1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565
|
<pre>Internet Engineering Task Force (IETF) G. Bernstein, Ed.
Request for Comments: 7579 Grotto Networking
Category: Standards Track Y. Lee, Ed.
ISSN: 2070-1721 D. Li
Huawei
W. Imajuku
NTT
J. Han
Huawei
June 2015
<span class="h1">General Network Element Constraint Encoding</span>
<span class="h1">for GMPLS-Controlled Networks</span>
Abstract
Generalized Multiprotocol Label Switching (GMPLS) can be used to
control a wide variety of technologies. In some of these
technologies, network elements and links may impose additional
routing constraints such as asymmetric switch connectivity, non-local
label assignment, and label range limitations on links.
This document provides efficient, protocol-agnostic encodings for
general information elements representing connectivity and label
constraints as well as label availability. It is intended that
protocol-specific documents will reference this memo to describe how
information is carried for specific uses.
Status of This Memo
This is an Internet Standards Track document.
This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Further information on
Internet Standards is available in <a href="./rfc5741#section-2">Section 2 of RFC 5741</a>.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
<a href="http://www.rfc-editor.org/info/rfc7579">http://www.rfc-editor.org/info/rfc7579</a>.
<span class="grey">Bernstein, et al. Standards Track [Page 1]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-2" ></span>
<span class="grey"><a href="./rfc7579">RFC 7579</a> General Network Element Constraint Encoding June 2015</span>
Copyright Notice
Copyright (c) 2015 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to <a href="https://www.rfc-editor.org/bcp/bcp78">BCP 78</a> and the IETF Trust's Legal
Provisions Relating to IETF Documents
(<a href="http://trustee.ietf.org/license-info">http://trustee.ietf.org/license-info</a>) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
Table of Contents
<a href="#section-1">1</a>. Introduction ....................................................<a href="#page-3">3</a>
<a href="#section-1.1">1.1</a>. Node Switching Asymmetry Constraints .......................<a href="#page-3">3</a>
<a href="#section-1.2">1.2</a>. Non-local Label Assignment Constraints .....................<a href="#page-4">4</a>
<a href="#section-1.3">1.3</a>. Conventions Used in This Document ..........................<a href="#page-4">4</a>
<a href="#section-2">2</a>. Encoding ........................................................<a href="#page-4">4</a>
<a href="#section-2.1">2.1</a>. Connectivity Matrix Field ..................................<a href="#page-5">5</a>
<a href="#section-2.2">2.2</a>. Port Label Restrictions Field ..............................<a href="#page-6">6</a>
<a href="#section-2.2.1">2.2.1</a>. SIMPLE_LABEL ........................................<a href="#page-8">8</a>
<a href="#section-2.2.2">2.2.2</a>. CHANNEL_COUNT .......................................<a href="#page-8">8</a>
<a href="#section-2.2.3">2.2.3</a>. LABEL_RANGE .........................................<a href="#page-9">9</a>
<a href="#section-2.2.4">2.2.4</a>. SIMPLE_LABEL & CHANNEL_COUNT ........................<a href="#page-9">9</a>
<a href="#section-2.2.5">2.2.5</a>. LINK_LABEL_EXCLUSIVITY .............................<a href="#page-10">10</a>
<a href="#section-2.3">2.3</a>. Link Set Field ............................................<a href="#page-10">10</a>
<a href="#section-2.4">2.4</a>. Available Labels Field ....................................<a href="#page-12">12</a>
<a href="#section-2.5">2.5</a>. Shared Backup Labels Field ................................<a href="#page-13">13</a>
<a href="#section-2.6">2.6</a>. Label Set Field ...........................................<a href="#page-14">14</a>
<a href="#section-3">3</a>. Security Considerations ........................................<a href="#page-16">16</a>
<a href="#section-4">4</a>. IANA Considerations ............................................<a href="#page-17">17</a>
<a href="#section-5">5</a>. References .....................................................<a href="#page-17">17</a>
<a href="#section-5.1">5.1</a>. Normative References ......................................<a href="#page-17">17</a>
<a href="#section-5.2">5.2</a>. Informative References ....................................<a href="#page-18">18</a>
<a href="#appendix-A">Appendix A</a>. Encoding Examples .....................................<a href="#page-19">19</a>
<a href="#appendix-A.1">A.1</a>. Link Set Field ............................................<a href="#page-19">19</a>
<a href="#appendix-A.2">A.2</a>. Label Set Field ...........................................<a href="#page-19">19</a>
<a href="#appendix-A.3">A.3</a>. Connectivity Matrix .......................................<a href="#page-20">20</a>
<a href="#appendix-A.4">A.4</a>. Connectivity Matrix with Bidirectional Symmetry ...........<a href="#page-24">24</a>
<a href="#appendix-A.5">A.5</a>. Priority Flags in Available/Shared Backup Labels ..........<a href="#page-26">26</a>
Contributors ......................................................<a href="#page-27">27</a>
Authors' Addresses ................................................<a href="#page-28">28</a>
<span class="grey">Bernstein, et al. Standards Track [Page 2]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-3" ></span>
<span class="grey"><a href="./rfc7579">RFC 7579</a> General Network Element Constraint Encoding June 2015</span>
<span class="h2"><a class="selflink" id="section-1" href="#section-1">1</a>. Introduction</span>
Some data-plane technologies that wish to make use of a GMPLS control
plane contain additional constraints on switching capability and
label assignment. In addition, some of these technologies must
perform non-local label assignment based on the nature of the
technology, e.g., wavelength continuity constraint in Wavelength
Switched Optical Networks (WSONs) [<a href="./rfc6163" title=""Framework for GMPLS and Path Computation Element (PCE) Control of Wavelength Switched Optical Networks (WSONs)"">RFC6163</a>]. Such constraints can
lead to the requirement for link-by-link label availability in path
computation and label assignment.
This document provides efficient encodings of information needed by
the routing and label assignment process in technologies such as WSON
and are potentially applicable to a wider range of technologies.
Such encodings can be used to extend GMPLS signaling and routing
protocols. In addition, these encodings could be used by other
mechanisms to convey this same information to a path computation
element (PCE).
