1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
|
<pre>Internet Engineering Task Force (IETF) P. Westin
Request for Comments: 7741 H. Lundin
Category: Standards Track Google
ISSN: 2070-1721 M. Glover
Twitter
J. Uberti
F. Galligan
Google
March 2016
<span class="h1">RTP Payload Format for VP8 Video</span>
Abstract
This memo describes an RTP payload format for the VP8 video codec.
The payload format has wide applicability, as it supports
applications from low-bitrate peer-to-peer usage to high-bitrate
video conferences.
Status of This Memo
This is an Internet Standards Track document.
This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Further information on
Internet Standards is available in <a href="./rfc5741#section-2">Section 2 of RFC 5741</a>.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
<a href="http://www.rfc-editor.org/info/rfc7741">http://www.rfc-editor.org/info/rfc7741</a>.
Copyright Notice
Copyright (c) 2016 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to <a href="https://www.rfc-editor.org/bcp/bcp78">BCP 78</a> and the IETF Trust's Legal
Provisions Relating to IETF Documents
(<a href="http://trustee.ietf.org/license-info">http://trustee.ietf.org/license-info</a>) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
<span class="grey">Westin, et al. Standards Track [Page 1]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-2" ></span>
<span class="grey"><a href="./rfc7741">RFC 7741</a> RTP Payload Format for VP8 March 2016</span>
Table of Contents
<a href="#section-1">1</a>. Introduction ....................................................<a href="#page-3">3</a>
<a href="#section-2">2</a>. Conventions, Definitions, and Abbreviations .....................<a href="#page-3">3</a>
<a href="#section-3">3</a>. Media Format Description ........................................<a href="#page-4">4</a>
<a href="#section-4">4</a>. Payload Format ..................................................<a href="#page-5">5</a>
<a href="#section-4.1">4.1</a>. RTP Header Usage ...........................................<a href="#page-6">6</a>
<a href="#section-4.2">4.2</a>. VP8 Payload Descriptor .....................................<a href="#page-7">7</a>
<a href="#section-4.3">4.3</a>. VP8 Payload Header ........................................<a href="#page-11">11</a>
<a href="#section-4.4">4.4</a>. Aggregated and Fragmented Payloads ........................<a href="#page-12">12</a>
<a href="#section-4.5">4.5</a>. Example Algorithms ........................................<a href="#page-13">13</a>
<a href="#section-4.5.1">4.5.1</a>. Frame Reconstruction Algorithm .....................<a href="#page-13">13</a>
<a href="#section-4.5.2">4.5.2</a>. Partition Reconstruction Algorithm .................<a href="#page-13">13</a>
<a href="#section-4.6">4.6</a>. Examples of VP8 RTP Stream ................................<a href="#page-14">14</a>
<a href="#section-4.6.1">4.6.1</a>. Key Frame in a Single RTP Packet ...................<a href="#page-14">14</a>
4.6.2. Non-discardable VP8 Interframe in a Single
RTP Packet; No PictureID ...........................<a href="#page-14">14</a>
<a href="#section-4.6.3">4.6.3</a>. VP8 Partitions in Separate RTP Packets .............<a href="#page-15">15</a>
<a href="#section-4.6.4">4.6.4</a>. VP8 Frame Fragmented across RTP Packets ............<a href="#page-16">16</a>
<a href="#section-4.6.5">4.6.5</a>. VP8 Frame with Long PictureID ......................<a href="#page-18">18</a>
<a href="#section-5">5</a>. Using VP8 with RPSI and SLI Feedback ...........................<a href="#page-18">18</a>
<a href="#section-5.1">5.1</a>. RPSI ......................................................<a href="#page-18">18</a>
<a href="#section-5.2">5.2</a>. SLI .......................................................<a href="#page-19">19</a>
<a href="#section-5.3">5.3</a>. Example ...................................................<a href="#page-19">19</a>
<a href="#section-6">6</a>. Payload Format Parameters ......................................<a href="#page-21">21</a>
<a href="#section-6.1">6.1</a>. Media Type Definition .....................................<a href="#page-21">21</a>
<a href="#section-6.2">6.2</a>. SDP Parameters ............................................<a href="#page-23">23</a>
<a href="#section-6.2.1">6.2.1</a>. Mapping of Media Subtype Parameters to SDP .........<a href="#page-23">23</a>
<a href="#section-6.2.2">6.2.2</a>. Offer/Answer Considerations ........................<a href="#page-23">23</a>
<a href="#section-7">7</a>. Security Considerations ........................................<a href="#page-24">24</a>
<a href="#section-8">8</a>. Congestion Control .............................................<a href="#page-24">24</a>
<a href="#section-9">9</a>. IANA Considerations ............................................<a href="#page-24">24</a>
<a href="#section-10">10</a>. References ....................................................<a href="#page-25">25</a>
<a href="#section-10.1">10.1</a>. Normative References .....................................<a href="#page-25">25</a>
<a href="#section-10.2">10.2</a>. Informative References ...................................<a href="#page-26">26</a>
Authors' Addresses ................................................<a href="#page-28">28</a>
<span class="grey">Westin, et al. Standards Track [Page 2]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-3" ></span>
<span class="grey"><a href="./rfc7741">RFC 7741</a> RTP Payload Format for VP8 March 2016</span>
<span class="h2"><a class="selflink" id="section-1" href="#section-1">1</a>. Introduction</span>
This memo describes an RTP payload specification applicable to the
transmission of video streams encoded using the VP8 video codec
[<a href="./rfc6386" title=""VP8 Data Format and Decoding Guide"">RFC6386</a>]. The format described in this document can be used both in
peer-to-peer and video-conferencing applications.
VP8 is based on the decomposition of frames into square sub-blocks of
pixels known as "macroblocks" (see <a href="./rfc6386#section-2">Section 2 of [RFC6386]</a>).
Prediction of such sub-blocks using previously constructed blocks,
and adjustment of such predictions (as well as synthesis of
unpredicted blocks) is done using a discrete cosine transform
(hereafter abbreviated as DCT). In one special case, however, VP8
uses a "Walsh-Hadamard" transform (hereafter abbreviated as WHT)
instead of a DCT. An encoded VP8 frame is divided into two or more
partitions, as described in [<a href="./rfc6386" title=""VP8 Data Format and Decoding Guide"">RFC6386</a>]. The first partition
(prediction or mode) contains prediction mode parameters and motion
vectors for all macroblocks. The remaining partitions all contain
the quantized DCT/WHT coefficients for the residuals. There can be
1, 2, 4, or 8 DCT/WHT partitions per frame, depending on encoder
settings.
In summary, the payload format described in this document enables a
number of features in VP8, including:
o Taking partition boundaries into consideration, to improve loss
robustness and facilitate efficient packet-loss concealment at the
decoder.
o Temporal scalability.
o Advanced use of reference frames to enable efficient error
recovery.
o Marking of frames that have no impact on the decoding of any other
frame, so that these non-reference frames can be discarded in a
server or media-aware network element if needed.
<span class="h2"><a class="selflink" id="section-2" href="#section-2">2</a>. Conventions, Definitions, and Abbreviations</span>
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [<a href="./rfc2119" title=""Key words for use in RFCs to Indicate Requirement Levels"">RFC2119</a>].
<span class="grey">Westin, et al. Standards Track [Page 3]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-4" ></span>
<span class="grey"><a href="./rfc7741">RFC 7741</a> RTP Payload Format for VP8 March 2016</span>
This document uses the definitions of [<a href="./rfc6386" title=""VP8 Data Format and Decoding Guide"">RFC6386</a>]. In particular, the
following terms are used.
