in
separate documents, "TCP Selective Acknowledgment Options"
[<a href="./rfc2018" title=""TCP Selective Acknowledgment Options"">RFC2018</a>], "An Extension to the Selective Acknowledgement (SACK)
Option for TCP" [<a href="./rfc2883" title=""An Extension to the Selective Acknowledgement (SACK) Option for TCP"">RFC2883</a>], and "A Conservative Loss Recovery
Algorithm Based on Selective Acknowledgment (SACK) for TCP"
[<a href="./rfc6675" title=""A Conservative Loss Recovery Algorithm Based on Selective Acknowledgment (SACK) for TCP"">RFC6675</a>], and are not further discussed in this document.
<span class="h3"><a class="selflink" id="section-1.2" href="#section-1.2">1.2</a>. TCP Reliability</span>
An especially serious kind of error may result from an accidental
reuse of TCP sequence numbers in data segments. TCP reliability
depends upon the existence of a bound on the lifetime of a segment:
the "Maximum Segment Lifetime" or MSL.
Duplication of sequence numbers might happen in either of two ways:
(1) Sequence number wrap-around on the current connection
A TCP sequence number contains 32 bits. At a high enough
transfer rate of large volumes of data (at least 4 GiB in the
same session), the 32-bit sequence space may be "wrapped"
(cycled) within the time that a segment is delayed in queues.
<span class="grey">Borman, et al. Standards Track [Page 5]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-6" ></span>
<span class="grey"><a href="./rfc7323">RFC 7323</a> TCP Extensions for High Performance September 2014</span>
(2) Earlier incarnation of the connection
Suppose that a connection terminates, either by a proper close
sequence or due to a host crash, and the same connection (i.e.,
using the same pair of port numbers) is immediately reopened. A
delayed segment from the terminated connection could fall within
the current window for the new incarnation and be accepted as
valid.
Duplicates from earlier incarnations, case (2), are avoided by
enforcing the current fixed MSL of the TCP specification, as
explained in <a href="#section-5.8">Section 5.8</a> and <a href="#appendix-B">Appendix B</a>. In addition, the
randomizing of ephemeral ports can also help to probabilistically
reduce the chances of duplicates from earlier connections. However,
case (1), avoiding the reuse of sequence numbers within the same
connection, requires an upper bound on MSL that depends upon the
transfer rate, and at high enough rates, a dedicated mechanism is
required.
A possible fix for the problem of cycling the sequence space would be
to increase the size of the TCP sequence number field. For example,
the sequence number field (and also the acknowledgment field) could
be expanded to 64 bits. This could be done either by changing the
TCP header or by means of an additional option.
<a href="#section-5">Section 5</a> presents a different mechanism, which we call PAWS, to
extend TCP reliability to transfer rates well beyond the foreseeable
upper limit of network bandwidths. PAWS uses the TCP Timestamps
option defined in <a href="#section-3.2">Section 3.2</a> to protect against old duplicates from
the same connection.
<span class="h3"><a class="selflink" id="section-1.3" href="#section-1.3">1.3</a>. Using TCP options</span>
The extensions defined in this document all use TCP options.
When [<a href="./rfc1323" title=""TCP Extensions for High Performance"">RFC1323</a>] was published, there was concern that some buggy TCP
implementation might crash on the first appearance of an option on a
non-<SYN> segment. However, bugs like that can lead to denial-of-
service (DoS) attacks against a TCP. Research has shown that most
TCP implementations will properly handle unknown options on non-<SYN>
segments ([<a href="#ref-Medina04" title=""Measuring Interactions Between Transport Protocols and Middleboxes"">Medina04</a>], [<a href="#ref-Medina05" title=""Measuring the Evolution of Transport Protocols in the Internet"">Medina05</a>]). But it is still prudent to be
conservative in what you send, and avoiding buggy TCP implementation
is not the only reason for negotiating TCP options on <SYN> segments.
<span class="grey">Borman, et al. Standards Track [Page 6]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-7" ></span>
<span class="grey"><a href="./rfc7323">RFC 7323</a> TCP Extensions for High Performance September 2014</span>
The Window Scale option negotiates fundamental parameters of the TCP
session. Therefore, it is only sent during the initial handshake.
Furthermore, the Window Scale option will be sent in a <SYN,ACK>
segment only if the corresponding option was received in the initial
<SYN> segment.
The Timestamps option may appear in any data or <ACK> segment, adding
10 bytes (up to 12 bytes including padding) to the 20-byte TCP
header. It is required that this TCP option will be sent on all
non-<SYN> segments after an exchange of options on the <SYN> segments
has indicated that both sides understand this extension.
Research has shown that the use of the Timestamps option to take
additional RTT samples within each RTT has little effect on the
ultimate retransmission timeout value [<a href="#ref-Allman99" title=""On Estimating End-to-End Network Path Properties"">Allman99</a>]. However, there are
other uses of the Timestamps option, such as the Eifel mechanism
([<a href="./rfc3522" title=""The Eifel Detection Algorithm for TCP"">RFC3522</a>], [<a href="./rfc4015" title=""The Eifel Response Algorithm for TCP"">RFC4015</a>]) and PAWS (see <a href="#section-5">Section 5</a>), which improve
overall TCP security and performance. The extra header bandwidth
used by this option should be evaluated for the gains in performance
and security in an actual deployment.
<a href="#appendix-A">Appendix A</a> contains a recommended layout of the options in TCP
headers to achieve reasonable data field alignment.
Finally, we observe that most of the mechanisms defined in this
document are important for LFNs and/or very high-speed networks. For
low-speed networks, it might be a performance optimization to NOT use
these mechanisms. A TCP vendor concerned about optimal performance
over low-speed paths might consider turning these extensions off for
low-speed paths, or allow a user or installation manager to disable
them.
<span class="h3"><a class="selflink" id="section-1.4" href="#section-1.4">1.4</a>. Terminology</span>
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [<a href="./rfc2119" title=""Key words for use in RFCs to Indicate Requirement Levels"">RFC2119</a>].
In this document, these words will appear with that interpretation
only when in UPPER CASE. Lower case uses of these words are not to
be interpreted as carrying [<a href="./rfc2119" title=""Key words for use in RFCs to Indicate Requirement Levels"">RFC2119</a>] significance.
<span class="grey">Borman, et al. Standards Track [Page 7]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-8" ></span>
<span class="grey"><a href="./rfc7323">RFC 7323</a> TCP Extensions for High Performance September 2014</span>
<span class="h2"><a class="selflink" id="section-2" href="#section-2">2</a>. TCP Window Scale Option</span>
<span class="h3"><a class="selflink" id="section-2.1" href="#section-2.1">2.1</a>. Introduction</span>
The window scale extension expands the definition of the TCP window
to 30 bits and then uses an implicit scale factor to carry this
30-bit value in the 16-bit window field of the TCP header (SEG.WND in
[<a href="./rfc0793">RFC0793</a>]). The exponent of the scale factor is carried in a TCP
option, Window Scale. This option is sent only in a <SYN> segment (a
segment with the SYN bit on), hence the window scale is fixed in each
direction when a connection is opened.
The maximum receive window, and therefore the scale factor, is
determined by the maximum receive buffer space. In a typical modern
implementation, this maximum buffer space is set by default but can
be overridden by a user program before a TCP connection is opened.
This determines the scale factor, and therefore no new user interface
is needed for window scaling.
<span class="h3"><a class="selflink" id="section-2.2" href="#section-2.2">2.2</a>. Window Scale Option</span>
The three-byte Window Scale option MAY be sent in a <SYN> segment by
a TCP. It has two purposes: (1) indicate that the TCP is prepared to
both send and receive window scaling, and (2) communicate the
exponent of a scale factor to be applied to its receive window.
Thus, a TCP that is prepared to scale windows SHOULD send the option,
even if its own scale factor is 1 and the exponent 0. The scale
factor is limited to a power of two and encoded logarithmically, so
it may be implemented by binary shift operations. The maximum scale
exponent is limited to 14 for a maximum permissible receive window
size of 1 GiB (2^(14+16)).
TCP Window Scale option (WSopt):
Kind: 3
Length: 3 bytes
+---------+---------+---------+
| Kind=3 |Length=3 |shift.cnt|
+---------+---------+---------+
1 1 1
This option is an offer, not a promise; both sides MUST send Window
Scale options in their <SYN> segments to enable window scaling in
either direction. If window scaling is enabled, then the TCP that
sent this option will right-shift its true receive-window values by
'shift.cnt' bits for transmission in SEG.WND. The value 'shift.cnt'
<span class="grey">Borman, et al. Standards Track [Page 8]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-9" ></span>
<span class="grey"><a href="./rfc7323">RFC 7323</a> TCP Extensions for High Performance September 2014</span>
MAY be zero (offering to scale, while applying a scale factor of 1 to
the receive window).
This option MAY be sent in an initial <SYN> segment (i.e., a segment
with the SYN bit on and the ACK bit off). If a Window Scale option
was received in the initial <SYN> segment, then this option MAY be
sent in the <SYN,ACK> segment. A Window Scale option in a segment
without a SYN bit MUST be ignored.
The window field in a segment where the SYN bit is set (i.e., a <SYN>
or <SYN,ACK>) MUST NOT be scaled.
<span class="h3"><a class="selflink" id="section-2.3" href="#section-2.3">2.3</a>. Using the Window Scale Option</span>
A model implementation of window scaling is as follows, using the
notation of [<a href="./rfc0793">RFC0793</a>]:
o The connection state is augmented by two window shift counters,
Snd.Wind.Shift and Rcv.Wind.Shift, to be applied to the incoming
and outgoing window fields, respectively.
o If a TCP receives a <SYN> segment containing a Window Scale
option, it SHOULD send its own Window Scale option in the
<SYN,ACK> segment.
o The Window Scale option MUST be sent with shift.cnt = R, where R
is the value that the TCP would like to use for its receive
window.
o Upon receiving a <SYN> segment with a Window Scale option
containing shift.cnt = S, a TCP MUST set Snd.Wind.Shift to S and
MUST set Rcv.Wind.Shift to R; otherwise, it MUST set both
Snd.Wind.Shift and Rcv.Wind.Shift to zero.
o The window field (SEG.WND) in the header of every incoming
segment, with the exception of <SYN> segments, MUST be left-
shifted by Snd.Wind.Shift bits before updating SND.WND:
SND.WND = SEG.WND << Snd.Wind.Shift
(assuming the other conditions of [<a href="./rfc0793">RFC0793</a>] are met, and using the
"C" notation "<<" for left-shift).
o The window field (SEG.WND) of every outgoing segment, with the
exception of <SYN> segments, MUST be right-shifted by
Rcv.Wind.Shift bits:
SEG.WND = RCV.WND >> Rcv.Wind.Shift
<span class="grey">Borman, et al. Standards Track [Page 9]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-10" ></span>
<span class="grey"><a href="./rfc7323">RFC 7323</a> TCP Extensions for High Performance September 2014</span>
TCP determines if a data segment is "old" or "new" by testing whether
its sequence number is within 2^31 bytes of the left edge of the
window, and if it is not, discarding the data as "old". To insure
that new data is never mistakenly considered old and vice versa, the
left edge of the sender's window has to be at most 2^31 away from the
right edge of the receiver's window. The same is true of the
sender's right edge and receiver's left edge. Since the right and
left edges of either the sender's or receiver's window differ by the
window size, and since the sender and receiver windows can be out of
phase by at most the window size, the above constraints imply that
two times the maximum window size must be less than 2^31, or
max window < 2^30
Since the max window is 2^S (where S is the scaling shift count)
times at most 2^16 - 1 (the maximum unscaled window), the maximum
window is guaranteed to be < 2^30 if S <= 14. Thus, the shift count
MUST be limited to 14 (which allows windows of 2^30 = 1 GiB). If a
Window Scale option is received with a shift.cnt value larger than
14, the TCP SHOULD log the error but MUST use 14 instead of the
specified value. This is safe as a sender can always choose to only
partially use any signaled receive window. If the receiver is
scaling by a factor larger than 14 and the sender is only scaling by
14, then the receive window used by the sender will appear smaller
than it is in reality.
