1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
|
<pre>Internet Engineering Task Force (IETF) P. Dutta
Request for Comments: 7392 M. Bocci
Category: Standards Track Alcatel-Lucent
ISSN: 2070-1721 L. Martini
Cisco Systems
December 2014
<span class="h1">Explicit Path Routing for Dynamic Multi-Segment Pseudowires</span>
Abstract
When set up through an explicit path, dynamic Multi-Segment
Pseudowires (MS-PWs) may be required to provide a simple solution for
1:1 protection with diverse primary and backup MS-PWs for a service,
or to enable controlled signaling (strict or loose) for special MS-
PWs. This document specifies the extensions and procedures required
to enable dynamic MS-PWs to be established along explicit paths.
Status of This Memo
This is an Internet Standards Track document.
This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Further information on
Internet Standards is available in <a href="./rfc5741#section-2">Section 2 of RFC 5741</a>.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
<a href="http://www.rfc-editor.org/info/rfc7392">http://www.rfc-editor.org/info/rfc7392</a>.
Copyright Notice
Copyright (c) 2014 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to <a href="https://www.rfc-editor.org/bcp/bcp78">BCP 78</a> and the IETF Trust's Legal
Provisions Relating to IETF Documents
(<a href="http://trustee.ietf.org/license-info">http://trustee.ietf.org/license-info</a>) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
<span class="grey">Dutta, et al. Standards Track [Page 1]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-2" ></span>
<span class="grey"><a href="./rfc7392">RFC 7392</a> MS-PW Explicit Routing December 2014</span>
Table of Contents
<a href="#section-1">1</a>. Introduction ....................................................<a href="#page-2">2</a>
<a href="#section-2">2</a>. Requirements Language and Terminology ...........................<a href="#page-3">3</a>
<a href="#section-3">3</a>. Explicit Path in MS-PW Signaling ................................<a href="#page-3">3</a>
<a href="#section-3.1">3.1</a>. S-PE Addressing ............................................<a href="#page-3">3</a>
<a href="#section-3.2">3.2</a>. Explicit Route TLV (ER-TLV) ................................<a href="#page-3">3</a>
<a href="#section-3.3">3.3</a>. Explicit Route Hop TLV (ER-Hop TLV) ........................<a href="#page-4">4</a>
<a href="#section-3.4">3.4</a>. ER-Hop Semantics ...........................................<a href="#page-4">4</a>
<a href="#section-3.4.1">3.4.1</a>. ER-Hop Type: IPv4 Prefix ............................<a href="#page-4">4</a>
<a href="#section-3.4.2">3.4.2</a>. ER-Hop Type: IPv6 Prefix ............................<a href="#page-4">4</a>
<a href="#section-3.4.3">3.4.3</a>. ER-Hop Type: L2 PW Address ..........................<a href="#page-5">5</a>
<a href="#section-4">4</a>. Explicit Route TLV Processing ...................................<a href="#page-6">6</a>
<a href="#section-4.1">4.1</a>. Next-Hop Selection .........................................<a href="#page-6">6</a>
<a href="#section-4.2">4.2</a>. Adding ER Hops to the Explicit Route TLV ...................<a href="#page-8">8</a>
<a href="#section-5">5</a>. IANA Considerations .............................................<a href="#page-8">8</a>
<a href="#section-6">6</a>. Security Considerations .........................................<a href="#page-8">8</a>
<a href="#section-7">7</a>. Normative References ............................................<a href="#page-9">9</a>
Acknowledgements ...................................................<a href="#page-9">9</a>
Authors' Addresses ................................................<a href="#page-10">10</a>
<span class="h2"><a class="selflink" id="section-1" href="#section-1">1</a>. Introduction</span>
Procedures for dynamically establishing Multi-Segment Pseudowires
(MS-PWs), where their paths are automatically determined using a
dynamic routing protocol, are defined in [<a href="./rfc7267" title=""Dynamic Placement of Multi-Segment Pseudowires"">RFC7267</a>]. For 1:1
protection of MS-PWs with primary and backup paths, MS-PWs need to be
established through a diverse set of Switching Provider Edges (S-PEs)
to avoid any single points of failure at the PW level. [<a href="./rfc7267" title=""Dynamic Placement of Multi-Segment Pseudowires"">RFC7267</a>]
allows this through BGP-based mechanisms. This document defines an
additional mechanism that allows Source Terminating Provider Edges
(ST-PEs) to explicitly choose the path that a PW would take through
the intervening S-PEs. Explicit path routing of dynamic MS-PWs may
also be required for controlled setup of dynamic MS-PWs and network
resource management.
