1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189
|
<pre>Internet Engineering Task Force (IETF) M. Duke
Request for Comments: 7414 F5
Obsoletes: <a href="./rfc4614">4614</a> R. Braden
Category: Informational ISI
ISSN: 2070-1721 W. Eddy
MTI Systems
E. Blanton
Interrupt Sciences
A. Zimmermann
NetApp, Inc.
February 2015
<span class="h1">A Roadmap for Transmission Control Protocol (TCP)</span>
<span class="h1">Specification Documents</span>
Abstract
This document contains a roadmap to the Request for Comments (RFC)
documents relating to the Internet's Transmission Control Protocol
(TCP). This roadmap provides a brief summary of the documents
defining TCP and various TCP extensions that have accumulated in the
RFC series. This serves as a guide and quick reference for both TCP
implementers and other parties who desire information contained in
the TCP-related RFCs.
This document obsoletes <a href="./rfc4614">RFC 4614</a>.
Status of This Memo
This document is not an Internet Standards Track specification; it is
published for informational purposes.
This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Not all documents
approved by the IESG are a candidate for any level of Internet
Standard; see <a href="./rfc5741#section-2">Section 2 of RFC 5741</a>.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
<a href="http://www.rfc-editor.org/info/rfc7414">http://www.rfc-editor.org/info/rfc7414</a>.
<span class="grey">Duke, et al. Informational [Page 1]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-2" ></span>
<span class="grey"><a href="./rfc7414">RFC 7414</a> TCP Roadmap February 2015</span>
Copyright Notice
Copyright (c) 2015 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to <a href="https://www.rfc-editor.org/bcp/bcp78">BCP 78</a> and the IETF Trust's Legal
Provisions Relating to IETF Documents
(<a href="http://trustee.ietf.org/license-info">http://trustee.ietf.org/license-info</a>) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
<span class="grey">Duke, et al. Informational [Page 2]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-3" ></span>
<span class="grey"><a href="./rfc7414">RFC 7414</a> TCP Roadmap February 2015</span>
Table of Contents
<a href="#section-1">1</a>. Introduction ....................................................<a href="#page-4">4</a>
<a href="#section-2">2</a>. Core Functionality ..............................................<a href="#page-6">6</a>
<a href="#section-3">3</a>. Strongly Encouraged Enhancements ................................<a href="#page-8">8</a>
<a href="#section-3.1">3.1</a>. Fundamental Changes ........................................<a href="#page-9">9</a>
<a href="#section-3.2">3.2</a>. Congestion Control Extensions .............................<a href="#page-10">10</a>
<a href="#section-3.3">3.3</a>. Loss Recovery Extensions ..................................<a href="#page-11">11</a>
<a href="#section-3.4">3.4</a>. Detection and Prevention of Spurious Retransmissions ......<a href="#page-13">13</a>
<a href="#section-3.5">3.5</a>. Path MTU Discovery ........................................<a href="#page-14">14</a>
<a href="#section-3.6">3.6</a>. Header Compression ........................................<a href="#page-15">15</a>
<a href="#section-3.7">3.7</a>. Defending Spoofing and Flooding Attacks ...................<a href="#page-15">15</a>
<a href="#section-4">4</a>. Experimental Extensions ........................................<a href="#page-17">17</a>
<a href="#section-4.1">4.1</a>. Architectural Guidelines ..................................<a href="#page-18">18</a>
<a href="#section-4.2">4.2</a>. Fundamental Changes .......................................<a href="#page-18">18</a>
<a href="#section-4.3">4.3</a>. Congestion Control Extensions .............................<a href="#page-19">19</a>
<a href="#section-4.4">4.4</a>. Loss Recovery Extensions ..................................<a href="#page-20">20</a>
<a href="#section-4.5">4.5</a>. Detection and Prevention of Spurious Retransmissions ......<a href="#page-21">21</a>
<a href="#section-4.6">4.6</a>. TCP Timeouts ..............................................<a href="#page-22">22</a>
<a href="#section-4.7">4.7</a>. Multipath TCP .............................................<a href="#page-22">22</a>
<a href="#section-5">5</a>. TCP Parameters at IANA .........................................<a href="#page-23">23</a>
<a href="#section-6">6</a>. Historic and Undeployed Extensions .............................<a href="#page-24">24</a>
<a href="#section-7">7</a>. Support Documents ..............................................<a href="#page-27">27</a>
<a href="#section-7.1">7.1</a>. Foundational Works ........................................<a href="#page-27">27</a>
<a href="#section-7.2">7.2</a>. Architectural Guidelines ..................................<a href="#page-29">29</a>
<a href="#section-7.3">7.3</a>. Difficult Network Environments ............................<a href="#page-30">30</a>
<a href="#section-7.4">7.4</a>. Guidance for Developing, Analyzing, and Evaluating TCP ....<a href="#page-33">33</a>
<a href="#section-7.5">7.5</a>. Implementation Advice .....................................<a href="#page-34">34</a>
<a href="#section-7.6">7.6</a>. Tools and Tutorials .......................................<a href="#page-36">36</a>
<a href="#section-7.7">7.7</a>. MIB Modules ...............................................<a href="#page-37">37</a>
<a href="#section-7.8">7.8</a>. Case Studies ..............................................<a href="#page-39">39</a>
<a href="#section-8">8</a>. Undocumented TCP Features ......................................<a href="#page-40">40</a>
<a href="#section-9">9</a>. Security Considerations ........................................<a href="#page-41">41</a>
<a href="#section-10">10</a>. References ....................................................<a href="#page-42">42</a>
<a href="#section-10.1">10.1</a>. Normative References .....................................<a href="#page-42">42</a>
<a href="#section-10.2">10.2</a>. Informative References ...................................<a href="#page-53">53</a>
Acknowledgments ...................................................<a href="#page-56">56</a>
Authors' Addresses ................................................<a href="#page-57">57</a>
<span class="grey">Duke, et al. Informational [Page 3]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-4" ></span>
<span class="grey"><a href="./rfc7414">RFC 7414</a> TCP Roadmap February 2015</span>
<span class="h2"><a class="selflink" id="section-1" href="#section-1">1</a>. Introduction</span>
A correct and efficient implementation of the Transmission Control
Protocol (TCP) is a critical part of the software of most Internet
hosts. As TCP has evolved over the years, many distinct documents
have become part of the accepted standard for TCP. At the same time,
a large number of experimental modifications to TCP have also been
published in the RFC series, along with informational notes, case
studies, and other advice.
As an introduction to newcomers and an attempt to organize the
plethora of information for old hands, this document contains a
roadmap to the TCP-related RFCs. It provides a brief summary of the
RFC documents that define TCP. This should provide guidance to
implementers on the relevance and significance of the standards-track
extensions, informational notes, and best current practices that
relate to TCP.
This document is not an update of <a href="./rfc1122">RFC 1122</a> [<a href="./rfc1122" title=""Requirements for Internet Hosts - Communication Layers"">RFC1122</a>] and is not a
rigorous standard for what needs to be implemented in TCP. This
document is merely an informational roadmap that captures, organizes,
and summarizes most of the RFC documents that a TCP implementer,
experimenter, or student should be aware of. Particular comments or
broad categorizations that this document makes about individual
mechanisms and behaviors are not to be taken as definitive, nor
should the content of this document alone influence implementation
decisions.
This roadmap includes a brief description of the contents of each
TCP-related RFC. In some cases, we simply supply the abstract or a
key summary sentence from the text as a terse description. In
addition, a letter code after an RFC number indicates its category in
the RFC series (see <a href="https://www.rfc-editor.org/bcp/bcp9">BCP 9</a> [<a href="./rfc2026" title=""The Internet Standards Process -- Revision 3"">RFC2026</a>] for explanation of these
categories):
S - Standards Track (Proposed Standard, Draft Standard, or Internet
Standard)
E - Experimental
I - Informational
H - Historic
B - Best Current Practice
U - Unknown (not formally defined)
<span class="grey">Duke, et al. Informational [Page 4]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-5" ></span>
<span class="grey"><a href="./rfc7414">RFC 7414</a> TCP Roadmap February 2015</span>
Note that the category of an RFC does not necessarily reflect its
current relevance. For instance, <a href="./rfc5681">RFC 5681</a> [<a href="./rfc5681" title=""TCP Congestion Control"">RFC5681</a>] is considered
part of the required core functionality of TCP, although the RFC is
only a Draft Standard. Similarly, some Informational RFCs contain
significant technical proposals for changing TCP.
Finally, if an error in the technical content has been found after
publication of an RFC (at the time of this writing), this fact is
indicated by the term "(Errata)" in the headline of the RFC's
description. The contents of the errata can be found through the RFC
Errata page [<a href="#ref-Errata" title=""RFC Errata"">Errata</a>].
This roadmap is divided into three main sections. <a href="#section-2">Section 2</a> lists
the RFCs that describe absolutely required TCP behaviors for proper
functioning and interoperability. Further RFCs that describe
strongly encouraged, but nonessential, behaviors are listed in
<a href="#section-3">Section 3</a>. Experimental extensions that are not yet standard
practices, but that potentially could be in the future, are described
in <a href="#section-4">Section 4</a>.
The reader will probably notice that these three sections are broadly
equivalent to MUST/SHOULD/MAY specifications (per <a href="./rfc2119">RFC 2119</a>
[<a href="./rfc2119" title=""Key words for use in RFCs to Indicate Requirement Levels"">RFC2119</a>]), and although the authors support this intuition, this
document is merely descriptive; it does not represent a binding
Standards Track position. Individual implementers still need to
examine the Standards Track RFCs themselves to evaluate specific
requirement levels.
<a href="#section-5">Section 5</a> describes both the procedures that the Internet Assigned
Numbers Authority (IANA) uses and an RFC author should follow when
new TCP parameters are requested and finally assigned.
A small number of older experimental extensions that have not been
widely implemented, deployed, and used are noted in <a href="#section-6">Section 6</a>. Many
other supporting documents that are relevant to the development,
implementation, and deployment of TCP are described in <a href="#section-7">Section 7</a>.
A small number of fairly ubiquitous important implementation
practices that are not currently documented in the RFC series are
listed in <a href="#section-8">Section 8</a>.
Within each section, RFCs are listed in the chronological order of
their publication dates.
<span class="grey">Duke, et al. Informational [Page 5]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-6" ></span>
<span class="grey"><a href="./rfc7414">RFC 7414</a> TCP Roadmap February 2015</span>
<span class="h2"><a class="selflink" id="section-2" href="#section-2">2</a>. Core Functionality</span>
A small number of documents compose the core specification of TCP.
These define the required core functionalities of TCP's header
parsing, state machine, congestion control, and retransmission
timeout computation. These base specifications must be correctly
followed for interoperability.
<a href="./rfc793">RFC 793</a> S: "Transmission Control Protocol", STD 7 (September 1981)
(Errata)
This is the fundamental TCP specification document [<a href="./rfc793" title=""Transmission Control Protocol"">RFC793</a>].
Written by Jon Postel as part of the Internet protocol suite's
core, it describes the TCP packet format, the TCP state machine
and event processing, and TCP's semantics for data transmission,
reliability, flow control, multiplexing, and acknowledgment.
<a href="./rfc793#section-3.6">Section 3.6 of RFC 793</a>, describing TCP's handling of the IP
precedence and security compartment, is mostly irrelevant today.
<a href="./rfc2873">RFC 2873</a> (discussed later in <a href="#section-2">Section 2</a> below) changed the IP
precedence handling, and the security compartment portion of the
API is no longer implemented or used. In addition, <a href="./rfc793">RFC 793</a> did
not describe any congestion control mechanism. Otherwise,
however, the majority of this document still accurately describes
modern TCPs. <a href="./rfc793">RFC 793</a> is the last of a series of developmental TCP
specifications, starting in the Internet Experimental Notes (IENs)
and continuing in the RFC series.
<a href="./rfc1122">RFC 1122</a> S: "Requirements for Internet Hosts - Communication Layers"
(October 1989)
This document [<a href="./rfc1122" title=""Requirements for Internet Hosts - Communication Layers"">RFC1122</a>] updates and clarifies <a href="./rfc793">RFC 793</a> (see above
in <a href="#section-2">Section 2</a>), fixing some specification bugs and oversights. It
also explains some features such as keep-alives and Karn's and
Jacobson's RTO estimation algorithms [<a href="#ref-KP87" title=""Round Trip Time Estimation"">KP87</a>][Jac88][<a href="#ref-JK92" title=""Congestion Avoidance and Control"">JK92</a>]. ICMP
interactions are mentioned, and some tips are given for efficient
implementation. <a href="./rfc1122">RFC 1122</a> is an Applicability Statement, listing
the various features that MUST, SHOULD, MAY, SHOULD NOT, and MUST
NOT be present in standards-conforming TCP implementations.
Unlike a purely informational roadmap, this Applicability
Statement is a standards document and gives formal rules for
implementation.
<span class="grey">Duke, et al. Informational [Page 6]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-7" ></span>
<span class="grey"><a href="./rfc7414">RFC 7414</a> TCP Roadmap February 2015</span>
<a href="./rfc2460">RFC 2460</a> S: "Internet Protocol, Version 6 (IPv6) Specification"
(December 1998) (Errata)
This document [<a href="./rfc2460" title=""Internet Protocol, Version 6 (IPv6) Specification"">RFC2460</a>] is of relevance to TCP because it defines
how the pseudo-header for TCP's checksum computation is derived
when 128-bit IPv6 addresses are used instead of 32-bit IPv4
addresses. Additionally, <a href="./rfc2675">RFC 2675</a> (see <a href="#section-3.1">Section 3.1</a> of this
document) describes TCP changes required to support IPv6
jumbograms.
<a href="./rfc2873">RFC 2873</a> S: "TCP Processing of the IPv4 Precedence Field" (June 2000)
(Errata)
This document [<a href="./rfc2873" title=""TCP Processing of the IPv4 Precedence Field"">RFC2873</a>] removes from the TCP specification all
processing of the precedence bits of the TOS byte of the IP
header. This resolves a conflict over the use of these bits
between <a href="./rfc793">RFC 793</a> (see above in <a href="#section-2">Section 2</a>) and Differentiated
Services [<a href="./rfc2474" title=""Definition of the Differentiated Services Field (DS Field) in the IPv4 and IPv6 Headers"">RFC2474</a>].
<a href="./rfc5681">RFC 5681</a> S: "TCP Congestion Control" (August 2009)
Although <a href="./rfc793">RFC 793</a> (see above in <a href="#section-2">Section 2</a>) did not contain any
congestion control mechanisms, today congestion control is a
required component of TCP implementations. This document
[<a href="./rfc5681" title=""TCP Congestion Control"">RFC5681</a>] defines congestion avoidance and control mechanism for
TCP, based on Van Jacobson's 1988 SIGCOMM paper [<a href="#ref-Jac88" title=""Congestion Avoidance and Control"">Jac88</a>].
A number of behaviors that together constitute what the community
refers to as "Reno TCP" is described in <a href="./rfc5681">RFC 5681</a>. The name "Reno"
comes from the Net/2 release of the 4.3 BSD operating system.
This is generally regarded as the least common denominator among
TCP flavors currently found running on Internet hosts. Reno TCP
includes the congestion control features of slow start, congestion
avoidance, fast retransmit, and fast recovery.
<a href="./rfc5681">RFC 5681</a> details the currently accepted congestion control
mechanism, while <a href="./rfc1122">RFC 1122</a>, (see above in <a href="#section-2">Section 2</a>) mandates that
such a congestion control mechanism must be implemented. <a href="./rfc5681">RFC 5681</a>
differs slightly from the other documents listed in this section,
as it does not affect the ability of two TCP endpoints to
communicate; however, congestion control remains a critical
component of any widely deployed TCP implementation and is
required for the avoidance of congestion collapse and to ensure
fairness among competing flows.
<span class="grey">Duke, et al. Informational [Page 7]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-8" ></span>
<span class="grey"><a href="./rfc7414">RFC 7414</a> TCP Roadmap February 2015</span>
RFCs 2001 and 2581 are the conceptual precursors of <a href="./rfc5681">RFC 5681</a>. The
most important changes relative to <a href="./rfc2581">RFC 2581</a> are:
(a) The initial window requirements were changed to allow larger
Initial Windows as standardized in [<a href="./rfc3390" title=""Increasing TCP's Initial Window"">RFC3390</a>] (see <a href="#section-3.2">Section 3.2</a>
of this document).
(b) During slow start and congestion avoidance, the usage of
Appropriate Byte Counting [<a href="./rfc3465" title=""TCP Congestion Control with Appropriate Byte Counting (ABC)"">RFC3465</a>] (see <a href="#section-3.2">Section 3.2</a> of this
document) is explicitly recommended.
(c) The use of Limited Transmit [<a href="./rfc3042" title=""Enhancing TCP's Loss Recovery Using Limited Transmit"">RFC3042</a>] (see <a href="#section-3.3">Section 3.3</a> of
this document) is now recommended.
<a href="./rfc6093">RFC 6093</a> S: "On the Implementation of the TCP Urgent Mechanism"
(January 2011)
This document [<a href="./rfc6093" title=""On the Implementation of the TCP Urgent Mechanism"">RFC6093</a>] analyzes how current TCP stacks process
TCP urgent indications, and how the behavior of widely deployed
middleboxes affects the urgent indications processing. The
document updates the relevant specifications such that it
accommodates current practice in processing TCP urgent
indications. Finally, the document raises awareness about the
reliability of TCP urgent indications in the Internet, and
recommends against the use of urgent mechanism.
<a href="./rfc6298">RFC 6298</a> S: "Computing TCP's Retransmission Timer" (June 2011)
Abstract of <a href="./rfc6298">RFC 6298</a> [<a href="./rfc6298" title=""Computing TCP's Retransmission Timer"">RFC6298</a>]: "This document defines the
standard algorithm that Transmission Control Protocol (TCP)
senders are required to use to compute and manage their
retransmission timer. It expands on the discussion in
<a href="./rfc1122#section-4.2.3.1">Section 4.2.3.1 of RFC 1122</a> and upgrades the requirement of
supporting the algorithm from a SHOULD to a MUST." <a href="./rfc6298">RFC 6298</a>
updates <a href="./rfc2988">RFC 2988</a> by changing the initial RTO from 3s to 1s.
<a href="./rfc6691">RFC 6691</a> I: "TCP Options and Maximum Segment Size (MSS)" (July 2012)
This document [<a href="./rfc6691" title=""TCP Options and Maximum Segment Size (MSS)"">RFC6691</a>] clarifies what value to use with the TCP
Maximum Segment Size (MSS) option when IP and TCP options are in
use.
<span class="h2"><a class="selflink" id="section-3" href="#section-3">3</a>. Strongly Encouraged Enhancements</span>
This section describes recommended TCP modifications that improve
performance and security. <a href="#section-3.1">Section 3.1</a> represents fundamental changes
to the protocol. Sections <a href="#section-3.2">3.2</a> and <a href="#section-3.3">3.3</a> list improvements over the
congestion control and loss recovery mechanisms as specified in <a href="./rfc5681">RFC</a>
<a href="./rfc5681">5681</a> (see <a href="#section-2">Section 2</a>). <a href="#section-3.4">Section 3.4</a> describes algorithms that allow a
TCP sender to detect whether it has entered loss recovery spuriously.
<span class="grey">Duke, et al. Informational [Page 8]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-9" ></span>
<span class="grey"><a href="./rfc7414">RFC 7414</a> TCP Roadmap February 2015</span>
<a href="#section-3.5">Section 3.5</a> comprises Path MTU Discovery mechanisms. Schemes for
TCP/IP header compression are listed in <a href="#section-3.6">Section 3.6</a>. Finally,
<a href="#section-3.7">Section 3.7</a> deals with the problem of preventing acceptance of forged
segments and flooding attacks.
<span class="h3"><a class="selflink" id="section-3.1" href="#section-3.1">3.1</a>. Fundamental Changes</span>
RFCs 2675 and 7323 represent fundamental changes to TCP by redefining
how parts of the basic TCP header and options are interpreted. <a href="./rfc7323">RFC</a>
<a href="./rfc7323">7323</a> defines the Window Scale option, which reinterprets the
advertised receive window. <a href="./rfc2675">RFC 2675</a> specifies that MSS option and
urgent pointer fields with a value of 65,535 are to be treated
specially.
<a href="./rfc2675">RFC 2675</a> S: "IPv6 Jumbograms" (August 1999) (Errata)
IPv6 supports longer datagrams than were allowed in IPv4. These
are known as jumbograms, and use with TCP has necessitated changes
to the handling of TCP's MSS and Urgent fields (both 16 bits).
This document [<a href="./rfc2675" title=""IPv6 Jumbograms"">RFC2675</a>] explains those changes. Although it
describes changes to basic header semantics, these changes should
only affect the use of very large segments, such as IPv6
jumbograms, which are currently rarely used in the general
Internet.