The scale factor applies only to the window field as transmitted in
the TCP header; each TCP using extended windows will maintain the
window values locally as 32-bit numbers. For example, the
"congestion window" computed by slow start and congestion avoidance
(see [<a href="./rfc5681" title=""TCP Congestion Control"">RFC5681</a>]) is not affected by the scale factor, so window
scaling will not introduce quantization into the congestion window.
<span class="h3"><a class="selflink" id="section-2.4" href="#section-2.4">2.4</a>. Addressing Window Retraction</span>
When a non-zero scale factor is in use, there are instances when a
retracted window can be offered -- see <a href="#appendix-F">Appendix F</a> for a detailed
example. The end of the window will be on a boundary based on the
granularity of the scale factor being used. If the sequence number
is then updated by a number of bytes smaller than that granularity,
the TCP will have to either advertise a new window that is beyond
what it previously advertised (and perhaps beyond the buffer) or will
have to advertise a smaller window, which will cause the TCP window
to shrink. Implementations MUST ensure that they handle a shrinking
window, as specified in <a href="./rfc1122#section-4.2.2.16">Section 4.2.2.16 of [RFC1122]</a>.
<span class="grey">Borman, et al. Standards Track [Page 10]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-11" ></span>
<span class="grey"><a href="./rfc7323">RFC 7323</a> TCP Extensions for High Performance September 2014</span>
For the receiver, this implies that:
1) The receiver MUST honor, as in window, any segment that would
have been in window for any <ACK> sent by the receiver.
2) When window scaling is in effect, the receiver SHOULD track the
actual maximum window sequence number (which is likely to be
greater than the window announced by the most recent <ACK>, if
more than one segment has arrived since the application consumed
any data in the receive buffer).
On the sender side:
3) The initial transmission MUST be within the window announced by
the most recent <ACK>.
4) On first retransmission, or if the sequence number is out of
window by less than 2^Rcv.Wind.Shift, then do normal
retransmission(s) without regard to the receiver window as long
as the original segment was in window when it was sent.
5) Subsequent retransmissions MAY only be sent if they are within
the window announced by the most recent <ACK>.
<span class="h2"><a class="selflink" id="section-3" href="#section-3">3</a>. TCP Timestamps Option</span>
<span class="h3"><a class="selflink" id="section-3.1" href="#section-3.1">3.1</a>. Introduction</span>
The Timestamps option is introduced to address some of the issues
mentioned in Sections <a href="#section-1.1">1.1</a> and <a href="#section-1.2">1.2</a>. The Timestamps option is
specified in a symmetrical manner, so that Timestamp Value (TSval)
timestamps are carried in both data and <ACK> segments and are echoed
in Timestamp Echo Reply (TSecr) fields carried in returning <ACK> or
data segments. Originally used primarily for timestamping individual
segments, the properties of the Timestamps option allow for taking
time measurements (<a href="#section-4">Section 4</a>) as well as additional uses (<a href="#section-5">Section 5</a>).
It is necessary to remember that there is a distinction between the
Timestamps option conveying timestamp information and the use of that
information. In particular, the RTTM mechanism must be viewed
independently from updating the Retransmission Timeout (RTO) (see
<a href="#section-4.2">Section 4.2</a>). In this case, the sample granularity also needs to be
taken into account. Other mechanisms, such as PAWS or Eifel, are not
built upon the timestamp information itself but are based on the
intrinsic property of monotonically non-decreasing values.
The Timestamps option is important when large receive windows are
used to allow the use of the PAWS mechanism (see <a href="#section-5">Section 5</a>).
<span class="grey">Borman, et al. Standards Track [Page 11]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-12" ></span>
<span class="grey"><a href="./rfc7323">RFC 7323</a> TCP Extensions for High Performance September 2014</span>
Furthermore, the option may be useful for all TCPs, since it
simplifies the sender and allows the use of additional optimizations
such as Eifel ([<a href="./rfc3522" title=""The Eifel Detection Algorithm for TCP"">RFC3522</a>], [<a href="./rfc4015" title=""The Eifel Response Algorithm for TCP"">RFC4015</a>]) and others ([<a href="./rfc6817" title=""Low Extra Delay Background Transport (LEDBAT)"">RFC6817</a>],
[<a href="#ref-Kuzmanovic03">Kuzmanovic03</a>], [<a href="#ref-Kuehlewind10">Kuehlewind10</a>]).
<span class="h3"><a class="selflink" id="section-3.2" href="#section-3.2">3.2</a>. Timestamps Option</span>
TCP is a symmetric protocol, allowing data to be sent at any time in
either direction, and therefore timestamp echoing may occur in either
direction. For simplicity and symmetry, we specify that timestamps
always be sent and echoed in both directions. For efficiency, we
combine the timestamp and timestamp reply fields into a single TCP
Timestamps option.
TCP Timestamps option (TSopt):
Kind: 8
Length: 10 bytes
+-------+-------+---------------------+---------------------+
|Kind=8 | 10 | TS Value (TSval) |TS Echo Reply (TSecr)|
+-------+-------+---------------------+---------------------+
1 1 4 4
The Timestamps option carries two four-byte timestamp fields. The
TSval field contains the current value of the timestamp clock of the
TCP sending the option.
The TSecr field is valid if the ACK bit is set in the TCP header. If
the ACK bit is not set in the outgoing TCP header, the sender of that
segment SHOULD set the TSecr field to zero. When the ACK bit is set
in an outgoing segment, the sender MUST echo a recently received
TSval sent by the remote TCP in the TSval field of a Timestamps
option. The exact rules on which TSval MUST be echoed are given in
<a href="#section-4.3">Section 4.3</a>. When the ACK bit is not set, the receiver MUST ignore
the value of the TSecr field.
A TCP MAY send the TSopt in an initial <SYN> segment (i.e., segment
containing a SYN bit and no ACK bit), and MAY send a TSopt in
<SYN,ACK> only if it received a TSopt in the initial <SYN> segment
for the connection.
Once TSopt has been successfully negotiated, that is both <SYN> and
<SYN,ACK> contain TSopt, the TSopt MUST be sent in every non-<RST>
segment for the duration of the connection, and SHOULD be sent in an
<RST> segment (see <a href="#section-5.2">Section 5.2</a> for details). The TCP SHOULD remember
this state by setting a flag, referred to as Snd.TS.OK, to one. If a
<span class="grey">Borman, et al. Standards Track [Page 12]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-13" ></span>
<span class="grey"><a href="./rfc7323">RFC 7323</a> TCP Extensions for High Performance September 2014</span>
non-<RST> segment is received without a TSopt, a TCP SHOULD silently
drop the segment. A TCP MUST NOT abort a TCP connection because any
segment lacks an expected TSopt.
Implementations are strongly encouraged to follow the above rules for
handling a missing Timestamps option and the order of precedence
mentioned in <a href="#section-5.3">Section 5.3</a> when deciding on the acceptance of a
segment.
If a receiver chooses to accept a segment without an expected
Timestamps option, it must be clear that undetectable data corruption
may occur.
Such a TCP receiver may experience undetectable wrapped-sequence
effects, such as data (payload) corruption or session stalls. In
order to maintain the integrity of the payload data, in particular on
high-speed networks, it is paramount to follow the described
processing rules.
However, it has been mentioned that under some circumstances, the
above guidelines are too strict, and some paths sporadically suppress
the Timestamps option, while maintaining payload integrity. A path
behaving in this manner should be deemed unacceptable, but it has
been noted that some implementations relax the acceptance rules as a
workaround and allow TCP to run across such paths [<a href="#ref-RE-1323BIS">RE-1323BIS</a>].
If a TSopt is received on a connection where TSopt was not negotiated
in the initial three-way handshake, the TSopt MUST be ignored and the
packet processed normally.
In the case of crossing <SYN> segments where one <SYN> contains a
TSopt and the other doesn't, both sides MAY send a TSopt in the
<SYN,ACK> segment.
TSopt is required for the two mechanisms described in Sections <a href="#section-4">4</a> and
5. There are also other mechanisms that rely on the presence of the
TSopt, e.g., [<a href="./rfc3522" title=""The Eifel Detection Algorithm for TCP"">RFC3522</a>]. If a TCP stopped sending TSopt at any time
during an established session, it interferes with these mechanisms.
This update to [<a href="./rfc1323" title=""TCP Extensions for High Performance"">RFC1323</a>] describes explicitly the previous assumption
(see <a href="#section-5.2">Section 5.2</a>) that each TCP segment must have a TSopt, once
negotiated.
<span class="grey">Borman, et al. Standards Track [Page 13]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-14" ></span>
<span class="grey"><a href="./rfc7323">RFC 7323</a> TCP Extensions for High Performance September 2014</span>
<span class="h2"><a class="selflink" id="section-4" href="#section-4">4</a>. The RTTM Mechanism</span>
<span class="h3"><a class="selflink" id="section-4.1" href="#section-4.1">4.1</a>. Introduction</span>
One use of the Timestamps option is to measure the round-trip time
(RTT) of virtually every packet acknowledged. The RTTM mechanism
requires a Timestamps option in every measured segment, with a TSval
that is obtained from a (virtual) "timestamp clock". Values of this
clock MUST be at least approximately proportional to real time, in
order to measure actual RTT.
TCP measures the RTT, primarily for the purpose of arriving at a
reasonable value for the RTO timer interval. Accurate and current
RTT estimates are necessary to adapt to changing traffic conditions,
while a conservative estimate of the RTO interval is necessary to
minimize spurious RTOs.
These TSval values are echoed in TSecr values in the reverse
direction. The difference between a received TSecr value and the
current timestamp clock value provides an RTT measurement.
When timestamps are used, every segment that is received will contain
a TSecr value. However, these values cannot all be used to update
the measured RTT. The following example illustrates why. It shows a
one-way data flow with segments arriving in sequence without loss.
Here A, B, C... represent data blocks occupying successive blocks of
sequence numbers, and ACK(A),... represent the corresponding
cumulative acknowledgments. The two timestamp fields of the
Timestamps option are shown symbolically as <TSval=x,TSecr=y>. Each
TSecr field contains the value most recently received in a TSval
field.
<span class="grey">Borman, et al. Standards Track [Page 14]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-15" ></span>
<span class="grey"><a href="./rfc7323">RFC 7323</a> TCP Extensions for High Performance September 2014</span>
TCP A TCP B
<A,TSval=1,TSecr=120> ----->
<---- <ACK(A),TSval=127,TSecr=1>
<B,TSval=5,TSecr=127> ----->
<---- <ACK(B),TSval=131,TSecr=5>
. . . . . . . . . . . . . . . . . . . . . .
<C,TSval=65,TSecr=131> ---->
<---- <ACK(C),TSval=191,TSecr=65>
(etc.)
The dotted line marks a pause (60 time units long) in which A had
nothing to send. Note that this pause inflates the RTT, which B
could infer from receiving TSecr=131 in data segment C. Thus, in
one-way data flows, RTTM in the reverse direction measures a value
that is inflated by gaps in sending data. However, the following
rule prevents a resulting inflation of the measured RTT:
RTTM Rule: A TSecr value received in a segment MAY be used to update
the averaged RTT measurement only if the segment advances
the left edge of the send window, i.e., SND.UNA is
increased.
Since TCP B is not sending data, the data segment C does not
acknowledge any new data when it arrives at B. Thus, the inflated
RTTM measurement is not used to update B's RTTM measurement.
<span class="h3"><a class="selflink" id="section-4.2" href="#section-4.2">4.2</a>. Updating the RTO Value</span>
When [<a href="./rfc1323" title=""TCP Extensions for High Performance"">RFC1323</a>] was originally written, it was perceived that taking
RTT measurements for each segment, and also during retransmissions,
would contribute to reduce spurious RTOs, while maintaining the
timeliness of necessary RTOs. At the time, RTO was also the only
mechanism to make use of the measured RTT. It has been shown that
taking more RTT samples has only a very limited effect to optimize
RTOs [<a href="#ref-Allman99" title=""On Estimating End-to-End Network Path Properties"">Allman99</a>].
