1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957
|
<pre>Internet Engineering Task Force (IETF) R. Papneja
Request for Comments: 7747 Huawei Technologies
Category: Informational B. Parise
ISSN: 2070-1721 Skyport Systems
S. Hares
Huawei Technologies
D. Lee
IXIA
I. Varlashkin
Google
April 2016
<span class="h1">Basic BGP Convergence Benchmarking Methodology</span>
<span class="h1">for Data-Plane Convergence</span>
Abstract
BGP is widely deployed and used by several service providers as the
default inter-AS (Autonomous System) routing protocol. It is of
utmost importance to ensure that when a BGP peer or a downstream link
of a BGP peer fails, the alternate paths are rapidly used and routes
via these alternate paths are installed. This document provides the
basic BGP benchmarking methodology using existing BGP convergence
terminology as defined in <a href="./rfc4098">RFC 4098</a>.
Status of This Memo
This document is not an Internet Standards Track specification; it is
published for informational purposes.
This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Not all documents
approved by the IESG are a candidate for any level of Internet
Standard; see <a href="./rfc5741#section-2">Section 2 of RFC 5741</a>.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
<a href="http://www.rfc-editor.org/info/rfc7747">http://www.rfc-editor.org/info/rfc7747</a>.
<span class="grey">Papneja, et al. Informational [Page 1]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-2" ></span>
<span class="grey"><a href="./rfc7747">RFC 7747</a> BGP Convergence Methodology April 2016</span>
Copyright Notice
Copyright (c) 2016 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to <a href="https://www.rfc-editor.org/bcp/bcp78">BCP 78</a> and the IETF Trust's Legal
Provisions Relating to IETF Documents
(<a href="http://trustee.ietf.org/license-info">http://trustee.ietf.org/license-info</a>) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
This document may contain material from IETF Documents or IETF
Contributions published or made publicly available before November
10, 2008. The person(s) controlling the copyright in some of this
material may not have granted the IETF Trust the right to allow
modifications of such material outside the IETF Standards Process.
Without obtaining an adequate license from the person(s) controlling
the copyright in such materials, this document may not be modified
outside the IETF Standards Process, and derivative works of it may
not be created outside the IETF Standards Process, except to format
it for publication as an RFC or to translate it into languages other
than English.
<span class="grey">Papneja, et al. Informational [Page 2]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-3" ></span>
<span class="grey"><a href="./rfc7747">RFC 7747</a> BGP Convergence Methodology April 2016</span>
Table of Contents
<a href="#section-1">1</a>. Introduction . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-4">4</a>
<a href="#section-1.1">1.1</a>. Benchmarking Definitions . . . . . . . . . . . . . . . . <a href="#page-4">4</a>
<a href="#section-1.2">1.2</a>. Purpose of BGP FIB (Data-Plane) Convergence . . . . . . . <a href="#page-4">4</a>
<a href="#section-1.3">1.3</a>. Control-Plane Convergence . . . . . . . . . . . . . . . . <a href="#page-5">5</a>
<a href="#section-1.4">1.4</a>. Benchmarking Testing . . . . . . . . . . . . . . . . . . <a href="#page-5">5</a>
<a href="#section-2">2</a>. Existing Definitions and Requirements . . . . . . . . . . . . <a href="#page-5">5</a>
<a href="#section-3">3</a>. Test Topologies . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-6">6</a>
<a href="#section-3.1">3.1</a>. General Reference Topologies . . . . . . . . . . . . . . <a href="#page-7">7</a>
<a href="#section-4">4</a>. Test Considerations . . . . . . . . . . . . . . . . . . . . . <a href="#page-8">8</a>
<a href="#section-4.1">4.1</a>. Number of Peers . . . . . . . . . . . . . . . . . . . . . <a href="#page-9">9</a>
<a href="#section-4.2">4.2</a>. Number of Routes per Peer . . . . . . . . . . . . . . . . <a href="#page-9">9</a>
<a href="#section-4.3">4.3</a>. Policy Processing/Reconfiguration . . . . . . . . . . . . <a href="#page-9">9</a>
<a href="#section-4.4">4.4</a>. Configured Parameters (Timers, etc.) . . . . . . . . . . <a href="#page-9">9</a>
<a href="#section-4.5">4.5</a>. Interface Types . . . . . . . . . . . . . . . . . . . . . <a href="#page-11">11</a>
<a href="#section-4.6">4.6</a>. Measurement Accuracy . . . . . . . . . . . . . . . . . . <a href="#page-11">11</a>
<a href="#section-4.7">4.7</a>. Measurement Statistics . . . . . . . . . . . . . . . . . <a href="#page-11">11</a>
<a href="#section-4.8">4.8</a>. Authentication . . . . . . . . . . . . . . . . . . . . . <a href="#page-11">11</a>
<a href="#section-4.9">4.9</a>. Convergence Events . . . . . . . . . . . . . . . . . . . <a href="#page-12">12</a>
<a href="#section-4.10">4.10</a>. High Availability . . . . . . . . . . . . . . . . . . . . <a href="#page-12">12</a>
<a href="#section-5">5</a>. Test Cases . . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-12">12</a>
<a href="#section-5.1">5.1</a>. Basic Convergence Tests . . . . . . . . . . . . . . . . . <a href="#page-13">13</a>
<a href="#section-5.1.1">5.1.1</a>. RIB-IN Convergence . . . . . . . . . . . . . . . . . <a href="#page-13">13</a>
<a href="#section-5.1.2">5.1.2</a>. RIB-OUT Convergence . . . . . . . . . . . . . . . . . <a href="#page-15">15</a>
<a href="#section-5.1.3">5.1.3</a>. eBGP Convergence . . . . . . . . . . . . . . . . . . <a href="#page-16">16</a>
<a href="#section-5.1.4">5.1.4</a>. iBGP Convergence . . . . . . . . . . . . . . . . . . <a href="#page-16">16</a>
<a href="#section-5.1.5">5.1.5</a>. eBGP Multihop Convergence . . . . . . . . . . . . . . <a href="#page-17">17</a>
<a href="#section-5.2">5.2</a>. BGP Failure/Convergence Events . . . . . . . . . . . . . <a href="#page-18">18</a>
<a href="#section-5.2.1">5.2.1</a>. Physical Link Failure on DUT End . . . . . . . . . . <a href="#page-18">18</a>
<a href="#section-5.2.2">5.2.2</a>. Physical Link Failure on Remote/Emulator End . . . . <a href="#page-19">19</a>
<a href="#section-5.2.3">5.2.3</a>. ECMP Link Failure on DUT End . . . . . . . . . . . . <a href="#page-20">20</a>
5.3. BGP Adjacency Failure (Non-Physical Link Failure) on
Emulator . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-20">20</a>
<a href="#section-5.4">5.4</a>. BGP Hard Reset Test Cases . . . . . . . . . . . . . . . . <a href="#page-21">21</a>
<a href="#section-5.4.1">5.4.1</a>. BGP Non-Recovering Hard Reset Event on DUT . . . . . <a href="#page-21">21</a>
<a href="#section-5.5">5.5</a>. BGP Soft Reset . . . . . . . . . . . . . . . . . . . . . <a href="#page-22">22</a>
<a href="#section-5.6">5.6</a>. BGP Route Withdrawal Convergence Time . . . . . . . . . . <a href="#page-24">24</a>
<a href="#section-5.7">5.7</a>. BGP Path Attribute Change Convergence Time . . . . . . . <a href="#page-26">26</a>
<a href="#section-5.8">5.8</a>. BGP Graceful Restart Convergence Time . . . . . . . . . . <a href="#page-27">27</a>
<a href="#section-6">6</a>. Reporting Format . . . . . . . . . . . . . . . . . . . . . . <a href="#page-29">29</a>
<a href="#section-7">7</a>. Security Considerations . . . . . . . . . . . . . . . . . . . <a href="#page-32">32</a>
<a href="#section-8">8</a>. References . . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-32">32</a>
<a href="#section-8.1">8.1</a>. Normative References . . . . . . . . . . . . . . . . . . <a href="#page-32">32</a>
<a href="#section-8.2">8.2</a>. Informative References . . . . . . . . . . . . . . . . . <a href="#page-33">33</a>
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-34">34</a>
Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-35">35</a>
<span class="grey">Papneja, et al. Informational [Page 3]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-4" ></span>
<span class="grey"><a href="./rfc7747">RFC 7747</a> BGP Convergence Methodology April 2016</span>
<span class="h2"><a class="selflink" id="section-1" href="#section-1">1</a>. Introduction</span>
This document defines the methodology for benchmarking data-plane
Forwarding Information Base (FIB) convergence performance of BGP in
routers and switches using topologies of three or four nodes. The
methodology proposed in this document applies to both IPv4 and IPv6,
and if a particular test is unique to one version, it is marked
accordingly. For IPv6 benchmarking, the Device Under Test (DUT) will
require the support of Multiprotocol BGP (MP-BGP) [<a href="./rfc4760" title=""Multiprotocol Extensions for BGP-4"">RFC4760</a>]
[<a href="./rfc2545" title=""Use of BGP-4 Multiprotocol Extensions for IPv6 Inter-Domain Routing"">RFC2545</a>]. Similarly, both Internal BGP (iBGP) and External BGP
(eBGP) are covered in the tests as applicable.