Key frames: Frames that are decoded without reference to any other
frame in a sequence (also called intraframes and I-frames).
Interframes: Frames that are encoded with reference to prior frames,
specifically all prior frames up to and including the most recent
key frame (also called prediction frames and P-frames).
Golden and altref frames: alternate prediction frames. Blocks in an
interframe may be predicted using blocks in the immediately
previous frame as well as the most recent golden frame or altref
frame. Every key frame is automatically golden and altref, and
any interframe may optionally replace the most recent golden or
altref frame.
Macroblock: a square array of pixels whose Y (luminance) dimensions
are 16x16 pixels and whose U and V (chrominance) dimensions are
8x8 pixels.
Two definitions from [<a href="./rfc4585" title=""Extended RTP Profile for Real-time Transport Control Protocol (RTCP)-Based Feedback (RTP/AVPF)"">RFC4585</a>] are also used in this document.
RPSI: Reference picture selection indication. A feedback message to
let the encoder know that the decoder has correctly decoded a
certain frame.
SLI: Slice loss indication. A feedback message to let a decoder
inform an encoder that it has detected the loss or corruption of
one or several macroblocks.
<span class="h2"><a class="selflink" id="section-3" href="#section-3">3</a>. Media Format Description</span>
The VP8 codec uses three different reference frames for interframe
prediction: the previous frame, the golden frame, and the altref
frame. Blocks in an interframe may be predicted using blocks in the
immediately previous frame as well as the most recent golden frame or
altref frame. Every key frame is automatically golden and altref,
and any interframe may optionally replace the most recent golden or
altref frame. Golden frames and altref frames may also be used to
increase the tolerance to dropped frames. The payload specification
in this memo has elements that enable advanced use of the reference
frames, e.g., for improved loss robustness.
One specific use case of the three reference frame types is temporal
scalability. By setting up the reference hierarchy in the
appropriate way, up to five temporal layers can be encoded. (How to
set up the reference hierarchy for temporal scalability is not within
<span class="grey">Westin, et al. Standards Track [Page 4]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-5" ></span>
<span class="grey"><a href="./rfc7741">RFC 7741</a> RTP Payload Format for VP8 March 2016</span>
the scope of this memo.) Support for temporal scalability is
provided by the optional TL0PICIDX and TID/Y/KEYIDX fields described
in <a href="#section-4.2">Section 4.2</a>. For a general description of temporal scalability
for video coding, see [<a href="#ref-Sch07" title=""Overview of the Scalable Video Coding Extension of the H.264/AVC Standard"">Sch07</a>].
Another property of the VP8 codec is that it applies data
partitioning to the encoded data. Thus, an encoded VP8 frame can be
divided into two or more partitions, as described in "VP8 Data Format
and Decoding Guide" [<a href="./rfc6386" title=""VP8 Data Format and Decoding Guide"">RFC6386</a>]. The first partition (prediction or
mode) contains prediction mode parameters and motion vectors for all
macroblocks. The remaining partitions all contain the transform
coefficients for the residuals. The first partition is decodable
without the remaining residual partitions. The subsequent partitions
may be useful even if some part of the frame is lost. Accordingly,
this document RECOMMENDS that the frame be packetized by the sender
with each data partition in a separate packet or packets. This may
be beneficial for decoder-side error concealment, and the payload
format described in <a href="#section-4">Section 4</a> provides fields that allow the
partitions to be identified even if the first partition is not
available. The sender can, alternatively, aggregate the data
partitions into a single data stream and, optionally, split it into
several packets without consideration of the partition boundaries.
The receiver can use the length information in the first partition to
identify the partitions during decoding.
The format specification is described in Section 4. In <a href="#section-5">Section 5</a>, a
method to acknowledge receipt of reference frames using RTCP
techniques is described.
The payload partitioning and the acknowledging method both serve as
motivation for three of the fields included in the payload format:
the "PID", "1st partition size", and "PictureID" fields. The ability
to encode a temporally scalable stream motivates the "TL0PICIDX" and
"TID" fields.
<span class="h2"><a class="selflink" id="section-4" href="#section-4">4</a>. Payload Format</span>
This section describes how the encoded VP8 bitstream is encapsulated
in RTP. To handle network losses, usage of RTP/AVPF [<a href="./rfc4585" title=""Extended RTP Profile for Real-time Transport Control Protocol (RTCP)-Based Feedback (RTP/AVPF)"">RFC4585</a>] is
RECOMMENDED. All integer fields in the specifications are encoded as
unsigned integers in network octet order.
<span class="grey">Westin, et al. Standards Track [Page 5]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-6" ></span>
<span class="grey"><a href="./rfc7741">RFC 7741</a> RTP Payload Format for VP8 March 2016</span>
<span class="h3"><a class="selflink" id="section-4.1" href="#section-4.1">4.1</a>. RTP Header Usage</span>
The general RTP payload format for VP8 is depicted below.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|V=2|P|X| CC |M| PT | sequence number |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| timestamp |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| synchronization source (SSRC) identifier |
+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+
| contributing source (CSRC) identifiers |
| .... |
+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+
| VP8 payload descriptor (integer #octets) |
: :
| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| : VP8 payload header (3 octets) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| VP8 pyld hdr : |
+-+-+-+-+-+-+-+-+ |
: Octets 4..N of VP8 payload :
| |
| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| : OPTIONAL RTP padding |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
The VP8 payload descriptor and VP8 payload header will be described
in Sections <a href="#section-4.2">4.2</a> and <a href="#section-4.3">4.3</a>. OPTIONAL RTP padding MUST NOT be included
unless the P bit is set. The figure specifically shows the format
for the first packet in a frame. Subsequent packets will not contain
the VP8 payload header and will have later octets in the frame
payload.
Figure 1
Marker bit (M): MUST be set for the very last packet of each encoded
frame in line with the normal use of the M bit in video formats.
This enables a decoder to finish decoding the picture, where it
otherwise may need to wait for the next packet to explicitly know
that the frame is complete.
Payload type (PT): The assignment of an RTP payload type for this
packet format is outside the scope of this document and will not
be specified here.
<span class="grey">Westin, et al. Standards Track [Page 6]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-7" ></span>
<span class="grey"><a href="./rfc7741">RFC 7741</a> RTP Payload Format for VP8 March 2016</span>
Timestamp: The RTP timestamp indicates the time when the frame was
sampled. The granularity of the clock is 90 kHz, so a delta of 1
represents 1/90,000 of a second.
The remaining RTP Fixed Header Fields (V, P, X, CC, sequence
number, SSRC, and CSRC identifiers) are used as specified in
<a href="./rfc3550#section-5.1">Section 5.1 of [RFC3550]</a>.
<span class="h3"><a class="selflink" id="section-4.2" href="#section-4.2">4.2</a>. VP8 Payload Descriptor</span>
The first octets after the RTP header are the VP8 payload descriptor,
with the following structure. The single-octet version of the
PictureID is illustrated to the left (M bit set to 0), while the
dual-octet version (M bit set to 1) is shown to the right.
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+
|X|R|N|S|R| PID | (REQUIRED) |X|R|N|S|R| PID | (REQUIRED)
+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+
X: |I|L|T|K| RSV | (OPTIONAL) X: |I|L|T|K| RSV | (OPTIONAL)
+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+
I: |M| PictureID | (OPTIONAL) I: |M| PictureID | (OPTIONAL)
+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+
L: | TL0PICIDX | (OPTIONAL) | PictureID |
+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+
T/K: |TID|Y| KEYIDX | (OPTIONAL) L: | TL0PICIDX | (OPTIONAL)
+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+
T/K: |TID|Y| KEYIDX | (OPTIONAL)
+-+-+-+-+-+-+-+-+
Figure 2
X: Extended control bits present. When set to 1, the extension octet
MUST be provided immediately after the mandatory first octet. If
the bit is zero, all optional fields MUST be omitted. Note: this
X bit is not to be confused with the X bit in the RTP header.
