1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861
|
<pre>Internet Engineering Task Force (IETF) M. Chandramouli
Request for Comments: 7460 B. Claise
Category: Standards Track Cisco Systems, Inc.
ISSN: 2070-1721 B. Schoening
Independent Consultant
J. Quittek
T. Dietz
NEC Europe, Ltd.
March 2015
<span class="h1">Monitoring and Control MIB for Power and Energy</span>
Abstract
This document defines a subset of the Management Information Base
(MIB) for power and energy monitoring of devices.
Status of This Memo
This is an Internet Standards Track document.
This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Further information on
Internet Standards is available in <a href="./rfc5741#section-2">Section 2 of RFC 5741</a>.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
<a href="http://www.rfc-editor.org/info/rfc7460">http://www.rfc-editor.org/info/rfc7460</a>.
Copyright Notice
Copyright (c) 2015 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to <a href="https://www.rfc-editor.org/bcp/bcp78">BCP 78</a> and the IETF Trust's Legal
Provisions Relating to IETF Documents
(<a href="http://trustee.ietf.org/license-info">http://trustee.ietf.org/license-info</a>) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
<span class="grey">Chandramouli, et al. Standards Track [Page 1]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-2" ></span>
<span class="grey"><a href="./rfc7460">RFC 7460</a> Power/Energy Monitoring and Control MIB March 2015</span>
Table of Contents
<a href="#section-1">1</a>. Introduction ....................................................<a href="#page-3">3</a>
<a href="#section-1.1">1.1</a>. Conventions Used in This Document ..........................<a href="#page-3">3</a>
<a href="#section-2">2</a>. The Internet-Standard Management Framework ......................<a href="#page-3">3</a>
<a href="#section-3">3</a>. Use Cases .......................................................<a href="#page-4">4</a>
<a href="#section-4">4</a>. Terminology .....................................................<a href="#page-4">4</a>
<a href="#section-5">5</a>. Architecture Concepts Applied to the MIB Modules ................<a href="#page-5">5</a>
<a href="#section-5.1">5.1</a>. Energy Object Tables .......................................<a href="#page-5">5</a>
<a href="#section-5.1.1">5.1.1</a>. ENERGY-OBJECT-MIB ...................................<a href="#page-5">5</a>
<a href="#section-5.1.2">5.1.2</a>. POWER-ATTRIBUTES-MIB ................................<a href="#page-7">7</a>
<a href="#section-5.1.3">5.1.3</a>. UML Diagram .........................................<a href="#page-9">9</a>
<a href="#section-5.2">5.2</a>. Energy Object Identity ....................................<a href="#page-12">12</a>
<a href="#section-5.3">5.3</a>. Power State ...............................................<a href="#page-12">12</a>
<a href="#section-5.3.1">5.3.1</a>. Power State Set ....................................<a href="#page-13">13</a>
<a href="#section-5.4">5.4</a>. Energy Object Usage Information ...........................<a href="#page-13">13</a>
<a href="#section-5.5">5.5</a>. Optional Power Usage Attributes ...........................<a href="#page-14">14</a>
<a href="#section-5.6">5.6</a>. Optional Energy Measurement ...............................<a href="#page-14">14</a>
<a href="#section-5.7">5.7</a>. Fault Management ..........................................<a href="#page-18">18</a>
<a href="#section-6">6</a>. Discovery ......................................................<a href="#page-18">18</a>
<a href="#section-7">7</a>. Link with the Other IETF MIBs ..................................<a href="#page-19">19</a>
<a href="#section-7.1">7.1</a>. Link with the ENTITY-MIB and the ENTITY-SENSOR MIB ........<a href="#page-19">19</a>
<a href="#section-7.2">7.2</a>. Link with the ENTITY-STATE MIB ............................<a href="#page-20">20</a>
<a href="#section-7.3">7.3</a>. Link with the POWER-OVER-ETHERNET MIB .....................<a href="#page-21">21</a>
<a href="#section-7.4">7.4</a>. Link with the UPS MIB .....................................<a href="#page-21">21</a>
<a href="#section-7.5">7.5</a>. Link with the LLDP and LLDP-MED MIBs ......................<a href="#page-22">22</a>
<a href="#section-8">8</a>. Structure of the MIB ...........................................<a href="#page-23">23</a>
<a href="#section-9">9</a>. MIB Definitions ................................................<a href="#page-24">24</a>
<a href="#section-9.1">9.1</a>. The IANAPowerStateSet-MIB Module ..........................<a href="#page-24">24</a>
<a href="#section-9.2">9.2</a>. The ENERGY-OBJECT-MIB MIB Module ..........................<a href="#page-27">27</a>
<a href="#section-9.3">9.3</a>. The POWER-ATTRIBUTES-MIB MIB Module .......................<a href="#page-50">50</a>
<a href="#section-10">10</a>. Security Considerations .......................................<a href="#page-63">63</a>
<a href="#section-11">11</a>. IANA Considerations ...........................................<a href="#page-64">64</a>
<a href="#section-11.1">11.1</a>. IANAPowerStateSet-MIB Module .............................<a href="#page-65">65</a>
<a href="#section-12">12</a>. References ....................................................<a href="#page-65">65</a>
<a href="#section-12.1">12.1</a>. Normative References .....................................<a href="#page-65">65</a>
<a href="#section-12.2">12.2</a>. Informative References ...................................<a href="#page-66">66</a>
Acknowledgments ...................................................<a href="#page-68">68</a>
Contributors ......................................................<a href="#page-68">68</a>
Authors' Addresses ................................................<a href="#page-69">69</a>
<span class="grey">Chandramouli, et al. Standards Track [Page 2]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-3" ></span>
<span class="grey"><a href="./rfc7460">RFC 7460</a> Power/Energy Monitoring and Control MIB March 2015</span>
<span class="h2"><a class="selflink" id="section-1" href="#section-1">1</a>. Introduction</span>
This document defines a subset of the Management Information Base
(MIB) for use in energy management of devices within or connected to
communication networks. The MIB modules in this document are
designed to provide a model for energy management, which includes
monitoring for Power State and energy consumption of networked
elements. This MIB takes into account the "Energy Management
Framework" [<a href="./rfc7326" title=""Energy Management Framework"">RFC7326</a>], which, in turn, is based on the "Requirements
for Energy Management" [<a href="./rfc6988" title=""Requirements for Energy Management"">RFC6988</a>].
Energy management can be applied to devices in communication
networks. Target devices for this specification include (but are not
limited to) routers, switches, Power over Ethernet (PoE) endpoints,
protocol gateways for building management systems, intelligent
meters, home energy gateways, hosts and servers, sensor proxies, etc.
Target devices and the use cases for Energy Management are discussed
in Energy Management Applicability Statement [<a href="#ref-EMAN-AS" title=""Energy Management (EMAN) Applicability Statement"">EMAN-AS</a>].
Where applicable, device monitoring extends to the individual
components of the device and to any attached dependent devices. For
example, a device can contain components that are independent from a
Power State point of view, such as line cards, processor cards, hard
drives. A device can also have dependent attached devices, such as a
switch with PoE endpoints or a power distribution unit with attached
endpoints.
<span class="h3"><a class="selflink" id="section-1.1" href="#section-1.1">1.1</a>. Conventions Used in This Document</span>
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in <a href="./rfc2119">RFC</a>
<a href="./rfc2119">2119</a> [<a href="./rfc2119" title=""Key words for use in RFCs to Indicate Requirement Levels"">RFC2119</a>].
<span class="h2"><a class="selflink" id="section-2" href="#section-2">2</a>. The Internet-Standard Management Framework</span>
For a detailed overview of the documents that describe the current
Internet-Standard Management Framework, please refer to <a href="./rfc3410#section-7">section 7 of
RFC 3410</a> [<a href="./rfc3410" title=""Introduction and Applicability Statements for Internet-Standard Management Framework"">RFC3410</a>].
Managed objects are accessed via a virtual information store, termed
the Management Information Base or MIB. MIB objects are generally
accessed through the Simple Network Management Protocol (SNMP).
Objects in the MIB are defined using the mechanisms defined in the
Structure of Management Information (SMI). This memo specifies MIB
modules that are compliant to SMIv2, which is described in STD 58,
<a href="./rfc2578">RFC 2578</a> [<a href="./rfc2578" title=""Structure of Management Information Version 2 (SMIv2)"">RFC2578</a>], STD 58, <a href="./rfc2579">RFC 2579</a> [<a href="./rfc2579" title=""Textual Conventions for SMIv2"">RFC2579</a>] and STD 58, <a href="./rfc2580">RFC 2580</a>
[<a href="./rfc2580" title=""Conformance Statements for SMIv2"">RFC2580</a>].
<span class="grey">Chandramouli, et al. Standards Track [Page 3]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-4" ></span>
<span class="grey"><a href="./rfc7460">RFC 7460</a> Power/Energy Monitoring and Control MIB March 2015</span>
<span class="h2"><a class="selflink" id="section-3" href="#section-3">3</a>. Use Cases</span>
Requirements for power and energy monitoring for networking devices
are specified in [<a href="./rfc6988" title=""Requirements for Energy Management"">RFC6988</a>]. The requirements in [<a href="./rfc6988" title=""Requirements for Energy Management"">RFC6988</a>] cover
devices typically found in communications networks, such as switches,
routers, and various connected endpoints. For a power monitoring
architecture to be useful, it should also apply to facility meters,
power distribution units, gateway proxies for commercial building
control, home automation devices, and devices that interface with the
utility and/or smart grid. Accordingly, the scope of the MIB modules
in this document are broader than that specified in [<a href="./rfc6988" title=""Requirements for Energy Management"">RFC6988</a>].
Several use cases for Energy Management have been identified in the
"Energy Management (EMAN) Applicability Statement" [<a href="#ref-EMAN-AS" title=""Energy Management (EMAN) Applicability Statement"">EMAN-AS</a>].
<span class="h2"><a class="selflink" id="section-4" href="#section-4">4</a>. Terminology</span>
Please refer to [<a href="./rfc7326" title=""Energy Management Framework"">RFC7326</a>] for the definitions of the following
terminology used in this document.
Energy Management
Energy Management System (EnMS)
Energy Monitoring
Energy Control
electrical equipment
non-electrical equipment (mechanical equipment)
device
component
power inlet
power outlet
energy
power
demand
provide energy
receive energy
meter (energy meter)
battery
Power Interface
Nameplate Power
Power Attributes
Power Quality
Power State
Power State Set
<span class="grey">Chandramouli, et al. Standards Track [Page 4]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-5" ></span>
<span class="grey"><a href="./rfc7460">RFC 7460</a> Power/Energy Monitoring and Control MIB March 2015</span>
<span class="h2"><a class="selflink" id="section-5" href="#section-5">5</a>. Architecture Concepts Applied to the MIB Modules</span>
This section describes the concepts specified in the Energy
Management Framework [<a href="./rfc7326" title=""Energy Management Framework"">RFC7326</a>] that pertain to power usage, with
specific information related to the MIB module specified in this
document. This subsection maps concepts developed in the Energy
Management Framework [<a href="./rfc7326" title=""Energy Management Framework"">RFC7326</a>].
The Energy Monitoring MIB has two independent MIB modules: ENERGY-
OBJECT-MIB and POWER-ATTRIBUTES-MIB. The first, ENERGY-OBJECT-MIB,
is focused on measurement of power and energy. The second, POWER-
ATTRIBUTES-MIB, is focused on power quality measurements for Energy
Objects.
Devices and their sub-components can be modeled using the containment
tree of the ENTITY-MIB [<a href="./rfc6933" title=""Entity MIB (Version 4)"">RFC6933</a>].
<span class="h3"><a class="selflink" id="section-5.1" href="#section-5.1">5.1</a>. Energy Object Tables</span>
<span class="h4"><a class="selflink" id="section-5.1.1" href="#section-5.1.1">5.1.1</a>. ENERGY-OBJECT-MIB</span>
The ENERGY-OBJECT-MIB module consists of five tables.
The first table is the eoMeterCapabilitiesTable. It indicates the
instrumentation available for each Energy Object. Entries in this
table indicate which other tables from the ENERGY-OBJECT-MIB and
POWER-ATTRIBUTES-MIB are available for each Energy Object. The
eoMeterCapabilitiesTable is indexed by entPhysicalIndex [<a href="./rfc6933" title=""Entity MIB (Version 4)"">RFC6933</a>].
The second table is the eoPowerTable. It reports the power
consumption of each Energy Object as well as the units, sign,
measurement accuracy, and related objects. The eoPowerTable is
indexed by entPhysicalIndex.
The third table is the eoPowerStateTable. For each Energy Object, it
reports information and statistics about the supported Power States.
The eoPowerStateTable is indexed by entPhysicalIndex and
eoPowerStateIndex.
The fourth table is the eoEnergyParametersTable. The entries in this
table configure the parameters of energy and demand measurement
collection. This table is indexed by eoEnergyParametersIndex.
The fifth table is the eoEnergyTable. The entries in this table
provide a log of the energy and demand information. This table is
indexed by eoEnergyParametersIndex.
<span class="grey">Chandramouli, et al. Standards Track [Page 5]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-6" ></span>
<span class="grey"><a href="./rfc7460">RFC 7460</a> Power/Energy Monitoring and Control MIB March 2015</span>
A "smidump-style" tree presentation of the MIB modules contained in
the document is presented. The meaning of the three symbols is a
compressed representation of the object's MAX-ACCESS clause, which
may have the following values:
"not-accessible" -> "---"
"accessible-for-notify" -> "--n"
"read-only" -> "r-n"
"read-write" -> "rwn"
eoMeterCapabilitiesTable(1)
|
+---eoMeterCapabilitiesEntry(1)[entPhysicalIndex]
| |
| +---r-n BITS eoMeterCapability
|
eoPowerTable(2)
|
+---eoPowerEntry(1) [entPhysicalIndex]
| |
| +---r-n Integer32 eoPower(1)
| +-- r-n Unsigned32 eoPowerNamePlate(2)
| +-- r-n UnitMultiplier eoPowerUnitMultiplier(3)
| +-- r-n Integer32 eoPowerAccuracy(4)
| +-- r-n INTEGER eoPowerMeasurementCaliber(5)
| +-- r-n INTEGER eoPowerCurrentType(6)
| +-- r-n TruthValue eoPowerMeasurementLocal(7)
| +-- rwn PowerStateSet eoPowerAdminState(8)
| +-- r-n PowerStateSet eoPowerOperState(9)
| +-- r-n OwnerString eoPowerStateEnterReason(10)
|
|
|
+---eoPowerStateTable(3)
|
| +--eoPowerStateEntry(1)
| | [entPhysicalIndex, eoPowerStateIndex]
| |
| +-- --n PowerStateSet eoPowerStateIndex(1)
| +-- r-n Integer32 eoPowerStateMaxPower(2)
| +-- r-n UnitMultiplier
| eoPowerStatePowerUnitMultiplier(3)
| +-- r-n TimeTicks eoPowerStateTotalTime(4)
| +-- r-n Counter32 eoPowerStateEnterCount(5)
|
+eoEnergyParametersTable(4)
|
<span class="grey">Chandramouli, et al. Standards Track [Page 6]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-7" ></span>
<span class="grey"><a href="./rfc7460">RFC 7460</a> Power/Energy Monitoring and Control MIB March 2015</span>
+---eoEnergyParametersEntry(1) [eoEnergyParametersIndex]
|
| +-- --n PhysicalIndex eoEnergyObjectIndex(1)
| + r-n Integer32 eoEnergyParametersIndex(2)
| +-- rwn TimeInterval eoEnergyParametersIntervalLength(3)
| +-- rwn Unsigned32 eoEnergyParametersIntervalNumber(4)
| +-- rwn INTEGER eoEnergyParametersIntervalMode(5)
| +-- rwn TimeInterval eoEnergyParametersIntervalWindow(6)
| +-- rwn Unsigned32 eoEnergyParametersSampleRate(7)
| +-- rwn StorageType eoEnergyParametersStorageType(8)
| +-- rwn RowStatus eoEnergyParametersStatus(9)
|
+eoEnergyTable(5)
|
+---eoEnergyEntry(1)
| [eoEnergyParametersIndex,eoEnergyCollectionStartTime]
|
| +-- r-n TimeTicks eoEnergyCollectionStartTime(1)
| +-- r-n Unsigned32 eoEnergyConsumed(2)
| +-- r-n Unsigned32 eoEnergyProvided(3)
| +-- r-n Unsigned32 eoEnergyStored(4)
| +-- r-n UnitMultiplier eoEnergyUnitMultiplier(5)
| +-- r-n Integer32 eoEnergyAccuracy(6)
| +-- r-n Unsigned32 eoEnergyMaxConsumed(7)
| +-- r-n Unsigned32 eoEnergyMaxProduced(8)
| +-- r-n TimeTicks eoEnergyDiscontinuityTime(9)
<span class="h4"><a class="selflink" id="section-5.1.2" href="#section-5.1.2">5.1.2</a>. POWER-ATTRIBUTES-MIB</span>
The POWER-ATTRIBUTES-MIB module consists of three tables.
The first table is the eoACPwrAttributesTable. It indicates the
power quality available for each Energy Object. The
eoACPwrAttributesTable is indexed by entPhysicalIndex [<a href="./rfc6933" title=""Entity MIB (Version 4)"">RFC6933</a>].
The second table is the eoACPwrAttributesDelPhaseTable. The entries
in this table configure the parameters of energy and demand
measurement collection. This table is indexed by
eoEnergyParametersIndex.
The third table is the eoACPwrAttributesWyePhaseTable. For each
Energy Object, it reports information and statistics about the
supported Power States. The eoPowerStateTable is indexed by
entPhysicalIndex and eoPowerStateIndex.
