1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
|
<pre>Independent Submission M. Mahalingam
Request for Comments: 7348 Storvisor
Category: Informational D. Dutt
ISSN: 2070-1721 Cumulus Networks
K. Duda
Arista
P. Agarwal
Broadcom
L. Kreeger
Cisco
T. Sridhar
VMware
M. Bursell
Intel
C. Wright
Red Hat
August 2014
<span class="h1">Virtual eXtensible Local Area Network (VXLAN): A Framework</span>
<span class="h1">for Overlaying Virtualized Layer 2 Networks over Layer 3 Networks</span>
Abstract
This document describes Virtual eXtensible Local Area Network
(VXLAN), which is used to address the need for overlay networks
within virtualized data centers accommodating multiple tenants. The
scheme and the related protocols can be used in networks for cloud
service providers and enterprise data centers. This memo documents
the deployed VXLAN protocol for the benefit of the Internet
community.
Status of This Memo
This document is not an Internet Standards Track specification; it is
published for informational purposes.
This is a contribution to the RFC Series, independently of any other
RFC stream. The RFC Editor has chosen to publish this document at
its discretion and makes no statement about its value for
implementation or deployment. Documents approved for publication by
the RFC Editor are not a candidate for any level of Internet
Standard; see <a href="./rfc5741#section-2">Section 2 of RFC 5741</a>.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
<a href="http://www.rfc-editor.org/info/rfc7348">http://www.rfc-editor.org/info/rfc7348</a>.
<span class="grey">Mahalingam, et al. Informational [Page 1]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-2" ></span>
<span class="grey"><a href="./rfc7348">RFC 7348</a> VXLAN August 2014</span>
Copyright Notice
Copyright (c) 2014 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to <a href="https://www.rfc-editor.org/bcp/bcp78">BCP 78</a> and the IETF Trust's Legal
Provisions Relating to IETF Documents
(<a href="http://trustee.ietf.org/license-info">http://trustee.ietf.org/license-info</a>) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document.
Table of Contents
<a href="#section-1">1</a>. Introduction ....................................................<a href="#page-3">3</a>
<a href="#section-1.1">1.1</a>. Acronyms and Definitions ...................................<a href="#page-4">4</a>
<a href="#section-2">2</a>. Conventions Used in This Document ...............................<a href="#page-4">4</a>
<a href="#section-3">3</a>. VXLAN Problem Statement .........................................<a href="#page-5">5</a>
<a href="#section-3.1">3.1</a>. Limitations Imposed by Spanning Tree and VLAN Ranges .......<a href="#page-5">5</a>
<a href="#section-3.2">3.2</a>. Multi-tenant Environments ..................................<a href="#page-5">5</a>
<a href="#section-3.3">3.3</a>. Inadequate Table Sizes at ToR Switch .......................<a href="#page-6">6</a>
<a href="#section-4">4</a>. VXLAN ...........................................................<a href="#page-6">6</a>
<a href="#section-4.1">4.1</a>. Unicast VM-to-VM Communication .............................<a href="#page-7">7</a>
<a href="#section-4.2">4.2</a>. Broadcast Communication and Mapping to Multicast ...........<a href="#page-8">8</a>
<a href="#section-4.3">4.3</a>. Physical Infrastructure Requirements .......................<a href="#page-9">9</a>
<a href="#section-5">5</a>. VXLAN Frame Format .............................................<a href="#page-10">10</a>
<a href="#section-6">6</a>. VXLAN Deployment Scenarios .....................................<a href="#page-14">14</a>
<a href="#section-6.1">6.1</a>. Inner VLAN Tag Handling ...................................<a href="#page-18">18</a>
<a href="#section-7">7</a>. Security Considerations ........................................<a href="#page-18">18</a>
<a href="#section-8">8</a>. IANA Considerations ............................................<a href="#page-19">19</a>
<a href="#section-9">9</a>. References .....................................................<a href="#page-19">19</a>
<a href="#section-9.1">9.1</a>. Normative References ......................................<a href="#page-19">19</a>
<a href="#section-9.2">9.2</a>. Informative References ....................................<a href="#page-20">20</a>
<a href="#section-10">10</a>. Acknowledgments ...............................................<a href="#page-21">21</a>
<span class="grey">Mahalingam, et al. Informational [Page 2]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-3" ></span>
<span class="grey"><a href="./rfc7348">RFC 7348</a> VXLAN August 2014</span>
<span class="h2"><a class="selflink" id="section-1" href="#section-1">1</a>. Introduction</span>
Server virtualization has placed increased demands on the physical
network infrastructure. A physical server now has multiple Virtual
Machines (VMs) each with its own Media Access Control (MAC) address.
This requires larger MAC address tables in the switched Ethernet
network due to potential attachment of and communication among
hundreds of thousands of VMs.
In the case when the VMs in a data center are grouped according to
their Virtual LAN (VLAN), one might need thousands of VLANs to
partition the traffic according to the specific group to which the VM
may belong. The current VLAN limit of 4094 is inadequate in such
situations.
Data centers are often required to host multiple tenants, each with
their own isolated network domain. Since it is not economical to
realize this with dedicated infrastructure, network administrators
opt to implement isolation over a shared network. In such scenarios,
a common problem is that each tenant may independently assign MAC
addresses and VLAN IDs leading to potential duplication of these on
the physical network.