R: Bit reserved for future use. MUST be set to 0 and MUST be ignored
by the receiver.
N: Non-reference frame. When set to 1, the frame can be discarded
without affecting any other future or past frames. If the
reference status of the frame is unknown, this bit SHOULD be set
to 0 to avoid discarding frames needed for reference.
Informative note: This document does not describe how to
determine if an encoded frame is non-reference. The reference
status of an encoded frame is preferably provided from the
encoder implementation.
<span class="grey">Westin, et al. Standards Track [Page 7]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-8" ></span>
<span class="grey"><a href="./rfc7741">RFC 7741</a> RTP Payload Format for VP8 March 2016</span>
S: Start of VP8 partition. SHOULD be set to 1 when the first payload
octet of the RTP packet is the beginning of a new VP8 partition,
and MUST NOT be 1 otherwise. The S bit MUST be set to 1 for the
first packet of each encoded frame.
PID: Partition index. Denotes to which VP8 partition the first
payload octet of the packet belongs. The first VP8 partition
(containing modes and motion vectors) MUST be labeled with PID =
0. PID SHOULD be incremented by 1 for each subsequent partition,
but it MAY be kept at 0 for all packets. PID cannot be larger
than 7. If more than one packet in an encoded frame contains the
same PID, the S bit MUST NOT be set for any packet other than the
first packet with that PID.
When the X bit is set to 1 in the first octet, the Extended Control
Bits field octet MUST be provided as the second octet. If the X bit
is 0, the Extended Control Bits field octet MUST NOT be present, and
no extensions (I, L, T, or K) are permitted.
I: PictureID present. When set to 1, the PictureID MUST be present
after the extension bit field and specified as below. Otherwise,
PictureID MUST NOT be present.
L: TL0PICIDX present. When set to 1, the TL0PICIDX MUST be present
and specified as below, and the T bit MUST be set to 1.
Otherwise, TL0PICIDX MUST NOT be present.
T: TID present. When set to 1, the TID/Y/KEYIDX octet MUST be
present. The TID|Y part of the octet MUST be specified as below.
If K (below) is set to 1 but T is set to 0, the TID/Y/KEYIDX octet
MUST be present, but the TID field MUST be ignored. If neither T
nor K is set to 1, the TID/Y/KEYIDX octet MUST NOT be present.
K: KEYIDX present. When set to 1, the TID/Y/KEYIDX octet MUST be
present. The KEYIDX part of the octet MUST be specified as below.
If T (above) is set to 1 but K is set to 0, the TID/Y/KEYIDX octet
MUST be present, but the KEYIDX field MUST be ignored. If neither
T nor K is set to 1, the TID/Y/KEYIDX octet MUST NOT be present.
RSV: Bits reserved for future use. MUST be set to 0 and MUST be
ignored by the receiver.
<span class="grey">Westin, et al. Standards Track [Page 8]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-9" ></span>
<span class="grey"><a href="./rfc7741">RFC 7741</a> RTP Payload Format for VP8 March 2016</span>
After the extension bit field follow the extension data fields that
are enabled.
The PictureID extension: If the I bit is set to 1, the PictureID
extension field MUST be present, and it MUST NOT be present
otherwise. The field consists of two parts:
M: The most significant bit of the first octet is an extension
flag. If M is set, the remainder of the PictureID field MUST
contain 15 bits, else it MUST contain 7 bits. Note: this M bit
is not to be confused with the M bit in the RTP header.
PictureID: 7 or 15 bits (shown left and right, respectively, in
Figure 2) not including the M bit. This is a running index of
the frames, which MAY start at a random value, MUST increase by
1 for each subsequent frame, and MUST wrap to 0 after reaching
the maximum ID (all bits set). The 7 or 15 bits of the
PictureID go from most significant to least significant,
beginning with the first bit after the M bit. The sender
chooses a 7- or 15-bit index and sets the M bit accordingly.
The receiver MUST NOT assume that the number of bits in
PictureID stays the same through the session. Having sent a
7-bit PictureID with all bits set to 1, the sender may either
wrap the PictureID to 0 or extend to 15 bits and continue
incrementing.
The TL0PICIDX extension: If the L bit is set to 1, the TL0PICIDX
extension field MUST be present, and it MUST NOT be present
otherwise. The field consists of one part:
TL0PICIDX: 8 bits temporal level zero index. TL0PICIDX is a
running index for the temporal base layer frames, i.e., the
frames with TID set to 0. If TID is larger than 0, TL0PICIDX
indicates on which base-layer frame the current image depends.
TL0PICIDX MUST be incremented when TID is 0. The index MAY
start at a random value, and it MUST wrap to 0 after reaching
the maximum number 255. Use of TL0PICIDX depends on the
presence of TID. Therefore, it is RECOMMENDED that the TID be
used whenever TL0PICIDX is.
The TID/Y/KEYIDX extension: If either of the T or K bits are set to
1, the TID/Y/KEYIDX extension field MUST be present. It MUST NOT
be present if both T and K are zero. The field consists of three
parts:
TID: 2 bits temporal-layer index. The TID field MUST be ignored
by the receiver when the T bit is set equal to 0. The TID
field indicates which temporal layer the packet represents.
<span class="grey">Westin, et al. Standards Track [Page 9]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-10" ></span>
<span class="grey"><a href="./rfc7741">RFC 7741</a> RTP Payload Format for VP8 March 2016</span>
The lowest layer, i.e., the base layer, MUST have the TID set
to 0. Higher layers SHOULD increment the TID according to
their position in the layer hierarchy.
Y: 1 layer sync bit. The Y bit SHOULD be set to 1 if the current
frame depends only on the base layer (TID = 0) frame with
TL0PICIDX equal to that of the current frame. The Y bit MUST
be set to 0 if the current frame depends on any other frame
than the base layer (TID = 0) frame with TL0PICIDX equal to
that of the current frame. Additionally, the Y bit MUST be set
to 0 if any frame following the current frame depends on a non-
base-layer frame older than the base-layer frame with TL0PICIDX
equal to that of the current frame. If the Y bit is set when
the T bit is equal to 0, the current frame MUST only depend on
a past base-layer (TID=0) key frame as signaled by a change in
the KEYIDX field. Additionally, this frame MUST NOT depend on
any of the three codec buffers (as defined by [<a href="./rfc6386" title=""VP8 Data Format and Decoding Guide"">RFC6386</a>]) that
have been updated since the last time the KEYIDX field was
changed.
Informative note: This document does not describe how to
determine the dependency status for a frame; this information
is preferably provided from the encoder implementation. In the
case of unknown status, the Y bit can safely be set to 0.
KEYIDX: 5 bits temporal key frame index. The KEYIDX field MUST
be ignored by the receiver when the K bit is set equal to 0.
The KEYIDX field is a running index for key frames. KEYIDX MAY
start at a random value, and it MUST wrap to 0 after reaching
the maximum number 31. When in use, the KEYIDX SHOULD be
present for both key frames and interframes. The sender MUST
increment KEYIDX for key frames that convey parameter updates
critical to the interpretation of subsequent frames, and it
SHOULD leave the KEYIDX unchanged for key frames that do not
contain these critical updates. If the KEYIDX is present, a
receiver SHOULD NOT decode an interframe if it has not received
and decoded a key frame with the same KEYIDX after the last
KEYIDX wraparound.