<span class="grey">Chandramouli, et al. Standards Track [Page 7]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-8" ></span>
<span class="grey"><a href="./rfc7460">RFC 7460</a> Power/Energy Monitoring and Control MIB March 2015</span>
eoACPwrAttributesTable(1)
|
+---eoACPwrAttributesEntry(1) [ entPhysicalIndex]
| |
| +---r-n INTEGER eoACPwrAttributesConfiguration(1)
| +-- r-n Integer32 eoACPwrAttributesAvgVoltage(2)
| +-- r-n Unsigned32 eoACPwrAttributesAvgCurrent(3)
| +-- r-n Integer32 eoACPwrAttributesFrequency(4)
| +-- r-n UnitMultiplier
| eoACPwrAttributesPowerUnitMultiplier(5)
| +-- r-n Integer32 eoACPwrAttributesPowerAccuracy(6)
| +-- r-n Integer32
| eoACPwrAttributesTotalActivePower(7)
| +-- r-n Integer32
| eoACPwrAttributesTotalReactivePower(8)
| +-- r-n Integer32
| eoACPwrAttributesTotalApparentPower(9)
| +-- r-n Integer32
| eoACPwrAttributesTotalPowerFactor(10)
| +-- r-n Integer32 eoACPwrAttributesThdCurrent(11)
| +-- r-n Integer32 eoACPwrAttributesThdVoltage(12)
|
+eoACPwrAttributesDelPhaseTable(2)
|
+-- eoACPwrAttributesDelPhaseEntry(1)
| | [entPhysicalIndex, eoACPwrAttributesDelPhaseIndex]
| |
| +-- r-n Integer32
| | eoACPwrAttributesDelPhaseIndex(1)
| +-- r-n Integer32
| | eoACPwrAttributesDelPhaseToNextPhaseVoltage(2)
| +-- r-n Integer32
| | eoACPwrAttributesDelThdPhaseToNextPhaseVoltage(3)
| |
+eoACPwrAttributesWyePhaseTable(3)
|
+-- eoACPwrAttributesWyePhaseEntry(1)
| | [entPhysicalIndex, eoACPwrAttributesWyePhaseIndex]
| |
| +-- r-n Integer32
| | eoACPwrAttributesWyePhaseIndex(1)
| +-- r-n Integer32
| | eoACPwrAttributesWyePhaseToNeutralVoltage(2)
| +-- r-n Integer32
| | eoACPwrAttributesWyeCurrent(3)
| +-- r-n Integer32
| | eoACPwrAttributesWyeActivePower(4)
<span class="grey">Chandramouli, et al. Standards Track [Page 8]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-9" ></span>
<span class="grey"><a href="./rfc7460">RFC 7460</a> Power/Energy Monitoring and Control MIB March 2015</span>
| +-- r-n Integer32
| | eoACPwrAttributesWyeReactivePower(5)
| +-- r-n Integer32
| | eoACPwrAttributesWyeApparentPower(6)
| +-- r-n Integer32
| | eoACPwrAttributesWyePowerFactor(7)
| +-- r-n Integer32
| | eoACPwrAttributesWyeThdCurrent(9)
| +-- r-n Integer32
| | eoACPwrAttributesWyeThdPhaseToNeutralVoltage(10)
<span class="h4"><a class="selflink" id="section-5.1.3" href="#section-5.1.3">5.1.3</a>. UML Diagram</span>
A Unified Modeling Language (UML) diagram representation of the MIB
objects in the two MIB modules, ENERGY-OBJECT-MIB and POWER-
ATTRIBUTES-MIB, is presented.
+-----------------------+
| Meter Capabilities |
| --------------------- |
| eoMeterCapability |
+-----------------------+
+-----------------------+
|---> | Energy Object ID (*) |
| | --------------------- |
| | entPhysicalIndex |
| | entPhysicalClass |
| | entPhysicalName |
| | entPhysicalUUID |
| +-----------------------+
|
| +---------------------------+
|---- |_ Power Table |
| | ------------------------- |
| | eoPower |
| | eoPowerNamePlate |
| | eoPowerUnitMultiplier |
| | eoPowerAccuracy |
| | eoPowerMeasurementCaliber |
| | eoPowerCurrentType |
| | eoPowerMeasurementLocal |
| | eoPowerAdminState |
| | eoPowerOperState |
| | eoPowerStateEnterReason |
| +---------------------------+
<span class="grey">Chandramouli, et al. Standards Track [Page 9]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-10" ></span>
<span class="grey"><a href="./rfc7460">RFC 7460</a> Power/Energy Monitoring and Control MIB March 2015</span>
| +---------------------------------+
|---- |_Energy Object State Statistics |
| |-------------------------------- |
| | eoPowerStateIndex |
| | eoPowerStateMaxPower |
| | eoPowerStatePowerUnitMultiplier |
| | eoPowerStateTotalTime |
| | eoPowerStateEnterCount |
| +---------------------------------+
|
| +----------------------------------+
|---- | Energy ParametersTable |
| | -------------------------------- |
| | eoEnergyObjectIndex |
| | eoEnergyParametersIndex |
| | eoEnergyParametersIntervalLength |
| | eoEnergyParametersIntervalNumber |
| | eoEnergyParametersIntervalMode |
| | eoEnergyParametersIntervalWindow |
| | eoEnergyParametersSampleRate |
| | eoEnergyParametersStorageType |
| | eoEnergyParametersStatus |
| +----------------------------------+
|
| +----------------------------------+
|---- | Energy Table |
| -------------------------------- |
| eoEnergyCollectionStartTime |
| eoEnergyConsumed |
| eoEnergyProvided |
| eoEnergyStored |
| eoEnergyUnitMultiplier |
| eoEnergyAccuracy |
| eoEnergyMaxConsumed |
| eoEnergyMaxProduced |
| eoDiscontinuityTime |
+----------------------------------+
Figure 1: UML Diagram for energyObjectMib
(*) Compliance with the ENERGY-OBJECT-CONTEXT-MIB
<span class="grey">Chandramouli, et al. Standards Track [Page 10]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-11" ></span>
<span class="grey"><a href="./rfc7460">RFC 7460</a> Power/Energy Monitoring and Control MIB March 2015</span>
+-----------------------+
|---> | Energy Object ID (*) |
| | --------------------- |
| | entPhysicalIndex |
| | entPhysicalName |
| | entPhysicalUUID |
| +-----------------------+
| +--------------------------------------+
|---- | Power Attributes |
| | ------------------------------------ |
| | eoACPwrAttributesConfiguration |
| | eoACPwrAttributesAvgVoltage |
| | eoACPwrAttributesAvgCurrent |
| | eoACPwrAttributesFrequency |
| | eoACPwrAttributesPowerUnitMultiplier |
| | eoACPwrAttributesPowerAccuracy |
| | eoACPwrAttributesTotalActivePower |
| | eoACPwrAttributesTotalReactivePower |
| | eoACPwrAttributesTotalApparentPower |
| | eoACPwrAttributesTotalPowerFactor |
| | eoACPwrAttributesThdCurrent |
| | eoACPwrAttributesThdVoltage |
| +--------------------------------------+
| +------------------------------------------------+
|---- | AC Input DEL Configuration |
| | ---------------------------------------------- |
| | eoACPwrAttributesDelPhaseIndex |
| | eoACPwrAttributesDelPhaseToNextPhaseVoltage |
| | eoACPwrAttributesDelThdPhaseToNextPhaseVoltage |
| +------------------------------------------------+
|
| +----------------------------------------------+
|---- | AC Input WYE Configuration |
| -------------------------------------------- |
| eoACPwrAttributesWyePhaseIndex |
| eoACPwrAttributesWyePhaseToNeutralVoltage |
| eoACPwrAttributesWyeCurrent |
| eoACPwrAttributesWyeActivePower |
| eoACPwrAttributesWyeReactivePower |
| eoACPwrAttributesWyeApparentPower |
| eoACPwrAttributesWyePowerFactor |
| eoACPwrAttributesWyeThdCurrent |
| eoACPwrAttributesWyeThdPhaseToNeutralVoltage |
+----------------------------------------------+
Figure 2: UML Diagram for the POWER-ATTRIBUTES-MIB
(*) Compliance with the ENERGY-OBJECT-CONTEXT-MIB
<span class="grey">Chandramouli, et al. Standards Track [Page 11]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-12" ></span>
<span class="grey"><a href="./rfc7460">RFC 7460</a> Power/Energy Monitoring and Control MIB March 2015</span>
<span class="h3"><a class="selflink" id="section-5.2" href="#section-5.2">5.2</a>. Energy Object Identity</span>
The Energy Object identity information is specified in the ENERGY-
OBJECT-CONTEXT-MIB module [<a href="./rfc7461" title=""Energy Object Context MIB"">RFC7461</a>] primary table, i.e., the eoTable.
In this table, Energy Object context such as domain, role
description, and importance are specified. In addition, the ENERGY-
OBJECT-CONTEXT-MIB module specifies the relationship between Energy
Objects. There are several possible relationships between Energy
Objects, such as meteredBy, metering, poweredBy, powering,
aggregatedBy, and aggregating as defined in the IANA-ENERGY-RELATION-
MIB module [<a href="./rfc7461" title=""Energy Object Context MIB"">RFC7461</a>].
<span class="h3"><a class="selflink" id="section-5.3" href="#section-5.3">5.3</a>. Power State</span>
An Energy Object may have energy-conservation modes called "Power
States". There may be several intermediate energy-saving modes
between the ON and OFF states of a device.
Power States, which represent universal states of power management of
an Energy Object, are specified by the eoPowerState MIB object. The
actual Power State is specified by the eoPowerOperState MIB object,
while the eoPowerAdminState MIB object specifies the Power State
requested for the Energy Object. The difference between the values
of eoPowerOperState and eoPowerAdminState indicates that the Energy
Object is busy transitioning from eoPowerAdminState into the
eoPowerOperState, at which point it will update the content of
eoPowerOperState. In addition, the possible reason for a change in
Power State is reported in eoPowerStateEnterReason. Regarding
eoPowerStateEnterReason, management stations and Energy Objects
should support any format of the owner string dictated by the local
policy of the organization. It is suggested that this name contain
at least the reason for the transition change, and one or more of the
following: IP address, management station name, network manager's
name, location, or phone number.
The MIB objects eoPowerOperState, eoPowerAdminState, and
eoPowerStateEnterReason are contained in the eoPowerTable.
eoPowerStateTable enumerates the maximum power usage in watts for
every single supported Power State of each Power State Set supported
by the Energy Object. In addition, eoPowerStateTable provides
additional statistics such as eoPowerStateEnterCount, i.e., the
number of times an entity has visited a particular Power State, and
eoPowerStateTotalTime, i.e., the total time spent in a particular
Power State of an Energy Object.
<span class="grey">Chandramouli, et al. Standards Track [Page 12]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-13" ></span>
<span class="grey"><a href="./rfc7460">RFC 7460</a> Power/Energy Monitoring and Control MIB March 2015</span>
<span class="h4"><a class="selflink" id="section-5.3.1" href="#section-5.3.1">5.3.1</a>. Power State Set</span>
There are several standards and implementations of Power State Sets.
An Energy Object can support one or multiple Power State Set
implementations concurrently.
There are currently three Power State Sets defined:
IEEE1621(256) - [<a href="#ref-IEEE1621" title=""Standard for User Interface Elements in Power Control of Electronic Devices Employed in Office/Consumer Environments"">IEEE1621</a>]
DMTF(512) - [<a href="#ref-DMTF" title=""Power State Management Profile"">DMTF</a>]
EMAN(768) - [<a href="./rfc7326" title=""Energy Management Framework"">RFC7326</a>]
The Power State Sets are listed in [<a href="./rfc7326" title=""Energy Management Framework"">RFC7326</a>] along with each Power
State within the Power Set. The Power State Sets are specified by
the PowerStateSet Textual Convention (TC) as an IANA-maintained MIB
module. The initial version of this MIB module is specified in this
document.
<span class="h3"><a class="selflink" id="section-5.4" href="#section-5.4">5.4</a>. Energy Object Usage Information</span>
For an Energy Object, power usage is reported using eoPower. The
magnitude of measurement is based on the eoPowerUnitMultiplier MIB
variable, based on the UnitMultiplier TC. Power measurement
magnitude should conform to the IEC 62053-21 [<a href="#ref-IEC.62053-21" title=""Electricity metering equipment (a.c.) -- Particular requirements -- Part 21: Static meters for active energy (classes 1 and 2)"">IEC.62053-21</a>] and IEC
62053-22 [<a href="#ref-IEC.62053-22" title=""Electricity metering equipment (a.c.) -- Particular requirements -- Part 22: Static meters for active energy (classes 0,2 S and 0,5 S)"">IEC.62053-22</a>] definition of unit multiplier for the SI
units of measure (where SI is the International System of Units).
Measured values are represented in SI units obtained by BaseValue *
10 raised to the power of the unit multiplier.
For example, if current power usage of an Energy Object is 3, it
could be 3 W, 3 mW, 3 kW, or 3 MW, depending on the value of
eoPowerUnitMultiplier. Note that other measurements throughout the
two MIB modules in this document use the same mechanism, including
eoPowerStatePowerUnitMultiplier, eoEnergyUnitMultiplier, and
oACPwrAttributesPowerUnitMultiplier.
In addition to knowing the usage and magnitude, it is useful to know
how an eoPower measurement was obtained. A Network Management System
(NMS) can use this to account for the accuracy and nature of the
reading between different implementations. eoPowerMeasurementLocal
describes whether the measurements were made at the device itself or
from a remote source. The eoPowerMeasurementCaliber describes the
method that was used to measure the power and can distinguish actual
or estimated values. There may be devices in the network that may
not be able to measure or report power consumption. For those
devices, the object eoPowerMeasurementCaliber shall report that the
measurement mechanism is "unavailable" and the eoPower measurement
shall be "0".
<span class="grey">Chandramouli, et al. Standards Track [Page 13]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-14" ></span>
<span class="grey"><a href="./rfc7460">RFC 7460</a> Power/Energy Monitoring and Control MIB March 2015</span>
The nameplate power rating of an Energy Object is specified in
eoPowerNameplate MIB object.
<span class="h3"><a class="selflink" id="section-5.5" href="#section-5.5">5.5</a>. Optional Power Usage Attributes</span>
The optional POWER-ATTRIBUTES-MIB module can be implemented to
further describe power attributes usage measurement. The POWER-
ATTRIBUTES-MIB module is aligned with the IEC 61850 7-2 standard to
describe alternating current (AC) measurements.
The POWER-ATTRIBUTES-MIB module contains a primary table,
eoACPwrAttributesTable, that defines power attributes measurements
for supported entPhysicalIndex entities, as a sparse extension of the
eoPowerTable (with entPhysicalIndex as primary index). This
eoACPwrAttributesTable table contains such information as the
configuration (single phase, DEL 3 phases, WYE 3 phases), frequency,
power accuracy, total active/reactive power/apparent power, amperage,
and voltage.
In case of three-phase power, an additional table is populated with
power attributes measurements per phase (hence, double indexed by the
entPhysicalIndex and a phase index). This table, describes
attributes specific to either WYE or DEL configurations.
In a DEL configuration, the eoACPwrAttributesDelPhaseTable describes
the phase-to-phase power attributes measurements, i.e., voltage. In
a DEL configuration, the current is equal in all three phases.
In a WYE configuration, the eoACPwrAttributesWyePhaseTable describes
the phase-to-neutral power attributes measurements, i.e., voltage,
current, active/reactive/apparent power, and power factor.
<span class="h3"><a class="selflink" id="section-5.6" href="#section-5.6">5.6</a>. Optional Energy Measurement</span>
It is only relevant to measure energy and demand when there are
actual power measurements obtained from measurement hardware. If the
eoPowerMeasurementCaliber MIB object has values of unavailable,
unknown, estimated, or presumed, then the energy and demand values
are not useful.
Two tables are introduced to characterize energy measurement of an
Energy Object: eoEnergyTable and eoEnergyParametersTable. Both
energy and demand information can be represented via the
eoEnergyTable. Demand information can be represented. The
eoEnergyParametersTable consists of the parameters defining
eoEnergyParametersIndex -- an index for the Energy Object,
eoEnergyObjectIndex -- linked to the entPhysicalIndex of the Energy
Object, the duration of measurement intervals in seconds,
<span class="grey">Chandramouli, et al. Standards Track [Page 14]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-15" ></span>
<span class="grey"><a href="./rfc7460">RFC 7460</a> Power/Energy Monitoring and Control MIB March 2015</span>
(eoEnergyParametersIntervalLength), the number of successive
intervals to be stored in the eoEnergyTable,
(eoEnergyParametersIntervalNumber), the type of measurement technique
(eoEnergyParametersIntervalMode), and a sample rate used to calculate
the average (eoEnergyParametersSampleRate). Judicious choice of the
sampling rate will ensure accurate measurement of energy while not
imposing an excessive polling burden.
There are three eoEnergyParametersIntervalMode types used for energy
measurement collection: period, sliding, and total. The choices of
the three different modes of collection are based on IEC standard
61850-7-4 [<a href="#ref-IEC.61850-7-4" title=""Communication networks and systems for power utility automation -- Part 7-4: Basic communication structure -- Compatible logical node classes and data object classes"">IEC.61850-7-4</a>]. Note that multiple
eoEnergyParametersIntervalMode types MAY be configured
simultaneously. It is important to note that for a given Energy
Object, multiple modes (periodic, total, sliding window) of energy
measurement collection can be configured with the use of
eoEnergyParametersIndex. However, simultaneous measurement in
multiple modes for a given Energy Object depends on the Energy Object
capability.
These three eoEnergyParametersIntervalMode types are illustrated by
the following three figures, for which:
- The horizontal axis represents the current time, with the symbol
<--- L ---> expressing the eoEnergyParametersIntervalLength and
the eoEnergyCollectionStartTime is represented by S1, S2, S3,
S4, eoEnergyParametersIntervalNumber.