<span class="h3"><a class="selflink" id="section-1.1" href="#section-1.1">1.1</a>. Node Switching Asymmetry Constraints</span>
For some network elements, the ability of a signal or packet on a
particular input port to reach a particular output port may be
limited. Additionally, in some network elements (e.g., a simple
multiplexer), the connectivity between some input and output ports
may be fixed. To take into account such constraints during path
computation, we model this aspect of a network element via a
connectivity matrix.
The connectivity matrix (ConnectivityMatrix) represents either the
potential connectivity matrix for asymmetric switches or fixed
connectivity for an asymmetric device such as a multiplexer. Note
that this matrix does not represent any particular internal blocking
behavior but indicates which input ports and labels (e.g.,
wavelengths) could possibly be connected to a particular output port
and label pair. Representing internal state-dependent blocking for a
node is beyond the scope of this document and, due to its highly
implementation-dependent nature, would most likely not be subject to
standardization in the future. The connectivity matrix is a
conceptual M*m by N*n matrix where M represents the number of input
ports (each with m labels) and N the number of output ports (each
with n labels).
<span class="grey">Bernstein, et al. Standards Track [Page 3]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-4" ></span>
<span class="grey"><a href="./rfc7579">RFC 7579</a> General Network Element Constraint Encoding June 2015</span>
<span class="h3"><a class="selflink" id="section-1.2" href="#section-1.2">1.2</a>. Non-local Label Assignment Constraints</span>
If the nature of the equipment involved in a network results in a
requirement for non-local label assignment, we can have constraints
based on limits imposed by the ports themselves and those that are
implied by the current label usage. Note that constraints such as
these only become important when label assignment has a non-local
character. For example, in MPLS, an LSR may have a limited range of
labels available for use on an output port and a set of labels
already in use on that port; these are therefore unavailable for use.
This information, however, does not need to be shared unless there is
some limitation on the LSR's label swapping ability. For example, if
a Time Division Multiplexer (TDM) node lacks the ability to perform
time-slot interchange or a WSON lacks the ability to perform
wavelength conversion, then the label assignment process is not local
to a single node. In this case, it may be advantageous to share the
label assignment constraint information for use in path computation.
Port label restrictions (PortLabelRestriction) model the label
restrictions that the network element (node) and link may impose on a
port. These restrictions tell us what labels may or may not be used
on a link and are intended to be relatively static. More dynamic
information is contained in the information on available labels.
Port label restrictions are specified relative to the port in general
or to a specific connectivity matrix for increased modeling
flexibility. [<a href="#ref-Switch" title=""Modeling WDM Wavelength Switching Systems for Use in GMPLS and Automated Path Computation"">Switch</a>] gives an example where both switch and fixed
connectivity matrices are used and both types of constraints occur on
the same port.
<span class="h3"><a class="selflink" id="section-1.3" href="#section-1.3">1.3</a>. Conventions Used in This Document</span>
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in <a href="./rfc2119">RFC 2119</a> [<a href="./rfc2119" title=""Key words for use in RFCs to Indicate Requirement Levels"">RFC2119</a>].
<span class="h2"><a class="selflink" id="section-2" href="#section-2">2</a>. Encoding</span>
This section provides encodings for the information elements defined
in [<a href="./rfc7446" title=""Routing and Wavelength Assignment Information Model for Wavelength Switched Optical Networks"">RFC7446</a>] that have applicability to WSON. The encodings are
designed to be suitable for use in the GMPLS routing protocols OSPF
[<a href="./rfc4203" title=""OSPF Extensions in Support of Generalized Multi-Protocol Label Switching (GMPLS)"">RFC4203</a>] and IS-IS [<a href="./rfc5307" title=""IS-IS Extensions in Support of Generalized Multi-Protocol Label Switching (GMPLS)"">RFC5307</a>] and in the PCE Communication Protocol
(PCEP) [<a href="./rfc5440" title=""Path Computation Element (PCE) Communication Protocol (PCEP)"">RFC5440</a>]. Note that the information distributed in [<a href="./rfc4203" title=""OSPF Extensions in Support of Generalized Multi-Protocol Label Switching (GMPLS)"">RFC4203</a>]
and [<a href="./rfc5307" title=""IS-IS Extensions in Support of Generalized Multi-Protocol Label Switching (GMPLS)"">RFC5307</a>] is arranged via the nesting of sub-TLVs within TLVs;
this document defines elements to be used within such constructs.
Specific constructs of sub-TLVs and the nesting of sub-TLVs of the
information element defined by this document will be defined in the
respective protocol enhancement documents.
<span class="grey">Bernstein, et al. Standards Track [Page 4]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-5" ></span>
<span class="grey"><a href="./rfc7579">RFC 7579</a> General Network Element Constraint Encoding June 2015</span>
<span class="h3"><a class="selflink" id="section-2.1" href="#section-2.1">2.1</a>. Connectivity Matrix Field</span>
The Connectivity Matrix Field represents how input ports are
connected to output ports for network elements. The switch and fixed
connectivity matrices can be compactly represented in terms of a
minimal list of input and output port set pairs that have mutual
connectivity. As described in [<a href="#ref-Switch" title=""Modeling WDM Wavelength Switching Systems for Use in GMPLS and Automated Path Computation"">Switch</a>], such a minimal list
representation leads naturally to a graph representation for path
computation purposes; this representation involves the fewest
additional nodes and links.
The Connectivity Matrix Field is uniquely identified only by the
advertising node. There may be more than one Connectivity Matrix
Field associated with a node as a node can partition the switch
matrix into several sub-matrices. This partitioning is primarily to
limit the size of any individual information element used to
represent the matrix and to enable incremental updates. When the
matrix is partitioned into sub-matrices, each sub-matrix will be
mutually exclusive to one another in representing which ports/labels
are associated with each sub-matrix. This implies that two matrices
will not have the same {src port, src label, dst port, dst label}.
Each sub-matrix is identified via a different Matrix ID that MUST
represent a unique combination of {src port, src label, dst port, dst
label}.
A TLV encoding of this list of link set pairs is:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Conn | MatrixID | Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Set A #1 |
: : :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Set B #1 :
: : :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Additional Link Set Pairs as Needed |
: to Specify Connectivity :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
<span class="grey">Bernstein, et al. Standards Track [Page 5]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-6" ></span>
<span class="grey"><a href="./rfc7579">RFC 7579</a> General Network Element Constraint Encoding June 2015</span>
Where:
Connectivity (Conn) (4 bits) is the device type.