An important requirement for virtualized environments using a Layer 2
physical infrastructure is having the Layer 2 network scale across
the entire data center or even between data centers for efficient
allocation of compute, network, and storage resources. In such
networks, using traditional approaches like the Spanning Tree
Protocol (STP) for a loop-free topology can result in a large number
of disabled links.
The last scenario is the case where the network operator prefers to
use IP for interconnection of the physical infrastructure (e.g., to
achieve multipath scalability through Equal-Cost Multipath (ECMP),
thus avoiding disabled links). Even in such environments, there is a
need to preserve the Layer 2 model for inter-VM communication.
The scenarios described above lead to a requirement for an overlay
network. This overlay is used to carry the MAC traffic from the
individual VMs in an encapsulated format over a logical "tunnel".
This document details a framework termed "Virtual eXtensible Local
Area Network (VXLAN)" that provides such an encapsulation scheme to
address the various requirements specified above. This memo
documents the deployed VXLAN protocol for the benefit of the Internet
community.
<span class="grey">Mahalingam, et al. Informational [Page 3]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-4" ></span>
<span class="grey"><a href="./rfc7348">RFC 7348</a> VXLAN August 2014</span>
<span class="h3"><a class="selflink" id="section-1.1" href="#section-1.1">1.1</a>. Acronyms and Definitions</span>
ACL Access Control List
ECMP Equal-Cost Multipath
IGMP Internet Group Management Protocol
IHL Internet Header Length
MTU Maximum Transmission Unit
PIM Protocol Independent Multicast
SPB Shortest Path Bridging
STP Spanning Tree Protocol
ToR Top of Rack
TRILL Transparent Interconnection of Lots of Links
VLAN Virtual Local Area Network
VM Virtual Machine
VNI VXLAN Network Identifier (or VXLAN Segment ID)
VTEP VXLAN Tunnel End Point. An entity that originates and/or
terminates VXLAN tunnels
VXLAN Virtual eXtensible Local Area Network
VXLAN Segment
VXLAN Layer 2 overlay network over which VMs communicate
VXLAN Gateway
an entity that forwards traffic between VXLANs
<span class="h2"><a class="selflink" id="section-2" href="#section-2">2</a>. Conventions Used in This Document</span>
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in <a href="./rfc2119">RFC 2119</a> [<a href="./rfc2119" title=""Key words for use in RFCs to Indicate Requirement Levels"">RFC2119</a>].
<span class="grey">Mahalingam, et al. Informational [Page 4]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-5" ></span>
<span class="grey"><a href="./rfc7348">RFC 7348</a> VXLAN August 2014</span>
<span class="h2"><a class="selflink" id="section-3" href="#section-3">3</a>. VXLAN Problem Statement</span>
This section provides further details on the areas that VXLAN is
intended to address. The focus is on the networking infrastructure
within the data center and the issues related to them.
<span class="h3"><a class="selflink" id="section-3.1" href="#section-3.1">3.1</a>. Limitations Imposed by Spanning Tree and VLAN Ranges</span>
Current Layer 2 networks use the IEEE 802.1D Spanning Tree Protocol
(STP) [<a href="#ref-802.1D" title=""Draft Standard for Local and Metropolitan Area Networks/ Media Access Control (MAC) Bridges"">802.1D</a>] to avoid loops in the network due to duplicate paths.
STP blocks the use of links to avoid the replication and looping of
frames. Some data center operators see this as a problem with Layer
2 networks in general, since with STP they are effectively paying for
more ports and links than they can really use. In addition,
resiliency due to multipathing is not available with the STP model.
Newer initiatives, such as TRILL [<a href="./rfc6325" title=""Routing Bridges (RBridges): Base Protocol Specification"">RFC6325</a>] and SPB [<a href="#ref-802.1aq" title=""Standard for Local and metropolitan area networks -- Media Access Control (MAC) Bridges and Virtual Bridged Local Area Networks -- Amendment 20: Shortest Path Bridging"">802.1aq</a>], have
been proposed to help with multipathing and surmount some of the
problems with STP. STP limitations may also be avoided by
configuring servers within a rack to be on the same Layer 3 network,
with switching happening at Layer 3 both within the rack and between
racks. However, this is incompatible with a Layer 2 model for inter-
VM communication.
A key characteristic of Layer 2 data center networks is their use of
Virtual LANs (VLANs) to provide broadcast isolation. A 12-bit VLAN
ID is used in the Ethernet data frames to divide the larger Layer 2
network into multiple broadcast domains. This has served well for
many data centers that require fewer than 4094 VLANs. With the
growing adoption of virtualization, this upper limit is seeing
pressure. Moreover, due to STP, several data centers limit the
number of VLANs that could be used. In addition, requirements for
multi-tenant environments accelerate the need for larger VLAN limits,
as discussed in <a href="#section-3.3">Section 3.3</a>.
<span class="h3"><a class="selflink" id="section-3.2" href="#section-3.2">3.2</a>. Multi-tenant Environments</span>
Cloud computing involves on-demand elastic provisioning of resources
for multi-tenant environments. The most common example of cloud
computing is the public cloud, where a cloud service provider offers
these elastic services to multiple customers/tenants over the same
physical infrastructure.