- The vertical axis represents the time interval of sampling and
the value of eoEnergyConsumed can be obtained at the end of the
sampling period. The symbol =========== denotes the duration of
the sampling period.
| | | =========== |
|============ | | |
| | | |
| |============ | |
| | | |
| <--- L ---> | <--- L ---> | <--- L ---> |
| | | |
S1 S2 S3 S4
Figure 3: Period eoEnergyParametersIntervalMode
<span class="grey">Chandramouli, et al. Standards Track [Page 15]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-16" ></span>
<span class="grey"><a href="./rfc7460">RFC 7460</a> Power/Energy Monitoring and Control MIB March 2015</span>
A eoEnergyParametersIntervalMode type of 'period' specifies non-
overlapping periodic measurements. Therefore, the next
eoEnergyCollectionStartTime is equal to the previous
eoEnergyCollectionStartTime plus eoEnergyParametersIntervalLength.
S2=S1+L; S3=S2+L, ...
|============ |
| |
| <--- L ---> |
| |
| |============ |
| | |
| | <--- L ---> |
| | |
| | |============ |
| | | |
| | | <--- L ---> |
| | | |
| | | |============ |
| | | | |
| | | | <--- L ---> |
S1 | | | |
| | | |
| | | |
S2 | | |
| | |
| | |
S3 | |
| |
| |
S4
Figure 4: Sliding eoEnergyParametersIntervalMode
A eoEnergyParametersIntervalMode type of 'sliding' specifies
overlapping periodic measurements.
| |
|========================= |
| |
| |
| |
| <--- Total length ---> |
| |
S1
Figure 5: Total eoEnergyParametersIntervalMode
<span class="grey">Chandramouli, et al. Standards Track [Page 16]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-17" ></span>
<span class="grey"><a href="./rfc7460">RFC 7460</a> Power/Energy Monitoring and Control MIB March 2015</span>
An eoEnergyParametersIntervalMode type of 'total' specifies a
continuous measurement since the last reset. The value of
eoEnergyParametersIntervalNumber should be (1) one and
eoEnergyParametersIntervalLength is ignored.
The eoEnergyParametersStatus is used to start and stop energy usage
logging. The status of this variable is "active" when all the
objects in eoEnergyParametersTable are appropriate, which, in turn,
indicates whether or not eoEnergyTable entries exist. Finally, the
eoEnergyParametersStorageType variable indicates the storage type for
this row, i.e., whether the persistence is maintained across a device
reload.
The eoEnergyTable consists of energy measurements of
eoEnergyConsumed, eoEnergyProvided and eoEnergyStored, unit scale of
measured energy with eoEnergyUnitMultiplier, percentage accuracy with
eoEnergyAccuracy, and the maximum observed energy within a window in
eoEnergyMaxConsumed, eoEnergyMaxProduced, and
eoEnergyDiscontinuityTime.
Measurements of the total energy consumed by an Energy Object may
suffer from interruptions in the continuous measurement of energy
consumption. In order to indicate such interruptions, the object
eoEnergyDiscontinuityTime is provided for indicating the time of the
last interruption of total energy measurement.
eoEnergyDiscontinuityTime shall indicate the sysUpTime [<a href="./rfc3418" title=""Management Information Base (MIB) for the Simple Network Management Protocol (SNMP)"">RFC3418</a>] when
the device was reset.
The following example illustrates the eoEnergyTable and
eoEnergyParametersTable:
First, in order to estimate energy, a time interval to sample energy
should be specified, i.e., eoEnergyParametersIntervalLength can be
set to "900 seconds" or 15 minutes and the number of consecutive
intervals over which the maximum energy is calculated
(eoEnergyParametersIntervalNumber) as "10". The sampling rate
internal to the Energy Object for measurement of power usage
(eoEnergyParametersSampleRate) can be "1000 milliseconds", as set by
the Energy Object as a reasonable value. Then, the
eoEnergyParametersStatus is set to active to indicate that the Energy
Object should start monitoring the usage per the eoEnergyTable.
The indices for the eoEnergyTable are eoEnergyParametersIndex, which
identifies the index for the setting of energy measurement collection
Energy Object, and eoEnergyCollectionStartTime, which denotes the
start time of the energy measurement interval based on sysUpTime
[<a href="./rfc3418" title=""Management Information Base (MIB) for the Simple Network Management Protocol (SNMP)"">RFC3418</a>]. The value of eoEnergyComsumed is the measured energy
consumption over the time interval specified
<span class="grey">Chandramouli, et al. Standards Track [Page 17]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-18" ></span>
<span class="grey"><a href="./rfc7460">RFC 7460</a> Power/Energy Monitoring and Control MIB March 2015</span>
(eoEnergyParametersIntervalLength) based on the Energy Object
internal sampling rate (eoEnergyParametersSampleRate). While
choosing the values for the eoEnergyParametersIntervalLength and
eoEnergyParametersSampleRate, it is recommended to take into
consideration both the network element resources adequate to process
and store the sample values and the mechanism used to calculate the
eoEnergyConsumed. The units are derived from eoEnergyUnitMultiplier.
For example, eoEnergyConsumed can be "100" with
eoEnergyUnitMultiplier equal to 0, the measured energy consumption of
the Energy Object is 100 watt-hours. The eoEnergyMaxConsumed is the
maximum energy observed and that can be "150 watt-hours".
The eoEnergyTable has a buffer to retain a certain number of
intervals, as defined by eoEnergyParametersIntervalNumber. If the
default value of "10" is kept, then the eoEnergyTable contains 10
energy measurements, including the maximum.
Here is a brief explanation of how the maximum energy can be
calculated. The first observed energy measurement value is taken to
be the initial maximum. With each subsequent measurement, based on
numerical comparison, maximum energy may be updated. The maximum
value is retained as long as the measurements are taking place.
Based on periodic polling of this table, an NMS could compute the
maximum over a longer period, e.g., a month, 3 months, or a year.
<span class="h3"><a class="selflink" id="section-5.7" href="#section-5.7">5.7</a>. Fault Management</span>
[<a id="ref-RFC6988">RFC6988</a>] specifies requirements about Power States such as "the
current Power State", "the time of the last state change", "the total
time spent in each state", "the number of transitions to each state",
etc. Some of these requirements are fulfilled explicitly by MIB
objects such as eoPowerOperState, eoPowerStateTotalTime, and
eoPowerStateEnterCount. Some of the other requirements are met via
the SNMP NOTIFICATION mechanism. eoPowerStateChange SNMP
notification which is generated when the value of oPowerStateIndex,
eoPowerOperState, or eoPowerAdminState have changed.
<span class="h2"><a class="selflink" id="section-6" href="#section-6">6</a>. Discovery</span>
It is probable that most Energy Objects will require the
implementation of the ENERGY-OBJECT-CONTEXT-MIB [<a href="./rfc7461" title=""Energy Object Context MIB"">RFC7461</a>] as a
prerequisite for this MIB module. In such a case, the eoPowerTable
of the EMAN-ENERGY-OBJECT-MIB is cross-referenced with the eoTable of
ENERGY-OBJECT-CONTEXT-MIB via entPhysicalIndex. Every Energy Object
MUST implement entPhysicalIndex, entPhysicalClass, entPhysicalName,
and entPhysicalUUID from the ENTITY-MIB [<a href="./rfc6933" title=""Entity MIB (Version 4)"">RFC6933</a>]. As the primary
<span class="grey">Chandramouli, et al. Standards Track [Page 18]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-19" ></span>
<span class="grey"><a href="./rfc7460">RFC 7460</a> Power/Energy Monitoring and Control MIB March 2015</span>
index for the Energy Object, entPhysicalIndex is used: it
characterizes the Energy Object in the ENERGY-OBJECT-MIB and the
POWER-ATTRIBUTES-MIB MIB modules (this document).
The NMS must first poll the ENERGY-OBJECT-CONTEXT-MIB MIB module
[<a href="./rfc7461" title=""Energy Object Context MIB"">RFC7461</a>], if available, in order to discover all the Energy Objects
and the relationships between those Energy Objects. In the ENERGY-
OBJECT-CONTEXT-MIB module tables, the Energy Objects are indexed by
the entPhysicalIndex.
From there, the NMS must poll the eoPowerStateTable (specified in the
ENERGY-OBJECT-MIB module in this document), which enumerates, amongst
other things, the maximum power usage. As the entries in
eoPowerStateTable table are indexed by the Energy Object
(entPhysicalIndex) and by the Power State Set (eoPowerStateIndex),
the maximum power usage is discovered per Energy Object, and the
power usage per Power State of the Power State Set. In other words,
reading the eoPowerStateTable allows the discovery of each Power
State within every Power State Set supported by the Energy Object.
The MIB module may be populated with the Energy Object relationship
information, which have its own Energy Object index value
(entPhysicalIndex). However, the Energy Object relationship must be
discovered via the ENERGY-OBJECT-CONTEXT-MIB module.
Finally, the NMS can monitor the power attributes with the POWER-
ATTRIBUTES-MIB MIB module, which reuses the entPhysicalIndex to index
the Energy Object.
<span class="h2"><a class="selflink" id="section-7" href="#section-7">7</a>. Link with the Other IETF MIBs</span>
<span class="h3"><a class="selflink" id="section-7.1" href="#section-7.1">7.1</a>. Link with the ENTITY-MIB and the ENTITY-SENSOR MIB</span>
[<a id="ref-RFC6933">RFC6933</a>] defines the ENTITY-MIB module that lists the physical
entities of a networking device (router, switch, etc.) and those
physical entities indexed by entPhysicalIndex. From an energy-
management standpoint, the physical entities that consume or produce
energy are of interest.
[<a id="ref-RFC3433">RFC3433</a>] defines the ENTITY-SENSOR MIB module that provides a
standardized way of obtaining information (current value of the
sensor, operational status of the sensor, and the data-unit
precision) from sensors embedded in networking devices. Sensors are
associated with each index of the entPhysicalIndex of the ENTITY-MIB
[<a href="./rfc6933" title=""Entity MIB (Version 4)"">RFC6933</a>]. While the focus of the Monitoring and Control MIB for
Power and Energy is on measurement of power usage of networking
equipment indexed by the ENTITY-MIB, this MIB supports a customized
<span class="grey">Chandramouli, et al. Standards Track [Page 19]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-20" ></span>
<span class="grey"><a href="./rfc7460">RFC 7460</a> Power/Energy Monitoring and Control MIB March 2015</span>
power scale for power measurement and different Power States of
networking equipment and the functionality to configure the Power
States.
The Energy Objects are modeled by the entPhysicalIndex through the
entPhysicalEntity MIB object specified in the eoTable in the ENERGY-
OBJECT-CONTEXT-MIB MIB module [<a href="./rfc7461" title=""Energy Object Context MIB"">RFC7461</a>].
The ENTITY-SENSOR MIB [<a href="./rfc3433" title=""Entity Sensor Management Information Base"">RFC3433</a>] does not have the ANSI C12.x accuracy
classes required for electricity (e.g., 1%, 2%, and 0.5% accuracy
classes). Indeed, entPhySensorPrecision [<a href="./rfc3433" title=""Entity Sensor Management Information Base"">RFC3433</a>] represents "The
number of decimal places of precision in fixed-point sensor values
returned by the associated entPhySensorValue object". The ANSI and
IEC standards are used for power measurement and these standards
require that we use an accuracy class, not the scientific-number
precision model specified in <a href="./rfc3433">RFC3433</a>. The eoPowerAccuracy MIB object
models this accuracy. Note that eoPowerUnitMultipler represents the
scale factor per IEC 62053-21 [<a href="#ref-IEC.62053-21" title=""Electricity metering equipment (a.c.) -- Particular requirements -- Part 21: Static meters for active energy (classes 1 and 2)"">IEC.62053-21</a>] and IEC 62053-22
[<a href="#ref-IEC.62053-22" title=""Electricity metering equipment (a.c.) -- Particular requirements -- Part 22: Static meters for active energy (classes 0,2 S and 0,5 S)"">IEC.62053-22</a>], which is a more logical representation for power
measurements (compared to entPhySensorScale), with the mantissa and
the exponent values X * 10 ^ Y.
Power measurements specifying the qualifier 'UNITS' for each measured
value in watts are used in the LLDP-EXT-MED-MIB, Power Ethernet
[<a href="./rfc3621" title=""Power Ethernet MIB"">RFC3621</a>], and UPS [<a href="./rfc1628" title=""UPS Management Information Base"">RFC1628</a>] MIBs. The same 'UNITS' qualifier is
used for the power measurement values.
One cannot assume that the ENTITY-MIB and ENTITY-SENSOR MIBs are
implemented for all Energy Objects that need to be monitored. A
typical example is a converged building gateway, which can monitor
other devices in a building and provides a proxy between SNMP and a
protocol like BACnet. Another example is the home energy controller.
In such cases, the eoPhysicalEntity value contains the zero value,
using the PhysicalIndexOrZero Textual Convention.
The eoPower is similar to entPhySensorValue [<a href="./rfc3433" title=""Entity Sensor Management Information Base"">RFC3433</a>] and the
eoPowerUnitMultipler is similar to entPhySensorScale.
<span class="h3"><a class="selflink" id="section-7.2" href="#section-7.2">7.2</a>. Link with the ENTITY-STATE MIB</span>
For each entity in the ENTITY-MIB [<a href="./rfc6933" title=""Entity MIB (Version 4)"">RFC6933</a>], the ENTITY-STATE MIB
[<a href="./rfc4268" title=""Entity State MIB"">RFC4268</a>] specifies the operational states (entStateOper: unknown,
enabled, disabled, testing), the alarm (entStateAlarm: unknown,
underRepair, critical, major, minor, warning, indeterminate), and the
possible values of standby states (entStateStandby: unknown,
hotStandby, coldStandby, providingService).
<span class="grey">Chandramouli, et al. Standards Track [Page 20]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-21" ></span>
<span class="grey"><a href="./rfc7460">RFC 7460</a> Power/Energy Monitoring and Control MIB March 2015</span>
From a power-monitoring point of view, in contrast to the entity
operational states of entities, Power States are required, as
proposed in the Monitoring and Control MIB for Power and Energy.
Those Power States can be mapped to the different operational states
in the ENTITY-STATE MIB, if a formal mapping is required. For
example, the entStateStandby "unknown", "hotStandby", and
"coldStandby" states could map to the Power State "unknown", "ready",
"standby", respectively, while the entStateStandby "providingService"
could map to any "low" to "high" Power State.
<span class="h3"><a class="selflink" id="section-7.3" href="#section-7.3">7.3</a>. Link with the POWER-OVER-ETHERNET MIB</span>
The Power-over-Ethernet MIB [<a href="./rfc3621" title=""Power Ethernet MIB"">RFC3621</a>] provides an energy monitoring
and configuration framework for power over Ethernet devices. <a href="./rfc3621">RFC</a>
<a href="./rfc3621">3621</a> defines a port group entity on a switch for power monitoring and
management policy and does not use the entPhysicalIndex index.
Indeed, pethMainPseConsumptionPower is indexed by the
pethMainPseGroupIndex, which has no mapping with the
entPhysicalIndex.
If the Power-over-Ethernet MIB [<a href="./rfc3621" title=""Power Ethernet MIB"">RFC3621</a>] is supported, the Energy
Object eoethPortIndex and eoethPortGrpIndex contain the
pethPsePortIndex and pethPsePortGroupIndex, respectively. However,
one cannot assume that the Power-over-Ethernet MIB is implemented for
most or all Energy Objects. In such cases, the eoethPortIndex and
eoethPortGrpIndex values contain the zero value, via the new
PethPsePortIndexOrZero and PethPsePortGroupIndexOrZero TCs.
In either case, the entPhysicalIndex MIB object is used as the unique
Energy Object index.
Note that, even though the Power-over-Ethernet MIB [<a href="./rfc3621" title=""Power Ethernet MIB"">RFC3621</a>] was
created after the ENTITY-SENSOR MIB [<a href="./rfc3433" title=""Entity Sensor Management Information Base"">RFC3433</a>], it does not reuse the
precision notion from the ENTITY-SENSOR MIB, i.e., the
entPhySensorPrecision MIB object.
<span class="h3"><a class="selflink" id="section-7.4" href="#section-7.4">7.4</a>. Link with the UPS MIB</span>
To protect against unexpected power disruption, data centers and
buildings make use of Uninterruptible Power Supplies (UPS). To
protect critical assets, a UPS can be restricted to a particular
subset or domain of the network. UPS usage typically lasts only for
a finite period of time, until normal power supply is restored.
Planning is required to decide on the capacity of the UPS based on
output power and duration of probable power outage. To properly
provision UPS power in a data center or building, it is important to
<span class="grey">Chandramouli, et al. Standards Track [Page 21]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-22" ></span>
<span class="grey"><a href="./rfc7460">RFC 7460</a> Power/Energy Monitoring and Control MIB March 2015</span>
first understand the total demand required to support all the
entities in the site. This demand can be assessed and monitored via
the Monitoring and Control MIB for Power and Energy.
The UPS MIB [<a href="./rfc1628" title=""UPS Management Information Base"">RFC1628</a>] provides information on the state of the UPS
network. Implementation of the UPS MIB is useful at the aggregate
level of a data center or a building. The MIB module contains
several groups of variables:
- upsIdent: Identifies the UPS entity (name, model, etc.).
- upsBattery group: Indicates the battery state (upsbatteryStatus,
upsEstimatedMinutesRemaining, etc.)
- upsInput group: Characterizes the input load to the UPS (number
of input lines, voltage, current, etc.).
- upsOutput: Characterizes the output from the UPS (number of
output lines, voltage, current, etc.)
- upsAlarms: Indicates the various alarm events.
The measurement of power in the UPS MIB is in volts, amperes, and
watts. The units of power measurement are root mean square (RMS)
volts and RMS amperes. They are not based on the
EntitySensorDataScale and EntitySensorDataPrecision of ENTITY-SENSOR-
MIB.
Both the Monitoring and Control MIB for Power and Energy and the UPS
MIB may be implemented on the same UPS SNMP agent, without conflict.
In this case, the UPS device itself is the Energy Object and any of
the UPS meters or submeters are the Energy Objects with a possible
relationship as defined in [<a href="./rfc7326" title=""Energy Management Framework"">RFC7326</a>].
