1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
|
<pre>Internet Engineering Task Force (IETF) C. Zhou
Request for Comments: 7678 Huawei Technologies
Category: Standards Track T. Taylor
ISSN: 2070-1721 PT Taylor Consulting
Q. Sun
China Telecom
M. Boucadair
France Telecom
October 2015
<span class="h1">Attribute-Value Pairs for Provisioning Customer Equipment Supporting</span>
<span class="h1">IPv4-Over-IPv6 Transitional Solutions</span>
Abstract
During the transition from IPv4 to IPv6, customer equipment may have
to support one of the various transition methods that have been
defined for carrying IPv4 packets over IPv6. This document
enumerates the information that needs to be provisioned on a customer
edge router to support a list of transition techniques based on
tunneling IPv4 in IPv6, with a view to defining reusable components
for a reasonable transition path between these techniques. To the
extent that the provisioning is done dynamically, Authentication,
Authorization, and Accounting (AAA) support is needed to provide the
information to the network server responsible for passing the
information to the customer equipment. This document specifies
Diameter (<a href="./rfc6733">RFC 6733</a>) Attribute-Value Pairs (AVPs) to be used for that
purpose.
Status of This Memo
This is an Internet Standards Track document.
This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Further information on
Internet Standards is available in <a href="./rfc5741#section-2">Section 2 of RFC 5741</a>.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
<a href="http://www.rfc-editor.org/info/rfc7678">http://www.rfc-editor.org/info/rfc7678</a>.
<span class="grey">Zhou, et al. Standards Track [Page 1]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-2" ></span>
<span class="grey"><a href="./rfc7678">RFC 7678</a> AVPs for 4over6 CPE Provisioning October 2015</span>
Copyright Notice
Copyright (c) 2015 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to <a href="https://www.rfc-editor.org/bcp/bcp78">BCP 78</a> and the IETF Trust's Legal
Provisions Relating to IETF Documents
(<a href="http://trustee.ietf.org/license-info">http://trustee.ietf.org/license-info</a>) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
<span class="grey">Zhou, et al. Standards Track [Page 2]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-3" ></span>
<span class="grey"><a href="./rfc7678">RFC 7678</a> AVPs for 4over6 CPE Provisioning October 2015</span>
Table of Contents
<a href="#section-1">1</a>. Introduction . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-4">4</a>
<a href="#section-1.1">1.1</a>. Requirements Language . . . . . . . . . . . . . . . . . . <a href="#page-5">5</a>
2. Description of the Parameters Required by Each Transition
Method . . . . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-5">5</a>
<a href="#section-2.1">2.1</a>. Parameters for Dual-Stack Lite (DS-Lite) . . . . . . . . <a href="#page-6">6</a>
<a href="#section-2.2">2.2</a>. Lightweight 4over6 (lw4o6) . . . . . . . . . . . . . . . <a href="#page-6">6</a>
<a href="#section-2.3">2.3</a>. Port Set Specification . . . . . . . . . . . . . . . . . <a href="#page-7">7</a>
2.4. Mapping of Address and Port with Encapsulation (MAP-E) . 7
<a href="#section-2.5">2.5</a>. Parameters for Multicast . . . . . . . . . . . . . . . . <a href="#page-8">8</a>
<a href="#section-2.6">2.6</a>. Summary and Discussion . . . . . . . . . . . . . . . . . <a href="#page-9">9</a>
<a href="#section-3">3</a>. Attribute-Value Pair Definitions . . . . . . . . . . . . . . <a href="#page-9">9</a>
<a href="#section-3.1">3.1</a>. IP-Prefix-Length AVP . . . . . . . . . . . . . . . . . . <a href="#page-10">10</a>
<a href="#section-3.2">3.2</a>. Border-Router-Name AVP . . . . . . . . . . . . . . . . . <a href="#page-10">10</a>
<a href="#section-3.3">3.3</a>. 64-Multicast-Attributes AVP . . . . . . . . . . . . . . . <a href="#page-10">10</a>
<a href="#section-3.3.1">3.3.1</a>. ASM-mPrefix64 AVP . . . . . . . . . . . . . . . . . . <a href="#page-11">11</a>
<a href="#section-3.3.2">3.3.2</a>. SSM-mPrefix64 AVP . . . . . . . . . . . . . . . . . . <a href="#page-11">11</a>
<a href="#section-3.3.3">3.3.3</a>. Delegated-IPv6-Prefix AVP as uPrefix64 . . . . . . . <a href="#page-12">12</a>
<a href="#section-3.4">3.4</a>. Tunnel-Source-Pref-Or-Addr AVP . . . . . . . . . . . . . <a href="#page-12">12</a>
<a href="#section-3.4.1">3.4.1</a>. Delegated-IPv6-Prefix as the IPv6 Binding Prefix . . <a href="#page-12">12</a>
<a href="#section-3.4.2">3.4.2</a>. Tunnel-Source-IPv6-Address AVP . . . . . . . . . . . <a href="#page-12">12</a>
<a href="#section-3.5">3.5</a>. Port-Set-Identifier . . . . . . . . . . . . . . . . . . . <a href="#page-13">13</a>
<a href="#section-3.6">3.6</a>. Lw4o6-Binding AVP . . . . . . . . . . . . . . . . . . . . <a href="#page-13">13</a>
<a href="#section-3.6.1">3.6.1</a>. Lw4o6-External-IPv4-Addr AVP . . . . . . . . . . . . <a href="#page-14">14</a>
<a href="#section-3.7">3.7</a>. MAP-E-Attributes . . . . . . . . . . . . . . . . . . . . <a href="#page-14">14</a>
<a href="#section-3.8">3.8</a>. MAP-Mesh-Mode . . . . . . . . . . . . . . . . . . . . . . <a href="#page-15">15</a>
<a href="#section-3.9">3.9</a>. MAP-Mapping-Rule . . . . . . . . . . . . . . . . . . . . <a href="#page-15">15</a>
<a href="#section-3.9.1">3.9.1</a>. Rule-IPv4-Addr-Or-Prefix AVP . . . . . . . . . . . . <a href="#page-16">16</a>
<a href="#section-3.9.2">3.9.2</a>. Rule-IPv6-Prefix AVP . . . . . . . . . . . . . . . . <a href="#page-16">16</a>
<a href="#section-3.9.3">3.9.3</a>. EA-Field-Length AVP . . . . . . . . . . . . . . . . . <a href="#page-17">17</a>
<a href="#section-4">4</a>. Attribute-Value Pair Flag Rules . . . . . . . . . . . . . . . <a href="#page-18">18</a>
<a href="#section-5">5</a>. IANA Considerations . . . . . . . . . . . . . . . . . . . . . <a href="#page-19">19</a>
<a href="#section-6">6</a>. Security Considerations . . . . . . . . . . . . . . . . . . . <a href="#page-19">19</a>
<a href="#section-6.1">6.1</a>. Man-In-The-Middle (MITM) Attacks . . . . . . . . . . . . <a href="#page-19">19</a>
<a href="#section-6.2">6.2</a>. Privacy . . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-20">20</a>
<a href="#section-7">7</a>. References . . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-20">20</a>
<a href="#section-7.1">7.1</a>. Normative References . . . . . . . . . . . . . . . . . . <a href="#page-20">20</a>
<a href="#section-7.2">7.2</a>. Informative References . . . . . . . . . . . . . . . . . <a href="#page-21">21</a>
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-22">22</a>
Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-23">23</a>
<span class="grey">Zhou, et al. Standards Track [Page 3]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-4" ></span>
<span class="grey"><a href="./rfc7678">RFC 7678</a> AVPs for 4over6 CPE Provisioning October 2015</span>
<span class="h2"><a class="selflink" id="section-1" href="#section-1">1</a>. Introduction</span>
A number of transition techniques have been defined to allow IPv4
packets to pass between hosts and IPv4 networks over an intervening
IPv6 network while minimizing the number of public IPv4 addresses
that need to be consumed by the hosts. Different operators will
deploy different technologies, and sometimes one operator will use
more than one technology depending on what is supported by the
available equipment and upon other factors both technical and
economic.
