1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029 10030 10031 10032 10033 10034 10035 10036 10037 10038 10039 10040 10041 10042 10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183 10184 10185 10186 10187 10188 10189 10190 10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203 10204 10205 10206 10207 10208 10209 10210 10211 10212 10213 10214 10215 10216 10217 10218 10219 10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238 10239 10240 10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 10257 10258 10259 10260 10261 10262 10263 10264 10265 10266 10267 10268 10269 10270 10271 10272 10273 10274 10275 10276 10277 10278 10279 10280 10281 10282 10283 10284 10285 10286 10287 10288 10289 10290 10291 10292 10293 10294 10295 10296 10297 10298 10299 10300 10301 10302 10303 10304 10305 10306 10307 10308 10309 10310 10311 10312 10313 10314 10315 10316 10317 10318 10319 10320 10321 10322 10323 10324 10325 10326 10327 10328 10329 10330 10331 10332 10333 10334 10335 10336 10337 10338 10339 10340 10341 10342 10343 10344 10345 10346 10347 10348 10349 10350 10351 10352 10353 10354 10355 10356 10357 10358 10359 10360 10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371 10372 10373 10374 10375 10376 10377 10378 10379 10380 10381 10382 10383 10384 10385 10386 10387 10388 10389 10390 10391 10392 10393 10394 10395 10396 10397 10398 10399 10400 10401 10402 10403 10404 10405 10406 10407 10408 10409 10410 10411 10412 10413 10414 10415 10416 10417 10418 10419 10420 10421 10422 10423 10424 10425 10426 10427 10428 10429 10430 10431 10432 10433 10434 10435 10436 10437 10438 10439 10440 10441 10442 10443 10444 10445 10446 10447 10448 10449 10450 10451 10452 10453 10454 10455 10456 10457 10458 10459 10460 10461 10462 10463 10464 10465 10466 10467 10468 10469 10470 10471 10472 10473 10474 10475 10476 10477 10478 10479 10480 10481 10482 10483 10484 10485 10486 10487 10488 10489 10490 10491 10492 10493 10494 10495 10496 10497 10498 10499 10500 10501 10502 10503 10504 10505 10506 10507 10508 10509 10510 10511 10512 10513 10514 10515 10516 10517 10518 10519 10520 10521 10522 10523 10524 10525 10526 10527 10528 10529 10530 10531 10532 10533 10534 10535 10536 10537 10538 10539 10540 10541 10542 10543 10544 10545 10546 10547 10548 10549 10550 10551 10552 10553 10554 10555 10556 10557 10558 10559 10560 10561 10562 10563 10564 10565 10566 10567 10568 10569 10570 10571 10572 10573 10574 10575 10576 10577 10578 10579 10580 10581 10582 10583 10584 10585 10586 10587 10588 10589 10590 10591 10592 10593 10594 10595 10596 10597 10598 10599 10600 10601 10602 10603 10604 10605 10606 10607 10608 10609 10610 10611 10612 10613 10614 10615 10616 10617 10618 10619 10620 10621 10622 10623 10624 10625 10626 10627 10628 10629 10630 10631 10632 10633 10634 10635 10636 10637 10638 10639 10640 10641 10642 10643 10644 10645 10646 10647 10648 10649 10650 10651 10652 10653 10654 10655 10656 10657 10658 10659 10660 10661 10662 10663 10664 10665 10666 10667 10668 10669 10670 10671 10672 10673 10674 10675 10676 10677 10678 10679 10680 10681 10682 10683 10684 10685 10686 10687 10688 10689 10690 10691 10692 10693 10694 10695 10696 10697 10698 10699 10700 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713 10714 10715 10716 10717 10718 10719 10720 10721 10722 10723 10724 10725 10726 10727 10728 10729 10730 10731 10732 10733 10734 10735 10736 10737 10738 10739 10740 10741 10742 10743 10744 10745 10746 10747 10748 10749 10750 