1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893
|
<pre>Internet Engineering Task Force (IETF) M. Petit-Huguenin
Request for Comments: 7350 Jive Communications
Updates: <a href="./rfc5389">5389</a>, <a href="./rfc5928">5928</a> G. Salgueiro
Category: Standards Track Cisco Systems
ISSN: 2070-1721 August 2014
<span class="h1">Datagram Transport Layer Security (DTLS) as Transport</span>
<span class="h1">for Session Traversal Utilities for NAT (STUN)</span>
Abstract
This document specifies the usage of Datagram Transport Layer
Security (DTLS) as a transport protocol for Session Traversal
Utilities for NAT (STUN). It provides guidance on when and how to
use DTLS with the currently standardized STUN usages. It also
specifies modifications to the STUN and Traversal Using Relay NAT
(TURN) URIs and to the TURN resolution mechanism to facilitate the
resolution of STUN and TURN URIs into the IP address and port of STUN
and TURN servers supporting DTLS as a transport protocol. This
document updates RFCs 5389 and 5928.
Status of This Memo
This is an Internet Standards Track document.
This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Further information on
Internet Standards is available in <a href="./rfc5741#section-2">Section 2 of RFC 5741</a>.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
<a href="http://www.rfc-editor.org/info/rfc7350">http://www.rfc-editor.org/info/rfc7350</a>.
<span class="grey">Petit-Huguenin & Salgueiro Standards Track [Page 1]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-2" ></span>
<span class="grey"><a href="./rfc7350">RFC 7350</a> STUN over DTLS August 2014</span>
Copyright Notice
Copyright (c) 2014 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to <a href="https://www.rfc-editor.org/bcp/bcp78">BCP 78</a> and the IETF Trust's Legal
Provisions Relating to IETF Documents
(<a href="http://trustee.ietf.org/license-info">http://trustee.ietf.org/license-info</a>) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
Table of Contents
<a href="#section-1">1</a>. Introduction . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-3">3</a>
<a href="#section-2">2</a>. Terminology . . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-3">3</a>
<a href="#section-3">3</a>. DTLS as Transport for STUN . . . . . . . . . . . . . . . . . <a href="#page-3">3</a>
<a href="#section-4">4</a>. STUN Usages . . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-4">4</a>
<a href="#section-4.1">4.1</a>. NAT Discovery Usage . . . . . . . . . . . . . . . . . . . <a href="#page-4">4</a>
<a href="#section-4.1.1">4.1.1</a>. DTLS Support in STUN URIs . . . . . . . . . . . . . . <a href="#page-5">5</a>
<a href="#section-4.2">4.2</a>. Connectivity Check Usage . . . . . . . . . . . . . . . . <a href="#page-5">5</a>
<a href="#section-4.3">4.3</a>. Media Keep-Alive Usage . . . . . . . . . . . . . . . . . <a href="#page-5">5</a>
<a href="#section-4.4">4.4</a>. SIP Keep-Alive Usage . . . . . . . . . . . . . . . . . . <a href="#page-6">6</a>
<a href="#section-4.5">4.5</a>. NAT Behavior Discovery Usage . . . . . . . . . . . . . . <a href="#page-6">6</a>
<a href="#section-4.6">4.6</a>. TURN Usage . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-6">6</a>
<a href="#section-4.6.1">4.6.1</a>. DTLS Support in TURN URIs . . . . . . . . . . . . . . <a href="#page-7">7</a>
<a href="#section-4.6.2">4.6.2</a>. Resolution Mechanism for TURN over DTLS . . . . . . . <a href="#page-7">7</a>
<a href="#section-5">5</a>. Security Considerations . . . . . . . . . . . . . . . . . . . <a href="#page-8">8</a>
<a href="#section-6">6</a>. IANA Considerations . . . . . . . . . . . . . . . . . . . . . <a href="#page-9">9</a>
<a href="#section-6.1">6.1</a>. S-NAPTR Application Protocol Tag . . . . . . . . . . . . <a href="#page-9">9</a>
<a href="#section-6.2">6.2</a>. Service Name and Transport Protocol Port Number . . . . . <a href="#page-9">9</a>
<a href="#section-6.2.1">6.2.1</a>. The "stuns" Service Name . . . . . . . . . . . . . . <a href="#page-10">10</a>
<a href="#section-6.2.2">6.2.2</a>. The "turns" Service Name . . . . . . . . . . . . . . <a href="#page-11">11</a>
<a href="#section-7">7</a>. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . <a href="#page-11">11</a>
<a href="#section-8">8</a>. References . . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-12">12</a>