Supporting the behavior described in this document does not affect
interoperability with other TCP implementations when IPv4 or non-
jumbogram IPv6 is used. This document states that jumbograms are
to only be used when it can be guaranteed that all receiving
nodes, including each router in the end-to-end path, will support
jumbograms. If even a single node that does not support
jumbograms is attached to a local network, then no host on that
network may use jumbograms. This explains why jumbogram use has
been rare, and why this document is considered a performance
optimization and not part of TCP over IPv6's basic functionality.
<a href="./rfc7323">RFC 7323</a> S: "TCP Extensions for High Performance" (September 2014)
This document [<a href="./rfc7323" title=""TCP Extensions for High Performance"">RFC7323</a>] defines TCP extensions for window scaling,
timestamps, and protection against wrapped sequence numbers, for
efficient and safe operation over paths with large bandwidth-delay
products. These extensions are commonly found in currently used
systems. The predecessor of this document, <a href="./rfc1323">RFC 1323</a>, was
published in 1992, and is deployed in most TCP implementations.
This document includes fixes and clarifications based on the
gained deployment experience. One specific issued addressed in
<span class="grey">Duke, et al. Informational [Page 9]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-10" ></span>
<span class="grey"><a href="./rfc7414">RFC 7414</a> TCP Roadmap February 2015</span>
this specification is a recommendation how to modify the algorithm
for estimating the mean RTT when timestamps are used. RFCs 1072,
1185, and 1323 are the conceptual precursors of <a href="./rfc7323">RFC 7323</a>.
<span class="h3"><a class="selflink" id="section-3.2" href="#section-3.2">3.2</a>. Congestion Control Extensions</span>
Two of the most important aspects of TCP are its congestion control
and loss recovery features. TCP treats lost packets as indicating
congestion-related loss and cannot distinguish between congestion-
related loss and loss due to transmission errors. Even when ECN is
in use, there is a rather intimate coupling between congestion
control and loss recovery mechanisms. There are several extensions
to both features, and more often than not, a particular extension
applies to both. In these two subsections, we group enhancements to
TCP's congestion control, while the next subsection focus on TCP's
loss recovery.
<a href="./rfc3168">RFC 3168</a> S: "The Addition of Explicit Congestion Notification (ECN)
to IP" (September 2001)
This document [<a href="./rfc3168" title=""The Addition of Explicit Congestion Notification (ECN) to IP"">RFC3168</a>] defines a means for end hosts to detect
congestion before congested routers are forced to discard packets.
Although congestion notification takes place at the IP level, ECN
requires support at the transport level (e.g., in TCP) to echo the
bits and adapt the sending rate. This document updates <a href="./rfc793">RFC 793</a>
(see <a href="#section-2">Section 2</a> of this document) to define two previously unused
flag bits in the TCP header for ECN support. <a href="./rfc3540">RFC 3540</a> (see
<a href="#section-4.3">Section 4.3</a> of this document) provides a supplementary
(experimental) means for more secure use of ECN, and <a href="./rfc2884">RFC 2884</a> (see
<a href="#section-7.8">Section 7.8</a> of this document) provides some sample results from
using ECN.
<a href="./rfc3390">RFC 3390</a> S: "Increasing TCP's Initial Window" (October 2002)
This document [<a href="./rfc3390" title=""Increasing TCP's Initial Window"">RFC3390</a>] specifies an increase in the permitted
initial window for TCP from one segment to three or four segments
during the slow start phase, depending on the segment size.
<a href="./rfc3465">RFC 3465</a> E: "TCP Congestion Control with Appropriate Byte Counting
(ABC)" (February 2003)
This document [<a href="./rfc3465" title=""TCP Congestion Control with Appropriate Byte Counting (ABC)"">RFC3465</a>] suggests that congestion control use the
number of bytes acknowledged instead of the number of
acknowledgments received. This change improves the performance of
TCP in situations where there is no one-to-one relationship
between data segments and acknowledgments (e.g., delayed ACKs or
ACK loss) and closes a security hole TCP receivers can use to
<span class="grey">Duke, et al. Informational [Page 10]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-11" ></span>
<span class="grey"><a href="./rfc7414">RFC 7414</a> TCP Roadmap February 2015</span>
induce the sender into increasing the sending rate too rapidly
(ACK-division [<a href="#ref-SCWA99" title=""TCP Congestion Control with a Misbehaving Receiver"">SCWA99</a>] [<a href="./rfc3449" title=""TCP Performance Implications of Network Path Asymmetry"">RFC3449</a>]). ABC is recommended by <a href="./rfc5681">RFC 5681</a>
(see <a href="#section-2">Section 2</a> of this document).
<a href="./rfc6633">RFC 6633</a> S: "Deprecation of ICMP Source Quench Messages" (May 2012)
This document [<a href="./rfc6633" title=""Deprecation of ICMP Source Quench Messages"">RFC6633</a>] formally deprecates the use of ICMP Source
Quench messages by transport protocols and recommends against the
implementation of [<a href="./rfc1016" title=""Something a host could do with source quench: The Source Quench Introduced Delay (SQuID)"">RFC1016</a>].
<span class="h3"><a class="selflink" id="section-3.3" href="#section-3.3">3.3</a>. Loss Recovery Extensions</span>
For the typical implementation of the TCP fast recovery algorithm
described in <a href="./rfc5681">RFC 5681</a> (see <a href="#section-2">Section 2</a> of this document), a TCP sender
only retransmits a segment after a retransmit timeout has occurred,
or after three duplicate ACKs have arrived triggering the fast
retransmit. A single RTO might result in the retransmission of
several segments, while the fast retransmit algorithm in <a href="./rfc5681">RFC 5681</a>
leads only to a single retransmission. Hence, multiple losses from a
single window of data can lead to a performance degradation.
Documents listed in this section aim to improve the overall
performance of TCP's standard loss recovery algorithms. In
particular, some of them allow TCP senders to recover more
effectively when multiple segments are lost from a single flight of
data.
<a href="./rfc2018">RFC 2018</a> S: "TCP Selective Acknowledgment Options" (October 1996)
(Errata)
When more than one packet is lost during one RTT, TCP may
experience poor performance since a TCP sender can only learn
about a single lost packet per RTT from cumulative
acknowledgments. This document [<a href="./rfc2018" title=""TCP Selective Acknowledgment Options"">RFC2018</a>] defines the basic
selective acknowledgment (SACK) mechanism for TCP, which can help
to overcome these limitations. The receiving TCP returns SACK
blocks to inform the sender which data has been received. The
sender can then retransmit only the missing data segments.
<a href="./rfc3042">RFC 3042</a> S: "Enhancing TCP's Loss Recovery Using Limited Transmit"
(January 2001)
Abstract of <a href="./rfc3042">RFC 3042</a> [<a href="./rfc3042" title=""Enhancing TCP's Loss Recovery Using Limited Transmit"">RFC3042</a>]: "This document proposes a new
Transmission Control Protocol (TCP) mechanism that can be used to
more effectively recover lost segments when a connection's
congestion window is small, or when a large number of segments are
lost in a single transmission window." This algorithm described
in <a href="./rfc3042">RFC 3042</a> is called "Limited Transmit". Tests from 2004 showed
<span class="grey">Duke, et al. Informational [Page 11]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-12" ></span>
<span class="grey"><a href="./rfc7414">RFC 7414</a> TCP Roadmap February 2015</span>
that Limited Transmit was deployed in roughly one third of the web
servers tested [<a href="#ref-MAF04" title=""Measuring the Evolution of Transport Protocols in the Internet"">MAF04</a>]. Limited Transmit is recommended by <a href="./rfc5681">RFC</a>
<a href="./rfc5681">5681</a> (see <a href="#section-2">Section 2</a> of this document).
<a href="./rfc6582">RFC 6582</a> S: "The NewReno Modification to TCP's Fast Recovery
Algorithm" (April 2012)
This document [<a href="./rfc6582" title=""The NewReno Modification to TCP's Fast Recovery Algorithm"">RFC6582</a>] specifies a modification to the standard
Reno fast recovery algorithm, whereby a TCP sender can use partial
acknowledgments to make inferences determining the next segment to
send in situations where SACK would be helpful but isn't
available. Although it is only a slight modification, the NewReno
behavior can make a significant difference in performance when
multiple segments are lost from a single window of data.
RFCs 2582 and 3782 are the conceptual precursors of <a href="./rfc6582">RFC 6582</a>. The
main change in <a href="./rfc3782">RFC 3782</a> relative to <a href="./rfc2582">RFC 2582</a> was to specify the
Careful variant of NewReno's Fast Retransmit and Fast Recovery
algorithms and advance those two algorithms from Experimental to
Standards Track status. The main change in <a href="./rfc6582">RFC 6582</a> relative to
<a href="./rfc3782">RFC 3782</a> was to solve a performance degradation that could occur
if FlightSize on Full ACK reception is zero.
<a href="./rfc6675">RFC 6675</a> S: "A Conservative Loss Recovery Algorithm Based on
Selective Acknowledgment (SACK) for TCP" (August 2012)
This document [<a href="./rfc6675" title=""A Conservative Loss Recovery Algorithm Based on Selective Acknowledgment (SACK) for TCP"">RFC6675</a>] describes a conservative loss recovery
algorithm for TCP that is based on the use of the selective
acknowledgment (SACK) TCP option [<a href="./rfc2018" title=""TCP Selective Acknowledgment Options"">RFC2018</a>] (see above in
<a href="#section-3.3">Section 3.3</a>). The algorithm conforms to the spirit of the
congestion control specification in <a href="./rfc5681">RFC 5681</a> (see <a href="#section-2">Section 2</a> of
this document), but allows TCP senders to recover more effectively
when multiple segments are lost from a single flight of data.
<a href="./rfc6675">RFC 6675</a> is a revision of <a href="./rfc3517">RFC 3517</a> to address several situations
that are not handled explicitly before. In particular,
(a) it improves the loss detection in the event that the sender
has outstanding segments that are smaller than Sender Maximum
Segment Size (SMSS).
(b) it modifies the definition of a "duplicate acknowledgment" to
utilize the SACK information in detecting loss.
(c) it maintains the ACK clock under certain circumstances
involving loss at the end of the window.
<span class="grey">Duke, et al. Informational [Page 12]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-13" ></span>
<span class="grey"><a href="./rfc7414">RFC 7414</a> TCP Roadmap February 2015</span>
<span class="h3"><a class="selflink" id="section-3.4" href="#section-3.4">3.4</a>. Detection and Prevention of Spurious Retransmissions</span>
Spurious retransmission timeouts are harmful to TCP performance and
multiple algorithms have been defined for detecting when spurious
retransmissions have occurred, but they respond differently with
regard to their manners of recovering performance. The IETF defined
multiple algorithms because there are trade-offs in whether or not
certain TCP options need to be implemented and concerns about IPR
status. The Standards Track RFCs in this section are closely related
to the Experimental RFCs in <a href="#section-4.5">Section 4.5</a> also addressing this topic.
<a href="./rfc2883">RFC 2883</a> S: "An Extension to the Selective Acknowledgement (SACK)
Option for TCP" (July 2000)
This document [<a href="./rfc2883" title=""An Extension to the Selective Acknowledgement (SACK) Option for TCP"">RFC2883</a>] extends <a href="./rfc2018">RFC 2018</a> (see <a href="#section-3.3">Section 3.3</a> of this
document). It enables use of the SACK option to acknowledge
duplicate packets. With this extension, called DSACK, the sender
is able to infer the order of packets received at the receiver
and, therefore, to infer when it has unnecessarily retransmitted a
packet. A TCP sender could then use this information to detect
spurious retransmissions (see [<a href="./rfc3708" title=""Using TCP Duplicate Selective Acknowledgement (DSACKs) and Stream Control Transmission Protocol (SCTP) Duplicate Transmission Sequence Numbers (TSNs) to Detect Spurious Retransmissions"">RFC3708</a>]).
<a href="./rfc4015">RFC 4015</a> S: "The Eifel Response Algorithm for TCP" (February 2005)
This document [<a href="./rfc4015" title=""The Eifel Response Algorithm for TCP"">RFC4015</a>] describes the response portion of the
Eifel algorithm, which can be used in conjunction with one of
several methods of detecting when loss recovery has been
spuriously entered, such as the Eifel detection algorithm in <a href="./rfc3522">RFC</a>
<a href="./rfc3522">3522</a> (see <a href="#section-4.5">Section 4.5</a>), the algorithm in <a href="./rfc3708">RFC 3708</a> (see <a href="#section-4.5">Section 4.5</a>
of this document), or F-RTO in <a href="./rfc5682">RFC 5682</a> (see below in
<a href="#section-3.4">Section 3.4</a>).
Abstract of <a href="./rfc4015">RFC 4015</a> [<a href="./rfc4015" title=""The Eifel Response Algorithm for TCP"">RFC4015</a>]: "Based on an appropriate detection
algorithm, the Eifel response algorithm provides a way for a TCP
sender to respond to a detected spurious timeout. It adapts the
retransmission timer to avoid further spurious timeouts and
(depending on the detection algorithm) can avoid the often
unnecessary go-back-N retransmits that would otherwise be sent.
In addition, the Eifel response algorithm restores the congestion
control state in such a way that packet bursts are avoided."
<a href="./rfc5682">RFC 5682</a> S: "Forward RTO-Recovery (F-RTO): An Algorithm for Detecting
Spurious Retransmission Timeouts with TCP" (September
2009)
The F-RTO detection algorithm [<a href="./rfc5682" title=""Forward RTO-Recovery (F-RTO): An Algorithm for Detecting Spurious Retransmission Timeouts with TCP"">RFC5682</a>], originally described in
<a href="./rfc4138">RFC 4138</a>, provides an option for inferring spurious retransmission
timeouts. Unlike some similar detection methods (e.g., RFCs 3522
<span class="grey">Duke, et al. Informational [Page 13]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-14" ></span>
<span class="grey"><a href="./rfc7414">RFC 7414</a> TCP Roadmap February 2015</span>
and 3708, both listed in <a href="#section-4.5">Section 4.5</a> of this document), F-RTO does
not rely on the use of any TCP options. The basic idea is to send
previously unsent data after the first retransmission after a RTO.
If the ACKs advance the window, the RTO may be declared spurious.
<span class="h3"><a class="selflink" id="section-3.5" href="#section-3.5">3.5</a>. Path MTU Discovery</span>
The MTUs supported by different links and tunnels within the Internet
can vary widely. Fragmentation of packets larger than the supported
MTU on a hop is undesirable. As TCP is the segmentation layer for
dividing an application's byte stream into IP packet payloads, TCP
implementations generally include Path MTU Discovery (PMTUD)
mechanisms in order to maximize the size of segments they send,
without causing fragmentation within the network. Some algorithms
may utilize signaling from routers on the path to determine that the
MTU on some part of the path has been exceeded.
<a href="./rfc1191">RFC 1191</a> S: "Path MTU Discovery" (November 1990)
Abstract of <a href="./rfc1191">RFC 1191</a> [<a href="./rfc1191" title=""Path MTU discovery"">RFC1191</a>]: "This memo describes a technique
for dynamically discovering the maximum transmission unit (MTU) of
an arbitrary internet path. It specifies a small change to the
way routers generate one type of ICMP message. For a path that
passes through a router that has not been so changed, this
technique might not discover the correct Path MTU, but it will
always choose a Path MTU as accurate as, and in many cases more
accurate than, the Path MTU that would be chosen by current
practice."
<a href="./rfc1981">RFC 1981</a> S: "Path MTU Discovery for IP version 6" (August 1996)
Abstract of <a href="./rfc1981">RFC 1981</a> [<a href="./rfc1981" title=""Path MTU Discovery for IP version 6"">RFC1981</a>]: "This document describes Path MTU
Discovery for IP version 6. It is largely derived from <a href="./rfc1191">RFC 1191</a>,
which describes Path MTU Discovery for IP version 4."
<a href="./rfc4821">RFC 4821</a> S: "Packetization Layer Path MTU Discovery" (March 2007)
Abstract of <a href="./rfc4821">RFC 4821</a> [<a href="./rfc4821" title=""Packetization Layer Path MTU Discovery"">RFC4821</a>]: "This document describes a robust
method for Path MTU Discovery (PMTUD) that relies on TCP or some
other Packetization Layer to probe an Internet path with
progressively larger packets. This method is described as an
extension to <a href="./rfc1191">RFC 1191</a> and <a href="./rfc1981">RFC 1981</a>, which specify ICMP-based Path
MTU Discovery for IP versions 4 and 6, respectively."
<span class="grey">Duke, et al. Informational [Page 14]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-15" ></span>
<span class="grey"><a href="./rfc7414">RFC 7414</a> TCP Roadmap February 2015</span>
<span class="h3"><a class="selflink" id="section-3.6" href="#section-3.6">3.6</a>. Header Compression</span>
Especially in streaming applications, the overhead of TCP/IP headers
could correspond to more than 50% of the total amount of data sent.
Such large overheads may be tolerable in wired LANs where capacity is
often not an issue, but are excessive for WANs and wireless systems
where bandwidth is scarce. Header compression schemes for TCP/IP
like RObust Header Compression (ROHC) can significantly compress this
overhead. It performs well over links with significant error rates
and long round-trip times.
<a href="./rfc1144">RFC 1144</a> S: "Compressing TCP/IP Headers for Low-Speed Serial Links"
(February 1990)
This document [<a href="./rfc1144" title=""Compressing TCP/IP headers for low-speed serial links"">RFC1144</a>] describes a method for compressing the
headers of TCP/IP datagrams to improve performance over low-speed
serial links. The method described in this document is limited in
its handling of TCP options and cannot compress the headers of
SYNs and FINs.
<a href="./rfc6846">RFC 6846</a> S: "RObust Header Compression (ROHC): A Profile for TCP/IP
(ROHC-TCP)" (January 2013)
From the Abstract of <a href="./rfc6846">RFC 6846</a> [<a href="./rfc6846" title=""RObust Header Compression (ROHC): A Profile for TCP/IP (ROHC-TCP)"">RFC6846</a>]: "This document specifies
a RObust Header Compression (ROHC) profile for compression of TCP/
IP packets. The profile, called ROHC-TCP, provides efficient and
robust compression of TCP headers, including frequently used TCP
options such as selective acknowledgments (SACKs) and Timestamps."
<a href="./rfc6846">RFC 6846</a> is the successor of <a href="./rfc4996">RFC 4996</a>. It fixes a technical issue
with the SACK compression and clarifies other compression methods
used.
<span class="h3"><a class="selflink" id="section-3.7" href="#section-3.7">3.7</a>. Defending Spoofing and Flooding Attacks</span>
By default, TCP lacks any cryptographic structures to differentiate
legitimate segments from those spoofed from malicious hosts.
Spoofing valid segments requires correctly guessing a number of
fields. The documents in this subsection describe ways to make that
guessing harder or to prevent it from being able to affect a
connection negatively.
<span class="grey">Duke, et al. Informational [Page 15]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-16" ></span>
<span class="grey"><a href="./rfc7414">RFC 7414</a> TCP Roadmap February 2015</span>
<a href="./rfc4953">RFC 4953</a> I: "Defending TCP Against Spoofing Attacks" (July 2007)
This document [<a href="./rfc4953" title=""Defending TCP Against Spoofing Attacks"">RFC4953</a>] discusses the recently increased
vulnerability of long-lived TCP connections, such as BGP
connections, to reset (send RST) spoofing attacks. The document
analyzes the vulnerability, discussing proposed solutions at the
transport level and their inherent challenges, as well as existing
network level solutions and the feasibility of their deployment.
<a href="./rfc5461">RFC 5461</a> I: "TCP's Reaction to Soft Errors" (February 2009)
This document [<a href="./rfc5461" title=""TCP's Reaction to Soft Errors"">RFC5461</a>] describes a nonstandard but widely
implemented modification to TCP's handling of ICMP soft error
messages that rejects pending connection-requests when such error
messages are received. This behavior reduces the likelihood of
long delays between connection-establishment attempts that may
arise in some scenarios.
<a href="./rfc4987">RFC 4987</a> I: "TCP SYN Flooding Attacks and Common Mitigations" (August
2007)
This document [<a href="./rfc4987" title=""TCP SYN Flooding Attacks and Common Mitigations"">RFC4987</a>] describes the well-known TCP SYN flooding
attack. It analyzes and discusses various countermeasures against
these attacks, including their use and trade-offs.
<a href="./rfc5925">RFC 5925</a> S: "The TCP Authentication Option" (June 2010)
This document [<a href="./rfc5925" title=""The TCP Authentication Option"">RFC5925</a>] describes the TCP Authentication Option
(TCP-AO), which is used to authenticate TCP segments. TCP-AO
obsoletes the TCP MD5 Signature option of <a href="./rfc2385">RFC 2385</a>. It supports
the use of stronger hash functions, protects against replays for
long-lived TCP connections (as used, e.g., in BGP and LDP),
coordinates key exchanges between endpoints, and provides a more
explicit recommendation for external key management.
Cryptographic algorithms for TCP-AO are defined in [<a href="./rfc5926" title=""Cryptographic Algorithms for the TCP Authentication Option (TCP-AO)"">RFC5926</a>] (see
below in <a href="#section-3.7">Section 3.7</a>).
