1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
|
<pre>Independent Submission L. Cailleux
Request for Comments: 7508 DGA MI
Category: Experimental C. Bonatti
ISSN: 2070-1721 IECA
April 2015
<span class="h1">Securing Header Fields with S/MIME</span>
Abstract
This document describes how the S/MIME protocol can be extended in
order to secure message header fields defined in <a href="./rfc5322">RFC 5322</a>. This
technology provides security services such as data integrity, non-
repudiation, and confidentiality. This extension is referred to as
'Secure Headers'.
Status of This Memo
This document is not an Internet Standards Track specification; it is
published for examination, experimental implementation, and
evaluation.
This document defines an Experimental Protocol for the Internet
community. This is a contribution to the RFC Series, independently
of any other RFC stream. The RFC Editor has chosen to publish this
document at its discretion and makes no statement about its value for
implementation or deployment. Documents approved for publication by
the RFC Editor are not a candidate for any level of Internet
Standard; see <a href="./rfc5741#section-2">Section 2 of RFC 5741</a>.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
<a href="http://www.rfc-editor.org/info/rfc7508">http://www.rfc-editor.org/info/rfc7508</a>.
Copyright Notice
Copyright (c) 2015 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to <a href="https://www.rfc-editor.org/bcp/bcp78">BCP 78</a> and the IETF Trust's Legal
Provisions Relating to IETF Documents
(<a href="http://trustee.ietf.org/license-info">http://trustee.ietf.org/license-info</a>) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document.
<span class="grey">Cailleux & Bonatti Experimental [Page 1]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-2" ></span>
<span class="grey"><a href="./rfc7508">RFC 7508</a> Securing Header Fields with S/MIME April 2015</span>
Table of Contents
<a href="#section-1">1</a>. Introduction ....................................................<a href="#page-2">2</a>
<a href="#section-2">2</a>. Terminology and Conventions Used in This Document ...............<a href="#page-3">3</a>
<a href="#section-3">3</a>. Context .........................................................<a href="#page-4">4</a>
<a href="#section-4">4</a>. Mechanisms to Secure Message Header Fields ......................<a href="#page-6">6</a>
<a href="#section-4.1">4.1</a>. ASN.1 Syntax of Secure Header Fields .......................<a href="#page-7">7</a>
<a href="#section-4.2">4.2</a>. Secure Header Fields Length and Format .....................<a href="#page-8">8</a>
<a href="#section-4.3">4.3</a>. Canonicalization Algorithm .................................<a href="#page-8">8</a>
<a href="#section-4.4">4.4</a>. Header Field Statuses ......................................<a href="#page-8">8</a>
<a href="#section-4.5">4.5</a>. Signature Process ..........................................<a href="#page-9">9</a>
<a href="#section-4.5.1">4.5.1</a>. Signature Generation Process ........................<a href="#page-9">9</a>
<a href="#section-4.5.2">4.5.2</a>. Signature Verification Process .....................<a href="#page-10">10</a>
<a href="#section-4.6">4.6</a>. Encryption and Decryption Processes .......................<a href="#page-11">11</a>
<a href="#section-4.6.1">4.6.1</a>. Encryption Process .................................<a href="#page-11">11</a>
<a href="#section-4.6.2">4.6.2</a>. Decryption Process .................................<a href="#page-12">12</a>
<a href="#section-5">5</a>. Case of Triple Wrapping ........................................<a href="#page-13">13</a>
<a href="#section-6">6</a>. Security Gateways ..............................................<a href="#page-13">13</a>
<a href="#section-7">7</a>. Security Considerations ........................................<a href="#page-13">13</a>
<a href="#section-8">8</a>. IANA Considerations ............................................<a href="#page-14">14</a>
<a href="#section-9">9</a>. References .....................................................<a href="#page-14">14</a>
<a href="#section-9.1">9.1</a>. Normative References ......................................<a href="#page-14">14</a>
<a href="#section-9.2">9.2</a>. Informative References ....................................<a href="#page-15">15</a>
<a href="#appendix-A">Appendix A</a>. Formal Syntax of Secure Header ........................<a href="#page-16">16</a>
<a href="#appendix-B">Appendix B</a>. Example of Secure Header Fields .......................<a href="#page-18">18</a>
Acknowledgements ..................................................<a href="#page-19">19</a>
Authors' Addresses ................................................<a href="#page-19">19</a>
<span class="h2"><a class="selflink" id="section-1" href="#section-1">1</a>. Introduction</span>
The S/MIME [<a href="./rfc5751" title=""Secure/Multipurpose Internet Mail Extensions (S/MIME) Version 3.2 Message Specification"">RFC5751</a>] standard defines a data encapsulation format for
the achievement of end-to-end security services such as integrity,
authentication, non-repudiation, and confidentiality. By default,
S/MIME secures message body parts, at the exclusion of the message
header fields.
S/MIME provides an alternative solution to secure header fields: "the
sending client MAY wrap a full MIME message in a message/rfc822
wrapper in order to apply S/MIME security services to header fields".
However, the S/MIME solution doesn't provide any guidance regarding
what subset of message header fields to secure, procedures for
clients to reconcile the "inner" and "outer" headers, or procedures
for client interpretation or display of any failures.