Note that in many deployments the ST-PE will not have a view of the
topology of S-PEs and so the explicit route will need to be supplied
from a management application. How that management application
determines the explicit route is outside the scope of this document.
<span class="grey">Dutta, et al. Standards Track [Page 2]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-3" ></span>
<span class="grey"><a href="./rfc7392">RFC 7392</a> MS-PW Explicit Routing December 2014</span>
<span class="h2"><a class="selflink" id="section-2" href="#section-2">2</a>. Requirements Language and Terminology</span>
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [<a href="./rfc2119" title=""Key words for use in RFCs to Indicate Requirement Levels"">RFC2119</a>].
This document uses the terminology defined in [<a href="./rfc7267" title=""Dynamic Placement of Multi-Segment Pseudowires"">RFC7267</a>], [<a href="./rfc4447" title=""Pseudowire Setup and Maintenance Using the Label Distribution Protocol (LDP)"">RFC4447</a>],
and [<a href="./rfc5036" title=""LDP Specification"">RFC5036</a>].
The following additional terminology is used:
Abstract Node: A group of nodes (S-PEs) representing an explicit hop
along the path of an MS-PW. An abstract node is identified by an
IPv4, IPv6, or S-PE address.
<span class="h2"><a class="selflink" id="section-3" href="#section-3">3</a>. Explicit Path in MS-PW Signaling</span>
This section describes the Label Distribution Protocol (LDP)
extensions required for signaling explicit paths in dynamic MS-PW
setup messages. An explicitly routed MS-PW is set up using a Label
Mapping message that carries an ordered list of the S-PEs that the
MS-PW is expected to traverse. The ordered list is encoded as a
series of Explicit Route Hop TLVs (ER-Hop TLVs) encoded in an ER-TLV
that is carried in a Label Mapping message.
<span class="h3"><a class="selflink" id="section-3.1" href="#section-3.1">3.1</a>. S-PE Addressing</span>
An S-PE address is used to identify a given S-PE among the set of
S-PEs belonging to the Packet Switched Networks (PSNs) that may be
used by an MS-PW. Each S-PE MUST be assigned an address as specified
in <a href="./rfc7267#section-3.2">Section 3.2 of [RFC7267]</a>. An S-PE that is capable of dynamic
MS-PW signaling, but has not been assigned an S-PE address, and that
receives a Label Mapping message for a dynamic MS-PW MUST follow the
procedures in <a href="./rfc7267#section-3.2">Section 3.2 of [RFC7267]</a>.
<span class="h3"><a class="selflink" id="section-3.2" href="#section-3.2">3.2</a>. Explicit Route TLV (ER-TLV)</span>
The ER-TLV specifies the path to be taken by the MS-PW being
established. Each hop along the path is represented by an abstract
node, which is a group of one or more S-PEs, identified by an IPv4,
IPv6, or S-PE address. The ER-TLV format is as per <a href="./rfc3212#section-4.1">Section 4.1 of
[RFC3212]</a>.
The ER-TLV contains one or more ER-Hop TLVs as defined in
<a href="#section-3.3">Section 3.3</a>.