<a href="#section-8.1">8.1</a>. Normative References . . . . . . . . . . . . . . . . . . <a href="#page-12">12</a>
<a href="#section-8.2">8.2</a>. Informative References . . . . . . . . . . . . . . . . . <a href="#page-13">13</a>
<a href="#appendix-A">Appendix A</a>. Examples . . . . . . . . . . . . . . . . . . . . . . <a href="#page-14">14</a>
<span class="grey">Petit-Huguenin & Salgueiro Standards Track [Page 2]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-3" ></span>
<span class="grey"><a href="./rfc7350">RFC 7350</a> STUN over DTLS August 2014</span>
<span class="h2"><a class="selflink" id="section-1" href="#section-1">1</a>. Introduction</span>
STUN [<a href="./rfc5389" title=""Session Traversal Utilities for NAT (STUN)"">RFC5389</a>] defines Transport Layer Security (TLS) over TCP
(simply referred to as TLS [<a href="./rfc5246" title=""The Transport Layer Security (TLS) Protocol Version 1.2"">RFC5246</a>]) as the transport for STUN due
to additional security advantages it offers over plain UDP or TCP
transport. But, TCP (and thus TLS-over-TCP) is not an optimal
transport when STUN is used for its originally intended purpose,
which is to support multimedia sessions. This is a well documented
and understood transport limitation for real-time communications.
DTLS-over-UDP (referred to in this document as simply DTLS [<a href="./rfc6347" title=""Datagram Transport Layer Security Version 1.2"">RFC6347</a>])
offers the same security advantages as TLS-over-TCP, but without the
undesirable concerns.
<span class="h2"><a class="selflink" id="section-2" href="#section-2">2</a>. Terminology</span>
The key words "MUST", "MUST NOT", "REQUIRED", "MAY", and "OPTIONAL"
in this document are to be interpreted as described in [<a href="./rfc2119" title=""Key words for use in RFCs to Indicate Requirement Levels"">RFC2119</a>] when
they appear in ALL CAPS. When these words are not in ALL CAPS (such
as "must" or "Must"), they have their usual English meanings, and are
not to be interpreted as <a href="./rfc2119">RFC 2119</a> key words.
<span class="h2"><a class="selflink" id="section-3" href="#section-3">3</a>. DTLS as Transport for STUN</span>
STUN [<a href="./rfc5389" title=""Session Traversal Utilities for NAT (STUN)"">RFC5389</a>] defines three transports: UDP, TCP, and TLS. This
document adds DTLS as a valid transport for STUN.
STUN over DTLS MUST use the same retransmission rules as STUN over
UDP (as described in <a href="./rfc5389#section-7.2.1">Section 7.2.1 of [RFC5389]</a>). It MUST also use
the same rules that are described in <a href="./rfc5389#section-7.2.2">Section 7.2.2 of [RFC5389]</a> to
verify the server identity. Instead of TLS_RSA_WITH_AES_128_CBC_SHA,
which is the default cipher suite for STUN over TLS, implementations
of STUN over DTLS, and deployed clients and servers, MUST support
TLS_DHE_RSA_WITH_AES_128_GCM_SHA256 and
TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256, and MAY support other cipher
suites. Perfect Forward Secrecy (PFS) cipher suites MUST be
preferred over non-PFS cipher suites. Cipher suites with known
weaknesses, such as those based on (single) DES and RC4, MUST NOT be
used. Implementations MUST disable TLS-level compression. The same
rules established in <a href="./rfc5389#section-7.2.2">Section 7.2.2 of [RFC5389]</a> for keeping open and
closing TCP/TLS connections MUST be used as well for DTLS
associations.
In addition to the path MTU rules described in <a href="./rfc5389#section-7.1">Section 7.1 of
[RFC5389]</a>, if the path MTU is unknown, the actual STUN message needs
to be adjusted to take into account the size of the (13-byte) DTLS
Record header, the MAC size, and the padding size.
<span class="grey">Petit-Huguenin & Salgueiro Standards Track [Page 3]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-4" ></span>
<span class="grey"><a href="./rfc7350">RFC 7350</a> STUN over DTLS August 2014</span>
By default, STUN over DTLS MUST use port 5349, the same port number
as STUN over TLS. However, the Service Record (SRV) procedures can
be implemented to use a different port (as described in <a href="./rfc5389#section-9">Section 9 of
[RFC5389]</a>). When using SRV records, the service name MUST be set to
"stuns" and the protocol name to "udp".
