1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
|
<pre>Internet Engineering Task Force (IETF) S. Previdi, Ed.
Request for Comments: 7810 Cisco Systems, Inc.
Category: Standards Track S. Giacalone
ISSN: 2070-1721 Microsoft
D. Ward
Cisco Systems, Inc.
J. Drake
Juniper Networks
Q. Wu
Huawei
May 2016
<span class="h1">IS-IS Traffic Engineering (TE) Metric Extensions</span>
Abstract
In certain networks, such as, but not limited to, financial
information networks (e.g., stock market data providers), network-
performance criteria (e.g., latency) are becoming as critical to
data-path selection as other metrics.
This document describes extensions to IS-IS Traffic Engineering
Extensions (<a href="./rfc5305">RFC 5305</a>) such that network-performance information can
be distributed and collected in a scalable fashion. The information
distributed using IS-IS TE Metric Extensions can then be used to make
path-selection decisions based on network performance.
Note that this document only covers the mechanisms with which
network-performance information is distributed. The mechanisms for
measuring network performance or acting on that information, once
distributed, are outside the scope of this document.
Status of This Memo
This is an Internet Standards Track document.
This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Further information on
Internet Standards is available in <a href="./rfc5741#section-2">Section 2 of RFC 5741</a>.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
<a href="http://www.rfc-editor.org/info/rfc7810">http://www.rfc-editor.org/info/rfc7810</a>.
<span class="grey">Previdi, et al. Standards Track [Page 1]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-2" ></span>
<span class="grey"><a href="./rfc7810">RFC 7810</a> IS-IS TE Metric Extensions May 2016</span>
Copyright Notice
Copyright (c) 2016 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to <a href="https://www.rfc-editor.org/bcp/bcp78">BCP 78</a> and the IETF Trust's Legal
Provisions Relating to IETF Documents
(<a href="http://trustee.ietf.org/license-info">http://trustee.ietf.org/license-info</a>) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
Table of Contents
<a href="#section-1">1</a>. Introduction . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-3">3</a>
<a href="#section-1.1">1.1</a>. Conventions Used in This Document . . . . . . . . . . . . <a href="#page-4">4</a>
<a href="#section-2">2</a>. TE Metric Extensions to IS-IS . . . . . . . . . . . . . . . . <a href="#page-4">4</a>
<a href="#section-3">3</a>. Interface and Neighbor Addresses . . . . . . . . . . . . . . <a href="#page-5">5</a>
<a href="#section-4">4</a>. Sub-TLV Details . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-6">6</a>
<a href="#section-4.1">4.1</a>. Unidirectional Link Delay Sub-TLV . . . . . . . . . . . . <a href="#page-6">6</a>
<a href="#section-4.2">4.2</a>. Min/Max Unidirectional Link Delay Sub-TLV . . . . . . . . <a href="#page-7">7</a>
<a href="#section-4.3">4.3</a>. Unidirectional Delay Variation Sub-TLV . . . . . . . . . <a href="#page-8">8</a>
<a href="#section-4.4">4.4</a>. Unidirectional Link Loss Sub-TLV . . . . . . . . . . . . <a href="#page-9">9</a>
<a href="#section-4.5">4.5</a>. Unidirectional Residual Bandwidth Sub-TLV . . . . . . . . <a href="#page-10">10</a>
<a href="#section-4.6">4.6</a>. Unidirectional Available Bandwidth Sub-TLV . . . . . . . <a href="#page-11">11</a>
<a href="#section-4.7">4.7</a>. Unidirectional Utilized Bandwidth Sub-TLV . . . . . . . . <a href="#page-12">12</a>
<a href="#section-5">5</a>. Announcement Thresholds and Filters . . . . . . . . . . . . . <a href="#page-12">12</a>
<a href="#section-6">6</a>. Announcement Suppression . . . . . . . . . . . . . . . . . . <a href="#page-13">13</a>
<a href="#section-7">7</a>. Network Stability and Announcement Periodicity . . . . . . . <a href="#page-14">14</a>
<a href="#section-8">8</a>. Enabling and Disabling Sub-TLVs . . . . . . . . . . . . . . . <a href="#page-14">14</a>
<a href="#section-9">9</a>. Static Metric Override . . . . . . . . . . . . . . . . . . . <a href="#page-14">14</a>
<a href="#section-10">10</a>. Compatibility . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-14">14</a>
<a href="#section-11">11</a>. Security Considerations . . . . . . . . . . . . . . . . . . . <a href="#page-15">15</a>
<a href="#section-12">12</a>. IANA Considerations . . . . . . . . . . . . . . . . . . . . . <a href="#page-15">15</a>
<a href="#section-13">13</a>. References . . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-16">16</a>
<a href="#section-13.1">13.1</a>. Normative References . . . . . . . . . . . . . . . . . . <a href="#page-16">16</a>
<a href="#section-13.2">13.2</a>. Informative References . . . . . . . . . . . . . . . . . <a href="#page-16">16</a>
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-17">17</a>
Contributors . . . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-17">17</a>
Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-18">18</a>
<span class="grey">Previdi, et al. Standards Track [Page 2]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-3" ></span>
<span class="grey"><a href="./rfc7810">RFC 7810</a> IS-IS TE Metric Extensions May 2016</span>
<span class="h2"><a class="selflink" id="section-1" href="#section-1">1</a>. Introduction</span>
In certain networks, such as, but not limited to, financial
information networks (e.g., stock market data providers), network-
performance information (e.g., latency) is becoming as critical to
data-path selection as other metrics.