Informative note: This document does not describe how to
determine if a key frame updates critical parameters; this
information is preferably provided from the encoder
implementation. A sender that does not have this information
may either omit the KEYIDX field (set K equal to 0) or
increment the KEYIDX on every key frame. The benefit with the
latter is that any key-frame loss will be detected by the
receiver, which can signal for re-transmission or request a new
key frame.
<span class="grey">Westin, et al. Standards Track [Page 10]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-11" ></span>
<span class="grey"><a href="./rfc7741">RFC 7741</a> RTP Payload Format for VP8 March 2016</span>
Informative note: Implementations doing splicing of VP8 streams will
have to make sure the rules for incrementing TL0PICIDX and KEYIDX
are obeyed across the splice. This will likely require rewriting
values of TL0PICIDX and KEYIDX after the splice.
<span class="h3"><a class="selflink" id="section-4.3" href="#section-4.3">4.3</a>. VP8 Payload Header</span>
The beginning of an encoded VP8 frame is referred to as an
"uncompressed data chunk" in <a href="./rfc6386#section-9.1">Section 9.1 of [RFC6386]</a>, and it also
serves as a payload header in this RTP format. The codec bitstream
format specifies two different variants of the uncompressed data
chunk: a 3-octet version for interframes and a 10-octet version for
key frames. The first 3 octets are common to both variants. In the
case of a key frame, the remaining 7 octets are considered to be part
of the remaining payload in this RTP format. Note that the header is
present only in packets that have the S bit equal to one and the PID
equal to zero in the payload descriptor. Subsequent packets for the
same frame do not carry the payload header.
The length of the first partition can always be obtained from the
first partition-size parameter in the VP8 payload header. The VP8
bitstream format [<a href="./rfc6386" title=""VP8 Data Format and Decoding Guide"">RFC6386</a>] specifies that if multiple DCT/WHT
partitions are produced, the location of each partition start is
found at the end of the first (prediction or mode) partition. In
this RTP payload specification, the location offsets are considered
to be part of the first partition.
0 1 2 3 4 5 6 7
+-+-+-+-+-+-+-+-+
|Size0|H| VER |P|
+-+-+-+-+-+-+-+-+
| Size1 |
+-+-+-+-+-+-+-+-+
| Size2 |
+-+-+-+-+-+-+-+-+
| Octets 4..N of|
| VP8 payload |
: :
+-+-+-+-+-+-+-+-+
| OPTIONAL RTP |
| padding |
: :
+-+-+-+-+-+-+-+-+
Figure 3
<span class="grey">Westin, et al. Standards Track [Page 11]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-12" ></span>
<span class="grey"><a href="./rfc7741">RFC 7741</a> RTP Payload Format for VP8 March 2016</span>
A packetizer needs access to the P bit. The other fields are defined
in <a href="./rfc6386#section-9.1">[RFC6386], Section 9.1</a>, and their meanings do not influence the
packetization process. None of these fields are modified by the
packetization process.
P: Inverse key frame flag. When set to 0, the current frame is a key
frame. When set to 1, the current frame is an interframe.
Defined in [<a href="./rfc6386" title=""VP8 Data Format and Decoding Guide"">RFC6386</a>]
<span class="h3"><a class="selflink" id="section-4.4" href="#section-4.4">4.4</a>. Aggregated and Fragmented Payloads</span>
An encoded VP8 frame can be divided into two or more partitions, as
described in <a href="#section-1">Section 1</a>. It is OPTIONAL for a packetizer implementing
this RTP specification to pay attention to the partition boundaries
within an encoded frame. If packetization of a frame is done without
considering the partition boundaries, the PID field MAY be set to 0
for all packets and the S bit MUST NOT be set to 1 for any other
packet than the first.
If the preferred usage suggested in <a href="#section-3">Section 3</a> is followed, with each
packet carrying data from exactly one partition, the S bit and PID
fields described in <a href="#section-4.2">Section 4.2</a> SHOULD be used to indicate what the
packet contains. The PID field should indicate to which partition
the first octet of the payload belongs and the S bit indicates that
the packet starts on a new partition.
If the packetizer does not pay attention to the partition boundaries,
one packet can contain a fragment of a partition, a complete
partition, or an aggregate of fragments and partitions. There is no
explicit signaling of partition boundaries in the payload, and the
partition lengths at the end of the first partition have to be used
to identify the boundaries. Partitions MUST be aggregated in
decoding order. Two fragments from different partitions MAY be
aggregated into the same packet along with one or more complete
partitions.
In all cases, the payload of a packet MUST contain data from only one
video frame. Consequently, the set of packets carrying the data from
a particular frame will contain exactly one VP8 Payload Header (see
<a href="#section-4.3">Section 4.3</a>) carried in the first packet of the frame. The last, or
only, packet carrying data for the frame MUST have the M bit set in
the RTP header.
<span class="grey">Westin, et al. Standards Track [Page 12]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-13" ></span>
<span class="grey"><a href="./rfc7741">RFC 7741</a> RTP Payload Format for VP8 March 2016</span>
<span class="h3"><a class="selflink" id="section-4.5" href="#section-4.5">4.5</a>. Example Algorithms</span>
<span class="h4"><a class="selflink" id="section-4.5.1" href="#section-4.5.1">4.5.1</a>. Frame Reconstruction Algorithm</span>
Example of frame reconstruction algorithm.
1: Collect all packets with a given RTP timestamp.
2: Go through packets in order, sorted by sequence numbers, if
packets are missing, send NACK as defined in [<a href="./rfc4585" title=""Extended RTP Profile for Real-time Transport Control Protocol (RTCP)-Based Feedback (RTP/AVPF)"">RFC4585</a>] or decode
with missing partitions, see <a href="#section-4.5.2">Section 4.5.2</a> below.
3: A frame is complete if the frame has no missing sequence numbers,
the first packet in the frame contains S=1 with partId=0 and the
last packet in the frame has the marker bit set.
<span class="h4"><a class="selflink" id="section-4.5.2" href="#section-4.5.2">4.5.2</a>. Partition Reconstruction Algorithm</span>
Example of partition reconstruction algorithm. The algorithm only
applies for the RECOMMENDED use case with partitions in separate
packets.
1: Scan for the start of a new partition; S=1.
2: Continue scan to detect end of partition; hence, a new S=1
(previous packet was the end of the partition) is found or the
marker bit is set. If a loss is detected before the end of the
partition, abandon all packets in this partition and continue the
scan repeating from step 1.
3: Store the packets in the complete partition, continue the scan
repeating from step 1 until end of frame is reached.
4: Send all complete partitions to the decoder. If no complete
partition is found discard the whole frame.
<span class="grey">Westin, et al. Standards Track [Page 13]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-14" ></span>
<span class="grey"><a href="./rfc7741">RFC 7741</a> RTP Payload Format for VP8 March 2016</span>
<span class="h3"><a class="selflink" id="section-4.6" href="#section-4.6">4.6</a>. Examples of VP8 RTP Stream</span>
A few examples of how the VP8 RTP payload can be used are included
below.