<span class="grey">Dutta, et al. Standards Track [Page 3]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-4" ></span>
<span class="grey"><a href="./rfc7392">RFC 7392</a> MS-PW Explicit Routing December 2014</span>
<span class="h3"><a class="selflink" id="section-3.3" href="#section-3.3">3.3</a>. Explicit Route Hop TLV (ER-Hop TLV)</span>
The contents of an ER-TLV are a series of variable-length ER-Hop
TLVs. Each hop contains the identification of an "abstract node"
that represents the hop to be traversed. The ER-Hop TLV format is as
specified in <a href="./rfc3212#section-4.2">Section 4.2 of [RFC3212]</a>.
[<a id="ref-RFC3212">RFC3212</a>] defines four ER-Hop TLV Types: IPv4 Prefix, IPv6 Prefix,
Autonomous System Number, and LSP-ID. This document specifies the
following new ER-Hop TLV Type:
Value Type
------ --------------------------------
0x0805 L2 PW Address of Switching Point
ER-Hop TLV
Details of the ER-Hop semantics are defined in <a href="#section-3.4">Section 3.4</a>.
<span class="h3"><a class="selflink" id="section-3.4" href="#section-3.4">3.4</a>. ER-Hop Semantics</span>
This section describes the various semantics associated with the
ER-Hop TLV.
<span class="h4"><a class="selflink" id="section-3.4.1" href="#section-3.4.1">3.4.1</a>. ER-Hop Type: IPv4 Prefix</span>
The semantics of the IPv4 ER-Hop TLV Type are specified in <a href="./rfc3212#section-4.7.1">[RFC3212],
Section 4.7.1</a>.
<span class="h4"><a class="selflink" id="section-3.4.2" href="#section-3.4.2">3.4.2</a>. ER-Hop Type: IPv6 Prefix</span>
The semantics of the IPv6 ER-Hop TLV Type are specified in <a href="./rfc3212#section-4.7.2">[RFC3212],
Section 4.7.2</a>.
<span class="grey">Dutta, et al. Standards Track [Page 4]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-5" ></span>
<span class="grey"><a href="./rfc7392">RFC 7392</a> MS-PW Explicit Routing December 2014</span>
<span class="h4"><a class="selflink" id="section-3.4.3" href="#section-3.4.3">3.4.3</a>. ER-Hop Type: L2 PW Address</span>
The semantics of the L2 PW Address ER-Hop TLV Type, which contains
the L2 PW Address derived from the Generalized PWid Forwarding
Equivalence Class (FEC) AII Type 2 structure as defined in [<a href="./rfc5003" title=""Attachment Individual Identifier (AII) Types for Aggregation"">RFC5003</a>],
are as follows.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|U|F| ER-Hop Type | Length = 18 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|L| Reserved | PreLen |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| AII Type=02 | Length | Global ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Global ID (contd.) | Prefix |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Prefix (contd.) | AC ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| AC ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
U/F
These bits MUST be set to zero and the procedures of
[<a href="./rfc5036" title=""LDP Specification"">RFC5036</a>] followed when the TLV is not known to the
receiving node.
Type
A fourteen-bit field carrying the value of the ER-Hop 3,
L2 PW Address, Value = 0x0805.
Length
Specifies the length of the value field in bytes = 18.
L Bit
Set to indicate a loose hop.
Cleared to indicate a strict hop.
Reserved
Zero on transmission. Ignored on receipt.
PreLen
Prefix Length 1-96 (including the length of the Global ID,
Prefix, and AC ID fields).
<span class="grey">Dutta, et al. Standards Track [Page 5]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-6" ></span>
<span class="grey"><a href="./rfc7392">RFC 7392</a> MS-PW Explicit Routing December 2014</span>
All other fields (AII Type, Length, Global ID, Prefix, and AC ID)
define the L2 PW Address and are to be set and interpreted as
defined in <a href="./rfc5003#section-3.2">Section 3.2 of [RFC5003]</a>.