In these networks, extremely large amounts of money rest on the
ability to access market data in "real time" and to predictably make
trades faster than the competition. Because of this, using metrics
such as hop count or cost as routing metrics is becoming only
tangentially important. Rather, it would be beneficial to be able to
make path-selection decisions based on performance data (such as
latency) in a cost-effective and scalable way.
This document describes extensions (hereafter called "IS-IS TE Metric
Extensions") to the IS-IS Extended Reachability TLV defined in
[<a href="./rfc5305" title=""IS-IS Extensions for Traffic Engineering"">RFC5305</a>], that can be used to distribute network-performance
information (such as link delay, delay variation, packet loss,
residual bandwidth, and available bandwidth).
The data distributed by the IS-IS TE Metric Extensions proposed in
this document is meant to be used as part of the operation of the
routing protocol (e.g., by replacing cost with latency or considering
bandwidth as well as cost), to enhance Constrained-SPF (CSPF), or for
other uses such as supplementing the data used by an ALTO server
[<a href="./rfc7285" title=""Application-Layer Traffic Optimization (ALTO) Protocol"">RFC7285</a>]. With respect to CSPF, the data distributed by IS-IS TE
Metric Extensions can be used to set up, fail over, and fail back
data paths using protocols such as RSVP-TE [<a href="./rfc3209" title=""RSVP-TE: Extensions to RSVP for LSP Tunnels"">RFC3209</a>].
Note that the mechanisms described in this document only disseminate
performance information. The methods for initially gathering that
performance information, such as described in [<a href="./rfc6375" title=""A Packet Loss and Delay Measurement Profile for MPLS-Based Transport Networks"">RFC6375</a>], or acting on
it once it is distributed are outside the scope of this document.
Example mechanisms to measure latency, delay variation, and loss in
an MPLS network are given in [<a href="./rfc6374" title=""Packet Loss and Delay Measurement for MPLS Networks"">RFC6374</a>]. While this document does not
specify how the performance information should be obtained, the
measurement of delay SHOULD NOT vary significantly based upon the
offered traffic load. Thus, queuing delays SHOULD NOT be included in
the delay measurement. For links such as Forwarding Adjacencies,
care must be taken that measurement of the associated delay avoids
significant queuing delay; that could be accomplished in a variety of
ways, including either by measuring with a traffic class that
experiences minimal queuing or by summing the measured link delays of
the components of the link's path.
<span class="grey">Previdi, et al. Standards Track [Page 3]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-4" ></span>
<span class="grey"><a href="./rfc7810">RFC 7810</a> IS-IS TE Metric Extensions May 2016</span>
<span class="h3"><a class="selflink" id="section-1.1" href="#section-1.1">1.1</a>. Conventions Used in This Document</span>
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in <a href="./rfc2119">RFC 2119</a> [<a href="./rfc2119" title=""Key words for use in RFCs to Indicate Requirement Levels"">RFC2119</a>].
In this document, these words will appear with that interpretation
only when in ALL CAPS. Lowercase uses of these words are not to be
interpreted as carrying the significance described in <a href="./rfc2119">RFC 2119</a>.
<span class="h2"><a class="selflink" id="section-2" href="#section-2">2</a>. TE Metric Extensions to IS-IS</span>
This document registers new IS-IS TE sub-TLVs that can be announced
in the "Sub-TLVs for TLVs 22, 23, 141, 222, and 223" registry in
order to distribute network-performance information. The extensions
in this document build on the ones provided in IS-IS TE [<a href="./rfc5305" title=""IS-IS Extensions for Traffic Engineering"">RFC5305</a>] and
GMPLS [<a href="./rfc4203" title=""OSPF Extensions in Support of Generalized Multi-Protocol Label Switching (GMPLS)"">RFC4203</a>].