Isolation of network traffic by a tenant could be done via Layer 2 or
Layer 3 networks. For Layer 2 networks, VLANs are often used to
segregate traffic -- so a tenant could be identified by its own VLAN,
for example. Due to the large number of tenants that a cloud
<span class="grey">Mahalingam, et al. Informational [Page 5]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-6" ></span>
<span class="grey"><a href="./rfc7348">RFC 7348</a> VXLAN August 2014</span>
provider might service, the 4094 VLAN limit is often inadequate. In
addition, there is often a need for multiple VLANs per tenant, which
exacerbates the issue.
A related use case is cross-pod expansion. A pod typically consists
of one or more racks of servers with associated network and storage
connectivity. Tenants may start off on a pod and, due to expansion,
require servers/VMs on other pods, especially in the case when
tenants on the other pods are not fully utilizing all their
resources. This use case requires a "stretched" Layer 2 environment
connecting the individual servers/VMs.
Layer 3 networks are not a comprehensive solution for multi-tenancy
either. Two tenants might use the same set of Layer 3 addresses
within their networks, which requires the cloud provider to provide
isolation in some other form. Further, requiring all tenants to use
IP excludes customers relying on direct Layer 2 or non-IP Layer 3
protocols for inter VM communication.
<span class="h3"><a class="selflink" id="section-3.3" href="#section-3.3">3.3</a>. Inadequate Table Sizes at ToR Switch</span>
Today's virtualized environments place additional demands on the MAC
address tables of Top-of-Rack (ToR) switches that connect to the
servers. Instead of just one MAC address per server link, the ToR
now has to learn the MAC addresses of the individual VMs (which could
range in the hundreds per server). This is needed because traffic
to/from the VMs to the rest of the physical network will traverse the
link between the server and the switch. A typical ToR switch could
connect to 24 or 48 servers depending upon the number of its server-
facing ports. A data center might consist of several racks, so each
ToR switch would need to maintain an address table for the
communicating VMs across the various physical servers. This places a
much larger demand on the table capacity compared to non-virtualized
environments.
If the table overflows, the switch may stop learning new addresses
until idle entries age out, leading to significant flooding of
subsequent unknown destination frames.
<span class="h2"><a class="selflink" id="section-4" href="#section-4">4</a>. VXLAN</span>
VXLAN (Virtual eXtensible Local Area Network) addresses the above
requirements of the Layer 2 and Layer 3 data center network
infrastructure in the presence of VMs in a multi-tenant environment.
It runs over the existing networking infrastructure and provides a
means to "stretch" a Layer 2 network. In short, VXLAN is a Layer 2
overlay scheme on a Layer 3 network. Each overlay is termed a VXLAN
segment. Only VMs within the same VXLAN segment can communicate with
<span class="grey">Mahalingam, et al. Informational [Page 6]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-7" ></span>
<span class="grey"><a href="./rfc7348">RFC 7348</a> VXLAN August 2014</span>
each other. Each VXLAN segment is identified through a 24-bit
segment ID, termed the "VXLAN Network Identifier (VNI)". This allows
up to 16 M VXLAN segments to coexist within the same administrative
domain.
The VNI identifies the scope of the inner MAC frame originated by the
individual VM. Thus, you could have overlapping MAC addresses across
segments but never have traffic "cross over" since the traffic is
isolated using the VNI. The VNI is in an outer header that
encapsulates the inner MAC frame originated by the VM. In the
following sections, the term "VXLAN segment" is used interchangeably
with the term "VXLAN overlay network".
Due to this encapsulation, VXLAN could also be called a tunneling
scheme to overlay Layer 2 networks on top of Layer 3 networks. The
tunnels are stateless, so each frame is encapsulated according to a
set of rules. The end point of the tunnel (VXLAN Tunnel End Point or
VTEP) discussed in the following sections is located within the
hypervisor on the server that hosts the VM. Thus, the VNI- and
VXLAN-related tunnel / outer header encapsulation are known only to
the VTEP -- the VM never sees it (see Figure 1). Note that it is
possible that VTEPs could also be on a physical switch or physical
server and could be implemented in software or hardware. One use
case where the VTEP is a physical switch is discussed in <a href="#section-6">Section 6</a> on
VXLAN deployment scenarios.
The following sections discuss typical traffic flow scenarios in a
VXLAN environment using one type of control scheme -- data plane
learning. Here, the association of VM's MAC to VTEP's IP address is
discovered via source-address learning. Multicast is used for
carrying unknown destination, broadcast, and multicast frames.
In addition to a learning-based control plane, there are other
schemes possible for the distribution of the VTEP IP to VM MAC
mapping information. Options could include a central
authority-/directory-based lookup by the individual VTEPs,
distribution of this mapping information to the VTEPs by the central
authority, and so on. These are sometimes characterized as push and
pull models, respectively. This document will focus on the data
plane learning scheme as the control plane for VXLAN.
<span class="h3"><a class="selflink" id="section-4.1" href="#section-4.1">4.1</a>. Unicast VM-to-VM Communication</span>
Consider a VM within a VXLAN overlay network. This VM is unaware of
VXLAN. To communicate with a VM on a different host, it sends a MAC
frame destined to the target as normal. The VTEP on the physical
host looks up the VNI to which this VM is associated. It then
determines if the destination MAC is on the same segment and if there
<span class="grey">Mahalingam, et al. Informational [Page 7]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-8" ></span>
<span class="grey"><a href="./rfc7348">RFC 7348</a> VXLAN August 2014</span>
is a mapping of the destination MAC address to the remote VTEP. If
so, an outer header comprising an outer MAC, outer IP header, and
VXLAN header (see Figure 1 in <a href="#section-5">Section 5</a> for frame format) are
prepended to the original MAC frame. The encapsulated packet is
forwarded towards the remote VTEP. Upon reception, the remote VTEP
verifies the validity of the VNI and whether or not there is a VM on
that VNI using a MAC address that matches the inner destination MAC
address. If so, the packet is stripped of its encapsulating headers
and passed on to the destination VM. The destination VM never knows
about the VNI or that the frame was transported with a VXLAN
encapsulation.