<a href="./rfc5926">RFC 5926</a> S: "Cryptographic Algorithms for the TCP Authentication
Option (TCP-AO)" (June 2010)
This document [<a href="./rfc5926" title=""Cryptographic Algorithms for the TCP Authentication Option (TCP-AO)"">RFC5926</a>] specifies the algorithms and attributes
that can be used in TCP Authentication Option's (TCP-AO) [<a href="./rfc5925" title=""The TCP Authentication Option"">RFC5925</a>]
(see above in <a href="#section-3.7">Section 3.7</a>) current manual keying mechanism and
provides the interface for future message authentication codes
(MACs).
<span class="grey">Duke, et al. Informational [Page 16]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-17" ></span>
<span class="grey"><a href="./rfc7414">RFC 7414</a> TCP Roadmap February 2015</span>
<a href="./rfc5927">RFC 5927</a> I: "ICMP Attacks against TCP" (July 2010)
Abstract of <a href="./rfc5927">RFC 5927</a> [<a href="./rfc5927" title=""ICMP Attacks against TCP"">RFC5927</a>]: "This document discusses the use
of the Internet Control Message Protocol (ICMP) to perform a
variety of attacks against the Transmission Control Protocol
(TCP). Additionally, this document describes a number of widely
implemented modifications to TCP's handling of ICMP error messages
that help to mitigate these issues."
<a href="./rfc5961">RFC 5961</a> S: "Improving TCP's Robustness to Blind In-Window Attacks"
(August 2010)
This document [<a href="./rfc5961" title=""Improving TCP's Robustness to Blind In-Window Attacks"">RFC5961</a>] describes minor modifications to how TCP
handles inbound segments. This renders TCP connections,
especially long-lived connections such as H-323 or BGP, less
vulnerable to spoofed packet injection attacks where the 4-tuple
(the source and destination IP addresses and the source and
destination ports) has been guessed.
<a href="./rfc6528">RFC 6528</a> S: "Defending against Sequence Number Attacks" (February
2012)
Abstract of <a href="./rfc6528">RFC 6528</a> [<a href="./rfc6528" title=""Defending against Sequence Number Attacks"">RFC6528</a>]: "This document specifies an
algorithm for the generation of TCP Initial Sequence Numbers
(ISNs), such that the chances of an off-path attacker guessing the
sequence numbers in use by a target connection are reduced. This
document revises (and formally obsoletes) <a href="./rfc1948">RFC 1948</a>, and takes the
ISN generation algorithm originally proposed in that document to
Standards Track, formally updating <a href="./rfc793">RFC 793</a>"
<span class="h2"><a class="selflink" id="section-4" href="#section-4">4</a>. Experimental Extensions</span>
The RFCs in this section are either Experimental and may become
Proposed Standards in the future or are Proposed Standards (or
Informational), but can be considered experimental due to lack of
wide deployment. At least part of the reason that they are still
experimental is to gain more wide-scale experience with them before a
standards track decision is made.
If the Experimental RFC is a proposal for a new protocol capability
or service, i.e., it requires a new TCP option code point, the
implementation and experimentation should follow [<a href="./rfc6994" title=""Shared Use of Experimental TCP Options"">RFC6994</a>] (see
<a href="#section-5">Section 5</a> of this document), which describes how the experimental TCP
option code points can concurrently support multiple TCP extensions.
By their publication as Experimental RFCs, it is hoped that the
community of TCP researchers will analyze and test the contents of
these RFCs. Although experimentation is encouraged, there is not yet
<span class="grey">Duke, et al. Informational [Page 17]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-18" ></span>
<span class="grey"><a href="./rfc7414">RFC 7414</a> TCP Roadmap February 2015</span>
formal consensus that these are fully logical and safe behaviors.
Wide-scale deployment of implementations that use these features
should be well thought out in terms of consequences.
<span class="h3"><a class="selflink" id="section-4.1" href="#section-4.1">4.1</a>. Architectural Guidelines</span>
As multiple flows may share the same paths, sections of paths, or
other resources, the TCP implementation may benefit from sharing
information across TCP connections or other flows. Some experimental
proposals have been documented and some implementations have included
the concepts.
<a href="./rfc2140">RFC 2140</a> I: "TCP Control Block Interdependence" (April 1997)
This document [<a href="./rfc2140" title=""TCP Control Block Interdependence"">RFC2140</a>] suggests how TCP connections between the
same endpoints might share information, such as their congestion
control state. To some degree, this is done in practice by a few
operating systems; for example, Linux currently has a destination
cache. Although this RFC is technically Informational, the
concepts it describes are in experimental use, so we include it in
this section.
<a href="./rfc3124">RFC 3124</a> S: "The Congestion Manager" (June 2001)
This document [<a href="./rfc3124" title=""The Congestion Manager"">RFC3124</a>] is a related proposal to <a href="./rfc2140">RFC 2140</a> (see
above in <a href="#section-4.1">Section 4.1</a>). The idea behind the Congestion Manager,
moving congestion control outside of individual TCP connections,
represents a modification to the core of TCP, which supports
sharing information among TCP connections. Although a Proposed
Standard, some pieces of the Congestion Manager support
architecture have not been specified yet, and it has not achieved
use or implementation beyond experimental stacks, so it is not
listed among the standard TCP enhancements in this roadmap.
<span class="h3"><a class="selflink" id="section-4.2" href="#section-4.2">4.2</a>. Fundamental Changes</span>
Like the Standards Track documents listed in <a href="#section-3.1">Section 3.1</a>, there also
exist new Experimental RFCs that specify fundamental changes to TCP.
At the time of writing, the only example so far is TCP Fast Open that
deviates from the standard TCP semantics of [<a href="./rfc793" title=""Transmission Control Protocol"">RFC793</a>].
<a href="./rfc7413">RFC 7413</a> E: "TCP Fast Open" (December 2014)
This document [<a href="./rfc7413" title=""TCP Fast Open"">RFC7413</a>] describes TCP Fast Open that allows data
to be carried in the SYN and SYN-ACK packets and consumed by the
receiver during the initial connection handshake. It saves up to
one RTT compared to the standard TCP, which requires a three-way
handshake to complete before data can be exchanged.
<span class="grey">Duke, et al. Informational [Page 18]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-19" ></span>
<span class="grey"><a href="./rfc7414">RFC 7414</a> TCP Roadmap February 2015</span>
<span class="h3"><a class="selflink" id="section-4.3" href="#section-4.3">4.3</a>. Congestion Control Extensions</span>
TCP congestion control has been an extremely active research area for
many years (see <a href="./rfc5783">RFC 5783</a> discussed in <a href="#section-7.6">Section 7.6</a> of this document),
as it determines the performance of many applications that use TCP.
A number of Experimental RFCs address issues with flow start up,
overshoot, and steady-state behavior in the basic algorithms of <a href="./rfc5681">RFC</a>
<a href="./rfc5681">5681</a> (see <a href="#section-2">Section 2</a> of this document). In these subsections,
enhancements to TCP's congestion control are listed. The next
subsection focuses on TCP's loss recovery.
<a href="./rfc2861">RFC 2861</a> E: "TCP Congestion Window Validation" (June 2000)
This document [<a href="./rfc2861" title=""TCP Congestion Window Validation"">RFC2861</a>] suggests reducing the congestion window
over time when no packets are flowing. This behavior is more
aggressive than that specified in <a href="./rfc5681">RFC 5681</a> (see <a href="#section-2">Section 2</a> of this
document), which says that a TCP sender SHOULD set its congestion
window to the initial window after an idle period of an RTO or
greater.
<a href="./rfc3540">RFC 3540</a> E: "Robust Explicit Congestion Notification (ECN) Signaling
with Nonces" (June 2003)
This document [<a href="./rfc3540" title=""Robust Explicit Congestion Notification (ECN) Signaling with Nonces"">RFC3540</a>] describes an optional addition to ECN that
protects against accidental or malicious concealment of marked
packets from the TCP sender.
<a href="./rfc3649">RFC 3649</a> E: "HighSpeed TCP for Large Congestion Windows" (December
2003)
This document [<a href="./rfc3649" title=""HighSpeed TCP for Large Congestion Windows"">RFC3649</a>] proposes a modification to TCP's
congestion control mechanism for use with TCP connections with
large congestion windows, to allow TCP to achieve a higher
throughput in high-bandwidth environments.
<a href="./rfc3742">RFC 3742</a> E: "Limited Slow-Start for TCP with Large Congestion
Windows" (March 2004)
This document [<a href="./rfc3742" title=""Limited Slow-Start for TCP with Large Congestion Windows"">RFC3742</a>] describes a more conservative slow-start
behavior to prevent massive packet losses when a connection uses a
very large congestion window.
<span class="grey">Duke, et al. Informational [Page 19]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-20" ></span>
<span class="grey"><a href="./rfc7414">RFC 7414</a> TCP Roadmap February 2015</span>
<a href="./rfc4782">RFC 4782</a> E: "Quick-Start for TCP and IP" (January 2007) (Errata)
This document [<a href="./rfc4782" title=""Quick- Start for TCP and IP"">RFC4782</a>] specifies the optional Quick-Start
mechanism for TCP. This mechanism allows connections to use
higher sending rates at the beginning of the data transfer or
after an idle period, provided that there is significant unused
bandwidth along the path, and the sender and all of the routers
along the path approve this higher rate.
<a href="./rfc5562">RFC 5562</a> E: "Adding Explicit Congestion Notification (ECN) Capability
to TCP's SYN/ACK Packets" (June 2009)
This document [<a href="./rfc5562" title=""Adding Explicit Congestion Notification (ECN) Capability to TCP's SYN/ACK Packets"">RFC5562</a>] describes an experimental modification to
ECN [<a href="./rfc3168" title=""The Addition of Explicit Congestion Notification (ECN) to IP"">RFC3168</a>] (see <a href="#section-3.2">Section 3.2</a> of this document) for the use of
ECN in TCP SYN/ACK packets. This would allow to ECN-mark rather
than drop the TCP SYN/ACK packet at an ECN-capable router, and to
avoid the severe penalty of a retransmission timeout for a
connection when the SYN/ACK packet is dropped.
<a href="./rfc5690">RFC 5690</a> I: "Adding Acknowledgement Congestion Control to TCP"
(February 2010)
This document [<a href="./rfc5690" title=""Adding Acknowledgement Congestion Control to TCP"">RFC5690</a>] describes a congestion control mechanism
for acknowledgment (ACKs) traffic in TCP. The mechanism is based
on the acknowledgment congestion control of the Datagram
Congestion Control Protocol's (DCCP's) [<a href="./rfc4340" title=""Datagram Congestion Control Protocol (DCCP)"">RFC4340</a>] Congestion
Control Identifier (CCID) 2 [<a href="./rfc4341" title=""Profile for Datagram Congestion Control Protocol (DCCP) Congestion Control ID 2: TCP-like Congestion Control"">RFC4341</a>].
<a href="./rfc6928">RFC 6928</a> E: "Increasing TCP's Initial Window" (April 2013)
This document [<a href="./rfc6928" title=""Increasing TCP's Initial Window"">RFC6928</a>] proposes to increase the TCP initial
window from between 2 and 4 segments, as specified in <a href="./rfc3390">RFC 3390</a>
(see <a href="#section-3.2">Section 3.2</a> of this document), to 10 segments with a fallback
to the existing recommendation when performance issues are
detected.
<span class="h3"><a class="selflink" id="section-4.4" href="#section-4.4">4.4</a>. Loss Recovery Extensions</span>
<a href="./rfc5827">RFC 5827</a> E: "Early Retransmit for TCP and Stream Control Transmission
Protocol (SCTP)" (April 2010)
This document [<a href="./rfc5827" title=""Early Retransmit for TCP and Stream Control Transmission Protocol (SCTP)"">RFC5827</a>] proposes the "Early Retransmit" mechanism
for TCP (and SCTP) that can be used to recover lost segments when
a connection's congestion window is small. In certain special
circumstances, Early Retransmit reduces the number of duplicate
acknowledgments required to trigger fast retransmit to recover
segment losses without waiting for a lengthy retransmission
timeout.
<span class="grey">Duke, et al. Informational [Page 20]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-21" ></span>
<span class="grey"><a href="./rfc7414">RFC 7414</a> TCP Roadmap February 2015</span>
<a href="./rfc6069">RFC 6069</a> E: "Making TCP More Robust to Long Connectivity Disruptions
(TCP-LCD)" (December 2010)
This document [<a href="./rfc6069" title=""Making TCP More Robust to Long Connectivity Disruptions (TCP-LCD)"">RFC6069</a>] describes how standard ICMP messages can
be used to disambiguate true congestion loss from non-congestion
loss caused by connectivity disruptions. It proposes a reversion
strategy of TCP's retransmission timer that enables a more prompt
detection of whether or not the connectivity has been restored.
<a href="./rfc6937">RFC 6937</a> E: "Proportional Rate Reduction for TCP" (May 2013)
This document [<a href="./rfc6937" title=""Proportional Rate Reduction for TCP"">RFC6937</a>] describes an experimental Proportional
Rate Reduction (PRR) algorithm as an alternative to the widely
deployed Fast Recovery algorithm, to improve the accuracy of the
amount of data sent by TCP during loss recovery.
<span class="h3"><a class="selflink" id="section-4.5" href="#section-4.5">4.5</a>. Detection and Prevention of Spurious Retransmissions</span>
In addition to the Standards Track extensions to deal with spurious
retransmissions in <a href="#section-3.4">Section 3.4</a>, Experimental proposals have also been
documented.
<a href="./rfc3522">RFC 3522</a> E: "The Eifel Detection Algorithm for TCP" (April 2003)
The Eifel detection algorithm [<a href="./rfc3522" title=""The Eifel Detection Algorithm for TCP"">RFC3522</a>] allows a TCP sender to
detect a posteriori whether it has entered loss recovery
unnecessarily by using the TCP timestamp option to solve the ACK
ambiguity.
<a href="./rfc3708">RFC 3708</a> E: "Using TCP Duplicate Selective Acknowledgement (DSACKs)
and Stream Control Transmission Protocol (SCTP) Duplicate
Transmission Sequence Numbers (TSNs) to Detect Spurious
Retransmissions" (February 2004)
Abstract: "TCP and Stream Control Transmission Protocol (SCTP)
provide notification of duplicate segment receipt through
Duplicate Selective Acknowledgement (DSACKs) and Duplicate
Transmission Sequence Number (TSN) notification, respectively.
This document presents conservative methods of using this
information to identify unnecessary retransmissions for various
applications."
<a href="./rfc4653">RFC 4653</a> E: "Improving the Robustness of TCP to Non-Congestion
Events" (August 2006)
In the presence of non-congestion events, such as packet
reordering, an out-of-order segment does not necessarily indicate
a lost segment and congestion. This document [<a href="./rfc4653" title=""Improving the Robustness of TCP to Non-Congestion Events"">RFC4653</a>] proposes
<span class="grey">Duke, et al. Informational [Page 21]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-22" ></span>
<span class="grey"><a href="./rfc7414">RFC 7414</a> TCP Roadmap February 2015</span>
to increase the threshold used to trigger a fast retransmission
from the fixed value of three duplicate ACKs to about one
congestion window of data in order to disambiguate true segment
loss from segment reordering.
<span class="h3"><a class="selflink" id="section-4.6" href="#section-4.6">4.6</a>. TCP Timeouts</span>
Besides the well-known retransmission timeout the TCP standard
[<a href="./rfc793" title=""Transmission Control Protocol"">RFC793</a>] defines other timeouts. This section lists documents that
deal with TCP's various timeouts.
<a href="./rfc5482">RFC 5482</a> S: "TCP User Timeout Option" (March 2009)
As a local per-connection parameter, the TCP user timeout controls
how long transmitted data may remain unacknowledged before a
connection is forcefully closed. This document [<a href="./rfc5482" title=""TCP User Timeout Option"">RFC5482</a>]
specifies the TCP User Timeout Option that allows one end of a TCP
connection to advertise its current user timeout value. This
information provides advice to the other end of the TCP connection
to adapt its user timeout accordingly.
<span class="h3"><a class="selflink" id="section-4.7" href="#section-4.7">4.7</a>. Multipath TCP</span>
MultiPath TCP (MPTCP) is an ongoing effort within the IETF that
allows a TCP connection to simultaneously use multiple IP addresses /
interfaces to spread their data across several subflows, while
presenting a regular TCP interface to applications. Benefits of this
include better resource utilization, better throughput and smoother
reaction to failures. The documents listed in this section specify
the Multipath TCP scheme, while the documents in Sections <a href="#section-7.2">7.2</a>, <a href="#section-7.4">7.4</a>,
and 7.5 provide some additional background information.
<a href="./rfc6356">RFC 6356</a> E: "Coupled Congestion Control for Multipath Transport
Protocols" (October 2011)
This document [<a href="./rfc6356" title=""Coupled Congestion Control for Multipath Transport Protocols"">RFC6356</a>] presents a congestion control algorithm
for multipath transport protocols such as Multipath TCP. It
couples the congestion control algorithms running on different
subflows by linking their increase functions, and dynamically
controls the overall aggressiveness of the multipath flow. The
result is an algorithm that is fair to TCP at bottlenecks while
moving traffic away from congested links.
<span class="grey">Duke, et al. Informational [Page 22]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-23" ></span>
<span class="grey"><a href="./rfc7414">RFC 7414</a> TCP Roadmap February 2015</span>
<a href="./rfc6824">RFC 6824</a> E: "TCP Extensions for Multipath Operation with Multiple
Addresses" (January 2013) (Errata)
This document [<a href="./rfc6824" title=""TCP Extensions for Multipath Operation with Multiple Addresses"">RFC6824</a>] presents protocol changes required to add
multipath capability to TCP; specifically, those for signaling and
setting up multiple paths ("subflows"), managing these subflows,
reassembly of data, and termination of sessions.
<span class="h2"><a class="selflink" id="section-5" href="#section-5">5</a>. TCP Parameters at IANA</span>
RFCs listed here describes both the procedures that the Internet
Assigned Numbers Authority (IANA) uses when handling assignments and
the procedures an RFC author should follow when requesting new TCP
option code points.
<a href="./rfc2780">RFC 2780</a> B: "IANA Allocation Guidelines For Values In the Internet
Protocol and Related Headers" (March 2000)
Abstract of <a href="./rfc2780">RFC 2780</a> [<a href="./rfc2780" title=""IANA Allocation Guidelines For Values In the Internet Protocol and Related Headers"">RFC2780</a>]: "This memo provides guidance for
the IANA to use in assigning parameters for fields in the IPv4,
IPv6, ICMP, UDP and TCP protocol headers."
<a href="./rfc4727">RFC 4727</a> S: "Experimental Values in IPv4, IPv6, ICMPv4, ICMPv6, UDP,
and TCP Headers" (November 2006)
This document [<a href="./rfc4727" title=""Experimental Values In IPv4, IPv6, ICMPv4, ICMPv6, UDP, and TCP Headers"">RFC4727</a>] reserves both TCP options 253 and 254 for
experimentation purposes. When such experiments are deployed in
the Internet, they should follow the additional requirements in
<a href="./rfc6994">RFC 6994</a> (see below in <a href="#section-5">Section 5</a>).
<a href="./rfc6335">RFC 6335</a> B: "Internet Assigned Numbers Authority (IANA) Procedures
for the Management of the Service Name and Transport
Protocol Port Number Registry" (August 2011)
From the Abstract of <a href="./rfc6335">RFC 6335</a> [<a href="./rfc6335" title=""Internet Assigned Numbers Authority (IANA) Procedures for the Management of the Service Name and Transport Protocol Port Number Registry"">RFC6335</a>]: "This document defines
the procedures that the Internet Assigned Numbers Authority (IANA)
uses when handling assignment and other requests related to the
Service Name and Transport Protocol Port Number registry."
<a href="./rfc6994">RFC 6994</a> S: "Shared Use of Experimental TCP Options (August 2013)
This document [<a href="./rfc6994" title=""Shared Use of Experimental TCP Options"">RFC6994</a>] describes how the experimental TCP option
code points can concurrently support multiple TCP extensions, even
within the same connection. It creates an IANA registry for
extensions to the experimental code points.
<span class="grey">Duke, et al. Informational [Page 23]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-24" ></span>
<span class="grey"><a href="./rfc7414">RFC 7414</a> TCP Roadmap February 2015</span>
<span class="h2"><a class="selflink" id="section-6" href="#section-6">6</a>. Historic and Undeployed Extensions</span>
The RFCs listed here define extensions that have thus far failed to
arouse substantial interest from implementers and have never seen
widespread deployment or were found to be defective for general use.
Most of them were reclassified by [<a href="./rfc6247" title=""Moving the Undeployed TCP Extensions RFC 1072, RFC 1106, RFC 1110, RFC 1145, RFC 1146, RFC 1379, RFC 1644, and RFC 1693 to Historic Status"">RFC6247</a>] to Historic status.
<a href="./rfc721">RFC 721</a> U: "Out-of-Band Control Signals in a Host-to-Host Protocol"
(September 1976): lack of interest
<a href="./rfc721">RFC 721</a> [<a href="./rfc721" title=""Out-of-Band Control Signals in a Host-to- Host Protocol"">RFC721</a>] addresses the problem of implementing a reliable
out-of-band signal (interrupts) for use in a host-to-host
protocol. The proposal was not included in the final TCP
specification.