IS-IS Extended Reachability TLV 22 (defined in [<a href="./rfc5305" title=""IS-IS Extensions for Traffic Engineering"">RFC5305</a>]), Inter-AS
Reachability Information TLV 141 (defined in [<a href="./rfc5316" title=""ISIS Extensions in Support of Inter-Autonomous System (AS) MPLS and GMPLS Traffic Engineering"">RFC5316</a>]), and MT-ISIS
TLV 222 (defined in [<a href="./rfc5120" title=""M-ISIS: Multi Topology (MT) Routing in Intermediate System to Intermediate Systems (IS-ISs)"">RFC5120</a>]) have nested sub-TLVs that permit the
TLVs to be readily extended. This document registers several sub-
TLVs:
Type Description
----------------------------------------------------
33 Unidirectional Link Delay
34 Min/Max Unidirectional Link Delay
35 Unidirectional Delay Variation
36 Unidirectional Link Loss
37 Unidirectional Residual Bandwidth
38 Unidirectional Available Bandwidth
39 Unidirectional Utilized Bandwidth
As can be seen in the list above, the sub-TLVs described in this
document carry different types of network-performance information.
The new sub-TLVs include a bit called the Anomalous (or "A") bit.
When the A bit is clear (or when the sub-TLV does not include an A
bit), the sub-TLV describes steady-state link performance. This
information could conceivably be used to construct a steady-state
performance topology for initial tunnel-path computation, or to
verify alternative failover paths.
<span class="grey">Previdi, et al. Standards Track [Page 4]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-5" ></span>
<span class="grey"><a href="./rfc7810">RFC 7810</a> IS-IS TE Metric Extensions May 2016</span>
When network performance violates configurable link-local thresholds,
a sub-TLV with the A bit set is advertised. These sub-TLVs could be
used by the receiving node to determine whether to fail traffic to a
backup path or whether to calculate an entirely new path. From an
MPLS perspective, the intent of the A bit is to permit label switched
path ingress nodes to determine whether the link referenced in the
sub-TLV affects any of the label switched paths for which it is
ingress. If they are affected, then they can determine whether those
label switched paths still meet end-to-end performance objectives.
If not, then the node could conceivably move affected traffic to a
pre-established protection label switched path or establish a new
label switched path and place the traffic in it.
If link performance then improves beyond a configurable minimum value
(reuse threshold), that sub-TLV can be re-advertised with the A bit
cleared. In this case, a receiving node can conceivably do whatever
re-optimization (or failback) it wishes to do (including nothing).
Note that when a sub-TLV does not include the A bit, that sub-TLV
cannot be used for failover purposes. The A bit was intentionally
omitted from some sub-TLVs to help mitigate oscillations. See
<a href="#section-5">Section 5</a> for more information.
Consistent with existing IS-IS TE specification [<a href="./rfc5305" title=""IS-IS Extensions for Traffic Engineering"">RFC5305</a>], the
bandwidth advertisements defined in this document MUST be encoded as
IEEE floating-point values. The delay and delay-variation
advertisements defined in this document MUST be encoded as integer
values. Delay values MUST be quantified in units of microseconds,
packet loss MUST be quantified as a percentage of packets sent, and
bandwidth MUST be sent as bytes per second. All values (except
residual bandwidth) MUST be calculated as rolling averages where the
averaging period MUST be a configurable period of time. See
<a href="#section-5">Section 5</a> for more information.
<span class="h2"><a class="selflink" id="section-3" href="#section-3">3</a>. Interface and Neighbor Addresses</span>
The use of IS-IS TE Metric Extensions sub-TLVs is not confined to the
TE context. In other words, IS-IS TE Metric Extensions sub-TLVs
defined in this document can also be used for computing paths in the
absence of a TE subsystem.
However, as for the TE case, Interface Address and Neighbor Address
sub-TLVs (IPv4 or IPv6) MUST be present. The encoding is defined in
[<a href="./rfc5305" title=""IS-IS Extensions for Traffic Engineering"">RFC5305</a>] for IPv4 and in [<a href="./rfc6119" title=""IPv6 Traffic Engineering in IS-IS"">RFC6119</a>] for IPv6.
<span class="grey">Previdi, et al. Standards Track [Page 5]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-6" ></span>
<span class="grey"><a href="./rfc7810">RFC 7810</a> IS-IS TE Metric Extensions May 2016</span>
<span class="h2"><a class="selflink" id="section-4" href="#section-4">4</a>. Sub-TLV Details</span>
<span class="h3"><a class="selflink" id="section-4.1" href="#section-4.1">4.1</a>. Unidirectional Link Delay Sub-TLV</span>
This sub-TLV advertises the average link delay between two directly
connected IS-IS neighbors. The delay advertised by this sub-TLV MUST
be the delay from the local neighbor to the remote one (i.e., the
forward-path latency). The format of this sub-TLV is shown in the
following diagram:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|A| RESERVED | Delay |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 1
where:
Type: 33
Length: 4
A bit: The A bit represents the Anomalous (A) bit. The A bit is set
when the measured value of this parameter exceeds its configured
maximum threshold. The A bit is cleared when the measured value
falls below its configured reuse threshold. If the A bit is clear,
the sub-TLV represents steady-state link performance.