The scope of this document is to provide methodology for BGP FIB
convergence measurements with BGP functionality limited to IPv4 and
IPv6 as defined in [<a href="./rfc4271" title=""A Border Gateway Protocol 4 (BGP-4)"">RFC4271</a>] and MP-BGP [<a href="./rfc4760" title=""Multiprotocol Extensions for BGP-4"">RFC4760</a>] [<a href="./rfc2545" title=""Use of BGP-4 Multiprotocol Extensions for IPv6 Inter-Domain Routing"">RFC2545</a>]. Other
BGP extensions to support Layer 2 and Layer 3 Virtual Private
Networks (VPNs) are outside the scope of this document. Interaction
with IGPs (IGP interworking) is outside the scope of this document.
<span class="h3"><a class="selflink" id="section-1.1" href="#section-1.1">1.1</a>. Benchmarking Definitions</span>
The terminology used in this document is defined in [<a href="./rfc4098" title=""Terminology for Benchmarking BGP Device Convergence in the Control Plane"">RFC4098</a>]. One
additional term is defined in this document as follows.
FIB (data-plane) convergence is defined as the completion of all FIB
changes so that all forwarded traffic then takes the newly proposed
route. <a href="./rfc4098">RFC 4098</a> defines the terms 'BGP device', 'FIB', and
'forwarded traffic'. Data-plane convergence is different than
control-plane convergence within a node.
This document defines methodology to test
o data-plane convergence on a single BGP device that supports the
BGP functionality with a scope as outlined above; and
o using test topology of three or four nodes that are sufficient to
recreate the convergence events used in the various tests of this
document.
<span class="h3"><a class="selflink" id="section-1.2" href="#section-1.2">1.2</a>. Purpose of BGP FIB (Data-Plane) Convergence</span>
In the current Internet architecture, the inter-AS transit is
primarily available through BGP. To maintain reliable connectivity
within intra-domains or across inter-domains, fast recovery from
failures remains most critical. To ensure minimal traffic losses,
many service providers are requiring BGP implementations to converge
the entire Internet routing table within sub-seconds at FIB level.
<span class="grey">Papneja, et al. Informational [Page 4]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-5" ></span>
<span class="grey"><a href="./rfc7747">RFC 7747</a> BGP Convergence Methodology April 2016</span>
Furthermore, to compare these numbers amongst various devices,
service providers are also looking at ways to standardize the
convergence measurement methods. This document offers test methods
for simple topologies. These simple tests will provide a quick high-
level check of BGP data-plane convergence across multiple
implementations from different vendors.
<span class="h3"><a class="selflink" id="section-1.3" href="#section-1.3">1.3</a>. Control-Plane Convergence</span>
The convergence of BGP occurs at two levels: Routing Information Base
(RIB) and FIB convergence. <a href="./rfc4098">RFC 4098</a> defines terms for BGP control-
plane convergence. Methodologies that test control-plane convergence
are out of scope for this document.
<span class="h3"><a class="selflink" id="section-1.4" href="#section-1.4">1.4</a>. Benchmarking Testing</span>
In order to ensure that the results obtained in tests are repeatable,
careful setup of initial conditions and exact steps are required.
This document proposes these initial conditions, test steps, and
result checking. To ensure uniformity of the results, all optional
parameters SHOULD be disabled and all settings SHOULD be changed to
default; these may include BGP timers as well.
<span class="h2"><a class="selflink" id="section-2" href="#section-2">2</a>. Existing Definitions and Requirements</span>
"Benchmarking Terminology for Network Interconnect Devices" [<a href="./rfc1242" title=""Benchmarking Terminology for Network Interconnection Devices"">RFC1242</a>]
and "Benchmarking Terminology for LAN Switching Devices" [<a href="./rfc2285" title=""Benchmarking Terminology for LAN Switching Devices"">RFC2285</a>]
SHOULD be reviewed in conjunction with this document. WLAN-specific
terms and definitions are also provided in Clauses 3 and 4 of the
IEEE 802.11 standard [<a href="#ref-IEEE.802.11">IEEE.802.11</a>]. Commonly used terms may also be
found in <a href="./rfc1983">RFC 1983</a> [<a href="./rfc1983" title=""Internet Users' Glossary"">RFC1983</a>].
For the sake of clarity and continuity, this document adopts the
general template for benchmarking terminology set out in <a href="./rfc1242#section-2">Section 2 of
[RFC1242]</a>. Definitions are organized in alphabetical order and
grouped into sections for ease of reference. The following terms are
assumed to be taken as defined in <a href="./rfc1242">RFC 1242</a> [<a href="./rfc1242" title=""Benchmarking Terminology for Network Interconnection Devices"">RFC1242</a>]: Throughput,
Latency, Constant Load, Frame Loss Rate, and Overhead Behavior. In
addition, the following terms are taken as defined in [<a href="./rfc2285" title=""Benchmarking Terminology for LAN Switching Devices"">RFC2285</a>]:
Forwarding Rates, Maximum Forwarding Rate, Loads, Device Under Test
(DUT), and System Under Test (SUT).
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in <a href="./rfc2119">RFC 2119</a> [<a href="./rfc2119" title=""Key words for use in RFCs to Indicate Requirement Levels"">RFC2119</a>].
<span class="grey">Papneja, et al. Informational [Page 5]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-6" ></span>
<span class="grey"><a href="./rfc7747">RFC 7747</a> BGP Convergence Methodology April 2016</span>
<span class="h2"><a class="selflink" id="section-3" href="#section-3">3</a>. Test Topologies</span>
This section describes the test setups for use in BGP benchmarking
tests measuring convergence of the FIB (data-plane) after BGP updates
have been received.
These test setups have three or four nodes with the following
configuration:
1. Basic test setup
2. Three-node setup for iBGP or eBGP convergence
3. Setup for eBGP multihop test Scenario
4. Four-node setup for iBGP or eBGP convergence
Individual tests refer to these topologies.
Figures 1 through 4 use the following conventions:
o AS-X: Autonomous System X
o Loopback Int: Loopback interface on a BGP-enabled device
o HLP, HLP1, HLP2: Helper routers running the same version of BGP as
the DUT
o All devices MUST be synchronized using NTP or some other clock
synchronization mechanism
<span class="grey">Papneja, et al. Informational [Page 6]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-7" ></span>
<span class="grey"><a href="./rfc7747">RFC 7747</a> BGP Convergence Methodology April 2016</span>
<span class="h3"><a class="selflink" id="section-3.1" href="#section-3.1">3.1</a>. General Reference Topologies</span>
Emulator acts as one or more BGP peers for different test cases.