Each technique requires the provisioning of some subscriber-specific
information on the customer edge device. The provisioning may be by
DHCPv6 [<a href="./rfc3315" title=""Dynamic Host Configuration Protocol for IPv6 (DHCPv6)"">RFC3315</a>] or by some other method. This document is
indifferent to the specific provisioning technique used but assumes a
deployment in which that information is managed by AAA
(Authentication, Authorization, and Accounting) servers. It further
assumes that this information is delivered to intermediate network
nodes for onward provisioning using the Diameter protocol [<a href="./rfc6733" title=""Diameter Base Protocol"">RFC6733</a>].
As described below, in the particular case where the Lightweight
4over6 (lw4o6) [<a href="./rfc7596" title=""Lightweight 4over6: An Extension to the Dual- Stack Lite Architecture"">RFC7596</a>] transition method has been deployed, per-
subscriber-site information almost identical to that passed to the
subscriber site [<a href="./rfc7598" title=""DHCPv6 Options for Configuration of Softwire Address and Port-Mapped Clients"">RFC7598</a>] also needs to be delivered to the border
router serving that site. The Diameter protocol may be used for this
purpose too.
This document analyzes the information required to configure the
customer edge equipment for the following set of transition methods:
o Dual-Stack Lite (DS-Lite) [<a href="./rfc6333" title=""Dual- Stack Lite Broadband Deployments Following IPv4 Exhaustion"">RFC6333</a>],
o Lightweight 4over6 (lw4o6) [<a href="./rfc7596" title=""Lightweight 4over6: An Extension to the Dual- Stack Lite Architecture"">RFC7596</a>], and
o Mapping of Address and Port with Encapsulation (MAP-E) [<a href="./rfc7597" title=""Mapping of Address and Port with Encapsulation (MAP-E)"">RFC7597</a>].
[<a id="ref-DSLITE-MULTICAST">DSLITE-MULTICAST</a>] specifies a generic solution for delivery of IPv4
multicast services to IPv4 clients over an IPv6 multicast network.
The solution was developed with DS-Lite in mind but it is not limited
to DS-Lite. As such, it applies also for lw4o6 and MAP-E. This
document analyzes the information required to configure the customer
edge equipment for the support of multicast in the context of DS-
Lite, MAP-E, and lw4o6 in particular.
On the basis of those analyses, it specifies a number of Attribute-
Value Pairs (AVPs) to allow the necessary subscriber-site-specific
configuration information to be carried in Diameter.
<span class="grey">Zhou, et al. Standards Track [Page 4]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-5" ></span>
<span class="grey"><a href="./rfc7678">RFC 7678</a> AVPs for 4over6 CPE Provisioning October 2015</span>
This document doesn't specify any new commands or Application IDs.
The specified AVPs could be used for any Diameter application
suitable for provisioning.
<span class="h3"><a class="selflink" id="section-1.1" href="#section-1.1">1.1</a>. Requirements Language</span>
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [<a href="./rfc2119" title=""Key words for use in RFCs to Indicate Requirement Levels"">RFC2119</a>].
The abbreviation CPE stands for Customer Premise Equipment. It
denotes the equipment at the customer edge that terminates the
customer end of an IPv6 transitional tunnel. This will usually be a
router but could be a host directly connected to the network. In
some documents (e.g., [<a href="./rfc7597" title=""Mapping of Address and Port with Encapsulation (MAP-E)"">RFC7597</a>]), this functional entity is called CE
(Customer Edge).
The term "tunnel source address" is used to denote the IPv6 source
address used in the outer header of packets sent from the CPE through
an lw4o6 transitional tunnel to the border router.
<span class="h2"><a class="selflink" id="section-2" href="#section-2">2</a>. Description of the Parameters Required by Each Transition Method</span>
This section reviews the parameters that need to be provisioned for
each of the transition methods listed above. This enumeration
provides the justification for the AVPs defined in the next section.
A means is required to indicate which transition method(s) a given
subscriber wants to use. The approach taken in this document is to
specify Grouped AVPs specific to lw4o6 and MAP-E. The operator can
control which of these two transition methods a given subscriber uses
by ensuring that AAA passes only the Grouped AVP relevant to that
method. A Grouped AVP is unnecessary for DS-Lite since AAA has only
to provide the Fully Qualified Domain Name (FQDN) of the DS-Lite
Address Family Transition Router (AFTR) (see <a href="#section-2.1">Section 2.1</a>). Hence,
when no Grouped AVP is provided either for lw4o6 or MAP-E and only
the AFTR's FQDN is present, this indicates that the subscriber
equipment will use the DS-Lite transition method. Provisioning of
multicast is an orthogonal activity since it is independent of the
transition method.
<span class="grey">Zhou, et al. Standards Track [Page 5]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-6" ></span>
<span class="grey"><a href="./rfc7678">RFC 7678</a> AVPs for 4over6 CPE Provisioning October 2015</span>
<span class="h3"><a class="selflink" id="section-2.1" href="#section-2.1">2.1</a>. Parameters for Dual-Stack Lite (DS-Lite)</span>
DS-Lite is documented in [<a href="./rfc6333" title=""Dual- Stack Lite Broadband Deployments Following IPv4 Exhaustion"">RFC6333</a>]. The Basic Bridging BroadBand
(B4) element at the customer premises needs to discover the IPv6
address of the AFTR (border router). For the reasons discussed in
<a href="#section-3.2">Section 3.2</a>, the AAA server provisions the B4 element with the AFTR's
FQDN that is passed to a B4's IP resolution library. The AFTR's FQDN
is contained in the Border-Router-Name AVP (see <a href="#section-3.2">Section 3.2</a>).
The B4 element could also be configured with the IPv4 address of the
B4 interface facing the tunnel, with valid values from 192.0.0.2 to
192.0.0.7 and the default value of 192.0.0.2 in the absence of
provisioning. Provisioning such information through AAA is
problematic because it is most likely used in a case where multiple
B4 instances occupy the same device. This document therefore assumes
that the B4 interface address is determined by other means than AAA
(implementation dependent or static assignment).
<span class="h3"><a class="selflink" id="section-2.2" href="#section-2.2">2.2</a>. Lightweight 4over6 (lw4o6)</span>
Lightweight 4over6 (lw4o6) is documented in [<a href="./rfc7596" title=""Lightweight 4over6: An Extension to the Dual- Stack Lite Architecture"">RFC7596</a>]. Lw4o6
requires four items to be provisioned to the customer equipment:
o an IPv6 address of the border router.
o an IPv6 prefix used by the CPE to construct the tunnel source
address. In the terminology of [<a href="./rfc7596" title=""Lightweight 4over6: An Extension to the Dual- Stack Lite Architecture"">RFC7596</a>], this is the IPv6
Binding Prefix.
o an IPv4 address to be used on the external side of the CPE.
o if the IPv4 address is shared, a specification of the port set the
subscriber site is allowed to use. Please see the description in
<a href="#section-2.3">Section 2.3</a>. For lw4o6, all three of the parameters 'a', 'k', and
the Port Set Identifier (PSID) described in that section are
required. The default value of the offset parameter 'a' is 0.