<span class="h2"><a class="selflink" id="section-4" href="#section-4">4</a>. Explicit Route TLV Processing</span>
<span class="h3"><a class="selflink" id="section-4.1" href="#section-4.1">4.1</a>. Next-Hop Selection</span>
A PW Label Mapping message containing an Explicit Route TLV specifies
the next hop for a given MS-PW path. Selection of this next hop by
the ST-PE or S-PE inserting the ER-Hop TLV may involve a selection
from a set of possible alternatives. The mechanism for making a
selection from this set is implementation specific and is outside the
scope of this document. The mechanism used to select a particular
path is also outside the scope of this document, but each node MUST
determine a loop-free path if it is to signal the MS-PW. <a href="./rfc6073#section-7.6">[RFC6073],
Section 7.6</a> provides a mechanism by which a node can check that the
path taken by an MS-PW does not include loops.
As noted in <a href="#section-1">Section 1</a>, in many deployments the ST-PE will not have a
view of the topology of S-PEs and so the path will need to be
supplied from a management application.
If a loop-free path cannot be found by an ST-PE or S-PE, then a node
MUST NOT attempt to signal the MS-PW. For an S-PE, if it cannot
determine a loop-free path, then the received Label Mapping message
MUST be released with a status code of "PW Loop Detected" as per
<a href="./rfc7267#section-4.2.3">Section 4.2.3 of [RFC7267]</a>.
To determine the next hop for the MS-PW path, a node performs the
following steps. Note that these procedures assume that a valid S-PE
address has been assigned to the node, as per <a href="#section-3.1">Section 3.1</a>, above.
1. The node receiving the Label Mapping message that contains an
ER-TLV MUST evaluate the first ER-Hop. If the L bit is not set
in the first ER-Hop and if the node is not part of the abstract
node described by the first ER-Hop (i.e., it does not lie within
the prefix as determined by the prefix length specified in the
ER-Hop TLV), it has received the message in error. Therefore,
the node MUST reply with a Label Release message with a "Bad
Initial ER-Hop Error" (0x04000004) status code. If the L bit is
set and the local node is not part of the abstract node described
by the first ER-Hop, the node selects a next hop that is along
the path to the abstract node described by the first ER-Hop. If
there is no ER-Hop TLV contained in the ER-TLV, the message is
also in error, and the node SHOULD return a "Bad Explicit Routing
TLV Error" (0x04000001) status code in a Label Release message
sent to the upstream node. Note that this statement does not
<span class="grey">Dutta, et al. Standards Track [Page 6]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-7" ></span>
<span class="grey"><a href="./rfc7392">RFC 7392</a> MS-PW Explicit Routing December 2014</span>
preclude a Label Mapping message with no ER-TLV. If a Label
Mapping message with no ER-TLV is received, then it MUST be
processed as per [<a href="./rfc7267" title=""Dynamic Placement of Multi-Segment Pseudowires"">RFC7267</a>].
2. If there are no further ER-Hop TLVs following the first ER-Hop
TLV, this indicates the end of the explicit route. The Explicit
Route TLV MUST be removed from the Label Mapping message. This
node may or may not be the end of the PW. Processing continues
as per <a href="#section-4.2">Section 4.2</a>, where a new Explicit Route TLV MAY be added
to the Label Mapping message.
3. If a second ER-Hop TLV does exist, and the node is also a part of
the abstract node described by the second ER-Hop, then the node
deletes the first ER-Hop and continues processing with step 2,
above. Note that this makes the second ER-Hop into the first
ER-Hop for the iteration for the next PW segment.
4. The node determines if it is topologically adjacent to the
abstract node described by the second ER-Hop. That is, it is
directly connected to the next node by a PW control-plane
adjacency. If so, the node selects a particular next hop that is
a member of the abstract node. The node then deletes the first
ER-Hop and continues processing as per <a href="#section-4.2">Section 4.2</a>, below.
5. Next, the node selects a next hop within the abstract node of the
first ER-Hop that is along the path to the abstract node of the
second ER-Hop. If no such path exists, then there are two cases:
A. If the second ER-Hop is a strict ER Hop, then there is an
error, and the node MUST return a Label Release message to
the upstream node with a "Bad Strict Node Error" (0x04000002)
status code.