In addition to forwarding the packet to the destination VM, the
remote VTEP learns the mapping from inner source MAC to outer source
IP address. It stores this mapping in a table so that when the
destination VM sends a response packet, there is no need for an
"unknown destination" flooding of the response packet.
Determining the MAC address of the destination VM prior to the
transmission by the source VM is performed as with non-VXLAN
environments except as described in <a href="#section-4.2">Section 4.2</a>. Broadcast frames
are used but are encapsulated within a multicast packet, as detailed
in the <a href="#section-4.2">Section 4.2</a>.
<span class="h3"><a class="selflink" id="section-4.2" href="#section-4.2">4.2</a>. Broadcast Communication and Mapping to Multicast</span>
Consider the VM on the source host attempting to communicate with the
destination VM using IP. Assuming that they are both on the same
subnet, the VM sends out an Address Resolution Protocol (ARP)
broadcast frame. In the non-VXLAN environment, this frame would be
sent out using MAC broadcast across all switches carrying that VLAN.
With VXLAN, a header including the VXLAN VNI is inserted at the
beginning of the packet along with the IP header and UDP header.
However, this broadcast packet is sent out to the IP multicast group
on which that VXLAN overlay network is realized.
To effect this, we need to have a mapping between the VXLAN VNI and
the IP multicast group that it will use. This mapping is done at the
management layer and provided to the individual VTEPs through a
management channel. Using this mapping, the VTEP can provide IGMP
membership reports to the upstream switch/router to join/leave the
VXLAN-related IP multicast groups as needed. This will enable
pruning of the leaf nodes for specific multicast traffic addresses
based on whether a member is available on this host using the
specific multicast address (see [<a href="./rfc4541" title=""Considerations for Internet Group Management Protocol (IGMP) and Multicast Listener Discovery (MLD) Snooping Switches"">RFC4541</a>]). In addition, use of
<span class="grey">Mahalingam, et al. Informational [Page 8]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-9" ></span>
<span class="grey"><a href="./rfc7348">RFC 7348</a> VXLAN August 2014</span>
multicast routing protocols like Protocol Independent Multicast -
Sparse Mode (PIM-SM see [<a href="./rfc4601" title=""Protocol Independent Multicast - Sparse Mode (PIM-SM): Protocol Specification (Revised)"">RFC4601</a>]) will provide efficient multicast
trees within the Layer 3 network.
The VTEP will use (*,G) joins. This is needed as the set of VXLAN
tunnel sources is unknown and may change often, as the VMs come up /
go down across different hosts. A side note here is that since each
VTEP can act as both the source and destination for multicast
packets, a protocol like bidirectional PIM (BIDIR-PIM -- see
[<a href="./rfc5015" title=""Bidirectional Protocol Independent Multicast (BIDIR-PIM)"">RFC5015</a>]) would be more efficient.
The destination VM sends a standard ARP response using IP unicast.
This frame will be encapsulated back to the VTEP connecting the
originating VM using IP unicast VXLAN encapsulation. This is
possible since the mapping of the ARP response's destination MAC to
the VXLAN tunnel end point IP was learned earlier through the ARP
request.
Note that multicast frames and "unknown MAC destination" frames are
also sent using the multicast tree, similar to the broadcast frames.
<span class="h3"><a class="selflink" id="section-4.3" href="#section-4.3">4.3</a>. Physical Infrastructure Requirements</span>
When IP multicast is used within the network infrastructure, a
multicast routing protocol like PIM-SM can be used by the individual
Layer 3 IP routers/switches within the network. This is used to
build efficient multicast forwarding trees so that multicast frames
are only sent to those hosts that have requested to receive them.
Similarly, there is no requirement that the actual network connecting
the source VM and destination VM should be a Layer 3 network: VXLAN
can also work over Layer 2 networks. In either case, efficient
multicast replication within the Layer 2 network can be achieved
using IGMP snooping.
VTEPs MUST NOT fragment VXLAN packets. Intermediate routers may
fragment encapsulated VXLAN packets due to the larger frame size.
The destination VTEP MAY silently discard such VXLAN fragments. To
ensure end-to-end traffic delivery without fragmentation, it is
RECOMMENDED that the MTUs (Maximum Transmission Units) across the
physical network infrastructure be set to a value that accommodates
the larger frame size due to the encapsulation. Other techniques
like Path MTU discovery (see [<a href="./rfc1191" title=""Path MTU discovery"">RFC1191</a>] and [<a href="./rfc1981" title=""Path MTU Discovery for IP version 6"">RFC1981</a>]) MAY be used to
address this requirement as well.