<a href="./rfc1078">RFC 1078</a> U: "TCP Port Service Multiplexer (TCPMUX)" (November 1988):
lack of interest
This document [<a href="./rfc1078" title=""TCP port service Multiplexer (TCPMUX)"">RFC1078</a>] proposes a protocol to contact multiple
services on a single well-known TCP port using a service name
instead of a well-known number.
<a href="./rfc1106">RFC 1106</a> H: "TCP Big Window and Nak Options" (June 1989): found
defective
This RFC [<a href="./rfc1106" title=""TCP big window and NAK options"">RFC1106</a>] defined an alternative to the Window Scale
option for using large windows and described the "negative
acknowledgment" or NAK option. There is a comparison of NAK and
SACK methods and early discussion of TCP over satellite issues.
<a href="./rfc1110">RFC 1110</a> (see below in <a href="#section-6">Section 6</a>) explains some problems with the
approaches described in <a href="./rfc1106">RFC 1106</a>. The options described in this
document have not been adopted by the larger community, although
NAKs are used in the SCPS-TP adaptation of TCP for satellite and
spacecraft use, developed by the Consultative Committee for Space
Data Systems (CCSDS).
<a href="./rfc1110">RFC 1110</a> H: "A Problem with the TCP Big Window Option" (August 1989):
deprecates <a href="./rfc1106">RFC 1106</a>
Abstract of <a href="./rfc1110">RFC 1110</a> [<a href="./rfc1110" title=""Problem with the TCP big window option"">RFC1110</a>]: "The TCP Big Window option
discussed in <a href="./rfc1106">RFC 1106</a> will not work properly in an Internet
environment which has both a high bandwidth * delay product and
the possibility of disordering and duplicating packets. In such
networks, the window size must not be increased without a similar
increase in the sequence number space. Therefore, a different
approach to big windows should be taken in the Internet."
<span class="grey">Duke, et al. Informational [Page 24]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-25" ></span>
<span class="grey"><a href="./rfc7414">RFC 7414</a> TCP Roadmap February 2015</span>
<a href="./rfc1146">RFC 1146</a> H: "TCP Alternate Checksum Options" (March 1990): lack of
interest
This document [<a href="./rfc1146" title=""TCP alternate checksum options"">RFC1146</a>] defined more robust TCP checksums than the
16-bit ones-complement in use today. A typographical error in <a href="./rfc1145">RFC</a>
<a href="./rfc1145">1145</a> is fixed in <a href="./rfc1146">RFC 1146</a>; otherwise, the documents are the same.
<a href="./rfc1263">RFC 1263</a> I: "TCP Extensions Considered Harmful" (October 1991): lack
of interest
This document [<a href="./rfc1263" title=""TCP Extensions Considered Harmful"">RFC1263</a>] argues against "backwards compatible" TCP
extensions. Specifically mentioned are several TCP enhancements
that have been successful, including timestamps, window scaling,
PAWS, and SACK. <a href="./rfc1263">RFC 1263</a> presents an alternative approach called
"protocol evolution", whereby several evolutionary versions of TCP
would exist on hosts. These distinct TCP versions would represent
upgrades to each other and could be header incompatible.
Interoperability would be provided by having a virtualization
layer select the right TCP version for a particular connection.
This idea did not catch on with the community, while the type of
extensions <a href="./rfc1263">RFC 1263</a> specifically targeted as harmful did become
popular.
<a href="./rfc1379">RFC 1379</a> H: "Extending TCP for Transactions -- Concepts" (November
1992): found defective
See <a href="./rfc1644">RFC 1644</a>, in <a href="#section-6">Section 6</a> below.
<a href="./rfc1644">RFC 1644</a> H: "T/TCP -- TCP Extensions for Transactions Functional
Specification" (July 1994): found defective
The inventors of TCP believed that cached connection state could
have been used to eliminate TCP's three-way handshake, to support
two-packet request/response exchanges. <a href="./rfc1379">RFC 1379</a> [<a href="./rfc1379" title=""Extending TCP for Transactions -- Concepts"">RFC1379</a>] (see
above in <a href="#section-6">Section 6</a>) and <a href="./rfc1644">RFC 1644</a> [<a href="./rfc1644" title=""T/TCP -- TCP Extensions for Transactions Functional Specification"">RFC1644</a>] show that this is far
from simple. Furthermore, T/TCP floundered on the ease of denial-
of-service attacks that can result. One idea pioneered by T/TCP
lives on in <a href="./rfc2140">RFC 2140</a> (see <a href="#section-4.1">Section 4.1</a> of this document), in the
sharing of state across connections.
<span class="grey">Duke, et al. Informational [Page 25]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-26" ></span>
<span class="grey"><a href="./rfc7414">RFC 7414</a> TCP Roadmap February 2015</span>
<a href="./rfc1693">RFC 1693</a> H: "An Extension to TCP: Partial Order Service" (November
1994): lack of interest
This document [<a href="./rfc1693" title=""An Extension to TCP : Partial Order Service"">RFC1693</a>] defines a TCP extension for applications
that do not care about the order in which application-layer
objects are received. Examples are multimedia and database
applications. In practice, these applications either accept the
possible performance loss because of TCP's strict ordering or use
specialized transport protocols other than TCP, such as PR-SCTP
[<a href="./rfc3758" title=""Stream Control Transmission Protocol (SCTP) Partial Reliability Extension"">RFC3758</a>].
<a href="./rfc1705">RFC 1705</a> I: "Six Virtual Inches to the Left: The Problem with IPng"
(October 1994): lack of interest
To overcome the exhaustion of the IP class B address space, this
document [<a href="./rfc1705" title=""Six Virtual Inches to the Left: The Problem with IPng"">RFC1705</a>] suggests that a new version of TCP (TCPng)
needs to be developed and deployed. It proposes that a globally
unique address be assigned to the transport layer to uniquely
identify an Internet host without specifying any routing
information. Later work on splitting locator and identifier
values is summarized well in [<a href="./rfc6115" title=""Recommendation for a Routing Architecture"">RFC6115</a>], but no resulting changes
to TCP have occurred.
<a href="./rfc6013">RFC 6013</a> E: "TCP Cookie Transactions (TCPCT)" (January 2011): lack of
interest
This document [<a href="./rfc6013" title=""TCP Cookie Transactions (TCPCT)"">RFC6013</a>] describes a method to exchange a cookie
(nonce) during the connection establishment to negotiate
elimination of receiver state. These cookies are later used to
inhibit premature closing of connections and reduce retention of
state after the connection has terminated.
Since the cookie pair is too large to fit with the other TCP
options in the 40 bytes of TCP option space, the document further
describes a method to extent the option space after the connection
establishment.
Although <a href="./rfc6013">RFC 6013</a> was published in 2011, the authors of this
document places it in this section of the roadmap document due to
two factors.
(a) The authors are not aware of any wide deployment and use of
<a href="./rfc6013">RFC 6013</a>.
(b) <a href="./rfc6013">RFC 6013</a> uses experimental TCP option code points, which
prohibits a large-scale deployment.
<span class="grey">Duke, et al. Informational [Page 26]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-27" ></span>
<span class="grey"><a href="./rfc7414">RFC 7414</a> TCP Roadmap February 2015</span>
<span class="h2"><a class="selflink" id="section-7" href="#section-7">7</a>. Support Documents</span>
This section contains several classes of documents that do not
necessarily define current protocol behaviors but that are
nevertheless of interest to TCP implementers. <a href="#section-7.1">Section 7.1</a> describes
several foundational RFCs that give modern readers a better
understanding of the principles underlying TCP's behaviors and
development over the years. <a href="#section-7.2">Section 7.2</a> contains architectural
guidelines and principles for TCP architects and designers. The
documents listed in <a href="#section-7.3">Section 7.3</a> provide advice on using TCP in
various types of network situations that pose challenges above those
of typical wired links. Guidance for developing, analyzing, and
evaluating TCP is given in <a href="#section-7.4">Section 7.4</a>. Some implementation notes
and implementation advice can be found in <a href="#section-7.5">Section 7.5</a>. RFCs that
describe tools for testing and debugging TCP implementations or that
contain high-level tutorials on the protocol are listed <a href="#section-7.6">Section 7.6</a>.
The TCP Management Information Bases are described in <a href="#section-7.7">Section 7.7</a>,
and <a href="#section-7.8">Section 7.8</a> lists a number of case studies that have explored TCP
performance.
<span class="h3"><a class="selflink" id="section-7.1" href="#section-7.1">7.1</a>. Foundational Works</span>
The documents listed in this section contain information that is
largely duplicated by the standards documents previously discussed.
However, some of them contain a greater depth of problem statement
explanation or other context. Particularly, RFCs 813 - 817 (known as
the "Dave Clark Five") describe some early problems and solutions
(<a href="./rfc815">RFC 815</a> only describes the reassembly of IP fragments and is not
included in this TCP roadmap).
<a href="./rfc675">RFC 675</a> U: "Specification of Internet Transmission Control Program"
(December 1974)
This document [<a href="./rfc675" title=""Specification of Internet Transmission Control Program"">RFC675</a>] is a very early precursor of the
fundamental <a href="./rfc793">RFC 793</a> (see <a href="#section-2">Section 2</a> of this document), which
already contained the three-way handshake in its final form and
the concept of sliding windows for reliable data transmission.
Apart from that, the segment layout is totally different and the
specified API differs from the latter <a href="./rfc793">RFC 793</a> (see <a href="#section-2">Section 2</a> of
this document).
<span class="grey">Duke, et al. Informational [Page 27]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-28" ></span>
<span class="grey"><a href="./rfc7414">RFC 7414</a> TCP Roadmap February 2015</span>
<a href="./rfc761">RFC 761</a> U: "DoD Standard Transmission Control Protocol" (January
1980)
This document [<a href="./rfc761" title=""DoD standard Transmission Control Protocol"">RFC761</a>] is the immediate precursor of <a href="./rfc793">RFC 793</a> (see
<a href="#section-2">Section 2</a> of this document). The header format, the connection
establishment (including the different connection states), and the
overall API correspond mostly to the final Standard <a href="./rfc793">RFC 793</a> (see
<a href="#section-2">Section 2</a> of this document).
<a href="./rfc813">RFC 813</a> U: "Window and Acknowledgement Strategy in TCP" (July 1982)
This document [<a href="./rfc813" title=""Window and Acknowledgement Strategy in TCP"">RFC813</a>] contains an early discussion of Silly
Window Syndrome and its avoidance and motivates and describes the
use of delayed acknowledgments.
<a href="./rfc814">RFC 814</a> U: "Name, Addresses, Ports, and Routes" (July 1982)
Suggestions and guidance for the design of tables and algorithms
to keep track of various identifiers within a TCP/IP
implementation are provided by this document [<a href="./rfc814" title=""Name, addresses, ports, and routes"">RFC814</a>].
<a href="./rfc816">RFC 816</a> U: "Fault Isolation and Recovery" (July 1982)
In this document [<a href="./rfc816" title=""Fault isolation and recovery"">RFC816</a>], TCP's response to indications of
network error conditions such as timeouts or received ICMP
messages is discussed.
<a href="./rfc817">RFC 817</a> U: "Modularity and Efficiency in Protocol Implementation"
(July 1982)
This document [<a href="./rfc817" title=""Modularity and efficiency in protocol implementation"">RFC817</a>] contains implementation suggestions that
are general and not TCP specific. However, they have been used to
develop TCP implementations and describe some performance
implications of the interactions between various layers in the
Internet stack.
<a href="./rfc872">RFC 872</a> U: "TCP-on-a-LAN" (September 1982)
Conclusion of <a href="./rfc872">RFC 872</a> [<a href="./rfc872" title=""TCP-on-a-LAN"">RFC872</a>]: "The sometimes-expressed fear that
using TCP on a local net is a bad idea is unfounded."
<span class="grey">Duke, et al. Informational [Page 28]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-29" ></span>
<span class="grey"><a href="./rfc7414">RFC 7414</a> TCP Roadmap February 2015</span>
<a href="./rfc896">RFC 896</a> U: "Congestion Control in IP/TCP Internetworks" (January
1984)
This document [<a href="./rfc896" title=""Congestion control in IP/TCP internetworks"">RFC896</a>] contains some early experiences with
congestion collapse and some initial thoughts on how to avoid it
using congestion control in TCP. Furthermore, it defined an
algorithm for efficient transmission of small packets that is
today known as the Nagle algorithm.
<a href="./rfc964">RFC 964</a> U: "Some Problems with the Specification of the Military
Standard Transmission Control Protocol" (November 1985)
This document [<a href="./rfc964" title=""Some problems with the specification of the Military Standard Transmission Control Protocol"">RFC964</a>] points out several specification bugs in
the US Military's MIL-STD-1778 document, which was intended as a
successor to <a href="./rfc793">RFC 793</a> (see <a href="#section-2">Section 2</a> of this document). This
serves to remind us of the difficulty in specification writing
(even when we work from existing documents!).
<span class="h3"><a class="selflink" id="section-7.2" href="#section-7.2">7.2</a>. Architectural Guidelines</span>
Some documents in this section contain architectural guidance and
concerns, while others specify TCP- and congestion-control-related
mechanisms that are broadly applicable and have impacts on TCP's
congestion control techniques. Some of these documents are direct
products of the Internet Architecture Board (IAB) giving their
guidance on specific aspects of congestion control in the Internet.
<a href="./rfc1958">RFC 1958</a> I: "Architectural Principles of the Internet" (June 1996)
This document [<a href="./rfc1958" title=""Architectural Principles of the Internet"">RFC1958</a>] describes the underlying principles of the
Internet architecture. It provides guidelines for network systems
designs that have proven useful in the evolution of the Internet.
<a href="./rfc2914">RFC 2914</a> B: "Congestion Control Principles" (September 2000)
This document [<a href="./rfc2914" title=""Congestion Control Principles"">RFC2914</a>] motivates the use of end-to-end congestion
control for preventing congestion collapse and providing fairness
to TCP. Later work on TCP has included several more aggressive
mechanisms than Reno TCP includes, and <a href="./rfc5033">RFC 5033</a> (see <a href="#section-7.4">Section 7.4</a>
of this document) provides additional guidance on use of such
algorithms. The fundamental architectural discussion in <a href="./rfc2914">RFC 2914</a>
remains valid, regarding the standards process role in defining
protocol aspects that are critical to performance and avoiding
congestion collapse scenarios.
<span class="grey">Duke, et al. Informational [Page 29]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-30" ></span>
<span class="grey"><a href="./rfc7414">RFC 7414</a> TCP Roadmap February 2015</span>
<a href="./rfc3360">RFC 3360</a> B: "Inappropriate TCP Resets Considered Harmful" (August
2002)
This document [<a href="./rfc3360" title=""Inappropriate TCP Resets Considered Harmful"">RFC3360</a>] is a plea that firewall vendors not send
gratuitous TCP RST (Reset) packets when unassigned TCP header bits
are used. This practice prevents desirable extension and
evolution of the protocol and thus is potentially harmful to the
future of the Internet.
<a href="./rfc3439">RFC 3439</a> I: "Some Internet Architectural Guidelines and Philosophy"
(December 2002)
This document [<a href="./rfc3439" title=""Some Internet Architectural Guidelines and Philosophy"">RFC3439</a>] updates <a href="./rfc1958">RFC 1958</a> (see above in
<a href="#section-7.2">Section 7.2</a>) by outlining some philosophical guidelines for
architects and designers of Internet backbone networks. The
document describes the Simplicity Principle, which states that
complexity is the primary impediment to efficient scaling.
<a href="./rfc4774">RFC 4774</a> B: "Specifying Alternate Semantics for the Explicit
Congestion Notification (ECN) Field" (November 2006)
This document [<a href="./rfc4774" title=""Specifying Alternate Semantics for the Explicit Congestion Notification (ECN) Field"">RFC4774</a>] discusses some of the issues in defining
alternate semantics for the ECN field and specifies requirements
for a safe coexistence with routers that do not understand the
defined alternate semantics.
<a href="./rfc6182">RFC 6182</a> I: "Architectural Guidelines for Multipath TCP Development"
(March 2011)
Abstract of <a href="./rfc6182">RFC 6182</a> [<a href="./rfc6182" title=""Architectural Guidelines for Multipath TCP Development"">RFC6182</a>]: "This document outlines
architectural guidelines for the development of a Multipath
Transport Protocol, with references to how these architectural
components come together in the development of a Multipath TCP
(MPTCP) (see <a href="#section-4.7">Section 4.7</a> of this document). This document lists
certain high-level design decisions that provide foundations for
the design of the MPTCP protocol, based upon these architectural
requirements"
<span class="h3"><a class="selflink" id="section-7.3" href="#section-7.3">7.3</a>. Difficult Network Environments</span>
As the internetworking field has explored wireless, satellite,
cellular telephone, and other kinds of link-layer technologies, a
large body of work has built up on enhancing TCP performance for such
links. The RFCs listed in this section describe some of these more
challenging network environments and how TCP interacts with them.
<span class="grey">Duke, et al. Informational [Page 30]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-31" ></span>
<span class="grey"><a href="./rfc7414">RFC 7414</a> TCP Roadmap February 2015</span>
<a href="./rfc2488">RFC 2488</a> B: "Enhancing TCP Over Satellite Channels using Standard
Mechanisms" (January 1999)
From the Abstract of <a href="./rfc2488">RFC 2488</a> [<a href="./rfc2488" title=""Enhancing TCP Over Satellite Channels using Standard Mechanisms"">RFC2488</a>]: "While TCP works over
satellite channels there are several IETF standardized mechanisms
that enable TCP to more effectively utilize the available capacity
of the network path. This document outlines some of these TCP
mitigations. At this time, all mitigations discussed in this
document are IETF standards track mechanisms (or are compliant
with IETF standards)."
<a href="./rfc2757">RFC 2757</a> I: "Long Thin Networks" (January 2000)
Several methods of improving TCP performance over long thin
networks (i.e., networks with low bandwidth and high delay), such
as geosynchronous satellite links, are discussed in this document
[<a href="./rfc2757" title=""Long Thin Networks"">RFC2757</a>]. A particular set of TCP options is developed that
should work well in such environments and be safe to use in the
global Internet. The implications of such environments have been
further discussed in RFCs 3150 and 3155 (see below in
<a href="#section-7.3">Section 7.3</a>), and these documents should be preferred where there
is overlap between them and <a href="./rfc2757">RFC 2757</a> (see <a href="#section-7.3">Section 7.3</a> of this
document).
<a href="./rfc2760">RFC 2760</a> I: "Ongoing TCP Research Related to Satellites" (February
2000)
This document [<a href="./rfc2760" title=""Ongoing TCP Research Related to Satellites"">RFC2760</a>] discusses the advantages and disadvantages
of several different experimental means of improving TCP
performance over long-delay or error-prone paths. These include
T/TCP, larger initial windows, byte counting, delayed
acknowledgments, slow start thresholds, NewReno and SACK-based
loss recovery, FACK [<a href="#ref-MM96" title=""Forward Acknowledgement: Refining TCP Congestion Control"">MM96</a>], ECN, various corruption-detection
mechanisms, congestion avoidance changes for fairness, use of
multiple parallel flows, pacing, header compression, state
sharing, and ACK congestion control, filtering, and
reconstruction. Although <a href="./rfc2488">RFC 2488</a> (see above in <a href="#section-7.3">Section 7.3</a>)
looks at standard extensions, this document focuses on more
experimental means of performance enhancement.
<a href="./rfc3135">RFC 3135</a> I: "Performance Enhancing Proxies Intended to Mitigate Link-
Related Degradations" (June 2001)
From the Abstract of <a href="./rfc3135">RFC 3135</a> [<a href="./rfc3135" title=""Performance Enhancing Proxies Intended to Mitigate Link-Related Degradations"">RFC3135</a>]: "This document is a
survey of Performance Enhancing Proxies (PEPs) often employed to
improve degraded TCP performance caused by characteristics of
specific link environments, for example, in satellite, wireless
<span class="grey">Duke, et al. Informational [Page 31]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-32" ></span>
<span class="grey"><a href="./rfc7414">RFC 7414</a> TCP Roadmap February 2015</span>
WAN, and wireless LAN environments. Different types of
Performance Enhancing Proxies are described as well as the
mechanisms used to improve performance."
<a href="./rfc3150">RFC 3150</a> B: "End-to-end Performance Implications of Slow Links" (July
2001)
From the Abstract of <a href="./rfc3150">RFC 3150</a> [<a href="./rfc3150" title=""End-to-end Performance Implications of Slow Links"">RFC3150</a>]: "This document makes
performance-related recommendations for users of network paths
that traverse "very low bit-rate" links....This recommendation may
be useful in any network where hosts can saturate available
bandwidth, but the design space for this recommendation explicitly
includes connections that traverse 56 Kb/second modem links or 4.8
Kb/second wireless access links - both of which are widely
deployed."