0 - the device is fixed
1 - the device is switched (e.g., Reconfigurable Optical Add/Drop
Multiplexer / Optical Cross-Connect (ROADM/OXC))
MatrixID represents the ID of the connectivity matrix and is an 8-bit
integer. The value of 0xFF is reserved for use with port label
constraints and should not be used to identify a connectivity matrix.
Link Set A #1 and Link Set B #1 together represent a pair of link
sets. See <a href="#section-2.3">Section 2.3</a> for a detailed description of the Link Set
Field. There are two permitted combinations for the Link Set Field
parameter "dir" for link set A and B pairs:
o Link Set A dir=input, Link Set B dir=output
In this case, the meaning of the pair of link sets A and B is that
any signal that inputs a link in set A can be potentially switched
out of an output link in set B.
o Link Set A dir=bidirectional, Link Set B dir=bidirectional
In this case, the meaning of the pair of link sets A and B is that
any signal that inputs on the links in set A can potentially
output on a link in set B and any input signal on the links in set
B can potentially output on a link in set A. If link set A is an
input and link set B is an output for a signal, then it implies
that link set A is an output and link set B is an input for that
signal.
See <a href="#appendix-A">Appendix A</a> for both types of encodings as applied to a ROADM
example.
<span class="h3"><a class="selflink" id="section-2.2" href="#section-2.2">2.2</a>. Port Label Restrictions Field</span>
The Port Label Restrictions Field tells us what labels may or may not
be used on a link.
The port label restrictions can be encoded as follows. More than one
of these fields may be needed to fully specify a complex port
constraint. When more than one of these fields is present, the
resulting restriction is the union of the restrictions expressed in
<span class="grey">Bernstein, et al. Standards Track [Page 6]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-7" ></span>
<span class="grey"><a href="./rfc7579">RFC 7579</a> General Network Element Constraint Encoding June 2015</span>
each field. The use of the reserved value of 0xFF for the MatrixID
indicates that a restriction applies to the port and not to a
specific connectivity matrix.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MatrixID | RstType | Switching Cap | Encoding |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Additional Restriction Parameters per Restriction Type |
: :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Where:
MatrixID: either is the value in the corresponding Connectivity
Matrix Field or takes the value 0xFF to indicate the restriction
applies to the port regardless of any connectivity matrix.
RstType (Restriction Type) can take the following values and
meanings:
0: SIMPLE_LABEL (Simple label selective restriction). See
<a href="#section-2.2.1">Section 2.2.1</a> for details.
1: CHANNEL_COUNT (Channel count restriction). See <a href="#section-2.2.2">Section 2.2.2</a>
for details.
2: LABEL_RANGE (Label range device with a movable center label and
width). See <a href="#section-2.2.3">Section 2.2.3</a> for details.
3: SIMPLE_LABEL & CHANNEL_COUNT (Combination of SIMPLE_LABEL and
CHANNEL_COUNT restriction. The accompanying label set and
channel count indicate labels permitted on the port and the
maximum number of channels that can be simultaneously used on
the port). See <a href="#section-2.2.4">Section 2.2.4</a> for details.
4: LINK_LABEL_EXCLUSIVITY (A label may be used at most once
amongst a set of specified ports). See <a href="#section-2.2.5">Section 2.2.5</a> for
details.
Switching Cap (Switching Capability) is defined in [<a href="./rfc4203" title=""OSPF Extensions in Support of Generalized Multi-Protocol Label Switching (GMPLS)"">RFC4203</a>], and LSP
Encoding Type is defined in [<a href="./rfc3471" title=""Generalized Multi-Protocol Label Switching (GMPLS) Signaling Functional Description"">RFC3471</a>]. The combination of these
fields defines the type of labels used in specifying the port label
restrictions as well as the interface type to which these
restrictions apply.
<span class="grey">Bernstein, et al. Standards Track [Page 7]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-8" ></span>
<span class="grey"><a href="./rfc7579">RFC 7579</a> General Network Element Constraint Encoding June 2015</span>
The Additional Restriction Parameters per RestrictionType field is an
optional field that describes additional restriction parameters for
each RestrictionType pertaining to specific protocols.
<span class="h4"><a class="selflink" id="section-2.2.1" href="#section-2.2.1">2.2.1</a>. SIMPLE_LABEL</span>
In the case of SIMPLE_LABEL, the format is:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MatrixID | RstType = 0 | Switching Cap | Encoding |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Label Set Field |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
In this case, the accompanying label set indicates the labels
permitted on the port/matrix.
See <a href="#section-2.6">Section 2.6</a> for the definition of label set.
<span class="h4"><a class="selflink" id="section-2.2.2" href="#section-2.2.2">2.2.2</a>. CHANNEL_COUNT</span>
In the case of CHANNEL_COUNT, the format is:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MatrixID | RstType = 1 |Switching Cap | Encoding |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MaxNumChannels |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
In this case, the accompanying MaxNumChannels indicates the maximum
number of channels (labels) that can be simultaneously used on the
port/matrix.
MaxNumChannels is a 32-bit integer.
<span class="grey">Bernstein, et al. Standards Track [Page 8]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-9" ></span>
<span class="grey"><a href="./rfc7579">RFC 7579</a> General Network Element Constraint Encoding June 2015</span>
<span class="h4"><a class="selflink" id="section-2.2.3" href="#section-2.2.3">2.2.3</a>. LABEL_RANGE</span>
In the case of LABEL_RANGE, the format is:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MatrixID | RstType = 2 | Switching Cap | Encoding |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MaxLabelRange |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Label Set Field |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
This is a generalization of the waveband device. The MaxLabelRange
indicates the maximum width of the waveband in terms of the channels
spacing given in the Label Set Field. The corresponding label set is
used to indicate the overall tuning range.
MaxLabelRange is a 32-bit integer.
See <a href="#section-2.6.2">Section 2.6.2</a> for an explanation of label range.
<span class="h4"><a class="selflink" id="section-2.2.4" href="#section-2.2.4">2.2.4</a>. SIMPLE_LABEL & CHANNEL_COUNT</span>
In the case of SIMPLE_LABEL & CHANNEL_COUNT, the format is:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MatrixID | RstType = 3 | Switching Cap | Encoding |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MaxNumChannels |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Label Set Field |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
In this case, the accompanying label set and MaxNumChannels indicate
labels permitted on the port and the maximum number of labels that
can be simultaneously used on the port.