+----------+ +------------+
| | Traffic Interfaces | |
| |-----------------------1---- | tx |
| |-----------------------2---- | tr1 |
| |-----------------------3-----| tr2 |
| DUT | | Emulator |
| | Routing Interfaces | |
| Dp1 |--------------------------- |Emp1 |
| | BGP Peering | |
| Dp2 |---------------------------- |Emp2 |
| | BGP Peering | |
+----------+ +------------+
Figure 1: Basic Test Setup
+------------+ +-----------+ +-----------+
| | | | | |
| | | | | |
| HLP | | DUT | | Emulator |
| (AS-X) |--------| (AS-Y) |-----------| (AS-Z) |
| | | | | |
| | | | | |
| | | | | |
+------------+ +-----------+ +-----------+
| |
| |
+--------------------------------------------+
Figure 2: Three-Node Setup for eBGP and iBGP Convergence
<span class="grey">Papneja, et al. Informational [Page 7]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-8" ></span>
<span class="grey"><a href="./rfc7747">RFC 7747</a> BGP Convergence Methodology April 2016</span>
+----------------------------------------------+
| |
| |
+------------+ +-----------+ +-----------+
| | | | | |
| | | | | |
| HLP | | DUT | | Emulator |
| (AS-X) |--------| (AS-Y) |-----------| (AS-Z) |
| | | | | |
| | | | | |
| | | | | |
+------------+ +-----------+ +-----------+
|Loopback-Int |Loopback-Int
| |
+ +
Figure 3: BGP Convergence for eBGP Multihop Scenario
+---------+ +--------+ +--------+ +---------+
| | | | | | | |
| | | | | | | |
| HLP1 | | DUT | | HLP2 | |Emulator |
| (AS-X) |-----| (AS-X) |-----| (AS-Y) |-----| (AS-Z) |
| | | | | | | |
| | | | | | | |
| | | | | | | |
+---------+ +--------+ +--------+ +---------+
| |
| |
+---------------------------------------------+
Figure 4: Four-Node Setup for eBGP and iBGP Convergence
<span class="h2"><a class="selflink" id="section-4" href="#section-4">4</a>. Test Considerations</span>
The test cases for measuring convergence for iBGP and eBGP are
different. Both iBGP and eBGP use different mechanisms to advertise,
install, and learn the routes. Typically, an iBGP route on the DUT
is installed and exported when the next hop is valid. For eBGP, the
route is installed on the DUT with the remote interface address as
the next hop, with the exception of the multihop test case (as
specified in the test).
<span class="grey">Papneja, et al. Informational [Page 8]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-9" ></span>
<span class="grey"><a href="./rfc7747">RFC 7747</a> BGP Convergence Methodology April 2016</span>
<span class="h3"><a class="selflink" id="section-4.1" href="#section-4.1">4.1</a>. Number of Peers</span>
"Number of Peers" is defined as the number of BGP neighbors or
sessions the DUT has at the beginning of the test. The peers are
established before the tests begin. The relationship could be either
iBGP or eBGP peering depending upon the test case requirement.
The DUT establishes one or more BGP peer sessions with one or more
emulated routers or Helper Nodes. Additional peers can be added
based on the testing requirements. The number of peers enabled
during the testing should be well documented in the report matrix.
<span class="h3"><a class="selflink" id="section-4.2" href="#section-4.2">4.2</a>. Number of Routes per Peer</span>
"Number of Routes per Peer" is defined as the number of routes
advertised or learned by the DUT per session or through a neighbor
relationship with an emulator or Helper Node. The Tester, emulating
as a BGP neighbor, MUST advertise at least one route per BGP peer.
Each test run must identify the route stream in terms of route
packing, route mixture, and number of routes. This route stream must
be well documented in the reporting stream. <a href="./rfc4098">RFC 4098</a> defines these
terms.
It is RECOMMENDED that the user consider advertising the entire
current Internet routing table per peering session using an Internet
route mixture with unique or non-unique routes. If multiple peers
are used, it is important to precisely document the timing sequence
between the peer sending routes (as defined in <a href="./rfc4098">RFC 4098</a>).
<span class="h3"><a class="selflink" id="section-4.3" href="#section-4.3">4.3</a>. Policy Processing/Reconfiguration</span>
The DUT MUST run one baseline test where policy is the Minimal policy
as defined in <a href="./rfc4098">RFC 4098</a>. Additional runs may be done with the policy
that was set up before the tests began. Exact policy settings MUST
be documented as part of the test.
<span class="h3"><a class="selflink" id="section-4.4" href="#section-4.4">4.4</a>. Configured Parameters (Timers, etc.)</span>
There are configured parameters and timers that may impact the
measured BGP convergence times.
The benchmark metrics MAY be measured at any fixed values for these
configured parameters.
<span class="grey">Papneja, et al. Informational [Page 9]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-10" ></span>
<span class="grey"><a href="./rfc7747">RFC 7747</a> BGP Convergence Methodology April 2016</span>
It is RECOMMENDED these configure parameters have the following
settings: a) default values specified by the respective RFC, b)
platform-specific default parameters, and c) values as expected in
the operational network. All optional BGP settings MUST be kept
consistent across iterations of any specific tests
Examples of the configured parameters that may impact measured BGP
convergence time include, but are not limited to:
1. Interface failure detection timer
2. BGP keepalive timer
3. BGP holdtime
4. BGP update delay timer
5. ConnectRetry timer
6. TCP segment size
7. Minimum Route Advertisement Interval (MRAI)
8. MinASOriginationInterval (MAOI)
9. Route flap damping parameters
10. TCP Authentication Option (TCP AO or TCP MD5)
11. Maximum TCP window size
12. MTU
The basic-test settings for the parameters should be:
1. Interface failure detection timer (0 ms)
2. BGP keepalive timer (1 min)
3. BGP holdtime (3 min)
4. BGP update delay timer (0 s)
5. ConnectRetry timer (1 s)
6. TCP segment size (4096 bytes)
7. Minimum Route Advertisement Interval (MRAI) (0 s)
<span class="grey">Papneja, et al. Informational [Page 10]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-11" ></span>
<span class="grey"><a href="./rfc7747">RFC 7747</a> BGP Convergence Methodology April 2016</span>
8. MinASOriginationInterval (MAOI) (0 s)
9. Route flap damping parameters (off)
10. TCP Authentication Option (off)
<span class="h3"><a class="selflink" id="section-4.5" href="#section-4.5">4.5</a>. Interface Types</span>
The type of media dictates which test cases may be executed; each
interface type has a unique mechanism for detecting link failures,
and the speed at which that mechanism operates will influence the
measurement results. All interfaces MUST be of the same media and
throughput for all iterations of each test case.
<span class="h3"><a class="selflink" id="section-4.6" href="#section-4.6">4.6</a>. Measurement Accuracy</span>
Since observed packet loss is used to measure the route convergence
time, the time between two successive packets offered to each
individual route is the highest possible accuracy of any packet-loss-
based measurement. When packet jitter is much less than the
convergence time, it is a negligible source of error, and hence, it
will be treated as within tolerance.
Other options to measure convergence are the Time-Based Loss Method
(TBLM) and Timestamp-Based Method (TBM) [<a href="./rfc6414" title=""Benchmarking Terminology for Protection Performance"">RFC6414</a>].
An exterior measurement on the input media (such as Ethernet) is
defined by this specification.
<span class="h3"><a class="selflink" id="section-4.7" href="#section-4.7">4.7</a>. Measurement Statistics</span>
The benchmark measurements may vary for each trial due to the
statistical nature of timer expirations, CPU scheduling, etc. It is
recommended to repeat the test multiple times. Evaluation of the
test data must be done with an understanding of generally accepted
testing practices regarding repeatability, variance, and statistical
significance of a small number of trials.
For any repeated tests that are averaged to remove variance, all
parameters MUST remain the same.
<span class="h3"><a class="selflink" id="section-4.8" href="#section-4.8">4.8</a>. Authentication</span>
Authentication in BGP is done using the TCP Authentication Option
[<a href="./rfc5925" title=""The TCP Authentication Option"">RFC5925</a>]. (In some legacy situations, the authentication may still
be with TCP MD5). The processing of the authentication hash,
particularly in devices with a large number of BGP peers and a large
amount of update traffic, can have an impact on the control plane of
<span class="grey">Papneja, et al. Informational [Page 11]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-12" ></span>
<span class="grey"><a href="./rfc7747">RFC 7747</a> BGP Convergence Methodology April 2016</span>
the device. If authentication is enabled, it MUST be documented
correctly in the reporting format.
Also, it is recommended that trials MUST be with the same Secure
Inter-Domain Routing (SIDR) features [<a href="./rfc7115" title=""Origin Validation Operation Based on the Resource Public Key Infrastructure (RPKI)"">RFC7115</a>] [<a href="#ref-BGPsec" title=""BGPsec Protocol Specification"">BGPsec</a>]. The best
convergence tests would be with no SIDR features and then to repeat
the convergence tests with the same SIDR features.
<span class="h3"><a class="selflink" id="section-4.9" href="#section-4.9">4.9</a>. Convergence Events</span>
Convergence events or triggers are defined as abnormal occurrences in
the network, which initiate route flapping in the network and hence
forces the reconvergence of a steady state network. In a real
network, a series of convergence events may cause convergence latency
operators desire to test.
These convergence events must be defined in terms of the sequences
defined in <a href="./rfc4098">RFC 4098</a>. This basic document begins all tests with a
router initial setup. Additional documents will define BGP data-
plane convergence based on peer initialization.