<a href="./rfc3155">RFC 3155</a> B: "End-to-end Performance Implications of Links with
Errors" (August 2001)
From the Abstract of <a href="./rfc3155">RFC 3155</a> [<a href="./rfc3155" title=""End-to-end Performance Implications of Links with Errors"">RFC3155</a>]: "This document discusses
the specific TCP mechanisms that are problematic in environments
with high uncorrected error rates, and discusses what can be done
to mitigate the problems without introducing intermediate devices
into the connection."
<a href="./rfc3366">RFC 3366</a> B: "Advice to link designers on link Automatic Repeat
reQuest (ARQ)" (August 2002)
From the Abstract of <a href="./rfc3366">RFC 3366</a> [<a href="./rfc3366" title=""Advice to link designers on link Automatic Repeat reQuest (ARQ)"">RFC3366</a>]: "This document provides
advice to the designers of digital communication equipment and
link-layer protocols employing link-layer Automatic Repeat reQuest
(ARQ) techniques. This document presumes that the designers wish
to support Internet protocols, but may be unfamiliar with the
architecture of the Internet and with the implications of their
design choices for the performance and efficiency of Internet
traffic carried over their links."
<a href="./rfc3449">RFC 3449</a> B: "TCP Performance Implications of Network Path Asymmetry"
(December 2002)
From the Abstract of <a href="./rfc3449">RFC 3449</a> [<a href="./rfc3449" title=""TCP Performance Implications of Network Path Asymmetry"">RFC3449</a>]: "This document describes
TCP performance problems that arise because of asymmetric effects.
These problems arise in several access networks, including
bandwidth-asymmetric networks and packet radio subnetworks, for
different underlying reasons. However, the end result on TCP
performance is the same in both cases: performance often degrades
significantly because of imperfection and variability in the ACK
feedback from the receiver to the sender.
<span class="grey">Duke, et al. Informational [Page 32]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-33" ></span>
<span class="grey"><a href="./rfc7414">RFC 7414</a> TCP Roadmap February 2015</span>
The document details several mitigations to these effects, which
have either been proposed or evaluated in the literature, or are
currently deployed in networks.
<a href="./rfc3481">RFC 3481</a> B: "TCP over Second (2.5G) and Third (3G) Generation
Wireless Networks" (February 2003)
From the Abstract of <a href="./rfc3481">RFC 3481</a> [<a href="./rfc3481" title=""TCP over Second (2.5G) and Third (3G) Generation Wireless Networks"">RFC3481</a>]: "This document describes
a profile for optimizing TCP to adapt so that it handles paths
including second (2.5G) and third (3G) generation wireless
networks."
<a href="./rfc3819">RFC 3819</a> B: "Advice for Internet Subnetwork Designers" (July 2004)
This document [<a href="./rfc3819" title=""Advice for Internet Subnetwork Designers"">RFC3819</a>] describes how TCP performance can be
negatively affected by some particular lower-layer behaviors and
provides guidance in designing lower-layer networks and protocols
to be amicable to TCP. <a href="./rfc3366">RFC 3366</a> (see above in <a href="#section-7.3">Section 7.3</a>)
specifically focuses on ARQ mechanisms, while <a href="./rfc3819">RFC 3819</a> more widely
covers additional aspects of the underlying layers
<span class="h3"><a class="selflink" id="section-7.4" href="#section-7.4">7.4</a>. Guidance for Developing, Analyzing, and Evaluating TCP</span>
Documents in this section give general guidance for developing,
analyzing, and evaluating TCP. Some of the documents discuss, for
example, the properties of congestion control protocols that are
"safe" for Internet deployment as well as how to measure the
properties of congestion control mechanisms and transport protocols.
<a href="./rfc5033">RFC 5033</a> B: "Specifying New Congestion Control Algorithms" (August
2007)
This document [<a href="./rfc5033" title=""Specifying New Congestion Control Algorithms"">RFC5033</a>] considers the evaluation of suggested
congestion control algorithms that differ from the principles
outlined in <a href="./rfc2914">RFC 2914</a> (see <a href="#section-7.2">Section 7.2</a> of this document). It is
useful for authors of such algorithms as well as for IETF members
reviewing the associated documents.
<a href="./rfc5166">RFC 5166</a> I: "Metrics for the Evaluation of Congestion Control
Mechanisms" (March 2008)
This document [<a href="./rfc5166" title=""Metrics for the Evaluation of Congestion Control Mechanisms"">RFC5166</a>] discusses metrics that need to be
considered when evaluating new or modified congestion control
mechanisms for the Internet. Among other topics, the document
discusses throughput, delay, loss rates, response times, fairness,
and robustness for challenging environments.
<span class="grey">Duke, et al. Informational [Page 33]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-34" ></span>
<span class="grey"><a href="./rfc7414">RFC 7414</a> TCP Roadmap February 2015</span>
<a href="./rfc6077">RFC 6077</a> I: "Open Research Issues in Internet Congestion Control"
(February 2011)
This document [<a href="./rfc6077" title=""Open Research Issues in Internet Congestion Control"">RFC6077</a>] summarizes the main open problems in the
domain of Internet congestion control. As a good starting point
for newcomers, the document describes several new challenges that
are becoming important as the network grows, as well as some
issues that have been known for many years.
<a href="./rfc6181">RFC 6181</a> I: "Threat Analysis for TCP Extensions for Multipath
Operation with Multiple Addresses" (March 2011)
This document [<a href="./rfc6181" title=""Threat Analysis for TCP Extensions for Multipath Operation with Multiple Addresses"">RFC6181</a>] describes a threat analysis for Multipath
TCP (MPTCP) (see <a href="#section-4.7">Section 4.7</a> of this document). The document
discusses several types of attacks and provides recommendations
for MPTCP designers how to create an MPTCP specification that is
as secure as the current (single-path) TCP.
<a href="./rfc6349">RFC 6349</a> I: "Framework for TCP Throughput Testing" (August 2011)
From the Abstract of <a href="./rfc6349">RFC 6349</a> [<a href="./rfc6349" title=""Framework for TCP Throughput Testing"">RFC6349</a>]: "This framework describes
a practical methodology for measuring end-to-end TCP Throughput in
a managed IP network. The goal is to provide a better indication
in regard to user experience. In this framework, TCP and IP
parameters are specified to optimize TCP Throughput."
<span class="h3"><a class="selflink" id="section-7.5" href="#section-7.5">7.5</a>. Implementation Advice</span>
<a href="./rfc794">RFC 794</a> U: "PRE-EMPTION" (September 1981)
This document [<a href="./rfc794" title=""Pre-emption"">RFC794</a>] clarifies that operating systems need to
manage their limited resources, which may include TCP connection
state, and that these decisions can be made with application
input, but they do not need to be part of the TCP protocol
specification itself.
<a href="./rfc879">RFC 879</a> U: "The TCP Maximum Segment Size and Related Topics"
(November 1983)
Abstract of <a href="./rfc879">RFC 879</a> [<a href="./rfc879" title=""TCP maximum segment size and related topics"">RFC879</a>]: "This memo discusses the TCP Maximum
Segment Size Option and related topics. The purposes [sic] is to
clarify some aspects of TCP and its interaction with IP. This
memo is a clarification to the TCP specification, and contains
information that may be considered as 'advice to implementers'."
<span class="grey">Duke, et al. Informational [Page 34]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-35" ></span>
<span class="grey"><a href="./rfc7414">RFC 7414</a> TCP Roadmap February 2015</span>
<a href="./rfc1071">RFC 1071</a> U: "Computing the Internet Checksum" (September 1988)
(Errata)
This document [<a href="./rfc1071" title=""Computing the Internet checksum"">RFC1071</a>] lists a number of implementation
techniques for efficiently computing the Internet checksum (used
by TCP).
<a href="./rfc1624">RFC 1624</a> I: "Computation of the Internet Checksum via Incremental
Update" (May 1994)
Incrementally updating the Internet checksum is useful to routers
in updating IP checksums. Some middleboxes that alter TCP headers
may also be able to update the TCP checksum incrementally. This
document [<a href="./rfc1624" title=""Computation of the Internet Checksum via Incremental Update"">RFC1624</a>] expands upon the explanation of the incremental
update procedure in <a href="./rfc1071">RFC 1071</a> (see above in <a href="#section-7.5">Section 7.5</a>).
<a href="./rfc1936">RFC 1936</a> I: "Implementing the Internet Checksum in Hardware" (April
1996)
This document [<a href="./rfc1936" title=""Implementing the Internet Checksum in Hardware"">RFC1936</a>] describes the motivation for implementing
the Internet checksum in hardware, rather than in software, and
provides an implementation example.
<a href="./rfc2525">RFC 2525</a> I: "Known TCP Implementation Problems" (March 1999)
From the Abstract of <a href="./rfc2525">RFC 2525</a> [<a href="./rfc2525" title=""Known TCP Implementation Problems"">RFC2525</a>]: "This memo catalogs a
number of known TCP implementation problems. The goal in doing so
is to improve conditions in the existing Internet by enhancing the
quality of current TCP/IP implementations."
<a href="./rfc2923">RFC 2923</a> I: "TCP Problems with Path MTU Discovery" (September 2000)
From abstract: "This memo catalogs several known Transmission
Control Protocol (TCP) implementation problems dealing with Path
Maximum Transmission Unit Discovery (PMTUD), including the long-
standing black hole problem, stretch acknowledgments (ACKs) due to
confusion between Maximum Segment Size (MSS) and segment size, and
MSS advertisement based on PMTU." [<a href="./rfc2923" title=""TCP Problems with Path MTU Discovery"">RFC2923</a>]
<a href="./rfc3493">RFC 3493</a> I: "Basic Socket Interface Extensions for IPv6" (February
2003)
This document [<a href="./rfc3493" title=""Basic Socket Interface Extensions for IPv6"">RFC3493</a>] describes the de facto standard sockets
API for programming with TCP. This API is implemented nearly
ubiquitously in modern operating systems and programming
languages.
<span class="grey">Duke, et al. Informational [Page 35]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-36" ></span>
<span class="grey"><a href="./rfc7414">RFC 7414</a> TCP Roadmap February 2015</span>
<a href="./rfc6056">RFC 6056</a> B: "Recommendations for Transport-Protocol Port
Randomization" (December 2010)
This document [<a href="./rfc6056" title=""Recommendations for Transport- Protocol Port Randomization"">RFC6056</a>] describes a number of simple and efficient
methods for the selection of the client port number. It reduces
the possibility of an attacker guessing the correct five-tuple
(Protocol, Source/Destination Address, Source/Destination Port).
<a href="./rfc6191">RFC 6191</a> B: "Reducing the TIME-WAIT State Using TCP Timestamps"
(April 2011)
This document [<a href="./rfc6191" title=""Reducing the TIME-WAIT State Using TCP Timestamps"">RFC6191</a>] describes the usage of the TCP Timestamps
option (<a href="./rfc7323">RFC 7323</a>, see <a href="#section-3.1">Section 3.1</a> of this document) to perform
heuristics to determine whether or not to allow the creation of a
new incarnation of a connection that is in the TIME-WAIT state.
<a href="./rfc6429">RFC 6429</a> I: "TCP Sender Clarification for Persist Condition"
(December 2011)
This document [<a href="./rfc6429" title=""TCP Sender Clarification for Persist Condition"">RFC6429</a>] clarifies the actions that a TCP can take
on connections that are experiencing the Zero Window Probe (ZWP)
condition.
<a href="./rfc6897">RFC 6897</a> I: "Multipath TCP (MPTCP) Application Interface
Considerations" (March 2013)
This document [<a href="./rfc6897" title=""Multipath TCP (MPTCP) Application Interface Considerations"">RFC6897</a>] characterizes the impact that Multipath
TCP (MPTCP) (see <a href="#section-4.7">Section 4.7</a> of this document) may have on
applications. It further discusses compatibility issues of MPTCP
in combination with non-MPTCP-aware applications. Finally, it
describes a basic API that is a simple extension of TCP's
interface for MPTCP-aware applications.
<span class="h3"><a class="selflink" id="section-7.6" href="#section-7.6">7.6</a>. Tools and Tutorials</span>
<a href="./rfc1180">RFC 1180</a> I: "TCP/IP Tutorial" (January 1991) (Errata)
This document [<a href="./rfc1180" title=""TCP/IP tutorial"">RFC1180</a>] is an extremely brief overview of the TCP/
IP protocol suite as a whole. It gives some explanation as to how
and where TCP fits in.
<span class="grey">Duke, et al. Informational [Page 36]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-37" ></span>
<span class="grey"><a href="./rfc7414">RFC 7414</a> TCP Roadmap February 2015</span>
<a href="./rfc1470">RFC 1470</a> I: "FYI on a Network Management Tool Catalog: Tools for
Monitoring and Debugging TCP/IP Internets and
Interconnected Devices" (June 1993)
A few of the tools that this document [<a href="./rfc1470" title=""FYI on a Network Management Tool Catalog: Tools for Monitoring and Debugging TCP/IP Internets and Interconnected Devices"">RFC1470</a>] describes are
still maintained and in use today, for example, ttcp and tcpdump.
However, many of the tools described do not relate specifically to
TCP and are no longer used or easily available.
<a href="./rfc2398">RFC 2398</a> I: "Some Testing Tools for TCP Implementors" (August 1998)
This document [<a href="./rfc2398" title=""Some Testing Tools for TCP Implementors"">RFC2398</a>] describes a number of TCP packet
generation and analysis tools. Although some of these tools are
no longer readily available or widely used, for the most part they
are still relevant and usable.
<a href="./rfc5783">RFC 5783</a> I: "Congestion Control in the RFC Series" (February 2010)
This document [<a href="./rfc5783" title=""Congestion Control in the RFC Series"">RFC5783</a>] provides an overview of RFCs related to
congestion control that had been published at the time. The focus
of the document is on end-host-based congestion control.
<span class="h3"><a class="selflink" id="section-7.7" href="#section-7.7">7.7</a>. MIB Modules</span>
The first MIB module defined for use with Simple Network Management
Protocol (SNMP) was a single monolithic MIB module, called MIB-I,
defined in <a href="./rfc1156">RFC 1156</a>. This evolved over time to the MIB-II
specification in <a href="./rfc1213">RFC 1213</a>, which obsoletes <a href="./rfc1156">RFC 1156</a>. It then became
apparent that having a single monolithic MIB module was not scalable,
given the number and breadth of MIB data definitions that needed to
be included. Thus, additional MIB modules were defined, and those
parts of MIB-II that needed to evolve were split off. Eventually,
the remaining parts of MIB-II were also split off, the TCP-specific
part being documented in <a href="./rfc2012">RFC 2012</a>. <a href="./rfc2012">RFC 2012</a> was obsoleted by <a href="./rfc4022">RFC</a>
<a href="./rfc4022">4022</a>, which is the primary TCP MIB document at the time of writing.
For current TCP implementers, <a href="./rfc4022">RFC 4022</a> should be supported.
<a href="./rfc1156">RFC 1156</a> S: "Management Information Base for Network Management of
TCP/IP-based Internets" (May 1990)
This document [<a href="./rfc1156" title=""Management Information Base for network management of TCP/IP-based internets"">RFC1156</a>] describes the required MIB fields for TCP
implementations with minor corrections and no technical changes
from <a href="./rfc1066">RFC 1066</a>, which it obsoletes. This is the Standards Track
RFC for MIB-I.
<span class="grey">Duke, et al. Informational [Page 37]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-38" ></span>
<span class="grey"><a href="./rfc7414">RFC 7414</a> TCP Roadmap February 2015</span>
<a href="./rfc1213">RFC 1213</a> S: "Management Information Base for Network Management of
TCP/IP-based internets: MIB-II" (March 1991)
This document [<a href="./rfc1213" title=""Management Information Base for Network Management of TCP/IP-based internets:MIB-II"">RFC1213</a>] describes the second version of the MIB in
a monolithic form. It is the immediate successor of <a href="./rfc1158">RFC 1158</a>,
with minor modifications. It obsoletes the MIB-I, defined in <a href="./rfc1156">RFC</a>
<a href="./rfc1156">1156</a> (see above in <a href="#section-7.7">Section 7.7</a>).
<a href="./rfc2012">RFC 2012</a> S: "SNMPv2 Management Information Base for the Transmission
Control Protocol using SMIv2" (November 1996)
In an update to <a href="./rfc1213">RFC 1213</a> (see <a href="#section-7.7">Section 7.7</a> of this document), this
document [<a href="./rfc2012" title=""SNMPv2 Management Information Base for the Transmission Control Protocol using SMIv2"">RFC2012</a>] defines the TCP MIB by splitting out the TCP-
specific portions. It is now obsoleted by <a href="./rfc4022">RFC 4022</a> (see below in
<a href="#section-7.7">Section 7.7</a>).
<a href="./rfc2452">RFC 2452</a> S: "IP Version 6 Management Information Base for the
Transmission Control Protocol" (December 1998)
This document [<a href="./rfc2452" title=""IP Version 6 Management Information Base for the Transmission Control Protocol"">RFC2452</a>] augments <a href="./rfc2012">RFC 2012</a> (see <a href="#section-7.7">Section 7.7</a> of this
document) by adding an IPv6-specific connection table. The rest
of <a href="./rfc2012">RFC 2012</a> holds for any IP version. <a href="./rfc2452">RFC 2452</a> is now obsoleted
by <a href="./rfc4022">RFC 4022</a> (see below in <a href="#section-7.7">Section 7.7</a>).
Although it is a Standards Track RFC, <a href="./rfc2452">RFC 2452</a> is considered a
historic mistake by the MIB community, as it is based on the idea
of parallel IPv4 and IPv6 structures. Although IPv6 requires new
structures, the community has decided to define a single generic
structure for both IPv4 and IPv6. This will aid in definition,
implementation, and transition between IPv4 and IPv6.
<a href="./rfc4022">RFC 4022</a> S: "Management Information Base for the Transmission Control
Protocol (TCP)" (March 2005)
This document [<a href="./rfc4022" title=""Management Information Base for the Transmission Control Protocol (TCP)"">RFC4022</a>] obsoletes RFCs 2012 and 2452 (see above in
<a href="#section-7.7">Section 7.7</a>) and specifies the current standard for the TCP MIB
that should be deployed.
<a href="./rfc4898">RFC 4898</a> S: "TCP Extended Statistics MIB" (May 2007)
This document [<a href="./rfc4898" title=""TCP Extended Statistics MIB"">RFC4898</a>] describes extended performance statistics
for TCP. They are designed to use TCP's ideal vantage point to
diagnose performance problems in both the network and the
application.
<span class="grey">Duke, et al. Informational [Page 38]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-39" ></span>
<span class="grey"><a href="./rfc7414">RFC 7414</a> TCP Roadmap February 2015</span>
<span class="h3"><a class="selflink" id="section-7.8" href="#section-7.8">7.8</a>. Case Studies</span>
<a href="./rfc700">RFC 700</a> U: "A Protocol Experiment" (August 1974)
This document [<a href="./rfc700" title=""Protocol experiment"">RFC700</a>] presents a field report about the
deployment of a very early version of TCP, the so-called INWN #39
protocol, which is originally described by Cerf and Kahn in INWG
Note #39 [<a href="#ref-CK73" title=""Towards Protocols for Internetwork Communication"">CK73</a>] to use a PDP-11 line printer via the ARPANET.
<a href="./rfc889">RFC 889</a> U: "Internet Delay Experiments" (December 1983)
This document [<a href="./rfc889" title=""Internet delay experiments"">RFC889</a>] is a status report about experiments
concerning the TCP retransmission timeout calculation and also
provides advice for implementers.
<a href="./rfc1337">RFC 1337</a> I: "TIME-WAIT Assassination Hazards in TCP" (May 1992)
This document [<a href="./rfc1337" title=""TIME-WAIT Assassination Hazards in TCP"">RFC1337</a>] points out a problem with acting on
received reset segments while one is in the TIME-WAIT state. The
main recommendation is that hosts in TIME-WAIT ignore resets.
This recommendation might not currently be widely implemented.
<a href="./rfc2415">RFC 2415</a> I: "Simulation Studies of Increased Initial TCP Window Size"
(September 1998)
This document [<a href="./rfc2415" title=""Simulation Studies of Increased Initial TCP Window Size"">RFC2415</a>] presents results of some simulations using
TCP initial windows greater than 1 segment. The analysis
indicates that user-perceived performance can be improved by
increasing the initial window to 3 segments.
<a href="./rfc2416">RFC 2416</a> I: "When TCP Starts Up With Four Packets Into Only Three
Buffers" (September 1998)
This document [<a href="./rfc2416" title=""When TCP Starts Up With Four Packets Into Only Three Buffers"">RFC2416</a>] uses simulation results to clear up some
concerns about using an initial window of 4 segments when the
network path has less provisioning.
<a href="./rfc2884">RFC 2884</a> I: "Performance Evaluation of Explicit Congestion
Notification (ECN) in IP Networks" (July 2000)
This document [<a href="./rfc2884" title=""Performance Evaluation of Explicit Congestion Notification (ECN) in IP Networks"">RFC2884</a>] describes experimental results that show
some improvements to the performance of both short- and long-lived
connections due to ECN.