Classic STUN [<a href="./rfc3489" title=""STUN - Simple Traversal of User Datagram Protocol (UDP) Through Network Address Translators (NATs)"">RFC3489</a>] (which was obsoleted by [<a href="./rfc5389" title=""Session Traversal Utilities for NAT (STUN)"">RFC5389</a>]) defines
only UDP as a transport, and DTLS MUST NOT be used. Any STUN request
or indication without the magic cookie (see <a href="./rfc5389#section-6">Section 6 of [RFC5389]</a>)
over DTLS MUST always result in an error.
<span class="h2"><a class="selflink" id="section-4" href="#section-4">4</a>. STUN Usages</span>
<a href="./rfc5389#section-7.2">Section 7.2 of [RFC5389]</a> states that STUN usages must specify which
transport protocol is used. The following sections discuss if and
how the existing STUN usages are used with DTLS as the transport.
Future STUN usages MUST take into account DTLS as a transport and
discuss its applicability. In all cases, new STUN usages MUST
explicitly state if implementing the denial-of-service countermeasure
described in <a href="./rfc6347#section-4.2.1">Section 4.2.1 of [RFC6347]</a> is mandatory.
<span class="h3"><a class="selflink" id="section-4.1" href="#section-4.1">4.1</a>. NAT Discovery Usage</span>
As stated by <a href="./rfc5389#section-13">Section 13 of [RFC5389]</a>, "...TLS provides minimal
security benefits..." for this particular STUN usage. DTLS will also
similarly offer only limited benefit. This is because the only
mandatory attribute that is TLS/DTLS protected is the
XOR-MAPPED-ADDRESS, which is already known by an on-path attacker,
since it is the same as the source address and port of the STUN
request. On the other hand, using TLS/DTLS will prevent an active
attacker to inject XOR-MAPPED-ADDRESS in responses. The TLS/DTLS
transport will also protect the SOFTWARE attribute, which can be used
to find vulnerabilities in STUN implementations.
Regardless, this usage is rarely used by itself, since using TURN
[<a href="./rfc5766" title=""Traversal Using Relays around NAT (TURN): Relay Extensions to Session Traversal Utilities for NAT (STUN)"">RFC5766</a>] with Interactive Connectivity Establishment (ICE) [<a href="./rfc5245" title=""Interactive Connectivity Establishment (ICE): A Protocol for Network Address Translator (NAT) Traversal for Offer/Answer Protocols"">RFC5245</a>]
is generally indispensable, and TURN provides the same NAT Discovery
feature as part of an allocation creation. In fact, with ICE, the
NAT Discovery usage is only used when there is no longer any resource
available for new allocations in the TURN server.
A STUN server implementing the NAT Discovery usage and using DTLS
MUST implement the denial-of-service countermeasure described in
<a href="./rfc6347#section-4.2.1">Section 4.2.1 of [RFC6347]</a>.
<span class="grey">Petit-Huguenin & Salgueiro Standards Track [Page 4]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-5" ></span>
<span class="grey"><a href="./rfc7350">RFC 7350</a> STUN over DTLS August 2014</span>
<span class="h4"><a class="selflink" id="section-4.1.1" href="#section-4.1.1">4.1.1</a>. DTLS Support in STUN URIs</span>
This document does not make any changes to the syntax of a STUN URI
[<a href="./rfc7064" title=""URI Scheme for the Session Traversal Utilities for NAT (STUN) Protocol"">RFC7064</a>]. As indicated in <a href="./rfc7064#section-3.2">Section 3.2 of [RFC7064]</a>, secure
transports like STUN over TLS, and now STUN over DTLS, MUST use the
"stuns" URI scheme.
The <host> value MUST be used when using the rules in <a href="./rfc5389#section-7.2.2">Section 7.2.2
of [RFC5389]</a> to verify the server identity. A STUN URI containing an
IP address MUST be rejected, unless the domain name is provided by
the same mechanism that provided the STUN URI, and that domain name
can be passed to the verification code.
<span class="h3"><a class="selflink" id="section-4.2" href="#section-4.2">4.2</a>. Connectivity Check Usage</span>
Using DTLS would hide the USERNAME, PRIORITY, USE-CANDIDATE,
ICE-CONTROLLED, and ICE-CONTROLLING attributes. But, because
MESSAGE-INTEGRITY protects the entire STUN response using a password
that is known only by looking at the Session Description Protocol
(SDP) exchanged, it is not possible for an attacker that does not
have access to this SDP to inject an incorrect XOR-MAPPED-ADDRESS,
which would subsequently be used as a peer reflexive candidate.