<span class="h3"><a class="selflink" id="section-7.5" href="#section-7.5">7.5</a>. Link with the LLDP and LLDP-MED MIBs</span>
The Link Layer Discovery Protocol (LLDP) is a Data Link Layer
protocol used by network devices to advertise their identities,
capabilities, and interconnections on a LAN network.
The Media Endpoint Discovery is an enhancement of LLDP, known as
LLDP-MED. The LLDP-MED enhancements specifically address voice
applications. LLDP-MED covers six basic areas: capability discovery,
LAN speed and duplex discovery, network policy discovery, location
identification discovery, inventory discovery, and power discovery.
<span class="grey">Chandramouli, et al. Standards Track [Page 22]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-23" ></span>
<span class="grey"><a href="./rfc7460">RFC 7460</a> Power/Energy Monitoring and Control MIB March 2015</span>
Of particular interest to the current MIB module is the power
discovery, which allows the endpoint device (such as a PoE phone) to
convey power requirements to the switch. In power discovery,
LLDP-MED has four Type-Length-Values (TLVs): power type, power
source, power priority, and power value. Respectively, those TLVs
provide information related to the type of power (power sourcing
entity versus powered device), how the device is powered (from the
line, from a backup source, from external power source, etc.), the
power priority (how important is it that this device has power?), and
how much power the device needs.
The power priority specified in the LLDP-MED MIB [<a href="#ref-LLDP-MED-MIB" title=""The LLDP Management Information Base extension module for TIA-TR41.4 media endpoint discovery information"">LLDP-MED-MIB</a>]
actually comes from the Power-over-Ethernet MIB [<a href="./rfc3621" title=""Power Ethernet MIB"">RFC3621</a>]. If the
Power-over-Ethernet MIB [<a href="./rfc3621" title=""Power Ethernet MIB"">RFC3621</a>] is supported, the exact value from
the pethPsePortPowerPriority [<a href="./rfc3621" title=""Power Ethernet MIB"">RFC3621</a>] is copied over into the
lldpXMedRemXPoEPDPowerPriority [<a href="#ref-LLDP-MED-MIB" title=""The LLDP Management Information Base extension module for TIA-TR41.4 media endpoint discovery information"">LLDP-MED-MIB</a>]; otherwise, the value
in lldpXMedRemXPoEPDPowerPriority is "unknown". From the Monitoring
and Control MIB for Power and Energy, it is possible to identify the
pethPsePortPowerPriority [<a href="./rfc3621" title=""Power Ethernet MIB"">RFC3621</a>], via the eoethPortIndex and
eoethPortGrpIndex.
The lldpXMedLocXPoEPDPowerSource [<a href="#ref-LLDP-MED-MIB" title=""The LLDP Management Information Base extension module for TIA-TR41.4 media endpoint discovery information"">LLDP-MED-MIB</a>] is similar to
eoPowerMeasurementLocal in indicating if the power for an attached
device is local or from a remote device. If the LLDP-MED MIB is
supported, the following mapping can be applied to the
eoPowerMeasurementLocal: lldpXMedLocXPoEPDPowerSource fromPSE(2) and
local(3) can be mapped to false and true, respectively.
<span class="h2"><a class="selflink" id="section-8" href="#section-8">8</a>. Structure of the MIB</span>
The primary MIB object in the energyObjectMib MIB module is the
energyObjectMibObjects root. The eoPowerTable table of
energyObjectMibObjects describes the power measurement attributes of
an Energy Object entity. The identity of a device in terms of
uniquely identification of the Energy Object and its relationship to
other entities in the network are addressed in [<a href="./rfc7461" title=""Energy Object Context MIB"">RFC7461</a>].
Logically, this MIB module is a sparse extension of the ENERGY-
OBJECT-CONTEXT-MIB module [<a href="./rfc7461" title=""Energy Object Context MIB"">RFC7461</a>]. Thus, the following
requirements that are applied to [<a href="./rfc7461" title=""Energy Object Context MIB"">RFC7461</a>] are also applicable. As a
requirement for this MIB module, [<a href="./rfc7461" title=""Energy Object Context MIB"">RFC7461</a>] SHOULD be implemented and
as Module Compliance of ENTITY-MIB V4 [<a href="./rfc6933" title=""Entity MIB (Version 4)"">RFC6933</a>] with respect to
entity4CRCompliance MUST be supported, which requires four MIB
objects: entPhysicalIndex, entPhysicalClass, entPhysicalName, and
entPhysicalUUID MUST be implemented.
<span class="grey">Chandramouli, et al. Standards Track [Page 23]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-24" ></span>
<span class="grey"><a href="./rfc7460">RFC 7460</a> Power/Energy Monitoring and Control MIB March 2015</span>
The eoMeterCapabilitiesTable is useful to enable applications to
determine the capabilities supported by the local management agent.
This table indicates the energy-monitoring MIB groups that are
supported by the local management system. By reading the value of
this object, it is possible for applications to know which tables
contain the information and are usable without walking through the
table and querying every element that involves a trial-and-error
process.
The power measurement of an Energy Object contains information
describing its power usage (eoPower) and its current Power State
(eoPowerOperState). In addition to power usage, additional
information describing the units of measurement (eoPowerAccuracy,
eoPowerUnitMultiplier), how power usage measurement was obtained
(eoPowerMeasurementCaliber), the source of power measurement
(eoPowerMeasurementLocal), and the type of power (eoPowerCurrentType)
are described.
An Energy Object may contain an optional eoEnergyTable to describe
energy measurement information over time.
An Energy Object may contain an optional eoACPwrAttributesTable table
(specified in the POWER-ATTRIBUTES-MIB module) that describes the
electrical characteristics associated with the current Power State
and usage.
An Energy Object may also contain optional battery information
associated with this entity.
<span class="h2"><a class="selflink" id="section-9" href="#section-9">9</a>. MIB Definitions</span>
<span class="h3"><a class="selflink" id="section-9.1" href="#section-9.1">9.1</a>. The IANAPowerStateSet-MIB Module</span>
-- ************************************************************
--
--
-- This MIB, maintained by IANA, contains a single Textual
-- Convention: PowerStateSet
--
-- ************************************************************
IANAPowerStateSet-MIB DEFINITIONS ::= BEGIN
IMPORTS
MODULE-IDENTITY, mib-2 FROM SNMPv2-SMI
TEXTUAL-CONVENTION FROM SNMPv2-TC;
ianaPowerStateSet MODULE-IDENTITY
<span class="grey">Chandramouli, et al. Standards Track [Page 24]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-25" ></span>
<span class="grey"><a href="./rfc7460">RFC 7460</a> Power/Energy Monitoring and Control MIB March 2015</span>
LAST-UPDATED "201502090000Z" -- 9 February 2015
ORGANIZATION "IANA"
CONTACT-INFO "
Internet Assigned Numbers Authority
Postal: ICANN
12025 Waterfront Drive, Suite 300
Los Angeles, CA 90094
United States
Tel: +1-310-301 5800
EMail: iana@iana.org"
DESCRIPTION
"Copyright (c) 2015 IETF Trust and the persons identified as
authors of the code. All rights reserved.
Redistribution and use in source and binary forms, with or
without modification, is permitted pursuant to, and subject
to the license terms contained in, the Simplified BSD License
set forth in <a href="#section-4">Section 4</a>.c of the IETF Trust's Legal Provisions
Relating to IETF Documents
(<a href="http://trustee.ietf.org/license-info">http://trustee.ietf.org/license-info</a>).
This MIB module defines the PowerStateSet Textual
Convention, which specifies the Power State Sets and
Power State Set Values an Energy Object supports.
The initial version of this MIB module was published in
<a href="./rfc7460">RFC 7460</a>; for full legal notices see the RFC itself."
-- revision history
REVISION "201502090000Z" -- 9 February 2015
DESCRIPTION
"Initial version of this MIB module, as published as <a href="./rfc7460">RFC</a>
<a href="./rfc7460">7460</a>."
::= { mib-2 228 }
PowerStateSet ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION
"IANAPowerState is a textual convention that describes
Power State Sets and Power State Set Values an Energy
Object supports. IANA has created a registry of Power
State supported by an Energy Object and IANA shall
administer the list of Power State Sets and Power
States.
<span class="grey">Chandramouli, et al. Standards Track [Page 25]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-26" ></span>
<span class="grey"><a href="./rfc7460">RFC 7460</a> Power/Energy Monitoring and Control MIB March 2015</span>
The Textual Convention assumes that Power States in a
Power State Set are limited to 255 distinct values. For
a Power State Set S, the named number with the value S *
256 is allocated to indicate the Power State Set. For a
Power State X in the Power State Set S, the named number
with the value S * 256 + X + 1 is allocated to represent
the Power State.
Requests for new values should be made to IANA via email
(iana@iana.org)."
REFERENCE
"<a href="http://www.iana.org/assignments/power-state-sets">http://www.iana.org/assignments/power-state-sets</a>"
SYNTAX INTEGER {
other(0), -- indicates other set
unknown(255), -- unknown
ieee1621(256), -- indicates IEEE1621 set
ieee1621Off(257),
ieee1621Sleep(258),
ieee1621On(259),
dmtf(512), -- indicates DMTF set
dmtfOn(513),
dmtfSleepLight(514),
dmtfSleepDeep(515),
dmtfOffHard(516),
dmtfOffSoft(517),
dmtfHibernate(518),
dmtfPowerOffSoft(519),
dmtfPowerOffHard(520),
dmtfMasterBusReset(521),
dmtfDiagnosticInterrapt(522),
dmtfOffSoftGraceful(523),
dmtfOffHardGraceful(524),
dmtfMasterBusResetGraceful(525),
dmtfPowerCycleOffSoftGraceful(526),
dmtfPowerCycleHardGraceful(527),
eman(1024), -- indicates EMAN set
emanMechOff(1025),
emanSoftOff(1026),
emanHibernate(1027),
emanSleep(1028),
emanStandby(1029),
emanReady(1030),
emanLowMinus(1031),
emanLow(1032),
<span class="grey">Chandramouli, et al. Standards Track [Page 26]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-27" ></span>
<span class="grey"><a href="./rfc7460">RFC 7460</a> Power/Energy Monitoring and Control MIB March 2015</span>
emanMediumMinus(1033),
emanMedium(1034),
emanHighMinus(1035),
emanHigh(1036)
}
END
<span class="h3"><a class="selflink" id="section-9.2" href="#section-9.2">9.2</a>. The ENERGY-OBJECT-MIB MIB Module</span>
-- ************************************************************
--
--
-- This MIB is used to monitor power usage of network
-- devices
--
-- *************************************************************
ENERGY-OBJECT-MIB DEFINITIONS ::= BEGIN
IMPORTS
MODULE-IDENTITY,
OBJECT-TYPE,
NOTIFICATION-TYPE,
mib-2,
Integer32, Counter32, Unsigned32, TimeTicks
FROM SNMPv2-SMI
TEXTUAL-CONVENTION, RowStatus, TimeInterval,
TimeStamp, TruthValue, StorageType
FROM SNMPv2-TC
MODULE-COMPLIANCE, NOTIFICATION-GROUP, OBJECT-GROUP
FROM SNMPv2-CONF
OwnerString
FROM RMON-MIB
entPhysicalIndex
FROM ENTITY-MIB
PowerStateSet
FROM IANAPowerStateSet-MIB;
energyObjectMib MODULE-IDENTITY
LAST-UPDATED "201502090000Z" -- 9 February 2015
ORGANIZATION "IETF EMAN Working Group"
CONTACT-INFO
"WG charter:
<a href="http://datatracker.ietf.org/wg/eman/charter/">http://datatracker.ietf.org/wg/eman/charter/</a>
Mailing Lists:
General Discussion: eman@ietf.org
<span class="grey">Chandramouli, et al. Standards Track [Page 27]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-28" ></span>
<span class="grey"><a href="./rfc7460">RFC 7460</a> Power/Energy Monitoring and Control MIB March 2015</span>
To Subscribe:
<a href="https://www.ietf.org/mailman/listinfo/eman">https://www.ietf.org/mailman/listinfo/eman</a>
Archive:
<a href="http://www.ietf.org/mail-archive/web/eman">http://www.ietf.org/mail-archive/web/eman</a>
Editors:
Mouli Chandramouli
Cisco Systems, Inc.
Sarjapur Outer Ring Road
Bangalore 560103
India
Phone: +91 80 4429 2409
Email: moulchan@cisco.com
Brad Schoening
44 Rivers Edge Drive
Little Silver, NJ 07739
United States
Email: brad.schoening@verizon.net
Juergen Quittek
NEC Europe, Ltd.
NEC Laboratories Europe
Network Research Division
Kurfuersten-Anlage 36
Heidelberg 69115
Germany
Phone: +49 6221 4342-115
Email: quittek@neclab.eu
Thomas Dietz
NEC Europe, Ltd.
NEC Laboratories Europe
Network Research Division
Kurfuersten-Anlage 36
69115 Heidelberg
Germany
Phone: +49 6221 4342-128
Email: Thomas.Dietz@nw.neclab.eu
Benoit Claise
Cisco Systems, Inc.
De Kleetlaan 6a b1
Degem 1831
Belgium
Phone: +32 2 704 5622
Email: bclaise@cisco.com"
<span class="grey">Chandramouli, et al. Standards Track [Page 28]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-29" ></span>
<span class="grey"><a href="./rfc7460">RFC 7460</a> Power/Energy Monitoring and Control MIB March 2015</span>
DESCRIPTION
"Copyright (c) 2015 IETF Trust and the persons identified as
authors of the code. All rights reserved.
Redistribution and use in source and binary forms, with or
without modification, is permitted pursuant to, and subject
to the license terms contained in, the Simplified BSD License
set forth in <a href="#section-4">Section 4</a>.c of the IETF Trust's Legal Provisions
Relating to IETF Documents
(<a href="http://trustee.ietf.org/license-info">http://trustee.ietf.org/license-info</a>).
This MIB is used to monitor power and energy in
devices.
The tables eoMeterCapabilitiesTable and eoPowerTable
are a sparse extension of the eoTable from the
ENERGY-OBJECT-CONTEXT-MIB. As a requirement,
[<a href="./rfc7461" title=""Energy Object Context MIB"">RFC7461</a>] SHOULD be implemented.
Module Compliance of ENTITY-MIB v4 with respect to
entity4CRCompliance MUST be supported which requires
implementation of 4 MIB objects: entPhysicalIndex,
entPhysicalClass, entPhysicalName and entPhysicalUUID."
REVISION "201502090000Z" -- 9 February 2015
DESCRIPTION
"Initial version, published as <a href="./rfc7460">RFC 7460</a>."
::= { mib-2 229 }
energyObjectMibNotifs OBJECT IDENTIFIER
::= { energyObjectMib 0 }
energyObjectMibObjects OBJECT IDENTIFIER
::= { energyObjectMib 1 }
energyObjectMibConform OBJECT IDENTIFIER
::= { energyObjectMib 2 }
-- Textual Conventions
UnitMultiplier ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION
"The Unit Multiplier is an integer value that represents
the IEEE 61850 Annex A units multiplier associated with
the integer units used to measure the power or energy.
<span class="grey">Chandramouli, et al. Standards Track [Page 29]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-30" ></span>
<span class="grey"><a href="./rfc7460">RFC 7460</a> Power/Energy Monitoring and Control MIB March 2015</span>
For example, when used with eoPowerUnitMultiplier, -3
represents 10^-3 or milliwatts."
REFERENCE
"The International System of Units (SI), National
Institute of Standards and Technology, Spec. Publ. 330,
August 1991."
SYNTAX INTEGER {
yocto(-24), -- 10^-24
zepto(-21), -- 10^-21
atto(-18), -- 10^-18
femto(-15), -- 10^-15
pico(-12), -- 10^-12
nano(-9), -- 10^-9
micro(-6), -- 10^-6
milli(-3), -- 10^-3
units(0), -- 10^0
kilo(3), -- 10^3
mega(6), -- 10^6
giga(9), -- 10^9
tera(12), -- 10^12
peta(15), -- 10^15
exa(18), -- 10^18
zetta(21), -- 10^21
yotta(24) -- 10^24
}
-- Objects
eoMeterCapabilitiesTable OBJECT-TYPE
SYNTAX SEQUENCE OF EoMeterCapabilitiesEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"This table is useful for helping applications determine
the monitoring capabilities supported by the local
management agents. It is possible for applications to
know which tables are usable without going through a
trial-and-error process."
::= { energyObjectMibObjects 1 }
eoMeterCapabilitiesEntry OBJECT-TYPE
SYNTAX EoMeterCapabilitiesEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"An entry describes the metering capability of an Energy
Object."
INDEX { entPhysicalIndex }
<span class="grey">Chandramouli, et al. Standards Track [Page 30]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-31" ></span>
<span class="grey"><a href="./rfc7460">RFC 7460</a> Power/Energy Monitoring and Control MIB March 2015</span>
::= { eoMeterCapabilitiesTable 1 }
EoMeterCapabilitiesEntry ::= SEQUENCE {
eoMeterCapability BITS
}
eoMeterCapability OBJECT-TYPE
SYNTAX BITS {
none(0),
powermetering(1), -- power measurement
energymetering(2), -- energy measurement
powerattributes(3) -- power attributes
}
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"An indication of the energy-monitoring capabilities
supported by this agent. This object use a BITS syntax
and indicates the MIB groups supported by the probe. By
reading the value of this object, it is possible to
determine the MIB tables supported."
::= { eoMeterCapabilitiesEntry 1 }
eoPowerTable OBJECT-TYPE
SYNTAX SEQUENCE OF EoPowerEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"This table lists Energy Objects."
::= { energyObjectMibObjects 2 }
eoPowerEntry OBJECT-TYPE
SYNTAX EoPowerEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"An entry describes the power usage of an Energy Object."