As discussed in <a href="./rfc7596#section-4">Section 4 of [RFC7596]</a>, it is necessary to
synchronize this configuration with corresponding per-subscriber
configuration at the border router. The border router information
consists of the same public IPv4 address and port set parameters that
are passed to the CPE, bound together with the full /128 IPv6 address
(not just the Binding Prefix) configured as the tunnel source address
at the CPE.
<span class="grey">Zhou, et al. Standards Track [Page 6]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-7" ></span>
<span class="grey"><a href="./rfc7678">RFC 7678</a> AVPs for 4over6 CPE Provisioning October 2015</span>
<span class="h3"><a class="selflink" id="section-2.3" href="#section-2.3">2.3</a>. Port Set Specification</span>
When an external IPv4 address is shared, lw4o6 and MAP-E restrict the
CPE to use of a subset of all available ports on the external side.
Both transition methods use the algorithm defined in <a href="./rfc7597#appendix-B">Appendix B of
[RFC7597]</a> to derive the values of the port numbers in the port set.
This algorithm features three parameters, describing the positioning
and value of the PSID within each port number of the generated set:
o an offset 'a' from the beginning of the port number to the first
bit of the PSID;
o the length 'k' of the PSID within the port number, in bits; and
o the value of the PSID itself.
<span class="h3"><a class="selflink" id="section-2.4" href="#section-2.4">2.4</a>. Mapping of Address and Port with Encapsulation (MAP-E)</span>
Mapping of Address and Port with Encapsulation (MAP-E) is described
in [<a href="./rfc7597" title=""Mapping of Address and Port with Encapsulation (MAP-E)"">RFC7597</a>]. MAP-E requires the provisioning of the following per-
subscriber information at the customer edge device:
o the IPv6 address of one or more border routers, or in MAP-E
terminology, MAP-E border relays.
o the unique end-user IPv6 prefix for the customer edge device.
This may be provided by AAA or acquired by other means.
o the Basic Mapping Rule for the customer edge device. This
includes the following parameters:
* the Rule IPv6 prefix and length.
* the Rule IPv4 prefix and length. A prefix length of 0
indicates that the entire IPv4 address or prefix is coded in
the Extended Address (EA) bits of the end-user IPv6 prefix
rather than in the mapping rule.
* the number of EA bits included in the end-user IPv6 prefix.
* port set parameters giving the set of ports the CPE is allowed
to use when the IPv4 address is shared. Please see the
description of these parameters in <a href="#section-2.3">Section 2.3</a>. At a minimum,
the offset parameter 'a' is required. For MAP-E, this has the
default value 6. The parameters 'k' and PSID are needed if
they cannot be derived from the mapping rule information and
the EA bits (final case of <a href="./rfc7597#section-5.2">Section 5.2 of [RFC7597]</a>).
<span class="grey">Zhou, et al. Standards Track [Page 7]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-8" ></span>
<span class="grey"><a href="./rfc7678">RFC 7678</a> AVPs for 4over6 CPE Provisioning October 2015</span>
o whether the device is to operate in Mesh or Hub-and-Spoke mode.
o in mesh mode only, zero or more Forwarding Mapping Rules described
by the same set of parameters as the Basic Mapping Rule.
As indicated in the first bullet in <a href="./rfc7597#section-5">Section 5 of [RFC7597]</a>, a MAP CPE
can be provisioned with multiple end-user IPv6 prefixes, each
associated with its own Basic Mapping Rule. This does not change the
basic requirement for representation of the corresponding information
in the form of Diameter AVPs, but adds a potential requirement for
multiple instances of this information to be present in the Diameter
message, differing in the value of the end-user IPv6 prefix (in
contrast to the Forward Mapping Rule instances).
The border router needs to be configured with the superset of the
Mapping Rules passed to the customer sites it serves. Since this
requirement does not require direct coordination with CPE
configuration in the way lw4o6 does, it is out of scope of the
present document. However, the AVPs defined here may be useful if a
separate Diameter application is used to configure the border router.
<span class="h3"><a class="selflink" id="section-2.5" href="#section-2.5">2.5</a>. Parameters for Multicast</span>
[<a id="ref-DSLITE-MULTICAST">DSLITE-MULTICAST</a>] specifies a generic solution for delivery of IPv4
multicast services to IPv4 clients over an IPv6 multicast network.
In particular, the solution can be deployed in a DS-Lite context but
is also adaptable to lw4o6 and MAP-E. For example, [<a href="#ref-PREFIX-OPTION">PREFIX-OPTION</a>]
specifies how DHCPv6 [<a href="./rfc3315" title=""Dynamic Host Configuration Protocol for IPv6 (DHCPv6)"">RFC3315</a>] can be used to provision multicast-
related information. The following lists the multicast-related
information that needs to be provisioned:
o ASM-mPrefix64: the IPv6 multicast prefix to be used to synthesize
the IPv4-embedded IPv6 addresses of the multicast groups in the
Any-Source Multicast (ASM) mode. This is achieved by
concatenating the ASM-mPrefix64 and an IPv4 multicast address; the
IPv4 multicast address is inserted in the last 32 bits of the
IPv4-embedded IPv6 multicast address.
o SSM-mPrefix64: the IPv6 multicast prefix to be used to synthesize
the IPv4-embedded IPv6 addresses of the multicast groups in the
Source-Specific Multicast (SSM) [<a href="./rfc4607" title=""Source-Specific Multicast for IP"">RFC4607</a>] mode. This is achieved
by concatenating the SSM-mPrefix64 and an IPv4 multicast address;
the IPv4 multicast address is inserted in the last 32 bits of the
IPv4-embedded IPv6 multicast address.
<span class="grey">Zhou, et al. Standards Track [Page 8]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-9" ></span>
<span class="grey"><a href="./rfc7678">RFC 7678</a> AVPs for 4over6 CPE Provisioning October 2015</span>
o uPrefix64: the IPv6 unicast prefix to be used in SSM mode for
constructing the IPv4-embedded IPv6 addresses representing the
IPv4 multicast sources in the IPv6 domain. uPrefix64 may also be
used to extract the IPv4 address from the received multicast data
flows. The address mapping follows the guidelines documented in
[<a href="./rfc6052" title=""IPv6 Addressing of IPv4/IPv6 Translators"">RFC6052</a>].
<span class="h3"><a class="selflink" id="section-2.6" href="#section-2.6">2.6</a>. Summary and Discussion</span>
There are two items that are common to the different transition
methods, and the corresponding AVPs to carry them can be reused:
o a representation of the IPv6 address of a border router.
o a set of prefixes for delivery of multicast services to IPv4
clients over an IPv6 multicast network.
[<a id="ref-RFC6519">RFC6519</a>] sets a precedent for representation of the IPv6 address of
a border router as an FQDN. This can be dereferenced to one or more
IP addresses by the provisioning system before being passed to the
customer equipment or left as an FQDN as it is in [<a href="./rfc6334" title=""Dynamic Host Configuration Protocol for IPv6 (DHCPv6) Option for Dual-Stack Lite"">RFC6334</a>].