<span class="h4"><a class="selflink" id="section-4.6.1" href="#section-4.6.1">4.6.1</a>. Key Frame in a Single RTP Packet</span>
0 1 2 3 4 5 6 7
+-+-+-+-+-+-+-+-+
| RTP header |
| M = 1 |
+-+-+-+-+-+-+-+-+
|1|0|0|1|0|0 0 0| X = 1; S = 1; PID = 0
+-+-+-+-+-+-+-+-+
|1|0|0|0|0 0 0 0| I = 1
+-+-+-+-+-+-+-+-+
|0 0 0 1 0 0 0 1| PictureID = 17
+-+-+-+-+-+-+-+-+
|Size0|1| VER |0| P = 0
+-+-+-+-+-+-+-+-+
| Size1 |
+-+-+-+-+-+-+-+-+
| Size2 |
+-+-+-+-+-+-+-+-+
| VP8 payload |
+-+-+-+-+-+-+-+-+
<span class="h4"><a class="selflink" id="section-4.6.2" href="#section-4.6.2">4.6.2</a>. Non-discardable VP8 Interframe in a Single RTP Packet; No</span>
<span class="h4"> PictureID</span>
0 1 2 3 4 5 6 7
+-+-+-+-+-+-+-+-+
| RTP header |
| M = 1 |
+-+-+-+-+-+-+-+-+
|0|0|0|1|0|0 0 0| X = 0; S = 1; PID = 0
+-+-+-+-+-+-+-+-+
|Size0|1| VER |1| P = 1
+-+-+-+-+-+-+-+-+
| Size1 |
+-+-+-+-+-+-+-+-+
| Size2 |
+-+-+-+-+-+-+-+-+
| VP8 payload |
+-+-+-+-+-+-+-+-+
<span class="grey">Westin, et al. Standards Track [Page 14]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-15" ></span>
<span class="grey"><a href="./rfc7741">RFC 7741</a> RTP Payload Format for VP8 March 2016</span>
<span class="h4"><a class="selflink" id="section-4.6.3" href="#section-4.6.3">4.6.3</a>. VP8 Partitions in Separate RTP Packets</span>
First RTP packet; complete first partition.
0 1 2 3 4 5 6 7
+-+-+-+-+-+-+-+-+
| RTP header |
| M = 0 |
+-+-+-+-+-+-+-+-+
|1|0|0|1|0|0 0 0| X = 1; S = 1; PID = 0
+-+-+-+-+-+-+-+-+
|1|0|0|0|0 0 0 0| I = 1
+-+-+-+-+-+-+-+-+
|0 0 0 1 0 0 0 1| PictureID = 17
+-+-+-+-+-+-+-+-+
|Size0|1| VER |1| P = 1
+-+-+-+-+-+-+-+-+
| Size1 |
+-+-+-+-+-+-+-+-+
| Size2 |
+-+-+-+-+-+-+-+-+
| Octets 4..L of|
| first VP8 |
| partition |
: :
+-+-+-+-+-+-+-+-+
Second RTP packet; complete second partition.
0 1 2 3 4 5 6 7
+-+-+-+-+-+-+-+-+
| RTP header |
| M = 1 |
+-+-+-+-+-+-+-+-+
|1|0|0|1|0|0 0 1| X = 1; S = 1; PID = 1
+-+-+-+-+-+-+-+-+
|1|0|0|0|0 0 0 0| I = 1
+-+-+-+-+-+-+-+-+
|0 0 0 1 0 0 0 1| PictureID = 17
+-+-+-+-+-+-+-+-+
| Remaining VP8 |
| partitions |
: :
+-+-+-+-+-+-+-+-+
<span class="grey">Westin, et al. Standards Track [Page 15]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-16" ></span>
<span class="grey"><a href="./rfc7741">RFC 7741</a> RTP Payload Format for VP8 March 2016</span>
<span class="h4"><a class="selflink" id="section-4.6.4" href="#section-4.6.4">4.6.4</a>. VP8 Frame Fragmented across RTP Packets</span>
First RTP packet; complete first partition.
0 1 2 3 4 5 6 7
+-+-+-+-+-+-+-+-+
| RTP header |
| M = 0 |
+-+-+-+-+-+-+-+-+
|1|0|0|1|0|0 0 0| X = 1; S = 1; PID = 0
+-+-+-+-+-+-+-+-+
|1|0|0|0|0 0 0 0| I = 1
+-+-+-+-+-+-+-+-+
|0 0 0 1 0 0 0 1| PictureID = 17
+-+-+-+-+-+-+-+-+
|Size0|1| VER |1| P = 1
+-+-+-+-+-+-+-+-+
| Size1 |
+-+-+-+-+-+-+-+-+
| Size2 |
+-+-+-+-+-+-+-+-+
| Complete |
| first |
| partition |
: :
+-+-+-+-+-+-+-+-+
Second RTP packet; first fragment of second partition.
0 1 2 3 4 5 6 7
+-+-+-+-+-+-+-+-+
| RTP header |
| M = 0 |
+-+-+-+-+-+-+-+-+
|1|0|0|1|0|0 0 1| X = 1; S = 1; PID = 1
+-+-+-+-+-+-+-+-+
|1|0|0|0|0 0 0 0| I = 1
+-+-+-+-+-+-+-+-+
|0 0 0 1 0 0 0 1| PictureID = 17
+-+-+-+-+-+-+-+-+
| First fragment|
| of second |
| partition |
: :
+-+-+-+-+-+-+-+-+
<span class="grey">Westin, et al. Standards Track [Page 16]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-17" ></span>
<span class="grey"><a href="./rfc7741">RFC 7741</a> RTP Payload Format for VP8 March 2016</span>
Third RTP packet; second fragment of second partition.
0 1 2 3 4 5 6 7
+-+-+-+-+-+-+-+-+
| RTP header |
| M = 0 |
+-+-+-+-+-+-+-+-+
|1|0|0|0|0|0 0 1| X = 1; S = 0; PID = 1
+-+-+-+-+-+-+-+-+
|1|0|0|0|0 0 0 0| I = 1
+-+-+-+-+-+-+-+-+
|0 0 0 1 0 0 0 1| PictureID = 17
+-+-+-+-+-+-+-+-+
| Mid fragment |
| of second |
| partition |
: :
+-+-+-+-+-+-+-+-+
Fourth RTP packet; last fragment of second partition.
0 1 2 3 4 5 6 7
+-+-+-+-+-+-+-+-+
| RTP header |
| M = 1 |
+-+-+-+-+-+-+-+-+
|1|0|0|0|0|0 0 1| X = 1; S = 0; PID = 1
+-+-+-+-+-+-+-+-+
|1|0|0|0|0 0 0 0| I = 1
+-+-+-+-+-+-+-+-+
|0 0 0 1 0 0 0 1| PictureID = 17
+-+-+-+-+-+-+-+-+
| Last fragment |
| of second |
| partition |
: :
+-+-+-+-+-+-+-+-+
<span class="grey">Westin, et al. Standards Track [Page 17]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-18" ></span>
<span class="grey"><a href="./rfc7741">RFC 7741</a> RTP Payload Format for VP8 March 2016</span>
<span class="h4"><a class="selflink" id="section-4.6.5" href="#section-4.6.5">4.6.5</a>. VP8 Frame with Long PictureID</span>
PictureID = 4711 = 001001001100111 binary (first 7 bits: 0010010,
last 8 bits: 01100111).