Adding DTLS on top of the connectivity check would delay, and
consequently impair, the ICE process. Adding additional round trips
to ICE is undesirable, so much that there is a proposal ([<a href="#ref-ICE-DTLS" title=""Using Datagram Transport Layer Security (DTLS) For Interactivity Connectivity Establishment (ICE) Connectivity Checking: ICE-DTLS"">ICE-DTLS</a>])
to use the DTLS handshake used by the WebRTC Secure Real-time
Transport Protocol (SRTP) streams as a replacement for the
connectivity checks.
STUN URIs are not used with this usage.
<span class="h3"><a class="selflink" id="section-4.3" href="#section-4.3">4.3</a>. Media Keep-Alive Usage</span>
When STUN Binding Indications are being used for media keep-alive
(described in <a href="./rfc5245#section-10">Section 10 of [RFC5245]</a>), it runs alongside an RTP or
RTP Control Protocol (RTCP) session. It is possible to send these
media keep-alive packets inside a separately negotiated non-SRTP DTLS
session if DTLS-SRTP [<a href="./rfc5764" title=""Datagram Transport Layer Security (DTLS) Extension to Establish Keys for the Secure Real-time Transport Protocol (SRTP)"">RFC5764</a>] is used, but that would add overhead,
with minimal security benefit.
STUN URIs are not used with this usage.
<span class="grey">Petit-Huguenin & Salgueiro Standards Track [Page 5]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-6" ></span>
<span class="grey"><a href="./rfc7350">RFC 7350</a> STUN over DTLS August 2014</span>
<span class="h3"><a class="selflink" id="section-4.4" href="#section-4.4">4.4</a>. SIP Keep-Alive Usage</span>
The SIP keep-alive (described in [<a href="./rfc5626" title=""Managing Client- Initiated Connections in the Session Initiation Protocol (SIP)"">RFC5626</a>]) runs inside a SIP flow.
This flow would be protected if a SIP over DTLS transport mechanism
is implemented (such as described in [<a href="#ref-SIP-DTLS" title=""Session Initiation Protocol (SIP) over Datagram Transport Layer Security (DTLS)"">SIP-DTLS</a>]).
STUN URIs are not used with this usage.
<span class="h3"><a class="selflink" id="section-4.5" href="#section-4.5">4.5</a>. NAT Behavior Discovery Usage</span>
The NAT Behavior Discovery usage is Experimental and to date has
never been effectively deployed. Despite this, using DTLS would add
the same security properties as for the NAT Discovery usage
(<a href="#section-4.1">Section 4.1</a>).
The STUN URI can be used to access the NAT Discovery feature of a NAT
Behavior Discovery server, but accessing the full features would
require definition of a "stun-behaviors:" URI, which is out of scope
for this document.
A STUN server implementing the NAT Behavior Discovery usage and using
DTLS MUST implement the denial-of-service countermeasure described in
<a href="./rfc6347#section-4.2.1">Section 4.2.1 of [RFC6347]</a>.
<span class="h3"><a class="selflink" id="section-4.6" href="#section-4.6">4.6</a>. TURN Usage</span>
TURN [<a href="./rfc5766" title=""Traversal Using Relays around NAT (TURN): Relay Extensions to Session Traversal Utilities for NAT (STUN)"">RFC5766</a>] defines three combinations of transports/allocations:
UDP/UDP, TCP/UDP, and TLS/UDP. This document adds DTLS/UDP as a
valid combination. A TURN server using DTLS MUST implement the
denial-of-service countermeasure described in <a href="./rfc6347#section-4.2.1">Section 4.2.1 of
[RFC6347]</a>.
[<a id="ref-RFC6062">RFC6062</a>] states that TCP allocations cannot be obtained using a UDP
association between client and server. The fact that DTLS uses UDP
implies that TCP allocations MUST NOT be obtained using a DTLS
association between client and server.
By default, TURN over DTLS uses port 5349, the same port number as
TURN over TLS. However, the SRV procedures can be implemented to use
a different port (as described in <a href="./rfc5766#section-6">Section 6 of [RFC5766]</a>). When
using SRV records, the service name MUST be set to "turns" and the
protocol name to "udp".