Implementers should note that with timestamps, multiple RTTMs can be
taken per RTT. The [<a href="./rfc6298" title=""Computing TCP's Retransmission Timer"">RFC6298</a>] RTT estimator has weighting factors,
alpha and beta, based on an implicit assumption that at most one RTTM
will be sampled per RTT. When multiple RTTMs per RTT are available
<span class="grey">Borman, et al. Standards Track [Page 15]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-16" ></span>
<span class="grey"><a href="./rfc7323">RFC 7323</a> TCP Extensions for High Performance September 2014</span>
to update the RTT estimator, an implementation SHOULD try to adhere
to the spirit of the history specified in [<a href="./rfc6298" title=""Computing TCP's Retransmission Timer"">RFC6298</a>]. An
implementation suggestion is detailed in <a href="#appendix-G">Appendix G</a>.
[<a id="ref-Ludwig00">Ludwig00</a>] and [<a href="#ref-Floyd05" title=""Subject: Re: [tcpm] RFC 1323: Timestamps option"">Floyd05</a>] have highlighted the problem that an
unmodified RTO calculation, which is updated with per-packet RTT
samples, will truncate the path history too soon. This can lead to
an increase in spurious retransmissions, when the path properties
vary in the order of a few RTTs, but a high number of RTT samples are
taken on a much shorter timescale.
<span class="h3"><a class="selflink" id="section-4.3" href="#section-4.3">4.3</a>. Which Timestamp to Echo</span>
If more than one Timestamps option is received before a reply segment
is sent, the TCP must choose only one of the TSvals to echo, ignoring
the others. To minimize the state kept in the receiver (i.e., the
number of unprocessed TSvals), the receiver should be required to
retain at most one timestamp in the connection control block.
There are three situations to consider:
(A) Delayed ACKs.
Many TCPs acknowledge only every second segment out of a group
of segments arriving within a short time interval; this policy
is known generally as "delayed ACKs". The data-sender TCP must
measure the effective RTT, including the additional time due to
delayed ACKs, or else it will retransmit unnecessarily. Thus,
when delayed ACKs are in use, the receiver SHOULD reply with the
TSval field from the earliest unacknowledged segment.
(B) A hole in the sequence space (segment(s) has been lost).
The sender will continue sending until the window is filled, and
the receiver may be generating <ACK>s as these out-of-order
segments arrive (e.g., to aid "Fast Retransmit").
The lost segment is probably a sign of congestion, and in that
situation the sender should be conservative about
retransmission. Furthermore, it is better to overestimate than
underestimate the RTT. An <ACK> for an out-of-order segment
SHOULD, therefore, contain the timestamp from the most recent
segment that advanced RCV.NXT.
The same situation occurs if segments are reordered by the
network.
<span class="grey">Borman, et al. Standards Track [Page 16]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-17" ></span>
<span class="grey"><a href="./rfc7323">RFC 7323</a> TCP Extensions for High Performance September 2014</span>
(C) A filled hole in the sequence space.
The segment that fills the hole and advances the window
represents the most recent measurement of the network
characteristics. An RTT computed from an earlier segment would
probably include the sender's retransmit timeout, badly biasing
the sender's average RTT estimate. Thus, the timestamp from the
latest segment (which filled the hole) MUST be echoed.
An algorithm that covers all three cases is described in the
following rules for Timestamps option processing on a synchronized
connection:
(1) The connection state is augmented with two 32-bit slots:
TS.Recent holds a timestamp to be echoed in TSecr whenever a
segment is sent, and Last.ACK.sent holds the ACK field from the
last segment sent. Last.ACK.sent will equal RCV.NXT except when
<ACK>s have been delayed.
(2) If:
SEG.TSval >= TS.Recent and SEG.SEQ <= Last.ACK.sent
then SEG.TSval is copied to TS.Recent; otherwise, it is ignored.
(3) When a TSopt is sent, its TSecr field is set to the current
TS.Recent value.
The following examples illustrate these rules. Here A, B, C...
represent data segments occupying successive blocks of sequence
numbers, and ACK(A),... represent the corresponding acknowledgment
segments. Note that ACK(A) has the same sequence number as B. We
show only one direction of timestamp echoing, for clarity.
<span class="grey">Borman, et al. Standards Track [Page 17]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-18" ></span>
<span class="grey"><a href="./rfc7323">RFC 7323</a> TCP Extensions for High Performance September 2014</span>
o Segments arrive in sequence, and some of the <ACK>s are delayed.
By case (A), the timestamp from the oldest unacknowledged segment
is echoed.
TS.Recent
<A, TSval=1> ------------------->
1
<B, TSval=2> ------------------->
1
<C, TSval=3> ------------------->
1
<---- <ACK(C), TSecr=1>
(etc.)
o Segments arrive out of order, and every segment is acknowledged.
By case (B), the timestamp from the last segment that advanced the
left window edge is echoed until the missing segment arrives; it
is echoed according to case (C). The same sequence would occur if
segments B and D were lost and retransmitted.
TS.Recent
<A, TSval=1> ------------------->
1
<---- <ACK(A), TSecr=1>
1
<C, TSval=3> ------------------->
1
<---- <ACK(A), TSecr=1>
1
<B, TSval=2> ------------------->
2
<---- <ACK(C), TSecr=2>
2
<E, TSval=5> ------------------->
2
<---- <ACK(C), TSecr=2>
2
<D, TSval=4> ------------------->
4
<---- <ACK(E), TSecr=4>
(etc.)
<span class="grey">Borman, et al. Standards Track [Page 18]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-19" ></span>
<span class="grey"><a href="./rfc7323">RFC 7323</a> TCP Extensions for High Performance September 2014</span>
<span class="h2"><a class="selflink" id="section-5" href="#section-5">5</a>. PAWS - Protection Against Wrapped Sequences</span>
<span class="h3"><a class="selflink" id="section-5.1" href="#section-5.1">5.1</a>. Introduction</span>
Another use for the Timestamps option is the PAWS mechanism.
<a href="#section-5.2">Section 5.2</a> describes a simple mechanism to reject old duplicate
segments that might corrupt an open TCP connection. PAWS operates
within a single TCP connection, using state that is saved in the
connection control block. <a href="#section-5.8">Section 5.8</a> and <a href="#appendix-H">Appendix H</a> discuss the
implications of the PAWS mechanism for avoiding old duplicates from
previous incarnations of the same connection.
<span class="h3"><a class="selflink" id="section-5.2" href="#section-5.2">5.2</a>. The PAWS Mechanism</span>
PAWS uses the TCP Timestamps option described earlier and assumes
that every received TCP segment (including data and <ACK> segments)
contains a timestamp SEG.TSval whose values are monotonically non-
decreasing in time. The basic idea is that a segment can be
discarded as an old duplicate if it is received with a timestamp
SEG.TSval less than some timestamps recently received on this
connection.
In the PAWS mechanism, the "timestamps" are 32-bit unsigned integers
in a modular 32-bit space. Thus, "less than" is defined the same way
it is for TCP sequence numbers, and the same implementation
techniques apply. If s and t are timestamp values,
s < t if 0 < (t - s) < 2^31,
computed in unsigned 32-bit arithmetic.
The choice of incoming timestamps to be saved for this comparison
MUST guarantee a value that is monotonically non-decreasing. For
example, an implementation might save the timestamp from the segment
that last advanced the left edge of the receive window, i.e., the
most recent in-sequence segment. For simplicity, the value TS.Recent
introduced in <a href="#section-4.3">Section 4.3</a> is used instead, as using a common value
for both PAWS and RTTM simplifies the implementation. As <a href="#section-4.3">Section 4.3</a>
explained, TS.Recent differs from the timestamp from the last in-
sequence segment only in the case of delayed <ACK>s, and therefore by
less than one window. Either choice will, therefore, protect against
sequence number wrap-around.
PAWS submits all incoming segments to the same test, and therefore
protects against duplicate <ACK> segments as well as data segments.
(An alternative non-symmetric algorithm would protect against old
duplicate <ACK>s: the sender of data would reject incoming <ACK>
segments whose TSecr values were less than the TSecr saved from the
<span class="grey">Borman, et al. Standards Track [Page 19]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-20" ></span>
<span class="grey"><a href="./rfc7323">RFC 7323</a> TCP Extensions for High Performance September 2014</span>
last segment whose ACK field advanced the left edge of the send
window. This algorithm was deemed to lack economy of mechanism and
symmetry.)
TSval timestamps sent on <SYN> and <SYN,ACK> segments are used to
initialize PAWS. PAWS protects against old duplicate non-<SYN>
segments and duplicate <SYN> segments received while there is a
synchronized connection. Duplicate <SYN> and <SYN,ACK> segments
received when there is no connection will be discarded by the normal
3-way handshake and sequence number checks of TCP.
[<a id="ref-RFC1323">RFC1323</a>] recommended that <RST> segments NOT carry timestamps and
that they be acceptable regardless of their timestamp. At that time,
the thinking was that old duplicate <RST> segments should be
exceedingly unlikely, and their cleanup function should take
precedence over timestamps. More recently, discussions about various
blind attacks on TCP connections have raised the suggestion that if
the Timestamps option is present, SEG.TSecr could be used to provide
stricter acceptance tests for <RST> segments.
While still under discussion, to enable research into this area it is
now RECOMMENDED that when generating an <RST>, if the segment causing
the <RST> to be generated contains a Timestamps option, the <RST>
should also contain a Timestamps option. In the <RST> segment,
SEG.TSecr SHOULD be set to SEG.TSval from the incoming segment and
SEG.TSval SHOULD be set to zero. If an <RST> is being generated
because of a user abort, and Snd.TS.OK is set, then a Timestamps
option SHOULD be included in the <RST>. When an <RST> segment is
received, it MUST NOT be subjected to the PAWS check by verifying an
acceptable value in SEG.TSval, and information from the Timestamps
option MUST NOT be used to update connection state information.
SEG.TSecr MAY be used to provide stricter <RST> acceptance checks.
<span class="h3"><a class="selflink" id="section-5.3" href="#section-5.3">5.3</a>. Basic PAWS Algorithm</span>
If the PAWS algorithm is used, the following processing MUST be
performed on all incoming segments for a synchronized connection.
Also, PAWS processing MUST take precedence over the regular TCP
acceptability check (<a href="./rfc0793#section-3.3">Section 3.3 in [RFC0793]</a>), which is performed
after verification of the received Timestamps option:
R1) If there is a Timestamps option in the arriving segment,
SEG.TSval < TS.Recent, TS.Recent is valid (see later
discussion), and if the RST bit is not set, then treat the
arriving segment as not acceptable:
Send an acknowledgment in reply as specified in <a href="./rfc0793#section-3.9">Section 3.9
of [RFC0793]</a>, page 69, and drop the segment.
<span class="grey">Borman, et al. Standards Track [Page 20]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-21" ></span>
<span class="grey"><a href="./rfc7323">RFC 7323</a> TCP Extensions for High Performance September 2014</span>
Note: it is necessary to send an <ACK> segment in order to
retain TCP's mechanisms for detecting and recovering from
half-open connections. For an example, see Figure 10 of
[<a href="./rfc0793">RFC0793</a>].
R2) If the segment is outside the window, reject it (normal TCP
processing).
R3) If an arriving segment satisfies SEG.TSval >= TS.Recent and
SEG.SEQ <= Last.ACK.sent (see <a href="#section-4.3">Section 4.3</a>), then record its
timestamp in TS.Recent.
R4) If an arriving segment is in sequence (i.e., at the left window
edge), then accept it normally.
R5) Otherwise, treat the segment as a normal in-window,
out-of-sequence TCP segment (e.g., queue it for later delivery
to the user).
Steps R2, R4, and R5 are the normal TCP processing steps specified by
[<a href="./rfc0793">RFC0793</a>].
It is important to note that the timestamp MUST be checked only when
a segment first arrives at the receiver, regardless of whether it is
in sequence or it must be queued for later delivery.
Consider the following example.
Suppose the segment sequence: A.1, B.1, C.1, ..., Z.1 has been
sent, where the letter indicates the sequence number and the digit
represents the timestamp. Suppose also that segment B.1 has been
lost. The timestamp in TS.Recent is 1 (from A.1), so C.1, ...,
Z.1 are considered acceptable and are queued. When B is
retransmitted as segment B.2 (using the latest timestamp), it
fills the hole and causes all the segments through Z to be
acknowledged and passed to the user. The timestamps of the queued
segments are *not* inspected again at this time, since they have
already been accepted. When B.2 is accepted, TS.Recent is set to
2.