The convergence events may or may not be tied to the actual failure.
A soft reset [<a href="./rfc4098" title=""Terminology for Benchmarking BGP Device Convergence in the Control Plane"">RFC4098</a>] does not clear the RIB or FIB tables. A hard
reset clears BGP peer sessions, RIB tables, and FIB tables.
<span class="h3"><a class="selflink" id="section-4.10" href="#section-4.10">4.10</a>. High Availability</span>
Due to the different Non-Stop-Routing (sometimes referred to High-
Availability) solutions available from different vendors, it is
RECOMMENDED that any redundancy available in the routing processors
should be disabled during the convergence measurements. For cases
where the redundancy cannot be disabled, the results are no longer
comparable and the level of impact on the measurements is out of
scope of this document.
<span class="h2"><a class="selflink" id="section-5" href="#section-5">5</a>. Test Cases</span>
All tests defined under this section assume the following:
a. BGP peers are in Established state.
b. BGP state should be cleared from Established state to Idle prior
to each test. This is recommended to ensure that all tests start
with BGP peers being forced back to Idle state and databases
flushed.
<span class="grey">Papneja, et al. Informational [Page 12]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-13" ></span>
<span class="grey"><a href="./rfc7747">RFC 7747</a> BGP Convergence Methodology April 2016</span>
c. Furthermore, the traffic generation and routing should be
verified in the topology to ensure there is no packet loss
observed on any advertised routes.
d. The arrival timestamp of advertised routes can be measured by
installing an inline monitoring device between the emulator and
the DUT or by using the span port of the DUT connected with an
external analyzer. The time base of such an inline monitor or
external analyzer needs to be synchronized with the protocol and
traffic emulator. Some modern emulators may have the capability
to capture and timestamp every NLRI packet leaving and arriving
at the emulator ports. The timestamps of these NLRI packets will
be almost identical to the arrival time at the DUT if the cable
distance between the emulator and DUT is relatively short.
<span class="h3"><a class="selflink" id="section-5.1" href="#section-5.1">5.1</a>. Basic Convergence Tests</span>
These test cases measure characteristics of a BGP implementation in
non-failure scenarios like:
1. RIB-IN Convergence
2. RIB-OUT Convergence
3. eBGP Convergence
4. iBGP Convergence
<span class="h4"><a class="selflink" id="section-5.1.1" href="#section-5.1.1">5.1.1</a>. RIB-IN Convergence</span>
Objective:
This test measures the convergence time taken to receive and
install a route in RIB using BGP.
Reference Test Setup:
This test uses the setup as shown in Figure 1
Procedure:
A. All variables affecting convergence should be set to a basic test
state (as defined in <a href="#section-4.4">Section 4.4</a>).
B. Establish BGP adjacency between the DUT and one peer of the
emulator, Emp1.
<span class="grey">Papneja, et al. Informational [Page 13]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-14" ></span>
<span class="grey"><a href="./rfc7747">RFC 7747</a> BGP Convergence Methodology April 2016</span>
C. To ensure adjacency establishment, wait for three keepalives to
be received from the DUT or a configurable delay before
proceeding with the rest of the test.
D. Start the traffic from the emulator tx towards the DUT targeted
at a route specified in the route mixture (e.g., routeA).
Initially, no traffic SHOULD be observed on the egress interface
as routeA is not installed in the forwarding database of the DUT.
E. Advertise routeA from the peer (Emp1) to the DUT and record the
time.
This is Tup(Emp1,Rt-A), also named XMT-Rt-time(Rt-A).
F. Record the time when routeA from Emp1 is received at the DUT.
This is Tup(DUT,Rt-A), also named RCV-Rt-time(Rt-A).
G. Record the time when the traffic targeted towards routeA is
received by the emulator on the appropriate traffic egress
interface.
This is TR(TDr,Rt-A), also named DUT-XMT-Data-Time(Rt-A).
H. The difference between the Tup(DUT,RT-A) and traffic received
time (TR (TDr, Rt-A) is the FIB convergence time for routeA in
the route mixture. A full convergence for the route update is
the measurement between the first route (Rt-A) and the last route
(Rt-last).
Route update convergence is
TR(TDr, Rt-last)- Tup(DUT, Rt-A), or
(DUT-XMT-Data-Time - RCV-Rt-Time)(Rt-A).
Note: It is recommended that a single test with the same route
mixture be repeated several times. A report should provide the
standard deviation and the average of all tests.
Running tests with a varying number of routes and route mixtures is
important to get a full characterization of a single peer.
<span class="grey">Papneja, et al. Informational [Page 14]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-15" ></span>
<span class="grey"><a href="./rfc7747">RFC 7747</a> BGP Convergence Methodology April 2016</span>
<span class="h4"><a class="selflink" id="section-5.1.2" href="#section-5.1.2">5.1.2</a>. RIB-OUT Convergence</span>
Objective:
This test measures the convergence time taken by an implementation
to receive, install, and advertise a route using BGP.
Reference Test Setup:
This test uses the setup as shown in Figure 2.
Procedure:
A. The Helper Node (HLP) MUST run same version of BGP as the DUT.
B. All devices MUST be synchronized using NTP or some local
reference clock.
C. All configuration variables for the Helper Node, DUT, and
emulator SHOULD be set to the same values. These values MAY be
basic test or a unique set completely described in the test
setup.
D. Establish BGP adjacency between the DUT and the emulator.
E. Establish BGP adjacency between the DUT and the Helper Node.
F. To ensure adjacency establishment, wait for three keepalives to
be received from the DUT or a configurable delay before
proceeding with the rest of the test.
G. Start the traffic from the emulator towards the Helper Node
targeted at a specific route (e.g., routeA). Initially, no
traffic SHOULD be observed on the egress interface as routeA is
not installed in the forwarding database of the DUT.
H. Advertise routeA from the emulator to the DUT and note the time.
This is Tup(EMx, Rt-A), also named EM-XMT-Data-Time(Rt-A).
I. Record when routeA is received by the DUT.
This is Tup(DUTr, Rt-A), also named DUT-RCV-Rt-Time(Rt-A).
J. Record the time when routeA is forwarded by the DUT towards the
Helper Node.
This is Tup(DUTx, Rt-A), also named DUT-XMT-Rt-Time(Rt-A).
<span class="grey">Papneja, et al. Informational [Page 15]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-16" ></span>
<span class="grey"><a href="./rfc7747">RFC 7747</a> BGP Convergence Methodology April 2016</span>
K. Record the time when the traffic targeted towards routeA is
received on the Route Egress Interface. This is TR(EMr, Rt-A),
also named DUT-XMT-Data Time(Rt-A).
FIB convergence = (DUT-XMT-Data-Time -DUT-RCV-Rt-Time)(Rt-A)
RIB convergence = (DUT-XMT-Rt-Time - DUT-RCV-Rt-Time)(Rt-A)
Convergence for a route stream is characterized by
a) individual route convergence for FIB and RIB, and
b) all route convergence of
FIB-convergence = DUT-XMT-Data-Time(last) - DUT-RCV-Rt-
Time(first), and
RIB-convergence = DUT-XMT-Rt-Time(last) - DUT-RCV-Rt-
Time(first).
<span class="h4"><a class="selflink" id="section-5.1.3" href="#section-5.1.3">5.1.3</a>. eBGP Convergence</span>
Objective:
This test measures the convergence time taken by an implementation
to receive, install, and advertise a route in an eBGP Scenario.
Reference Test Setup:
This test uses the setup as shown in Figure 2, and the scenarios
described in RIB-IN and RIB-OUT are applicable to this test case.
<span class="h4"><a class="selflink" id="section-5.1.4" href="#section-5.1.4">5.1.4</a>. iBGP Convergence</span>
Objective:
This test measures the convergence time taken by an implementation
to receive, install, and advertise a route in an iBGP Scenario.
Reference Test Setup:
This test uses the setup as shown in Figure 2, and the scenarios
described in RIB-IN and RIB-OUT are applicable to this test case.
<span class="grey">Papneja, et al. Informational [Page 16]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-17" ></span>
<span class="grey"><a href="./rfc7747">RFC 7747</a> BGP Convergence Methodology April 2016</span>
<span class="h4"><a class="selflink" id="section-5.1.5" href="#section-5.1.5">5.1.5</a>. eBGP Multihop Convergence</span>
Objective:
This test measures the convergence time taken by an implementation
to receive, install, and advertise a route in an eBGP Multihop
Scenario.