<span class="grey">Duke, et al. Informational [Page 39]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-40" ></span>
<span class="grey"><a href="./rfc7414">RFC 7414</a> TCP Roadmap February 2015</span>
<span class="h2"><a class="selflink" id="section-8" href="#section-8">8</a>. Undocumented TCP Features</span>
There are a few important implementation tactics for the TCP that
have not yet been described in any RFC. Although this roadmap is
primarily concerned with mapping the TCP RFCs, this section is
included because an implementer needs to be aware of these important
issues.
Header Prediction
Header prediction is a trick to speed up the processing of
segments. Van Jacobson and Mike Karels developed the technique in
the late 1980s. The basic idea is that some processing time can
be saved when most of a segment's fields can be predicted from
previous segments. A good description of this was sent to the
TCP-IP mailing list by Van Jacobson on March 9, 1988 (see
[<a href="#ref-Jacobson" title=""TCP-IP Mailing List"">Jacobson</a>] for the full message):
Quite a bit of the speedup comes from an algorithm that we
('we' refers to collaborator Mike Karels and myself) are
calling "header prediction". The idea is that if you're in the
middle of a bulk data transfer and have just seen a packet, you
know what the next packet is going to look like: It will look
just like the current packet with either the sequence number or
ack number updated (depending on whether you're the sender or
receiver). Combining this with the "Use hints" epigram from
Butler Lampson's classic "Epigrams for System Designers", you
start to think of the tcp state (rcv.nxt, snd.una, etc.) as
"hints" about what the next packet should look like.
If you arrange those "hints" so they match the layout of a tcp
packet header, it takes a single 14-byte compare to see if your
prediction is correct (3 longword compares to pick up the send
& ack sequence numbers, header length, flags and window, plus a
short compare on the length). If the prediction is correct,
there's a single test on the length to see if you're the sender
or receiver followed by the appropriate processing. E.g., if
the length is non-zero (you're the receiver), checksum and
append the data to the socket buffer then wake any process
that's sleeping on the buffer. Update rcv.nxt by the length of
this packet (this updates your "prediction" of the next
packet). Check if you can handle another packet the same size
as the current one. If not, set one of the unused flag bits in
your header prediction to guarantee that the prediction will
fail on the next packet and force you to go through full
protocol processing. Otherwise, you're done with this packet.
So, the *total* tcp protocol processing, exclusive of
checksumming, is on the order of 6 compares and an add.
<span class="grey">Duke, et al. Informational [Page 40]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-41" ></span>
<span class="grey"><a href="./rfc7414">RFC 7414</a> TCP Roadmap February 2015</span>
Forward Acknowledgement (FACK)
FACK [<a href="#ref-MM96" title=""Forward Acknowledgement: Refining TCP Congestion Control"">MM96</a>] includes an alternate algorithm for triggering fast
retransmit [<a href="./rfc5681" title=""TCP Congestion Control"">RFC5681</a>], based on the extent of the SACK scoreboard.
Its goal is to trigger fast retransmit as soon as the receiver's
reassembly queue is larger than the duplicate ACK threshold, as
indicated by the difference between the forward most SACK block
edge and SND.UNA. This algorithm quickly and reliably triggers
fast retransmit in the presence of burst losses -- often on the
first SACK following such a loss. Such a threshold-based
algorithm also triggers fast retransmit immediately in the
presence of any reordering with extent greater than the duplicate
ACK threshold. FACK is implemented in Linux and turned on per
default.
Congestion Control for High Rate Flows
In the last decade significant research effort has been put into
experimental TCP congestion control modifications for obtaining
high throughput with reduced startup and recovery times. Only a
few RFCs have been published on some of these modifications,
including HighSpeed TCP [<a href="./rfc3649" title=""HighSpeed TCP for Large Congestion Windows"">RFC3649</a>], Limited Slow-Start [<a href="./rfc3742" title=""Limited Slow-Start for TCP with Large Congestion Windows"">RFC3742</a>],
and Quick-Start [<a href="./rfc4782" title=""Quick- Start for TCP and IP"">RFC4782</a>] (see <a href="#section-4.3">Section 4.3</a> of this document for
more information on each), but high-rate congestion control
mechanisms are still considered an open issue in congestion
control research. Some other schemes have been published as
Internet-Drafts, e.g. CUBIC [<a href="#ref-CUBIC" title=""CUBIC for Fast Long-Distance Networks"">CUBIC</a>] (the standard TCP congestion
control algorithm in Linux), Compound TCP [<a href="#ref-CTCP" title=""Compound TCP: A New TCP Congestion Control for High-Speed and Long Distance Networks"">CTCP</a>], and H-TCP [<a href="#ref-HTCP" title=""H-TCP: TCP Congestion Control for High Bandwidth-Delay Product Paths"">HTCP</a>]
or have been discussed a little by the IETF, but much of the work
in this area has not been adopted within the IETF yet, so the
majority of this work is outside the RFC series and may be
discussed in other products of the IRTF Internet Congestion
Control Research Group (ICCRG).
<span class="h2"><a class="selflink" id="section-9" href="#section-9">9</a>. Security Considerations</span>
This document introduces no new security considerations. Each RFC
listed in this document attempts to address the security
considerations of the specification it contains.
<span class="grey">Duke, et al. Informational [Page 41]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-42" ></span>
<span class="grey"><a href="./rfc7414">RFC 7414</a> TCP Roadmap February 2015</span>
<span class="h2"><a class="selflink" id="section-10" href="#section-10">10</a>. References</span>
<span class="h3"><a class="selflink" id="section-10.1" href="#section-10.1">10.1</a>. Normative References</span>
[<a id="ref-RFC675">RFC675</a>] Cerf, V., Dalal, Y., and C. Sunshine, "Specification of
Internet Transmission Control Program", <a href="./rfc675">RFC 675</a>, December
1974, <<a href="http://www.rfc-editor.org/info/rfc675">http://www.rfc-editor.org/info/rfc675</a>>.
[<a id="ref-RFC700">RFC700</a>] Mader, E., Plummer, W., and R. Tomlinson, "Protocol
experiment", <a href="./rfc700">RFC 700</a>, August 1974,
<<a href="http://www.rfc-editor.org/info/rfc700">http://www.rfc-editor.org/info/rfc700</a>>.
[<a id="ref-RFC721">RFC721</a>] Garlick, L., "Out-of-Band Control Signals in a Host-to-
Host Protocol", <a href="./rfc721">RFC 721</a>, September 1976,
<<a href="http://www.rfc-editor.org/info/rfc721">http://www.rfc-editor.org/info/rfc721</a>>.
[<a id="ref-RFC761">RFC761</a>] Postel, J., "DoD standard Transmission Control Protocol",
<a href="./rfc761">RFC 761</a>, January 1980,
<<a href="http://www.rfc-editor.org/info/rfc761">http://www.rfc-editor.org/info/rfc761</a>>.
[<a id="ref-RFC793">RFC793</a>] Postel, J., "Transmission Control Protocol", STD 7, <a href="./rfc793">RFC</a>
<a href="./rfc793">793</a>, September 1981,
<<a href="http://www.rfc-editor.org/info/rfc793">http://www.rfc-editor.org/info/rfc793</a>>.
[<a id="ref-RFC794">RFC794</a>] Cerf, V., "Pre-emption", <a href="./rfc794">RFC 794</a>, September 1981,
<<a href="http://www.rfc-editor.org/info/rfc794">http://www.rfc-editor.org/info/rfc794</a>>.
[<a id="ref-RFC813">RFC813</a>] Clark, D., "Window and Acknowledgement Strategy in TCP",
<a href="./rfc813">RFC 813</a>, July 1982,
<<a href="http://www.rfc-editor.org/info/rfc813">http://www.rfc-editor.org/info/rfc813</a>>.
[<a id="ref-RFC814">RFC814</a>] Clark, D., "Name, addresses, ports, and routes", <a href="./rfc814">RFC 814</a>,
July 1982, <<a href="http://www.rfc-editor.org/info/rfc814">http://www.rfc-editor.org/info/rfc814</a>>.
[<a id="ref-RFC816">RFC816</a>] Clark, D., "Fault isolation and recovery", <a href="./rfc816">RFC 816</a>, July
1982, <<a href="http://www.rfc-editor.org/info/rfc816">http://www.rfc-editor.org/info/rfc816</a>>.
[<a id="ref-RFC817">RFC817</a>] Clark, D., "Modularity and efficiency in protocol
implementation", <a href="./rfc817">RFC 817</a>, July 1982,
<<a href="http://www.rfc-editor.org/info/rfc817">http://www.rfc-editor.org/info/rfc817</a>>.
[<a id="ref-RFC872">RFC872</a>] Padlipsky, M., "TCP-on-a-LAN", <a href="./rfc872">RFC 872</a>, September 1982,
<<a href="http://www.rfc-editor.org/info/rfc872">http://www.rfc-editor.org/info/rfc872</a>>.
[<a id="ref-RFC879">RFC879</a>] Postel, J., "TCP maximum segment size and related topics",
<a href="./rfc879">RFC 879</a>, November 1983,
<<a href="http://www.rfc-editor.org/info/rfc879">http://www.rfc-editor.org/info/rfc879</a>>.
<span class="grey">Duke, et al. Informational [Page 42]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-43" ></span>
<span class="grey"><a href="./rfc7414">RFC 7414</a> TCP Roadmap February 2015</span>
[<a id="ref-RFC889">RFC889</a>] Mills, D., "Internet delay experiments", <a href="./rfc889">RFC 889</a>, December
1983, <<a href="http://www.rfc-editor.org/info/rfc889">http://www.rfc-editor.org/info/rfc889</a>>.
[<a id="ref-RFC896">RFC896</a>] Nagle, J., "Congestion control in IP/TCP internetworks",
<a href="./rfc896">RFC 896</a>, January 1984,
<<a href="http://www.rfc-editor.org/info/rfc896">http://www.rfc-editor.org/info/rfc896</a>>.
[<a id="ref-RFC964">RFC964</a>] Sidhu, D. and T. Blumer, "Some problems with the
specification of the Military Standard Transmission
Control Protocol", <a href="./rfc964">RFC 964</a>, November 1985,
<<a href="http://www.rfc-editor.org/info/rfc964">http://www.rfc-editor.org/info/rfc964</a>>.
[<a id="ref-RFC1071">RFC1071</a>] Braden, R., Borman, D., Partridge, C., and W. Plummer,
"Computing the Internet checksum", <a href="./rfc1071">RFC 1071</a>, September
1988, <<a href="http://www.rfc-editor.org/info/rfc1071">http://www.rfc-editor.org/info/rfc1071</a>>.
[<a id="ref-RFC1078">RFC1078</a>] Lottor, M., "TCP port service Multiplexer (TCPMUX)", <a href="./rfc1078">RFC</a>
<a href="./rfc1078">1078</a>, November 1988,
<<a href="http://www.rfc-editor.org/info/rfc1078">http://www.rfc-editor.org/info/rfc1078</a>>.
[<a id="ref-RFC1106">RFC1106</a>] Fox, R., "TCP big window and NAK options", <a href="./rfc1106">RFC 1106</a>, June
1989, <<a href="http://www.rfc-editor.org/info/rfc1106">http://www.rfc-editor.org/info/rfc1106</a>>.
[<a id="ref-RFC1110">RFC1110</a>] McKenzie, A., "Problem with the TCP big window option",
<a href="./rfc1110">RFC 1110</a>, August 1989,
<<a href="http://www.rfc-editor.org/info/rfc1110">http://www.rfc-editor.org/info/rfc1110</a>>.
[<a id="ref-RFC1122">RFC1122</a>] Braden, R., "Requirements for Internet Hosts -
Communication Layers", STD 3, <a href="./rfc1122">RFC 1122</a>, October 1989,
<<a href="http://www.rfc-editor.org/info/rfc1122">http://www.rfc-editor.org/info/rfc1122</a>>.
[<a id="ref-RFC1144">RFC1144</a>] Jacobson, V., "Compressing TCP/IP headers for low-speed
serial links", <a href="./rfc1144">RFC 1144</a>, February 1990,
<<a href="http://www.rfc-editor.org/info/rfc1144">http://www.rfc-editor.org/info/rfc1144</a>>.
[<a id="ref-RFC1146">RFC1146</a>] Zweig, J. and C. Partridge, "TCP alternate checksum
options", <a href="./rfc1146">RFC 1146</a>, March 1990,
<<a href="http://www.rfc-editor.org/info/rfc1146">http://www.rfc-editor.org/info/rfc1146</a>>.
[<a id="ref-RFC1156">RFC1156</a>] McCloghrie, K. and M. Rose, "Management Information Base
for network management of TCP/IP-based internets", <a href="./rfc1156">RFC</a>
<a href="./rfc1156">1156</a>, May 1990, <<a href="http://www.rfc-editor.org/info/rfc1156">http://www.rfc-editor.org/info/rfc1156</a>>.
[<a id="ref-RFC1180">RFC1180</a>] Socolofsky, T. and C. Kale, "TCP/IP tutorial", <a href="./rfc1180">RFC 1180</a>,
January 1991, <<a href="http://www.rfc-editor.org/info/rfc1180">http://www.rfc-editor.org/info/rfc1180</a>>.
[<a id="ref-RFC1191">RFC1191</a>] Mogul, J. and S. Deering, "Path MTU discovery", <a href="./rfc1191">RFC 1191</a>,
November 1990, <<a href="http://www.rfc-editor.org/info/rfc1191">http://www.rfc-editor.org/info/rfc1191</a>>.
<span class="grey">Duke, et al. Informational [Page 43]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-44" ></span>
<span class="grey"><a href="./rfc7414">RFC 7414</a> TCP Roadmap February 2015</span>
[<a id="ref-RFC1213">RFC1213</a>] McCloghrie, K. and M. Rose, "Management Information Base
for Network Management of TCP/IP-based internets:MIB-II",
STD 17, <a href="./rfc1213">RFC 1213</a>, March 1991,
<<a href="http://www.rfc-editor.org/info/rfc1213">http://www.rfc-editor.org/info/rfc1213</a>>.
[<a id="ref-RFC1263">RFC1263</a>] O'Malley, S. and L. Peterson, "TCP Extensions Considered
Harmful", <a href="./rfc1263">RFC 1263</a>, October 1991,
<<a href="http://www.rfc-editor.org/info/rfc1263">http://www.rfc-editor.org/info/rfc1263</a>>.
[<a id="ref-RFC1337">RFC1337</a>] Braden, B., "TIME-WAIT Assassination Hazards in TCP", <a href="./rfc1337">RFC</a>
<a href="./rfc1337">1337</a>, May 1992, <<a href="http://www.rfc-editor.org/info/rfc1337">http://www.rfc-editor.org/info/rfc1337</a>>.
[<a id="ref-RFC1379">RFC1379</a>] Braden, B., "Extending TCP for Transactions -- Concepts",
<a href="./rfc1379">RFC 1379</a>, November 1992,
<<a href="http://www.rfc-editor.org/info/rfc1379">http://www.rfc-editor.org/info/rfc1379</a>>.
[<a id="ref-RFC1470">RFC1470</a>] Enger, R. and J. Reynolds, "FYI on a Network Management
Tool Catalog: Tools for Monitoring and Debugging TCP/IP
Internets and Interconnected Devices", <a href="./rfc1470">RFC 1470</a>, June
1993, <<a href="http://www.rfc-editor.org/info/rfc1470">http://www.rfc-editor.org/info/rfc1470</a>>.
[<a id="ref-RFC1624">RFC1624</a>] Rijsinghani, A., "Computation of the Internet Checksum via
Incremental Update", <a href="./rfc1624">RFC 1624</a>, May 1994,
<<a href="http://www.rfc-editor.org/info/rfc1624">http://www.rfc-editor.org/info/rfc1624</a>>.
[<a id="ref-RFC1644">RFC1644</a>] Braden, B., "T/TCP -- TCP Extensions for Transactions
Functional Specification", <a href="./rfc1644">RFC 1644</a>, July 1994,
<<a href="http://www.rfc-editor.org/info/rfc1644">http://www.rfc-editor.org/info/rfc1644</a>>.
[<a id="ref-RFC1693">RFC1693</a>] Connolly, T., Amer, P., and P. Conrad, "An Extension to
TCP : Partial Order Service", <a href="./rfc1693">RFC 1693</a>, November 1994,
<<a href="http://www.rfc-editor.org/info/rfc1693">http://www.rfc-editor.org/info/rfc1693</a>>.
[<a id="ref-RFC1705">RFC1705</a>] Carlson, R. and D. Ficarella, "Six Virtual Inches to the
Left: The Problem with IPng", <a href="./rfc1705">RFC 1705</a>, October 1994,
<<a href="http://www.rfc-editor.org/info/rfc1705">http://www.rfc-editor.org/info/rfc1705</a>>.
[<a id="ref-RFC1936">RFC1936</a>] Touch, J. and B. Parham, "Implementing the Internet
Checksum in Hardware", <a href="./rfc1936">RFC 1936</a>, April 1996,
<<a href="http://www.rfc-editor.org/info/rfc1936">http://www.rfc-editor.org/info/rfc1936</a>>.
[<a id="ref-RFC1958">RFC1958</a>] Carpenter, B., "Architectural Principles of the Internet",
<a href="./rfc1958">RFC 1958</a>, June 1996,
<<a href="http://www.rfc-editor.org/info/rfc1958">http://www.rfc-editor.org/info/rfc1958</a>>.
[<a id="ref-RFC1981">RFC1981</a>] McCann, J., Deering, S., and J. Mogul, "Path MTU Discovery
for IP version 6", <a href="./rfc1981">RFC 1981</a>, August 1996,
<<a href="http://www.rfc-editor.org/info/rfc1981">http://www.rfc-editor.org/info/rfc1981</a>>.
<span class="grey">Duke, et al. Informational [Page 44]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-45" ></span>
<span class="grey"><a href="./rfc7414">RFC 7414</a> TCP Roadmap February 2015</span>
[<a id="ref-RFC2012">RFC2012</a>] McCloghrie, K., "SNMPv2 Management Information Base for
the Transmission Control Protocol using SMIv2", <a href="./rfc2012">RFC 2012</a>,
November 1996, <<a href="http://www.rfc-editor.org/info/rfc2012">http://www.rfc-editor.org/info/rfc2012</a>>.
[<a id="ref-RFC2018">RFC2018</a>] Mathis, M., Mahdavi, J., Floyd, S., and A. Romanow, "TCP
Selective Acknowledgment Options", <a href="./rfc2018">RFC 2018</a>, October 1996,
<<a href="http://www.rfc-editor.org/info/rfc2018">http://www.rfc-editor.org/info/rfc2018</a>>.
[<a id="ref-RFC2140">RFC2140</a>] Touch, J., "TCP Control Block Interdependence", <a href="./rfc2140">RFC 2140</a>,
April 1997, <<a href="http://www.rfc-editor.org/info/rfc2140">http://www.rfc-editor.org/info/rfc2140</a>>.
[<a id="ref-RFC2398">RFC2398</a>] Parker, S. and C. Schmechel, "Some Testing Tools for TCP
Implementors", <a href="./rfc2398">RFC 2398</a>, August 1998,
<<a href="http://www.rfc-editor.org/info/rfc2398">http://www.rfc-editor.org/info/rfc2398</a>>.
[<a id="ref-RFC2415">RFC2415</a>] Poduri, K., "Simulation Studies of Increased Initial TCP
Window Size", <a href="./rfc2415">RFC 2415</a>, September 1998,
<<a href="http://www.rfc-editor.org/info/rfc2415">http://www.rfc-editor.org/info/rfc2415</a>>.
[<a id="ref-RFC2416">RFC2416</a>] Shepard, T. and C. Partridge, "When TCP Starts Up With
Four Packets Into Only Three Buffers", <a href="./rfc2416">RFC 2416</a>, September
1998, <<a href="http://www.rfc-editor.org/info/rfc2416">http://www.rfc-editor.org/info/rfc2416</a>>.
[<a id="ref-RFC2452">RFC2452</a>] Daniele, M., "IP Version 6 Management Information Base for
the Transmission Control Protocol", <a href="./rfc2452">RFC 2452</a>, December
1998, <<a href="http://www.rfc-editor.org/info/rfc2452">http://www.rfc-editor.org/info/rfc2452</a>>.
[<a id="ref-RFC2460">RFC2460</a>] Deering, S. and R. Hinden, "Internet Protocol, Version 6
(IPv6) Specification", <a href="./rfc2460">RFC 2460</a>, December 1998,
<<a href="http://www.rfc-editor.org/info/rfc2460">http://www.rfc-editor.org/info/rfc2460</a>>.
[<a id="ref-RFC2488">RFC2488</a>] Allman, M., Glover, D., and L. Sanchez, "Enhancing TCP
Over Satellite Channels using Standard Mechanisms", <a href="https://www.rfc-editor.org/bcp/bcp28">BCP</a>
<a href="https://www.rfc-editor.org/bcp/bcp28">28</a>, <a href="./rfc2488">RFC 2488</a>, January 1999,
<<a href="http://www.rfc-editor.org/info/rfc2488">http://www.rfc-editor.org/info/rfc2488</a>>.