<span class="grey">Mahalingam, et al. Informational [Page 9]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-10" ></span>
<span class="grey"><a href="./rfc7348">RFC 7348</a> VXLAN August 2014</span>
<span class="h2"><a class="selflink" id="section-5" href="#section-5">5</a>. VXLAN Frame Format</span>
The VXLAN frame format is shown below. Parsing this from the bottom
of the frame -- above the outer Frame Check Sequence (FCS), there is
an inner MAC frame with its own Ethernet header with source,
destination MAC addresses along with the Ethernet type, plus an
optional VLAN. See <a href="#section-6">Section 6</a> for further details of inner VLAN tag
handling.
The inner MAC frame is encapsulated with the following four headers
(starting from the innermost header):
VXLAN Header: This is an 8-byte field that has:
- Flags (8 bits): where the I flag MUST be set to 1 for a valid
VXLAN Network ID (VNI). The other 7 bits (designated "R") are
reserved fields and MUST be set to zero on transmission and
ignored on receipt.
- VXLAN Segment ID/VXLAN Network Identifier (VNI): this is a
24-bit value used to designate the individual VXLAN overlay
network on which the communicating VMs are situated. VMs in
different VXLAN overlay networks cannot communicate with each
other.
- Reserved fields (24 bits and 8 bits): MUST be set to zero on
transmission and ignored on receipt.
Outer UDP Header: This is the outer UDP header with a source port
provided by the VTEP and the destination port being a well-known
UDP port.
- Destination Port: IANA has assigned the value 4789 for the
VXLAN UDP port, and this value SHOULD be used by default as the
destination UDP port. Some early implementations of VXLAN have
used other values for the destination port. To enable
interoperability with these implementations, the destination
port SHOULD be configurable.
- Source Port: It is recommended that the UDP source port number
be calculated using a hash of fields from the inner packet --
one example being a hash of the inner Ethernet frame's headers.
This is to enable a level of entropy for the ECMP/load-
balancing of the VM-to-VM traffic across the VXLAN overlay.
When calculating the UDP source port number in this manner, it
is RECOMMENDED that the value be in the dynamic/private port
range 49152-65535 [<a href="./rfc6335" title=""Internet Assigned Numbers Authority (IANA) Procedures for the Management of the Service Name and Transport Protocol Port Number Registry"">RFC6335</a>].
<span class="grey">Mahalingam, et al. Informational [Page 10]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-11" ></span>
<span class="grey"><a href="./rfc7348">RFC 7348</a> VXLAN August 2014</span>
- UDP Checksum: It SHOULD be transmitted as zero. When a packet
is received with a UDP checksum of zero, it MUST be accepted
for decapsulation. Optionally, if the encapsulating end point
includes a non-zero UDP checksum, it MUST be correctly
calculated across the entire packet including the IP header,
UDP header, VXLAN header, and encapsulated MAC frame. When a
decapsulating end point receives a packet with a non-zero
checksum, it MAY choose to verify the checksum value. If it
chooses to perform such verification, and the verification
fails, the packet MUST be dropped. If the decapsulating
destination chooses not to perform the verification, or
performs it successfully, the packet MUST be accepted for
decapsulation.
Outer IP Header: This is the outer IP header with the source IP
address indicating the IP address of the VTEP over which the
communicating VM (as represented by the inner source MAC address)
is running. The destination IP address can be a unicast or
multicast IP address (see Sections <a href="#section-4.1">4.1</a> and <a href="#section-4.2">4.2</a>). When it is a
unicast IP address, it represents the IP address of the VTEP
connecting the communicating VM as represented by the inner
destination MAC address. For multicast destination IP addresses,
please refer to the scenarios detailed in <a href="#section-4.2">Section 4.2</a>.
Outer Ethernet Header (example): Figure 1 is an example of an inner
Ethernet frame encapsulated within an outer Ethernet + IP + UDP +
VXLAN header. The outer destination MAC address in this frame may
be the address of the target VTEP or of an intermediate Layer 3
router. The outer VLAN tag is optional. If present, it may be
used for delineating VXLAN traffic on the LAN.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
Outer Ethernet Header:
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Outer Destination MAC Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Outer Destination MAC Address | Outer Source MAC Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Outer Source MAC Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|OptnlEthtype = C-Tag 802.1Q | Outer.VLAN Tag Information |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Ethertype = 0x0800 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
<span class="grey">Mahalingam, et al. Informational [Page 11]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-12" ></span>
<span class="grey"><a href="./rfc7348">RFC 7348</a> VXLAN August 2014</span>
Outer IPv4 Header:
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Version| IHL |Type of Service| Total Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Identification |Flags| Fragment Offset |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Time to Live |Protocl=17(UDP)| Header Checksum |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Outer Source IPv4 Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Outer Destination IPv4 Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Outer UDP Header:
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Source Port | Dest Port = VXLAN Port |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| UDP Length | UDP Checksum |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
VXLAN Header:
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|R|R|R|R|I|R|R|R| Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| VXLAN Network Identifier (VNI) | Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Inner Ethernet Header:
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Inner Destination MAC Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Inner Destination MAC Address | Inner Source MAC Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Inner Source MAC Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|OptnlEthtype = C-Tag 802.1Q | Inner.VLAN Tag Information |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Payload:
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Ethertype of Original Payload | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
| Original Ethernet Payload |
| |
|(Note that the original Ethernet Frame's FCS is not included) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
<span class="grey">Mahalingam, et al. Informational [Page 12]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-13" ></span>
<span class="grey"><a href="./rfc7348">RFC 7348</a> VXLAN August 2014</span>
Frame Check Sequence:
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| New FCS (Frame Check Sequence) for Outer Ethernet Frame |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 1: VXLAN Frame Format with IPv4 Outer Header
The frame format above shows tunneling of Ethernet frames using IPv4
for transport. Use of VXLAN with IPv6 transport is detailed below.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
Outer Ethernet Header:
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Outer Destination MAC Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Outer Destination MAC Address | Outer Source MAC Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Outer Source MAC Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|OptnlEthtype = C-Tag 802.1Q | Outer.VLAN Tag Information |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Ethertype = 0x86DD |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Outer IPv6 Header:
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Version| Traffic Class | Flow Label |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Payload Length | NxtHdr=17(UDP)| Hop Limit |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
+ +
| |
+ Outer Source IPv6 Address +
| |
+ +
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
+ +
| |
+ Outer Destination IPv6 Address +
| |
+ +
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
<span class="grey">Mahalingam, et al. Informational [Page 13]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-14" ></span>
<span class="grey"><a href="./rfc7348">RFC 7348</a> VXLAN August 2014</span>
Outer UDP Header:
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Source Port | Dest Port = VXLAN Port |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| UDP Length | UDP Checksum |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
VXLAN Header:
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|R|R|R|R|I|R|R|R| Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| VXLAN Network Identifier (VNI) | Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Inner Ethernet Header:
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Inner Destination MAC Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Inner Destination MAC Address | Inner Source MAC Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Inner Source MAC Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|OptnlEthtype = C-Tag 802.1Q | Inner.VLAN Tag Information |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Payload:
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Ethertype of Original Payload | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
| Original Ethernet Payload |
| |
|(Note that the original Ethernet Frame's FCS is not included) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Frame Check Sequence:
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| New FCS (Frame Check Sequence) for Outer Ethernet Frame |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 2: VXLAN Frame Format with IPv6 Outer Header
<span class="h2"><a class="selflink" id="section-6" href="#section-6">6</a>. VXLAN Deployment Scenarios</span>
VXLAN is typically deployed in data centers on virtualized hosts,
which may be spread across multiple racks. The individual racks may
be parts of a different Layer 3 network or they could be in a single
Layer 2 network. The VXLAN segments/overlay networks are overlaid on
top of these Layer 2 or Layer 3 networks.
<span class="grey">Mahalingam, et al. Informational [Page 14]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-15" ></span>
<span class="grey"><a href="./rfc7348">RFC 7348</a> VXLAN August 2014</span>
Consider Figure 3, which depicts two virtualized servers attached to
a Layer 3 infrastructure. The servers could be on the same rack, on
different racks, or potentially across data centers within the same
administrative domain. There are four VXLAN overlay networks
identified by the VNIs 22, 34, 74, and 98. Consider the case of
VM1-1 in Server 1 and VM2-4 on Server 2, which are on the same VXLAN
overlay network identified by VNI 22. The VMs do not know about the
overlay networks and transport method since the encapsulation and
decapsulation happen transparently at the VTEPs on Servers 1 and 2.
The other overlay networks and the corresponding VMs are VM1-2 on
Server 1 and VM2-1 on Server 2, both on VNI 34; VM1-3 on Server 1 and
VM2-2 on Server 2 on VNI 74; and finally VM1-4 on Server 1 and VM2-3
on Server 2 on VNI 98.
<span class="grey">Mahalingam, et al. Informational [Page 15]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-16" ></span>
<span class="grey"><a href="./rfc7348">RFC 7348</a> VXLAN August 2014</span>
+------------+-------------+
| Server 1 |
| +----+----+ +----+----+ |
| |VM1-1 | |VM1-2 | |
| |VNI 22 | |VNI 34 | |
| | | | | |
| +---------+ +---------+ |
| |
| +----+----+ +----+----+ |
| |VM1-3 | |VM1-4 | |
| |VNI 74 | |VNI 98 | |
| | | | | |
| +---------+ +---------+ |
| Hypervisor VTEP (IP1) |
+--------------------------+
|
|
|
| +-------------+
| | Layer 3 |
|---| Network |
| |
+-------------+
|
|
+-----------+
|
|
+------------+-------------+
| Server 2 |
| +----+----+ +----+----+ |
| |VM2-1 | |VM2-2 | |
| |VNI 34 | |VNI 74 | |
| | | | | |
| +---------+ +---------+ |
| |
| +----+----+ +----+----+ |
| |VM2-3 | |VM2-4 | |
| |VNI 98 | |VNI 22 | |
| | | | | |
| +---------+ +---------+ |
| Hypervisor VTEP (IP2) |
+--------------------------+
Figure 3: VXLAN Deployment - VTEPs across a Layer 3 Network
<span class="grey">Mahalingam, et al. Informational [Page 16]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-17" ></span>
<span class="grey"><a href="./rfc7348">RFC 7348</a> VXLAN August 2014</span>
One deployment scenario is where the tunnel termination point is a
physical server that understands VXLAN. An alternate scenario is
where nodes on a VXLAN overlay network need to communicate with nodes
on legacy networks that could be VLAN based. These nodes may be
physical nodes or virtual machines. To enable this communication, a
network can include VXLAN gateways (see Figure 4 below with a switch
acting as a VXLAN gateway) that forward traffic between VXLAN and
non-VXLAN environments.