Several other security specifications supplement S/MIME features but
fail to address the target requirement set of this document. Such
other security specifications include DomainKeys Identified Mail
(DKIM) [<a href="./rfc6376" title=""DomainKeys Identified Mail (DKIM) Signatures"">RFC6376</a>], STARTTLS [<a href="./rfc3207" title=""SMTP Service Extension for Secure SMTP over Transport Layer Security"">RFC3207</a>], TLS with IMAP [<a href="./rfc2595" title=""Using TLS with IMAP, POP3 and ACAP"">RFC2595</a>], and an
<span class="grey">Cailleux & Bonatti Experimental [Page 2]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-3" ></span>
<span class="grey"><a href="./rfc7508">RFC 7508</a> Securing Header Fields with S/MIME April 2015</span>
Internet-Draft referred to as "Protected Headers" [<a href="#ref-PRHDRS" title=""Header Protection for S/MIME"">PRHDRS</a>]. An
explanation of what these services accomplish and why they do not
solve this problem can be found in subsequent sections.
The goal of this document is to define end-to-end secure header field
mechanisms compliant with S/MIME standard. This technique is based
on the signed attribute fields of a Cryptographic Message Syntax
(CMS) [<a href="./rfc5652" title=""Cryptographic Message Syntax (CMS)"">RFC5652</a>] signature.
<span class="h2"><a class="selflink" id="section-2" href="#section-2">2</a>. Terminology and Conventions Used in This Document</span>
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [<a href="./rfc2119" title=""Key words for use in RFCs to Indicate Requirement Levels"">RFC2119</a>].
The terms Message User Agent (MUA), Message Submission Agent (MSA),
and Message Transfer Agent (MTA) are defined in the email
architecture document [<a href="./rfc5598" title=""Internet Mail Architecture"">RFC5598</a>].
The term Domain Confidentiality Authority (DCA) is defined in the
S/MIME Domain Security specification [<a href="./rfc3183" title=""Domain Security Services using S/MIME"">RFC3183</a>].
End-to-end Internet Mail exchanges are performed between message
originators and recipients.
The term message header fields is described in [<a href="./rfc5322" title=""Internet Message Format"">RFC5322</a>]. A header
field is composed of a name and a value.
Secure Headers technology uses header field statuses required to
provide a confidentiality service toward message headers. The
following three terms are used to describe the field statuses:
- duplicated (the default status). When this status is present or
if no status is specified, the signature process embeds the header
field value in the digital signature, but the value is also
present in the message header fields.
- deleted. When this status is present, the signature process
embeds the header field value in the digital signature, and the
encryption process deletes this field from the message to preserve
its confidentiality.
- modified. When this status is present, the signature process
embeds the header field value in the digital signature, and the
encryption process modifies the value of the header field in the
message. This preserves confidentiality and informs a receiver's
<span class="grey">Cailleux & Bonatti Experimental [Page 3]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-4" ></span>
<span class="grey"><a href="./rfc7508">RFC 7508</a> Securing Header Fields with S/MIME April 2015</span>
noncompliant MUA that secure headers are being used. New values
for each field might be configured by the sender (i.e., "This
header is secured; use a compliant client.").
The term non-repudiation is used throughout this document in
deference to the usage in the S/MIME Message Specification [<a href="./rfc5751" title=""Secure/Multipurpose Internet Mail Extensions (S/MIME) Version 3.2 Message Specification"">RFC5751</a>].
It is recognized that this term carries with it much baggage, and
that there is some disagreement as to its proper meaning and usage.
However, in the context of this document, the term merely refers to
one set of possible security services that a conforming
implementation might be able to provide. This document specifies no
normative requirements for non-repudiation.
<span class="h2"><a class="selflink" id="section-3" href="#section-3">3</a>. Context</span>
Over the Internet, email use has grown and today represents a
fundamental service. Meanwhile, continually increasing threat levels
are motivating the implementation of security services.
Historically, SMTP [<a href="./rfc5321" title=""Simple Mail Transfer Protocol"">RFC5321</a>] and the Internet Message Format (IMF)
[<a href="./rfc5322" title=""Internet Message Format"">RFC5322</a>] don't provide, by default, security services. The S/MIME
standard [<a href="./rfc5751" title=""Secure/Multipurpose Internet Mail Extensions (S/MIME) Version 3.2 Message Specification"">RFC5751</a>] was published in order to address these needs.
S/MIME defines a data encapsulation format for the provision of end-
to-end security services such as integrity, authentication, non-
repudiation, and confidentiality. By default, S/MIME secures message
body parts, at the exclusion of the message header fields. In order
to protect message header fields (for instance, the "Subject", "To",
"From", or customized fields), several solutions exist.
In <a href="./rfc5751#section-3.1">Section 3.1 of [RFC5751]</a>, S/MIME defines an encapsulation
mechanism:
[<a id="ref-...">...</a>] the sending client MAY wrap a full MIME message in a
message/rfc822 wrapper in order to apply S/MIME security services
to these header fields. It is up to the receiving client to
decide how to present this "inner" header along with the
unprotected "outer" header.
However, some use cases are not addressed, especially in the case of
message encryption. What happens when header fields are encrypted?
How does the receiving client display these header fields? How can a
subset of header fields be secured? S/MIME doesn't address these
issues.
<span class="grey">Cailleux & Bonatti Experimental [Page 4]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-5" ></span>
<span class="grey"><a href="./rfc7508">RFC 7508</a> Securing Header Fields with S/MIME April 2015</span>
Some partial header protection is provided by the S/MIME Certificate
Handling specification [<a href="./rfc5750" title=""Secure/Multipurpose Internet Mail Extensions (S/MIME) Version 3.2 Certificate Handling"">RFC5750</a>]:
Receiving agents MUST check that the address in the From or Sender
header of a mail message matches an Internet mail address, if
present, in the signer's certificate, if mail addresses are
present in the certificate.