Reference Test Setup:
This test uses the setup as shown in Figure 3. The DUT is used
along with a Helper Node.
Procedure:
A. The Helper Node MUST run the same version of BGP as the DUT.
B. All devices MUST be synchronized using NTP or some local
reference clock.
C. All variables affecting convergence, like authentication,
policies, and timers, SHOULD be set to basic settings.
D. All three devices, the DUT, emulator, and Helper Node, are
configured with different ASs.
E. Loopback interfaces are configured on the DUT and Helper Node,
and connectivity is established between them using any config
options available on the DUT.
F. Establish BGP adjacency between the DUT and the emulator.
G. Establish BGP adjacency between the DUT and the Helper Node.
H. To ensure adjacency establishment, wait for three keepalives to
be received from the DUT or a configurable delay before
proceeding with the rest of the test
I. Start the traffic from the emulator towards the DUT targeted at a
specific route (e.g., routeA).
J. Initially, no traffic SHOULD be observed on the egress interface
as routeA is not installed in the forwarding database of the DUT.
K. Advertise routeA from the emulator to the DUT and note the time
(Tup(EMx,RouteA), also named Route-Tx-time(Rt-A).
<span class="grey">Papneja, et al. Informational [Page 17]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-18" ></span>
<span class="grey"><a href="./rfc7747">RFC 7747</a> BGP Convergence Methodology April 2016</span>
L. Record the time when the route is received by the DUT. This is
Tup(EMr,DUT), also named Route-Rcv-time(Rt-A).
M. Record the time when the traffic targeted towards routeA is
received from the egress interface of the DUT on the emulator.
This is Tup(EMd,DUT) named Data-Rcv-time(Rt-A)
N. Record the time when routeA is forwarded by the DUT towards the
Helper Node. This is Tup(EMf,DUT), also named Route-Fwd-time(Rt-
A).
FIB Convergence = (Data-Rcv-time - Route-Rcv-time)(Rt-A)
RIB Convergence = (Route-Fwd-time - Route-Rcv-time)(Rt-A)
Note: It is recommended that the test be repeated with a varying
number of routes and route mixtures. With each set route mixture,
the test should be repeated multiple times. The results should
record the average, mean, standard deviation.
<span class="h3"><a class="selflink" id="section-5.2" href="#section-5.2">5.2</a>. BGP Failure/Convergence Events</span>
<span class="h4"><a class="selflink" id="section-5.2.1" href="#section-5.2.1">5.2.1</a>. Physical Link Failure on DUT End</span>
Objective:
This test measures the route convergence time due to a local link
failure event at the DUT's Local Interface.
Reference Test Setup:
This test uses the setup as shown in Figure 1. The shutdown event
is defined as an administrative shutdown event on the DUT.
Procedure:
A. All variables affecting convergence, like authentication,
policies, and timers, should be set to basic-test policy.
B. Establish two BGP adjacencies from the DUT to the emulator, one
over the peer interface and the other using a second peer
interface.
C. Advertise the same route, routeA, over both adjacencies with
preferences so that the Best Egress Interface for the preferred
next hop is (Emp1) interface.
<span class="grey">Papneja, et al. Informational [Page 18]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-19" ></span>
<span class="grey"><a href="./rfc7747">RFC 7747</a> BGP Convergence Methodology April 2016</span>
D. To ensure adjacency establishment, wait for three keepalives to
be received from the DUT or a configurable delay before
proceeding with the rest of the test.
E. Start the traffic from the emulator towards the DUT targeted at a
specific route (e.g., routeA). Initially, traffic would be
observed on the best egress route, Emp1, instead of Emp2.
F. Trigger the shutdown event of Best Egress Interface on the DUT
(Dp1). This time is called Shutdown time.
G. Measure the convergence time for the event to be detected and
traffic to be forwarded to Next-Best Egress Interface (Dp2).
Time = Data-detect(Emp2) - Shutdown time
H. Stop the offered load and wait for the queues to drain. Restart
the data flow.
I. Bring up the link on the DUT's Best Egress Interface.
J. Measure the convergence time taken for the traffic to be rerouted
from Dp2 to Best Egress Interface, Dp1.
Time = Data-detect(Emp1) - Bring Up time
K. It is recommended that the test be repeated with a varying number
of routes and route mixtures or with a number of routes and route
mixtures closer to what is deployed in operational networks.
<span class="h4"><a class="selflink" id="section-5.2.2" href="#section-5.2.2">5.2.2</a>. Physical Link Failure on Remote/Emulator End</span>
Objective:
This test measures the route convergence time due to a local link
failure event at the Tester's Local Interface.
Reference Test Setup:
This test uses the setup as shown in Figure 1. The shutdown event
is defined as a shutdown of the local interface of the Tester via
a logical shutdown event. The procedure used in <a href="#section-5.2.1">Section 5.2.1</a> is
used for the termination.
<span class="grey">Papneja, et al. Informational [Page 19]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-20" ></span>
<span class="grey"><a href="./rfc7747">RFC 7747</a> BGP Convergence Methodology April 2016</span>
<span class="h4"><a class="selflink" id="section-5.2.3" href="#section-5.2.3">5.2.3</a>. ECMP Link Failure on DUT End</span>
Objective:
This test measures the route convergence time due to a local link
failure event at the ECMP member. The FIB configuration and BGP
are set to allow two ECMP routes to be installed. However, policy
directs the routes to be sent only over one of the paths.
Reference Test Setup:
This test uses the setup as shown in Figure 1, and the procedure
used in <a href="#section-5.2.1">Section 5.2.1</a>.
<span class="h3"><a class="selflink" id="section-5.3" href="#section-5.3">5.3</a>. BGP Adjacency Failure (Non-Physical Link Failure) on Emulator</span>
Objective:
This test measures the route convergence time due to BGP Adjacency
Failure on the emulator.
Reference Test Setup:
This test uses the setup as shown in Figure 1.
Procedure:
A. All variables affecting convergence, like authentication,
policies, and timers, should be set to basic-policy.
B. Establish two BGP adjacencies from the DUT to the emulator: one
over the Best Egress Interface and the other using the Next-Best
Egress Interface.
C. Advertise the same route, routeA, over both adjacencies with
preferences so that the Best Egress Interface for the preferred
next hop is (Emp1) interface.
D. To ensure adjacency establishment, wait for three keepalives to
be received from the DUT or a configurable delay before
proceeding with the rest of the test.
E. Start the traffic from the emulator towards the DUT targeted at a
specific route (e.g., routeA). Initially, traffic would be
observed on the Best Egress Interface.
<span class="grey">Papneja, et al. Informational [Page 20]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-21" ></span>
<span class="grey"><a href="./rfc7747">RFC 7747</a> BGP Convergence Methodology April 2016</span>
F. Remove BGP adjacency via a software adjacency down on the
emulator on the Best Egress Interface. This time is called
BGPadj-down-time, also termed BGPpeer-down.
G. Measure the convergence time for the event to be detected and
traffic to be forwarded to Next-Best Egress Interface. This time
is Tr-rr2, also called TR2-traffic-on.
Convergence = TR2-traffic-on - BGPpeer-down
H. Stop the offered load and wait for the queues to drain and
restart the data flow.
I. Bring up BGP adjacency on the emulator over the Best Egress
Interface. This time is BGP-adj-up, also called BGPpeer-up.
J. Measure the convergence time taken for the traffic to be rerouted
to the Best Egress Interface. This time is Tr-rr1, also called
TR1-traffic-on.
Convergence = TR1-traffic-on - BGPpeer-up
<span class="h3"><a class="selflink" id="section-5.4" href="#section-5.4">5.4</a>. BGP Hard Reset Test Cases</span>
<span class="h4"><a class="selflink" id="section-5.4.1" href="#section-5.4.1">5.4.1</a>. BGP Non-Recovering Hard Reset Event on DUT</span>
Objective:
This test measures the route convergence time due to a hard reset
on the DUT.
Reference Test Setup:
This test uses the setup as shown in Figure 1.
Procedure:
A. The requirement for this test case is that the hard reset event
should be non-recovering and should affect only the adjacency
between the DUT and the emulator on the Best Egress Interface.
B. All variables affecting the test SHOULD be set to basic-test
values.
C. Establish two BGP adjacencies from the DUT to the emulator: one
over the Best Egress Interface and the other using the Next-Best
Egress Interface.