0 1 2 3 4 5 6 7
+-+-+-+-+-+-+-+-+
| RTP header |
| M = 1 |
+-+-+-+-+-+-+-+-+
|1|0|0|1|0|0 0 0| X = 1; S = 1; PID = 0
+-+-+-+-+-+-+-+-+
|1|0|0|0|0 0 0 0| I = 1;
+-+-+-+-+-+-+-+-+
|1 0 0 1 0 0 1 0| Long PictureID flag = 1
|0 1 1 0 0 1 1 1| PictureID = 4711
+-+-+-+-+-+-+-+-+
|Size0|1| VER |1|
+-+-+-+-+-+-+-+-+
| Size1 |
+-+-+-+-+-+-+-+-+
| Size2 |
+-+-+-+-+-+-+-+-+
| Octets 4..N of|
| VP8 payload |
: :
+-+-+-+-+-+-+-+-+
<span class="h2"><a class="selflink" id="section-5" href="#section-5">5</a>. Using VP8 with RPSI and SLI Feedback</span>
The VP8 payload descriptor defined in <a href="#section-4.2">Section 4.2</a> contains an
optional PictureID parameter. This parameter is included mainly to
enable use of reference picture selection indication (RPSI) and slice
loss indication (SLI), both defined in [<a href="./rfc4585" title=""Extended RTP Profile for Real-time Transport Control Protocol (RTCP)-Based Feedback (RTP/AVPF)"">RFC4585</a>].
<span class="h3"><a class="selflink" id="section-5.1" href="#section-5.1">5.1</a>. RPSI</span>
The RPSI is a payload-specific feedback message defined within the
RTCP-based feedback format. The RPSI message is generated by a
receiver and can be used in two ways. Either it can signal a
preferred reference picture when a loss has been detected by the
decoder -- preferably then a reference that the decoder knows is
perfect -- or it can be used as positive feedback information to
acknowledge correct decoding of certain reference pictures. The
positive-feedback method is useful for VP8 used for point-to-point
(unicast) communication. The use of RPSI for VP8 is preferably
combined with a special update pattern of the codec's two special
reference frames -- the golden frame and the altref frame -- in which
<span class="grey">Westin, et al. Standards Track [Page 18]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-19" ></span>
<span class="grey"><a href="./rfc7741">RFC 7741</a> RTP Payload Format for VP8 March 2016</span>
they are updated in an alternating leapfrog fashion. When a receiver
has received and correctly decoded a golden or altref frame, and that
frame has a PictureID in the payload descriptor, the receiver can
acknowledge this simply by sending an RPSI message back to the
sender. The message body (i.e., the "native RPSI bit string" in
[<a href="./rfc4585" title=""Extended RTP Profile for Real-time Transport Control Protocol (RTCP)-Based Feedback (RTP/AVPF)"">RFC4585</a>]) is simply the PictureID of the received frame.
<span class="h3"><a class="selflink" id="section-5.2" href="#section-5.2">5.2</a>. SLI</span>
The SLI is another payload-specific feedback message defined within
the RTCP-based feedback format. The SLI message is generated by the
receiver when a loss or corruption is detected in a frame. The
format of the SLI message is as follows [<a href="./rfc4585" title=""Extended RTP Profile for Real-time Transport Control Protocol (RTCP)-Based Feedback (RTP/AVPF)"">RFC4585</a>]:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| First | Number | PictureID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 4
Here, First is the macroblock address (in scan order) of the first
lost block and Number is the number of lost blocks, as defined in
[<a href="./rfc4585" title=""Extended RTP Profile for Real-time Transport Control Protocol (RTCP)-Based Feedback (RTP/AVPF)"">RFC4585</a>]. PictureID is the six least significant bits of the codec-
specific picture identifier in which the loss or corruption has
occurred. For VP8, this codec-specific identifier is naturally the
PictureID of the current frame, as read from the payload descriptor.
If the payload descriptor of the current frame does not have a
PictureID, the receiver MAY send the last received PictureID+1 in the
SLI message. The receiver MAY set the First parameter to 0, and the
Number parameter to the total number of macroblocks per frame, even
though only part of the frame is corrupted. When the sender receives
an SLI message, it can make use of the knowledge from the latest
received RPSI message. Knowing that the last golden or altref frame
was successfully received, it can encode the next frame with
reference to that established reference.
<span class="h3"><a class="selflink" id="section-5.3" href="#section-5.3">5.3</a>. Example</span>
The use of RPSI and SLI is best illustrated in an example. In this
example, the encoder may not update the altref frame until the last
sent golden frame has been acknowledged with an RPSI message. If an
update is not received within some time, a new golden frame update is
sent instead. Once the new golden frame is established and
acknowledged, the same rule applies when updating the altref frame.
<span class="grey">Westin, et al. Standards Track [Page 19]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-20" ></span>
<span class="grey"><a href="./rfc7741">RFC 7741</a> RTP Payload Format for VP8 March 2016</span>
+-------+-------------------+-------------------------+-------------+
| Event | Sender | Receiver | Established |
| | | | reference |
+-------+-------------------+-------------------------+-------------+
| 1000 | Send golden frame | | |
| | PictureID = 0 | | |
| | | | |
| | | Receive and decode | |
| | | golden frame | |
| | | | |
| 1001 | | Send RPSI(0) | |
| | | | |
| 1002 | Receive RPSI(0) | | golden |
| | | | |
| ... | (sending regular | | |
| | frames) | | |
| | | | |
| 1100 | Send altref frame | | |
| | PictureID = 100 | | |
| | | | |
| | | Altref corrupted or | golden |
| | | lost | |
| | | | |
| 1101 | | Send SLI(100) | golden |
| | | | |
| 1102 | Receive SLI(100) | | |
| | | | |
| 1103 | Send frame with | | |
| | reference to | | |
| | golden | | |
| | | | |
| | | Receive and decode | golden |
| | | frame (decoder state | |
| | | restored) | |
| | | | |
| ... | (sending regular | | |
| | frames) | | |
| | | | |
| 1200 | Send altref frame | | |
| | PictureID = 200 | | |
| | | | |
| | | Receive and decode | golden |
| | | altref frame | |
| | | | |
| 1201 | | Send RPSI(200) | |
| | | | |
| 1202 | Receive RPSI(200) | | altref |
| | | | |
<span class="grey">Westin, et al. Standards Track [Page 20]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-21" ></span>
<span class="grey"><a href="./rfc7741">RFC 7741</a> RTP Payload Format for VP8 March 2016</span>
| ... | (sending regular | | |
| | frames) | | |
| | | | |
| 1300 | Send golden frame | | |
| | PictureID = 300 | | |
| | | | |
| | | Receive and decode | altref |
| | | golden frame | |
| | | | |
| 1301 | | Send RPSI(300) | altref |
| | | | |
| 1302 | RPSI lost | | |
| | | | |
| 1400 | Send golden frame | | |
| | PictureID = 400 | | |
| | | | |
| | | Receive and decode | altref |
| | | golden frame | |
| | | | |
| 1401 | | Send RPSI(400) | |
| | | | |
| 1402 | Receive RPSI(400) | | golden |
+-------+-------------------+-------------------------+-------------+
Table 1: Example Signaling between Sender and Receiver
Note that the scheme is robust to loss of the feedback messages. If
the RPSI is lost, the sender will try to update the golden (or
altref) again after a while, without releasing the established
reference. Also, if an SLI is lost, the receiver can keep sending
SLI messages at any interval allowed by the RTCP sending timing
restrictions as specified in [<a href="./rfc4585" title=""Extended RTP Profile for Real-time Transport Control Protocol (RTCP)-Based Feedback (RTP/AVPF)"">RFC4585</a>], as long as the picture is
corrupted.
<span class="h2"><a class="selflink" id="section-6" href="#section-6">6</a>. Payload Format Parameters</span>
This payload format has two optional parameters.
<span class="h3"><a class="selflink" id="section-6.1" href="#section-6.1">6.1</a>. Media Type Definition</span>
This registration is done using the template defined in [<a href="./rfc6838" title=""Media Type Specifications and Registration Procedures"">RFC6838</a>] and
following [<a href="./rfc4855" title=""Media Type Registration of RTP Payload Formats"">RFC4855</a>].