B. Otherwise, if the second ER-Hop is a loose ER Hop, then the
node selects any next hop that is along the path to the next
abstract node. If no path exists within the MPLS domain,
then there is an error, and the node MUST return a Label
Release message to the upstream node with a "Bad Loose Node
Error" (0x04000003) status code.
6. Finally, the node replaces the first ER-Hop with any ER Hop that
denotes an abstract node containing the next hop. This is
necessary so that when the explicit route is received by the next
hop, it will be accepted.
7. Progress the Label Mapping message to the next hop.
<span class="grey">Dutta, et al. Standards Track [Page 7]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-8" ></span>
<span class="grey"><a href="./rfc7392">RFC 7392</a> MS-PW Explicit Routing December 2014</span>
<span class="h3"><a class="selflink" id="section-4.2" href="#section-4.2">4.2</a>. Adding ER Hops to the Explicit Route TLV</span>
After selecting a next hop, the node MAY alter the explicit route in
the following ways.
If, as part of executing the algorithm in <a href="#section-4.1">Section 4.1</a>, the Explicit
Route TLV is removed, then the node MAY add a new Explicit Route TLV.
Otherwise, if the node is a member of the abstract node for the first
ER-Hop, then a series of ER Hops MAY be inserted before the First ER
Hop or the first ER-Hop MAY be replaced. Each ER Hop in this series
MUST denote an abstract node that is a subset of the current abstract
node.
Alternately, if the first ER-Hop is a loose ER Hop, an arbitrary
series of ER Hops MAY be inserted prior to the first ER-Hop.
<span class="h2"><a class="selflink" id="section-5" href="#section-5">5</a>. IANA Considerations</span>
<a href="./rfc5036">RFC 5036</a> [<a href="./rfc5036" title=""LDP Specification"">RFC5036</a>] defines the LDP TLV name space, which is
maintained by IANA, in the LDP "TLV Type Name Space" registry. TLV
types for the Explicit Route TLV, the IPv4 Prefix ER-Hop TLV, and the
IPv6 Prefix ER-Hop TLV are already defined in this registry.
IANA has assigned a further code point from the IETF consensus
portion of this registry as follows:
TLV Type Value Reference
------------------------------------ ------ -------------
L2 PW Address of Switching Point 0x0805 This Document
<span class="h2"><a class="selflink" id="section-6" href="#section-6">6</a>. Security Considerations</span>
This document introduces no new security considerations beyond those
discussed in [<a href="./rfc5036" title=""LDP Specification"">RFC5036</a>], [<a href="./rfc4447" title=""Pseudowire Setup and Maintenance Using the Label Distribution Protocol (LDP)"">RFC4447</a>], and [<a href="./rfc7267" title=""Dynamic Placement of Multi-Segment Pseudowires"">RFC7267</a>]. The security
considerations detailed in those documents apply to the protocol
extensions described in this RFC.
As with [<a href="./rfc7267" title=""Dynamic Placement of Multi-Segment Pseudowires"">RFC7267</a>], it should be noted that the path selection
mechanisms specified in this document enable the network to
automatically select the S-PEs that are used to forward packets on
the MS-PW. Appropriate tools, such as the Virtual Circuit
Connectivity Verification (VCCV) trace mechanisms specified in
[<a href="./rfc6073" title=""Segmented Pseudowire"">RFC6073</a>], can be used by an operator of the network to verify the
path taken by the MS-PW and therefore be satisfied that the path does
not represent an additional security risk.
<span class="grey">Dutta, et al. Standards Track [Page 8]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-9" ></span>
<span class="grey"><a href="./rfc7392">RFC 7392</a> MS-PW Explicit Routing December 2014</span>
<span class="h2"><a class="selflink" id="section-7" href="#section-7">7</a>. Normative References</span>
[<a id="ref-RFC2119">RFC2119</a>] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", <a href="https://www.rfc-editor.org/bcp/bcp14">BCP 14</a>, <a href="./rfc2119">RFC 2119</a>, March 1997,
<<a href="http://www.rfc-editor.org/info/rfc2119">http://www.rfc-editor.org/info/rfc2119</a>>.