<span class="grey">Papneja, et al. Informational [Page 21]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-22" ></span>
<span class="grey"><a href="./rfc7747">RFC 7747</a> BGP Convergence Methodology April 2016</span>
D. Advertise the same route, routeA, over both adjacencies with
preferences so that the Best Egress Interface for the preferred
next hop is (Emp1) interface.
E. To ensure adjacency establishment, wait for three keepalives to
be received from the DUT or a configurable delay before
proceeding with the rest of the test.
F. Start the traffic from the emulator towards the DUT targeted at a
specific route (e.g., routeA). Initially, traffic would be
observed on the Best Egress Interface.
G. Trigger the hard reset event of the Best Egress Interface on the
DUT. This time is called time reset.
H. This event is detected and traffic is forwarded to the Next-Best
Egress Interface. This time is called time-traffic flow.
I. Measure the convergence time for the event to be detected and
traffic to be forwarded to Next-Best Egress Interface.
Time of convergence = time-traffic flow - time-reset
J. Stop the offered load and wait for the queues to drain and
restart.
K. It is recommended that the test be repeated with a varying number
of routes and route mixtures or with a number of routes and route
mixtures closer to what is deployed in operational networks.
L. When varying number of routes are used, convergence time is
measured using the Loss-Derived method [<a href="./rfc6412" title=""Terminology for Benchmarking Link-State IGP Data-Plane Route Convergence"">RFC6412</a>].
M. Convergence time in this scenario is influenced by failure
detection time on the Tester, BGP keepalive time and routing, and
forwarding table update time.
<span class="h3"><a class="selflink" id="section-5.5" href="#section-5.5">5.5</a>. BGP Soft Reset</span>
Objective:
This test measures the route convergence time taken by an
implementation to service a BGP Route Refresh message and
advertise a route.
Reference Test Setup:
This test uses the setup as shown in Figure 2.
<span class="grey">Papneja, et al. Informational [Page 22]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-23" ></span>
<span class="grey"><a href="./rfc7747">RFC 7747</a> BGP Convergence Methodology April 2016</span>
Procedure:
A. The BGP implementation on the DUT and Helper Node needs to
support BGP Route Refresh Capability [<a href="./rfc2918" title=""Route Refresh Capability for BGP-4"">RFC2918</a>].
B. All devices MUST be synchronized using NTP or some local
reference clock.
C. All variables affecting convergence, like authentication,
policies, and timers, should be set to basic-test defaults.
D. The DUT and the Helper Node are configured in the same AS,
whereas the emulator is configured under a different AS.
E. Establish BGP adjacency between the DUT and the emulator.
F. Establish BGP adjacency between the DUT and the Helper Node.
G. To ensure adjacency establishment, wait for three keepalives to
be received from the DUT or a configurable delay before
proceeding with the rest of the test.
H. Configure a policy under the BGP on the Helper Node to deny
routes received from the DUT.
I. Advertise routeA from the emulator to the DUT.
J. The DUT will try to advertise the route to the Helper Node; it
will be denied.
K. Wait for three keepalives.
L. Start the traffic from the emulator towards the Helper Node
targeted at a specific route, say routeA. Initially, no traffic
would be observed on the egress interface, as routeA is not
present.
M. Remove the policy on the Helper Node and issue a route refresh
request towards the DUT. Note the timestamp of this event. This
is the RefreshTime.
N. Record the time when the traffic targeted towards routeA is
received on the egress interface. This is RecTime.
O. The following equation represents the Route Refresh Convergence
Time per route.
Route Refresh Convergence Time = (RecTime - RefreshTime)
<span class="grey">Papneja, et al. Informational [Page 23]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-24" ></span>
<span class="grey"><a href="./rfc7747">RFC 7747</a> BGP Convergence Methodology April 2016</span>
<span class="h3"><a class="selflink" id="section-5.6" href="#section-5.6">5.6</a>. BGP Route Withdrawal Convergence Time</span>
Objective:
This test measures the route convergence time taken by an
implementation to service a BGP withdraw message and advertise the
withdraw.
Reference Test Setup:
This test uses the setup as shown in Figure 2.
Procedure:
A. This test consists of two steps to determine the Total Withdraw
Processing Time.
B. Step 1:
(1) All devices MUST be synchronized using NTP or some local
reference clock.
(2) All variables should be set to basic-test parameters.
(3) The DUT and Helper Node are configured in the same AS,
whereas the emulator is configured under a different AS.
(4) Establish BGP adjacency between the DUT and the emulator.
(5) To ensure adjacency establishment, wait for three
keepalives to be received from the DUT or a configurable
delay before proceeding with the rest of the test.
(6) Start the traffic from the emulator towards the DUT
targeted at a specific route (e.g., routeA). Initially, no
traffic would be observed on the egress interface as routeA
is not present on the DUT.
(7) Advertise routeA from the emulator to the DUT.
(8) The traffic targeted towards routeA is received on the
egress interface.
(9) Now the Tester sends a request to withdraw routeA to the
DUT. TRx(Awith) is also called WdrawTime1(Rt-A).
(10) Record the time when no traffic is observed as determined
by the emulator. This is the RouteRemoveTime1(Rt-A).
<span class="grey">Papneja, et al. Informational [Page 24]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-25" ></span>
<span class="grey"><a href="./rfc7747">RFC 7747</a> BGP Convergence Methodology April 2016</span>
(11) The difference between the RouteRemoveTime1 and WdrawTime1
is the WdrawConvTime1.
WdrawConvTime1(Rt-A) = RouteRemoveTime1(Rt-A) -
WdrawTime1(Rt-A)
C. Step 2:
(1) Continuing from Step 1, re-advertise routeA back to the DUT
from the Tester.
(2) The DUT will try to advertise routeA to the Helper Node
(this assumes there exists a session between the DUT and
Helper Node).
(3) Start the traffic from the emulator towards the Helper Node
targeted at a specific route (e.g., routeA). Traffic would
be observed on the egress interface after routeA is received
by the Helper Node.
WATime=time traffic first flows
(4) Now the Tester sends a request to withdraw routeA to DUT.
This is the WdrawTime2(Rt-A).
WAWtime-TRx(Rt-A) = WdrawTime2(Rt-A)
(5) DUT processes the withdraw and sends it to the Helper Node.
(6) Record the time when no traffic is observed as determined by
the emulator. This is:
TR-WAW(DUT,RouteA) = RouteRemoveTime2(Rt-A)
(7) Total Withdraw Processing Time is:
TotalWdrawTime(Rt-A) = ((RouteRemoveTime2(Rt-A) -
WdrawTime2(Rt-A)) - WdrawConvTime1(Rt-A))
<span class="grey">Papneja, et al. Informational [Page 25]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-26" ></span>
<span class="grey"><a href="./rfc7747">RFC 7747</a> BGP Convergence Methodology April 2016</span>
<span class="h3"><a class="selflink" id="section-5.7" href="#section-5.7">5.7</a>. BGP Path Attribute Change Convergence Time</span>
Objective:
This test measures the convergence time taken by an implementation
to service a BGP Path Attribute Change.
Reference Test Setup:
This test uses the setup as shown in Figure 1.
Procedure:
A. This test only applies to Well-Known Mandatory Attributes like
origin, AS path, and next hop.
B. In each iteration of the test, only one of these mandatory
attributes need to be varied whereas the others remain the same.
C. All devices MUST be synchronized using NTP or some local
reference clock.
D. All variables should be set to basic-test parameters.
E. Advertise the same route, routeA, over both adjacencies with
preferences so that the Best Egress Interface for the preferred
next hop is (Emp1) interface.
F. To ensure adjacency establishment, wait for three keepalives to
be received from the DUT or a configurable delay before
proceeding with the rest of the test.
G. Start the traffic from the emulator towards the DUT targeted at
the specific route (e.g., routeA). Initially, traffic would be
observed on the Best Egress Interface.
H. Now advertise the same route, routeA, on the Next-Best Egress
Interface but by varying one of the well-known mandatory
attributes to have a preferred value over that interface. We
call this Tbetter. The other values need to be the same as what
was advertised on the Best-Egress adjacency.
TRx(Path-Change(Rt-A)) = Path Change Event Time(Rt-A)
<span class="grey">Papneja, et al. Informational [Page 26]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-27" ></span>
<span class="grey"><a href="./rfc7747">RFC 7747</a> BGP Convergence Methodology April 2016</span>
I. Measure the convergence time for the event to be detected and
traffic to be forwarded to Next-Best Egress Interface.