10751 10752 10753 10754 10755 10756 10757 10758 10759 10760 10761 10762 10763 10764 10765 10766 10767 10768 10769 10770 10771 10772 10773 10774 10775 10776 10777 10778 10779 10780 10781 10782 10783 10784 10785 10786 10787 10788 10789 10790 10791 10792 10793 10794 10795 10796 10797 10798 10799 10800 10801 10802 10803 10804 10805 10806 10807 10808 10809 10810 10811 10812 10813 10814 10815 10816 10817 10818 10819 10820 10821 10822 10823 10824 10825 10826 10827 10828 10829 10830 10831 10832 10833 10834 10835 10836 10837 10838 10839 10840 10841 10842 10843 10844 10845 10846 10847 10848 10849 10850 10851 10852 10853 10854 10855 10856 10857 10858 10859 10860 10861 10862 10863 10864 10865 10866 10867 10868 10869 10870 10871 10872 10873 10874 10875 10876 10877 10878 10879 10880 10881 10882 10883 10884 10885 10886 10887 10888 10889 10890 10891 10892 10893 10894 10895 10896 10897 10898 10899 10900 10901 10902 10903 10904 10905 10906 10907 10908 10909 10910 10911 10912 10913 10914 10915 10916 10917 10918 10919 10920 10921 10922 10923 10924 10925 10926 10927 10928 10929 10930 10931 10932 10933 10934 10935 10936 10937 10938 10939 10940 10941 10942 10943 10944 10945 10946 10947 10948 10949 10950 10951 10952 10953 10954 10955 10956 10957 10958 10959 10960 10961 10962 10963 10964 10965 10966 10967 10968 10969 10970 10971 10972 10973 10974 10975 10976 10977 10978 10979 10980 10981 10982 10983 10984 10985 10986 10987 10988 10989 10990 10991 10992 10993 10994 10995 10996 10997 10998 10999 11000 11001 11002 11003 11004 11005 11006 11007 11008 11009 11010 11011 11012 11013 11014 11015 11016 11017 11018 11019 11020 11021 11022 11023 11024 11025 11026 11027 11028 11029 11030 11031 11032 11033 11034 11035 11036 11037 11038 11039 11040 11041 11042 11043 11044 11045 11046 11047 11048 11049 11050 11051 11052 11053 11054 11055 11056 11057 11058 11059 11060 11061 11062 11063 11064 11065 11066 11067 11068 11069 11070 11071 11072 11073 11074 11075 11076 11077 11078 11079 11080 11081 11082 11083 11084 11085 11086 11087 11088 11089 11090 11091 11092 11093 11094 11095 11096 11097 11098 11099 11100 11101 11102 11103 11104 11105 11106 11107 11108 11109 11110 11111 11112 11113 11114 11115 11116 11117 11118 11119 11120 11121 11122 11123 11124 11125 11126 11127 11128 11129 11130 11131 11132 11133 11134 11135 11136 11137 11138 11139 11140 11141 11142 11143 11144 11145 11146 11147 11148 11149 11150 11151 11152 11153 11154 11155 11156 11157 11158 11159 11160 11161 11162 11163 11164 11165 11166 11167 11168 11169 11170 11171 11172 11173 11174 11175 11176 11177 11178 11179 11180 11181 11182 11183 11184 11185 11186 11187 11188 11189 11190 11191 11192 11193 11194 11195 11196 11197 11198 11199 11200 11201 11202 11203 11204 11205 11206 11207 11208 11209 11210 11211 11212 11213 11214 11215 11216 11217 11218 11219 11220 11221 11222 11223 11224 11225 11226 11227 11228 11229 11230 11231 11232 11233 11234 11235 11236 11237 11238 11239 11240 11241 11242 11243 11244 11245 11246 11247 11248 11249 11250 11251 11252 11253 11254 11255 11256 11257 11258 11259 11260 11261 11262 11263 11264 11265 11266 11267 11268 11269 11270 11271 11272 11273 11274 11275 11276 11277 11278 11279 11280 11281 11282 11283 11284 11285 11286 11287 11288 11289 11290 11291 11292 11293 11294 11295 11296 11297 11298 11299 11300 11301 11302 11303 11304 11305 11306 11307 11308 11309 11310 11311 11312 11313 11314 11315 11316 11317 11318 11319 11320 11321 11322 11323 11324 11325 11326 