The remaining requirements are transition-method specific:
o for lw4o6, a representation of a binding between (1) either the
IPv6 Binding Prefix or a full /128 IPv6 address, (2) a public IPv4
address, and (3) (if the IPv4 address is shared) a port set
identifier.
o for MAP-E, a representation of the unique end-user IPv6 prefix for
the CPE, if not provided by other means.
o for MAP-E, a representation of a Mapping Rule.
o for MAP-E, an indication of whether Mesh mode or Hub-and-Spoke
mode is to be used.
<span class="h2"><a class="selflink" id="section-3" href="#section-3">3</a>. Attribute-Value Pair Definitions</span>
This section provides the specifications for the AVPs needed to meet
the requirements summarized in <a href="#section-2.6">Section 2.6</a>.
<span class="grey">Zhou, et al. Standards Track [Page 9]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-10" ></span>
<span class="grey"><a href="./rfc7678">RFC 7678</a> AVPs for 4over6 CPE Provisioning October 2015</span>
<span class="h3"><a class="selflink" id="section-3.1" href="#section-3.1">3.1</a>. IP-Prefix-Length AVP</span>
The IP-Prefix-Length AVP (AVP code 632) is of type Unsigned32. It
provides the length of an IPv4 or IPv6 prefix. Valid values are from
0 to 32 for IPv4 and from 0 to 128 for IPv6. Tighter limits are
given below for particular contexts of use of this AVP.
Note that the IP-Prefix-Length AVP is only relevant when associated
with an IP-Address AVP in a Grouped AVP.
<span class="h3"><a class="selflink" id="section-3.2" href="#section-3.2">3.2</a>. Border-Router-Name AVP</span>
Following on the precedent set by [<a href="./rfc6334" title=""Dynamic Host Configuration Protocol for IPv6 (DHCPv6) Option for Dual-Stack Lite"">RFC6334</a>] and [<a href="./rfc6519" title=""RADIUS Extensions for Dual- Stack Lite"">RFC6519</a>], this
document identifies a border router using an FQDN rather than an
address. The Border-Router-Name AVP (AVP Code 633) is of type
OctetString. The FQDN encoding MUST follow the Name Syntax defined
in [<a href="./rfc1035" title=""Domain names - implementation and specification"">RFC1035</a>], [<a href="./rfc1123" title=""Requirements for Internet Hosts - Application and Support"">RFC1123</a>], and [<a href="./rfc2181" title=""Clarifications to the DNS Specification"">RFC2181</a>] and are represented in ASCII
form. Note, if Internationalized Domain Names (IDNs) are used,
A-labels defined in [<a href="./rfc5891" title=""Internationalized Domain Names in Applications (IDNA): Protocol"">RFC5891</a>] must be used (see <a href="./rfc6733#appendix-D">Appendix D of
[RFC6733]</a>).
<span class="h3"><a class="selflink" id="section-3.3" href="#section-3.3">3.3</a>. 64-Multicast-Attributes AVP</span>
The 64-Multicast-Attributes AVP (AVP Code 634) is of type Grouped.
It contains the multicast-related IPv6 prefixes needed for providing
IPv4 multicast over IPv6 using DS-Lite, MAP-E, or lw4o6, as mentioned
in <a href="#section-2.5">Section 2.5</a>.
The syntax is shown in Figure 1.
64-Multicast-Attributes ::= < AVP Header: 634 >
[ ASM-mPrefix64 ]
[ SSM-mPrefix64 ]
[ Delegated-IPv6-Prefix ]
*[ AVP ]
Figure 1: 64-Multicast-Attributes AVP
The 64-Multicast-Attributes AVP MUST include the ASM-mPrefix64 AVP or
the SSM-mPrefix64 AVP, and it MAY include both.
The Delegated-IPv6-Prefix AVP MUST be present when the SSM-mPrefix64
AVP is present. The Delegated-IPv6-Prefix AVP MAY be present when
the ASM-mPrefix64 AVP is present.
<span class="grey">Zhou, et al. Standards Track [Page 10]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-11" ></span>
<span class="grey"><a href="./rfc7678">RFC 7678</a> AVPs for 4over6 CPE Provisioning October 2015</span>
<span class="h4"><a class="selflink" id="section-3.3.1" href="#section-3.3.1">3.3.1</a>. ASM-mPrefix64 AVP</span>
The ASM-mPrefix64 AVP (AVP Code 635) conveys the value of ASM-
mPrefix64 as mentioned in <a href="#section-2.5">Section 2.5</a>. The ASM-mPrefix64 AVP is of
type Grouped, as shown in Figure 2.
ASM-mPrefix64 ::= < AVP Header: 635 >
{ IP-Address }
{ IP-Prefix-Length }
*[ AVP ]
Figure 2: ASM-mPrefix64 AVP
IP-Address (AVP code 518) is defined in [<a href="./rfc5777" title=""Traffic Classification and Quality of Service (QoS) Attributes for Diameter"">RFC5777</a>] and is of type
Address. Within the ASM-mPrefix64 AVP, it provides the value of an
IPv6 prefix. The AddressType field in IP-Address MUST have value 2
(IPv6). The conveyed multicast IPv6 prefix MUST belong to the ASM
range. Unused bits in IP-Address beyond the actual prefix MUST be
set to zeroes by the sender and ignored by the receiver.
The IP-Prefix-Length AVP (AVP code 632) provides the actual length of
the prefix contained in the IP-Address AVP. Within the ASM-mPrefix64
AVP, valid values of the IP-Prefix-Length AVP are from 24 to 96.
<span class="h4"><a class="selflink" id="section-3.3.2" href="#section-3.3.2">3.3.2</a>. SSM-mPrefix64 AVP</span>
The SSM-mPrefix64 AVP (AVP Code 636) conveys the value of SSM-
mPrefix64 as mentioned in <a href="#section-2.5">Section 2.5</a>. The SSM-mPrefix64 AVP is of
type Grouped, as shown in Figure 3.
SSM-mPrefix64 ::= < AVP Header: 636 >
{ IP-Address }
{ IP-Prefix-Length }
*[ AVP ]
Figure 3: SSM-mPrefix64 AVP
IP-Address (AVP code 518) provides the value of an IPv6 prefix. The
AddressType field in IP-Address MUST have value 2 (IPv6). The
conveyed multicast IPv6 prefix MUST belong to the SSM range. Unused
bits in IP-Address beyond the actual prefix MUST be set to zeroes by
the sender and ignored by the receiver.
The IP-Prefix-Length AVP (AVP code 632) provides the actual length of
the prefix contained in the IP-Address AVP.
<span class="grey">Zhou, et al. Standards Track [Page 11]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-12" ></span>
<span class="grey"><a href="./rfc7678">RFC 7678</a> AVPs for 4over6 CPE Provisioning October 2015</span>
<span class="h4"><a class="selflink" id="section-3.3.3" href="#section-3.3.3">3.3.3</a>. Delegated-IPv6-Prefix AVP as uPrefix64</span>
Within the 64-Multicast-Attributes AVP, the Delegated-IPv6-Prefix AVP
(AVP Code 123) conveys the value of uPrefix64, a unicast IPv6 prefix,
as mentioned in <a href="#section-2.5">Section 2.5</a>. The Delegated-IPv6-Prefix AVP is
defined in [<a href="./rfc4818" title=""RADIUS Delegated-IPv6-Prefix Attribute"">RFC4818</a>]. As specified by [<a href="./rfc6052" title=""IPv6 Addressing of IPv4/IPv6 Translators"">RFC6052</a>], the value in the
Prefix-Length field MUST be one of 32, 48, 56, 64, or 96.