See <a href="#section-2.6">Section 2.6</a> for the definition of label set.
<span class="grey">Bernstein, et al. Standards Track [Page 9]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-10" ></span>
<span class="grey"><a href="./rfc7579">RFC 7579</a> General Network Element Constraint Encoding June 2015</span>
<span class="h4"><a class="selflink" id="section-2.2.5" href="#section-2.2.5">2.2.5</a>. LINK_LABEL_EXCLUSIVITY</span>
In the case of Link Label Exclusivity, the format is:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MatrixID | RstType = 4 | Switching Cap | Encoding |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Set Field |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
In this case, the accompanying link set indicates that a label may be
used at most once among the ports in the Link Set Field.
See <a href="#section-2.3">Section 2.3</a> for the definition of link set.
<span class="h3"><a class="selflink" id="section-2.3" href="#section-2.3">2.3</a>. Link Set Field</span>
We will frequently need to describe properties of groups of links.
To do so efficiently, we can make use of a link set concept similar
to the label set concept of [<a href="./rfc3471" title=""Generalized Multi-Protocol Label Switching (GMPLS) Signaling Functional Description"">RFC3471</a>]. The Link Set Field is used in
the <ConnectivityMatrix>, which is defined in <a href="#section-2.1">Section 2.1</a>. The
information carried in a link set is defined as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Action |Dir| Format | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Identifier 1 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
: : :
: : :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Identifier N |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Action: 8 bits
0 - Inclusive List
Indicates that one or more link identifiers are included in
the link set. Each identifies a separate link that is part of
the set.
<span class="grey">Bernstein, et al. Standards Track [Page 10]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-11" ></span>
<span class="grey"><a href="./rfc7579">RFC 7579</a> General Network Element Constraint Encoding June 2015</span>
1 - Inclusive Range
Indicates that the link set defines a range of links. It
contains two link identifiers. The first identifier indicates
the start of the range. The second identifier indicates the
end of the range. All links with numeric values between the
bounds are considered to be part of the set. A value of zero
in either position indicates that there is no bound on the
corresponding portion of the range. Note that the Action
field can be set to 0x01 (Inclusive Range) only when the
identifier for unnumbered link is used.
Dir: Directionality of the link set (2 bits)
0 - bidirectional
1 - input
2 - output
In optical networks, we think in terms of unidirectional and
bidirectional links. For example, label restrictions or
connectivity may be different for an input port than for its
"companion" output port, if one exists. Note that "interfaces"
such as those discussed in the Interfaces MIB [<a href="./rfc2863" title=""The Interfaces Group MIB"">RFC2863</a>] are
assumed to be bidirectional. This also applies to the links
advertised in various link state routing protocols.
Format: The format of the link identifier (6 bits)
0 - Link Local Identifier
Indicates that the links in the link set are identified by
link local identifiers. All link local identifiers are
supplied in the context of the advertising node.
1 - Local Interface IPv4 Address
Indicates that the links in the link set are identified by
Local Interface IPv4 Address.
2 - Local Interface IPv6 Address
Indicates that the links in the link set are identified by
Local Interface IPv6 Address.
Others - Reserved for future use
<span class="grey">Bernstein, et al. Standards Track [Page 11]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-12" ></span>
<span class="grey"><a href="./rfc7579">RFC 7579</a> General Network Element Constraint Encoding June 2015</span>
Note that all link identifiers in the same list must be of the
same type.
Length: 16 bits
This field indicates the total length in bytes of the Link Set
Field.
Link Identifier: length is dependent on the link format
The link identifier represents the port that is being described
either for connectivity or for label restrictions. This can be
the link local identifier of GMPLS routing [<a href="./rfc4202" title=""Routing Extensions in Support of Generalized Multi-Protocol Label Switching (GMPLS)"">RFC4202</a>], GMPLS OSPF
routing [<a href="./rfc4203" title=""OSPF Extensions in Support of Generalized Multi-Protocol Label Switching (GMPLS)"">RFC4203</a>], and IS-IS GMPLS routing [<a href="./rfc5307" title=""IS-IS Extensions in Support of Generalized Multi-Protocol Label Switching (GMPLS)"">RFC5307</a>]. The use of
the link local identifier format can result in more compact
encodings when the assignments are done in a reasonable fashion.
<span class="h3"><a class="selflink" id="section-2.4" href="#section-2.4">2.4</a>. Available Labels Field</span>
The Available Labels Field consists of priority flags and a single
variable-length Label Set Field as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| PRI | Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Label Set Field |
: :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Where:
PRI (Priority Flags, 8 bits): A bitmap used to indicate which
priorities are being advertised. The bitmap is in ascending order,
with the leftmost bit representing priority level 0 (i.e., the
highest) and the rightmost bit representing priority level 7 (i.e.,
the lowest). A bit MUST be set (1) corresponding to each priority
represented in the sub-TLV and MUST NOT be set (0) when the
corresponding priority is not represented. If a label is available
at priority M, it MUST be advertised available at each priority N <
M. At least one priority level MUST be advertised.
The PRI field indicates the availability of the labels for use in
Label Switched Path (LSP) setup and preemption as described in
[<a href="./rfc3209" title=""RSVP-TE: Extensions to RSVP for LSP Tunnels"">RFC3209</a>].
<span class="grey">Bernstein, et al. Standards Track [Page 12]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-13" ></span>
<span class="grey"><a href="./rfc7579">RFC 7579</a> General Network Element Constraint Encoding June 2015</span>
When a label is advertised as available for priorities 0, 1, ... M,
it may be used by any LSP of priority N <= M. When a label is in use
by an LSP of priority M, it may be used by an LSP of priority N < M
if LSP preemption is supported.
When a label was initially advertised as available for priorities 0,
1, ... M and once a label is used for an LSP at a priority, say N
(N<=M), then this label is advertised as available for 0, ... N-1.
Note that the Label Set Field is defined in <a href="#section-2.6">Section 2.6</a>. See
<a href="#appendix-A.5">Appendix A.5</a> for illustrative examples.