INDEX { entPhysicalIndex }
::= { eoPowerTable 1 }
EoPowerEntry ::= SEQUENCE {
eoPower Integer32,
eoPowerNameplate Unsigned32,
eoPowerUnitMultiplier UnitMultiplier,
eoPowerAccuracy Integer32,
eoPowerMeasurementCaliber INTEGER,
eoPowerCurrentType INTEGER,
eoPowerMeasurementLocal TruthValue,
<span class="grey">Chandramouli, et al. Standards Track [Page 31]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-32" ></span>
<span class="grey"><a href="./rfc7460">RFC 7460</a> Power/Energy Monitoring and Control MIB March 2015</span>
eoPowerAdminState PowerStateSet,
eoPowerOperState PowerStateSet,
eoPowerStateEnterReason OwnerString
}
eoPower OBJECT-TYPE
SYNTAX Integer32
UNITS "watts"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This object indicates the power measured for the Energy
Object. For alternating current, this value is obtained
as an average over fixed number of AC cycles. This value
is specified in SI units of watts with the magnitude of
watts (milliwatts, kilowatts, etc.) indicated separately
in eoPowerUnitMultiplier. The accuracy of the measurement
is specified in eoPowerAccuracy. The direction of power
flow is indicated by the sign on eoPower. If the Energy
Object is consuming power, the eoPower value will be
positive. If the Energy Object is producing power, the
eoPower value will be negative.
The eoPower MUST be less than or equal to the maximum
power that can be consumed at the Power State specified
by eoPowerState.
The eoPowerMeasurementCaliber object specifies how the
usage value reported by eoPower was obtained. The eoPower
value must report 0 if the eoPowerMeasurementCaliber is
'unavailable'. For devices that cannot measure or
report power, this option can be used."
::= { eoPowerEntry 1 }
eoPowerNameplate OBJECT-TYPE
SYNTAX Unsigned32
UNITS "watts"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This object indicates the rated maximum consumption for
the fully populated Energy Object. The nameplate power
requirements are the maximum power numbers given in SI
watts and, in almost all cases, are well above the
expected operational consumption. Nameplate power is
widely used for power provisioning. This value is
specified in either units of watts or voltage and
current. The units are therefore SI watts or equivalent
<span class="grey">Chandramouli, et al. Standards Track [Page 32]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-33" ></span>
<span class="grey"><a href="./rfc7460">RFC 7460</a> Power/Energy Monitoring and Control MIB March 2015</span>
Volt-Amperes with the magnitude (milliwatts, kilowatts,
etc.) indicated separately in eoPowerUnitMultiplier."
::= { eoPowerEntry 2 }
eoPowerUnitMultiplier OBJECT-TYPE
SYNTAX UnitMultiplier
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The magnitude of watts for the usage value in eoPower
and eoPowerNameplate."
::= { eoPowerEntry 3 }
eoPowerAccuracy OBJECT-TYPE
SYNTAX Integer32 (0..10000)
UNITS "hundredths of percent"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This object indicates a percentage value, in hundredths of a
percent, representing the assumed accuracy of the usage
reported by eoPower. For example, the value 1010 means
the reported usage is accurate to +/- 10.1 percent. This
value is zero if the accuracy is unknown or not
applicable based upon the measurement method.
ANSI and IEC define the following accuracy classes for
power measurement:
IEC 62053-22 60044-1 class 0.1, 0.2, 0.5, 1 3.
ANSI C12.20 class 0.2, 0.5"
::= { eoPowerEntry 4 }
eoPowerMeasurementCaliber OBJECT-TYPE
SYNTAX INTEGER {
unavailable(1) ,
unknown(2),
actual(3) ,
estimated(4),
static(5) }
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This object specifies how the usage value reported by
eoPower was obtained:
- unavailable(1): Indicates that the usage is not
available. In such a case, the eoPower value must be 0
for devices that cannot measure or report power this
<span class="grey">Chandramouli, et al. Standards Track [Page 33]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-34" ></span>
<span class="grey"><a href="./rfc7460">RFC 7460</a> Power/Energy Monitoring and Control MIB March 2015</span>
option can be used.
- unknown(2): Indicates that the way the usage was
determined is unknown. In some cases, entities report
aggregate power on behalf of another device. In such
cases it is not known whether the usage reported is
actual, estimated, or static.
- actual(3): Indicates that the reported usage was
measured by the entity through some hardware or direct
physical means. The usage data reported is not estimated
or static but is the measured consumption rate.
- estimated(4): Indicates that the usage was not
determined by physical measurement. The value is a
derivation based upon the device type, state, and/or
current utilization using some algorithm or heuristic. It
is presumed that the entity's state and current
configuration were used to compute the value.
- static(5): Indicates that the usage was not determined
by physical measurement, algorithm, or derivation. The
usage was reported based upon external tables,
specifications, and/or model information. For example, a
PC Model X draws 200W, while a PC Model Y draws 210W."
::= { eoPowerEntry 5 }
eoPowerCurrentType OBJECT-TYPE
SYNTAX INTEGER {
ac(1),
dc(2),
unknown(3)
}
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This object indicates whether the eoPower for the
Energy Object reports alternating current 'ac', direct
current 'dc', or that the current type is unknown."
::= { eoPowerEntry 6 }
eoPowerMeasurementLocal OBJECT-TYPE
SYNTAX TruthValue
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This object indicates the source of power measurement
and can be useful when modeling the power usage of
<span class="grey">Chandramouli, et al. Standards Track [Page 34]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-35" ></span>
<span class="grey"><a href="./rfc7460">RFC 7460</a> Power/Energy Monitoring and Control MIB March 2015</span>
attached devices. The power measurement can be performed
by the entity itself or the power measurement of the
entity can be reported by another trusted entity using a
protocol extension. A value of true indicates the
measurement is performed by the entity, whereas false
indicates that the measurement was performed by another
entity."
::= { eoPowerEntry 7 }
eoPowerAdminState OBJECT-TYPE
SYNTAX PowerStateSet
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"This object specifies the desired Power State and the
Power State Set for the Energy Object. Note that other(0)
is not a Power State Set and unknown(255) is not a Power
State as such, but simply an indication that the Power
State of the Energy Object is unknown.
Possible values of eoPowerAdminState within the Power
State Set are registered at IANA.
A current list of assignments can be found at
<<a href="http://www.iana.org/assignments/power-state-sets">http://www.iana.org/assignments/power-state-sets</a>>"
::= { eoPowerEntry 8 }
eoPowerOperState OBJECT-TYPE
SYNTAX PowerStateSet
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This object specifies the current operational Power
State and the Power State Set for the Energy Object.
other(0) is not a Power State Set and unknown(255) is not
a Power State as such, but simply an indication that the
Power State of the Energy Object is unknown.
Possible values of eoPowerOperState within the Power
State Set are registered at IANA. A current list of
assignments can be found at
<<a href="http://www.iana.org/assignments/power-state-sets">http://www.iana.org/assignments/power-state-sets</a>>"
::= { eoPowerEntry 9 }
eoPowerStateEnterReason OBJECT-TYPE
SYNTAX OwnerString
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"This string object describes the reason for the
<span class="grey">Chandramouli, et al. Standards Track [Page 35]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-36" ></span>
<span class="grey"><a href="./rfc7460">RFC 7460</a> Power/Energy Monitoring and Control MIB March 2015</span>
eoPowerAdminState transition. Alternatively, this string
may contain with the entity that configured this Energy
Object to this Power State."
DEFVAL { "" }
::= { eoPowerEntry 10 }
eoPowerStateTable OBJECT-TYPE
SYNTAX SEQUENCE OF EoPowerStateEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"This table enumerates the maximum power usage, in watts,
for every single supported Power State of each Energy
Object.
This table has cross-reference with the eoPowerTable,
containing rows describing each Power State for the
corresponding Energy Object. For every Energy Object in
the eoPowerTable, there is a corresponding entry in this
table."
::= { energyObjectMibObjects 3 }
eoPowerStateEntry OBJECT-TYPE
SYNTAX EoPowerStateEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A eoPowerStateEntry extends a corresponding
eoPowerEntry. This entry displays max usage values at
every single possible Power State supported by the Energy
Object.
For example, given the values of a Energy Object
corresponding to a maximum usage of 0 W at the
state emanmechoff, 8 W at state 6 (ready), 11 W at state
emanmediumMinus, and 11 W at state emanhigh:
State MaxUsage Units
emanmechoff 0 W
emansoftoff 0 W
emanhibernate 0 W
emansleep 0 W
emanstandby 0 W
emanready 8 W
emanlowMinus 8 W
emanlow 11 W
emanmediumMinus 11 W
emanmedium 11 W
emanhighMinus 11 W
<span class="grey">Chandramouli, et al. Standards Track [Page 36]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-37" ></span>
<span class="grey"><a href="./rfc7460">RFC 7460</a> Power/Energy Monitoring and Control MIB March 2015</span>
emnanhigh 11 W
Furthermore, this table also includes the total time in
each Power State, along with the number of times a
particular Power State was entered."
INDEX { entPhysicalIndex, eoPowerStateIndex }
::= { eoPowerStateTable 1 }
EoPowerStateEntry ::= SEQUENCE {
eoPowerStateIndex PowerStateSet,
eoPowerStateMaxPower Integer32,
eoPowerStatePowerUnitMultiplier UnitMultiplier,
eoPowerStateTotalTime TimeTicks,
eoPowerStateEnterCount Counter32
}
eoPowerStateIndex OBJECT-TYPE
SYNTAX PowerStateSet
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"This object specifies the index of the Power State of
the Energy Object within a Power State Set. The semantics
of the specific Power State can be obtained from the
Power State Set definition."
::= { eoPowerStateEntry 1 }
eoPowerStateMaxPower OBJECT-TYPE
SYNTAX Integer32
UNITS "watts"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This object indicates the maximum power for the Energy
Object at the particular Power State. This value is
specified in SI units of watts with the magnitude of the
units (milliwatts, kilowatts, etc.) indicated separately
in eoPowerStatePowerUnitMultiplier. If the maximum power
is not known for a certain Power State, then the value is
encoded as 0xFFFFFFFF.
For Power States not enumerated, the value of
eoPowerStateMaxPower might be interpolated by using the
next highest supported Power State."
::= { eoPowerStateEntry 2 }
<span class="grey">Chandramouli, et al. Standards Track [Page 37]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-38" ></span>
<span class="grey"><a href="./rfc7460">RFC 7460</a> Power/Energy Monitoring and Control MIB March 2015</span>
eoPowerStatePowerUnitMultiplier OBJECT-TYPE
SYNTAX UnitMultiplier
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The magnitude of watts for the usage value in
eoPowerStateMaxPower."
::= { eoPowerStateEntry 3 }
eoPowerStateTotalTime OBJECT-TYPE
SYNTAX TimeTicks
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This object indicates the total time in hundredths
of a second that the Energy Object has been in this power
state since the last reset, as specified in the
sysUpTime."
::= { eoPowerStateEntry 4 }
eoPowerStateEnterCount OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This object indicates how often the Energy Object has
entered this power state, since the last reset of the
device as specified in the sysUpTime."
::= { eoPowerStateEntry 5 }
eoEnergyParametersTable OBJECT-TYPE
SYNTAX SEQUENCE OF EoEnergyParametersEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"This table is used to configure the parameters for
energy measurement collection in the table eoEnergyTable.
This table allows the configuration of different
measurement settings on the same Energy Object.
Implementation of this table only makes sense for Energy
Objects that an eoPowerMeasurementCaliber of actual."
::= { energyObjectMibObjects 4 }
eoEnergyParametersEntry OBJECT-TYPE
SYNTAX EoEnergyParametersEntry
MAX-ACCESS not-accessible
STATUS current
<span class="grey">Chandramouli, et al. Standards Track [Page 38]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-39" ></span>
<span class="grey"><a href="./rfc7460">RFC 7460</a> Power/Energy Monitoring and Control MIB March 2015</span>
DESCRIPTION
"An entry controls an energy measurement in
eoEnergyTable."
INDEX { entPhysicalIndex, eoEnergyParametersIndex }
::= { eoEnergyParametersTable 1 }
EoEnergyParametersEntry ::= SEQUENCE {
eoEnergyParametersIndex Integer32,
eoEnergyParametersIntervalLength TimeInterval,
eoEnergyParametersIntervalNumber Unsigned32,
eoEnergyParametersIntervalMode INTEGER,
eoEnergyParametersIntervalWindow TimeInterval,
eoEnergyParametersSampleRate Unsigned32,
eoEnergyParametersStorageType StorageType,
eoEnergyParametersStatus RowStatus
}
eoEnergyParametersIndex OBJECT-TYPE
SYNTAX Integer32 (1..2147483647)
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"This object specifies the index of the Energy Parameters
setting for collection of energy measurements for an
Energy Object. An Energy Object can have multiple
eoEnergyParametersIndex, depending on the capabilities of
the Energy Object"
::= { eoEnergyParametersEntry 2 }
eoEnergyParametersIntervalLength OBJECT-TYPE
SYNTAX TimeInterval
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"This object indicates the length of time in hundredths
of a second over which to compute the average
eoEnergyConsumed measurement in the eoEnergyTable table.
The computation is based on the Energy Object's internal
sampling rate of power consumed or produced by the Energy
Object. The sampling rate is the rate at which the Energy
Object can read the power usage and may differ based on
device capabilities. The average energy consumption is
then computed over the length of the interval. The
default value of 15 minutes is a common interval used in
industry."
DEFVAL { 90000 }
::= { eoEnergyParametersEntry 3 }
<span class="grey">Chandramouli, et al. Standards Track [Page 39]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-40" ></span>
<span class="grey"><a href="./rfc7460">RFC 7460</a> Power/Energy Monitoring and Control MIB March 2015</span>
eoEnergyParametersIntervalNumber OBJECT-TYPE
SYNTAX Unsigned32
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The number of intervals maintained in the eoEnergyTable.
Each interval is characterized by a specific
eoEnergyCollectionStartTime, used as an index to the
table eoEnergyTable. Whenever the maximum number of
entries is reached, the measurement over the new interval
replaces the oldest measurement. There is one exception
to this rule: when the eoEnergyMaxConsumed and/or
eoEnergyMaxProduced are in (one of) the two oldest
measurement(s), they are left untouched and the next
oldest measurement is replaced."
DEFVAL { 10 }
::= { eoEnergyParametersEntry 4 }
eoEnergyParametersIntervalMode OBJECT-TYPE
SYNTAX INTEGER {
period(1),
sliding(2),
total(3)
}
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"A control object to define the mode of interval
calculation for the computation of the average
eoEnergyConsumed or eoEnergyProvided measurement in the
eoEnergyTable table.
A mode of period(1) specifies non-overlapping periodic
measurements.
A mode of sliding(2) specifies overlapping sliding
windows where the interval between the start of one
interval and the next is defined in
eoEnergyParametersIntervalWindow.
A mode of total(3) specifies non-periodic measurement.
In this mode only one interval is used as this is a
continuous measurement since the last reset. The value of
eoEnergyParametersIntervalNumber should be (1) one and
eoEnergyParametersIntervalLength is ignored."
::= { eoEnergyParametersEntry 5 }
<span class="grey">Chandramouli, et al. Standards Track [Page 40]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-41" ></span>
<span class="grey"><a href="./rfc7460">RFC 7460</a> Power/Energy Monitoring and Control MIB March 2015</span>
eoEnergyParametersIntervalWindow OBJECT-TYPE
SYNTAX TimeInterval
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The length of the duration window between the starting
time of one sliding window and the next starting time in
hundredths of seconds, used to compute the average of
eoEnergyConsumed, eoEnergyProvided measurements in the
eoEnergyTable table. This is valid only when the
eoEnergyParametersIntervalMode is sliding(2). The
eoEnergyParametersIntervalWindow value should be a
multiple of eoEnergyParametersSampleRate."
::= { eoEnergyParametersEntry 6 }
eoEnergyParametersSampleRate OBJECT-TYPE
SYNTAX Unsigned32
UNITS "Milliseconds"
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The sampling rate, in milliseconds, at which the Energy
Object should poll power usage in order to compute the
average eoEnergyConsumed, eoEnergyProvided measurements
in the table eoEnergyTable. The Energy Object should
initially set this sampling rate to a reasonable value,
i.e., a compromise between intervals that will provide
good accuracy by not being too long, but not so short
that they affect the Energy Object performance by
requesting continuous polling. If the sampling rate is
unknown, the value 0 is reported. The sampling rate
should be selected so that
eoEnergyParametersIntervalWindow is a multiple of
eoEnergyParametersSampleRate. The default value is one
second."
DEFVAL { 1000 }
::= { eoEnergyParametersEntry 7 }
eoEnergyParametersStorageType OBJECT-TYPE
SYNTAX StorageType
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"This variable indicates the storage type for this row."
DEFVAL { nonVolatile }
::= {eoEnergyParametersEntry 8 }
<span class="grey">Chandramouli, et al. Standards Track [Page 41]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-42" ></span>
<span class="grey"><a href="./rfc7460">RFC 7460</a> Power/Energy Monitoring and Control MIB March 2015</span>
eoEnergyParametersStatus OBJECT-TYPE
SYNTAX RowStatus
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The status of this row. The eoEnergyParametersStatus is
used to start or stop energy usage logging. An entry
status may not be active(1) unless all objects in the
entry have an appropriate value. If this object is not
equal to active, all associated usage-data logged into
the eoEnergyTable will be deleted. The data can be
destroyed by setting up the eoEnergyParametersStatus to
destroy."
::= {eoEnergyParametersEntry 9 }
eoEnergyTable OBJECT-TYPE
SYNTAX SEQUENCE OF EoEnergyEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"This table lists Energy Object energy measurements.
Entries in this table are only created if the
corresponding value of object eoPowerMeasurementCaliber
is active(3), i.e., if the power is actually metered."
::= { energyObjectMibObjects 5 }
eoEnergyEntry OBJECT-TYPE
SYNTAX EoEnergyEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"An entry describing energy measurements."