<span class="h3"><a class="selflink" id="section-3.4" href="#section-3.4">3.4</a>. Tunnel-Source-Pref-Or-Addr AVP</span>
The Tunnel-Source-Pref-Or-Addr AVP (AVP Code 637) conveys either the
IPv6 Binding Prefix or the tunnel source address on the CPE, as
described in <a href="#section-2.2">Section 2.2</a>. The Tunnel-Source-Pref-Or-Addr AVP is of
type Grouped with syntax as shown in Figure 4. The Tunnel-Source-
Pref-Or-Addr AVP MUST contain either the Delegated-IPv6-Prefix AVP or
the Tunnel-Source-IPv6-Address AVP, not both.
Tunnel-Source-Pref-Or-Addr ::= < AVP Header: 637 >
[ Delegated-IPv6-Prefix ]
[ Tunnel-Source-IPv6-Address ]
*[ AVP ]
Figure 4: Tunnel-Source-Pref-Or-Addr AVP
This AVP is defined separately from the lw4o6-Binding AVP (which
includes it) to provide flexibility in the transport of the tunnel
source address from the provisioning system to AAA while also
supporting the provision of a complete binding to the lw4o6 border
router.
<span class="h4"><a class="selflink" id="section-3.4.1" href="#section-3.4.1">3.4.1</a>. Delegated-IPv6-Prefix as the IPv6 Binding Prefix</span>
The Delegated-IPv6-Prefix AVP (AVP code 123) is of type OctetString
and is defined in [<a href="./rfc4818" title=""RADIUS Delegated-IPv6-Prefix Attribute"">RFC4818</a>]. Within the Tunnel-Source-Pref-Or-Addr
AVP, it conveys the IPv6 Binding Prefix assigned to the CPE. Valid
values in the Prefix-Length field are from 0 to 128 (full address).
<span class="h4"><a class="selflink" id="section-3.4.2" href="#section-3.4.2">3.4.2</a>. Tunnel-Source-IPv6-Address AVP</span>
The Tunnel-Source-IPv6-Address AVP (AVP code 638) is of type Address.
It provides the address assigned by the CPE to identify its local end
of an lw4o6 tunnel. The AddressType field in this AVP MUST be set to
2 (IPv6).
<span class="grey">Zhou, et al. Standards Track [Page 12]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-13" ></span>
<span class="grey"><a href="./rfc7678">RFC 7678</a> AVPs for 4over6 CPE Provisioning October 2015</span>
<span class="h3"><a class="selflink" id="section-3.5" href="#section-3.5">3.5</a>. Port-Set-Identifier</span>
The Port-Set-Identifier AVP (AVP Code 639) is a structured
OctetString with four octets of data, hence a total AVP length of 12.
The description of the structure that follows refers to the
parameters described in <a href="#section-2.3">Section 2.3</a> (see Figure 5).
o The first (high-order) octet is the Offset field. It is
interpreted as an 8-bit unsigned integer giving the offset 'a'
from the beginning of a port number to the beginning of the PSID
to which that port belongs. Valid values are from 0 to 15.
o The next octet, the PSIDLength, is also interpreted as an 8-bit
unsigned integer and gives the length 'k' in bits of the PSID.
Valid values are from 0 to (16 - a). A value of 0 indicates that
the PSID is not present (probable case for MAP-E, see
<a href="#section-2.4">Section 2.4</a>), and the PSIDValue field MUST be ignored.
o The final two octets contain the PSIDValue field. They give the
value of the PSID itself, right justified within the field. That
is, the value of the PSID occupies the 'k' lowest-order bits of
the PSIDValue field.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Offset | Length | PSID Value |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 5: Port Set
<span class="h3"><a class="selflink" id="section-3.6" href="#section-3.6">3.6</a>. Lw4o6-Binding AVP</span>
The Lw4o6-Binding AVP (AVP Code 640) is of type Grouped. It contains
the elements of configuration that constitute the binding between an
lw4o6 tunnel and IPv4 packets sent through that tunnel, as described
in <a href="#section-2.2">Section 2.2</a>.
Lw4o6-Binding ::= < AVP Header: 640 >
{ Tunnel-Source-Pref-Or-Addr }
{ Lw4o6-External-IPv4-Addr }
[ Port-Set-Identifier ]
*[ AVP ]
Figure 6: Lw4o6-Binding AVP
<span class="grey">Zhou, et al. Standards Track [Page 13]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-14" ></span>
<span class="grey"><a href="./rfc7678">RFC 7678</a> AVPs for 4over6 CPE Provisioning October 2015</span>
The Tunnel-Source-Pref-Or-Addr AVP is defined in <a href="#section-3.4">Section 3.4</a> and
provides either the Binding Prefix or the full IPv6 tunnel source
address.
The Lw4o6-External-IPv4-Addr AVP is defined in <a href="#section-3.6.1">Section 3.6.1</a>.
The Port-Set-Identifier AVP is defined in <a href="#section-3.5">Section 3.5</a>. It identifies
the specific set of ports assigned to the lw4o6 tunnel when the IPv4
address is being shared.
<span class="h4"><a class="selflink" id="section-3.6.1" href="#section-3.6.1">3.6.1</a>. Lw4o6-External-IPv4-Addr AVP</span>
The Lw4o6-External-IPv4-Addr AVP (AVP Code 641) uses the Address
derived data format defined in <a href="./rfc6733#section-4.3.1">Section 4.3.1 of [RFC6733]</a>. It
provides the CPE's external IPv4 address within the lw4o6 tunnel
associated with the given binding. The AddressType field MUST be set
to 1 (IPv4), and the total length of the AVP MUST be 14 octets.
<span class="h3"><a class="selflink" id="section-3.7" href="#section-3.7">3.7</a>. MAP-E-Attributes</span>
The MAP-E-Attributes AVP (AVP Code 642) is of type Grouped. It
contains the configuration data identified in <a href="#section-2.4">Section 2.4</a> for all of
the mapping rules (Basic and Forwarding) in a single MAP domain.
Multiple instances of this AVP will be present if the CPE belongs to
multiple MAP domains.
MAP-E-Attributes ::= < AVP Header: 642 >
1*{ Border-Router-Name }
1*{ MAP-Mapping-Rule }
[ MAP-Mesh-Mode ]
[ Delegated-IPv6-Prefix ]
*[ AVP ]
Figure 7: MAP-E-Attributes AVP
The Border-Router-Name AVP is defined in <a href="#section-3.2">Section 3.2</a>. It provides
the FQDN of a MAP border relay at the edge of the MAP domain to which
the containing MAP-E-Attributes AVP relates. At least one instance
of this AVP MUST be present.
The MAP-Mapping-Rule AVP is defined in <a href="#section-3.9">Section 3.9</a>. At least one
instance of this AVP MUST be present. If the MAP-E domain supports
Mesh mode (indicated by the presence of the MAP-Mesh-Mode AVP),
additional MAP-Mapping-Rule instances MAY be present. If the MAP-E
domain is operating in Hub-and-Spoke mode; additional MAP-Mapping-
Rule instances MUST NOT be present.
<span class="grey">Zhou, et al. Standards Track [Page 14]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-15" ></span>
<span class="grey"><a href="./rfc7678">RFC 7678</a> AVPs for 4over6 CPE Provisioning October 2015</span>
The MAP-Mesh-Mode AVP is defined in <a href="#section-3.8">Section 3.8</a>. The absence of the
Mesh mode indicator attribute indicates that the CPE is required to
operate in Hub-and-Spoke mode.