<span class="h3"><a class="selflink" id="section-2.5" href="#section-2.5">2.5</a>. Shared Backup Labels Field</span>
The Shared Backup Labels Field consists of priority flags and a
single variable-length Label Set Field as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| PRI | Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Label Set Field |
: :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Where:
PRI (Priority Flags, 8 bits): A bitmap used to indicate which
priorities are being advertised. The bitmap is in ascending order,
with the leftmost bit representing priority level 0 (i.e., the
highest) and the rightmost bit representing priority level 7 (i.e.,
the lowest). A bit MUST be set (1) corresponding to each priority
represented in the sub-TLV and MUST NOT be set (0) when the
corresponding priority is not represented. If a label is available
at priority M, it MUST be advertised available at each priority N <
M. At least one priority level MUST be advertised.
The same LSP setup and preemption rules specified in <a href="#section-2.4">Section 2.4</a>
apply here.
Note that Label Set Field is defined in <a href="#section-2.6">Section 2.6</a>. See
<a href="#appendix-A.5">Appendix A.5</a> for illustrative examples.
<span class="grey">Bernstein, et al. Standards Track [Page 13]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-14" ></span>
<span class="grey"><a href="./rfc7579">RFC 7579</a> General Network Element Constraint Encoding June 2015</span>
<span class="h3"><a class="selflink" id="section-2.6" href="#section-2.6">2.6</a>. Label Set Field</span>
The Label Set Field is used within the Available Labels Field or the
Shared Backup Labels Field, defined in Sections <a href="#section-2.4">2.4</a> and <a href="#section-2.5">2.5</a>,
respectively. It is also used within SIMPLE_LABEL, LABEL_RANGE, or
SIMPLE_LABEL & CHANNEL_COUNT, defined in Sections <a href="#section-2.2.1">2.2.1</a>, <a href="#section-2.2.3">2.2.3</a>, and
2.2.4, respectively.
The general format for a label set is given below. This format uses
the Action concept from [<a href="./rfc3471" title=""Generalized Multi-Protocol Label Switching (GMPLS) Signaling Functional Description"">RFC3471</a>] with an additional Action to define
a "bitmap" type of label set. Labels are variable in length.
Action-specific fields are defined in Sections <a href="#section-2.6.1">2.6.1</a>, <a href="#section-2.6.2">2.6.2</a>, and
2.6.3.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Action| Num Labels = N | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Base Label |
| . . . |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| (Action-specific fields) |
| . . . . |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Action:
0 - Inclusive List
1 - Exclusive List
2 - Inclusive Range
3 - Exclusive Range
4 - Bitmap Set
Num Labels is generally the number of labels. It has a specific
meaning depending on the Action value. See Sections <a href="#section-2.6.1">2.6.1</a>, <a href="#section-2.6.2">2.6.2</a>,
and 2.6.3 for details. Num Labels is a 12-bit integer.
Length is the length in bytes of the entire Label Set Field.
<span class="grey">Bernstein, et al. Standards Track [Page 14]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-15" ></span>
<span class="grey"><a href="./rfc7579">RFC 7579</a> General Network Element Constraint Encoding June 2015</span>
<span class="h4"><a class="selflink" id="section-2.6.1" href="#section-2.6.1">2.6.1</a>. Inclusive/Exclusive Label Lists</span>
For inclusive/exclusive lists (Action = 0 or 1), the wavelength set
format is:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|0 or 1 | Num Labels = 2 | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Label #1 |
| . . . |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
: :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Label #N |
| . . . |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Label #1 is the first label to be included/excluded, and Label #N is
the last label to be included/excluded. Num Labels MUST match
with N.
<span class="h4"><a class="selflink" id="section-2.6.2" href="#section-2.6.2">2.6.2</a>. Inclusive/Exclusive Label Ranges</span>
For inclusive/exclusive ranges (Action = 2 or 3), the label set
format is:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|2 or 3 | Num Labels | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Start Label |
| . . . |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| End Label |
| . . . |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Note that Start Label is the first label in the range to be
included/excluded, and End Label is the last label in the same range.
Num Labels MUST be two.
<span class="grey">Bernstein, et al. Standards Track [Page 15]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-16" ></span>
<span class="grey"><a href="./rfc7579">RFC 7579</a> General Network Element Constraint Encoding June 2015</span>
<span class="h4"><a class="selflink" id="section-2.6.3" href="#section-2.6.3">2.6.3</a>. Bitmap Label Set</span>
For bitmap sets (Action = 4), the label set format is:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 4 | Num Labels | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Base Label |
| . . . |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Bitmap Word #1 (Lowest numerical labels) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
: :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Bitmap Word #N (Highest numerical labels) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
In this case, Num Labels tells us the number of labels represented by
the bitmap. Each bit in the bitmap represents a particular label
with a value of 1/0 indicating whether or not the label is in the
set. Bit position zero represents the lowest label and corresponds
to the base label, while each succeeding bit position represents the
next label logically above the previous.
The size of the bitmap is Num Labels bits, but the bitmap is padded
out to a full multiple of 32 bits so that the field is a multiple of
four bytes. Bits that do not represent labels SHOULD be set to zero
and MUST be ignored.
<span class="h2"><a class="selflink" id="section-3" href="#section-3">3</a>. Security Considerations</span>
This document defines protocol-independent encodings for WSON
information and does not introduce any security issues.
However, other documents that make use of these encodings within
protocol extensions need to consider the issues and risks associated
with inspection, interception, modification, or spoofing of any of
this information. It is expected that any such documents will
describe the necessary security measures to provide adequate
protection. A general discussion on security in GMPLS networks can
be found in [<a href="./rfc5920" title=""Security Framework for MPLS and GMPLS Networks"">RFC5920</a>].
<span class="grey">Bernstein, et al. Standards Track [Page 16]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-17" ></span>
<span class="grey"><a href="./rfc7579">RFC 7579</a> General Network Element Constraint Encoding June 2015</span>
<span class="h2"><a class="selflink" id="section-4" href="#section-4">4</a>. IANA Considerations</span>
This document provides general protocol-independent information
encodings. There is no IANA allocation request for the information
elements defined in this document. IANA allocation requests will be
addressed in protocol-specific documents based on the encodings
defined here.
<span class="h2"><a class="selflink" id="section-5" href="#section-5">5</a>. References</span>
<span class="h3"><a class="selflink" id="section-5.1" href="#section-5.1">5.1</a>. Normative References</span>
[<a id="ref-G.694.1">G.694.1</a>] ITU-T, "Spectral grids for WDM applications: DWDM
frequency grid", ITU-T Recommendation G.694.1, February
2012.