INDEX { eoEnergyParametersIndex,
eoEnergyCollectionStartTime }
::= { eoEnergyTable 1 }
EoEnergyEntry ::= SEQUENCE {
eoEnergyCollectionStartTime TimeTicks,
eoEnergyConsumed Unsigned32,
eoEnergyProvided Unsigned32,
eoEnergyStored Unsigned32,
eoEnergyUnitMultiplier UnitMultiplier,
eoEnergyAccuracy Integer32,
eoEnergyMaxConsumed Unsigned32,
eoEnergyMaxProduced Unsigned32,
eoEnergyDiscontinuityTime TimeStamp
}
<span class="grey">Chandramouli, et al. Standards Track [Page 42]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-43" ></span>
<span class="grey"><a href="./rfc7460">RFC 7460</a> Power/Energy Monitoring and Control MIB March 2015</span>
eoEnergyCollectionStartTime OBJECT-TYPE
SYNTAX TimeTicks
UNITS "hundredths of a second"
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The time (in hundredths of a second) since the
network management portion of the system was last
re-initialized, as specified in the sysUpTime <a href="./rfc3418">RFC 3418</a>.
This object specifies the start time of the energy
measurement sample."
REFERENCE
"<a href="./rfc3418">RFC 3418</a>: Management Information Base (MIB) for the
Simple Network Management Protocol (SNMP)"
::= { eoEnergyEntry 1 }
eoEnergyConsumed OBJECT-TYPE
SYNTAX Unsigned32
UNITS "Watt-hours"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This object indicates the energy consumed in units of
watt-hours for the Energy Object over the defined
interval. This value is specified in the common billing
units of watt-hours with the magnitude of watt-hours
kWh, MWh, etc.) indicated separately in
eoEnergyUnitMultiplier."
::= { eoEnergyEntry 2 }
eoEnergyProvided OBJECT-TYPE
SYNTAX Unsigned32
UNITS "Watt-hours"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This object indicates the energy produced in units of
watt-hours for the Energy Object over the defined
interval.
This value is specified in the common billing units of
watt-hours with the magnitude of watt-hours (kWh, MWh,
etc.) indicated separately in
eoEnergyUnitMultiplier."
::= { eoEnergyEntry 3 }
<span class="grey">Chandramouli, et al. Standards Track [Page 43]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-44" ></span>
<span class="grey"><a href="./rfc7460">RFC 7460</a> Power/Energy Monitoring and Control MIB March 2015</span>
eoEnergyStored OBJECT-TYPE
SYNTAX Unsigned32
UNITS "Watt-hours"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This object indicates the difference of the energy
consumed and energy produced for an Energy Object in
units of watt-hours for the Energy Object over the
defined interval. This value is specified in the common
billing units of watt-hours with the magnitude of
watt-hours (kWh, MWh, etc.) indicated separately in
eoEnergyUnitMultiplier."
::= { eoEnergyEntry 4 }
eoEnergyUnitMultiplier OBJECT-TYPE
SYNTAX UnitMultiplier
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This object is the magnitude of watt-hours for the
energy field in eoEnergyConsumed, eoEnergyProvided,
eoEnergyStored, eoEnergyMaxConsumed, and
eoEnergyMaxProduced."
::= { eoEnergyEntry 5 }
eoEnergyAccuracy OBJECT-TYPE
SYNTAX Integer32 (0..10000)
UNITS "hundredths of percent"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This object indicates a percentage accuracy, in hundredths
of a percent, of Energy usage reporting. eoEnergyAccuracy
is applicable to all Energy measurements in the
eoEnergyTable.
For example, 1010 means the reported usage is accurate to
+/- 10.1 percent.
This value is zero if the accuracy is unknown."
::= { eoEnergyEntry 6 }
eoEnergyMaxConsumed OBJECT-TYPE
SYNTAX Unsigned32
UNITS "Watt-hours"
MAX-ACCESS read-only
STATUS current
<span class="grey">Chandramouli, et al. Standards Track [Page 44]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-45" ></span>
<span class="grey"><a href="./rfc7460">RFC 7460</a> Power/Energy Monitoring and Control MIB March 2015</span>
DESCRIPTION
"This object is the maximum energy observed in
eoEnergyConsumed since the monitoring started or was
reinitialized. This value is specified in the common
billing units of watt-hours with the magnitude of
watt-hours (kWh, MWh, etc.) indicated separately in
eoEnergyUnitMultiplier."
::= { eoEnergyEntry 7 }
eoEnergyMaxProduced OBJECT-TYPE
SYNTAX Unsigned32
UNITS "Watt-hours"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This object is the maximum energy ever observed in
eoEnergyEnergyProduced since the monitoring started. This
value is specified in the units of watt-hours with the
magnitude of watt-hours (kWh, MWh, etc.) indicated
separately in eoEnergyEnergyUnitMultiplier."
::= { eoEnergyEntry 8 }
eoEnergyDiscontinuityTime OBJECT-TYPE
SYNTAX TimeStamp
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The value of sysUpTime <a href="./rfc3418">RFC 3418</a> on the most recent
occasion at which any one or more of this entity's energy
counters in this table suffered a discontinuity:
eoEnergyConsumed, eoEnergyProvided or eoEnergyStored. If
no such discontinuities have occurred since the last
re-initialization of the local management subsystem, then
this object contains a zero value."
REFERENCE
"<a href="./rfc3418">RFC 3418</a>: Management Information Base (MIB) for the
Simple Network Management Protocol (SNMP)"
::= { eoEnergyEntry 9 }
-- Notifications
eoPowerEnableStatusNotification
OBJECT-TYPE
SYNTAX TruthValue
MAX-ACCESS read-write
STATUS current
<span class="grey">Chandramouli, et al. Standards Track [Page 45]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-46" ></span>
<span class="grey"><a href="./rfc7460">RFC 7460</a> Power/Energy Monitoring and Control MIB March 2015</span>
DESCRIPTION
"This object controls whether the system produces
notifications for eoPowerStateChange. A false value will
prevent these notifications from being generated."
DEFVAL { false }
::= { energyObjectMibNotifs 1 }
eoPowerStateChange NOTIFICATION-TYPE
OBJECTS {eoPowerAdminState, eoPowerOperState,
eoPowerStateEnterReason}
STATUS current
DESCRIPTION
"The SNMP entity generates the eoPowerStateChange when
the values of eoPowerAdminState or eoPowerOperState,
in the context of the Power State Set, have changed for
the Energy Object represented by the entPhysicalIndex."
::= { energyObjectMibNotifs 2 }
-- Conformance
energyObjectMibCompliances OBJECT IDENTIFIER
::= { energyObjectMibConform 1 }
energyObjectMibGroups OBJECT IDENTIFIER
::= { energyObjectMibConform 2 }
energyObjectMibFullCompliance MODULE-COMPLIANCE
STATUS current
DESCRIPTION
"When this MIB is implemented with support for
read-create, then such an implementation can
claim full compliance. Such devices can then
be both monitored and configured with this MIB.
Module Compliance of <a href="./rfc6933">RFC 6933</a>
with respect to entity4CRCompliance MUST
be supported, which requires implementation
of four MIB objects: entPhysicalIndex, entPhysicalClass,
entPhysicalName and entPhysicalUUID."
REFERENCE
"<a href="./rfc6933">RFC 6933</a>: Entity MIB (Version 4)"
MODULE -- this module
MANDATORY-GROUPS {
energyObjectMibTableGroup,
energyObjectMibStateTableGroup,
eoPowerEnableStatusNotificationGroup,
energyObjectMibNotifGroup
}
<span class="grey">Chandramouli, et al. Standards Track [Page 46]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-47" ></span>
<span class="grey"><a href="./rfc7460">RFC 7460</a> Power/Energy Monitoring and Control MIB March 2015</span>
GROUP energyObjectMibEnergyTableGroup
DESCRIPTION
"A compliant implementation does not
have to implement."
GROUP energyObjectMibEnergyParametersTableGroup
DESCRIPTION
"A compliant implementation does not
have to implement."
GROUP energyObjectMibMeterCapabilitiesTableGroup
DESCRIPTION
"A compliant implementation does not
have to implement."
::= { energyObjectMibCompliances 1 }
energyObjectMibReadOnlyCompliance MODULE-COMPLIANCE
STATUS current
DESCRIPTION
"When this MIB is implemented without support for
read-create (i.e., in read-only mode), then such an
implementation can claim read-only compliance. Such a
device can then be monitored but cannot be
configured with this MIB.
Module Compliance of [<a href="./rfc6933" title=""Entity MIB (Version 4)"">RFC6933</a>] with respect to
entity4CRCompliance MUST be supported which requires
implementation of 4 MIB objects: entPhysicalIndex,
entPhysicalClass, entPhysicalName and entPhysicalUUID."
REFERENCE
"<a href="./rfc6933">RFC 6933</a>: Entity MIB (Version 4)"
MODULE -- this module
MANDATORY-GROUPS {
energyObjectMibTableGroup,
energyObjectMibStateTableGroup,
energyObjectMibNotifGroup
}
::= { energyObjectMibCompliances 2 }
-- Units of Conformance
energyObjectMibTableGroup OBJECT-GROUP
OBJECTS {
eoPower,
eoPowerNameplate,
eoPowerUnitMultiplier,
eoPowerAccuracy,
<span class="grey">Chandramouli, et al. Standards Track [Page 47]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-48" ></span>
<span class="grey"><a href="./rfc7460">RFC 7460</a> Power/Energy Monitoring and Control MIB March 2015</span>
eoPowerMeasurementCaliber,
eoPowerCurrentType,
eoPowerMeasurementLocal,
eoPowerAdminState,
eoPowerOperState,
eoPowerStateEnterReason
}
STATUS current
DESCRIPTION
"This group contains the collection of all the objects
related to the Energy Object."
::= { energyObjectMibGroups 1 }
energyObjectMibStateTableGroup OBJECT-GROUP
OBJECTS {
eoPowerStateMaxPower,
eoPowerStatePowerUnitMultiplier,
eoPowerStateTotalTime,
eoPowerStateEnterCount
}
STATUS current
DESCRIPTION
"This group contains the collection of all the objects
related to the Power State."
::= { energyObjectMibGroups 2 }
energyObjectMibEnergyParametersTableGroup OBJECT-GROUP
OBJECTS {
eoEnergyParametersIntervalLength,
eoEnergyParametersIntervalNumber,
eoEnergyParametersIntervalMode,
eoEnergyParametersIntervalWindow,
eoEnergyParametersSampleRate,
eoEnergyParametersStorageType,
eoEnergyParametersStatus
}
STATUS current
DESCRIPTION
"This group contains the collection of all the objects
related to the configuration of the Energy Table."
::= { energyObjectMibGroups 3 }
energyObjectMibEnergyTableGroup OBJECT-GROUP
OBJECTS {
-- Note that object
-- eoEnergyCollectionStartTime is not
-- included since it is not-accessible
<span class="grey">Chandramouli, et al. Standards Track [Page 48]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-49" ></span>
<span class="grey"><a href="./rfc7460">RFC 7460</a> Power/Energy Monitoring and Control MIB March 2015</span>
eoEnergyConsumed,
eoEnergyProvided,
eoEnergyStored,
eoEnergyUnitMultiplier,
eoEnergyAccuracy,
eoEnergyMaxConsumed,
eoEnergyMaxProduced,
eoEnergyDiscontinuityTime
}
STATUS current
DESCRIPTION
"This group contains the collection of all the objects
related to the Energy Table."
::= { energyObjectMibGroups 4 }
energyObjectMibMeterCapabilitiesTableGroup OBJECT-GROUP
OBJECTS {
eoMeterCapability
}
STATUS current
DESCRIPTION
"This group contains the object indicating the capability
of the Energy Object"
::= { energyObjectMibGroups 5 }
eoPowerEnableStatusNotificationGroup OBJECT-GROUP
OBJECTS { eoPowerEnableStatusNotification }
STATUS current
DESCRIPTION
"The collection of objects that are used to enable
notification."
::= { energyObjectMibGroups 6 }
energyObjectMibNotifGroup NOTIFICATION-GROUP
NOTIFICATIONS {
eoPowerStateChange
}
STATUS current
DESCRIPTION
"This group contains the notifications for
the Monitoring and Control MIB for Power and Energy."
::= { energyObjectMibGroups 7 }
END
<span class="grey">Chandramouli, et al. Standards Track [Page 49]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-50" ></span>
<span class="grey"><a href="./rfc7460">RFC 7460</a> Power/Energy Monitoring and Control MIB March 2015</span>
<span class="h3"><a class="selflink" id="section-9.3" href="#section-9.3">9.3</a>. The POWER-ATTRIBUTES-MIB MIB Module</span>
-- ************************************************************
--
-- This MIB module is used to monitor power attributes of
-- networked devices with measurements.
--
-- This MIB module is an extension of energyObjectMib module.
--
-- *************************************************************
POWER-ATTRIBUTES-MIB DEFINITIONS ::= BEGIN
IMPORTS
MODULE-IDENTITY,
OBJECT-TYPE,
mib-2,
Integer32, Unsigned32
FROM SNMPv2-SMI
MODULE-COMPLIANCE,
OBJECT-GROUP
FROM SNMPv2-CONF
UnitMultiplier
FROM ENERGY-OBJECT-MIB
entPhysicalIndex
FROM ENTITY-MIB;
powerAttributesMIB MODULE-IDENTITY
LAST-UPDATED "201502090000Z" -- 9 February 2015
ORGANIZATION "IETF EMAN Working Group"
CONTACT-INFO
"WG charter:
<a href="http://datatracker.ietf.org/wg/eman/charter/">http://datatracker.ietf.org/wg/eman/charter/</a>
Mailing Lists:
General Discussion: eman@ietf.org
To Subscribe:
<a href="https://www.ietf.org/mailman/listinfo/eman">https://www.ietf.org/mailman/listinfo/eman</a>
Archive:
<a href="http://www.ietf.org/mail-archive/web/eman">http://www.ietf.org/mail-archive/web/eman</a>
<span class="grey">Chandramouli, et al. Standards Track [Page 50]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-51" ></span>
<span class="grey"><a href="./rfc7460">RFC 7460</a> Power/Energy Monitoring and Control MIB March 2015</span>
Editors:
Mouli Chandramouli
Cisco Systems, Inc.
Sarjapur Outer Ring Road
Bangalore 560103
India
Phone: +91 80 4429 2409
Email: moulchan@cisco.com
Brad Schoening
44 Rivers Edge Drive
Little Silver, NJ 07739
United States
Email: brad.schoening@verizon.net
Juergen Quittek
NEC Europe Ltd.
NEC Laboratories Europe
Network Research Division
Kurfuersten-Anlage 36
Heidelberg 69115
Germany
Phone: +49 6221 4342-115
Email: quittek@neclab.eu
Thomas Dietz
NEC Europe Ltd.
NEC Laboratories Europe
Network Research Division
Kurfuersten-Anlage 36
69115 Heidelberg
Germany
Phone: +49 6221 4342-128
Email: Thomas.Dietz@nw.neclab.eu
Benoit Claise
Cisco Systems, Inc.
De Kleetlaan 6a b1
Degem 1831
Belgium
Phone: +32 2 704 5622
Email: bclaise@cisco.com"
<span class="grey">Chandramouli, et al. Standards Track [Page 51]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-52" ></span>
<span class="grey"><a href="./rfc7460">RFC 7460</a> Power/Energy Monitoring and Control MIB March 2015</span>
DESCRIPTION
"Copyright (c) 2015 IETF Trust and the persons identified as
authors of the code. All rights reserved.
Redistribution and use in source and binary forms, with or
without modification, is permitted pursuant to, and subject
to the license terms contained in, the Simplified BSD License
set forth in <a href="#section-4">Section 4</a>.c of the IETF Trust's Legal Provisions
Relating to IETF Documents
(<a href="http://trustee.ietf.org/license-info">http://trustee.ietf.org/license-info</a>).
This MIB is used to report AC power attributes in devices.
The table is a sparse augmentation of the eoPowerTable table
from the energyObjectMib module. Both three-phase and
single-phase power configurations are supported.
As a requirement for this MIB module, <a href="./rfc7461">RFC 7461</a> SHOULD be
implemented.
Module Compliance of ENTITY-MIB v4 with respect to
entity4CRCompliance MUST be supported which requires
implementation of four MIB objects: entPhysicalIndex,
entPhysicalClass, entPhysicalName, and entPhysicalUUID."
REVISION "201502090000Z" -- 9 February 2015
DESCRIPTION
"Initial version, published as <a href="./rfc7460">RFC 7460</a>"
::= { mib-2 230 }
powerAttributesMIBConform OBJECT IDENTIFIER
::= { powerAttributesMIB 0 }
powerAttributesMIBObjects OBJECT IDENTIFIER
::= { powerAttributesMIB 1 }
-- Objects
eoACPwrAttributesTable OBJECT-TYPE
SYNTAX SEQUENCE OF EoACPwrAttributesEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"This table contains power attributes measurements for
supported entPhysicalIndex entities. It is a sparse
extension of the eoPowerTable."
::= { powerAttributesMIBObjects 1 }
eoACPwrAttributesEntry OBJECT-TYPE
<span class="grey">Chandramouli, et al. Standards Track [Page 52]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-53" ></span>
<span class="grey"><a href="./rfc7460">RFC 7460</a> Power/Energy Monitoring and Control MIB March 2015</span>
SYNTAX EoACPwrAttributesEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"This is a sparse extension of the eoPowerTable with
entries for power attributes measurements or
configuration. Each measured value corresponds to an
attribute in IEC 61850-7-4 for non-phase measurements
within the object MMXN."