RESERVED: This field is reserved for future use. It MUST be set to 0
when sent and MUST be ignored when received.
Delay: This 24-bit field carries the average link delay over a
configurable interval in microseconds, encoded as an integer value.
When set to the maximum value 16,777,215 (16.777215 sec), then the
delay is at least that value and may be larger.
<span class="grey">Previdi, et al. Standards Track [Page 6]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-7" ></span>
<span class="grey"><a href="./rfc7810">RFC 7810</a> IS-IS TE Metric Extensions May 2016</span>
<span class="h3"><a class="selflink" id="section-4.2" href="#section-4.2">4.2</a>. Min/Max Unidirectional Link Delay Sub-TLV</span>
This sub-TLV advertises the minimum and maximum delay values between
two directly connected IS-IS neighbors. The delay advertised by this
sub-TLV MUST be the delay from the local neighbor to the remote one
(i.e., the forward-path latency). The format of this sub-TLV is
shown in the following diagram:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|A| RESERVED | Min Delay |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| RESERVED | Max Delay |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 2
where:
Type: 34
Length: 8
A bit: This field represents the Anomalous (A) bit. The A bit is set
when one or more measured values exceed a configured maximum
threshold. The A bit is cleared when the measured value falls below
its configured reuse threshold. If the A bit is clear, the sub-TLV
represents steady-state link performance.
RESERVED: This field is reserved for future use. It MUST be set to 0
when sent and MUST be ignored when received.
Min Delay: This 24-bit field carries the minimum measured link delay
value (in microseconds) over a configurable interval, encoded as an
integer value.
Max Delay: This 24-bit field carries the maximum measured link delay
value (in microseconds) over a configurable interval, encoded as an
integer value.
Implementations MAY also permit the configuration of an offset value
(in microseconds) to be added to the measured delay value, to
facilitate the communication of operator-specific delay constraints.
It is possible for the Min and Max delay to be the same value.
<span class="grey">Previdi, et al. Standards Track [Page 7]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-8" ></span>
<span class="grey"><a href="./rfc7810">RFC 7810</a> IS-IS TE Metric Extensions May 2016</span>
When the delay value (Min or Max) is set to the maximum value
16,777,215 (16.777215 sec), then the delay is at least that value and
may be larger.
<span class="h3"><a class="selflink" id="section-4.3" href="#section-4.3">4.3</a>. Unidirectional Delay Variation Sub-TLV</span>
This sub-TLV advertises the average link delay variation between two
directly connected IS-IS neighbors. The delay variation advertised
by this sub-TLV MUST be the delay from the local neighbor to the
remote one (i.e., the forward-path latency). The format of this sub-
TLV is shown in the following diagram:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| RESERVED | Delay Variation |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 3
where
Type: 35
Length: 4
RESERVED: This field is reserved for future use. It MUST be set to 0
when sent and MUST be ignored when received.
Delay Variation: This 24-bit field carries the average link delay
variation over a configurable interval in microseconds, encoded as an
integer value. When set to 0, it has not been measured. When set to
the maximum value 16,777,215 (16.777215 sec), then the delay is at
least that value and may be larger.
<span class="grey">Previdi, et al. Standards Track [Page 8]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-9" ></span>
<span class="grey"><a href="./rfc7810">RFC 7810</a> IS-IS TE Metric Extensions May 2016</span>
<span class="h3"><a class="selflink" id="section-4.4" href="#section-4.4">4.4</a>. Unidirectional Link Loss Sub-TLV</span>
This sub-TLV advertises the loss (as a packet percentage) between two
directly connected IS-IS neighbors. The link loss advertised by this
sub-TLV MUST be the packet loss from the local neighbor to the remote
one (i.e., the forward-path loss). The format of this sub-TLV is
shown in the following diagram:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|A| RESERVED | Link Loss |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 4
where:
Type: 36
Length: 4
A bit: The A bit represents the Anomalous (A) bit. The A bit is set
when the measured value of this parameter exceeds its configured
maximum threshold. The A bit is cleared when the measured value
falls below its configured reuse threshold. If the A bit is clear,
the sub-TLV represents steady-state link performance.
RESERVED: This field is reserved for future use. It MUST be set to 0
when sent and MUST be ignored when received.
Link Loss: This 24-bit field carries link packet loss as a percentage
of the total traffic sent over a configurable interval. The basic
unit is 0.000003%, where (2^24 - 2) is 50.331642%. This value is the
highest packet-loss percentage that can be expressed (the assumption
being that precision is more important on high-speed links than the
ability to advertise loss rates greater than this, and that high-
speed links with over 50% loss are unusable). Therefore, measured
values that are larger than the field maximum SHOULD be encoded as
the maximum value.