The Delegated-IPv6-Prefix AVP (AVP Code 123) provides the end-user
IPv6 prefix assigned to the CPE for the MAP domain to which the
containing MAP-E-Attributes AVP relates. The AVP is defined in
[<a href="./rfc4818" title=""RADIUS Delegated-IPv6-Prefix Attribute"">RFC4818</a>]. Valid values of the Prefix-Length field range from 0 to
128.
The Delegated-IPv6-Prefix AVP is optional because, depending on
deployment, the end-user IPv6 prefix may be provided by AAA or by
other means. If multiple instances of the MAP-E-Attributes AVP
containing the Delegated-IPv6-Prefix AVP are present, each instance
of the latter MUST have a different value.
<span class="h3"><a class="selflink" id="section-3.8" href="#section-3.8">3.8</a>. MAP-Mesh-Mode</span>
The MAP-Mesh-Mode AVP (AVP Code 643) is of type Enumerated and
indicates whether the CPE has to operate in Mesh or Hub-and-Spoke
mode when using MAP-E. The following values are supported:
0 MESH
1 HUB_AND_SPOKE
The absence of the Mesh mode indicator attribute indicates that the
CPE is required to operate in Hub-and-Spoke mode.
<span class="h3"><a class="selflink" id="section-3.9" href="#section-3.9">3.9</a>. MAP-Mapping-Rule</span>
The MAP-Mapping-Rule AVP (AVP Code 644) is of type Grouped and is
used only in conjunction with MAP-based transition methods. Mapping
rules are required both by the MAP border relay and by the CPE. The
components of the MAP-Mapping-Rule AVP provide the contents of a
mapping rule as described in <a href="#section-2.4">Section 2.4</a>.
The syntax of the MAP-Mapping-Rule AVP is as follows:
MAP-Mapping-Rule ::= < AVP Header: 644 >
{ Rule-IPv4-Addr-Or-Prefix }
{ Rule-IPv6-Prefix }
{ EA-Field-Length }
{ Port-Set-Identifier }
*[ AVP ]
Figure 8: MAP-Mapping-Rule AVP
<span class="grey">Zhou, et al. Standards Track [Page 15]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-16" ></span>
<span class="grey"><a href="./rfc7678">RFC 7678</a> AVPs for 4over6 CPE Provisioning October 2015</span>
The Rule-IPv4-Addr-Or-Prefix, Rule-IPv6-Prefix, EA-Field-Length, and
Port-Set-Identifier AVPs MUST all be present.
The Port-Set-Identifier AVP provides information to identify the
specific set of ports assigned to the CPE. For more information, see
Sections <a href="#section-2.4">2.4</a> and <a href="#section-2.3">2.3</a>. The Port-Set-Identifier AVP is defined in
<a href="#section-3.5">Section 3.5</a>.
<span class="h4"><a class="selflink" id="section-3.9.1" href="#section-3.9.1">3.9.1</a>. Rule-IPv4-Addr-Or-Prefix AVP</span>
The Rule-IPv4-Addr-Or-Prefix AVP (AVP Code 645) conveys the Rule IPv4
prefix and length as described in <a href="#section-2.4">Section 2.4</a>. The Rule-IPv4-Addr-
Or-Prefix AVP is of type Grouped, as shown in Figure 9.
Rule-IPv4-Addr-Or-Prefix ::= < AVP Header: 645 >
{ IP-Address }
{ IP-Prefix-Length }
*[ AVP ]
Figure 9: Rule-IPv4-Addr-Or-Prefix AVP
IP-Address (AVP code 518) is defined in [<a href="./rfc5777" title=""Traffic Classification and Quality of Service (QoS) Attributes for Diameter"">RFC5777</a>] and is of type
Address. Within the Rule-IPv4-Addr-Or-Prefix AVP, it provides the
value of a unicast IPv4 address or prefix. The AddressType field in
IP-Address MUST have value 1 (IPv4). Unused bits in IP-Address
beyond the actual prefix MUST be set to zeroes by the sender and
ignored by the receiver.
The IP-Prefix-Length AVP (AVP code 632) provides the actual length of
the prefix contained in the IP-Address AVP. Within the Rule-IPv4-
Addr-Or-Prefix AVP, valid values of the IP-Prefix-Length AVP are from
0 to 32 (full address) based on the different cases identified in
<a href="./rfc7597#section-5.2">Section 5.2 of [RFC7597]</a>.
<span class="h4"><a class="selflink" id="section-3.9.2" href="#section-3.9.2">3.9.2</a>. Rule-IPv6-Prefix AVP</span>
The Rule-IPv6-Prefix AVP (AVP Code 646) conveys the Rule IPv6 prefix
and length as described in <a href="#section-2.4">Section 2.4</a>. The Rule-IPv6-Prefix AVP is
of type Grouped, as shown in Figure 10.
Rule-IPv6-Prefix ::= < AVP Header: 646 >
{ IP-Address }
{ IP-Prefix-Length }
*[ AVP ]
Figure 10: Rule-IPv6-Prefix AVP
<span class="grey">Zhou, et al. Standards Track [Page 16]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-17" ></span>
<span class="grey"><a href="./rfc7678">RFC 7678</a> AVPs for 4over6 CPE Provisioning October 2015</span>
IP-Address (AVP code 518) is defined in [<a href="./rfc5777" title=""Traffic Classification and Quality of Service (QoS) Attributes for Diameter"">RFC5777</a>] and is of type
Address. Within the Rule-IPv6-Prefix AVP, it provides the value of a
unicast IPv6 prefix. The AddressType field in IP-Address MUST have
value 2 (IPv6). Unused bits in IP-Address beyond the actual prefix
MUST be set to zeroes by the sender and ignored by the receiver.
The IP-Prefix-Length AVP (AVP code 632) provides the actual length of
the prefix contained in the IP-Address AVP. Within the Rule-
IPv6-Prefix AVP, the minimum valid prefix length is 0. The maximum
value is bounded by the length of the end-user IPv6 prefix associated
with the mapping rule, if present in the form of the Delegated-
IPv6-Prefix AVP in the enclosing MAP-E-Attributes AVP. Otherwise,
the maximum value is 128.
<span class="h4"><a class="selflink" id="section-3.9.3" href="#section-3.9.3">3.9.3</a>. EA-Field-Length AVP</span>
The EA-Field-Length AVP (AVP Code 647) is of type Unsigned32. Valid
values range from 0 to 48. See <a href="./rfc7597#section-5.2">Section 5.2 of [RFC7597]</a> for a
description of the use of this parameter in deriving IPv4 address and
port number configuration.