In some cases, this may provide assurance of the integrity of the
From or Sender header values. However, the solution in <a href="./rfc5750">RFC 5750</a> only
provides a matching mechanism between email addresses and provides no
protection to other header fields.
Other security specifications (introduced below) exist such as DKIM,
STARTTLS and TLS with IMAP, but they meet other needs (signing
domain, secure channels, etc.).
STARTTLS and TLS with IMAP provide secure channels between components
of the email system (MUA, MSA, MTA, etc.), but end-to-end integrity
cannot be guaranteed.
DKIM defines a domain-level authentication framework for email.
While this permits integrity and origination checks on message header
fields and the message body, it does this for a domain actor (usually
the SMTP service or equivalent) and not for the entity that is
sending, and thus signing, the message. (Extensions to DKIM might be
able to solve this issue by authenticating the sender and making a
statement of this fact as part of the signed message headers.) DKIM
is also deficient for our purposes, as it does not provide a
confidentially service.
An Internet-Draft referred to as "Protected Headers" [<a href="#ref-PRHDRS" title=""Header Protection for S/MIME"">PRHDRS</a>] has
been proposed. Mechanisms described in that document are the
following:
[<a id="ref-...">...</a>] a digest value is computed over the canonicalized version of
some selected header fields. This technique resembles header
protection in [<a href="./rfc4871">RFC4871</a>]. Then the digest value is included in a
signed attribute field of a CMS signature.
(Note that <a href="./rfc4871">RFC 4871</a> has been obsoleted by <a href="./rfc6376">RFC 6376</a>.)
That specification doesn't address all conceivable requirements as
noted below. If the protected header field has been altered, the
original value cannot be determined by the recipient. In addition,
the encryption service cannot provide confidentiality for fields that
must remain present in the message header during transport.
<span class="grey">Cailleux & Bonatti Experimental [Page 5]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-6" ></span>
<span class="grey"><a href="./rfc7508">RFC 7508</a> Securing Header Fields with S/MIME April 2015</span>
This document proposes a technology for securing message header
fields. It's referred to as "Secure Headers". It is based on S/MIME
and CMS standards. It provides security services such as data
integrity, confidentiality, and non-repudiation of the sender.
Secure Headers is backward compatible with other S/MIME clients.
S/MIME clients who have not implemented Secure Headers technology
need merely ignore specific signed attributes fields in a CMS
signature (which is the default behavior).
<span class="h2"><a class="selflink" id="section-4" href="#section-4">4</a>. Mechanisms to Secure Message Header Fields</span>
Secure Headers technology involves the description of a security
policy. This policy MUST describe a secure message profile and list
the header fields to secure. How this security policy is agreed upon
or communicated is beyond the scope of this document.
Secure headers are based on the signed attributes field as defined in
CMS. The details are as follows. The message header fields to be
secured are integrated in a structure (SecureHeaderFields structure)
that is encapsulated in the signed attributes structure of the
SignerInfo object. There is only one value of HeaderFields encoded
into a single SignedAttribute in a signature. See <a href="#appendix-A">Appendix A</a> for an
example. For each header field present in the secure signature, a
status can be set. Then, as described in <a href="#section-5.4">Section 5.4</a> of CMS
[<a href="./rfc5652" title=""Cryptographic Message Syntax (CMS)"">RFC5652</a>], the message digest calculation process computes a message
digest on the content together with the signed attributes. Details
of the signature generation process are in <a href="#section-4.5.1">Section 4.5.1</a> of this
document.
Verification of secure header fields is based on the signature
verification process described in CMS. At the end of this process, a
comparison between the secure header fields and the corresponding
message header fields is performed. If they match, the signature is
valid. Otherwise, the signature is invalid. Details of the
signature verification process are in <a href="#section-4.5.2">Section 4.5.2</a> of this document.
Non-conforming S/MIME clients will ignore the signed attribute
containing the SecureHeaderFields structure, and only perform the
verification process described in CMS. This guarantees backward
compatibility.
Secure headers provide security services such as data integrity, non-
repudiation, and confidentiality.
<span class="grey">Cailleux & Bonatti Experimental [Page 6]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-7" ></span>
<span class="grey"><a href="./rfc7508">RFC 7508</a> Securing Header Fields with S/MIME April 2015</span>
For different reasons (e.g., usability, limits of IMAP [<a href="./rfc3501" title=""INTERNET MESSAGE ACCESS PROTOCOL - VERSION 4rev1"">RFC3501</a>]),
encryption and decryption processes are performed by a third party.
The third party that performs these processes is referred to in the
Domain Security specification as a Domain Confidentiality Authority
(DCA). Details of the encryption and decryption processes are in
Sections <a href="#section-4.6.1">4.6.1</a> and <a href="#section-4.6.2">4.6.2</a> of this document.
The architecture of Secure Headers is presented below. The MUA
performs the signature generation process (C) and signature
verification process (F). The DCA performs the message encryption
process (D) and message decryption process (E). The encryption and
decryption processes are optional.