<span class="grey">Petit-Huguenin & Salgueiro Standards Track [Page 6]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-7" ></span>
<span class="grey"><a href="./rfc7350">RFC 7350</a> STUN over DTLS August 2014</span>
<span class="h4"><a class="selflink" id="section-4.6.1" href="#section-4.6.1">4.6.1</a>. DTLS Support in TURN URIs</span>
This document does not make any changes to the syntax of a TURN URI
[<a href="./rfc7065" title=""Traversal Using Relays around NAT (TURN) Uniform Resource Identifiers"">RFC7065</a>]. As indicated in <a href="./rfc7065#section-3">Section 3 of [RFC7065]</a>, secure transports
like TURN over TLS, and now TURN over DTLS, MUST use the "turns" URI
scheme. When using the "turns" URI scheme to designate TURN over
DTLS, the transport value of the TURN URI, if set, MUST be "udp".
The <host> value MUST be used when using the rules in <a href="./rfc5389#section-7.2.2">Section 7.2.2
of [RFC5389]</a> to verify the server identity. A TURN URI containing an
IP address MUST be rejected, unless the domain is provided by the
same mechanism that provided the TURN URI, and that domain name can
be passed to the verification code.
<span class="h4"><a class="selflink" id="section-4.6.2" href="#section-4.6.2">4.6.2</a>. Resolution Mechanism for TURN over DTLS</span>
This document defines a new Straightforward-Naming Authority Pointer
(S-NAPTR) application protocol tag: "turn.dtls".
The <transport> component, as provisioned or resulting from the
parsing of a TURN URI, is passed without modification to the TURN
resolution mechanism defined in <a href="./rfc5928#section-3">Section 3 of [RFC5928]</a>, but with the
following alterations to that algorithm:
o The acceptable values for the transport name are extended with the
addition of "dtls".
o The acceptable values in the ordered list of supported TURN
transports is extended with the addition of "Datagram Transport
Layer Security (DTLS)".
o The resolution algorithm check rules list is extended with the
addition of the following step:
If <secure> is true and <transport> is defined as "udp" but the
list of TURN transports supported by the application does not
contain DTLS, then the resolution MUST stop with an error.
o The 5th rule of the resolution algorithm check rules list is
modified to read like this:
If <secure> is true and <transport> is not defined but the list
of TURN transports supported by the application does not
contain TLS or DTLS, then the resolution MUST stop with an
error.
<span class="grey">Petit-Huguenin & Salgueiro Standards Track [Page 7]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-8" ></span>
<span class="grey"><a href="./rfc7350">RFC 7350</a> STUN over DTLS August 2014</span>
o Table 1 is modified to add the following line:
+----------+-------------+----------------+
| <secure> | <transport> | TURN Transport |
+----------+-------------+----------------+
| true | "udp" | DTLS |
+----------+-------------+----------------+
o In step 1 of the resolution algorithm, the default port for DTLS
is 5349.
o In step 4 of the resolution algorithm, the following is added to
the list of conversions between the filtered list of TURN
transports supported by the application and application protocol
tags:
"turn.dtls" is used if the TURN transport is DTLS.
Note that using the resolution mechanism in [<a href="./rfc5928" title=""Traversal Using Relays around NAT (TURN) Resolution Mechanism"">RFC5928</a>] does not imply
that additional round trips to the DNS server will be needed (e.g.,
the TURN client will start immediately if the TURN URI contains an IP
address).
<span class="h2"><a class="selflink" id="section-5" href="#section-5">5</a>. Security Considerations</span>
STUN over DTLS as a STUN transport does not introduce any specific
security considerations beyond those for STUN over TLS detailed in
[<a href="./rfc5389" title=""Session Traversal Utilities for NAT (STUN)"">RFC5389</a>].
The usage of "udp" as a transport parameter with the "stuns" URI
scheme does not introduce any specific security issues beyond those
discussed in [<a href="./rfc7064" title=""URI Scheme for the Session Traversal Utilities for NAT (STUN) Protocol"">RFC7064</a>].
TURN over DTLS as a TURN transport does not introduce any specific
security considerations beyond those for TURN over TLS detailed in
[<a href="./rfc5766" title=""Traversal Using Relays around NAT (TURN): Relay Extensions to Session Traversal Utilities for NAT (STUN)"">RFC5766</a>].
The usage of "udp" as a transport parameter with the "turns" URI
scheme does not introduce any specific security issues beyond those
discussed in [<a href="./rfc7065" title=""Traversal Using Relays around NAT (TURN) Uniform Resource Identifiers"">RFC7065</a>].