Consider Figure 4 for the following discussion. For incoming frames
on the VXLAN connected interface, the gateway strips out the VXLAN
header and forwards it to a physical port based on the destination
MAC address of the inner Ethernet frame. Decapsulated frames with
the inner VLAN ID SHOULD be discarded unless configured explicitly to
be passed on to the non-VXLAN interface. In the reverse direction,
incoming frames for the non-VXLAN interfaces are mapped to a specific
VXLAN overlay network based on the VLAN ID in the frame. Unless
configured explicitly to be passed on in the encapsulated VXLAN
frame, this VLAN ID is removed before the frame is encapsulated for
VXLAN.
These gateways that provide VXLAN tunnel termination functions could
be ToR/access switches or switches higher up in the data center
network topology -- e.g., core or even WAN edge devices. The last
case (WAN edge) could involve a Provider Edge (PE) router that
terminates VXLAN tunnels in a hybrid cloud environment. In all these
instances, note that the gateway functionality could be implemented
in software or hardware.
<span class="grey">Mahalingam, et al. Informational [Page 17]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-18" ></span>
<span class="grey"><a href="./rfc7348">RFC 7348</a> VXLAN August 2014</span>
+---+-----+---+ +---+-----+---+
| Server 1 | | Non-VXLAN |
(VXLAN enabled)<-----+ +---->| server |
+-------------+ | | +-------------+
| |
+---+-----+---+ | | +---+-----+---+
|Server 2 | | | | Non-VXLAN |
(VXLAN enabled)<-----+ +---+-----+---+ +---->| server |
+-------------+ | |Switch acting| | +-------------+
|---| as VXLAN |-----|
+---+-----+---+ | | Gateway |
| Server 3 | | +-------------+
(VXLAN enabled)<-----+
+-------------+ |
|
+---+-----+---+ |
| Server 4 | |
(VXLAN enabled)<-----+
+-------------+
Figure 4: VXLAN Deployment - VXLAN Gateway
<span class="h3"><a class="selflink" id="section-6.1" href="#section-6.1">6.1</a>. Inner VLAN Tag Handling</span>
Inner VLAN Tag Handling in VTEP and VXLAN gateway should conform to
the following:
Decapsulated VXLAN frames with the inner VLAN tag SHOULD be discarded
unless configured otherwise. On the encapsulation side, a VTEP
SHOULD NOT include an inner VLAN tag on tunnel packets unless
configured otherwise. When a VLAN-tagged packet is a candidate for
VXLAN tunneling, the encapsulating VTEP SHOULD strip the VLAN tag
unless configured otherwise.
<span class="h2"><a class="selflink" id="section-7" href="#section-7">7</a>. Security Considerations</span>
Traditionally, Layer 2 networks can only be attacked from 'within' by
rogue end points -- either by having inappropriate access to a LAN
and snooping on traffic, by injecting spoofed packets to 'take over'
another MAC address, or by flooding and causing denial of service. A
MAC-over-IP mechanism for delivering Layer 2 traffic significantly
extends this attack surface. This can happen by rogues injecting
themselves into the network by subscribing to one or more multicast
groups that carry broadcast traffic for VXLAN segments and also by
sourcing MAC-over-UDP frames into the transport network to inject
spurious traffic, possibly to hijack MAC addresses.
<span class="grey">Mahalingam, et al. Informational [Page 18]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-19" ></span>
<span class="grey"><a href="./rfc7348">RFC 7348</a> VXLAN August 2014</span>
This document does not incorporate specific measures against such
attacks, relying instead on other traditional mechanisms layered on
top of IP. This section, instead, sketches out some possible
approaches to security in the VXLAN environment.
Traditional Layer 2 attacks by rogue end points can be mitigated by
limiting the management and administrative scope of who deploys and
manages VMs/gateways in a VXLAN environment. In addition, such
administrative measures may be augmented by schemes like 802.1X
[<a href="#ref-802.1X" title=""IEEE Standard for Local and metropolitan area networks -- Port-Based Network Acces Control"">802.1X</a>] for admission control of individual end points. Also, the
use of the UDP-based encapsulation of VXLAN enables configuration and
use of the 5-tuple-based ACL (Access Control List) functionality in
physical switches.
Tunneled traffic over the IP network can be secured with traditional
security mechanisms like IPsec that authenticate and optionally
encrypt VXLAN traffic. This will, of course, need to be coupled with
an authentication infrastructure for authorized end points to obtain
and distribute credentials.
VXLAN overlay networks are designated and operated over the existing
LAN infrastructure. To ensure that VXLAN end points and their VTEPs
are authorized on the LAN, it is recommended that a VLAN be
designated for VXLAN traffic and the servers/VTEPs send VXLAN traffic
over this VLAN to provide a measure of security.
In addition, VXLAN requires proper mapping of VNIs and VM membership
in these overlay networks. It is expected that this mapping be done
and communicated to the management entity on the VTEP and the
gateways using existing secure methods.
<span class="h2"><a class="selflink" id="section-8" href="#section-8">8</a>. IANA Considerations</span>
A well-known UDP port (4789) has been assigned by the IANA in the
Service Name and Transport Protocol Port Number Registry for VXLAN.
See <a href="#section-5">Section 5</a> for discussion of the port number.
<span class="h2"><a class="selflink" id="section-9" href="#section-9">9</a>. References</span>
<span class="h3"><a class="selflink" id="section-9.1" href="#section-9.1">9.1</a>. Normative References</span>
[<a id="ref-RFC2119">RFC2119</a>] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", <a href="https://www.rfc-editor.org/bcp/bcp14">BCP 14</a>, <a href="./rfc2119">RFC 2119</a>, March 1997.