A Domain B Domain
+----------------------+ +----------------------+
+-----+ +-----+ +-----+ +-----+
| MUA | -------> | DCA | ----------> | DCA |--------> | MUA |
| C | | D | | E | | F |
+-----+ +-----+ +-----+ +-----+
SignedMsg EncryptedMsg SignedMsg
Figure 1: Architecture of Secure Headers
<span class="h3"><a class="selflink" id="section-4.1" href="#section-4.1">4.1</a>. ASN.1 Syntax of Secure Header Fields</span>
The ASN.1 syntax [<a href="#ref-ASN1-88" title="Recommendation X.208: Specification of Abstract Syntax Notation One (ASN.1)">ASN1-88</a>] of the SecureHeaderFields structure is as
follows:
SecureHeaderFields ::= SET {
canonAlgorithm Algorithm,
secHeaderFields HeaderFields }
id-aa-secureHeaderFieldsIdentifier OBJECT IDENTIFIER ::= {
iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1)
pkcs-9(9) smime(16) id-aa(2) secureHeaderFieldsIdentifier(55) }
Algorithm ::= ENUMERATED {
canonAlgorithmSimple(0),
canonAlgorithmRelaxed(1) }
HeaderFields ::= SEQUENCE SIZE (1..MAX) OF HeaderField
HeaderField ::= SEQUENCE {
field-Name HeaderFieldName,
field-Value HeaderFieldValue,
field-Status HeaderFieldStatus DEFAULT duplicated }
<span class="grey">Cailleux & Bonatti Experimental [Page 7]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-8" ></span>
<span class="grey"><a href="./rfc7508">RFC 7508</a> Securing Header Fields with S/MIME April 2015</span>
HeaderFieldName ::= VisibleString (FROM (ALL EXCEPT (":")))
-- This description matches the description of
-- field name in Sections <a href="#section-2.2">2.2</a> and <a href="#section-3.6.8">3.6.8</a> of <a href="./rfc5322">RFC 5322</a>
HeaderFieldValue ::= UTF8String
-- This description matches the description of
-- field body in <a href="./rfc5322#section-2.2">Section 2.2 of RFC 5322</a> as
-- extended by <a href="./rfc6532#section-3.1">Section 3.1 of RFC 6532</a>.
HeaderFieldStatus ::= INTEGER {
duplicated(0), deleted(1), modified(2) }
<span class="h3"><a class="selflink" id="section-4.2" href="#section-4.2">4.2</a>. Secure Header Fields Length and Format</span>
This specification requires MUA security capabilities in order to
process well-formed headers, as specified in IMF. Notice that it
includes long header fields and folded header fields.
<span class="h3"><a class="selflink" id="section-4.3" href="#section-4.3">4.3</a>. Canonicalization Algorithm</span>
During a message transfer through a messaging system, some components
might modify headers (i.e., adding or deleting space, changing or
lowercase or uppercase). This might lead to a comparison mismatch of
header fields. This emphasizes the need of a conversion process in
order to transform data to their canonical form. This process is
named the canonicalization process.
Two canonicalization algorithms are considered here, according to
<a href="#section-3.4">Section 3.4</a> of the DKIM specification [<a href="./rfc6376" title=""DomainKeys Identified Mail (DKIM) Signatures"">RFC6376</a>]. The "simple"
algorithm doesn't allow any modification, whereas the "relaxed"
algorithm accepts slight modifications like space replacement or line
reformatting. Given the scope of this document, canonicalization
mechanisms only involve header fields.
Implementations SHOULD use the "relaxed" algorithm to promote
interoperability with non-conforming SMTP products.
<span class="h3"><a class="selflink" id="section-4.4" href="#section-4.4">4.4</a>. Header Field Statuses</span>
Header field statuses are necessary to provide a confidentiality
service for message headers. In this specification, the
confidentiality of header fields is provided by the DCA. This point
is described in <a href="#section-4">Section 4</a>. The DCA performs the message encryption
process and message decryption process; these processes are described
in detail in Sections <a href="#section-4.6.1">4.6.1</a> and <a href="#section-4.6.2">4.6.2</a>. Although header field
statuses are embedded in the signature, the signature processes
<span class="grey">Cailleux & Bonatti Experimental [Page 8]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-9" ></span>
<span class="grey"><a href="./rfc7508">RFC 7508</a> Securing Header Fields with S/MIME April 2015</span>
(generation and verification) ignore them. The header field status
defaults to "duplicated". If the header field is confidential, the
header field status MUST be either "deleted" or "modified".
<span class="h3"><a class="selflink" id="section-4.5" href="#section-4.5">4.5</a>. Signature Process</span>
<span class="h4"><a class="selflink" id="section-4.5.1" href="#section-4.5.1">4.5.1</a>. Signature Generation Process</span>
During the signature generation process, the sender's MUA MUST embed
the SecureHeaderFields structure in the signed attributes, as
described in CMS. The SecureHeaderFields structure MUST include a
canonicalization algorithm.
The sender's MUA MUST have a list of header fields to secure,
statuses, and a canonicalization algorithm, as defined by the
security policy.
Header fields (names and values) embedded in signed attributes MUST
be the same as those included in the initial message.
If different headers share the same name, all instances MUST be
included in the SecureHeaderFields structure.
If multiple signatures are used, as explained in the CMS and Multiple
Signer [<a href="./rfc4853" title=""Cryptographic Message Syntax (CMS) Multiple Signer Clarification"">RFC4853</a>] specifications, the SecureHeaderFields structure
MUST be the same in each SignerInfos object.
If a header field is present and its value is empty, HeaderFieldValue
MUST have a zero-length field-Value.
Considering secure header mechanisms, the signature generation
process MUST perform the following steps:
1) Select the relevant header fields to secure. This subset of
headers is defined according the security policy.
2) Apply the canonicalization algorithm for each selected header
field.
3) Complete the following fields in the SecureHeaderFields
structure according to the initial message: HeaderFieldName,
HeaderFieldValue, and HeaderFieldStatus.
4) Complete the algorithm field according to the canonicalization
algorithm configured.