[<a id="ref-RFC2119">RFC2119</a>] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", <a href="https://www.rfc-editor.org/bcp/bcp14">BCP 14</a>, <a href="./rfc2119">RFC 2119</a>,
DOI 10.17487/RFC2119, March 1997,
<<a href="http://www.rfc-editor.org/info/rfc2119">http://www.rfc-editor.org/info/rfc2119</a>>.
[<a id="ref-RFC2863">RFC2863</a>] McCloghrie, K. and F. Kastenholz, "The Interfaces Group
MIB", <a href="./rfc2863">RFC 2863</a>, DOI 10.17487/RFC2863, June 2000,
<<a href="http://www.rfc-editor.org/info/rfc2863">http://www.rfc-editor.org/info/rfc2863</a>>.
[<a id="ref-RFC3209">RFC3209</a>] Awduche, D., Berger, L., Gan, D., Li, T., Srinivasan, V.,
and G. Swallow, "RSVP-TE: Extensions to RSVP for LSP
Tunnels", <a href="./rfc3209">RFC 3209</a>, DOI 10.17487/RFC3209, December 2001,
<<a href="http://www.rfc-editor.org/info/rfc3209">http://www.rfc-editor.org/info/rfc3209</a>>.
[<a id="ref-RFC3471">RFC3471</a>] Berger, L., Ed., "Generalized Multi-Protocol Label
Switching (GMPLS) Signaling Functional Description",
<a href="./rfc3471">RFC 3471</a>, DOI 10.17487/RFC3471, January 2003,
<<a href="http://www.rfc-editor.org/info/rfc3471">http://www.rfc-editor.org/info/rfc3471</a>>.
[<a id="ref-RFC4202">RFC4202</a>] Kompella, K., Ed., and Y. Rekhter, Ed., "Routing
Extensions in Support of Generalized Multi-Protocol Label
Switching (GMPLS)", <a href="./rfc4202">RFC 4202</a>, DOI 10.17487/RFC4202,
October 2005, <<a href="http://www.rfc-editor.org/info/rfc4202">http://www.rfc-editor.org/info/rfc4202</a>>.
[<a id="ref-RFC4203">RFC4203</a>] Kompella, K., Ed., and Y. Rekhter, Ed., "OSPF Extensions
in Support of Generalized Multi-Protocol Label Switching
(GMPLS)", <a href="./rfc4203">RFC 4203</a>, DOI 10.17487/RFC4203, October 2005,
<<a href="http://www.rfc-editor.org/info/rfc4203">http://www.rfc-editor.org/info/rfc4203</a>>.
<span class="grey">Bernstein, et al. Standards Track [Page 17]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-18" ></span>
<span class="grey"><a href="./rfc7579">RFC 7579</a> General Network Element Constraint Encoding June 2015</span>
[<a id="ref-RFC5307">RFC5307</a>] Kompella, K., Ed., and Y. Rekhter, Ed., "IS-IS Extensions
in Support of Generalized Multi-Protocol Label Switching
(GMPLS)", <a href="./rfc5307">RFC 5307</a>, DOI 10.17487/RFC5307, October 2008,
<<a href="http://www.rfc-editor.org/info/rfc5307">http://www.rfc-editor.org/info/rfc5307</a>>.
[<a id="ref-RFC6205">RFC6205</a>] Otani, T., Ed., and D. Li, Ed., "Generalized Labels for
Lambda-Switch-Capable (LSC) Label Switching Routers",
<a href="./rfc6205">RFC 6205</a>, DOI 10.17487/RFC6205, March 2011,
<<a href="http://www.rfc-editor.org/info/rfc6205">http://www.rfc-editor.org/info/rfc6205</a>>.
<span class="h3"><a class="selflink" id="section-5.2" href="#section-5.2">5.2</a>. Informative References</span>
[<a id="ref-RFC5440">RFC5440</a>] Vasseur, JP., Ed., and JL. Le Roux, Ed., "Path Computation
Element (PCE) Communication Protocol (PCEP)", <a href="./rfc5440">RFC 5440</a>,
DOI 10.17487/RFC5440, March 2009,
<<a href="http://www.rfc-editor.org/info/rfc5440">http://www.rfc-editor.org/info/rfc5440</a>>.
[<a id="ref-RFC5920">RFC5920</a>] Fang, L., Ed., "Security Framework for MPLS and GMPLS
Networks", <a href="./rfc5920">RFC 5920</a>, DOI 10.17487/RFC5920, July 2010,
<<a href="http://www.rfc-editor.org/info/rfc5920">http://www.rfc-editor.org/info/rfc5920</a>>.
[<a id="ref-RFC6163">RFC6163</a>] Lee, Y., Ed., Bernstein, G., Ed., and W. Imajuku,
"Framework for GMPLS and Path Computation Element (PCE)
Control of Wavelength Switched Optical Networks (WSONs)",
<a href="./rfc6163">RFC 6163</a>, DOI 10.17487/RFC6163, April 2011,
<<a href="http://www.rfc-editor.org/info/rfc6163">http://www.rfc-editor.org/info/rfc6163</a>>.
[<a id="ref-RFC7446">RFC7446</a>] Lee, Y., Ed., Bernstein, G., Ed., Li, D., and W. Imajuku,
"Routing and Wavelength Assignment Information Model for
Wavelength Switched Optical Networks", <a href="./rfc7446">RFC 7446</a>,
DOI 10.17487/RFC7446, February 2015,
<<a href="http://www.rfc-editor.org/info/rfc7446">http://www.rfc-editor.org/info/rfc7446</a>>.
[<a id="ref-Switch">Switch</a>] Bernstein, G., Lee, Y., Gavler, A., and J. Martensson,
"Modeling WDM Wavelength Switching Systems for Use in
GMPLS and Automated Path Computation", Journal of Optical
Communications and Networking, Volume 1, Issue 1,
pp. 187-195, June 2009.
<span class="grey">Bernstein, et al. Standards Track [Page 18]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-19" ></span>
<span class="grey"><a href="./rfc7579">RFC 7579</a> General Network Element Constraint Encoding June 2015</span>
<span class="h2"><a class="selflink" id="appendix-A" href="#appendix-A">Appendix A</a>. Encoding Examples</span>
This appendix contains examples of the general encoding extensions
applied to some simple ROADM network elements and links.