This rule allows reasonable performance under loss. A full window of
data is in transit at all times, and after a loss a full window less
one segment will show up out of sequence to be queued at the receiver
(e.g., up to ~2^30 bytes of data); the Timestamps option must not
result in discarding this data.
<span class="grey">Borman, et al. Standards Track [Page 21]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-22" ></span>
<span class="grey"><a href="./rfc7323">RFC 7323</a> TCP Extensions for High Performance September 2014</span>
In certain unlikely circumstances, the algorithm of rules R1-R5 could
lead to discarding some segments unnecessarily, as shown in the
following example:
Suppose again that segments: A.1, B.1, C.1, ..., Z.1 have been
sent in sequence and that segment B.1 has been lost. Furthermore,
suppose delivery of some of C.1, ... Z.1 is delayed until *after*
the retransmission B.2 arrives at the receiver. These delayed
segments will be discarded unnecessarily when they do arrive,
since their timestamps are now out of date.
This case is very unlikely to occur. If the retransmission was
triggered by a timeout, some of the segments C.1, ... Z.1 must have
been delayed longer than the RTO time. This is presumably an
unlikely event, or there would be many spurious timeouts and
retransmissions. If B's retransmission was triggered by the "Fast
Retransmit" algorithm, i.e., by duplicate <ACK>s, then the queued
segments that caused these <ACK>s must have been received already.
Even if a segment were delayed past the RTO, the Fast Retransmit
mechanism [<a href="#ref-Jacobson90c">Jacobson90c</a>] will cause the delayed segments to be
retransmitted at the same time as B.2, avoiding an extra RTT and,
therefore, causing a very small performance penalty.
We know of no case with a significant probability of occurrence in
which timestamps will cause performance degradation by unnecessarily
discarding segments.
<span class="h3"><a class="selflink" id="section-5.4" href="#section-5.4">5.4</a>. Timestamp Clock</span>
It is important to understand that the PAWS algorithm does not
require clock synchronization between the sender and receiver. The
sender's timestamp clock is used as a source of monotonic non-
decreasing values to stamp the segments. The receiver treats the
timestamp value as simply a monotonically non-decreasing serial
number, without any connection to time. From the receiver's
viewpoint, the timestamp is acting as a logical extension of the
high-order bits of the sequence number.
The receiver algorithm does place some requirements on the frequency
of the timestamp clock.
<span class="grey">Borman, et al. Standards Track [Page 22]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-23" ></span>
<span class="grey"><a href="./rfc7323">RFC 7323</a> TCP Extensions for High Performance September 2014</span>
(a) The timestamp clock must not be "too slow".
It MUST tick at least once for each 2^31 bytes sent. In fact,
in order to be useful to the sender for round-trip timing, the
clock SHOULD tick at least once per window's worth of data, and
even with the window extension defined in <a href="#section-2.2">Section 2.2</a>, 2^31
bytes must be at least two windows.
To make this more quantitative, any clock faster than 1 tick/sec
will reject old duplicate segments for link speeds of ~8 Gbps.
A 1 ms timestamp clock will work at link speeds up to 8 Tbps
(8*10^12) bps!
(b) The timestamp clock must not be "too fast".
The recycling time of the timestamp clock MUST be greater than
MSL seconds. Since the clock (timestamp) is 32 bits and the
worst-case MSL is 255 seconds, the maximum acceptable clock
frequency is one tick every 59 ns.
However, it is desirable to establish a much longer recycle
period, in order to handle outdated timestamps on idle
connections (see <a href="#section-5.5">Section 5.5</a>), and to relax the MSL requirement
for preventing sequence number wrap-around. With a 1 ms
timestamp clock, the 32-bit timestamp will wrap its sign bit in
24.8 days. Thus, it will reject old duplicates on the same
connection if MSL is 24.8 days or less. This appears to be a
very safe figure; an MSL of 24.8 days or longer can probably be
assumed in the Internet without requiring precise MSL
enforcement.
Based upon these considerations, we choose a timestamp clock
frequency in the range 1 ms to 1 sec per tick. This range also
matches the requirements of the RTTM mechanism, which does not need
much more resolution than the granularity of the retransmit timer,
e.g., tens or hundreds of milliseconds.
The PAWS mechanism also puts a strong monotonicity requirement on the
sender's timestamp clock. The method of implementation of the
timestamp clock to meet this requirement depends upon the system
hardware and software.
o Some hosts have a hardware clock that is guaranteed to be
monotonic between hardware resets.
o A clock interrupt may be used to simply increment a binary integer
by 1 periodically.
<span class="grey">Borman, et al. Standards Track [Page 23]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-24" ></span>
<span class="grey"><a href="./rfc7323">RFC 7323</a> TCP Extensions for High Performance September 2014</span>
o The timestamp clock may be derived from a system clock that is
subject to being abruptly changed by adding a variable offset
value. This offset is initialized to zero. When a new timestamp
clock value is needed, the offset can be adjusted as necessary to
make the new value equal to or larger than the previous value
(which was saved for this purpose).
o A random offset may be added to the timestamp clock on a per-
connection basis. See <a href="./rfc6528#section-3">[RFC6528], Section 3</a>, on randomizing the
initial sequence number (ISN). The same function with a different
secret key can be used to generate the per-connection timestamp
offset.
<span class="h3"><a class="selflink" id="section-5.5" href="#section-5.5">5.5</a>. Outdated Timestamps</span>
If a connection remains idle long enough for the timestamp clock of
the other TCP to wrap its sign bit, then the value saved in TS.Recent
will become too old; as a result, the PAWS mechanism will cause all
subsequent segments to be rejected, freezing the connection (until
the timestamp clock wraps its sign bit again).
With the chosen range of timestamp clock frequencies (1 sec to 1 ms),
the time to wrap the sign bit will be between 24.8 days and 24800
days. A TCP connection that is idle for more than 24 days and then
comes to life is exceedingly unusual. However, it is undesirable in
principle to place any limitation on TCP connection lifetimes.
We therefore require that an implementation of PAWS include a
mechanism to "invalidate" the TS.Recent value when a connection is
idle for more than 24 days. (An alternative solution to the problem
of outdated timestamps would be to send keep-alive segments at a very
low rate, but still more often than the wrap-around time for
timestamps, e.g., once a day. This would impose negligible overhead.
However, the TCP specification has never included keep-alives, so the
solution based upon invalidation was chosen.)
Note that a TCP does not know the frequency, and therefore the wrap-
around time, of the other TCP, so it must assume the worst. The
validity of TS.Recent needs to be checked only if the basic PAWS
timestamp check fails, i.e., only if SEG.TSval < TS.Recent. If
TS.Recent is found to be invalid, then the segment is accepted,
regardless of the failure of the timestamp check, and rule R3 updates
TS.Recent with the TSval from the new segment.
To detect how long the connection has been idle, the TCP MAY update a
clock or timestamp value associated with the connection whenever
TS.Recent is updated, for example. The details will be
implementation dependent.
<span class="grey">Borman, et al. Standards Track [Page 24]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-25" ></span>
<span class="grey"><a href="./rfc7323">RFC 7323</a> TCP Extensions for High Performance September 2014</span>
<span class="h3"><a class="selflink" id="section-5.6" href="#section-5.6">5.6</a>. Header Prediction</span>
"Header prediction" [<a href="#ref-Jacobson90a">Jacobson90a</a>] is a high-performance transport
protocol implementation technique that is most important for high-
speed links. This technique optimizes the code for the most common
case, receiving a segment correctly and in order. Using header
prediction, the receiver asks the question, "Is this segment the next
in sequence?" This question can be answered in fewer machine
instructions than the question, "Is this segment within the window?"
Adding header prediction to our timestamp procedure leads to the
following recommended sequence for processing an arriving TCP
segment:
H1) Check timestamp (same as step R1 above).
H2) Do header prediction: if the segment is next in sequence and if
there are no special conditions requiring additional processing,
accept the segment, record its timestamp, and skip H3.
H3) Process the segment normally, as specified in <a href="./rfc793">RFC 793</a>. This
includes dropping segments that are outside the window and
possibly sending acknowledgments, and queuing in-window,
out-of-sequence segments.
Another possibility would be to interchange steps H1 and H2, i.e., to
perform the header prediction step H2 *first*, and perform H1 and H3
only when header prediction fails. This could be a performance
improvement, since the timestamp check in step H1 is very unlikely to
fail, and it requires unsigned modulo arithmetic. To perform this
check on every single segment is contrary to the philosophy of header
prediction. We believe that this change might produce a measurable
reduction in CPU time for TCP protocol processing on high-speed
networks.
However, putting H2 first would create a hazard: a segment from 2^32
bytes in the past might arrive at exactly the wrong time and be
accepted mistakenly by the header-prediction step. The following
reasoning has been introduced in [<a href="./rfc1185" title=""TCP Extension for High-Speed Paths"">RFC1185</a>] to show that the
probability of this failure is negligible.
If all segments are equally likely to show up as old duplicates,
then the probability of an old duplicate exactly matching the left
window edge is the maximum segment size (MSS) divided by the size
of the sequence space. This ratio must be less than 2^-16, since
MSS must be < 2^16; for example, it will be (2^12)/(2^32) = 2^-20
for [a 100 Mbit/s] link. However, the older a segment is, the
less likely it is to be retained in the Internet, and under any
<span class="grey">Borman, et al. Standards Track [Page 25]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-26" ></span>
<span class="grey"><a href="./rfc7323">RFC 7323</a> TCP Extensions for High Performance September 2014</span>
reasonable model of segment lifetime the probability of an old
duplicate exactly at the left window edge must be much smaller
than 2^-16.
The 16 bit TCP checksum also allows a basic unreliability of one
part in 2^16. A protocol mechanism whose reliability exceeds the
reliability of the TCP checksum should be considered "good
enough", i.e., it won't contribute significantly to the overall
error rate. We therefore believe we can ignore the problem of an
old duplicate being accepted by doing header prediction before
checking the timestamp. [Note: the notation for exponentiation
has been changed from how it appeared in <a href="./rfc1185">RFC 1185</a>.]
However, this probabilistic argument is not universally accepted, and
the consensus at present is that the performance gain does not
justify the hazard in the general case. It is therefore recommended
that H2 follow H1.
<span class="h3"><a class="selflink" id="section-5.7" href="#section-5.7">5.7</a>. IP Fragmentation</span>
At high data rates, the protection against old segments provided by
PAWS can be circumvented by errors in IP fragment reassembly (see
[<a href="./rfc4963" title=""IPv4 Reassembly Errors at High Data Rates"">RFC4963</a>]). The only way to protect against incorrect IP fragment
reassembly is to not allow the segments to be fragmented. This is
done by setting the Don't Fragment (DF) bit in the IP header.
Setting the DF bit implies the use of Path MTU Discovery as described
in [<a href="./rfc1191" title=""Path MTU discovery"">RFC1191</a>], [<a href="./rfc1981" title=""Path MTU Discovery for IP version 6"">RFC1981</a>], and [<a href="./rfc4821" title=""Packetization Layer Path MTU Discovery"">RFC4821</a>]; thus, any TCP implementation
that implements PAWS MUST also implement Path MTU Discovery.
<span class="h3"><a class="selflink" id="section-5.8" href="#section-5.8">5.8</a>. Duplicates from Earlier Incarnations of Connection</span>
The PAWS mechanism protects against errors due to sequence number
wrap-around on high-speed connections. Segments from an earlier
incarnation of the same connection are also a potential cause of old
duplicate errors. In both cases, the TCP mechanisms to prevent such
errors depend upon the enforcement of an MSL by the Internet (IP)
layer (see the Appendix of <a href="./rfc1185">RFC 1185</a> for a detailed discussion).
Unlike the case of sequence space wrap-around, the MSL required to
prevent old duplicate errors from earlier incarnations does not
depend upon the transfer rate. If the IP layer enforces the
recommended 2-minute MSL of TCP, and if the TCP rules are followed,
TCP connections will be safe from earlier incarnations, no matter how
high the network speed. Thus, the PAWS mechanism is not required for
this case.