<span class="grey">Previdi, et al. Standards Track [Page 9]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-10" ></span>
<span class="grey"><a href="./rfc7810">RFC 7810</a> IS-IS TE Metric Extensions May 2016</span>
<span class="h3"><a class="selflink" id="section-4.5" href="#section-4.5">4.5</a>. Unidirectional Residual Bandwidth Sub-TLV</span>
This sub-TLV advertises the residual bandwidth between two directly
connected IS-IS neighbors. The residual bandwidth advertised by this
sub-TLV MUST be the residual bandwidth from the system originating
the Link State Advertisement (LSA) to its neighbor.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Length | RESERVED |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Residual Bandwidth |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
where:
Type: 37
Length: 4
RESERVED: This field is reserved for future use. It MUST be set to 0
when sent and MUST be ignored when received.
Residual Bandwidth: This field carries the residual bandwidth on a
link, forwarding adjacency [<a href="./rfc4206" title=""Label Switched Paths (LSP) Hierarchy with Generalized Multi-Protocol Label Switching (GMPLS) Traffic Engineering (TE)"">RFC4206</a>], or bundled link in IEEE
floating-point format with units of bytes per second. For a link or
forwarding adjacency, residual bandwidth is defined to be the Maximum
Bandwidth [<a href="./rfc5305" title=""IS-IS Extensions for Traffic Engineering"">RFC5305</a>] minus the bandwidth currently allocated to RSVP-
TE label switched paths. For a bundled link, residual bandwidth is
defined to be the sum of the component link residual bandwidths.
The calculation of residual bandwidth is different than that of
unreserved bandwidth [<a href="./rfc5305" title=""IS-IS Extensions for Traffic Engineering"">RFC5305</a>]. Residual bandwidth subtracts tunnel
reservations from maximum bandwidth (i.e., the link capacity)
[<a href="./rfc5305" title=""IS-IS Extensions for Traffic Engineering"">RFC5305</a>] and provides an aggregated remainder across priorities.
Unreserved bandwidth, on the other hand, is subtracted from the
maximum reservable bandwidth (the bandwidth that can theoretically be
reserved) and provides per-priority remainders. Residual bandwidth
and unreserved bandwidth [<a href="./rfc5305" title=""IS-IS Extensions for Traffic Engineering"">RFC5305</a>] can be used concurrently and each
has a separate use case (e.g., the former can be used for
applications like Weighted ECMP while the latter can be used for call
admission control).
<span class="grey">Previdi, et al. Standards Track [Page 10]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-11" ></span>
<span class="grey"><a href="./rfc7810">RFC 7810</a> IS-IS TE Metric Extensions May 2016</span>
<span class="h3"><a class="selflink" id="section-4.6" href="#section-4.6">4.6</a>. Unidirectional Available Bandwidth Sub-TLV</span>
This sub-TLV advertises the available bandwidth between two directly
connected IS-IS neighbors. The available bandwidth advertised by
this sub-TLV MUST be the available bandwidth from the system
originating this sub-TLV. The format of this sub-TLV is shown in the
following diagram:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Length | RESERVED |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Available Bandwidth |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 5
where:
Type: 38
Length: 4
RESERVED: This field is reserved for future use. It MUST be set to 0
when sent and MUST be ignored when received.
Available Bandwidth: This field carries the available bandwidth on a
link, forwarding adjacency, or bundled link in IEEE floating-point
format with units of bytes per second. For a link or forwarding
adjacency, available bandwidth is defined to be residual bandwidth
(see <a href="#section-4.5">Section 4.5</a>) minus the measured bandwidth used for the actual
forwarding of non-RSVP-TE label switched path packets. For a bundled
link, available bandwidth is defined to be the sum of the component
link available bandwidths minus the measured bandwidth used for the
actual forwarding of non-RSVP-TE label switched path packets. For a
bundled link, available bandwidth is defined to be the sum of the
component link available bandwidths.
<span class="grey">Previdi, et al. Standards Track [Page 11]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-12" ></span>
<span class="grey"><a href="./rfc7810">RFC 7810</a> IS-IS TE Metric Extensions May 2016</span>
<span class="h3"><a class="selflink" id="section-4.7" href="#section-4.7">4.7</a>. Unidirectional Utilized Bandwidth Sub-TLV</span>
This sub-TLV advertises the bandwidth utilization between two
directly connected IS-IS neighbors. The bandwidth utilization
advertised by this sub-TLV MUST be the bandwidth from the system
originating this sub-TLV. The format of this sub-TLV is shown in the
following diagram:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Length | RESERVED |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Utilized Bandwidth |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 6
where:
Type: 39
Length: 4
RESERVED: This field is reserved for future use. It MUST be set to 0
when sent and MUST be ignored when received.