5) Embed the SecureHeaderFields structure in the signed attributes
of the SignerInfos object.
<span class="grey">Cailleux & Bonatti Experimental [Page 9]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-10" ></span>
<span class="grey"><a href="./rfc7508">RFC 7508</a> Securing Header Fields with S/MIME April 2015</span>
6) Compute the signature generation process as described in
<a href="#section-5.5">Section 5.5</a> of CMS [<a href="./rfc5652" title=""Cryptographic Message Syntax (CMS)"">RFC5652</a>].
<span class="h4"><a class="selflink" id="section-4.5.2" href="#section-4.5.2">4.5.2</a>. Signature Verification Process</span>
During the signature verification process, the receiver's MUA
compares header fields embedded in the SecureHeaderFields structure
with those present in the message. For this purpose, it uses the
canonicalization algorithm identified in the signed attributes. If a
mismatch appears during the comparison process, the receiver's MUA
MUST invalidate the signature. The MUA MUST display information on
the validity of each header field. It MUST also display the values
embedded in the signature.
The receiver's MUA MUST know the list of mandatory header fields in
order to verify their presence in the message. If a header field
defined in a message is in the secure header list, it MUST be
included in the SecureHeaderFields structure. Otherwise, the
receiver's MUA MUST warn the user that a non-secure header is
present.
Considering secure header mechanisms, the signature verification
process MUST perform the following steps:
1) Execute the signature verification process as described <a href="#section-5.6">Section</a>
<a href="#section-5.6">5.6</a> of CMS [<a href="./rfc5652" title=""Cryptographic Message Syntax (CMS)"">RFC5652</a>]. If the signature appears to be invalid,
the process ends. Otherwise, the process continues.
2) Read the type of canonicalization algorithm specified in the
SecureHeaderFields structure.
3) For each field present in the signature, find the matching
header in the message. If there is no matching header, the
verification process MUST warn the user, specifying the missing
header name. The signature is tagged as invalid. Note that
any header fields encrypted as per <a href="#section-4.6">Section 4.6</a> (i.e., status of
"deleted" or "modified") have been are already restored by the
DCA when the signature verification process is performed by the
MUA.
4) Compute the canonicalization algorithm for each header field
value in the message. If the "simple" algorithm is used, the
steps described in <a href="#section-3.4.1">Section 3.4.1</a> of DKIM [<a href="./rfc6376" title=""DomainKeys Identified Mail (DKIM) Signatures"">RFC6376</a>] are
performed. If the relaxed algorithm is used, the steps
described in <a href="#section-3.4.2">Section 3.4.2</a> of DKIM [<a href="./rfc6376" title=""DomainKeys Identified Mail (DKIM) Signatures"">RFC6376</a>] are performed.
<span class="grey">Cailleux & Bonatti Experimental [Page 10]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-11" ></span>
<span class="grey"><a href="./rfc7508">RFC 7508</a> Securing Header Fields with S/MIME April 2015</span>
5) For each field, compare the value stored in the
SecureHeaderFields structure with the value returned by the
canonicalization algorithm. If the values don't match, the
verification process MUST warn the user. This warning MUST
mention mismatching fields. The signature is tagged as
invalid. If all the comparisons succeed, the verification
process MUST also notify the user (i.e., using an appropriate
icon).
6) Verify that no secure header has been added to the message
header, given the initial fields. If an extra header field has
been added, the verification process MUST warn the user. This
warning MUST mention extra fields. The signature is tagged as
invalid. This step is only performed if the sender and the
recipient share the same security policy.
7) Verify that each mandatory header in the security policy and
present in the message is also embedded in the
SecureHeaderFields structure. If such headers are missing, the
verification process MUST warn the user and indicate the names
of the missing headers.
The MUA MUST display the properties of each secure header field
(name, value, and status) and the canonicalization algorithm used.
<span class="h3"><a class="selflink" id="section-4.6" href="#section-4.6">4.6</a>. Encryption and Decryption Processes</span>
Encryption and decryption operations are not performed by MUAs. This
is mainly justified by limitations of existing email delivery
protocols, for example, IMAP. The solution developed here relies on
concepts explained in <a href="#section-4">Section 4</a> of the Domain Security specification
[<a href="./rfc3183" title=""Domain Security Services using S/MIME"">RFC3183</a>]. A fundamental component of the architecture is the Domain
Confidentiality Authority (DCA). Its purpose is to encrypt and
decrypt messages instead of that being performed by senders and
receivers (respectively).
<span class="h4"><a class="selflink" id="section-4.6.1" href="#section-4.6.1">4.6.1</a>. Encryption Process</span>
All the computations presented in this section MUST be performed only
if the following conditions are verified:
- The content to be encrypted MUST consist of a signed message
(application/pkcs7-mime with SignedData, or multipart/signed)
as shown in <a href="#section-3.4">Section 3.4</a> of the S/MIME specification [<a href="./rfc5751" title=""Secure/Multipurpose Internet Mail Extensions (S/MIME) Version 3.2 Message Specification"">RFC5751</a>].
- A SecureHeaderFields structure MUST be included in the
signedAttrs field of the SignerInfo object of the signature.
<span class="grey">Cailleux & Bonatti Experimental [Page 11]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-12" ></span>
<span class="grey"><a href="./rfc7508">RFC 7508</a> Securing Header Fields with S/MIME April 2015</span>
All the mechanisms described below MUST start at the beginning of the
encryption process, as explained in CMS. They are performed by the
sender's DCA. For extraction of the field status, the following
steps MUST be performed for each field included in the
SecureHeaderFields structure:
1. If the status is "duplicated", the field is left at its
existing value.