DUT(Path-Change, Rt-A) = Path-switch time(Rt-A)
Convergence = Path-switch time(Rt-A) - Path Change Event
Time(Rt-A)
J. Stop the offered load and wait for the queues to drain and
restart.
K. Repeat the test for various attributes.
<span class="h3"><a class="selflink" id="section-5.8" href="#section-5.8">5.8</a>. BGP Graceful Restart Convergence Time</span>
Objective:
This test measures the route convergence time taken by an
implementation during a Graceful Restart Event as detailed in the
terminology document [<a href="./rfc4098" title=""Terminology for Benchmarking BGP Device Convergence in the Control Plane"">RFC4098</a>].
Reference Test Setup:
This test uses the setup as shown in Figure 4.
Procedure:
A. It measures the time taken by an implementation to service a BGP
Graceful Restart Event and advertise a route.
B. The Helper Nodes are the same model as the DUT and run the same
BGP implementation as the DUT.
C. The BGP implementation on the DUT and Helper Node needs to
support the BGP Graceful Restart Mechanism [<a href="./rfc4724" title=""Graceful Restart Mechanism for BGP"">RFC4724</a>].
D. All devices MUST be synchronized using NTP or some local
reference clock.
E. All variables are set to basic-test values.
F. The DUT and Helper Node 1 (HLP1) are configured in the same AS,
whereas the emulator and Helper Node 2 (HLP2) are configured
under different ASs.
G. Establish BGP adjacency between the DUT and Helper Nodes.
<span class="grey">Papneja, et al. Informational [Page 27]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-28" ></span>
<span class="grey"><a href="./rfc7747">RFC 7747</a> BGP Convergence Methodology April 2016</span>
H. Establish BGP adjacency between the Helper Node 2 and the
emulator.
I. To ensure adjacency establishment, wait for three keepalives to
be received from the DUT or a configurable delay before
proceeding with the rest of the test.
J. Configure a policy under the BGP on Helper Node 1 to deny routes
received from the DUT.
K. Advertise routeA from the emulator to Helper Node 2.
L. Helper Node 2 advertises the route to the DUT and the DUT will
try to advertise the route to Helper Node 1, which will be
denied.
M. Wait for three keepalives.
N. Start the traffic from the emulator towards the Helper Node 1
targeted at the specific route (e.g., routeA). Initially, no
traffic would be observed on the egress interface as routeA is
not present.
O. Perform a Graceful Restart Trigger Event on the DUT and note the
time. This is the GREventTime.
P. Remove the policy on Helper Node 1.
Q. Record the time when the traffic targeted towards routeA is
received on the egress interface.
This is TRr(DUT, routeA), also called RecTime(Rt-A).
R. The following equation represents the Graceful Restart
Convergence Time.
Graceful Restart Convergence Time(Rt-A) = ((RecTime(Rt-A) -
GREventTime) - RIB-IN)
S. It is assumed in this test case that after a switchover is
triggered on the DUT, it will not have any cycles to process the
BGP Refresh messages. The reason for this assumption is that
there is a narrow window of time where after switchover, when we
remove the policy from Helper Node 1, implementations might
generate Route Refresh automatically and this request might be
serviced before the DUT actually switches over and re-establishes
BGP adjacencies with the peers.
<span class="grey">Papneja, et al. Informational [Page 28]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-29" ></span>
<span class="grey"><a href="./rfc7747">RFC 7747</a> BGP Convergence Methodology April 2016</span>
<span class="h2"><a class="selflink" id="section-6" href="#section-6">6</a>. Reporting Format</span>
For each test case, it is recommended that the reporting tables below
are completed, and all time values SHOULD be reported with resolution
as specified in [<a href="./rfc4098" title=""Terminology for Benchmarking BGP Device Convergence in the Control Plane"">RFC4098</a>].
Parameter Units or Description
=========================== ==========================
Test case Test case number
Test topology 1, 2, 3, or 4
Parallel links Number of parallel links
Interface type Gigabit Ethernet (GigE),
Packet over SONET (POS), ATM, other
Convergence Event Hard reset, soft reset, link
failure, or other defined
eBGP sessions Number of eBGP sessions
iBGP sessions Number of iBGP sessions
eBGP neighbor Number of eBGP neighbors
iBGP neighbor Number of iBGP neighbors
Routes per peer Number of routes
Total unique routes Number of routes
Total non-unique routes Number of routes
IGP configured IS-IS, OSPF, static, or other
Route mixture Description of route mixture
Route packing Number of routes included in an update
Policy configured Yes, No
SIDR origin authentication Yes, No
[<a href="./rfc7115" title=""Origin Validation Operation Based on the Resource Public Key Infrastructure (RPKI)"">RFC7115</a>]
bgp-sec [<a href="#ref-BGPsec" title=""BGPsec Protocol Specification"">BGPsec</a>] Yes, No
<span class="grey">Papneja, et al. Informational [Page 29]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-30" ></span>
<span class="grey"><a href="./rfc7747">RFC 7747</a> BGP Convergence Methodology April 2016</span>
Packet size offered Bytes
to the DUT
Offered load Packets per second
Packet sampling interval Seconds
on Tester
Forwarding delay threshold Seconds
Timer values configured on DUT
Interface failure Seconds
indication delay
Hold time Seconds
MinRouteAdvertisementInterval Seconds
(MRAI)
MinASOriginationInterval Seconds
(MAOI)
Keepalive time Seconds
ConnectRetry Seconds
TCP parameters for DUT and Tester
Maximum Segment Size (MSS) Bytes
Slow start threshold Bytes
Maximum window size Bytes
Test Details:
a. If the Offered Load matches a subset of routes, describe how this
subset is selected.
b. Describe how the convergence event is applied; does it cause
instantaneous traffic loss or not?
c. If there is any policy configured, describe the configured
policy.
<span class="grey">Papneja, et al. Informational [Page 30]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-31" ></span>
<span class="grey"><a href="./rfc7747">RFC 7747</a> BGP Convergence Methodology April 2016</span>
Complete the table below for the initial convergence event and the
reversion convergence event.
Parameter Unit
=========================== ==========================
Convergence Event Initial or reversion
Traffic Forwarding Metrics
Total number of packets Number of packets
offered to the DUT
Total number of packets Number of packets
forwarded by the DUT
Connectivity packet loss Number of packets
Convergence packet loss Number of packets
Out-of-order packets Number of packets
Duplicate packets Number of packets
Convergence Benchmarks
Rate-Derived Method [<a href="./rfc6412" title=""Terminology for Benchmarking Link-State IGP Data-Plane Route Convergence"">RFC6412</a>]:
First route convergence Seconds
time
Full convergence time Seconds
Loss-Derived Method [<a href="./rfc6412" title=""Terminology for Benchmarking Link-State IGP Data-Plane Route Convergence"">RFC6412</a>]:
Loss-Derived convergence Seconds
time
Route-Specific (R-S) Loss-Derived
Method:
Minimum R-S convergence Seconds
time
Maximum R-S convergence Seconds
time
Median R-S convergence Seconds
time
Average R-S convergence Seconds
time
Loss of Connectivity (LoC) Benchmarks
Loss-Derived Method:
Loss-Derived loss of Seconds
connectivity period
<span class="grey">Papneja, et al. Informational [Page 31]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-32" ></span>
<span class="grey"><a href="./rfc7747">RFC 7747</a> BGP Convergence Methodology April 2016</span>
Route-Specific Loss-Derived
Method:
Minimum LoC period [n] Array of seconds
Minimum Route LoC period Seconds
Maximum Route LoC period Seconds
Median Route LoC period Seconds
Average Route LoC period Seconds
<span class="h2"><a class="selflink" id="section-7" href="#section-7">7</a>. Security Considerations</span>
Benchmarking activities as described in this memo are limited to
technology characterization using controlled stimuli in a laboratory
environment, with dedicated address space and the constraints
specified in the sections above.
The benchmarking network topology is an independent test setup and
MUST NOT be connected to devices that may forward the test traffic
into a production network or misroute traffic to the test management
network.
Further, benchmarking is performed on a "black-box" basis, relying
solely on measurements observable and external to the DUT/SUT.
Special capabilities SHOULD NOT exist in the DUT/SUT specifically for
benchmarking purposes. Any implications for network security arising
from the DUT/SUT SHOULD be identical in the lab and in production
networks.