[<a id="ref-RFC3212">RFC3212</a>] Jamoussi, B., Andersson, L., Callon, R., Dantu, R., Wu,
L., Doolan, P., Worster, T., Feldman, N., Fredette, A.,
Girish, M., Gray, E., Heinanen, J., Kilty, T., and A.
Malis, "Constraint-Based LSP Setup using LDP", <a href="./rfc3212">RFC 3212</a>,
January 2002, <<a href="http://www.rfc-editor.org/info/rfc3212">http://www.rfc-editor.org/info/rfc3212</a>>.
[<a id="ref-RFC4447">RFC4447</a>] Martini, L., Rosen, E., El-Aawar, N., Smith, T., and G.
Heron, "Pseudowire Setup and Maintenance Using the Label
Distribution Protocol (LDP)", <a href="./rfc4447">RFC 4447</a>, April 2006,
<<a href="http://www.rfc-editor.org/info/rfc4447">http://www.rfc-editor.org/info/rfc4447</a>>.
[<a id="ref-RFC5003">RFC5003</a>] Metz, C., Martini, L., Balus, F., and J. Sugimoto,
"Attachment Individual Identifier (AII) Types for
Aggregation", <a href="./rfc5003">RFC 5003</a>, September 2007,
<<a href="http://www.rfc-editor.org/info/rfc5003">http://www.rfc-editor.org/info/rfc5003</a>>.
[<a id="ref-RFC5036">RFC5036</a>] Andersson, L., Minei, I., and B. Thomas, "LDP
Specification", <a href="./rfc5036">RFC 5036</a>, October 2007,
<<a href="http://www.rfc-editor.org/info/rfc5036">http://www.rfc-editor.org/info/rfc5036</a>>.
[<a id="ref-RFC6073">RFC6073</a>] Martini, L., Metz, C., Nadeau, T., Bocci, M., and M.
Aissaoui, "Segmented Pseudowire", <a href="./rfc6073">RFC 6073</a>, January 2011,
<<a href="http://www.rfc-editor.org/info/rfc6073">http://www.rfc-editor.org/info/rfc6073</a>>.
[<a id="ref-RFC7267">RFC7267</a>] Martini, L., Bocci, M., and F. Balus, "Dynamic Placement
of Multi-Segment Pseudowires", <a href="./rfc7267">RFC 7267</a>, June 2014,
<<a href="http://www.rfc-editor.org/info/rfc7267">http://www.rfc-editor.org/info/rfc7267</a>>.
Acknowledgements
The authors gratefully acknowledge the contribution of the <a href="./rfc3212">RFC 3212</a>
[<a href="./rfc3212" title=""Constraint-Based LSP Setup using LDP"">RFC3212</a>] authors for the specification of the ER TLV and the ER-Hop
TLV, which are reused by this document. The authors also gratefully
acknowledge the input of Lizhong Jin.
<span class="grey">Dutta, et al. Standards Track [Page 9]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-10" ></span>
<span class="grey"><a href="./rfc7392">RFC 7392</a> MS-PW Explicit Routing December 2014</span>
Authors' Addresses
Pranjal Kumar Dutta
Alcatel-Lucent
701 E. Middlefield Road
Mountain View, California 94043
United States
EMail: pranjal.dutta@alcatel-lucent.com
Matthew Bocci
Alcatel-Lucent
Voyager Place, Shoppenhangers Road
Maidenhead, Berks SL6 2PJ
United Kingdom
EMail: matthew.bocci@alcatel-lucent.com
Luca Martini
Cisco Systems
9155 East Nichols Avenue, Suite 400
Englewood, Colorado 80112
United States
EMail: lmartini@cisco.com
Dutta, et al. Standards Track [Page 10]
</pre>
|