[<a id="ref-RFC2525">RFC2525</a>] Paxson, V., Dawson, S., Fenner, W., Griner, J., Heavens,
I., Lahey, K., Semke, J., and B. Volz, "Known TCP
Implementation Problems", <a href="./rfc2525">RFC 2525</a>, March 1999,
<<a href="http://www.rfc-editor.org/info/rfc2525">http://www.rfc-editor.org/info/rfc2525</a>>.
[<a id="ref-RFC2675">RFC2675</a>] Borman, D., Deering, S., and R. Hinden, "IPv6 Jumbograms",
<a href="./rfc2675">RFC 2675</a>, August 1999,
<<a href="http://www.rfc-editor.org/info/rfc2675">http://www.rfc-editor.org/info/rfc2675</a>>.
[<a id="ref-RFC2757">RFC2757</a>] Montenegro, G., Dawkins, S., Kojo, M., Magret, V., and N.
Vaidya, "Long Thin Networks", <a href="./rfc2757">RFC 2757</a>, January 2000,
<<a href="http://www.rfc-editor.org/info/rfc2757">http://www.rfc-editor.org/info/rfc2757</a>>.
<span class="grey">Duke, et al. Informational [Page 45]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-46" ></span>
<span class="grey"><a href="./rfc7414">RFC 7414</a> TCP Roadmap February 2015</span>
[<a id="ref-RFC2760">RFC2760</a>] Allman, M., Dawkins, S., Glover, D., Griner, J., Tran, D.,
Henderson, T., Heidemann, J., Touch, J., Kruse, H.,
Ostermann, S., Scott, K., and J. Semke, "Ongoing TCP
Research Related to Satellites", <a href="./rfc2760">RFC 2760</a>, February 2000,
<<a href="http://www.rfc-editor.org/info/rfc2760">http://www.rfc-editor.org/info/rfc2760</a>>.
[<a id="ref-RFC2780">RFC2780</a>] Bradner, S. and V. Paxson, "IANA Allocation Guidelines For
Values In the Internet Protocol and Related Headers", <a href="https://www.rfc-editor.org/bcp/bcp37">BCP</a>
<a href="https://www.rfc-editor.org/bcp/bcp37">37</a>, <a href="./rfc2780">RFC 2780</a>, March 2000,
<<a href="http://www.rfc-editor.org/info/rfc2780">http://www.rfc-editor.org/info/rfc2780</a>>.
[<a id="ref-RFC2861">RFC2861</a>] Handley, M., Padhye, J., and S. Floyd, "TCP Congestion
Window Validation", <a href="./rfc2861">RFC 2861</a>, June 2000,
<<a href="http://www.rfc-editor.org/info/rfc2861">http://www.rfc-editor.org/info/rfc2861</a>>.
[<a id="ref-RFC2873">RFC2873</a>] Xiao, X., Hannan, A., Paxson, V., and E. Crabbe, "TCP
Processing of the IPv4 Precedence Field", <a href="./rfc2873">RFC 2873</a>, June
2000, <<a href="http://www.rfc-editor.org/info/rfc2873">http://www.rfc-editor.org/info/rfc2873</a>>.
[<a id="ref-RFC2883">RFC2883</a>] Floyd, S., Mahdavi, J., Mathis, M., and M. Podolsky, "An
Extension to the Selective Acknowledgement (SACK) Option
for TCP", <a href="./rfc2883">RFC 2883</a>, July 2000,
<<a href="http://www.rfc-editor.org/info/rfc2883">http://www.rfc-editor.org/info/rfc2883</a>>.
[<a id="ref-RFC2884">RFC2884</a>] Hadi Salim, J. and U. Ahmed, "Performance Evaluation of
Explicit Congestion Notification (ECN) in IP Networks",
<a href="./rfc2884">RFC 2884</a>, July 2000,
<<a href="http://www.rfc-editor.org/info/rfc2884">http://www.rfc-editor.org/info/rfc2884</a>>.
[<a id="ref-RFC2914">RFC2914</a>] Floyd, S., "Congestion Control Principles", <a href="https://www.rfc-editor.org/bcp/bcp41">BCP 41</a>, <a href="./rfc2914">RFC</a>
<a href="./rfc2914">2914</a>, September 2000,
<<a href="http://www.rfc-editor.org/info/rfc2914">http://www.rfc-editor.org/info/rfc2914</a>>.
[<a id="ref-RFC2923">RFC2923</a>] Lahey, K., "TCP Problems with Path MTU Discovery", <a href="./rfc2923">RFC</a>
<a href="./rfc2923">2923</a>, September 2000,
<<a href="http://www.rfc-editor.org/info/rfc2923">http://www.rfc-editor.org/info/rfc2923</a>>.
[<a id="ref-RFC3042">RFC3042</a>] Allman, M., Balakrishnan, H., and S. Floyd, "Enhancing
TCP's Loss Recovery Using Limited Transmit", <a href="./rfc3042">RFC 3042</a>,
January 2001, <<a href="http://www.rfc-editor.org/info/rfc3042">http://www.rfc-editor.org/info/rfc3042</a>>.
[<a id="ref-RFC3124">RFC3124</a>] Balakrishnan, H. and S. Seshan, "The Congestion Manager",
<a href="./rfc3124">RFC 3124</a>, June 2001,
<<a href="http://www.rfc-editor.org/info/rfc3124">http://www.rfc-editor.org/info/rfc3124</a>>.
<span class="grey">Duke, et al. Informational [Page 46]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-47" ></span>
<span class="grey"><a href="./rfc7414">RFC 7414</a> TCP Roadmap February 2015</span>
[<a id="ref-RFC3135">RFC3135</a>] Border, J., Kojo, M., Griner, J., Montenegro, G., and Z.
Shelby, "Performance Enhancing Proxies Intended to
Mitigate Link-Related Degradations", <a href="./rfc3135">RFC 3135</a>, June 2001,
<<a href="http://www.rfc-editor.org/info/rfc3135">http://www.rfc-editor.org/info/rfc3135</a>>.
[<a id="ref-RFC3150">RFC3150</a>] Dawkins, S., Montenegro, G., Kojo, M., and V. Magret,
"End-to-end Performance Implications of Slow Links", <a href="https://www.rfc-editor.org/bcp/bcp48">BCP</a>
<a href="https://www.rfc-editor.org/bcp/bcp48">48</a>, <a href="./rfc3150">RFC 3150</a>, July 2001,
<<a href="http://www.rfc-editor.org/info/rfc3150">http://www.rfc-editor.org/info/rfc3150</a>>.
[<a id="ref-RFC3155">RFC3155</a>] Dawkins, S., Montenegro, G., Kojo, M., Magret, V., and N.
Vaidya, "End-to-end Performance Implications of Links with
Errors", <a href="https://www.rfc-editor.org/bcp/bcp50">BCP 50</a>, <a href="./rfc3155">RFC 3155</a>, August 2001,
<<a href="http://www.rfc-editor.org/info/rfc3155">http://www.rfc-editor.org/info/rfc3155</a>>.
[<a id="ref-RFC3168">RFC3168</a>] Ramakrishnan, K., Floyd, S., and D. Black, "The Addition
of Explicit Congestion Notification (ECN) to IP", <a href="./rfc3168">RFC</a>
<a href="./rfc3168">3168</a>, September 2001,
<<a href="http://www.rfc-editor.org/info/rfc3168">http://www.rfc-editor.org/info/rfc3168</a>>.
[<a id="ref-RFC3360">RFC3360</a>] Floyd, S., "Inappropriate TCP Resets Considered Harmful",
<a href="https://www.rfc-editor.org/bcp/bcp60">BCP 60</a>, <a href="./rfc3360">RFC 3360</a>, August 2002,
<<a href="http://www.rfc-editor.org/info/rfc3360">http://www.rfc-editor.org/info/rfc3360</a>>.
[<a id="ref-RFC3366">RFC3366</a>] Fairhurst, G. and L. Wood, "Advice to link designers on
link Automatic Repeat reQuest (ARQ)", <a href="https://www.rfc-editor.org/bcp/bcp62">BCP 62</a>, <a href="./rfc3366">RFC 3366</a>,
August 2002, <<a href="http://www.rfc-editor.org/info/rfc3366">http://www.rfc-editor.org/info/rfc3366</a>>.
[<a id="ref-RFC3390">RFC3390</a>] Allman, M., Floyd, S., and C. Partridge, "Increasing TCP's
Initial Window", <a href="./rfc3390">RFC 3390</a>, October 2002,
<<a href="http://www.rfc-editor.org/info/rfc3390">http://www.rfc-editor.org/info/rfc3390</a>>.
[<a id="ref-RFC3439">RFC3439</a>] Bush, R. and D. Meyer, "Some Internet Architectural
Guidelines and Philosophy", <a href="./rfc3439">RFC 3439</a>, December 2002,
<<a href="http://www.rfc-editor.org/info/rfc3439">http://www.rfc-editor.org/info/rfc3439</a>>.
[<a id="ref-RFC3449">RFC3449</a>] Balakrishnan, H., Padmanabhan, V., Fairhurst, G., and M.
Sooriyabandara, "TCP Performance Implications of Network
Path Asymmetry", <a href="https://www.rfc-editor.org/bcp/bcp69">BCP 69</a>, <a href="./rfc3449">RFC 3449</a>, December 2002,
<<a href="http://www.rfc-editor.org/info/rfc3449">http://www.rfc-editor.org/info/rfc3449</a>>.
[<a id="ref-RFC3465">RFC3465</a>] Allman, M., "TCP Congestion Control with Appropriate Byte
Counting (ABC)", <a href="./rfc3465">RFC 3465</a>, February 2003,
<<a href="http://www.rfc-editor.org/info/rfc3465">http://www.rfc-editor.org/info/rfc3465</a>>.
<span class="grey">Duke, et al. Informational [Page 47]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-48" ></span>
<span class="grey"><a href="./rfc7414">RFC 7414</a> TCP Roadmap February 2015</span>
[<a id="ref-RFC3481">RFC3481</a>] Inamura, H., Montenegro, G., Ludwig, R., Gurtov, A., and
F. Khafizov, "TCP over Second (2.5G) and Third (3G)
Generation Wireless Networks", <a href="https://www.rfc-editor.org/bcp/bcp71">BCP 71</a>, <a href="./rfc3481">RFC 3481</a>, February
2003, <<a href="http://www.rfc-editor.org/info/rfc3481">http://www.rfc-editor.org/info/rfc3481</a>>.
[<a id="ref-RFC3493">RFC3493</a>] Gilligan, R., Thomson, S., Bound, J., McCann, J., and W.
Stevens, "Basic Socket Interface Extensions for IPv6", <a href="./rfc3493">RFC</a>
<a href="./rfc3493">3493</a>, February 2003,
<<a href="http://www.rfc-editor.org/info/rfc3493">http://www.rfc-editor.org/info/rfc3493</a>>.
[<a id="ref-RFC3522">RFC3522</a>] Ludwig, R. and M. Meyer, "The Eifel Detection Algorithm
for TCP", <a href="./rfc3522">RFC 3522</a>, April 2003,
<<a href="http://www.rfc-editor.org/info/rfc3522">http://www.rfc-editor.org/info/rfc3522</a>>.
[<a id="ref-RFC3540">RFC3540</a>] Spring, N., Wetherall, D., and D. Ely, "Robust Explicit
Congestion Notification (ECN) Signaling with Nonces", <a href="./rfc3540">RFC</a>
<a href="./rfc3540">3540</a>, June 2003, <<a href="http://www.rfc-editor.org/info/rfc3540">http://www.rfc-editor.org/info/rfc3540</a>>.
[<a id="ref-RFC3649">RFC3649</a>] Floyd, S., "HighSpeed TCP for Large Congestion Windows",
<a href="./rfc3649">RFC 3649</a>, December 2003,
<<a href="http://www.rfc-editor.org/info/rfc3649">http://www.rfc-editor.org/info/rfc3649</a>>.
[<a id="ref-RFC3708">RFC3708</a>] Blanton, E. and M. Allman, "Using TCP Duplicate Selective
Acknowledgement (DSACKs) and Stream Control Transmission
Protocol (SCTP) Duplicate Transmission Sequence Numbers
(TSNs) to Detect Spurious Retransmissions", <a href="./rfc3708">RFC 3708</a>,
February 2004, <<a href="http://www.rfc-editor.org/info/rfc3708">http://www.rfc-editor.org/info/rfc3708</a>>.
[<a id="ref-RFC3742">RFC3742</a>] Floyd, S., "Limited Slow-Start for TCP with Large
Congestion Windows", <a href="./rfc3742">RFC 3742</a>, March 2004,
<<a href="http://www.rfc-editor.org/info/rfc3742">http://www.rfc-editor.org/info/rfc3742</a>>.
[<a id="ref-RFC3819">RFC3819</a>] Karn, P., Bormann, C., Fairhurst, G., Grossman, D.,
Ludwig, R., Mahdavi, J., Montenegro, G., Touch, J., and L.
Wood, "Advice for Internet Subnetwork Designers", <a href="https://www.rfc-editor.org/bcp/bcp89">BCP 89</a>,
<a href="./rfc3819">RFC 3819</a>, July 2004,
<<a href="http://www.rfc-editor.org/info/rfc3819">http://www.rfc-editor.org/info/rfc3819</a>>.
[<a id="ref-RFC4015">RFC4015</a>] Ludwig, R. and A. Gurtov, "The Eifel Response Algorithm
for TCP", <a href="./rfc4015">RFC 4015</a>, February 2005,
<<a href="http://www.rfc-editor.org/info/rfc4015">http://www.rfc-editor.org/info/rfc4015</a>>.
[<a id="ref-RFC4022">RFC4022</a>] Raghunarayan, R., "Management Information Base for the
Transmission Control Protocol (TCP)", <a href="./rfc4022">RFC 4022</a>, March
2005, <<a href="http://www.rfc-editor.org/info/rfc4022">http://www.rfc-editor.org/info/rfc4022</a>>.
<span class="grey">Duke, et al. Informational [Page 48]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-49" ></span>
<span class="grey"><a href="./rfc7414">RFC 7414</a> TCP Roadmap February 2015</span>
[<a id="ref-RFC4653">RFC4653</a>] Bhandarkar, S., Reddy, A., Allman, M., and E. Blanton,
"Improving the Robustness of TCP to Non-Congestion
Events", <a href="./rfc4653">RFC 4653</a>, August 2006,
<<a href="http://www.rfc-editor.org/info/rfc4653">http://www.rfc-editor.org/info/rfc4653</a>>.
[<a id="ref-RFC4727">RFC4727</a>] Fenner, B., "Experimental Values In IPv4, IPv6, ICMPv4,
ICMPv6, UDP, and TCP Headers", <a href="./rfc4727">RFC 4727</a>, November 2006,
<<a href="http://www.rfc-editor.org/info/rfc4727">http://www.rfc-editor.org/info/rfc4727</a>>.
[<a id="ref-RFC4774">RFC4774</a>] Floyd, S., "Specifying Alternate Semantics for the
Explicit Congestion Notification (ECN) Field", <a href="https://www.rfc-editor.org/bcp/bcp124">BCP 124</a>,
<a href="./rfc4774">RFC 4774</a>, November 2006,
<<a href="http://www.rfc-editor.org/info/rfc4774">http://www.rfc-editor.org/info/rfc4774</a>>.
[<a id="ref-RFC4782">RFC4782</a>] Floyd, S., Allman, M., Jain, A., and P. Sarolahti, "Quick-
Start for TCP and IP", <a href="./rfc4782">RFC 4782</a>, January 2007,
<<a href="http://www.rfc-editor.org/info/rfc4782">http://www.rfc-editor.org/info/rfc4782</a>>.
[<a id="ref-RFC4821">RFC4821</a>] Mathis, M. and J. Heffner, "Packetization Layer Path MTU
Discovery", <a href="./rfc4821">RFC 4821</a>, March 2007,
<<a href="http://www.rfc-editor.org/info/rfc4821">http://www.rfc-editor.org/info/rfc4821</a>>.
[<a id="ref-RFC4898">RFC4898</a>] Mathis, M., Heffner, J., and R. Raghunarayan, "TCP
Extended Statistics MIB", <a href="./rfc4898">RFC 4898</a>, May 2007,
<<a href="http://www.rfc-editor.org/info/rfc4898">http://www.rfc-editor.org/info/rfc4898</a>>.
[<a id="ref-RFC4953">RFC4953</a>] Touch, J., "Defending TCP Against Spoofing Attacks", <a href="./rfc4953">RFC</a>
<a href="./rfc4953">4953</a>, July 2007, <<a href="http://www.rfc-editor.org/info/rfc4953">http://www.rfc-editor.org/info/rfc4953</a>>.
[<a id="ref-RFC4987">RFC4987</a>] Eddy, W., "TCP SYN Flooding Attacks and Common
Mitigations", <a href="./rfc4987">RFC 4987</a>, August 2007,
<<a href="http://www.rfc-editor.org/info/rfc4987">http://www.rfc-editor.org/info/rfc4987</a>>.
[<a id="ref-RFC5033">RFC5033</a>] Floyd, S. and M. Allman, "Specifying New Congestion
Control Algorithms", <a href="https://www.rfc-editor.org/bcp/bcp133">BCP 133</a>, <a href="./rfc5033">RFC 5033</a>, August 2007,
<<a href="http://www.rfc-editor.org/info/rfc5033">http://www.rfc-editor.org/info/rfc5033</a>>.
[<a id="ref-RFC5166">RFC5166</a>] Floyd, S., "Metrics for the Evaluation of Congestion
Control Mechanisms", <a href="./rfc5166">RFC 5166</a>, March 2008,
<<a href="http://www.rfc-editor.org/info/rfc5166">http://www.rfc-editor.org/info/rfc5166</a>>.
[<a id="ref-RFC5461">RFC5461</a>] Gont, F., "TCP's Reaction to Soft Errors", <a href="./rfc5461">RFC 5461</a>,
February 2009, <<a href="http://www.rfc-editor.org/info/rfc5461">http://www.rfc-editor.org/info/rfc5461</a>>.
[<a id="ref-RFC5482">RFC5482</a>] Eggert, L. and F. Gont, "TCP User Timeout Option", <a href="./rfc5482">RFC</a>
<a href="./rfc5482">5482</a>, March 2009,
<<a href="http://www.rfc-editor.org/info/rfc5482">http://www.rfc-editor.org/info/rfc5482</a>>.
<span class="grey">Duke, et al. Informational [Page 49]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-50" ></span>
<span class="grey"><a href="./rfc7414">RFC 7414</a> TCP Roadmap February 2015</span>
[<a id="ref-RFC5562">RFC5562</a>] Kuzmanovic, A., Mondal, A., Floyd, S., and K.
Ramakrishnan, "Adding Explicit Congestion Notification
(ECN) Capability to TCP's SYN/ACK Packets", <a href="./rfc5562">RFC 5562</a>, June
2009, <<a href="http://www.rfc-editor.org/info/rfc5562">http://www.rfc-editor.org/info/rfc5562</a>>.
[<a id="ref-RFC5681">RFC5681</a>] Allman, M., Paxson, V., and E. Blanton, "TCP Congestion
Control", <a href="./rfc5681">RFC 5681</a>, September 2009,
<<a href="http://www.rfc-editor.org/info/rfc5681">http://www.rfc-editor.org/info/rfc5681</a>>.
[<a id="ref-RFC5682">RFC5682</a>] Sarolahti, P., Kojo, M., Yamamoto, K., and M. Hata,
"Forward RTO-Recovery (F-RTO): An Algorithm for Detecting
Spurious Retransmission Timeouts with TCP", <a href="./rfc5682">RFC 5682</a>,
September 2009, <<a href="http://www.rfc-editor.org/info/rfc5682">http://www.rfc-editor.org/info/rfc5682</a>>.
[<a id="ref-RFC5690">RFC5690</a>] Floyd, S., Arcia, A., Ros, D., and J. Iyengar, "Adding
Acknowledgement Congestion Control to TCP", <a href="./rfc5690">RFC 5690</a>,
February 2010, <<a href="http://www.rfc-editor.org/info/rfc5690">http://www.rfc-editor.org/info/rfc5690</a>>.
[<a id="ref-RFC5783">RFC5783</a>] Welzl, M. and W. Eddy, "Congestion Control in the RFC
Series", <a href="./rfc5783">RFC 5783</a>, February 2010,
<<a href="http://www.rfc-editor.org/info/rfc5783">http://www.rfc-editor.org/info/rfc5783</a>>.
[<a id="ref-RFC5827">RFC5827</a>] Allman, M., Avrachenkov, K., Ayesta, U., Blanton, J., and
P. Hurtig, "Early Retransmit for TCP and Stream Control
Transmission Protocol (SCTP)", <a href="./rfc5827">RFC 5827</a>, May 2010,
<<a href="http://www.rfc-editor.org/info/rfc5827">http://www.rfc-editor.org/info/rfc5827</a>>.