<span class="h2"><a class="selflink" id="section-8" href="#section-8">8</a>. References</span>
<span class="h3"><a class="selflink" id="section-8.1" href="#section-8.1">8.1</a>. Normative References</span>
[<a id="ref-IEEE.802.11">IEEE.802.11</a>]
IEEE, "IEEE Standard for Information technology --
Telecommunications and information exchange between
systems Local and metropolitan area networks -- Specific
requirements Part 11: Wireless LAN Medium Access Control
(MAC) and Physical Layer (PHY) Specifications",
IEEE 802.11-2012, DOI 10.1109/ieeestd.2012.6178212, April
2012, <<a href="http://ieeexplore.ieee.org/servlet/opac?punumber=6178209">http://ieeexplore.ieee.org/servlet/</a>
<a href="http://ieeexplore.ieee.org/servlet/opac?punumber=6178209">opac?punumber=6178209</a>>.
[<a id="ref-RFC2119">RFC2119</a>] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", <a href="https://www.rfc-editor.org/bcp/bcp14">BCP 14</a>, <a href="./rfc2119">RFC 2119</a>,
DOI 10.17487/RFC2119, March 1997,
<<a href="http://www.rfc-editor.org/info/rfc2119">http://www.rfc-editor.org/info/rfc2119</a>>.
<span class="grey">Papneja, et al. Informational [Page 32]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-33" ></span>
<span class="grey"><a href="./rfc7747">RFC 7747</a> BGP Convergence Methodology April 2016</span>
[<a id="ref-RFC2918">RFC2918</a>] Chen, E., "Route Refresh Capability for BGP-4", <a href="./rfc2918">RFC 2918</a>,
DOI 10.17487/RFC2918, September 2000,
<<a href="http://www.rfc-editor.org/info/rfc2918">http://www.rfc-editor.org/info/rfc2918</a>>.
[<a id="ref-RFC4098">RFC4098</a>] Berkowitz, H., Davies, E., Ed., Hares, S., Krishnaswamy,
P., and M. Lepp, "Terminology for Benchmarking BGP Device
Convergence in the Control Plane", <a href="./rfc4098">RFC 4098</a>,
DOI 10.17487/RFC4098, June 2005,
<<a href="http://www.rfc-editor.org/info/rfc4098">http://www.rfc-editor.org/info/rfc4098</a>>.
[<a id="ref-RFC4271">RFC4271</a>] Rekhter, Y., Ed., Li, T., Ed., and S. Hares, Ed., "A
Border Gateway Protocol 4 (BGP-4)", <a href="./rfc4271">RFC 4271</a>,
DOI 10.17487/RFC4271, January 2006,
<<a href="http://www.rfc-editor.org/info/rfc4271">http://www.rfc-editor.org/info/rfc4271</a>>.
[<a id="ref-RFC6412">RFC6412</a>] Poretsky, S., Imhoff, B., and K. Michielsen, "Terminology
for Benchmarking Link-State IGP Data-Plane Route
Convergence", <a href="./rfc6412">RFC 6412</a>, DOI 10.17487/RFC6412, November
2011, <<a href="http://www.rfc-editor.org/info/rfc6412">http://www.rfc-editor.org/info/rfc6412</a>>.
<span class="h3"><a class="selflink" id="section-8.2" href="#section-8.2">8.2</a>. Informative References</span>
[<a id="ref-BGPsec">BGPsec</a>] Lepinski, M. and K. Sriram, "BGPsec Protocol
Specification", Work in Progress, <a href="./draft-ietf-sidr-bgpsec-protocol-15">draft-ietf-sidr-bgpsec-</a>
<a href="./draft-ietf-sidr-bgpsec-protocol-15">protocol-15</a>, March 2016.
[<a id="ref-RFC1242">RFC1242</a>] Bradner, S., "Benchmarking Terminology for Network
Interconnection Devices", <a href="./rfc1242">RFC 1242</a>, DOI 10.17487/RFC1242,
July 1991, <<a href="http://www.rfc-editor.org/info/rfc1242">http://www.rfc-editor.org/info/rfc1242</a>>.
[<a id="ref-RFC1983">RFC1983</a>] Malkin, G., Ed., "Internet Users' Glossary", FYI 18,
<a href="./rfc1983">RFC 1983</a>, DOI 10.17487/RFC1983, August 1996,
<<a href="http://www.rfc-editor.org/info/rfc1983">http://www.rfc-editor.org/info/rfc1983</a>>.
[<a id="ref-RFC2285">RFC2285</a>] Mandeville, R., "Benchmarking Terminology for LAN
Switching Devices", <a href="./rfc2285">RFC 2285</a>, DOI 10.17487/RFC2285,
February 1998, <<a href="http://www.rfc-editor.org/info/rfc2285">http://www.rfc-editor.org/info/rfc2285</a>>.
[<a id="ref-RFC2545">RFC2545</a>] Marques, P. and F. Dupont, "Use of BGP-4 Multiprotocol
Extensions for IPv6 Inter-Domain Routing", <a href="./rfc2545">RFC 2545</a>,
DOI 10.17487/RFC2545, March 1999,
<<a href="http://www.rfc-editor.org/info/rfc2545">http://www.rfc-editor.org/info/rfc2545</a>>.
[<a id="ref-RFC4724">RFC4724</a>] Sangli, S., Chen, E., Fernando, R., Scudder, J., and Y.
Rekhter, "Graceful Restart Mechanism for BGP", <a href="./rfc4724">RFC 4724</a>,
DOI 10.17487/RFC4724, January 2007,
<<a href="http://www.rfc-editor.org/info/rfc4724">http://www.rfc-editor.org/info/rfc4724</a>>.
<span class="grey">Papneja, et al. Informational [Page 33]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-34" ></span>
<span class="grey"><a href="./rfc7747">RFC 7747</a> BGP Convergence Methodology April 2016</span>
[<a id="ref-RFC4760">RFC4760</a>] Bates, T., Chandra, R., Katz, D., and Y. Rekhter,
"Multiprotocol Extensions for BGP-4", <a href="./rfc4760">RFC 4760</a>,
DOI 10.17487/RFC4760, January 2007,
<<a href="http://www.rfc-editor.org/info/rfc4760">http://www.rfc-editor.org/info/rfc4760</a>>.
[<a id="ref-RFC5925">RFC5925</a>] Touch, J., Mankin, A., and R. Bonica, "The TCP
Authentication Option", <a href="./rfc5925">RFC 5925</a>, DOI 10.17487/RFC5925,
June 2010, <<a href="http://www.rfc-editor.org/info/rfc5925">http://www.rfc-editor.org/info/rfc5925</a>>.
[<a id="ref-RFC6414">RFC6414</a>] Poretsky, S., Papneja, R., Karthik, J., and S. Vapiwala,
"Benchmarking Terminology for Protection Performance",
<a href="./rfc6414">RFC 6414</a>, DOI 10.17487/RFC6414, November 2011,
<<a href="http://www.rfc-editor.org/info/rfc6414">http://www.rfc-editor.org/info/rfc6414</a>>.
[<a id="ref-RFC7115">RFC7115</a>] Bush, R., "Origin Validation Operation Based on the
Resource Public Key Infrastructure (RPKI)", <a href="https://www.rfc-editor.org/bcp/bcp185">BCP 185</a>,
<a href="./rfc7115">RFC 7115</a>, DOI 10.17487/RFC7115, January 2014,
<<a href="http://www.rfc-editor.org/info/rfc7115">http://www.rfc-editor.org/info/rfc7115</a>>.
Acknowledgements
We would like to thank Anil Tandon, Arvind Pandey, Mohan Nanduri, Jay
Karthik, and Eric Brendel for their input and discussions on various
sections in the document. We also like to acknowledge Will Liu,
Hubert Gee, Semion Lisyansky, and Faisal Shah for their review and
feedback on the document.
<span class="grey">Papneja, et al. Informational [Page 34]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-35" ></span>
<span class="grey"><a href="./rfc7747">RFC 7747</a> BGP Convergence Methodology April 2016</span>
Authors' Addresses
Rajiv Papneja
Huawei Technologies
Email: rajiv.papneja@huawei.com
Bhavani Parise
Skyport Systems
Email: bparise@skyportsystems.com
Susan Hares
Huawei Technologies
Email: shares@ndzh.com
Dean Lee
IXIA
Email: dlee@ixiacom.com
Ilya Varlashkin
Google
Email: ilya@nobulus.com
Papneja, et al. Informational [Page 35]
</pre>
|