<span class="grey">Mahalingam, et al. Informational [Page 19]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-20" ></span>
<span class="grey"><a href="./rfc7348">RFC 7348</a> VXLAN August 2014</span>
<span class="h3"><a class="selflink" id="section-9.2" href="#section-9.2">9.2</a>. Informative References</span>
[<a id="ref-802.1aq">802.1aq</a>] IEEE, "Standard for Local and metropolitan area networks --
Media Access Control (MAC) Bridges and Virtual Bridged
Local Area Networks -- Amendment 20: Shortest Path
Bridging", IEEE P802.1aq-2012, 2012.
[<a id="ref-802.1D">802.1D</a>] IEEE, "Draft Standard for Local and Metropolitan Area
Networks/ Media Access Control (MAC) Bridges", IEEE
P802.1D-2004, 2004.
[<a id="ref-802.1X">802.1X</a>] IEEE, "IEEE Standard for Local and metropolitan area
networks -- Port-Based Network Acces Control", IEEE Std
802.1X-2010, February 2010.
[<a id="ref-RFC1191">RFC1191</a>] Mogul, J. and S. Deering, "Path MTU discovery", <a href="./rfc1191">RFC 1191</a>,
November 1990.
[<a id="ref-RFC1981">RFC1981</a>] McCann, J., Deering, S., and J. Mogul, "Path MTU Discovery
for IP version 6", <a href="./rfc1981">RFC 1981</a>, August 1996.
[<a id="ref-RFC4541">RFC4541</a>] Christensen, M., Kimball, K., and F. Solensky,
"Considerations for Internet Group Management Protocol
(IGMP) and Multicast Listener Discovery (MLD) Snooping
Switches", <a href="./rfc4541">RFC 4541</a>, May 2006.
[<a id="ref-RFC4601">RFC4601</a>] Fenner, B., Handley, M., Holbrook, H., and I. Kouvelas,
"Protocol Independent Multicast - Sparse Mode (PIM-SM):
Protocol Specification (Revised)", <a href="./rfc4601">RFC 4601</a>, August 2006.
[<a id="ref-RFC5015">RFC5015</a>] Handley, M., Kouvelas, I., Speakman, T., and L. Vicisano,
"Bidirectional Protocol Independent Multicast (BIDIR-PIM)",
<a href="./rfc5015">RFC 5015</a>, October 2007.
[<a id="ref-RFC6325">RFC6325</a>] Perlman, R., Eastlake 3rd, D., Dutt, D., Gai, S., and A.
Ghanwani, "Routing Bridges (RBridges): Base Protocol
Specification", <a href="./rfc6325">RFC 6325</a>, July 2011.
[<a id="ref-RFC6335">RFC6335</a>] Cotton, M., Eggert, L., Touch, J., Westerlund, M., and S.
Cheshire, "Internet Assigned Numbers Authority (IANA)
Procedures for the Management of the Service Name and
Transport Protocol Port Number Registry", <a href="https://www.rfc-editor.org/bcp/bcp165">BCP 165</a>, <a href="./rfc6335">RFC</a>
<a href="./rfc6335">6335</a>, August 2011.
<span class="grey">Mahalingam, et al. Informational [Page 20]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-21" ></span>
<span class="grey"><a href="./rfc7348">RFC 7348</a> VXLAN August 2014</span>
<span class="h2"><a class="selflink" id="section-10" href="#section-10">10</a>. Acknowledgments</span>
The authors wish to thank: Ajit Sanzgiri for contributions to the
Security Considerations section and editorial inputs; Joseph Cheng,
Margaret Petrus, Milin Desai, Nial de Barra, Jeff Mandin, and Siva
Kollipara for their editorial reviews, inputs, and comments.
Authors' Addresses
Mallik Mahalingam
Storvisor, Inc.
640 W. California Ave, Suite #110
Sunnyvale, CA 94086.
USA
EMail: mallik_mahalingam@yahoo.com
Dinesh G. Dutt
Cumulus Networks
140C S. Whisman Road
Mountain View, CA 94041
USA
EMail: ddutt.ietf@hobbesdutt.com
Kenneth Duda
Arista Networks
5453 Great America Parkway
Santa Clara, CA 95054
USA
EMail: kduda@arista.com
Puneet Agarwal
Broadcom Corporation
3151 Zanker Road
San Jose, CA 95134
USA
EMail: pagarwal@broadcom.com
<span class="grey">Mahalingam, et al. Informational [Page 21]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-22" ></span>
<span class="grey"><a href="./rfc7348">RFC 7348</a> VXLAN August 2014</span>
Lawrence Kreeger
Cisco Systems, Inc.
170 W. Tasman Avenue
San Jose, CA 95134
USA
EMail: kreeger@cisco.com
T. Sridhar
VMware, Inc.
3401 Hillview
Palo Alto, CA 94304
USA
EMail: tsridhar@vmware.com
Mike Bursell
Intel
Bowyer's, North Road
Great Yeldham
Halstead
Essex. C09 4QD
UK
EMail: mike.bursell@intel.com
Chris Wright
Red Hat, Inc.
100 East Davie Street
Raleigh, NC 27601
USA
EMail: chrisw@redhat.com
Mahalingam, et al. Informational [Page 22]
</pre>
|