INDEX { entPhysicalIndex }
::= { eoACPwrAttributesTable 1 }
EoACPwrAttributesEntry ::= SEQUENCE {
eoACPwrAttributesConfiguration INTEGER,
eoACPwrAttributesAvgVoltage Integer32,
eoACPwrAttributesAvgCurrent Unsigned32,
eoACPwrAttributesFrequency Integer32,
eoACPwrAttributesPowerUnitMultiplier UnitMultiplier,
eoACPwrAttributesPowerAccuracy Integer32,
eoACPwrAttributesTotalActivePower Integer32,
eoACPwrAttributesTotalReactivePower Integer32,
eoACPwrAttributesTotalApparentPower Integer32,
eoACPwrAttributesTotalPowerFactor Integer32,
eoACPwrAttributesThdCurrent Integer32,
eoACPwrAttributesThdVoltage Integer32
}
eoACPwrAttributesConfiguration OBJECT-TYPE
SYNTAX INTEGER {
sngl(1),
del(2),
wye(3)
}
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"Configuration describes the physical configurations of
the power supply lines:
* alternating current, single phase (SNGL)
* alternating current, three-phase delta (DEL)
* alternating current, three-phase Y (WYE)
Three-phase configurations can be either connected in a
triangular delta (DEL) or star Y (WYE) system. WYE
systems have a shared neutral voltage, while DEL systems
do not. Each phase is offset 120 degrees to each other."
::= { eoACPwrAttributesEntry 1 }
<span class="grey">Chandramouli, et al. Standards Track [Page 53]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-54" ></span>
<span class="grey"><a href="./rfc7460">RFC 7460</a> Power/Energy Monitoring and Control MIB March 2015</span>
eoACPwrAttributesAvgVoltage OBJECT-TYPE
SYNTAX Integer32
UNITS "0.1 Volt AC"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"A measured value for average of the voltage measured
over an integral number of AC cycles. For a three-phase
system, this is the average voltage (V1+V2+V3)/3. IEC
61850-7-4 measured value attribute 'Vol'."
::= { eoACPwrAttributesEntry 2 }
eoACPwrAttributesAvgCurrent OBJECT-TYPE
SYNTAX Unsigned32
UNITS "amperes"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"A measured value for average of the current measured
over an integral number of AC cycles. For a three-phase
system, this is the average current (I1+I2+I3)/3. IEC
61850-7-4 attribute 'Amp'."
::= { eoACPwrAttributesEntry 3 }
eoACPwrAttributesFrequency OBJECT-TYPE
SYNTAX Integer32 (4500..6500)
UNITS "0.01 hertz"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"A measured value for the basic frequency of the AC
circuit. IEC 61850-7-4 attribute 'Hz'."
::= { eoACPwrAttributesEntry 4 }
eoACPwrAttributesPowerUnitMultiplier OBJECT-TYPE
SYNTAX UnitMultiplier
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The magnitude of watts for the usage value in
eoACPwrAttributesTotalActivePower,
eoACPwrAttributesTotalReactivePower,
and eoACPwrAttributesTotalApparentPower measurements.
For three-phase power systems, this will also include
eoACPwrAttributesWyeActivePower,
eoACPwrAttributesWyeReactivePower, and
eoACPwrAttributesWyeApparentPower."
::= { eoACPwrAttributesEntry 5 }
<span class="grey">Chandramouli, et al. Standards Track [Page 54]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-55" ></span>
<span class="grey"><a href="./rfc7460">RFC 7460</a> Power/Energy Monitoring and Control MIB March 2015</span>
eoACPwrAttributesPowerAccuracy OBJECT-TYPE
SYNTAX Integer32 (0..10000)
UNITS "hundredths of percent"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This object indicates a percentage value, in hundredths of a
percent, representing the presumed accuracy of active,
reactive, and apparent power usage reporting. For
example, 1010 means the reported usage is accurate to +/-
10.1 percent. This value is zero if the accuracy is
unknown.
ANSI and IEC define the following accuracy classes for
power measurement: IEC 62053-22 & 60044-1 class 0.1, 0.2,
0.5, 1, & 3.
ANSI C12.20 class 0.2 & 0.5"
::= { eoACPwrAttributesEntry 6 }
eoACPwrAttributesTotalActivePower OBJECT-TYPE
SYNTAX Integer32
UNITS "watts"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"A measured value of the actual power delivered to or
consumed by the load. IEC 61850-7-4 attribute 'TotW'."
::= { eoACPwrAttributesEntry 7 }
eoACPwrAttributesTotalReactivePower OBJECT-TYPE
SYNTAX Integer32
UNITS "volt-amperes reactive"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"A measured value of the reactive portion of the apparent
power. IEC 61850-7-4 attribute 'TotVAr'."
::= { eoACPwrAttributesEntry 8 }
eoACPwrAttributesTotalApparentPower OBJECT-TYPE
SYNTAX Integer32
UNITS "volt-amperes"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"A measured value of the voltage and current that
determines the apparent power. The apparent power is the
vector sum of real and reactive power.
<span class="grey">Chandramouli, et al. Standards Track [Page 55]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-56" ></span>
<span class="grey"><a href="./rfc7460">RFC 7460</a> Power/Energy Monitoring and Control MIB March 2015</span>
Note: watts and volt-amperes are equivalent units and may
be combined. IEC 61850-7-4 attribute 'TotVA'."
::= { eoACPwrAttributesEntry 9 }
eoACPwrAttributesTotalPowerFactor OBJECT-TYPE
SYNTAX Integer32 (-10000..10000)
UNITS "hundredths"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"A measured value ratio of the real power flowing to the
load versus the apparent power. It is dimensionless and
expressed here as a percentage value in hundredths. A power
factor of 100% indicates there is no inductance load and
thus no reactive power. A Power Factor can be positive or
negative, where the sign should be in lead/lag (IEEE)
form. IEC 61850-7-4 attribute 'TotPF'."
::= { eoACPwrAttributesEntry 10 }
eoACPwrAttributesThdCurrent OBJECT-TYPE
SYNTAX Integer32 (0..10000)
UNITS "hundredths of percent"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"A calculated value for the current total harmonic
distortion (THD). Method of calculation is not
specified. IEC 61850-7-4 attribute 'ThdAmp'."
::= { eoACPwrAttributesEntry 11 }
eoACPwrAttributesThdVoltage OBJECT-TYPE
SYNTAX Integer32 (0..10000)
UNITS "hundredths of percent"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"A calculated value for the voltage total harmonic
distortion (THD). The method of calculation is not
specified. IEC 61850-7-4 attribute 'ThdVol'."
::= { eoACPwrAttributesEntry 12 }
eoACPwrAttributesDelPhaseTable OBJECT-TYPE
SYNTAX SEQUENCE OF EoACPwrAttributesDelPhaseEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"This optional table describes three-phase power attributes
measurements in a DEL configuration with phase-to-phase
<span class="grey">Chandramouli, et al. Standards Track [Page 56]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-57" ></span>
<span class="grey"><a href="./rfc7460">RFC 7460</a> Power/Energy Monitoring and Control MIB March 2015</span>
power attributes measurements. Entities having single
phase power shall not have any entities. This is a
sparse extension of the eoACPwrAttributesTable.
These attributes correspond to measurements related to
the IEC 61850-7.4 MMXU phase and measured harmonic or
interharmonics related to the MHAI phase."
::= { powerAttributesMIBObjects 2 }
eoACPwrAttributesDelPhaseEntry OBJECT-TYPE
SYNTAX EoACPwrAttributesDelPhaseEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"An entry describes power measurements of a phase in a
DEL three-phase power. Three entries are required for each
supported entPhysicalIndex entry. Voltage measurements
are provided relative to each other.
For phase-to-phase measurements, the
eoACPwrAttributesDelPhaseIndex is compared against the
following phase at +120 degrees. Thus, the possible
values are:
eoACPwrAttributesDelPhaseIndex Next Phase Angle
0 120
120 240
240 0
"
INDEX { entPhysicalIndex, eoACPwrAttributesDelPhaseIndex }
::= { eoACPwrAttributesDelPhaseTable 1}
EoACPwrAttributesDelPhaseEntry ::= SEQUENCE {
eoACPwrAttributesDelPhaseIndex Integer32,
eoACPwrAttributesDelPhaseToNextPhaseVoltage Integer32,
eoACPwrAttributesDelThdPhaseToNextPhaseVoltage Integer32
}
eoACPwrAttributesDelPhaseIndex OBJECT-TYPE
SYNTAX Integer32 (0..359)
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A phase angle typically corresponding to 0, 120, 240."
::= { eoACPwrAttributesDelPhaseEntry 1 }
eoACPwrAttributesDelPhaseToNextPhaseVoltage OBJECT-TYPE
SYNTAX Integer32
<span class="grey">Chandramouli, et al. Standards Track [Page 57]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-58" ></span>
<span class="grey"><a href="./rfc7460">RFC 7460</a> Power/Energy Monitoring and Control MIB March 2015</span>
UNITS "0.1 Volt AC"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"A measured value of phase to next phase voltages, where
the next phase is IEC 61850-7-4 attribute 'PPV'."
::= { eoACPwrAttributesDelPhaseEntry 2 }
eoACPwrAttributesDelThdPhaseToNextPhaseVoltage OBJECT-TYPE
SYNTAX Integer32 (0..10000)
UNITS "hundredths of percent"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"A calculated value for the voltage total harmonic
distortion for phase to next phase. Method of calculation
is not specified. IEC 61850-7-4 attribute 'ThdPPV'."
::= { eoACPwrAttributesDelPhaseEntry 3 }
eoACPwrAttributesWyePhaseTable OBJECT-TYPE
SYNTAX SEQUENCE OF EoACPwrAttributesWyePhaseEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"This optional table describes three-phase power attributes
measurements in a WYE configuration with phase-to-neutral
power attributes measurements. Entities having single
phase power shall not have any entities. This is a sparse
extension of the eoACPwrAttributesTable.
These attributes correspond to measurements related to
the IEC 61850-7.4 MMXU phase and measured harmonic or
interharmonics related to the MHAI phase."
::= { powerAttributesMIBObjects 3 }
eoACPwrAttributesWyePhaseEntry OBJECT-TYPE
SYNTAX EoACPwrAttributesWyePhaseEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"This table describes measurements of a phase in a WYE
three-phase power system. Three entries are required for
each supported entPhysicalIndex entry. Voltage
measurements are relative to neutral.
Each entry describes power attributes of one phase of a
WYE three-phase power system."
INDEX { entPhysicalIndex, eoACPwrAttributesWyePhaseIndex }
<span class="grey">Chandramouli, et al. Standards Track [Page 58]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-59" ></span>
<span class="grey"><a href="./rfc7460">RFC 7460</a> Power/Energy Monitoring and Control MIB March 2015</span>
::= { eoACPwrAttributesWyePhaseTable 1}
EoACPwrAttributesWyePhaseEntry ::= SEQUENCE {
eoACPwrAttributesWyePhaseIndex Integer32,
eoACPwrAttributesWyePhaseToNeutralVoltage Integer32,
eoACPwrAttributesWyeCurrent Integer32,
eoACPwrAttributesWyeActivePower Integer32,
eoACPwrAttributesWyeReactivePower Integer32,
eoACPwrAttributesWyeApparentPower Integer32,
eoACPwrAttributesWyePowerFactor Integer32,
eoACPwrAttributesWyeThdCurrent Integer32,
eoACPwrAttributesWyeThdPhaseToNeutralVoltage Integer32
}
eoACPwrAttributesWyePhaseIndex OBJECT-TYPE
SYNTAX Integer32 (0..359)
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A phase angle typically corresponding to 0, 120, 240."
::= { eoACPwrAttributesWyePhaseEntry 1 }
eoACPwrAttributesWyePhaseToNeutralVoltage OBJECT-TYPE
SYNTAX Integer32
UNITS "0.1 Volt AC"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"A measured value of phase to neutral voltage. IEC
61850-7-4 attribute 'PNV'."
::= { eoACPwrAttributesWyePhaseEntry 2 }
eoACPwrAttributesWyeCurrent OBJECT-TYPE
SYNTAX Integer32
UNITS "0.1 amperes AC"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"A measured value of phase currents. IEC 61850-7-4
attribute 'A'."
::= { eoACPwrAttributesWyePhaseEntry 3 }
eoACPwrAttributesWyeActivePower OBJECT-TYPE
SYNTAX Integer32
UNITS "watts"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
<span class="grey">Chandramouli, et al. Standards Track [Page 59]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-60" ></span>
<span class="grey"><a href="./rfc7460">RFC 7460</a> Power/Energy Monitoring and Control MIB March 2015</span>
"A measured value of the actual power delivered to or
consumed by the load with the magnitude indicated
separately in eoPowerUnitMultiplier. IEC 61850-7-4
attribute 'W'."
::= { eoACPwrAttributesWyePhaseEntry 4 }
eoACPwrAttributesWyeReactivePower OBJECT-TYPE
SYNTAX Integer32
UNITS "volt-amperes reactive"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"A measured value of the reactive portion of the apparent
power with the magnitude of indicated separately in
eoPowerUnitMultiplier. IEC 61850-7-4 attribute 'VAr'."
::= { eoACPwrAttributesWyePhaseEntry 5 }
eoACPwrAttributesWyeApparentPower OBJECT-TYPE
SYNTAX Integer32
UNITS "volt-amperes"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"A measured value of the voltage and current determines
the apparent power with the indicated separately in
eoPowerUnitMultiplier. Active plus reactive power equals
the total apparent power.
Note: Watts and volt-amperes are equivalent units and may
be combined. IEC 61850-7-4 attribute 'VA'."
::= { eoACPwrAttributesWyePhaseEntry 6 }
eoACPwrAttributesWyePowerFactor OBJECT-TYPE
SYNTAX Integer32 (-10000..10000)
UNITS "hundredths"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"A measured value ratio of the real power flowing to the
load versus the apparent power for this phase. IEC
61850-7-4 attribute 'PF'. Power Factor can be positive or
negative where the sign should be in lead/lag (IEEE)
form."
::= { eoACPwrAttributesWyePhaseEntry 7 }
eoACPwrAttributesWyeThdCurrent OBJECT-TYPE
SYNTAX Integer32 (0..10000)
UNITS "hundredths of percent"
<span class="grey">Chandramouli, et al. Standards Track [Page 60]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-61" ></span>
<span class="grey"><a href="./rfc7460">RFC 7460</a> Power/Energy Monitoring and Control MIB March 2015</span>
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"A calculated value for the voltage total harmonic
distortion (THD) for phase to phase. Method of
calculation is not specified.
IEC 61850-7-4 attribute 'ThdA'."
::= { eoACPwrAttributesWyePhaseEntry 8 }
eoACPwrAttributesWyeThdPhaseToNeutralVoltage OBJECT-TYPE
SYNTAX Integer32 (0..10000)
UNITS "hundredths of percent"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"A calculated value of the voltage total harmonic
distortion (THD) for phase to neutral. IEC 61850-7-4
attribute 'ThdPhV'."
::= { eoACPwrAttributesWyePhaseEntry 9 }
-- Conformance
powerAttributesMIBCompliances OBJECT IDENTIFIER
::= { powerAttributesMIB 2 }
powerAttributesMIBGroups OBJECT IDENTIFIER
::= { powerAttributesMIB 3 }
powerAttributesMIBFullCompliance MODULE-COMPLIANCE
STATUS current
DESCRIPTION
"When this MIB is implemented with support for read-
create, then such an implementation can claim full
compliance. Such devices can then be both monitored and
configured with this MIB.
Module Compliance of <a href="./rfc6933">RFC 6933</a> with respect to
entity4CRCompliance MUST be supported which requires
implementation of four MIB objects: entPhysicalIndex,
entPhysicalClass, entPhysicalName, and entPhysicalUUID."
REFERENCE
"<a href="./rfc6933">RFC 6933</a>: Entity MIB (Version 4)"
MODULE -- this module
MANDATORY-GROUPS {
powerACPwrAttributesMIBTableGroup
}
GROUP powerACPwrAttributesOptionalMIBTableGroup
<span class="grey">Chandramouli, et al. Standards Track [Page 61]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-62" ></span>
<span class="grey"><a href="./rfc7460">RFC 7460</a> Power/Energy Monitoring and Control MIB March 2015</span>
DESCRIPTION
"A compliant implementation does not have
to implement."
GROUP powerACPwrAttributesDelPhaseMIBTableGroup
DESCRIPTION
"A compliant implementation does not have to implement."
GROUP powerACPwrAttributesWyePhaseMIBTableGroup
DESCRIPTION
"A compliant implementation does not have to implement."
::= { powerAttributesMIBCompliances 1 }
-- Units of Conformance
powerACPwrAttributesMIBTableGroup OBJECT-GROUP
OBJECTS {
-- Note that object entPhysicalIndex is NOT
-- included since it is not-accessible
eoACPwrAttributesAvgVoltage,
eoACPwrAttributesAvgCurrent,
eoACPwrAttributesFrequency,
eoACPwrAttributesPowerUnitMultiplier,
eoACPwrAttributesPowerAccuracy,
eoACPwrAttributesTotalActivePower,
eoACPwrAttributesTotalReactivePower,
eoACPwrAttributesTotalApparentPower,
eoACPwrAttributesTotalPowerFactor
}
STATUS current
DESCRIPTION
"This group contains the collection of all the power
attributes objects related to the Energy Object."
::= { powerAttributesMIBGroups 1 }
powerACPwrAttributesOptionalMIBTableGroup OBJECT-GROUP
OBJECTS {
eoACPwrAttributesConfiguration,
eoACPwrAttributesThdCurrent,
eoACPwrAttributesThdVoltage
}
STATUS current
DESCRIPTION
"This group contains the collection of all the power
attributes objects related to the Energy Object."
::= { powerAttributesMIBGroups 2 }
powerACPwrAttributesDelPhaseMIBTableGroup OBJECT-GROUP
<span class="grey">Chandramouli, et al. Standards Track [Page 62]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-63" ></span>
<span class="grey"><a href="./rfc7460">RFC 7460</a> Power/Energy Monitoring and Control MIB March 2015</span>
OBJECTS {
-- Note that object entPhysicalIndex and
-- eoACPwrAttributesDelPhaseIndex are NOT
-- included since they are not-accessible
eoACPwrAttributesDelPhaseToNextPhaseVoltage,
eoACPwrAttributesDelThdPhaseToNextPhaseVoltage
}
STATUS current
DESCRIPTION
"This group contains the collection of all power
attributes of a phase in a DEL three-phase power system."