Utilized Bandwidth: This field carries the bandwidth utilization on a
link, forwarding adjacency, or bundled link in IEEE floating-point
format with units of bytes per second. For a link or forwarding
adjacency, bandwidth utilization represents the actual utilization of
the link (i.e., as measured by the advertising node). For a bundled
link, bandwidth utilization is defined to be the sum of the component
link bandwidth utilizations.
<span class="h2"><a class="selflink" id="section-5" href="#section-5">5</a>. Announcement Thresholds and Filters</span>
The values advertised in all sub-TLVs (except min/max delay and
residual bandwidth) MUST represent an average over a period or be
obtained by a filter that is reasonably representative of an average.
For example, a rolling average is one such filter.
Min and max delay MUST each be derived in one of the following ways:
by taking the lowest and/or highest measured value over a measurement
interval or by making use of a filter or other technique to obtain a
reasonable representation of a min and max value representative of
the interval, with compensation for outliers.
<span class="grey">Previdi, et al. Standards Track [Page 12]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-13" ></span>
<span class="grey"><a href="./rfc7810">RFC 7810</a> IS-IS TE Metric Extensions May 2016</span>
The measurement interval, any filter coefficients, and any
advertisement intervals MUST be configurable per sub-TLV.
In addition to the measurement intervals governing re-advertisement,
implementations SHOULD provide configurable accelerated advertisement
thresholds per sub-TLV, such that:
1. If the measured parameter falls outside a configured upper bound
for all but the minimum delay metric (or lower bound for minimum
delay metric only) and the advertised sub-TLV is not already
outside that bound or,
2. If the difference between the last advertised value and current
measured value exceeds a configured threshold then,
3. The advertisement is made immediately.
4. For sub-TLVs that include an A bit, an additional threshold
SHOULD be included corresponding to the threshold for which the
performance is considered anomalous (and sub-TLVs with the A bit
are sent). The A bit is cleared when the sub-TLV's performance
has been below (or re-crosses) this threshold for an
advertisement interval(s) to permit fail back.
To prevent oscillations, only the high threshold or the low threshold
(but not both) may be used to trigger any given sub-TLV that supports
both.
Additionally, once outside the bounds of the threshold, any
re-advertisement of a measurement within the bounds would remain
governed solely by the measurement interval for that sub-TLV.
<span class="h2"><a class="selflink" id="section-6" href="#section-6">6</a>. Announcement Suppression</span>
When link-performance values change by small amounts that fall under
thresholds that would cause the announcement of a sub-TLV,
implementations SHOULD suppress sub-TLV re-advertisement and/or
lengthen the period within which they are refreshed.
Only the accelerated advertisement threshold mechanism described in
<a href="#section-5">Section 5</a> may shorten the re-advertisement interval. All suppression
and re-advertisement interval backoff timer features SHOULD be
configurable.
<span class="grey">Previdi, et al. Standards Track [Page 13]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-14" ></span>
<span class="grey"><a href="./rfc7810">RFC 7810</a> IS-IS TE Metric Extensions May 2016</span>
<span class="h2"><a class="selflink" id="section-7" href="#section-7">7</a>. Network Stability and Announcement Periodicity</span>
Sections <a href="#section-5">5</a> and <a href="#section-6">6</a> provide configurable mechanisms to bound the number
of re-advertisements. Instability might occur in very large networks
if measurement intervals are set low enough to overwhelm the
processing of flooded information at some of the routers in the
topology. Therefore, care should be taken in setting these values.
Additionally, the default measurement interval for all sub-TLVs
SHOULD be 30 seconds.
Announcements MUST also be able to be throttled using configurable
inter-update throttle timers. The minimum announcement periodicity
is 1 announcement per second. The default value SHOULD be set to 120
seconds.
Implementations SHOULD NOT permit the inter-update timer to be lower
than the measurement interval.
Furthermore, it is RECOMMENDED that any underlying performance-
measurement mechanisms not include any significant buffer delay, any
significant buffer-induced delay variation, or any significant loss
due to buffer overflow or due to active queue management.
<span class="h2"><a class="selflink" id="section-8" href="#section-8">8</a>. Enabling and Disabling Sub-TLVs</span>
Implementations MUST make it possible to individually enable or
disable each sub-TLV based on configuration.
<span class="h2"><a class="selflink" id="section-9" href="#section-9">9</a>. Static Metric Override</span>
Implementations SHOULD permit static configuration and/or manual
override of dynamic measurements for each sub-TLV in order to
simplify migration and to mitigate scenarios where dynamic
measurements are not possible.
<span class="h2"><a class="selflink" id="section-10" href="#section-10">10</a>. Compatibility</span>
As per [<a href="./rfc5305" title=""IS-IS Extensions for Traffic Engineering"">RFC5305</a>], unrecognized sub-TLVs should be silently ignored.