<span class="grey">Borman, et al. Standards Track [Page 26]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-27" ></span>
<span class="grey"><a href="./rfc7323">RFC 7323</a> TCP Extensions for High Performance September 2014</span>
We may still ask whether the PAWS mechanism can provide additional
security against old duplicates from earlier connections, allowing us
to relax the enforcement of MSL by the IP layer. <a href="#appendix-B">Appendix B</a> explores
this question, showing that further assumptions and/or mechanisms are
required, beyond those of PAWS. This is not part of the current
extension.
<span class="h2"><a class="selflink" id="section-6" href="#section-6">6</a>. Conclusions and Acknowledgments</span>
This memo presented a set of extensions to TCP to provide efficient
operation over large bandwidth * delay product paths and reliable
operation over very high-speed paths. These extensions are designed
to provide compatible interworking with TCP stacks that do not
implement the extensions.
These mechanisms are implemented using TCP options for scaled windows
and timestamps. The timestamps are used for two distinct mechanisms:
RTTM and PAWS.
The Window Scale option was originally suggested by Mike St. Johns of
USAF/DCA. The present form of the option was suggested by Mike
Karels of UC Berkeley in response to a more cumbersome scheme defined
by Van Jacobson. Lixia Zhang helped formulate the PAWS mechanism
description in [<a href="./rfc1185" title=""TCP Extension for High-Speed Paths"">RFC1185</a>].
Finally, much of this work originated as the result of discussions
within the End-to-End Task Force on the theoretical limitations of
transport protocols in general and TCP in particular. Task force
members and others on the end2end-interest list have made valuable
contributions by pointing out flaws in the algorithms and the
documentation. Continued discussion and development since the
publication of [<a href="./rfc1323" title=""TCP Extensions for High Performance"">RFC1323</a>] originally occurred in the IETF TCP Large
Windows Working Group, later on in the End-to-End Task Force, and
most recently in the IETF TCP Maintenance Working Group. The authors
are grateful for all these contributions.
<span class="h2"><a class="selflink" id="section-7" href="#section-7">7</a>. Security Considerations</span>
The TCP sequence space is a fixed size, and as the window becomes
larger, it becomes easier for an attacker to generate forged packets
that can fall within the TCP window and be accepted as valid
segments. While use of timestamps and PAWS can help to mitigate
this, when using PAWS, if an attacker is able to forge a packet that
is acceptable to the TCP connection, a timestamp that is in the
future would cause valid segments to be dropped due to PAWS checks.
Hence, implementers should take care to not open the TCP window
drastically beyond the requirements of the connection.
<span class="grey">Borman, et al. Standards Track [Page 27]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-28" ></span>
<span class="grey"><a href="./rfc7323">RFC 7323</a> TCP Extensions for High Performance September 2014</span>
See [<a href="./rfc5961" title=""Improving TCP's Robustness to Blind In-Window Attacks"">RFC5961</a>] for mitigation strategies to blind in-window attacks.
A naive implementation that derives the timestamp clock value
directly from a system uptime clock may unintentionally leak this
information to an attacker. This does not directly compromise any of
the mechanisms described in this document. However, this may be
valuable information to a potential attacker. It is therefore
RECOMMENDED to generate a random, per-connection offset to be used
with the clock source when generating the Timestamps option value
(see <a href="#section-5.4">Section 5.4</a>). By carefully choosing this random offset, further
improvements as described in [<a href="./rfc6191" title=""Reducing the TIME-WAIT State Using TCP Timestamps"">RFC6191</a>] are possible.
Expanding the TCP window beyond 64 KiB for IPv6 allows Jumbograms
[<a href="./rfc2675" title=""IPv6 Jumbograms"">RFC2675</a>] to be used when the local network supports packets larger
than 64 KiB. When larger TCP segments are used, the TCP checksum
becomes weaker.
Mechanisms to protect the TCP header from modification should also
protect the TCP options.
Middleboxes and TCP options:
Some middleboxes have been known to remove the TCP options
described in this document from TCP segments [<a href="#ref-Honda11" title=""Is it Still Possible to Extend TCP?"">Honda11</a>].
Middleboxes that remove TCP options described in this document
from the <SYN> segment interfere with the selection of parameters
appropriate for the session. Removing any of these options in a
<SYN,ACK> segment will leave the end hosts in a state that
destroys the proper operation of the protocol.
* If a Window Scale option is removed from a <SYN,ACK> segment,
the end hosts will not negotiate the window scaling factor
correctly. Middleboxes must not remove or modify the Window
Scale option from <SYN,ACK> segments.
* If a stateful firewall uses the window field to detect whether
a received segment is inside the current window, and does not
support the Window Scale option, it will not be able to
correctly determine whether or not a packet is in the window.
These middle boxes must also support the Window Scale option
and apply the scale factor when processing segments. If the
window scale factor cannot be determined, it must not do
window-based processing.
<span class="grey">Borman, et al. Standards Track [Page 28]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-29" ></span>
<span class="grey"><a href="./rfc7323">RFC 7323</a> TCP Extensions for High Performance September 2014</span>
* If the Timestamps option is removed from the <SYN> or <SYN,ACK>
segments, high speed connections that need PAWS would not have
that protection. Successful negotiation of the Timestamps
option enforces a stricter verification of incoming segments at
the receiver. If the Timestamps option was removed from a
subsequent data segment after a successful negotiation (e.g.,
as part of resegmentation), the segment is discarded by the
receiver without further processing. Middleboxes should not
remove the Timestamps option.
* It must be noted that [<a href="./rfc1323" title=""TCP Extensions for High Performance"">RFC1323</a>] doesn't address the case of the
Timestamps option being dropped or selectively omitted after
being negotiated, and that the update in this document may
cause some broken middlebox behavior to be detected
(potentially unresponsive TCP sessions).
Implementations that depend on PAWS could provide a mechanism for the
application to determine whether or not PAWS is in use on the
connection and choose to terminate the connection if that protection
doesn't exist. This is not just to protect the connection against
middleboxes that might remove the Timestamps option, but also against
remote hosts that do not have Timestamp support.
<span class="h3"><a class="selflink" id="section-7.1" href="#section-7.1">7.1</a>. Privacy Considerations</span>
The TCP options described in this document do not expose individual
user's data. However, a naive implementation simply using the system
clock as a source for the Timestamps option will reveal
characteristics of the TCP, potentially allowing more targeted
attacks. It is therefore RECOMMENDED to generate a random, per-
connection offset to be used with the clock source when generating
the Timestamps option value (see <a href="#section-5.4">Section 5.4</a>).
Furthermore, the combination, relative ordering, and padding of the
TCP options described in Sections <a href="#section-2.2">2.2</a> and <a href="#section-3.2">3.2</a> will reveal additional
clues to allow the fingerprinting of the system.
<span class="h2"><a class="selflink" id="section-8" href="#section-8">8</a>. IANA Considerations</span>
The described TCP options are well known from the superceded
[<a href="./rfc1323" title=""TCP Extensions for High Performance"">RFC1323</a>]. IANA has updated the "TCP Option Kind Numbers" table
under "TCP Parameters" to list this document (<a href="./rfc7323">RFC 7323</a>) as the
reference for "Window Scale" and "Timestamps".
<span class="grey">Borman, et al. Standards Track [Page 29]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-30" ></span>
<span class="grey"><a href="./rfc7323">RFC 7323</a> TCP Extensions for High Performance September 2014</span>
<span class="h2"><a class="selflink" id="section-9" href="#section-9">9</a>. References</span>
<span class="h3"><a class="selflink" id="section-9.1" href="#section-9.1">9.1</a>. Normative References</span>
[<a id="ref-RFC793">RFC793</a>] Postel, J., "Transmission Control Protocol", STD 7, <a href="./rfc793">RFC</a>
<a href="./rfc793">793</a>, September 1981.
[<a id="ref-RFC1191">RFC1191</a>] Mogul, J. and S. Deering, "Path MTU discovery", <a href="./rfc1191">RFC 1191</a>,
November 1990.
[<a id="ref-RFC2119">RFC2119</a>] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", <a href="https://www.rfc-editor.org/bcp/bcp14">BCP 14</a>, <a href="./rfc2119">RFC 2119</a>, March 1997.
<span class="h3"><a class="selflink" id="section-9.2" href="#section-9.2">9.2</a>. Informative References</span>
[<a id="ref-Allman99">Allman99</a>] Allman, M. and V. Paxson, "On Estimating End-to-End
Network Path Properties", Proceedings of the ACM SIGCOMM
Technical Symposium, Cambridge, MA, September 1999,
<<a href="http://aciri.org/mallman/papers/estimation-la.pdf">http://aciri.org/mallman/papers/estimation-la.pdf</a>>.
[<a id="ref-Floyd05">Floyd05</a>] Floyd, S., "Subject: Re: [tcpm] <a href="./rfc1323">RFC 1323</a>: Timestamps
option", message to the TCPM mailing list, 26 January
2007, <<a href="http://www.ietf.org/mail-archive/web/tcpm/current/msg02508.html">http://www.ietf.org/mail-archive/web/tcpm/current/</a>
<a href="http://www.ietf.org/mail-archive/web/tcpm/current/msg02508.html">msg02508.html</a>>.
[<a id="ref-Garlick77">Garlick77</a>]
Garlick, L., Rom, R., and J. Postel, "Issues in Reliable
Host-to-Host Protocols", Proceedings of the Second
Berkeley Workshop on Distributed Data Management and
Computer Networks, March 1977,
<<a href="http://www.rfc-editor.org/ien/ien12.txt">http://www.rfc-editor.org/ien/ien12.txt</a>>.
[<a id="ref-Honda11">Honda11</a>] Honda, M., Nishida, Y., Raiciu, C., Greenhalgh, A.,
Handley, M., and H. Tokuda, "Is it Still Possible to
Extend TCP?", Proceedings of the ACM Internet Measurement
Conference (IMC) '11, November 2011.
[<a id="ref-Jacobson88a">Jacobson88a</a>]
Jacobson, V., "Congestion Avoidance and Control", SIGCOMM
'88, Stanford, CA, August 1988,
<<a href="http://ee.lbl.gov/papers/congavoid.pdf">http://ee.lbl.gov/papers/congavoid.pdf</a>>.
[<a id="ref-Jacobson90a">Jacobson90a</a>]
Jacobson, V., "4BSD Header Prediction", ACM Computer
Communication Review, April 1990.
<span class="grey">Borman, et al. Standards Track [Page 30]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-31" ></span>
<span class="grey"><a href="./rfc7323">RFC 7323</a> TCP Extensions for High Performance September 2014</span>
[<a id="ref-Jacobson90c">Jacobson90c</a>]
Jacobson, V., "Subject: modified TCP congestion avoidance
algorithm", message to the End2End-Interest mailing list,
30 April 1990, <<a href="ftp://ftp.isi.edu/end2end/end2end-interest-1990.mail">ftp://ftp.isi.edu/end2end/</a>
<a href="ftp://ftp.isi.edu/end2end/end2end-interest-1990.mail">end2end-interest-1990.mail</a>>.
[<a id="ref-Karn87">Karn87</a>] Karn, P. and C. Partridge, "Estimating Round-Trip Times in
Reliable Transport Protocols", Proceedings of SIGCOMM '87,
August 1987.
[<a id="ref-Kuehlewind10">Kuehlewind10</a>]
Kuehlewind, M. and B. Briscoe, "Chirping for Congestion
Control - Implementation Feasibility", November 2010,
<<a href="http://bobbriscoe.net/projects/netsvc_i-f/chirp_pfldnet10.pdf">http://bobbriscoe.net/projects/netsvc_i-f/</a>
<a href="http://bobbriscoe.net/projects/netsvc_i-f/chirp_pfldnet10.pdf">chirp_pfldnet10.pdf</a>>.
[<a id="ref-Kuzmanovic03">Kuzmanovic03</a>]
Kuzmanovic, A. and E. Knightly, "TCP-LP: Low-Priority
Service via End-Point Congestion Control", 2003,
<www.cs.northwestern.edu/~akuzma/doc/TCP-LP-ToN.pdf>.
[<a id="ref-Ludwig00">Ludwig00</a>] Ludwig, R. and K. Sklower, "The Eifel Retransmission
Timer", ACM SIGCOMM Computer Communication Review Volume
30 Issue 3, July 2000,
<<a href="http://ccr.sigcomm.org/archive/2000/july00/LudwigFinal.pdf">http://ccr.sigcomm.org/archive/2000/july00/</a>
<a href="http://ccr.sigcomm.org/archive/2000/july00/LudwigFinal.pdf">LudwigFinal.pdf</a>>.