2. If the status is "deleted", the header field (name and value)
is removed from the message. Mandatory header fields specified
in [<a href="./rfc5322" title=""Internet Message Format"">RFC5322</a>] MUST be kept.
3. If the status is "modified", the header value is replaced by a
new value, as configured in the DCA.
<span class="h4"><a class="selflink" id="section-4.6.2" href="#section-4.6.2">4.6.2</a>. Decryption Process</span>
All the computations presented in this section MUST be performed only
if the following conditions are verified:
- The decrypted content MUST consist of a signature object or a
multipart object, where one part is a detached signature, as
shown in <a href="#section-3.4">Section 3.4</a> of the S/MIME specification [<a href="./rfc5751" title=""Secure/Multipurpose Internet Mail Extensions (S/MIME) Version 3.2 Message Specification"">RFC5751</a>].
- A SecureHeaderFields structure MUST be included in the
SignerInfo object of the signature.
All the mechanisms described below MUST start at the end of the
decryption process, as explained in CMS. They are executed by the
receiver's DCA. The following steps MUST be performed for each field
included in the SecureHeaderFields structure:
1. If the status is "duplicated", the field is left at its
existing value.
2. If the status is "deleted", the DCA MUST write a header field
(name and value) in the message. This header MUST be compliant
with the information embedded in the signature.
3. If the status is "modified", the DCA MUST rewrite a header
field in the message. This header MUST be compliant with the
SecureHeaderFields structure.
<span class="grey">Cailleux & Bonatti Experimental [Page 12]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-13" ></span>
<span class="grey"><a href="./rfc7508">RFC 7508</a> Securing Header Fields with S/MIME April 2015</span>
<span class="h2"><a class="selflink" id="section-5" href="#section-5">5</a>. Case of Triple Wrapping</span>
Secure Headers mechanisms MAY be used with triple wrapping, as
described in Enhanced Security Services (ESS) [<a href="./rfc2634" title=""Enhanced Security Services for S/MIME"">RFC2634</a>]. In this
case, a SecureHeaderFields structure MAY be present in the inner
signature, the outer signature, or both. In the last case, the two
SecureHeaderFields structures MAY differ. One MAY consider the
encapsulation of a header field in the inner signature in order to
satisfy confidentiality needs. On the contrary, an outer signature
encapsulation MAY help for delivery purposes. The sender's MUA and
receiver's MUA must have a security policy for triple wrapping. This
security policy MUST be composed of two parts -- one for the inner
signature and the other for the outer signature.
<span class="h2"><a class="selflink" id="section-6" href="#section-6">6</a>. Security Gateways</span>
Some security gateways sign or verify messages that pass through
them. Compliant gateways MUST apply the process described in <a href="#section-4.5">Section</a>
<a href="#section-4.5">4.5</a>.
For noncompliant gateways, the presence of a SecureHeaderFields
structure does not change their behavior.
In some case, gateways MUST generate a new signature or insert
signerInfos into the signedData block. The format of signatures
generated by gateways is outside the scope of this document.
<span class="h2"><a class="selflink" id="section-7" href="#section-7">7</a>. Security Considerations</span>
This specification describes an extension of the S/MIME standard. It
provides message header integrity, non-repudiation, and
confidentiality. The signature and encryption processes are
complementary. However, according to the security policy, only the
signature mechanism is applicable. In this case, the signature
process is implemented between MUAs. The encryption process requires
signed messages with the Secure Headers extension. If required, the
encryption process is implemented by DCAs.
This specification doesn't address end-to-end confidentiality for
message header fields. Messages sent and received by MUAs could be
transmitted as plaintext. In order to avoid interception, the use of
TLS is recommended between MUAs and DCAs (uplink and downlink).
Another solution might be the use of S/MIME between MUAs and DCAs in
the same domain.
For the header field confidentiality mechanism to be effective, all
DCAs supporting confidentiality must support Secure Headers
processing. Otherwise, there is a risk that headers are not obscured
<span class="grey">Cailleux & Bonatti Experimental [Page 13]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-14" ></span>
<span class="grey"><a href="./rfc7508">RFC 7508</a> Securing Header Fields with S/MIME April 2015</span>
upon encryption or not restored upon decryption. In the former case,
confidentiality of the header fields is compromised. In the latter
case, the integrity of the headers will appear to be compromised.
<span class="h2"><a class="selflink" id="section-8" href="#section-8">8</a>. IANA Considerations</span>
IANA has registered value 65, mod-sMimeSecureHeadersV1, in the "SMI
Security for S/MIME Module Identifier (1.2.840.113549.1.9.16.0)"
registry.
IANA has also registered value 55,
id-aa-secureHeaderFieldsIdentifier, in the "SMI Security for S/MIME
Attributes (1.2.840.113549.1.9.16.2)" registry. This value will be
used to identify an authenticated attribute carried within a CMS
wrapper [<a href="./rfc5652" title=""Cryptographic Message Syntax (CMS)"">RFC5652</a>]. This attribute OID appears in <a href="#section-4.1">Section 4.1</a> and
again in the reference definition in <a href="#appendix-A">Appendix A</a>.
<span class="h2"><a class="selflink" id="section-9" href="#section-9">9</a>. References</span>
<span class="h3"><a class="selflink" id="section-9.1" href="#section-9.1">9.1</a>. Normative References</span>
[<a id="ref-RFC2119">RFC2119</a>] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", <a href="https://www.rfc-editor.org/bcp/bcp14">BCP 14</a>, <a href="./rfc2119">RFC 2119</a>, March 1997,
<<a href="http://www.rfc-editor.org/info/rfc2119">http://www.rfc-editor.org/info/rfc2119</a>>.