<span class="grey">Previdi, et al. Standards Track [Page 14]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-15" ></span>
<span class="grey"><a href="./rfc7810">RFC 7810</a> IS-IS TE Metric Extensions May 2016</span>
<span class="h2"><a class="selflink" id="section-11" href="#section-11">11</a>. Security Considerations</span>
The sub-TLVs introduced in this document allow an operator to
advertise state information of links (bandwidth, delay) that could be
sensitive and that an operator may not want to disclose.
<a href="#section-7">Section 7</a> describes a mechanism to ensure network stability when the
new sub-TLVs defined in this document are advertised. Implementation
SHOULD follow the described guidelines to mitigate the instability
risk.
[<a id="ref-RFC5304">RFC5304</a>] describes an authentication method for IS-IS Link State
PDUs that allows cryptographic authentication of IS-IS Link State
PDUs.
It is anticipated that in most deployments, the IS-IS protocol is
used within an infrastructure entirely under control of the same
operator. However, it is worth considering that the effect of
sending IS-IS Traffic Engineering sub-TLVs over insecure links could
result in a man-in-the-middle attacker delaying real-time data to a
given site or destination, which could negatively affect the value of
the data for that site or destination. The use of Link State PDU
cryptographic authentication allows mitigation the risk of man-in-
the-middle attack.
<span class="h2"><a class="selflink" id="section-12" href="#section-12">12</a>. IANA Considerations</span>
IANA maintains the registry for the sub-TLVs. IANA has registered
the following sub-TLVs in the "Sub-TLVs for TLVs 22, 23, 141, 222,
and 223" registry:
Type Description
----------------------------------------------------
33 Unidirectional Link Delay
34 Min/Max Unidirectional Link Delay
35 Unidirectional Delay Variation
36 Unidirectional Link Loss
37 Unidirectional Residual Bandwidth
38 Unidirectional Available Bandwidth
39 Unidirectional Utilized Bandwidth
<span class="grey">Previdi, et al. Standards Track [Page 15]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-16" ></span>
<span class="grey"><a href="./rfc7810">RFC 7810</a> IS-IS TE Metric Extensions May 2016</span>
<span class="h2"><a class="selflink" id="section-13" href="#section-13">13</a>. References</span>
<span class="h3"><a class="selflink" id="section-13.1" href="#section-13.1">13.1</a>. Normative References</span>
[<a id="ref-RFC2119">RFC2119</a>] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", <a href="https://www.rfc-editor.org/bcp/bcp14">BCP 14</a>, <a href="./rfc2119">RFC 2119</a>,
DOI 10.17487/RFC2119, March 1997,
<<a href="http://www.rfc-editor.org/info/rfc2119">http://www.rfc-editor.org/info/rfc2119</a>>.
[<a id="ref-RFC4206">RFC4206</a>] Kompella, K. and Y. Rekhter, "Label Switched Paths (LSP)
Hierarchy with Generalized Multi-Protocol Label Switching
(GMPLS) Traffic Engineering (TE)", <a href="./rfc4206">RFC 4206</a>,
DOI 10.17487/RFC4206, October 2005,
<<a href="http://www.rfc-editor.org/info/rfc4206">http://www.rfc-editor.org/info/rfc4206</a>>.
[<a id="ref-RFC5120">RFC5120</a>] Przygienda, T., Shen, N., and N. Sheth, "M-ISIS: Multi
Topology (MT) Routing in Intermediate System to
Intermediate Systems (IS-ISs)", <a href="./rfc5120">RFC 5120</a>,
DOI 10.17487/RFC5120, February 2008,
<<a href="http://www.rfc-editor.org/info/rfc5120">http://www.rfc-editor.org/info/rfc5120</a>>.
[<a id="ref-RFC5304">RFC5304</a>] Li, T. and R. Atkinson, "IS-IS Cryptographic
Authentication", <a href="./rfc5304">RFC 5304</a>, DOI 10.17487/RFC5304, October
2008, <<a href="http://www.rfc-editor.org/info/rfc5304">http://www.rfc-editor.org/info/rfc5304</a>>.
[<a id="ref-RFC5305">RFC5305</a>] Li, T. and H. Smit, "IS-IS Extensions for Traffic
Engineering", <a href="./rfc5305">RFC 5305</a>, DOI 10.17487/RFC5305, October
2008, <<a href="http://www.rfc-editor.org/info/rfc5305">http://www.rfc-editor.org/info/rfc5305</a>>.
[<a id="ref-RFC5316">RFC5316</a>] Chen, M., Zhang, R., and X. Duan, "ISIS Extensions in
Support of Inter-Autonomous System (AS) MPLS and GMPLS
Traffic Engineering", <a href="./rfc5316">RFC 5316</a>, DOI 10.17487/RFC5316,
December 2008, <<a href="http://www.rfc-editor.org/info/rfc5316">http://www.rfc-editor.org/info/rfc5316</a>>.