<span class="h3"><a class="selflink" id="appendix-A.1" href="#appendix-A.1">A.1</a>. Link Set Field</span>
Suppose that we wish to describe a set of input ports that have link
local identifiers numbered 3 through 42. In the Link Set Field, we
set Action = 1 to denote an inclusive range, Dir = 1 to denote input
links, and Format = 0 to denote link local identifiers. Thus, we
have:
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Action=1 |0 1|0 0 0 0 0 0| Length = 12 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Local Identifier = #3 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Local Identifier = #42 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
<span class="h3"><a class="selflink" id="appendix-A.2" href="#appendix-A.2">A.2</a>. Label Set Field</span>
In this example, we use a 40-channel C-Band Dense Wavelength Division
Multiplexing (DWDM) system with 100 GHz spacing with lowest frequency
192.0 THz (1561.4 nm) and highest frequency 195.9 THz (1530.3 nm).
These frequencies correspond to n = -11 and n = 28, respectively.
Now suppose the following channels are available:
Frequency (THz) n Value bitmap position
--------------------------------------------------
192.0 -11 0
192.5 -6 5
193.1 0 11
193.9 8 19
194.0 9 20
195.2 21 32
195.8 27 38
<span class="grey">Bernstein, et al. Standards Track [Page 19]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-20" ></span>
<span class="grey"><a href="./rfc7579">RFC 7579</a> General Network Element Constraint Encoding June 2015</span>
Using the label format defined in [<a href="./rfc6205" title=""Generalized Labels for Lambda-Switch-Capable (LSC) Label Switching Routers"">RFC6205</a>], with the Grid value set
to indicate an ITU-T A/2 [<a href="#ref-G.694.1" title=""Spectral grids for WDM applications: DWDM frequency grid"">G.694.1</a>] DWDM grid and C.S. set to indicate
100 GHz, this lambda bitmap set would then be encoded as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 4 | Num Labels = 40 | Length = 16 bytes |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Grid | C.S. | Reserved | n for lowest frequency = -11 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|1 0 0 0 0 0 1 0| Not used in 40 Channel system (all zeros) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
To encode this same set as an inclusive list, we would have:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 0 | Num Labels = 7 | Length = 32 bytes |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Grid | C.S. | Reserved | n for lowest frequency = -11 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Grid | C.S. | Reserved | n for lowest frequency = -6 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Grid | C.S. | Reserved | n for lowest frequency = -0 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Grid | C.S. | Reserved | n for lowest frequency = 8 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Grid | C.S. | Reserved | n for lowest frequency = 9 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Grid | C.S. | Reserved | n for lowest frequency = 21 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Grid | C.S. | Reserved | n for lowest frequency = 27 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
<span class="h3"><a class="selflink" id="appendix-A.3" href="#appendix-A.3">A.3</a>. Connectivity Matrix</span>
Suppose we have a typical 2-degree 40-channel ROADM. In addition to
its two line side ports, it has 80 add and 80 drop ports. The figure
below illustrates how a typical 2-degree ROADM system that works with
bidirectional fiber pairs is a highly asymmetrical system composed of
two unidirectional ROADM subsystems.
<span class="grey">Bernstein, et al. Standards Track [Page 20]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-21" ></span>
<span class="grey"><a href="./rfc7579">RFC 7579</a> General Network Element Constraint Encoding June 2015</span>
(Tributary) Ports #3-#42
Input added to Output dropped from
West Line Output East Line Input
vvvvv ^^^^^
| |||.| | |||.|
+-----| |||.|--------| |||.|------+
| +----------------------+ |
| | | |
Output | | Unidirectional ROADM | | Input
-----------------+ | | +--------------
<=====================| |===================<
-----------------+ +----------------------+ +--------------
| |
Port #1 | | Port #2
(West Line Side) | |(East Line Side)
-----------------+ +----------------------+ +--------------
>=====================| |===================>
-----------------+ | Unidirectional ROADM | +--------------
Input | | | | Output
| | _ | |
| +----------------------+ |
+-----| |||.|--------| |||.|------+
| |||.| | |||.|
vvvvv ^^^^^
(Tributary) Ports #43-#82
Output dropped from Input added to
West Line Input East Line Output
Referring to the figure above, we see that the Input direction of
ports #3-#42 (add ports) can only connect to the output on port #1
while the Input side of port #2 (line side) can only connect to the
output on ports #3-#42 (drop) and to the output on port #1 (pass
through). Similarly, the input direction of ports #43-#82 can only
connect to the output on port #2 (line) while the input direction of
port #1 can only connect to the output on ports #43-#82 (drop) or
port #2 (pass through). We can now represent this potential
connectivity matrix as follows. This representation uses only 29
32-bit words.
<span class="grey">Bernstein, et al. Standards Track [Page 21]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-22" ></span>
<span class="grey"><a href="./rfc7579">RFC 7579</a> General Network Element Constraint Encoding June 2015</span>
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Conn = 1 | MatrixID | Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Note: adds to line
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Action=1 |0 1|0 0 0 0 0 0| Length = 12 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Local Identifier = #3 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Local Identifier = #42 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Action=0 |1 0|0 0 0 0 0 0| Length = 8 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Local Identifier = #1 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Note: line to drops
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Action=0 |0 1|0 0 0 0 0 0| Length = 8 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Local Identifier = #2 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Action=1 |1 0|0 0 0 0 0 0| Length = 12 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Local Identifier = #3 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Local Identifier = #42 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Note: line to line
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Action=0 |0 1|0 0 0 0 0 0| Length = 8 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Local Identifier = #2 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Action=0 |1 0|0 0 0 0 0 0| Length = 8 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Local Identifier = #1 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Note: adds to line
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Action=1 |0 1|0 0 0 0 0 0| Length = 12 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Local Identifier = #43 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Local Identifier = #82 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Action=0 |1 0|0 0 0 0 0 0| Length = 8 |
<span class="grey">Bernstein, et al. Standards Track [Page 22]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-23" ></span>
<span class="grey"><a href="./rfc7579">RFC 7579</a> General Network Element Constraint Encoding June 2015</span>
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Local Identifier = #2 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Note: line to drops
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Action=0 |0 1|0 0 0 0 0 0|| Length = 8 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Local Identifier = #1 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Action=1 |1 0|0 0 0 0 0 0| Length = 12 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Local Identifier = #43 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Local Identifier = #82 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Note: line to line
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Action=0 |0 1|0 0 0 0 0 0| Length = 8 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Local Identifier = #1 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Action=0 |1 0|0 0 0 0 0 0| Length = 8 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Local Identifier = #2 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
<span class="grey">Bernstein, et al. Standards Track [Page 23]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-24" ></span>
<span class="grey"><a href="./rfc7579">RFC 7579</a> General Network Element Constraint Encoding June 2015</span>
<span class="h3"><a class="selflink" id="appendix-A.4" href="#appendix-A.4">A.4</a>. Connectivity Matrix with Bidirectional Symmetry</span>
If one has the ability to renumber the ports of the previous example
as shown in the next figure, then we can take advantage of the
bidirectional symmetry and use bidirectional encoding of the
connectivity matrix. Note that we set dir=bidirectional in the Link
Set Fields.