[<a id="ref-RFC2634">RFC2634</a>] Hoffman, P., Ed., "Enhanced Security Services for S/MIME",
<a href="./rfc2634">RFC 2634</a>, June 1999,
<<a href="http://www.rfc-editor.org/info/rfc2634">http://www.rfc-editor.org/info/rfc2634</a>>.
[<a id="ref-RFC4853">RFC4853</a>] Housley, R., "Cryptographic Message Syntax (CMS) Multiple
Signer Clarification", <a href="./rfc4853">RFC 4853</a>, April 2007,
<<a href="http://www.rfc-editor.org/info/rfc4853">http://www.rfc-editor.org/info/rfc4853</a>>.
[<a id="ref-RFC5322">RFC5322</a>] Resnick, P., Ed., "Internet Message Format", <a href="./rfc5322">RFC 5322</a>,
October 2008, <<a href="http://www.rfc-editor.org/info/rfc5322">http://www.rfc-editor.org/info/rfc5322</a>>.
[<a id="ref-RFC5652">RFC5652</a>] Housley, R., "Cryptographic Message Syntax (CMS)", STD 70,
<a href="./rfc5652">RFC 5652</a>, September 2009,
<<a href="http://www.rfc-editor.org/info/rfc5652">http://www.rfc-editor.org/info/rfc5652</a>>.
[<a id="ref-RFC6376">RFC6376</a>] Crocker, D., Ed., Hansen, T., Ed., and M. Kucherawy, Ed.,
"DomainKeys Identified Mail (DKIM) Signatures", STD 76,
<a href="./rfc6376">RFC 6376</a>, September 2011,
<<a href="http://www.rfc-editor.org/info/rfc6376">http://www.rfc-editor.org/info/rfc6376</a>>.
[<a id="ref-ASN1-88">ASN1-88</a>] CCITT, Recommendation X.208: Specification of Abstract
Syntax Notation One (ASN.1), 1988.
<span class="grey">Cailleux & Bonatti Experimental [Page 14]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-15" ></span>
<span class="grey"><a href="./rfc7508">RFC 7508</a> Securing Header Fields with S/MIME April 2015</span>
<span class="h3"><a class="selflink" id="section-9.2" href="#section-9.2">9.2</a>. Informative References</span>
[<a id="ref-PRHDRS">PRHDRS</a>] Liao, L. and J. Schwenk, "Header Protection for S/MIME",
<a href="./draft-liao-smimeheaderprotect-05">draft-liao-smimeheaderprotect-05</a>, Work in Progress, June
2009.
[<a id="ref-RFC2595">RFC2595</a>] Newman, C., "Using TLS with IMAP, POP3 and ACAP", <a href="./rfc2595">RFC</a>
<a href="./rfc2595">2595</a>, June 1999, <<a href="http://www.rfc-editor.org/info/rfc2595">http://www.rfc-editor.org/info/rfc2595</a>>.
[<a id="ref-RFC3183">RFC3183</a>] Dean, T. and W. Ottaway, "Domain Security Services using
S/MIME", <a href="./rfc3183">RFC 3183</a>, October 2001,
<<a href="http://www.rfc-editor.org/info/rfc3183">http://www.rfc-editor.org/info/rfc3183</a>>.
[<a id="ref-RFC3207">RFC3207</a>] Hoffman, P., "SMTP Service Extension for Secure SMTP over
Transport Layer Security", <a href="./rfc3207">RFC 3207</a>, February 2002,
<<a href="http://www.rfc-editor.org/info/rfc3207">http://www.rfc-editor.org/info/rfc3207</a>>.
[<a id="ref-RFC3501">RFC3501</a>] Crispin, M., "INTERNET MESSAGE ACCESS PROTOCOL - VERSION
4rev1", <a href="./rfc3501">RFC 3501</a>, March 2003,
<<a href="http://www.rfc-editor.org/info/rfc3501">http://www.rfc-editor.org/info/rfc3501</a>>.
[<a id="ref-RFC5321">RFC5321</a>] Klensin, J., "Simple Mail Transfer Protocol", <a href="./rfc5321">RFC 5321</a>,
October 2008, <<a href="http://www.rfc-editor.org/info/rfc5321">http://www.rfc-editor.org/info/rfc5321</a>>.
[<a id="ref-RFC5598">RFC5598</a>] Crocker, D., "Internet Mail Architecture", <a href="./rfc5598">RFC 5598</a>, July
2009, <<a href="http://www.rfc-editor.org/info/rfc5598">http://www.rfc-editor.org/info/rfc5598</a>>.
[<a id="ref-RFC5750">RFC5750</a>] Ramsdell, B. and S. Turner, "Secure/Multipurpose Internet
Mail Extensions (S/MIME) Version 3.2 Certificate
Handling", <a href="./rfc5750">RFC 5750</a>, January 2010,
<<a href="http://www.rfc-editor.org/info/rfc5750">http://www.rfc-editor.org/info/rfc5750</a>>.
[<a id="ref-RFC5751">RFC5751</a>] Ramsdell, B. and S. Turner, "Secure/Multipurpose Internet
Mail Extensions (S/MIME) Version 3.2 Message
Specification", <a href="./rfc5751">RFC 5751</a>, January 2010,
<<a href="http://www.rfc-editor.org/info/rfc5751">http://www.rfc-editor.org/info/rfc5751</a>>.