The new S-NAPTR application protocol tag defined in this document as
well as the modifications this document makes to the TURN resolution
mechanism described in [<a href="./rfc5928" title=""Traversal Using Relays around NAT (TURN) Resolution Mechanism"">RFC5928</a>] do not introduce any additional
security considerations beyond those outlined in [<a href="./rfc5928" title=""Traversal Using Relays around NAT (TURN) Resolution Mechanism"">RFC5928</a>].
<span class="grey">Petit-Huguenin & Salgueiro Standards Track [Page 8]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-9" ></span>
<span class="grey"><a href="./rfc7350">RFC 7350</a> STUN over DTLS August 2014</span>
<span class="h2"><a class="selflink" id="section-6" href="#section-6">6</a>. IANA Considerations</span>
<span class="h3"><a class="selflink" id="section-6.1" href="#section-6.1">6.1</a>. S-NAPTR Application Protocol Tag</span>
This specification contains the registration information for one
S-NAPTR application protocol tag in the "Straightforward-NAPTR
(S-NAPTR) Parameters" registry under "S-NAPTR Application Protocol
Tags" (in accordance with [<a href="./rfc3958" title=""Domain-Based Application Service Location Using SRV RRs and the Dynamic Delegation Discovery Service (DDDS)"">RFC3958</a>]).
Application Protocol Tag: turn.dtls
Intended Usage: See <a href="#section-4.6.2">Section 4.6.2</a>
Interoperability considerations: N/A
Security considerations: See <a href="#section-5">Section 5</a>
Relevant publications: This document
Contact information: Marc Petit-Huguenin <petithug@acm.org>
Author/Change controller: The IESG
<span class="h3"><a class="selflink" id="section-6.2" href="#section-6.2">6.2</a>. Service Name and Transport Protocol Port Number</span>
This specification contains the registration information for two
Service Name and Transport Protocol Port Numbers in the "Service
Names and Transport Protocol Port Numbers/Service Name and Transport
Protocol Port Number" registry (in accordance with [<a href="./rfc6335" title=""Internet Assigned Numbers Authority (IANA) Procedures for the Management of the Service Name and Transport Protocol Port Number Registry"">RFC6335</a>]).
<span class="grey">Petit-Huguenin & Salgueiro Standards Track [Page 9]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-10" ></span>
<span class="grey"><a href="./rfc7350">RFC 7350</a> STUN over DTLS August 2014</span>
<span class="h4"><a class="selflink" id="section-6.2.1" href="#section-6.2.1">6.2.1</a>. The "stuns" Service Name</span>
IANA has modified the following entry in the registry "Service Names
and Transport Protocol Port Numbers/Service Name and Transport
Protocol Port Number":
Service Name: stuns
PortNumber: 5349
Transport Protocol: udp
Description: Reserved for a future enhancement of STUN
Assignee:
Contact:
Reference: <a href="./rfc5389">RFC 5389</a>
So that it contains the following:
Service Name: stuns
Port Number: 5349
Transport Protocol: udp
Description: STUN over DTLS
Assignee: IESG
Contact: IETF Chair <chair@ietf.org>
Reference: <a href="./rfc7350">RFC 7350</a>
Assignment Notes: This service name was initially created by
<a href="./rfc5389">RFC 5389</a>.
<span class="grey">Petit-Huguenin & Salgueiro Standards Track [Page 10]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-11" ></span>
<span class="grey"><a href="./rfc7350">RFC 7350</a> STUN over DTLS August 2014</span>
<span class="h4"><a class="selflink" id="section-6.2.2" href="#section-6.2.2">6.2.2</a>. The "turns" Service Name</span>
IANA has modified the following entry in the registry "Service Names
and Transport Protocol Port Numbers/Service Name and Transport
Protocol Port Number":
Service Name: turns
Port Number: 5349
Transport Protocol: udp
Description: Reserved for a future enhancement of TURN
Assignee:
Contact:
Reference: <a href="./rfc5766">RFC 5766</a>
So that it contains the following:
Service Name: turns
Port Number: 5349
Transport Protocol: udp
Description: TURN over DTLS
Assignee: IESG
Contact: IETF Chair <chair@ietf.org>
Reference: <a href="./rfc7350">RFC 7350</a>
Assignment Notes: This service name was initially created by
<a href="./rfc5766">RFC 5766</a>.