(Tributary)
Ports #3-42 Ports #43-82
West Line Output East Line Input
vvvvv ^^^^^
| |||.| | |||.|
+-----| |||.|--------| |||.|------+
| +----------------------+ |
| | | |
Output | | Unidirectional ROADM | | Input
-----------------+ | | +--------------
<=====================| |===================<
-----------------+ +----------------------+ +--------------
| |
Port #1 | | Port #2
(West Line Side) | |(East Line Side)
-----------------+ +----------------------+ +--------------
>=====================| |===================>
-----------------+ | Unidirectional ROADM | +--------------
Input | | | | Output
| | _ | |
| +----------------------+ |
+-----| |||.|--------| |||.|------+
| |||.| | |||.|
vvvvv ^^^^^
Ports #3-#42 Ports #43-82
Output dropped from Input added to
West Line Input East Line Output
<span class="grey">Bernstein, et al. Standards Track [Page 24]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-25" ></span>
<span class="grey"><a href="./rfc7579">RFC 7579</a> General Network Element Constraint Encoding June 2015</span>
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Conn = 1 | MatrixID | Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Note: Add/Drop #3-42 to Line side #1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Action=1 |0 0|0 0 0 0 0 0| Length = 12 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Local Identifier = #3 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Local Identifier = #42 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Action=0 |0 0|0 0 0 0 0 0| Length = 8 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Local Identifier = #1 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Note: line #2 to add/drops #43-82
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Action=0 |0 0|0 0 0 0 0 0| Length = 8 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Local Identifier = #2 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Action=1 |0 0|0 0 0 0 0 0| Length = 12 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Local Identifier = #43 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Local Identifier = #82 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Note: line to line
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Action=0 |0 0|0 0 0 0 0 0| Length = 8 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Local Identifier = #1 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Action=0 |0 0|0 0 0 0 0 0| Length = 8 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Local Identifier = #2 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
<span class="grey">Bernstein, et al. Standards Track [Page 25]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-26" ></span>
<span class="grey"><a href="./rfc7579">RFC 7579</a> General Network Element Constraint Encoding June 2015</span>
<span class="h3"><a class="selflink" id="appendix-A.5" href="#appendix-A.5">A.5</a>. Priority Flags in Available/Shared Backup Labels</span>
If one wants to make a set of labels (indicated by Label Set Field
#1) available only for the highest priority level (Priority Level 0)
while allowing a set of labels (indicated by Label Set Field #2) to
be available to all priority levels, the following encoding will
express such need.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|1 0 0 0 0 0 0 0| Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Label Set Field #1 |
: :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|1 1 1 1 1 1 1 1| Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Label Set Field #2 |
: :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
<span class="grey">Bernstein, et al. Standards Track [Page 26]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-27" ></span>
<span class="grey"><a href="./rfc7579">RFC 7579</a> General Network Element Constraint Encoding June 2015</span>
Contributors
Diego Caviglia
Ericsson
Via A. Negrone 1/A 16153
Genoa
Italy
Phone: +39 010 600 3736
EMail: diego.caviglia@ericsson.com
Anders Gavler
Acreo AB
Electrum 236
SE - 164 40 Kista
Sweden
EMail: Anders.Gavler@acreo.se
Jonas Martensson
Acreo AB
Electrum 236
SE - 164 40 Kista
Sweden
EMail: Jonas.Martensson@acreo.se
Itaru Nishioka
NEC Corp.
1753 Simonumabe
Nakahara-ku, Kawasaki, Kanagawa 211-8666
Japan
Phone: +81 44 396 3287
EMail: i-nishioka@cb.jp.nec.com
Rao Rajan
Infinera
EMail: rrao@infinera.com
Giovanni Martinelli
Cisco
EMail: giomarti@cisco.com
Remi Theillaud
Marben
EMail: remi.theillaud@marben-products.com
<span class="grey">Bernstein, et al. Standards Track [Page 27]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-28" ></span>
<span class="grey"><a href="./rfc7579">RFC 7579</a> General Network Element Constraint Encoding June 2015</span>
Authors' Addresses
Greg M. Bernstein (editor)
Grotto Networking
Fremont, California
United States
Phone: (510) 573-2237
EMail: gregb@grotto-networking.com
Young Lee (editor)
Huawei Technologies
1700 Alma Drive, Suite 100
Plano, TX 75075
United States
Phone: (972) 509-5599 (x2240)
EMail: ylee@huawei.com
Dan Li
Huawei Technologies Co., Ltd.
F3-5-B R&D Center, Huawei Base,
Bantian, Longgang District
Shenzhen 518129
China
Phone: +86-755-28973237
EMail: danli@huawei.com
Wataru Imajuku
NTT Network Innovation Labs
1-1 Hikari-no-oka, Yokosuka, Kanagawa
Japan
Phone: +81-(46) 859-4315
EMail: imajuku.wataru@lab.ntt.co.jp
Jianrui Han
Huawei Technologies Co., Ltd.
F3-5-B R&D Center, Huawei Base,
Bantian, Longgang District
Shenzhen 518129
China
Phone: +86-755-28972916
EMail: hanjianrui@huawei.com
Bernstein, et al. Standards Track [Page 28]
</pre>
|