[<a id="ref-Martin03">Martin03</a>] Martin, D., "Subject: [Tsvwg] <a href="./rfc1323">RFC 1323</a>.bis", message to
the TSVWG mailing list, 30 September 2003,
<<a href="http://www.ietf.org/mail-archive/web/tsvwg/current/msg04435.html">http://www.ietf.org/mail-archive/web/tsvwg/current/</a>
<a href="http://www.ietf.org/mail-archive/web/tsvwg/current/msg04435.html">msg04435.html</a>>.
[<a id="ref-Medina04">Medina04</a>] Medina, A., Allman, M., and S. Floyd, "Measuring
Interactions Between Transport Protocols and Middleboxes",
Proceedings of the ACM SIGCOMM/USENIX Internet Measurement
Conference, October 2004,
<<a href="http://www.icir.net/tbit/tbit-Aug2004.pdf">http://www.icir.net/tbit/tbit-Aug2004.pdf</a>>.
[<a id="ref-Medina05">Medina05</a>] Medina, A., Allman, M., and S. Floyd, "Measuring the
Evolution of Transport Protocols in the Internet", ACM
Computer Communication Review Volume 35, No. 2, April
2005,
<<a href="http://icir.net/floyd/papers/TCPevolution-Mar2005.pdf">http://icir.net/floyd/papers/TCPevolution-Mar2005.pdf</a>>.
<span class="grey">Borman, et al. Standards Track [Page 31]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-32" ></span>
<span class="grey"><a href="./rfc7323">RFC 7323</a> TCP Extensions for High Performance September 2014</span>
[<a id="ref-RE-1323BIS">RE-1323BIS</a>]
Oppermann, A., "Subject: Re: [tcpm] I-D Action: <a href="./draft-ietf">draft-</a>
<a href="./draft-ietf">ietf</a>.tcpm-1323bis-13.txt", message to the TCPM mailing
list, 01 June 2013, <<a href="http://www.ietf.org/mail-archive/web/tcpm/current/msg08001.html">http://www.ietf.org/</a>
<a href="http://www.ietf.org/mail-archive/web/tcpm/current/msg08001.html">mail-archive/web/tcpm/current/msg08001.html</a>>.
[<a id="ref-RFC1072">RFC1072</a>] Jacobson, V. and R. Braden, "TCP extensions for long-delay
paths", <a href="./rfc1072">RFC 1072</a>, October 1988.
[<a id="ref-RFC1122">RFC1122</a>] Braden, R., "Requirements for Internet Hosts -
Communication Layers", STD 3, <a href="./rfc1122">RFC 1122</a>, October 1989.
[<a id="ref-RFC1185">RFC1185</a>] Jacobson, V., Braden, B., and L. Zhang, "TCP Extension for
High-Speed Paths", <a href="./rfc1185">RFC 1185</a>, October 1990.
[<a id="ref-RFC1323">RFC1323</a>] Jacobson, V., Braden, B., and D. Borman, "TCP Extensions
for High Performance", <a href="./rfc1323">RFC 1323</a>, May 1992.
[<a id="ref-RFC1981">RFC1981</a>] McCann, J., Deering, S., and J. Mogul, "Path MTU Discovery
for IP version 6", <a href="./rfc1981">RFC 1981</a>, August 1996.
[<a id="ref-RFC2018">RFC2018</a>] Mathis, M., Mahdavi, J., Floyd, S., and A. Romanow, "TCP
Selective Acknowledgment Options", <a href="./rfc2018">RFC 2018</a>, October 1996.
[<a id="ref-RFC2675">RFC2675</a>] Borman, D., Deering, S., and R. Hinden, "IPv6 Jumbograms",
<a href="./rfc2675">RFC 2675</a>, August 1999.
[<a id="ref-RFC2883">RFC2883</a>] Floyd, S., Mahdavi, J., Mathis, M., and M. Podolsky, "An
Extension to the Selective Acknowledgement (SACK) Option
for TCP", <a href="./rfc2883">RFC 2883</a>, July 2000.
[<a id="ref-RFC3522">RFC3522</a>] Ludwig, R. and M. Meyer, "The Eifel Detection Algorithm
for TCP", <a href="./rfc3522">RFC 3522</a>, April 2003.
[<a id="ref-RFC4015">RFC4015</a>] Ludwig, R. and A. Gurtov, "The Eifel Response Algorithm
for TCP", <a href="./rfc4015">RFC 4015</a>, February 2005.
[<a id="ref-RFC4821">RFC4821</a>] Mathis, M. and J. Heffner, "Packetization Layer Path MTU
Discovery", <a href="./rfc4821">RFC 4821</a>, March 2007.
[<a id="ref-RFC4963">RFC4963</a>] Heffner, J., Mathis, M., and B. Chandler, "IPv4 Reassembly
Errors at High Data Rates", <a href="./rfc4963">RFC 4963</a>, July 2007.
[<a id="ref-RFC5681">RFC5681</a>] Allman, M., Paxson, V., and E. Blanton, "TCP Congestion
Control", <a href="./rfc5681">RFC 5681</a>, September 2009.
<span class="grey">Borman, et al. Standards Track [Page 32]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-33" ></span>
<span class="grey"><a href="./rfc7323">RFC 7323</a> TCP Extensions for High Performance September 2014</span>
[<a id="ref-RFC5961">RFC5961</a>] Ramaiah, A., Stewart, R., and M. Dalal, "Improving TCP's
Robustness to Blind In-Window Attacks", <a href="./rfc5961">RFC 5961</a>, August
2010.
[<a id="ref-RFC6191">RFC6191</a>] Gont, F., "Reducing the TIME-WAIT State Using TCP
Timestamps", <a href="https://www.rfc-editor.org/bcp/bcp159">BCP 159</a>, <a href="./rfc6191">RFC 6191</a>, April 2011.
[<a id="ref-RFC6298">RFC6298</a>] Paxson, V., Allman, M., Chu, J., and M. Sargent,
"Computing TCP's Retransmission Timer", <a href="./rfc6298">RFC 6298</a>, June
2011.
[<a id="ref-RFC6528">RFC6528</a>] Gont, F. and S. Bellovin, "Defending against Sequence
Number Attacks", <a href="./rfc6528">RFC 6528</a>, February 2012.
[<a id="ref-RFC6675">RFC6675</a>] Blanton, E., Allman, M., Wang, L., Jarvinen, I., Kojo, M.,
and Y. Nishida, "A Conservative Loss Recovery Algorithm
Based on Selective Acknowledgment (SACK) for TCP", <a href="./rfc6675">RFC</a>
<a href="./rfc6675">6675</a>, August 2012.
[<a id="ref-RFC6691">RFC6691</a>] Borman, D., "TCP Options and Maximum Segment Size (MSS)",
<a href="./rfc6691">RFC 6691</a>, July 2012.
[<a id="ref-RFC6817">RFC6817</a>] Shalunov, S., Hazel, G., Iyengar, J., and M. Kuehlewind,
"Low Extra Delay Background Transport (LEDBAT)", <a href="./rfc6817">RFC 6817</a>,
December 2012.
<span class="grey">Borman, et al. Standards Track [Page 33]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-34" ></span>
<span class="grey"><a href="./rfc7323">RFC 7323</a> TCP Extensions for High Performance September 2014</span>
<span class="h2"><a class="selflink" id="appendix-A" href="#appendix-A">Appendix A</a>. Implementation Suggestions</span>
TCP Option Layout
The following layout is recommended for sending options on
non-<SYN> segments to achieve maximum feasible alignment of 32-bit
and 64-bit machines.
+--------+--------+--------+--------+
| NOP | NOP | TSopt | 10 |
+--------+--------+--------+--------+
| TSval timestamp |
+--------+--------+--------+--------+
| TSecr timestamp |
+--------+--------+--------+--------+
Interaction with the TCP Urgent Pointer
The TCP Urgent Pointer, like the TCP window, is a 16-bit value.
Some of the original discussion for the TCP Window Scale option
included proposals to increase the Urgent Pointer to 32 bits. As
it turns out, this is unnecessary. There are two observations
that should be made:
(1) With IP version 4, the largest amount of TCP data that can be
sent in a single packet is 65495 bytes (64 KiB - 1 - size of
fixed IP and TCP headers).
(2) Updates to the Urgent Pointer while the user is in "urgent
mode" are invisible to the user.
This means that if the Urgent Pointer points beyond the end of the
TCP data in the current segment, then the user will remain in
urgent mode until the next TCP segment arrives. That segment will
update the Urgent Pointer to a new offset, and the user will never
have left urgent mode.
Thus, to properly implement the Urgent Pointer, the sending TCP
only has to check for overflow of the 16-bit Urgent Pointer field
before filling it in. If it does overflow, than a value of 65535
should be inserted into the Urgent Pointer.
The same technique applies to IP version 6, except in the case of
IPv6 Jumbograms. When IPv6 Jumbograms are supported, [<a href="./rfc2675" title=""IPv6 Jumbograms"">RFC2675</a>]
requires additional steps for dealing with the Urgent Pointer;
these steps are described in <a href="./rfc2675#section-5.2">Section 5.2 of [RFC2675]</a>.
<span class="grey">Borman, et al. Standards Track [Page 34]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-35" ></span>
<span class="grey"><a href="./rfc7323">RFC 7323</a> TCP Extensions for High Performance September 2014</span>
<span class="h2"><a class="selflink" id="appendix-B" href="#appendix-B">Appendix B</a>. Duplicates from Earlier Connection Incarnations</span>
There are two cases to be considered: (1) a system crashing (and
losing connection state) and restarting, and (2) the same connection
being closed and reopened without a loss of host state. These will
be described in the following two sections.
<span class="h3"><a class="selflink" id="appendix-B.1" href="#appendix-B.1">B.1</a>. System Crash with Loss of State</span>
TCP's quiet time of one MSL upon system startup handles the loss of
connection state in a system crash/restart. For an explanation, see,
for example, "Knowing When to Keep Quiet" in the TCP protocol
specification [<a href="./rfc0793">RFC0793</a>]. The MSL that is required here does not
depend upon the transfer speed. The current TCP MSL of 2 minutes
seemed acceptable as an operational compromise, when many host
systems used to take this long to boot after a crash. Current host
systems can boot considerably faster.
The Timestamps option may be used to ease the MSL requirements (or to
provide additional security against data corruption). If timestamps
are being used and if the timestamp clock can be guaranteed to be
monotonic over a system crash/restart, i.e., if the first value of
the sender's timestamp clock after a crash/restart can be guaranteed
to be greater than the last value before the restart, then a quiet
time is unnecessary.
To dispense totally with the quiet time would require that the host
clock be synchronized to a time source that is stable over the crash/
restart period, with an accuracy of one timestamp clock tick or
better. We can back off from this strict requirement to take
advantage of approximate clock synchronization. Suppose that the
clock is always resynchronized to within N timestamp clock ticks and
that booting (extended with a quiet time, if necessary) takes more
than N ticks. This will guarantee monotonicity of the timestamps,
which can then be used to reject old duplicates even without an
enforced MSL.
<span class="h3"><a class="selflink" id="appendix-B.2" href="#appendix-B.2">B.2</a>. Closing and Reopening a Connection</span>
When a TCP connection is closed, a delay of 2*MSL in TIME-WAIT state
ties up the socket pair for 4 minutes (see <a href="./rfc0793#section-3.5">Section 3.5 of [RFC0793]</a>).
Applications built upon TCP that close one connection and open a new
one (e.g., an FTP data transfer connection using Stream mode) must
choose a new socket pair each time. The TIME-WAIT delay serves two
different purposes:
<span class="grey">Borman, et al. Standards Track [Page 35]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-36" ></span>
<span class="grey"><a href="./rfc7323">RFC 7323</a> TCP Extensions for High Performance September 2014</span>
(a) Implement the full-duplex reliable close handshake of TCP.
The proper time to delay the final close step is not really
related to the MSL; it depends instead upon the RTO for the FIN
segments and, therefore, upon the RTT of the path. (It could be
argued that the side that is sending a FIN knows what degree of
reliability it needs, and therefore it should be able to
determine the length of the TIME-WAIT delay for the FIN's
recipient. This could be accomplished with an appropriate TCP
option in FIN segments.)