[<a id="ref-RFC6119">RFC6119</a>] Harrison, J., Berger, J., and M. Bartlett, "IPv6 Traffic
Engineering in IS-IS", <a href="./rfc6119">RFC 6119</a>, DOI 10.17487/RFC6119,
February 2011, <<a href="http://www.rfc-editor.org/info/rfc6119">http://www.rfc-editor.org/info/rfc6119</a>>.
<span class="h3"><a class="selflink" id="section-13.2" href="#section-13.2">13.2</a>. Informative References</span>
[<a id="ref-RFC3209">RFC3209</a>] Awduche, D., Berger, L., Gan, D., Li, T., Srinivasan, V.,
and G. Swallow, "RSVP-TE: Extensions to RSVP for LSP
Tunnels", <a href="./rfc3209">RFC 3209</a>, DOI 10.17487/RFC3209, December 2001,
<<a href="http://www.rfc-editor.org/info/rfc3209">http://www.rfc-editor.org/info/rfc3209</a>>.
<span class="grey">Previdi, et al. Standards Track [Page 16]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-17" ></span>
<span class="grey"><a href="./rfc7810">RFC 7810</a> IS-IS TE Metric Extensions May 2016</span>
[<a id="ref-RFC4203">RFC4203</a>] Kompella, K., Ed. and Y. Rekhter, Ed., "OSPF Extensions in
Support of Generalized Multi-Protocol Label Switching
(GMPLS)", <a href="./rfc4203">RFC 4203</a>, DOI 10.17487/RFC4203, October 2005,
<<a href="http://www.rfc-editor.org/info/rfc4203">http://www.rfc-editor.org/info/rfc4203</a>>.
[<a id="ref-RFC6374">RFC6374</a>] Frost, D. and S. Bryant, "Packet Loss and Delay
Measurement for MPLS Networks", <a href="./rfc6374">RFC 6374</a>,
DOI 10.17487/RFC6374, September 2011,
<<a href="http://www.rfc-editor.org/info/rfc6374">http://www.rfc-editor.org/info/rfc6374</a>>.
[<a id="ref-RFC6375">RFC6375</a>] Frost, D., Ed. and S. Bryant, Ed., "A Packet Loss and
Delay Measurement Profile for MPLS-Based Transport
Networks", <a href="./rfc6375">RFC 6375</a>, DOI 10.17487/RFC6375, September 2011,
<<a href="http://www.rfc-editor.org/info/rfc6375">http://www.rfc-editor.org/info/rfc6375</a>>.
[<a id="ref-RFC7285">RFC7285</a>] Alimi, R., Ed., Penno, R., Ed., Yang, Y., Ed., Kiesel, S.,
Previdi, S., Roome, W., Shalunov, S., and R. Woundy,
"Application-Layer Traffic Optimization (ALTO) Protocol",
<a href="./rfc7285">RFC 7285</a>, DOI 10.17487/RFC7285, September 2014,
<<a href="http://www.rfc-editor.org/info/rfc7285">http://www.rfc-editor.org/info/rfc7285</a>>.
Acknowledgements
The authors would like to recognize Ayman Soliman, Nabil Bitar, David
McDysan, Les Ginsberg, Edward Crabbe, Don Fedyk, Hannes Gredler, Uma
Chunduri, Alvaro Retana, Brian Weis, and Barry Leiba for their
contribution and review of this document.
The authors also recognize Curtis Villamizar for significant comments
and direct content collaboration.
Contributors
The following people contributed substantially to the content of this
document and should be considered co-authors:
Alia Atlas
Juniper Networks
United States
Email: akatlas@juniper.net
Clarence Filsfils
Cisco Systems Inc.
Belgium
Email: cfilsfil@cisco.com
<span class="grey">Previdi, et al. Standards Track [Page 17]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-18" ></span>
<span class="grey"><a href="./rfc7810">RFC 7810</a> IS-IS TE Metric Extensions May 2016</span>
Authors' Addresses
Stefano Previdi (editor)
Cisco Systems, Inc.
Via Del Serafico 200
Rome 00191
Italy
Email: sprevidi@cisco.com
Spencer Giacalone
Microsoft
Email: spencer.giacalone@gmail.com
Dave Ward
Cisco Systems, Inc.
3700 Cisco Way
San Jose, CA 95134
United States
Email: wardd@cisco.com
John Drake
Juniper Networks
1194 N. Mathilda Ave.
Sunnyvale, CA 94089
United States
Email: jdrake@juniper.net
Qin Wu
Huawei
101 Software Avenue, Yuhua District
Nanjing, Jiangsu 210012
China
Email: sunseawq@huawei.com
Previdi, et al. Standards Track [Page 18]
</pre>
|