::= { powerAttributesMIBGroups 3 }
powerACPwrAttributesWyePhaseMIBTableGroup OBJECT-GROUP
OBJECTS {
-- Note that object entPhysicalIndex and
-- eoACPwrAttributesWyePhaseIndex are NOT
-- included since they are not-accessible
eoACPwrAttributesWyePhaseToNeutralVoltage,
eoACPwrAttributesWyeCurrent,
eoACPwrAttributesWyeActivePower,
eoACPwrAttributesWyeReactivePower,
eoACPwrAttributesWyeApparentPower,
eoACPwrAttributesWyePowerFactor,
eoACPwrAttributesWyeThdPhaseToNeutralVoltage,
eoACPwrAttributesWyeThdCurrent
}
STATUS current
DESCRIPTION
"This group contains the collection of all power
attributes of a phase in a WYE three-phase power system."
::= { powerAttributesMIBGroups 4 }
END
<span class="h2"><a class="selflink" id="section-10" href="#section-10">10</a>. Security Considerations</span>
There are a number of management objects defined in this MIB module
with a MAX-ACCESS clause of read-write and/or read-create. Such
objects may be considered sensitive or vulnerable in some network
environments. The support for SET operations in a non-secure
environment without proper protection opens devices to attack. These
are the tables and objects and their sensitivity/vulnerability:
- Unauthorized changes to the eoPowerOperState (via the
eoPowerAdminState ) MAY disrupt the power settings of the
differentEnergy Objects and, therefore, the state of
functionality of the respective Energy Objects.
<span class="grey">Chandramouli, et al. Standards Track [Page 63]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-64" ></span>
<span class="grey"><a href="./rfc7460">RFC 7460</a> Power/Energy Monitoring and Control MIB March 2015</span>
- Unauthorized changes to the eoEnergyParametersTable MAY disrupt
energy measurement in the eoEnergyTable table.
SNMP versions prior to SNMPv3 did not include adequate security.
Even if the network itself is secure (for example by using IPsec),
there is no control as to who on the secure network is allowed to
access and GET/SET (read/change/create/delete) the objects in this
MIB module.
Implementations SHOULD provide the security features described by the
SNMPv3 framework (see [<a href="./rfc3410" title=""Introduction and Applicability Statements for Internet-Standard Management Framework"">RFC3410</a>]), and implementations claiming
compliance to the SNMPv3 standard MUST include full support for
authentication and privacy via the User-based Security Model (USM)
[<a href="./rfc3414" title=""User-based Security Model (USM) for version 3 of the Simple Network Management Protocol (SNMPv3)"">RFC3414</a>] with the AES cipher algorithm [<a href="./rfc3826" title=""The Advanced Encryption Standard (AES) Cipher Algorithm in the SNMP User-based Security Model"">RFC3826</a>]. Implementations
MAY also provide support for the Transport Security Model (TSM)
[<a href="./rfc5591" title=""Transport Security Model for the Simple Network Management Protocol (SNMP)"">RFC5591</a>] in combination with a secure transport such as SSH
[<a href="./rfc5592" title=""Secure Shell Transport Model for the Simple Network Management Protocol (SNMP)"">RFC5592</a>] or TLS/DTLS [<a href="./rfc6353" title=""Transport Layer Security (TLS) Transport Model for the Simple Network Management Protocol (SNMP)"">RFC6353</a>].
Further, deployment of SNMP versions prior to SNMPv3 is NOT
RECOMMENDED. Instead, it is RECOMMENDED to deploy SNMPv3 and to
enable cryptographic security. It is then a customer/operator
responsibility to ensure that the SNMP entity giving access to an
instance of this MIB module is properly configured to give access to
the objects only to those principals (users) that have legitimate
rights to indeed GET or SET (change/create/delete) them.
In certain situations, energy and power monitoring can reveal
sensitive information about individuals' activities and habits.
Implementors of this specification should use appropriate privacy
protections as discussed in <a href="./rfc6988#section-9">Section 9 of RFC 6988</a> and monitoring of
individuals and homes should only occur with proper authorization.
<span class="h2"><a class="selflink" id="section-11" href="#section-11">11</a>. IANA Considerations</span>
The MIB modules in this document use the following IANA-assigned
OBJECT IDENTIFIER values recorded in the SMI Numbers registry:
Descriptor OBJECT IDENTIFIER value
---------- -----------------------
IANAPowerStateSet-MIB { mib-2 228 }
energyObjectMIB { mib-2 229 }
powerAttributesMIB { mib-2 230 }
<span class="grey">Chandramouli, et al. Standards Track [Page 64]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-65" ></span>
<span class="grey"><a href="./rfc7460">RFC 7460</a> Power/Energy Monitoring and Control MIB March 2015</span>
<span class="h3"><a class="selflink" id="section-11.1" href="#section-11.1">11.1</a>. IANAPowerStateSet-MIB Module</span>
The initial set of Power State Sets are specified in [<a href="./rfc7326" title=""Energy Management Framework"">RFC7326</a>]. IANA
maintains a Textual Convention PowerStateSet in the
IANAPowerStateSet-MIB module (see <a href="#section-9.1">Section 9.1</a>), with the initial set
of Power State Sets and the Power States within those Power State
Sets as proposed in the [<a href="./rfc7326" title=""Energy Management Framework"">RFC7326</a>]. The current version of
PowerStateSet Textual Convention can be accessed
<<a href="http://www.iana.org/assignments/power-state-sets">http://www.iana.org/assignments/power-state-sets</a>>.
New assignments (and potential deprecation) to Power State Sets shall
be administered by IANA and the guidelines and procedures are
specified in [<a href="./rfc7326" title=""Energy Management Framework"">RFC7326</a>], and will, as a consequence, update the
PowerStateSet Textual Convention.
<span class="h2"><a class="selflink" id="section-12" href="#section-12">12</a>. References</span>
<span class="h3"><a class="selflink" id="section-12.1" href="#section-12.1">12.1</a>. Normative References</span>
[<a id="ref-RFC2119">RFC2119</a>] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", <a href="https://www.rfc-editor.org/bcp/bcp14">BCP 14</a>, <a href="./rfc2119">RFC 2119</a>, March 1997,
<<a href="http://www.rfc-editor.org/info/rfc2119">http://www.rfc-editor.org/info/rfc2119</a>>.
[<a id="ref-RFC2578">RFC2578</a>] McCloghrie, K., Ed., Perkins, D., Ed., and J.
Schoenwaelder, Ed., "Structure of Management
Information Version 2 (SMIv2)", STD 58, <a href="./rfc2578">RFC 2578</a>,
April 1999, <<a href="http://www.rfc-editor.org/info/rfc2578">http://www.rfc-editor.org/info/rfc2578</a>>.
[<a id="ref-RFC2579">RFC2579</a>] McCloghrie, K., Ed., Perkins, D., Ed., and J.
Schoenwaelder, Ed., "Textual Conventions for SMIv2",
STD 58, <a href="./rfc2579">RFC 2579</a>, April 1999,
<<a href="http://www.rfc-editor.org/info/rfc2579">http://www.rfc-editor.org/info/rfc2579</a>>.
[<a id="ref-RFC2580">RFC2580</a>] McCloghrie, K., Ed., Perkins, D., Ed., and J.
Schoenwaelder, Ed., "Conformance Statements for
SMIv2", STD 58, <a href="./rfc2580">RFC 2580</a>, April 1999,
<<a href="http://www.rfc-editor.org/info/rfc2580">http://www.rfc-editor.org/info/rfc2580</a>>.
[<a id="ref-RFC3414">RFC3414</a>] Blumenthal, U. and B. Wijnen, "User-based Security
Model (USM) for version 3 of the Simple Network
Management Protocol (SNMPv3)", STD 62, <a href="./rfc3414">RFC 3414</a>,
December 2002,
<<a href="http://www.rfc-editor.org/info/rfc3414">http://www.rfc-editor.org/info/rfc3414</a>>.
[<a id="ref-RFC3621">RFC3621</a>] Berger, A. and D. Romascanu, "Power Ethernet MIB",
<a href="./rfc3621">RFC 3621</a>, December 2003,
<<a href="http://www.rfc-editor.org/info/rfc3621">http://www.rfc-editor.org/info/rfc3621</a>>.
<span class="grey">Chandramouli, et al. Standards Track [Page 65]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-66" ></span>
<span class="grey"><a href="./rfc7460">RFC 7460</a> Power/Energy Monitoring and Control MIB March 2015</span>
[<a id="ref-RFC3826">RFC3826</a>] Blumenthal, U., Maino, F., and K. McCloghrie, "The
Advanced Encryption Standard (AES) Cipher Algorithm
in the SNMP User-based Security Model", <a href="./rfc3826">RFC 3826</a>,
June 2004, <<a href="http://www.rfc-editor.org/info/rfc3826">http://www.rfc-editor.org/info/rfc3826</a>>.
[<a id="ref-RFC5591">RFC5591</a>] Harrington, D. and W. Hardaker, "Transport Security
Model for the Simple Network Management Protocol
(SNMP)", STD 78, <a href="./rfc5591">RFC 5591</a>, June 2009,
<<a href="http://www.rfc-editor.org/info/rfc5591">http://www.rfc-editor.org/info/rfc5591</a>>.
[<a id="ref-RFC5592">RFC5592</a>] Harrington, D., Salowey, J., and W. Hardaker, "Secure
Shell Transport Model for the Simple Network
Management Protocol (SNMP)", <a href="./rfc5592">RFC 5592</a>, June 2009,
<<a href="http://www.rfc-editor.org/info/rfc5592">http://www.rfc-editor.org/info/rfc5592</a>>.
[<a id="ref-RFC6353">RFC6353</a>] Hardaker, W., "Transport Layer Security (TLS)
Transport Model for the Simple Network Management
Protocol (SNMP)", STD 78, <a href="./rfc6353">RFC 6353</a>, July 2011,
<<a href="http://www.rfc-editor.org/info/rfc6353">http://www.rfc-editor.org/info/rfc6353</a>>.
[<a id="ref-RFC6933">RFC6933</a>] Bierman, A., Romascanu, D., Quittek, J., and M.
Chandramouli, "Entity MIB (Version 4)", <a href="./rfc6933">RFC 6933</a>, May
2013, <<a href="http://www.rfc-editor.org/info/rfc6933">http://www.rfc-editor.org/info/rfc6933</a>>.
[<a id="ref-RFC7461">RFC7461</a>] Parello, J., Claise, B., and M. Chandramouli, "Energy
Object Context MIB", <a href="./rfc7461">RFC 7461</a>, March 2015,
<<a href="http://www.rfc-editor.org/info/rfc7461">http://www.rfc-editor.org/info/rfc7461</a>>.
[<a id="ref-LLDP-MED-MIB">LLDP-MED-MIB</a>] ANSI/TIA-1057, "The LLDP Management Information Base
extension module for TIA-TR41.4 media endpoint
discovery information", July 2005.
<span class="h3"><a class="selflink" id="section-12.2" href="#section-12.2">12.2</a>. Informative References</span>
[<a id="ref-RFC1628">RFC1628</a>] Case, J., Ed., "UPS Management Information Base", <a href="./rfc1628">RFC</a>
<a href="./rfc1628">1628</a>, May 1994,
<<a href="http://www.rfc-editor.org/info/rfc1628">http://www.rfc-editor.org/info/rfc1628</a>>.
[<a id="ref-RFC3410">RFC3410</a>] Case, J., Mundy, R., Partain, D., and B. Stewart,
"Introduction and Applicability Statements for
Internet-Standard Management Framework", <a href="./rfc3410">RFC 3410</a>,
December 2002,
<<a href="http://www.rfc-editor.org/info/rfc3410">http://www.rfc-editor.org/info/rfc3410</a>>.
[<a id="ref-RFC3418">RFC3418</a>] Presuhn, R., Ed., "Management Information Base (MIB)
for the Simple Network Management Protocol (SNMP)",
STD 62, <a href="./rfc3418">RFC 3418</a>, December 2002,
<<a href="http://www.rfc-editor.org/info/rfc3418">http://www.rfc-editor.org/info/rfc3418</a>>.
<span class="grey">Chandramouli, et al. Standards Track [Page 66]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-67" ></span>
<span class="grey"><a href="./rfc7460">RFC 7460</a> Power/Energy Monitoring and Control MIB March 2015</span>
[<a id="ref-RFC3433">RFC3433</a>] Bierman, A., Romascanu, D., and K. Norseth, "Entity
Sensor Management Information Base", <a href="./rfc3433">RFC 3433</a>,
December 2002,
<<a href="http://www.rfc-editor.org/info/rfc3433">http://www.rfc-editor.org/info/rfc3433</a>>.
[<a id="ref-RFC4268">RFC4268</a>] Chisholm, S. and D. Perkins, "Entity State MIB", <a href="./rfc4268">RFC</a>
<a href="./rfc4268">4268</a>, November 2005,
<<a href="http://www.rfc-editor.org/info/rfc4268">http://www.rfc-editor.org/info/rfc4268</a>>.
[<a id="ref-RFC6988">RFC6988</a>] Quittek, J., Ed., Chandramouli, M., Winter, R.,
Dietz, T., and B. Claise, "Requirements for Energy
Management", <a href="./rfc6988">RFC 6988</a>, September 2013,
<<a href="http://www.rfc-editor.org/info/rfc6988">http://www.rfc-editor.org/info/rfc6988</a>>.
[<a id="ref-RFC7326">RFC7326</a>] Parello, J., Claise, B., Schoening, B., and J.
Quittek, "Energy Management Framework", <a href="./rfc7326">RFC 7326</a>,
September 2014,
<<a href="http://www.rfc-editor.org/info/rfc7326">http://www.rfc-editor.org/info/rfc7326</a>>.
[<a id="ref-DMTF">DMTF</a>] DMTF, "Power State Management Profile", DSP1027,
Version 2.0, December 2009,
<a href="http://www.dmtf.org/sites/default/files/standards/documents/DSP1027_2.0.0.pdf">http://www.dmtf.org/sites/default/files/standards</a>
<a href="http://www.dmtf.org/sites/default/files/standards/documents/DSP1027_2.0.0.pdf">/documents/DSP1027_2.0.0.pdf</a>
[<a id="ref-EMAN-AS">EMAN-AS</a>] Schoening, B., Chandramouli, M., and B. Nordman,
"Energy Management (EMAN) Applicability Statement",
Work in Progress, <a href="./draft-ietf-eman-applicability-statement-08">draft-ietf-eman-applicability-</a>
<a href="./draft-ietf-eman-applicability-statement-08">statement-08</a>, December 2014.
[<a id="ref-IEC.61850-7-4">IEC.61850-7-4</a>] International Electrotechnical Commission,
"Communication networks and systems for power utility
automation -- Part 7-4: Basic communication
structure -- Compatible logical node classes and
data object classes", March 2010.
[<a id="ref-IEC.62053-21">IEC.62053-21</a>] International Electrotechnical Commission,
"Electricity metering equipment (a.c.) -- Particular
requirements -- Part 21: Static meters for active
energy (classes 1 and 2)", January 2003.
[<a id="ref-IEC.62053-22">IEC.62053-22</a>] International Electrotechnical Commission,
"Electricity metering equipment (a.c.) -- Particular
requirements -- Part 22: Static meters for active
energy (classes 0,2 S and 0,5 S)", January 2003.
<span class="grey">Chandramouli, et al. Standards Track [Page 67]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-68" ></span>
<span class="grey"><a href="./rfc7460">RFC 7460</a> Power/Energy Monitoring and Control MIB March 2015</span>
[<a id="ref-IEEE1621">IEEE1621</a>] "Standard for User Interface Elements in Power
Control of Electronic Devices Employed in
Office/Consumer Environments", IEEE 1621, December
2004.
Acknowledgments
The authors would like to thank Shamita Pisal for her prototype of
this MIB module and her valuable feedback. The authors would like to
Michael Brown for improving the text dramatically.
The authors would like to thank Juergen Schoenwalder for proposing
the design of the Textual Convention for PowerStateSet and Ira
McDonald for his feedback. Special appreciation to Laurent Guise for
his review and input on power quality measurements. Thanks for the
many comments on the design of the EnergyTable from Minoru Teraoka
and Hiroto Ogaki.
Many thanks to Alan Luchuk for the detailed review of the MIB and his
comments.
And finally, thanks to the EMAN chairs: Nevil Brownlee and Tom
Nadeau.
Contributors
This document results from the merger of two initial proposals. The
following persons made significant contributions either in one of the
initial proposals or in this document:
John Parello
Rolf Winter
Dominique Dudkowski
<span class="grey">Chandramouli, et al. Standards Track [Page 68]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-69" ></span>
<span class="grey"><a href="./rfc7460">RFC 7460</a> Power/Energy Monitoring and Control MIB March 2015</span>
Authors' Addresses
Mouli Chandramouli
Cisco Systems, Inc.
Sarjapur Outer Ring Road
Bangalore 560103
India
Phone: +91 80 4429 2409
EMail: moulchan@cisco.com
Benoit Claise
Cisco Systems, Inc.
De Kleetlaan 6a b1
Diegem 1813
Belgium
Phone: +32 2 704 5622
EMail: bclaise@cisco.com
Brad Schoening
44 Rivers Edge Drive
Little Silver, NJ 07739
United States
EMail: brad.schoening@verizon.net
Juergen Quittek
NEC Europe, Ltd.
NEC Laboratories Europe
Network Research Division
Kurfuersten-Anlage 36
Heidelberg 69115
Germany
Phone: +49 6221 4342-115
EMail: quittek@neclab.eu
Thomas Dietz
NEC Europe, Ltd.
NEC Laboratories Europe
Network Research Division
Kurfuersten-Anlage 36
Heidelberg 69115
Germany
Phone: +49 6221 4342-128
EMail: Thomas.Dietz@neclab.eu
Chandramouli, et al. Standards Track [Page 69]
</pre>
|