<span class="h2"><a class="selflink" id="section-7" href="#section-7">7</a>. Acknowledgements</span>
Thanks to Alan Johnston, Oleg Moskalenko, Simon Perreault, Thomas
Stach, Simon Josefsson, Roni Even, Kathleen Moriarty, Benoit Claise,
Martin Stiemerling, Jari Arkko, and Stephen Farrell for the comments,
suggestions, and questions that helped improve this document.
<span class="grey">Petit-Huguenin & Salgueiro Standards Track [Page 11]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-12" ></span>
<span class="grey"><a href="./rfc7350">RFC 7350</a> STUN over DTLS August 2014</span>
<span class="h2"><a class="selflink" id="section-8" href="#section-8">8</a>. References</span>
<span class="h3"><a class="selflink" id="section-8.1" href="#section-8.1">8.1</a>. Normative References</span>
[<a id="ref-RFC2119">RFC2119</a>] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", <a href="https://www.rfc-editor.org/bcp/bcp14">BCP 14</a>, <a href="./rfc2119">RFC 2119</a>, March 1997.
[<a id="ref-RFC3489">RFC3489</a>] Rosenberg, J., Weinberger, J., Huitema, C., and R. Mahy,
"STUN - Simple Traversal of User Datagram Protocol (UDP)
Through Network Address Translators (NATs)", <a href="./rfc3489">RFC 3489</a>,
March 2003.
[<a id="ref-RFC3958">RFC3958</a>] Daigle, L. and A. Newton, "Domain-Based Application
Service Location Using SRV RRs and the Dynamic Delegation
Discovery Service (DDDS)", <a href="./rfc3958">RFC 3958</a>, January 2005.
[<a id="ref-RFC5245">RFC5245</a>] Rosenberg, J., "Interactive Connectivity Establishment
(ICE): A Protocol for Network Address Translator (NAT)
Traversal for Offer/Answer Protocols", <a href="./rfc5245">RFC 5245</a>, April
2010.
[<a id="ref-RFC5246">RFC5246</a>] Dierks, T. and E. Rescorla, "The Transport Layer Security
(TLS) Protocol Version 1.2", <a href="./rfc5246">RFC 5246</a>, August 2008.
[<a id="ref-RFC5389">RFC5389</a>] Rosenberg, J., Mahy, R., Matthews, P., and D. Wing,
"Session Traversal Utilities for NAT (STUN)", <a href="./rfc5389">RFC 5389</a>,
October 2008.
[<a id="ref-RFC5626">RFC5626</a>] Jennings, C., Mahy, R., and F. Audet, "Managing Client-
Initiated Connections in the Session Initiation Protocol
(SIP)", <a href="./rfc5626">RFC 5626</a>, October 2009.
[<a id="ref-RFC5764">RFC5764</a>] McGrew, D. and E. Rescorla, "Datagram Transport Layer
Security (DTLS) Extension to Establish Keys for the Secure
Real-time Transport Protocol (SRTP)", <a href="./rfc5764">RFC 5764</a>, May 2010.
[<a id="ref-RFC5766">RFC5766</a>] Mahy, R., Matthews, P., and J. Rosenberg, "Traversal Using
Relays around NAT (TURN): Relay Extensions to Session
Traversal Utilities for NAT (STUN)", <a href="./rfc5766">RFC 5766</a>, April 2010.
[<a id="ref-RFC5928">RFC5928</a>] Petit-Huguenin, M., "Traversal Using Relays around NAT
(TURN) Resolution Mechanism", <a href="./rfc5928">RFC 5928</a>, August 2010.
[<a id="ref-RFC6062">RFC6062</a>] Perreault, S. and J. Rosenberg, "Traversal Using Relays
around NAT (TURN) Extensions for TCP Allocations", <a href="./rfc6062">RFC</a>
<a href="./rfc6062">6062</a>, November 2010.
<span class="grey">Petit-Huguenin & Salgueiro Standards Track [Page 12]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-13" ></span>
<span class="grey"><a href="./rfc7350">RFC 7350</a> STUN over DTLS August 2014</span>
[<a id="ref-RFC6335">RFC6335</a>] Cotton, M., Eggert, L., Touch, J., Westerlund, M., and S.
Cheshire, "Internet Assigned Numbers Authority (IANA)
Procedures for the Management of the Service Name and
Transport Protocol Port Number Registry", <a href="https://www.rfc-editor.org/bcp/bcp165">BCP 165</a>, <a href="./rfc6335">RFC</a>
<a href="./rfc6335">6335</a>, August 2011.