Although there is no formal upper bound on RTT, common network
engineering practice makes an RTT greater than 1 minute very
unlikely. Thus, the 4-minute delay in TIME-WAIT state works
satisfactorily to provide a reliable full-duplex TCP close.
Note again that this is independent of MSL enforcement and
network speed.
The TIME-WAIT state could cause an indirect performance problem
if an application needed to repeatedly close one connection and
open another at a very high frequency, since the number of
available TCP ports on a host is less than 2^16. However, high
network speeds are not the major contributor to this problem;
the RTT is the limiting factor in how quickly connections can be
opened and closed. Therefore, this problem will be no worse at
high transfer speeds.
(b) Allow old duplicate segments to expire.
To replace this function of TIME-WAIT state, a mechanism would
have to operate across connections. PAWS is defined strictly
within a single connection; the last timestamp (TS.Recent) is
kept in the connection control block and discarded when a
connection is closed.
An additional mechanism could be added to the TCP, a per-host
cache of the last timestamp received from any connection. This
value could then be used in the PAWS mechanism to reject old
duplicate segments from earlier incarnations of the connection,
if the timestamp clock can be guaranteed to have ticked at least
once since the old connection was open. This would require that
the TIME-WAIT delay plus the RTT together must be at least one
tick of the sender's timestamp clock. Such an extension is not
part of the proposal of this RFC.
Note that this is a variant on the mechanism proposed by
Garlick, Rom, and Postel [<a href="#ref-Garlick77">Garlick77</a>], which required each host
to maintain connection records containing the highest sequence
<span class="grey">Borman, et al. Standards Track [Page 36]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-37" ></span>
<span class="grey"><a href="./rfc7323">RFC 7323</a> TCP Extensions for High Performance September 2014</span>
numbers on every connection. Using timestamps instead, it is
only necessary to keep one quantity per remote host, regardless
of the number of simultaneous connections to that host.
<span class="h2"><a class="selflink" id="appendix-C" href="#appendix-C">Appendix C</a>. Summary of Notation</span>
The following notation has been used in this document.
Options
WSopt: TCP Window Scale option
TSopt: TCP Timestamps option
Option Fields
shift.cnt: Window scale byte in WSopt
TSval: 32-bit Timestamp Value field in TSopt
TSecr: 32-bit Timestamp Reply field in TSopt
Option Fields in Current Segment
SEG.TSval: TSval field from TSopt in current segment
SEG.TSecr: TSecr field from TSopt in current segment
SEG.WSopt: 8-bit value in WSopt
Clock Values
my.TSclock: System-wide source of 32-bit timestamp values
my.TSclock.rate: Period of my.TSclock (1 ms to 1 sec)
Snd.TSoffset: An offset for randomizing Snd.TSclock
Snd.TSclock: my.TSclock + Snd.TSoffset
Per-Connection State Variables
TS.Recent: Latest received Timestamp
Last.ACK.sent: Last ACK field sent
Snd.TS.OK: 1-bit flag
Snd.WS.OK: 1-bit flag
Rcv.Wind.Shift: Receive window scale exponent
Snd.Wind.Shift: Send window scale exponent
Start.Time: Snd.TSclock value when the segment being timed
was sent (used by code from before <a href="./rfc1323">RFC 1323</a>).
Procedure
Update_SRTT(m) Procedure to update the smoothed RTT and RTT
variance estimates, using the rules of
[<a href="#ref-Jacobson88a">Jacobson88a</a>], given m, a new RTT measurement
<span class="grey">Borman, et al. Standards Track [Page 37]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-38" ></span>
<span class="grey"><a href="./rfc7323">RFC 7323</a> TCP Extensions for High Performance September 2014</span>
Send Sequence Variables
SND.UNA: Send unacknowledged
SND.NXT: Send next
SND.WND: Send window
ISS: Initial send sequence number
Receive Sequence Variables
RCV.NXT: Receive next
RCV.WND: Receive window
IRS: Initial receive sequence number
<span class="h2"><a class="selflink" id="appendix-D" href="#appendix-D">Appendix D</a>. Event Processing Summary</span>
This appendix attempts to specify the algorithms unambiguously by
presenting modifications to the Event Processing rules in <a href="./rfc793#section-3.9">Section 3.9
of RFC 793</a>. The change bars ("|") indicate lines that are different
from <a href="./rfc793">RFC 793</a>.
OPEN Call
...
An initial send sequence number (ISS) is selected. Send a <SYN>
| segment of the form:
|
| <SEQ=ISS><CTL=SYN><TSval=Snd.TSclock><WSopt=Rcv.Wind.Shift>
...
SEND Call
CLOSED STATE (i.e., TCB does not exist)
...
LISTEN STATE
If active and the foreign socket is specified, then change the
connection from passive to active, select an ISS. Send a SYN
| segment containing the options: <TSval=Snd.TSclock> and
| <WSopt=Rcv.Wind.Shift>. Set SND.UNA to ISS, SND.NXT to ISS+1.
Enter SYN-SENT state. ...
SYN-SENT STATE
SYN-RECEIVED STATE
<span class="grey">Borman, et al. Standards Track [Page 38]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-39" ></span>
<span class="grey"><a href="./rfc7323">RFC 7323</a> TCP Extensions for High Performance September 2014</span>
...
ESTABLISHED STATE
CLOSE-WAIT STATE
Segmentize the buffer and send it with a piggybacked
acknowledgment (acknowledgment value = RCV.NXT). ...
If the urgent flag is set ...
| If the Snd.TS.OK flag is set, then include the TCP Timestamps
| option <TSval=Snd.TSclock,TSecr=TS.Recent> in each data
| segment.
|
| Scale the receive window for transmission in the segment
| header:
|
| SEG.WND = (RCV.WND >> Rcv.Wind.Shift).
SEGMENT ARRIVES
...
If the state is LISTEN then
first check for an RST
...
second check for an ACK
...
third check for a SYN
If the SYN bit is set, check the security. If the ...
...
If the SEG.PRC is less than the TCB.PRC then continue.
| Check for a Window Scale option (WSopt); if one is found,
| save SEG.WSopt in Snd.Wind.Shift and set Snd.WS.OK flag on.
| Otherwise, set both Snd.Wind.Shift and Rcv.Wind.Shift to
| zero and clear Snd.WS.OK flag.
|
| Check for a TSopt option; if one is found, save SEG.TSval in
| the variable TS.Recent and turn on the Snd.TS.OK bit.
<span class="grey">Borman, et al. Standards Track [Page 39]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-40" ></span>
<span class="grey"><a href="./rfc7323">RFC 7323</a> TCP Extensions for High Performance September 2014</span>
Set RCV.NXT to SEG.SEQ+1, IRS is set to SEG.SEQ and any
other control or text should be queued for processing later.
ISS should be selected and a SYN segment sent of the form:
<SEQ=ISS><ACK=RCV.NXT><CTL=SYN,ACK>
| If the Snd.WS.OK bit is on, include a WSopt
| <WSopt=Rcv.Wind.Shift> in this segment. If the Snd.TS.OK
| bit is on, include a TSopt <TSval=Snd.TSclock,
| TSecr=TS.Recent> in this segment. Last.ACK.sent is set to
| RCV.NXT.
SND.NXT is set to ISS+1 and SND.UNA to ISS. The connection
state should be changed to SYN-RECEIVED. Note that any
other incoming control or data (combined with SYN) will be
processed in the SYN-RECEIVED state, but processing of SYN
and ACK should not be repeated. If the listen was not fully
specified (i.e., the foreign socket was not fully
specified), then the unspecified fields should be filled in
now.
fourth other text or control
...
If the state is SYN-SENT then
first check the ACK bit
...
...
fourth check the SYN bit
...
If the SYN bit is on and the security/compartment and
precedence are acceptable then, RCV.NXT is set to SEG.SEQ+1,
IRS is set to SEG.SEQ. SND.UNA should be advanced to equal
SEG.ACK (if there is an ACK), and any segments on the
retransmission queue which are thereby acknowledged should
be removed.
| Check for a Window Scale option (WSopt); if it is found,
| save SEG.WSopt in Snd.Wind.Shift; otherwise, set both
| Snd.Wind.Shift and Rcv.Wind.Shift to zero.
|
<span class="grey">Borman, et al. Standards Track [Page 40]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-41" ></span>
<span class="grey"><a href="./rfc7323">RFC 7323</a> TCP Extensions for High Performance September 2014</span>
| Check for a TSopt option; if one is found, save SEG.TSval in
| variable TS.Recent and turn on the Snd.TS.OK bit in the
| connection control block. If the ACK bit is set, use
| Snd.TSclock - SEG.TSecr as the initial RTT estimate.
If SND.UNA > ISS (our SYN has been ACKed), change the
connection state to ESTABLISHED, form an <ACK> segment:
<SEQ=SND.NXT><ACK=RCV.NXT><CTL=ACK>
| and send it. If the Snd.TS.OK bit is on, include a TSopt
| option <TSval=Snd.TSclock,TSecr=TS.Recent> in this <ACK>
| segment. Last.ACK.sent is set to RCV.NXT.
Data or controls that were queued for transmission may be
included. If there are other controls or text in the
segment, then continue processing at the sixth step below
where the URG bit is checked; otherwise, return.
Otherwise, enter SYN-RECEIVED, form a <SYN,ACK> segment:
<SEQ=ISS><ACK=RCV.NXT><CTL=SYN,ACK>
| and send it. If the Snd.TS.OK bit is on, include a TSopt
| option <TSval=Snd.TSclock,TSecr=TS.Recent> in this segment.
| If the Snd.WS.OK bit is on, include a WSopt option
| <WSopt=Rcv.Wind.Shift> in this segment. Last.ACK.sent is
| set to RCV.NXT.
If there are other controls or text in the segment, queue
them for processing after the ESTABLISHED state has been
reached, return.
fifth, if neither of the SYN or RST bits is set then drop the
segment and return.
Otherwise
first check the sequence number
SYN-RECEIVED STATE
ESTABLISHED STATE
FIN-WAIT-1 STATE
FIN-WAIT-2 STATE
CLOSE-WAIT STATE
CLOSING STATE
LAST-ACK STATE
TIME-WAIT STATE
<span class="grey">Borman, et al. Standards Track [Page 41]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-42" ></span>
<span class="grey"><a href="./rfc7323">RFC 7323</a> TCP Extensions for High Performance September 2014</span>
Segments are processed in sequence. Initial tests on
arrival are used to discard old duplicates, but further
processing is done in SEG.SEQ order. If a segment's
contents straddle the boundary between old and new, only the
new parts should be processed.
| Rescale the received window field:
|
| TrueWindow = SEG.WND << Snd.Wind.Shift,
|
| and use "TrueWindow" in place of SEG.WND in the following
| steps.
|
| Check whether the segment contains a Timestamps option and
| if bit Snd.TS.OK is on. If so:
|
| If SEG.TSval < TS.Recent and the RST bit is off:
|
| If the connection has been idle more than 24 days,
| save SEG.TSval in variable TS.Recent, else the segment
| is not acceptable; follow the steps below for an
| unacceptable segment.
|
| If SEG.TSval >= TS.Recent and SEG.SEQ <= Last.ACK.sent,
| then save SEG.TSval in variable TS.Recent.
There are four cases for the acceptability test for an
incoming segment:
...
If an incoming segment is not acceptable, an acknowledgment
should be sent in reply (unless the RST bit is set; if so
drop the segment and return):
<SEQ=SND.NXT><ACK=RCV.NXT><CTL=ACK>
| Last.ACK.sent is set to SEG.ACK of the acknowledgment. If
| the Snd.TS.OK bit is on, include the Timestamps option
| <TSval=Snd.TSclock,TSecr=TS.Recent> in this <ACK> segment.
Set Last.ACK.sent to SEG.ACK and send the <ACK> segment.
After sending the acknowledgment, drop the unacceptable
segment and return.
...
<span class="grey">Borman, et al. Standards Track [Page 42]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-43" ></span>
<span class="grey"><a href="./rfc7323">RFC 7323</a> TCP Extensions for High Performance September 2014</span>
fifth check the ACK field,
if the ACK bit is off drop the segment and return
if the ACK bit is on
...