<span class="grey">Zhou, et al. Standards Track [Page 17]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-18" ></span>
<span class="grey"><a href="./rfc7678">RFC 7678</a> AVPs for 4over6 CPE Provisioning October 2015</span>
<span class="h2"><a class="selflink" id="section-4" href="#section-4">4</a>. Attribute-Value Pair Flag Rules</span>
+---------+
|AVP flag |
|rules |
+----+----+
AVP Section | |MUST|
Attribute Name Code Defined Value Type |MUST| NOT|
+-------------------------------------------------------+----+----+
|IP-Prefix-Length 632 3.1 Unsigned32 | | V |
+-------------------------------------------------------+----+----+
|Border-Router-Name 633 3.2 OctetString | | V |
+-------------------------------------------------------+----+----+
|64-Multicast-Attributes 634 3.3 Grouped | | V |
+-------------------------------------------------------+----+----+
|ASM-mPrefix64 635 3.3.1 Grouped | | V |
+-------------------------------------------------------+----+----+
|SSM-mPrefix64 636 3.3.2 Grouped | | V |
+-------------------------------------------------------+----+----+
|Tunnel-Source-Pref-Or-Addr 637 3.4 Grouped | | V |
+-------------------------------------------------------+----+----+
|Tunnel-Source-IPv6-Address 638 3.4.2 Address | | V |
+-------------------------------------------------------+----+----+
|Port-Set-Identifier 639 3.5 OctetString | | V |
+-------------------------------------------------------+----+----+
|Lw4o6-Binding 640 3.6 Grouped | | V |
+-------------------------------------------------------+----+----+
|Lw4o6-External-IPv4-Addr 641 3.6.1 Address | | V |
+-------------------------------------------------------+----+----+
|MAP-E-Attributes 642 3.7 Grouped | | V |
+-------------------------------------------------------+----+----+
|MAP-Mesh-Mode 643 3.8 Enumerated | | V |
+-------------------------------------------------------+----+----+
|MAP-Mapping-Rule 644 3.9 Grouped | | V |
+-------------------------------------------------------+----+----+
|Rule-IPv4-Addr-Or-Prefix 645 3.9.1 Grouped | | V |
+-------------------------------------------------------+----+----+
|Rule-IPv6-Prefix 646 3.9.2 Grouped | | V |
+-------------------------------------------------------+----+----+
|EA-Field-Length 647 3.9.3 Unsigned32 | | V |
+-------------------------------------------------------+----+----+
As described in the Diameter base protocol [<a href="./rfc6733" title=""Diameter Base Protocol"">RFC6733</a>], the M-bit usage
for a given AVP in a given command may be defined by the application.
<span class="grey">Zhou, et al. Standards Track [Page 18]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-19" ></span>
<span class="grey"><a href="./rfc7678">RFC 7678</a> AVPs for 4over6 CPE Provisioning October 2015</span>
<span class="h2"><a class="selflink" id="section-5" href="#section-5">5</a>. IANA Considerations</span>
IANA has registered the following Diameter AVP codes in the "AVP
Codes" registry:
+------+----------------------------+---------------+
| Code | Attribute Name | Reference |
+------+----------------------------+---------------+
| 632 | IP-Prefix-Length | This document |
| 633 | Border-Router-Name | This document |
| 634 | 64-Multicast-Attributes | This document |
| 635 | ASM-mPrefix64 | This document |
| 636 | SSM-mPrefix64 | This document |
| 637 | Tunnel-Source-Pref-Or-Addr | This document |
| 638 | Tunnel-Source-IPv6-Address | This document |
| 639 | Port-Set-Identifier | This document |
| 640 | Lw4o6-Binding | This document |
| 641 | Lw4o6-External-IPv4-Addr | This document |
| 642 | MAP-E-Attributes | This document |
| 643 | MAP-Mesh-Mode | This document |
| 644 | MAP-Mapping-Rule | This document |
| 645 | Rule-IPv4-Addr-Or-Prefix | This document |
| 646 | Rule-IPv6-Prefix | This document |
| 647 | EA-Field-Length | This document |
+------+----------------------------+---------------+
Table 1: Diameter AVP Codes
<span class="h2"><a class="selflink" id="section-6" href="#section-6">6</a>. Security Considerations</span>
<span class="h3"><a class="selflink" id="section-6.1" href="#section-6.1">6.1</a>. Man-In-The-Middle (MITM) Attacks</span>
The AVPs defined in this document face two threats, both dependent on
man-in-the-middle (MITM) attacks on the Diameter delivery path.
The first threat is denial-of-service (DoS) through modification of
the AVP contents leading to misconfiguration; e.g., a subscriber may
fail to access its connectivity service if an invalid IP address was
configured, the subscriber's traffic can be intercepted by a
misbehaving node if a fake Border Node has been configured, etc.
The second threat is that Diameter security is currently provided on
a hop-by-hop basis (see <a href="./rfc6733#section-2.2">Section 2.2 of [RFC6733]</a>). At the time of
writing, the Diameter end-to-end security problem has not been
solved, so MITM attacks by Diameter peers along the path are
possible. Diameter-related security considerations are discussed in
<a href="./rfc6733#section-13">Section 13 of [RFC6733]</a>.
<span class="grey">Zhou, et al. Standards Track [Page 19]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-20" ></span>
<span class="grey"><a href="./rfc7678">RFC 7678</a> AVPs for 4over6 CPE Provisioning October 2015</span>
<span class="h3"><a class="selflink" id="section-6.2" href="#section-6.2">6.2</a>. Privacy</span>
Given that the AVPs defined in this document reveal privacy-related
information (e.g., subscriber addresses) that can be used for
tracking proposes, all these AVPs are considered to be security
sensitive. Therefore, the considerations discussed in <a href="./rfc6733#section-13.3">Section 13.3
of [RFC6733]</a> MUST be followed for Diameter messages containing these
AVPs.
<span class="h2"><a class="selflink" id="section-7" href="#section-7">7</a>. References</span>
<span class="h3"><a class="selflink" id="section-7.1" href="#section-7.1">7.1</a>. Normative References</span>
[<a id="ref-RFC1035">RFC1035</a>] Mockapetris, P., "Domain names - implementation and
specification", STD 13, <a href="./rfc1035">RFC 1035</a>, DOI 10.17487/RFC1035,
November 1987, <<a href="http://www.rfc-editor.org/info/rfc1035">http://www.rfc-editor.org/info/rfc1035</a>>.
[<a id="ref-RFC1123">RFC1123</a>] Braden, R., Ed., "Requirements for Internet Hosts -
Application and Support", STD 3, <a href="./rfc1123">RFC 1123</a>,
DOI 10.17487/RFC1123, October 1989,
<<a href="http://www.rfc-editor.org/info/rfc1123">http://www.rfc-editor.org/info/rfc1123</a>>.
[<a id="ref-RFC2119">RFC2119</a>] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", <a href="https://www.rfc-editor.org/bcp/bcp14">BCP 14</a>, <a href="./rfc2119">RFC 2119</a>,
DOI 10.17487/RFC2119, March 1997,
<<a href="http://www.rfc-editor.org/info/rfc2119">http://www.rfc-editor.org/info/rfc2119</a>>.
[<a id="ref-RFC2181">RFC2181</a>] Elz, R. and R. Bush, "Clarifications to the DNS
Specification", <a href="./rfc2181">RFC 2181</a>, DOI 10.17487/RFC2181, July 1997,
<<a href="http://www.rfc-editor.org/info/rfc2181">http://www.rfc-editor.org/info/rfc2181</a>>.
[<a id="ref-RFC4818">RFC4818</a>] Salowey, J. and R. Droms, "RADIUS Delegated-IPv6-Prefix
Attribute", <a href="./rfc4818">RFC 4818</a>, DOI 10.17487/RFC4818, April 2007,
<<a href="http://www.rfc-editor.org/info/rfc4818">http://www.rfc-editor.org/info/rfc4818</a>>.
[<a id="ref-RFC5777">RFC5777</a>] Korhonen, J., Tschofenig, H., Arumaithurai, M., Jones, M.,
Ed., and A. Lior, "Traffic Classification and Quality of
Service (QoS) Attributes for Diameter", <a href="./rfc5777">RFC 5777</a>,
DOI 10.17487/RFC5777, February 2010,
<<a href="http://www.rfc-editor.org/info/rfc5777">http://www.rfc-editor.org/info/rfc5777</a>>.