<span class="grey">Cailleux & Bonatti Experimental [Page 15]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-16" ></span>
<span class="grey"><a href="./rfc7508">RFC 7508</a> Securing Header Fields with S/MIME April 2015</span>
<span class="h2"><a class="selflink" id="appendix-A" href="#appendix-A">Appendix A</a>. Formal Syntax of Secure Header</span>
Note: The ASN.1 module contained herein uses the 1988 version of
ASN.1 notation [<a href="#ref-ASN1-88" title="Recommendation X.208: Specification of Abstract Syntax Notation One (ASN.1)">ASN1-88</a>] for the purposes of alignment with the
existing S/MIME specifications. The SecureHeaderFields structure is
defined as follows:
mod-SMimeSecureHeadersV1
{ iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1)
pkcs-9(9) smime(16) modules(0) secure-headers-v1(65) }
DEFINITIONS IMPLICIT TAGS ::=
BEGIN
IMPORTS
id-aa
FROM SecureMimeMessageV3dot1
{ iso(1) member-body(2) us(840) rsadsi(113549)
pkcs(1) pkcs-9(9) smime(16) modules(0)
msg-v3dot1(21) };
-- id-aa is the arc with all new authenticated and
-- unauthenticated attributes produced by the S/MIME
-- Working Group
id-aa-secureHeaderFieldsIdentifier OBJECT IDENTIFIER ::= {
id-aa secure-headers(55) }
SecureHeaderFields ::= SET {
canonAlgorithm Algorithm,
secHeaderFields HeaderFields }
Algorithm ::= ENUMERATED {
canonAlgorithmSimple(0),
canonAlgorithmRelaxed(1) }
HeaderFields ::= SEQUENCE SIZE (1..MAX) OF HeaderField
HeaderField ::= SEQUENCE {
field-Name HeaderFieldName,
field-Value HeaderFieldValue,
field-Status HeaderFieldStatus DEFAULT duplicated }
HeaderFieldName ::= VisibleString (FROM (ALL EXCEPT (":")))
-- This description matches with the description of
-- field name in the Sections <a href="#section-2.2">2.2</a> and <a href="#section-3.6.8">3.6.8</a> of <a href="./rfc5322">RFC 5322</a>
<span class="grey">Cailleux & Bonatti Experimental [Page 16]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-17" ></span>
<span class="grey"><a href="./rfc7508">RFC 7508</a> Securing Header Fields with S/MIME April 2015</span>
HeaderFieldValue ::= UTF8String
-- This description matches with the description of
-- field body in the <a href="./rfc5322#section-2.2">Section 2.2 of RFC 5322</a> as
-- extended by <a href="./rfc6532#section-3.1">Section 3.1 of RFC 6532</a>.
HeaderFieldStatus ::= INTEGER {
duplicated(0), deleted(1), modified(2) }
END
<span class="grey">Cailleux & Bonatti Experimental [Page 17]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-18" ></span>
<span class="grey"><a href="./rfc7508">RFC 7508</a> Securing Header Fields with S/MIME April 2015</span>
<span class="h2"><a class="selflink" id="appendix-B" href="#appendix-B">Appendix B</a>. Example of Secure Header Fields</span>
In the following example, the header fields subject,
x-ximf-primary-precedence, and x-ximf-correspondance-type are secured
and integrated in a SecureHeaderFields structure. This example
should produce a valid signature.
Extract from the message header fields:
From: John Doe <jdoe@example.com>
To: Mary Smith <mary@example.com>
subject: This is a test of Ext.
x-ximf-primary-precedence: priority
x-ximf-correspondance-type: official
The SecureHeaderFields structure extracted from the signature:
2286 150: SEQUENCE {
2289 11: OBJECT IDENTIFIER '1 2 840 113549 1 9 16 2 80'
2302 134: SET {
2305 131: SET {
2308 4: ENUMERATED 1
2314 123: SEQUENCE {
2316 40: SEQUENCE {
2318 25: VisibleString 'x-ximf-primary-precedence'
2345 8: UTF8String 'priority'
2355 1: INTEGER 0
: }
2358 41: SEQUENCE {
2360 26: VisibleString 'x-ximf-correspondance-type'
2388 8: UTF8String 'official'
2398 1: INTEGER 0
: }
2401 36: SEQUENCE {
2403 7: VisibleString 'subject'
2412 22: UTF8String 'This is a test of Ext.'
2436 1: INTEGER 0
: }
: }
: }
: }
: }
The example is displayed as an output of Peter Gutmann's "dumpasn1"
program.
OID used in this example is nonofficial.
<span class="grey">Cailleux & Bonatti Experimental [Page 18]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-19" ></span>
<span class="grey"><a href="./rfc7508">RFC 7508</a> Securing Header Fields with S/MIME April 2015</span>
Acknowledgements
The authors would like to thank Jim Schaad, Alexey Melnikov, Damien
Roque, Thibault Cassan, William Ottaway, and Sean Turner who kindly
provided reviews of the document and/or suggestions for improvement.
As always, all errors and omissions are the responsibility of the
authors.
Authors' Addresses
Laurent CAILLEUX
DGA MI
BP 7
35998 RENNES CEDEX 9
France
EMail: laurent.cailleux@intradef.gouv.fr
Chris Bonatti
IECA, Inc.
3057 Nutley Street, Suite 106
Fairfax, VA 22031
United States
EMail: bonatti252@ieca.com
Cailleux & Bonatti Experimental [Page 19]
</pre>
|