Type name: video
Subtype name: VP8
Required parameters: None.
<span class="grey">Westin, et al. Standards Track [Page 21]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-22" ></span>
<span class="grey"><a href="./rfc7741">RFC 7741</a> RTP Payload Format for VP8 March 2016</span>
Optional parameters:
These parameters are used to signal the capabilities of a receiver
implementation. If the implementation is willing to receive
media, both parameters MUST be provided. These parameters MUST
NOT be used for any other purpose.
max-fr: The value of max-fr is an integer indicating the maximum
frame rate in units of frames per second that the decoder is
capable of decoding.
max-fs: The value of max-fs is an integer indicating the maximum
frame size in units of macroblocks that the decoder is capable
of decoding.
The decoder is capable of decoding this frame size as long as
the width and height of the frame in macroblocks are less than
int(sqrt(max-fs * 8)). For instance, a max-fs of 1200 (capable
of supporting 640x480 resolution) will support widths and
heights up to 1552 pixels (97 macroblocks).
Encoding considerations:
This media type is framed in RTP and contains binary data; see
<a href="./rfc6838#section-4.8">Section 4.8 of [RFC6838]</a>.
Security considerations: See <a href="./rfc7741#section-7">Section 7 of RFC 7741</a>.
Interoperability considerations: None.
Published specification: VP8 bitstream format [<a href="./rfc6386" title=""VP8 Data Format and Decoding Guide"">RFC6386</a>] and <a href="./rfc7741">RFC</a>
<a href="./rfc7741">7741</a>.
Applications that use this media type:
For example: Video over IP, video conferencing.
Fragment identifier considerations: N/A.
Additional information: None.
Person & email address to contact for further information:
Patrik Westin, patrik.westin@gmail.com
Intended usage: COMMON
Restrictions on usage:
This media type depends on RTP framing, and hence it is only
defined for transfer via RTP [<a href="./rfc3550" title=""RTP: A Transport Protocol for Real-Time Applications"">RFC3550</a>].
<span class="grey">Westin, et al. Standards Track [Page 22]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-23" ></span>
<span class="grey"><a href="./rfc7741">RFC 7741</a> RTP Payload Format for VP8 March 2016</span>
Author: Patrik Westin, patrik.westin@gmail.com
Change controller:
IETF Payload Working Group delegated from the IESG.
<span class="h3"><a class="selflink" id="section-6.2" href="#section-6.2">6.2</a>. SDP Parameters</span>
The receiver MUST ignore any fmtp parameter unspecified in this memo.
<span class="h4"><a class="selflink" id="section-6.2.1" href="#section-6.2.1">6.2.1</a>. Mapping of Media Subtype Parameters to SDP</span>
The media type video/VP8 string is mapped to fields in the Session
Description Protocol (SDP) [<a href="./rfc4566" title=""SDP: Session Description Protocol"">RFC4566</a>] as follows:
o The media name in the "m=" line of SDP MUST be video.
o The encoding name in the "a=rtpmap" line of SDP MUST be VP8 (the
media subtype).
o The clock rate in the "a=rtpmap" line MUST be 90000.
o The parameters "max-fs" and "max-fr" MUST be included in the
"a=fmtp" line if the SDP is used to declare receiver capabilities.
These parameters are expressed as a media subtype string, in the
form of a semicolon-separated list of parameter=value pairs.
<span class="h5"><a class="selflink" id="section-6.2.1.1" href="#section-6.2.1.1">6.2.1.1</a>. Example</span>
An example of media representation in SDP is as follows:
m=video 49170 RTP/AVPF 98
a=rtpmap:98 VP8/90000
a=fmtp:98 max-fr=30; max-fs=3600;
<span class="h4"><a class="selflink" id="section-6.2.2" href="#section-6.2.2">6.2.2</a>. Offer/Answer Considerations</span>
The VP8 codec offers a decode complexity that is roughly linear with
the number of pixels encoded. The parameters "max-fr" and "max-fs"
are defined in <a href="#section-6.1">Section 6.1</a>, where the macroblock size is 16x16 pixels
as defined in [<a href="./rfc6386" title=""VP8 Data Format and Decoding Guide"">RFC6386</a>], the max-fs and max-fr parameters MUST be
used to establish these limits.
<span class="grey">Westin, et al. Standards Track [Page 23]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-24" ></span>
<span class="grey"><a href="./rfc7741">RFC 7741</a> RTP Payload Format for VP8 March 2016</span>
<span class="h2"><a class="selflink" id="section-7" href="#section-7">7</a>. Security Considerations</span>
RTP packets using the payload format defined in this specification
are subject to the security considerations discussed in the RTP
specification [<a href="./rfc3550" title=""RTP: A Transport Protocol for Real-Time Applications"">RFC3550</a>], and in any applicable RTP profile such as
RTP/AVP [<a href="./rfc3551" title=""RTP Profile for Audio and Video Conferences with Minimal Control"">RFC3551</a>], RTP/AVPF [<a href="./rfc4585" title=""Extended RTP Profile for Real-time Transport Control Protocol (RTCP)-Based Feedback (RTP/AVPF)"">RFC4585</a>], RTP/SAVP [<a href="./rfc3711" title=""The Secure Real-time Transport Protocol (SRTP)"">RFC3711</a>], or RTP/
SAVPF [<a href="./rfc5124" title=""Extended Secure RTP Profile for Real-time Transport Control Protocol (RTCP)-Based Feedback (RTP/SAVPF)"">RFC5124</a>]. However, as "Securing the RTP Protocol Framework:
Why RTP Does Not Mandate a Single Media Security Solution" [<a href="./rfc7202" title=""Securing the RTP Framework: Why RTP Does Not Mandate a Single Media Security Solution"">RFC7202</a>]
discusses, it is not an RTP payload format's responsibility to
discuss or mandate what solutions are used to meet the basic security
goals like confidentiality, integrity, and source authenticity for
RTP in general. This responsibility lays on anyone using RTP in an
application. They can find guidance on available security mechanisms
and important considerations in "Options for Securing RTP Sessions"
[<a href="./rfc7201" title=""Options for Securing RTP Sessions"">RFC7201</a>]. Applications SHOULD use one or more appropriate strong
security mechanisms. The rest of this security consideration section
discusses the security impacting properties of the payload format
itself.
This RTP payload format and its media decoder do not exhibit any
significant difference in the receiver-side computational complexity
for packet processing and, thus, are unlikely to pose a denial-of-
service threat due to the receipt of pathological data. Nor does the
RTP payload format contain any active content.
<span class="h2"><a class="selflink" id="section-8" href="#section-8">8</a>. Congestion Control</span>
Congestion control for RTP SHALL be used in accordance with <a href="./rfc3550">RFC 3550</a>
[<a href="./rfc3550" title=""RTP: A Transport Protocol for Real-Time Applications"">RFC3550</a>] and with any applicable RTP profile; e.g., <a href="./rfc3551">RFC 3551</a>
[<a href="./rfc3551" title=""RTP Profile for Audio and Video Conferences with Minimal Control"">RFC3551</a>]. The congestion control mechanism can, in a real-time
encoding scenario, adapt the transmission rate by instructing the
encoder to encode at a certain target rate. Media-aware network
elements MAY use the information in the VP8 payload descriptor in
<a href="#section-4.2">Section 4.2</a> to identify non-reference frames and discard them in
order to reduce network congestion. Note that discarding of non-
reference frames cannot be done if the stream is encrypted (because
the non-reference marker is encrypted).