[<a id="ref-RFC5925">RFC5925</a>] Touch, J., Mankin, A., and R. Bonica, "The TCP
Authentication Option", <a href="./rfc5925">RFC 5925</a>, June 2010,
<<a href="http://www.rfc-editor.org/info/rfc5925">http://www.rfc-editor.org/info/rfc5925</a>>.
[<a id="ref-RFC5926">RFC5926</a>] Lebovitz, G. and E. Rescorla, "Cryptographic Algorithms
for the TCP Authentication Option (TCP-AO)", <a href="./rfc5926">RFC 5926</a>,
June 2010, <<a href="http://www.rfc-editor.org/info/rfc5926">http://www.rfc-editor.org/info/rfc5926</a>>.
[<a id="ref-RFC5927">RFC5927</a>] Gont, F., "ICMP Attacks against TCP", <a href="./rfc5927">RFC 5927</a>, July 2010,
<<a href="http://www.rfc-editor.org/info/rfc5927">http://www.rfc-editor.org/info/rfc5927</a>>.
[<a id="ref-RFC5961">RFC5961</a>] Ramaiah, A., Stewart, R., and M. Dalal, "Improving TCP's
Robustness to Blind In-Window Attacks", <a href="./rfc5961">RFC 5961</a>, August
2010, <<a href="http://www.rfc-editor.org/info/rfc5961">http://www.rfc-editor.org/info/rfc5961</a>>.
[<a id="ref-RFC6013">RFC6013</a>] Simpson, W., "TCP Cookie Transactions (TCPCT)", <a href="./rfc6013">RFC 6013</a>,
January 2011, <<a href="http://www.rfc-editor.org/info/rfc6013">http://www.rfc-editor.org/info/rfc6013</a>>.
[<a id="ref-RFC6056">RFC6056</a>] Larsen, M. and F. Gont, "Recommendations for Transport-
Protocol Port Randomization", <a href="https://www.rfc-editor.org/bcp/bcp156">BCP 156</a>, <a href="./rfc6056">RFC 6056</a>, January
2011, <<a href="http://www.rfc-editor.org/info/rfc6056">http://www.rfc-editor.org/info/rfc6056</a>>.
<span class="grey">Duke, et al. Informational [Page 50]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-51" ></span>
<span class="grey"><a href="./rfc7414">RFC 7414</a> TCP Roadmap February 2015</span>
[<a id="ref-RFC6069">RFC6069</a>] Zimmermann, A. and A. Hannemann, "Making TCP More Robust
to Long Connectivity Disruptions (TCP-LCD)", <a href="./rfc6069">RFC 6069</a>,
December 2010, <<a href="http://www.rfc-editor.org/info/rfc6069">http://www.rfc-editor.org/info/rfc6069</a>>.
[<a id="ref-RFC6077">RFC6077</a>] Papadimitriou, D., Welzl, M., Scharf, M., and B. Briscoe,
"Open Research Issues in Internet Congestion Control", <a href="./rfc6077">RFC</a>
<a href="./rfc6077">6077</a>, February 2011,
<<a href="http://www.rfc-editor.org/info/rfc6077">http://www.rfc-editor.org/info/rfc6077</a>>.
[<a id="ref-RFC6093">RFC6093</a>] Gont, F. and A. Yourtchenko, "On the Implementation of the
TCP Urgent Mechanism", <a href="./rfc6093">RFC 6093</a>, January 2011,
<<a href="http://www.rfc-editor.org/info/rfc6093">http://www.rfc-editor.org/info/rfc6093</a>>.
[<a id="ref-RFC6181">RFC6181</a>] Bagnulo, M., "Threat Analysis for TCP Extensions for
Multipath Operation with Multiple Addresses", <a href="./rfc6181">RFC 6181</a>,
March 2011, <<a href="http://www.rfc-editor.org/info/rfc6181">http://www.rfc-editor.org/info/rfc6181</a>>.
[<a id="ref-RFC6182">RFC6182</a>] Ford, A., Raiciu, C., Handley, M., Barre, S., and J.
Iyengar, "Architectural Guidelines for Multipath TCP
Development", <a href="./rfc6182">RFC 6182</a>, March 2011,
<<a href="http://www.rfc-editor.org/info/rfc6182">http://www.rfc-editor.org/info/rfc6182</a>>.
[<a id="ref-RFC6191">RFC6191</a>] Gont, F., "Reducing the TIME-WAIT State Using TCP
Timestamps", <a href="https://www.rfc-editor.org/bcp/bcp159">BCP 159</a>, <a href="./rfc6191">RFC 6191</a>, April 2011,
<<a href="http://www.rfc-editor.org/info/rfc6191">http://www.rfc-editor.org/info/rfc6191</a>>.
[<a id="ref-RFC6247">RFC6247</a>] Eggert, L., "Moving the Undeployed TCP Extensions <a href="./rfc1072">RFC</a>
<a href="./rfc1072">1072</a>, <a href="./rfc1106">RFC 1106</a>, <a href="./rfc1110">RFC 1110</a>, <a href="./rfc1145">RFC 1145</a>, <a href="./rfc1146">RFC 1146</a>, <a href="./rfc1379">RFC 1379</a>,
<a href="./rfc1644">RFC 1644</a>, and <a href="./rfc1693">RFC 1693</a> to Historic Status", <a href="./rfc6247">RFC 6247</a>, May
2011, <<a href="http://www.rfc-editor.org/info/rfc6247">http://www.rfc-editor.org/info/rfc6247</a>>.
[<a id="ref-RFC6298">RFC6298</a>] Paxson, V., Allman, M., Chu, J., and M. Sargent,
"Computing TCP's Retransmission Timer", <a href="./rfc6298">RFC 6298</a>, June
2011, <<a href="http://www.rfc-editor.org/info/rfc6298">http://www.rfc-editor.org/info/rfc6298</a>>.
[<a id="ref-RFC6335">RFC6335</a>] Cotton, M., Eggert, L., Touch, J., Westerlund, M., and S.
Cheshire, "Internet Assigned Numbers Authority (IANA)
Procedures for the Management of the Service Name and
Transport Protocol Port Number Registry", <a href="https://www.rfc-editor.org/bcp/bcp165">BCP 165</a>, <a href="./rfc6335">RFC</a>
<a href="./rfc6335">6335</a>, August 2011,
<<a href="http://www.rfc-editor.org/info/rfc6335">http://www.rfc-editor.org/info/rfc6335</a>>.
[<a id="ref-RFC6349">RFC6349</a>] Constantine, B., Forget, G., Geib, R., and R. Schrage,
"Framework for TCP Throughput Testing", <a href="./rfc6349">RFC 6349</a>, August
2011, <<a href="http://www.rfc-editor.org/info/rfc6349">http://www.rfc-editor.org/info/rfc6349</a>>.
<span class="grey">Duke, et al. Informational [Page 51]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-52" ></span>
<span class="grey"><a href="./rfc7414">RFC 7414</a> TCP Roadmap February 2015</span>
[<a id="ref-RFC6356">RFC6356</a>] Raiciu, C., Handley, M., and D. Wischik, "Coupled
Congestion Control for Multipath Transport Protocols", <a href="./rfc6356">RFC</a>
<a href="./rfc6356">6356</a>, October 2011,
<<a href="http://www.rfc-editor.org/info/rfc6356">http://www.rfc-editor.org/info/rfc6356</a>>.
[<a id="ref-RFC6429">RFC6429</a>] Bashyam, M., Jethanandani, M., and A. Ramaiah, "TCP Sender
Clarification for Persist Condition", <a href="./rfc6429">RFC 6429</a>, December
2011, <<a href="http://www.rfc-editor.org/info/rfc6429">http://www.rfc-editor.org/info/rfc6429</a>>.
[<a id="ref-RFC6528">RFC6528</a>] Gont, F. and S. Bellovin, "Defending against Sequence
Number Attacks", <a href="./rfc6528">RFC 6528</a>, February 2012,
<<a href="http://www.rfc-editor.org/info/rfc6528">http://www.rfc-editor.org/info/rfc6528</a>>.
[<a id="ref-RFC6582">RFC6582</a>] Henderson, T., Floyd, S., Gurtov, A., and Y. Nishida, "The
NewReno Modification to TCP's Fast Recovery Algorithm",
<a href="./rfc6582">RFC 6582</a>, April 2012,
<<a href="http://www.rfc-editor.org/info/rfc6582">http://www.rfc-editor.org/info/rfc6582</a>>.
[<a id="ref-RFC6633">RFC6633</a>] Gont, F., "Deprecation of ICMP Source Quench Messages",
<a href="./rfc6633">RFC 6633</a>, May 2012,
<<a href="http://www.rfc-editor.org/info/rfc6633">http://www.rfc-editor.org/info/rfc6633</a>>.
[<a id="ref-RFC6675">RFC6675</a>] Blanton, E., Allman, M., Wang, L., Jarvinen, I., Kojo, M.,
and Y. Nishida, "A Conservative Loss Recovery Algorithm
Based on Selective Acknowledgment (SACK) for TCP", <a href="./rfc6675">RFC</a>
<a href="./rfc6675">6675</a>, August 2012,
<<a href="http://www.rfc-editor.org/info/rfc6675">http://www.rfc-editor.org/info/rfc6675</a>>.
[<a id="ref-RFC6691">RFC6691</a>] Borman, D., "TCP Options and Maximum Segment Size (MSS)",
<a href="./rfc6691">RFC 6691</a>, July 2012,
<<a href="http://www.rfc-editor.org/info/rfc6691">http://www.rfc-editor.org/info/rfc6691</a>>.
[<a id="ref-RFC6824">RFC6824</a>] Ford, A., Raiciu, C., Handley, M., and O. Bonaventure,
"TCP Extensions for Multipath Operation with Multiple
Addresses", <a href="./rfc6824">RFC 6824</a>, January 2013,
<<a href="http://www.rfc-editor.org/info/rfc6824">http://www.rfc-editor.org/info/rfc6824</a>>.
[<a id="ref-RFC6846">RFC6846</a>] Pelletier, G., Sandlund, K., Jonsson, L-E., and M. West,
"RObust Header Compression (ROHC): A Profile for TCP/IP
(ROHC-TCP)", <a href="./rfc6846">RFC 6846</a>, January 2013,
<<a href="http://www.rfc-editor.org/info/rfc6846">http://www.rfc-editor.org/info/rfc6846</a>>.
[<a id="ref-RFC6897">RFC6897</a>] Scharf, M. and A. Ford, "Multipath TCP (MPTCP) Application
Interface Considerations", <a href="./rfc6897">RFC 6897</a>, March 2013,
<<a href="http://www.rfc-editor.org/info/rfc6897">http://www.rfc-editor.org/info/rfc6897</a>>.
<span class="grey">Duke, et al. Informational [Page 52]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-53" ></span>
<span class="grey"><a href="./rfc7414">RFC 7414</a> TCP Roadmap February 2015</span>
[<a id="ref-RFC6928">RFC6928</a>] Chu, J., Dukkipati, N., Cheng, Y., and M. Mathis,
"Increasing TCP's Initial Window", <a href="./rfc6928">RFC 6928</a>, April 2013,
<<a href="http://www.rfc-editor.org/info/rfc6928">http://www.rfc-editor.org/info/rfc6928</a>>.
[<a id="ref-RFC6937">RFC6937</a>] Mathis, M., Dukkipati, N., and Y. Cheng, "Proportional
Rate Reduction for TCP", <a href="./rfc6937">RFC 6937</a>, May 2013,
<<a href="http://www.rfc-editor.org/info/rfc6937">http://www.rfc-editor.org/info/rfc6937</a>>.
[<a id="ref-RFC6994">RFC6994</a>] Touch, J., "Shared Use of Experimental TCP Options", <a href="./rfc6994">RFC</a>
<a href="./rfc6994">6994</a>, August 2013,
<<a href="http://www.rfc-editor.org/info/rfc6994">http://www.rfc-editor.org/info/rfc6994</a>>.
[<a id="ref-RFC7323">RFC7323</a>] Borman, D., Braden, B., Jacobson, V., and R.
Scheffenegger, "TCP Extensions for High Performance", <a href="./rfc7323">RFC</a>
<a href="./rfc7323">7323</a>, September 2014,
<<a href="http://www.rfc-editor.org/info/rfc7323">http://www.rfc-editor.org/info/rfc7323</a>>.
[<a id="ref-RFC7413">RFC7413</a>] Cheng, Y., Chu, J., Radhakrishnan, S., and A. Jain, "TCP
Fast Open", <a href="./rfc7413">RFC 7413</a>, December 2014,
<<a href="http://www.rfc-editor.org/info/rfc7413">http://www.rfc-editor.org/info/rfc7413</a>>.
<span class="h3"><a class="selflink" id="section-10.2" href="#section-10.2">10.2</a>. Informative References</span>
[<a id="ref-CK73">CK73</a>] Cerf, V. and R. Kahn, "Towards Protocols for Internetwork
Communication", IFIP/TC6.1, NIC 18764, INWG 39, September
1973.
[<a id="ref-CTCP">CTCP</a>] Sridharan, M., Tan, K., Bansal, D., and D. Thaler,
"Compound TCP: A New TCP Congestion Control for High-Speed
and Long Distance Networks", Work in Progress,
<a href="./draft-sridharan-tcpm-ctcp-02">draft-sridharan-tcpm-ctcp-02</a>, November 2008.
[<a id="ref-CUBIC">CUBIC</a>] Rhee, I., Xu, L., and S. Ha, "CUBIC for Fast Long-Distance
Networks", Work in Progress, <a href="./draft-rhee-tcpm-cubic-02">draft-rhee-tcpm-cubic-02</a>,
August 2008.
[<a id="ref-Errata">Errata</a>] RFC Editor, "RFC Errata",
<<a href="http://www.rfc-editor.org/errata.php">http://www.rfc-editor.org/errata.php</a>>.
[<a id="ref-HTCP">HTCP</a>] Leith, D., "H-TCP: TCP Congestion Control for High
Bandwidth-Delay Product Paths", Work in Progress,
<a href="./draft-leith-tcp-htcp-06">draft-leith-tcp-htcp-06</a>, April 2008.
[<a id="ref-JK92">JK92</a>] Jacobson, V. and M. Karels, "Congestion Avoidance and
Control", November 1992,
<<a href="ftp://ftp.ee.lbl.gov/papers/congavoid.ps.Z">ftp://ftp.ee.lbl.gov/papers/congavoid.ps.Z</a>>.
<span class="grey">Duke, et al. Informational [Page 53]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-54" ></span>
<span class="grey"><a href="./rfc7414">RFC 7414</a> TCP Roadmap February 2015</span>
[<a id="ref-Jac88">Jac88</a>] Jacobson, V., "Congestion Avoidance and Control", ACM
SIGCOMM 1988 Proceedings, in ACM Computer Communication
Review, 18 (4), pp. 314-329, August 1988.
[<a id="ref-Jacobson">Jacobson</a>] Jacobson, V., "TCP-IP Mailing List", Article 167 of
comp.protocols.tcp-ip, March 1988,
<<a href="ftp://ftp.ee.lbl.gov/email/vanj.88mar10.txt">ftp://ftp.ee.lbl.gov/email/vanj.88mar10.txt</a>>.
[<a id="ref-KP87">KP87</a>] Karn, P. and C. Partridge, "Round Trip Time Estimation",
ACM SIGCOMM 1987 Proceedings, in ACM Computer
Communication Review, 17 (5), pp. 2-7, August 1987.
[<a id="ref-MAF04">MAF04</a>] Medina, A., Allman, M., and S. Floyd, "Measuring the
Evolution of Transport Protocols in the Internet", ACM
Computer Communication Review, 35 (2), April 2005.
[<a id="ref-MM96">MM96</a>] Mathis, M. and J. Mahdavi, "Forward Acknowledgement:
Refining TCP Congestion Control", ACM SIGCOMM 1996
Proceedings, in ACM Computer Communication Review 26 (4),
pp. 281-292, October 1996.
[<a id="ref-RFC1016">RFC1016</a>] Prue, W. and J. Postel, "Something a host could do with
source quench: The Source Quench Introduced Delay
(SQuID)", <a href="./rfc1016">RFC 1016</a>, July 1987,
<<a href="http://www.rfc-editor.org/info/rfc1016">http://www.rfc-editor.org/info/rfc1016</a>>.
[<a id="ref-RFC2026">RFC2026</a>] Bradner, S., "The Internet Standards Process -- Revision
3", <a href="https://www.rfc-editor.org/bcp/bcp9">BCP 9</a>, <a href="./rfc2026">RFC 2026</a>, October 1996,
<<a href="http://www.rfc-editor.org/info/rfc2026">http://www.rfc-editor.org/info/rfc2026</a>>.
[<a id="ref-RFC2119">RFC2119</a>] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", <a href="https://www.rfc-editor.org/bcp/bcp14">BCP 14</a>, <a href="./rfc2119">RFC 2119</a>, March 1997,
<<a href="http://www.rfc-editor.org/info/rfc2119">http://www.rfc-editor.org/info/rfc2119</a>>.
[<a id="ref-RFC2474">RFC2474</a>] Nichols, K., Blake, S., Baker, F., and D. Black,
"Definition of the Differentiated Services Field (DS
Field) in the IPv4 and IPv6 Headers", <a href="./rfc2474">RFC 2474</a>, December
1998, <<a href="http://www.rfc-editor.org/info/rfc2474">http://www.rfc-editor.org/info/rfc2474</a>>.
[<a id="ref-RFC3758">RFC3758</a>] Stewart, R., Ramalho, M., Xie, Q., Tuexen, M., and P.
Conrad, "Stream Control Transmission Protocol (SCTP)
Partial Reliability Extension", <a href="./rfc3758">RFC 3758</a>, May 2004,
<<a href="http://www.rfc-editor.org/info/rfc3758">http://www.rfc-editor.org/info/rfc3758</a>>.
[<a id="ref-RFC4340">RFC4340</a>] Kohler, E., Handley, M., and S. Floyd, "Datagram
Congestion Control Protocol (DCCP)", <a href="./rfc4340">RFC 4340</a>, March 2006,
<<a href="http://www.rfc-editor.org/info/rfc4340">http://www.rfc-editor.org/info/rfc4340</a>>.
<span class="grey">Duke, et al. Informational [Page 54]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-55" ></span>
<span class="grey"><a href="./rfc7414">RFC 7414</a> TCP Roadmap February 2015</span>
[<a id="ref-RFC4341">RFC4341</a>] Floyd, S. and E. Kohler, "Profile for Datagram Congestion
Control Protocol (DCCP) Congestion Control ID 2: TCP-like
Congestion Control", <a href="./rfc4341">RFC 4341</a>, March 2006,
<<a href="http://www.rfc-editor.org/info/rfc4341">http://www.rfc-editor.org/info/rfc4341</a>>.
[<a id="ref-RFC6115">RFC6115</a>] Li, T., "Recommendation for a Routing Architecture", <a href="./rfc6115">RFC</a>
<a href="./rfc6115">6115</a>, February 2011,
<<a href="http://www.rfc-editor.org/info/rfc6115">http://www.rfc-editor.org/info/rfc6115</a>>.
[<a id="ref-SCWA99">SCWA99</a>] Savage, S., Cardwell, N., Wetherall, D., and T. Anderson,
"TCP Congestion Control with a Misbehaving Receiver", ACM
Computer Communication Review, 29 (5), pp. 71-78, October
1999.
<span class="grey">Duke, et al. Informational [Page 55]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-56" ></span>
<span class="grey"><a href="./rfc7414">RFC 7414</a> TCP Roadmap February 2015</span>
Acknowledgments
This document grew out of a discussion on the end2end-interest
mailing list, the public list of the End-to-End Research Group of the
IRTF, and continued development under the IETF's TCP Maintenance and
Minor Extensions (TCPM) working group. We thank Mark Allman, Yuchung
Cheng, Ted Faber, Gorry Fairhurst, Sally Floyd, Janardhan Iyengar,
Reiner Ludwig, Pekka Savola, and Joe Touch for their contributions,
in particular. Keith McCloghrie provided some useful notes and
clarification on the various MIB-related RFCs.
<span class="grey">Duke, et al. Informational [Page 56]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-57" ></span>
<span class="grey"><a href="./rfc7414">RFC 7414</a> TCP Roadmap February 2015</span>
Authors' Addresses
Martin Duke
F5 Networks
401 Elliott Ave W
Seattle, WA 98119
United States
Phone: 206-272-7537
EMail: m.duke@f5.com
Robert Braden
USC Information Sciences Institute
Marina del Rey, CA 90292-6695
United States
Phone: 310-448-9173
EMail: braden@isi.edu
Wesley M. Eddy
MTI Systems
18013 Cleveland Parkway
Suite 170
Cleveland, OH 44135
United States
Phone: 216-433-6682
EMail: wes@mti-systems.com
Ethan Blanton
Interrupt Sciences
EMail: elb@interruptsciences.com
Alexander Zimmermann
NetApp, Inc.
Sonnenallee 1
Kirchheim 85551
Germany
Phone: +49 89 900594712
EMail: alexander.zimmermann@netapp.com
Duke, et al. Informational [Page 57]
</pre>
|