[<a id="ref-RFC6347">RFC6347</a>] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
Security Version 1.2", <a href="./rfc6347">RFC 6347</a>, January 2012.
[<a id="ref-RFC7064">RFC7064</a>] Nandakumar, S., Salgueiro, G., Jones, P., and M. Petit-
Huguenin, "URI Scheme for the Session Traversal Utilities
for NAT (STUN) Protocol", <a href="./rfc7064">RFC 7064</a>, November 2013.
[<a id="ref-RFC7065">RFC7065</a>] Petit-Huguenin, M., Nandakumar, S., Salgueiro, G., and P.
Jones, "Traversal Using Relays around NAT (TURN) Uniform
Resource Identifiers", <a href="./rfc7065">RFC 7065</a>, November 2013.
<span class="h3"><a class="selflink" id="section-8.2" href="#section-8.2">8.2</a>. Informative References</span>
[<a id="ref-ICE-DTLS">ICE-DTLS</a>] Thomson, M., "Using Datagram Transport Layer Security
(DTLS) For Interactivity Connectivity Establishment (ICE)
Connectivity Checking: ICE-DTLS", Work in Progress, March
2012.
[<a id="ref-SIP-DTLS">SIP-DTLS</a>] Jennings, C. and N. Modadugu, "Session Initiation Protocol
(SIP) over Datagram Transport Layer Security (DTLS)", Work
in Progress, October 2007.
<span class="grey">Petit-Huguenin & Salgueiro Standards Track [Page 13]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-14" ></span>
<span class="grey"><a href="./rfc7350">RFC 7350</a> STUN over DTLS August 2014</span>
<span class="h2"><a class="selflink" id="appendix-A" href="#appendix-A">Appendix A</a>. Examples</span>
Table 1 shows how the <secure>, <port>, and <transport> components
are populated for a TURN URI that uses DTLS as its transport. For
all these examples, the <host> component is populated with
"example.net".
+---------------------------------+----------+--------+-------------+
| URI | <secure> | <port> | <transport> |
+---------------------------------+----------+--------+-------------+
| turns:example.net?transport=udp | true | | DTLS |
+---------------------------------+----------+--------+-------------+
Table 1
With the DNS Resource Records (RRs) in Figure 1 and an ordered TURN
transport list of {DTLS, TLS, TCP, UDP}, the resolution algorithm
will convert the TURN URI "turns:example.net" to the ordered list of
IP address, port, and protocol tuples in Table 2.
example.net.
IN NAPTR 100 10 "" RELAY:turn.udp:turn.dtls "" datagram.example.net.
IN NAPTR 200 10 "" RELAY:turn.tcp:turn.tls "" stream.example.net.
datagram.example.net.
IN NAPTR 100 10 S RELAY:turn.udp "" _turn._udp.example.net.
IN NAPTR 200 10 S RELAY:turn.dtls "" _turns._udp.example.net.
stream.example.net.
IN NAPTR 100 10 S RELAY:turn.tcp "" _turn._tcp.example.net.
IN NAPTR 200 10 A RELAY:turn.tls "" a.example.net.
_turn._udp.example.net.
IN SRV 0 0 3478 a.example.net.
_turn._tcp.example.net.
IN SRV 0 0 5000 a.example.net.
_turns._udp.example.net.
IN SRV 0 0 5349 a.example.net.
a.example.net.
IN A 192.0.2.1
Figure 1
<span class="grey">Petit-Huguenin & Salgueiro Standards Track [Page 14]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-15" ></span>
<span class="grey"><a href="./rfc7350">RFC 7350</a> STUN over DTLS August 2014</span>
+-------+----------+------------+------+
| Order | Protocol | IP address | Port |
+-------+----------+------------+------+
| 1 | DTLS | 192.0.2.1 | 5349 |
| 2 | TLS | 192.0.2.1 | 5349 |
+-------+----------+------------+------+
Table 2
<span class="grey">Petit-Huguenin & Salgueiro Standards Track [Page 15]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-16" ></span>
<span class="grey"><a href="./rfc7350">RFC 7350</a> STUN over DTLS August 2014</span>
Authors' Addresses
Marc Petit-Huguenin
Jive Communications
1275 West 1600 North, Suite 100
Orem, UT 84057
USA
EMail: marcph@getjive.com
Gonzalo Salgueiro
Cisco Systems
7200-12 Kit Creek Road
Research Triangle Park, NC 27709
USA
EMail: gsalguei@cisco.com
Petit-Huguenin & Salgueiro Standards Track [Page 16]
</pre>
|