<span class="h2"><a class="selflink" id="section-9" href="#section-9">9</a>. IANA Considerations</span>
The IANA has registered a media type as described in <a href="#section-6.1">Section 6.1</a>.
<span class="grey">Westin, et al. Standards Track [Page 24]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-25" ></span>
<span class="grey"><a href="./rfc7741">RFC 7741</a> RTP Payload Format for VP8 March 2016</span>
<span class="h2"><a class="selflink" id="section-10" href="#section-10">10</a>. References</span>
<span class="h3"><a class="selflink" id="section-10.1" href="#section-10.1">10.1</a>. Normative References</span>
[<a id="ref-RFC2119">RFC2119</a>] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", <a href="https://www.rfc-editor.org/bcp/bcp14">BCP 14</a>, <a href="./rfc2119">RFC 2119</a>,
DOI 10.17487/RFC2119, March 1997,
<<a href="http://www.rfc-editor.org/info/rfc2119">http://www.rfc-editor.org/info/rfc2119</a>>.
[<a id="ref-RFC3550">RFC3550</a>] Schulzrinne, H., Casner, S., Frederick, R., and V.
Jacobson, "RTP: A Transport Protocol for Real-Time
Applications", STD 64, <a href="./rfc3550">RFC 3550</a>, DOI 10.17487/RFC3550,
July 2003, <<a href="http://www.rfc-editor.org/info/rfc3550">http://www.rfc-editor.org/info/rfc3550</a>>.
[<a id="ref-RFC3551">RFC3551</a>] Schulzrinne, H. and S. Casner, "RTP Profile for Audio and
Video Conferences with Minimal Control", STD 65, <a href="./rfc3551">RFC 3551</a>,
DOI 10.17487/RFC3551, July 2003,
<<a href="http://www.rfc-editor.org/info/rfc3551">http://www.rfc-editor.org/info/rfc3551</a>>.
[<a id="ref-RFC4566">RFC4566</a>] Handley, M., Jacobson, V., and C. Perkins, "SDP: Session
Description Protocol", <a href="./rfc4566">RFC 4566</a>, DOI 10.17487/RFC4566,
July 2006, <<a href="http://www.rfc-editor.org/info/rfc4566">http://www.rfc-editor.org/info/rfc4566</a>>.
[<a id="ref-RFC4585">RFC4585</a>] Ott, J., Wenger, S., Sato, N., Burmeister, C., and J. Rey,
"Extended RTP Profile for Real-time Transport Control
Protocol (RTCP)-Based Feedback (RTP/AVPF)", <a href="./rfc4585">RFC 4585</a>,
DOI 10.17487/RFC4585, July 2006,
<<a href="http://www.rfc-editor.org/info/rfc4585">http://www.rfc-editor.org/info/rfc4585</a>>.
[<a id="ref-RFC4855">RFC4855</a>] Casner, S., "Media Type Registration of RTP Payload
Formats", <a href="./rfc4855">RFC 4855</a>, DOI 10.17487/RFC4855, February 2007,
<<a href="http://www.rfc-editor.org/info/rfc4855">http://www.rfc-editor.org/info/rfc4855</a>>.
[<a id="ref-RFC6386">RFC6386</a>] Bankoski, J., Koleszar, J., Quillio, L., Salonen, J.,
Wilkins, P., and Y. Xu, "VP8 Data Format and Decoding
Guide", <a href="./rfc6386">RFC 6386</a>, DOI 10.17487/RFC6386, November 2011,
<<a href="http://www.rfc-editor.org/info/rfc6386">http://www.rfc-editor.org/info/rfc6386</a>>.
[<a id="ref-RFC6838">RFC6838</a>] Freed, N., Klensin, J., and T. Hansen, "Media Type
Specifications and Registration Procedures", <a href="https://www.rfc-editor.org/bcp/bcp13">BCP 13</a>,
<a href="./rfc6838">RFC 6838</a>, DOI 10.17487/RFC6838, January 2013,
<<a href="http://www.rfc-editor.org/info/rfc6838">http://www.rfc-editor.org/info/rfc6838</a>>.
<span class="grey">Westin, et al. Standards Track [Page 25]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-26" ></span>
<span class="grey"><a href="./rfc7741">RFC 7741</a> RTP Payload Format for VP8 March 2016</span>
<span class="h3"><a class="selflink" id="section-10.2" href="#section-10.2">10.2</a>. Informative References</span>
[<a id="ref-RFC3711">RFC3711</a>] Baugher, M., McGrew, D., Naslund, M., Carrara, E., and K.
Norrman, "The Secure Real-time Transport Protocol (SRTP)",
<a href="./rfc3711">RFC 3711</a>, DOI 10.17487/RFC3711, March 2004,
<<a href="http://www.rfc-editor.org/info/rfc3711">http://www.rfc-editor.org/info/rfc3711</a>>.
[<a id="ref-RFC5124">RFC5124</a>] Ott, J. and E. Carrara, "Extended Secure RTP Profile for
Real-time Transport Control Protocol (RTCP)-Based Feedback
(RTP/SAVPF)", <a href="./rfc5124">RFC 5124</a>, DOI 10.17487/RFC5124, February
2008, <<a href="http://www.rfc-editor.org/info/rfc5124">http://www.rfc-editor.org/info/rfc5124</a>>.
[<a id="ref-RFC7201">RFC7201</a>] Westerlund, M. and C. Perkins, "Options for Securing RTP
Sessions", <a href="./rfc7201">RFC 7201</a>, DOI 10.17487/RFC7201, April 2014,
<<a href="http://www.rfc-editor.org/info/rfc7201">http://www.rfc-editor.org/info/rfc7201</a>>.
[<a id="ref-RFC7202">RFC7202</a>] Perkins, C. and M. Westerlund, "Securing the RTP
Framework: Why RTP Does Not Mandate a Single Media
Security Solution", <a href="./rfc7202">RFC 7202</a>, DOI 10.17487/RFC7202, April
2014, <<a href="http://www.rfc-editor.org/info/rfc7202">http://www.rfc-editor.org/info/rfc7202</a>>.
[<a id="ref-Sch07">Sch07</a>] Schwarz, H., Marpe, D., and T. Wiegand, "Overview of the
Scalable Video Coding Extension of the H.264/AVC
Standard", IEEE Transactions on Circuits and Systems for
Video Technology, Volume 17: Issue 9,
DOI 10.1109/TCSVT.2007.905532, September 2007,
<<a href="http://dx.doi.org/10.1109/TCSVT.2007.905532">http://dx.doi.org/10.1109/TCSVT.2007.905532</a>>.
<span class="grey">Westin, et al. Standards Track [Page 26]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-27" ></span>
<span class="grey"><a href="./rfc7741">RFC 7741</a> RTP Payload Format for VP8 March 2016</span>
Authors' Addresses
Patrik Westin
Google, Inc.
1600 Amphitheatre Parkway
Mountain View, CA 94043
United States
Email: patrik.westin@gmail.com
Henrik F Lundin
Google, Inc.
Kungsbron 2
Stockholm 11122
Sweden
Email: hlundin@google.com
Michael Glover
Twitter Boston
10 Hemlock Way
Durham, NH 03824
United States
Email: michaelglover262@gmail.com
Justin Uberti
Google, Inc.
747 6th Street South
Kirkland, WA 98033
United States
Email: justin@uberti.name
Frank Galligan
Google, Inc.
1600 Amphitheatre Parkway
Mountain View, CA 94043
United States
Email: fgalligan@google.com
Westin, et al. Standards Track [Page 27]
</pre>
|