11327 11328 11329 11330 11331 11332 11333 11334 11335 11336 11337 11338 11339 11340 11341 11342 11343 11344 11345 11346 11347 11348 11349 11350 11351 11352 11353 11354 11355 11356 11357 11358 11359 11360 11361 11362 11363 11364 11365 11366 11367 11368 11369 11370 11371 11372 11373 11374 11375 11376 11377 11378 11379 11380 11381 11382 11383 11384 11385 11386 11387 11388 11389 11390 11391 11392 11393 11394 11395 11396 11397 11398 11399 11400 11401 11402 11403 11404 11405 11406 11407 11408 11409 11410 11411 11412 11413 11414 11415 11416 11417 11418 11419 11420 11421 11422 11423 11424 11425 11426 11427 11428 11429 11430 11431 11432 11433 11434 11435 11436 11437 11438 11439 11440 11441 11442 11443 11444 11445 11446 11447 11448 11449 11450 11451 11452 11453 11454 11455 11456 11457 11458 11459 11460 11461 11462 11463 11464 11465 11466 11467 11468 11469 11470 11471 11472 11473 11474 11475 11476 11477 11478 11479 11480 11481 11482 11483 11484 11485 11486 11487 11488 11489 11490 11491 11492 11493 11494 11495 11496 11497 11498 11499 11500 11501 11502 11503 11504 11505 11506 11507 11508 11509 11510 11511 11512 11513 11514 11515 11516 11517 11518 11519 11520 11521 11522 11523 11524 11525 11526 11527 11528 11529 11530 11531 11532 11533 11534 11535 11536 11537 11538 11539 11540 11541 11542 11543 11544 11545 11546 11547 11548 11549 11550 11551 11552 11553 11554 11555 11556 11557 11558 11559 11560 11561 11562 11563 11564 11565 11566 11567 11568 11569 11570 11571 11572 11573 11574 11575 11576 11577 11578 11579 11580 11581 11582 11583 11584 11585 11586 11587 11588 11589 11590 11591 11592 11593 11594 11595 11596 11597 11598 11599 11600 11601 11602 11603 11604 11605 11606 11607 11608 11609 11610 11611 11612 11613 11614 11615 11616 11617 11618 11619 11620 11621 11622 11623 11624 11625 11626 11627 11628 11629 11630 11631 11632 11633 11634 11635 11636 11637 11638 11639 11640 11641 11642 11643 11644 11645 11646 11647 11648 11649 11650 11651 11652 11653 11654 11655 11656 11657 11658 11659 11660 11661 11662 11663 11664 11665 11666 11667 11668 11669 11670 11671 11672 11673 11674 11675 11676 11677 11678 11679 11680 11681 11682 11683 11684 11685 11686 11687 11688 11689 11690 11691 11692 11693 11694 11695 11696 11697 11698 11699 11700 11701 11702 11703 11704 11705 11706 11707 11708 11709 11710 11711 11712 11713 11714 11715 11716 11717 11718 11719 11720 11721 11722 11723 11724 11725 11726 11727 11728 11729 11730 11731 11732 11733 11734 11735 11736 11737 11738 11739 11740 11741 11742 11743 11744 11745 11746 11747 11748 11749 11750 11751 11752 11753 11754 11755 11756 11757 11758 11759 11760 11761 11762 11763 11764 11765 11766 11767 11768 11769 11770 11771 11772 11773 11774 11775 11776 11777 11778 11779 11780 11781 11782 11783 11784 11785 11786 11787 11788 11789 11790 11791 11792 11793 11794 11795 11796 11797 11798 11799 11800 11801 11802 11803 11804 11805 11806 11807 11808 11809 11810 11811 11812 11813 11814 11815 11816 11817 11818 11819 11820 11821 11822 11823 11824 11825 11826 11827 11828 11829 11830 11831 11832 11833 11834 11835 11836 11837 11838 11839 11840 11841 11842 11843 11844 11845 11846 11847 11848 11849 11850 11851 11852 11853 11854 11855 11856 11857 11858 11859 11860 11861 11862 11863 11864 11865 11866 11867 11868 11869 11870 11871 11872 11873 11874 11875 11876 11877 11878 11879 11880 11881 11882 11883 11884 11885 11886 11887 11888 11889 11890 11891 11892 11893 11894 11895 11896 11897 11898 11899 11900 11901 11902 11903 