ESTABLISHED STATE
If SND.UNA < SEG.ACK <= SND.NXT then, set SND.UNA <-
| SEG.ACK. Also compute a new estimate of round-trip time.
| If Snd.TS.OK bit is on, use Snd.TSclock - SEG.TSecr;
| otherwise, use the elapsed time since the first segment
| in the retransmission queue was sent. Any segments on
the retransmission queue that are thereby entirely
acknowledged...
...
seventh, process the segment text,
ESTABLISHED STATE
FIN-WAIT-1 STATE
FIN-WAIT-2 STATE
...
Send an acknowledgment of the form:
<SEQ=SND.NXT><ACK=RCV.NXT><CTL=ACK>
| If the Snd.TS.OK bit is on, include the Timestamps option
| <TSval=Snd.TSclock,TSecr=TS.Recent> in this <ACK> segment.
| Set Last.ACK.sent to SEG.ACK of the acknowledgment, and send
| it. This acknowledgment should be piggybacked on a segment
being transmitted if possible without incurring undue delay.
...
<span class="grey">Borman, et al. Standards Track [Page 43]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-44" ></span>
<span class="grey"><a href="./rfc7323">RFC 7323</a> TCP Extensions for High Performance September 2014</span>
<span class="h2"><a class="selflink" id="appendix-E" href="#appendix-E">Appendix E</a>. Timestamps Edge Cases</span>
While the rules laid out for when to calculate RTTM produce the
correct results most of the time, there are some edge cases where an
incorrect RTTM can be calculated. All of these situations involve
the loss of segments. It is felt that these scenarios are rare, and
that if they should happen, they will cause a single RTTM measurement
to be inflated, which mitigates its effects on RTO calculations.
[<a id="ref-Martin03">Martin03</a>] cites two similar cases when the returning <ACK> is lost,
and before the retransmission timer fires, another returning <ACK>
segment arrives, which acknowledges the data. In this case, the RTTM
calculated will be inflated:
clock
tc=1 <A, TSval=1> ------------------->
tc=2 (lost) <---- <ACK(A), TSecr=1, win=n>
(RTTM would have been 1)
(receive window opens, window update is sent)
tc=5 <---- <ACK(A), TSecr=1, win=m>
(RTTM is calculated at 4)
One thing to note about this situation is that it is somewhat bounded
by RTO + RTT, limiting how far off the RTTM calculation will be.
While more complex scenarios can be constructed that produce larger
inflations (e.g., retransmissions are lost), those scenarios involve
multiple segment losses, and the connection will have other more
serious operational problems than using an inflated RTTM in the RTO
calculation.
<span class="h2"><a class="selflink" id="appendix-F" href="#appendix-F">Appendix F</a>. Window Retraction Example</span>
Consider an established TCP connection using a scale factor of 128,
Snd.Wind.Shift=7 and Rcv.Wind.Shift=7, that is running with a very
small window because the receiver is bottlenecked and both ends are
doing small reads and writes.
Consider the ACKs coming back:
SEG.ACK SEG.WIN computed SND.WIN receiver's actual window
1000 2 1256 1300
The sender writes 40 bytes and receiver ACKs:
1040 2 1296 1300
<span class="grey">Borman, et al. Standards Track [Page 44]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-45" ></span>
<span class="grey"><a href="./rfc7323">RFC 7323</a> TCP Extensions for High Performance September 2014</span>
The sender writes 5 additional bytes and the receiver has a problem.
Two choices:
1045 2 1301 1300 - BEYOND BUFFER
1045 1 1173 1300 - RETRACTED WINDOW
This is a general problem and can happen any time the sender does a
write, which is smaller than the window scale factor.
In most stacks, it is at least partially obscured when the window
size is larger than some small number of segments because the stacks
prefer to announce windows that are an integral number of segments,
rounded up to the next scale factor. This plus silly window
suppression tends to cause less frequent, larger window updates. If
the window was rounded down to a segment size, there is more
opportunity to advance the window, the BEYOND BUFFER case above,
rather than retracting it.
<span class="h2"><a class="selflink" id="appendix-G" href="#appendix-G">Appendix G</a>. RTO Calculation Modification</span>
Taking multiple RTT samples per window would shorten the history
calculated by the RTO mechanism in [<a href="./rfc6298" title=""Computing TCP's Retransmission Timer"">RFC6298</a>], and the below algorithm
aims to maintain a similar history as originally intended by
[<a href="./rfc6298" title=""Computing TCP's Retransmission Timer"">RFC6298</a>].
It is roughly known how many samples a congestion window worth of
data will yield, not accounting for ACK compression, and ACK losses.
Such events will result in more history of the path being reflected
in the final value for RTO, and are uncritical. This modification
will ensure that a similar amount of time is taken into account for
the RTO estimation, regardless of how many samples are taken per
window:
ExpectedSamples = ceiling(FlightSize / (SMSS * 2))
alpha' = alpha / ExpectedSamples
beta' = beta / ExpectedSamples
Note that the factor 2 in ExpectedSamples is due to "Delayed ACKs".
<span class="grey">Borman, et al. Standards Track [Page 45]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-46" ></span>
<span class="grey"><a href="./rfc7323">RFC 7323</a> TCP Extensions for High Performance September 2014</span>
Instead of using alpha and beta in the algorithm of [<a href="./rfc6298" title=""Computing TCP's Retransmission Timer"">RFC6298</a>], use
alpha' and beta' instead:
RTTVAR <- (1 - beta') * RTTVAR + beta' * |SRTT - R'|
SRTT <- (1 - alpha') * SRTT + alpha' * R'
(for each sample R')
<span class="h2"><a class="selflink" id="appendix-H" href="#appendix-H">Appendix H</a>. Changes from <a href="./rfc1323">RFC 1323</a></span>
Several important updates and clarifications to the specification in
<a href="./rfc1323">RFC 1323</a> are made in this document. The technical changes are
summarized below:
(a) A wrong reference to SND.WND was corrected to SEG.WND in
<a href="#section-2.3">Section 2.3</a>.
(b) <a href="#section-2.4">Section 2.4</a> was added describing the unavoidable window
retraction issue and explicitly describing the mitigation steps
necessary.
(c) In <a href="#section-3.2">Section 3.2</a>, the wording how the Timestamps option
negotiation is to be performed was updated with <a href="./rfc2119">RFC2119</a> wording.
Further, a number of paragraphs were added to clarify the
expected behavior with a compliant implementation using TSopt,
as <a href="./rfc1323">RFC 1323</a> left room for interpretation -- e.g., potential late
enablement of TSopt.
(d) The description of which TSecr values can be used to update the
measured RTT has been clarified. Specifically, with timestamps,
the Karn algorithm [<a href="#ref-Karn87" title=""Estimating Round-Trip Times in Reliable Transport Protocols"">Karn87</a>] is disabled. The Karn algorithm
disables all RTT measurements during retransmission, since it is
ambiguous whether the <ACK> is for the original segment, or the
retransmitted segment. With timestamps, that ambiguity is
removed since the TSecr in the <ACK> will contain the TSval from
whichever data segment made it to the destination.
(e) RTTM update processing explicitly excludes segments not updating
SND.UNA. The original text could be interpreted to allow taking
RTT samples when SACK acknowledges some new, non-continuous
data.
<span class="grey">Borman, et al. Standards Track [Page 46]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-47" ></span>
<span class="grey"><a href="./rfc7323">RFC 7323</a> TCP Extensions for High Performance September 2014</span>
(f) In <a href="./rfc1323#section-3.4">RFC 1323, Section 3.4</a>, step (2) of the algorithm to control
which timestamp is echoed was incorrect in two regards:
(1) It failed to update TS.Recent for a retransmitted segment
that resulted from a lost <ACK>.
(2) It failed if SEG.LEN = 0.
In the new algorithm, the case of SEG.TSval >= TS.Recent is
included for consistency with the PAWS test.
(g) It is now recommended that the Timestamps option is included in
<RST> segments if the incoming segment contained a Timestamps
option.
(h) <RST> segments are explicitly excluded from PAWS processing.
(i) Added text to clarify the precedence between regular TCP
[<a href="./rfc0793">RFC0793</a>] and this document's Timestamps option / PAWS
processing. Discussion about combined acceptability checks are
ongoing.
(j) Snd.TSoffset and Snd.TSclock variables have been added.
Snd.TSclock is the sum of my.TSclock and Snd.TSoffset. This
allows the starting points for timestamp values to be randomized
on a per-connection basis. Setting Snd.TSoffset to zero yields
the same results as [<a href="./rfc1323" title=""TCP Extensions for High Performance"">RFC1323</a>]. Text was added to guide
implementers to the proper selection of these offsets, as
entirely random offsets for each new connection will conflict
with PAWS.
(k) <a href="#appendix-A">Appendix A</a> has been expanded with information about the TCP
Urgent Pointer. An earlier revision contained text around the
TCP MSS option, which was split off into [<a href="./rfc6691" title=""TCP Options and Maximum Segment Size (MSS)"">RFC6691</a>].
(l) One correction was made to the Event Processing Summary in
<a href="#appendix-D">Appendix D</a>. In SEND CALL/ESTABLISHED STATE, RCV.WND is used to
fill in the SEG.WND value, not SND.WND.
(m) <a href="#appendix-G">Appendix G</a> was added to exemplify how an RTO calculation might
be updated to properly take the much higher RTT sampling
frequency enabled by the Timestamps option into account.
<span class="grey">Borman, et al. Standards Track [Page 47]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-48" ></span>
<span class="grey"><a href="./rfc7323">RFC 7323</a> TCP Extensions for High Performance September 2014</span>
Editorial changes to the document, that don't impact the
implementation or function of the mechanisms described in this
document, include:
(a) Removed much of the discussion in <a href="#section-1">Section 1</a> to streamline the
document. However, detailed examples and discussions in
Sections <a href="#section-2">2</a>, <a href="#section-3">3</a>, and <a href="#section-5">5</a> are kept as guidelines for implementers.
(b) Added short text that the use of WS increases the chances of
sequence number wrap, thus the PAWS mechanism is required in
certain environments.
(c) Removed references to "new" options, as the options were
introduced in [<a href="./rfc1323" title=""TCP Extensions for High Performance"">RFC1323</a>] already. Changed the text in
<a href="#section-1.3">Section 1.3</a> to specifically address TS and WS options.
(d) <a href="#section-1.4">Section 1.4</a> was added for [<a href="./rfc2119" title=""Key words for use in RFCs to Indicate Requirement Levels"">RFC2119</a>] wording. Normative text was
updated with the appropriate phrases.
(e) Added < > brackets to mark specific types of segments, and
replaced most occurrences of "packet" with "segment", where TCP
segments are referred to.
(f) Updated the text in <a href="#section-3">Section 3</a> to take into account what has been
learned since [<a href="./rfc1323" title=""TCP Extensions for High Performance"">RFC1323</a>].
(g) Removed some unused references.
(h) Removed the list of changes between [<a href="./rfc1323" title=""TCP Extensions for High Performance"">RFC1323</a>] and prior
versions. These changes are mentioned in <a href="./rfc1323#appendix-C">Appendix C of
[RFC1323]</a>.
(i) Moved "Changes from <a href="./rfc1323">RFC 1323</a>" to the end of the appendices for
easier lookup. In addition, the entries were split into a
technical and an editorial part, and sorted to roughly
correspond with the sections in the text where they apply.
<span class="grey">Borman, et al. Standards Track [Page 48]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-49" ></span>
<span class="grey"><a href="./rfc7323">RFC 7323</a> TCP Extensions for High Performance September 2014</span>
Authors' Addresses
David Borman
Quantum Corporation
Mendota Heights, MN 55120
USA
EMail: david.borman@quantum.com
Bob Braden
University of Southern California
4676 Admiralty Way
Marina del Rey, CA 90292
USA
EMail: braden@isi.edu
Van Jacobson
Google, Inc.
1600 Amphitheatre Parkway
Mountain View, CA 94043
USA
EMail: vanj@google.com
Richard Scheffenegger (editor)
NetApp, Inc.
Am Euro Platz 2
Vienna, 1120
Austria
EMail: rs@netapp.com
Borman, et al. Standards Track [Page 49]
</pre>
|