[<a id="ref-RFC5891">RFC5891</a>] Klensin, J., "Internationalized Domain Names in
Applications (IDNA): Protocol", <a href="./rfc5891">RFC 5891</a>,
DOI 10.17487/RFC5891, August 2010,
<<a href="http://www.rfc-editor.org/info/rfc5891">http://www.rfc-editor.org/info/rfc5891</a>>.
<span class="grey">Zhou, et al. Standards Track [Page 20]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-21" ></span>
<span class="grey"><a href="./rfc7678">RFC 7678</a> AVPs for 4over6 CPE Provisioning October 2015</span>
[<a id="ref-RFC6333">RFC6333</a>] Durand, A., Droms, R., Woodyatt, J., and Y. Lee, "Dual-
Stack Lite Broadband Deployments Following IPv4
Exhaustion", <a href="./rfc6333">RFC 6333</a>, DOI 10.17487/RFC6333, August 2011,
<<a href="http://www.rfc-editor.org/info/rfc6333">http://www.rfc-editor.org/info/rfc6333</a>>.
[<a id="ref-RFC6733">RFC6733</a>] Fajardo, V., Ed., Arkko, J., Loughney, J., and G. Zorn,
Ed., "Diameter Base Protocol", <a href="./rfc6733">RFC 6733</a>,
DOI 10.17487/RFC6733, October 2012,
<<a href="http://www.rfc-editor.org/info/rfc6733">http://www.rfc-editor.org/info/rfc6733</a>>.
[<a id="ref-RFC7596">RFC7596</a>] Cui, Y., Sun, Q., Boucadair, M., Tsou, T., Lee, Y., and I.
Farrer, "Lightweight 4over6: An Extension to the Dual-
Stack Lite Architecture", <a href="./rfc7596">RFC 7596</a>, DOI 10.17487/RFC7596,
July 2015, <<a href="http://www.rfc-editor.org/info/rfc7596">http://www.rfc-editor.org/info/rfc7596</a>>.
[<a id="ref-RFC7597">RFC7597</a>] Troan, O., Ed., Dec, W., Li, X., Bao, C., Matsushima, S.,
Murakami, T., and T. Taylor, Ed., "Mapping of Address and
Port with Encapsulation (MAP-E)", <a href="./rfc7597">RFC 7597</a>,
DOI 10.17487/RFC7597, July 2015,
<<a href="http://www.rfc-editor.org/info/rfc7597">http://www.rfc-editor.org/info/rfc7597</a>>.
<span class="h3"><a class="selflink" id="section-7.2" href="#section-7.2">7.2</a>. Informative References</span>
[<a id="ref-DSLITE-MULTICAST">DSLITE-MULTICAST</a>]
Qin, J., Boucadair, M., Jacquenet, C., Lee, Y., and Q.
Wang, "Delivery of IPv4 Multicast Services to IPv4 Clients
over an IPv6 Multicast Network", Work in Progress,
<a href="./draft-ietf-softwire-dslite-multicast-10">draft-ietf-softwire-dslite-multicast-10</a>, August 2015.
[<a id="ref-PREFIX-OPTION">PREFIX-OPTION</a>]
Boucadair, M., Qin, J., Tsou, T., and X. Deng, "DHCPv6
Option for IPv4-Embedded Multicast and Unicast IPv6
Prefixes", Work in Progress, <a href="./draft-ietf-softwire-multicast-prefix-option-09">draft-ietf-softwire-</a>
<a href="./draft-ietf-softwire-multicast-prefix-option-09">multicast-prefix-option-09</a>, August 2015.
[<a id="ref-RFC3315">RFC3315</a>] Droms, R., Ed., Bound, J., Volz, B., Lemon, T., Perkins,
C., and M. Carney, "Dynamic Host Configuration Protocol
for IPv6 (DHCPv6)", <a href="./rfc3315">RFC 3315</a>, DOI 10.17487/RFC3315, July
2003, <<a href="http://www.rfc-editor.org/info/rfc3315">http://www.rfc-editor.org/info/rfc3315</a>>.
[<a id="ref-RFC4607">RFC4607</a>] Holbrook, H. and B. Cain, "Source-Specific Multicast for
IP", <a href="./rfc4607">RFC 4607</a>, DOI 10.17487/RFC4607, August 2006,
<<a href="http://www.rfc-editor.org/info/rfc4607">http://www.rfc-editor.org/info/rfc4607</a>>.
[<a id="ref-RFC6052">RFC6052</a>] Bao, C., Huitema, C., Bagnulo, M., Boucadair, M., and X.
Li, "IPv6 Addressing of IPv4/IPv6 Translators", <a href="./rfc6052">RFC 6052</a>,
DOI 10.17487/RFC6052, October 2010,
<<a href="http://www.rfc-editor.org/info/rfc6052">http://www.rfc-editor.org/info/rfc6052</a>>.
<span class="grey">Zhou, et al. Standards Track [Page 21]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-22" ></span>
<span class="grey"><a href="./rfc7678">RFC 7678</a> AVPs for 4over6 CPE Provisioning October 2015</span>
[<a id="ref-RFC6334">RFC6334</a>] Hankins, D. and T. Mrugalski, "Dynamic Host Configuration
Protocol for IPv6 (DHCPv6) Option for Dual-Stack Lite",
<a href="./rfc6334">RFC 6334</a>, DOI 10.17487/RFC6334, August 2011,
<<a href="http://www.rfc-editor.org/info/rfc6334">http://www.rfc-editor.org/info/rfc6334</a>>.
[<a id="ref-RFC6519">RFC6519</a>] Maglione, R. and A. Durand, "RADIUS Extensions for Dual-
Stack Lite", <a href="./rfc6519">RFC 6519</a>, DOI 10.17487/RFC6519, February
2012, <<a href="http://www.rfc-editor.org/info/rfc6519">http://www.rfc-editor.org/info/rfc6519</a>>.
[<a id="ref-RFC7598">RFC7598</a>] Mrugalski, T., Troan, O., Farrer, I., Perreault, S., Dec,
W., Bao, C., Yeh, L., and X. Deng, "DHCPv6 Options for
Configuration of Softwire Address and Port-Mapped
Clients", <a href="./rfc7598">RFC 7598</a>, DOI 10.17487/RFC7598, July 2015,
<<a href="http://www.rfc-editor.org/info/rfc7598">http://www.rfc-editor.org/info/rfc7598</a>>.
Acknowledgements
Huawei Technologies funded Tom Taylor's work on earlier draft
versions of this document.
Special thanks to Lionel Morand for the detailed review.
Many thanks to Russ Housley, Tim Chown, Spencer Dawkins, and Ben
Campbell for the review and comments.
<span class="grey">Zhou, et al. Standards Track [Page 22]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-23" ></span>
<span class="grey"><a href="./rfc7678">RFC 7678</a> AVPs for 4over6 CPE Provisioning October 2015</span>
Authors' Addresses
Cathy Zhou
Huawei Technologies
Bantian, Longgang District
Shenzhen 518129
China
Email: cathy.zhou@huawei.com
Tom Taylor
PT Taylor Consulting
Ottawa
Canada
Email: tom.taylor.stds@gmail.com
Qiong Sun
China Telecom
China
Phone: 86 10 58552936
Email: sunqiong@ctbri.com.cn
Mohamed Boucadair
France Telecom
Rennes 35000
France
Email: mohamed.boucadair@orange.com
Zhou, et al. Standards Track [Page 23]
</pre>
|