11904 11905 11906 11907 11908 11909 11910 11911 11912 11913 11914 11915 11916 11917 11918 11919 11920 11921 11922 11923 11924 11925 11926 11927 11928 11929 11930 11931 11932 11933 11934 11935 11936 11937 11938 11939 11940 11941 11942 11943 11944 11945 11946 11947 11948 11949 11950 11951 11952 11953 11954 11955 11956 11957 11958 11959 11960 11961 11962 11963 11964 11965 11966 11967 11968 11969 11970 11971 11972 11973 11974 11975 11976 11977 11978 11979 11980 11981 11982 11983 11984 11985 11986 11987 11988 11989 11990 11991 11992 11993 11994 11995 11996 11997 11998 11999 12000 12001 12002 12003 12004 12005 12006 12007 12008 12009 12010 12011 12012 12013 12014 12015 12016 12017 12018 12019 12020 12021 12022 12023 12024 12025 12026 12027 12028 12029 12030 12031 12032 12033 12034 12035 12036 12037 12038 12039 12040 12041 12042 12043 12044 12045 12046 12047 12048 12049 12050 12051 12052 12053 12054 12055 12056 12057 12058 12059 12060 12061 12062 12063 12064 12065 12066 12067 12068 12069 12070 12071 12072 12073 12074 12075 12076 12077 12078 12079 12080 12081 12082 12083 12084 12085 12086 12087 12088 12089 12090 12091 12092 12093 12094 12095 12096 12097 12098 12099 12100 12101 12102 12103 12104 12105 12106 12107 12108 12109 12110 12111 12112 12113 12114 12115 12116 12117 12118 12119 12120 12121 12122 12123 12124 12125 12126 12127 12128 12129 12130 12131 12132 12133 12134 12135 12136 12137 12138 12139 12140 12141 12142 12143 12144 12145 12146 12147 12148 12149 12150 12151 12152 12153 12154 12155 12156 12157 12158 12159 12160 12161 12162 12163 12164 12165 12166 12167 12168 12169 12170 12171 12172 12173 12174 12175 12176 12177 12178 12179 12180 12181 12182 12183 12184 12185 12186 12187 12188 12189 12190 12191 12192 12193 12194 12195 12196 12197 12198 12199 12200 12201 12202 12203 12204 12205 12206 12207 12208 12209 12210 12211 12212 12213 12214 12215 12216 12217 12218 12219 12220 12221 12222 12223 12224 12225 12226 12227 12228 12229 12230 12231 12232 12233 12234 12235 12236 12237 12238 12239 12240 12241 12242 12243 12244 12245 12246 12247 12248 12249 12250 12251 12252 12253 12254 12255 12256 12257 12258 12259 12260 12261 12262 12263 12264 12265 12266 12267 12268 12269 12270 12271 12272 12273 12274 12275 12276 12277 12278 12279 12280 12281 12282 12283 12284 12285 12286 12287 12288 12289 12290 12291 12292 12293 12294 12295 12296 12297 12298 12299 12300 12301 12302 12303 12304 12305 12306 12307 12308 12309 12310 12311 12312 12313 12314 12315 12316 12317 12318 12319 12320 12321 12322 12323 12324 12325 12326 12327 12328 12329 12330 12331 12332 12333 12334 12335 12336 12337 12338 12339 12340 12341 12342 12343 12344 12345 12346 12347 12348 12349 12350 12351 12352 12353 12354 12355 12356 12357 12358 12359 12360 12361 12362 12363 12364 12365 12366 12367 12368 12369 12370 12371 12372 12373 12374 12375 12376 12377 12378 12379 12380 12381 12382 12383 12384 12385 12386 12387 12388 12389 12390 12391 12392 12393 12394 12395 12396 12397 12398 12399 12400 12401 12402 12403 12404 12405 12406 12407 12408 12409 12410 12411 12412 12413 12414 12415 12416 12417 12418 12419 12420 12421 12422 12423 12424 12425 12426 12427 12428 12429 12430 12431 12432 12433 12434 12435 12436 12437 12438 12439 12440 12441 12442 12443 12444 12445 12446 12447 12448 12449 12450 12451 12452 12453 12454 12455 12456 12457 12458 12459 12460 12461 12462 12463 12464 12465 12466 12467 12468 12469 12470 12471 12472 12473 12474 12475 12476 12477 12478 12479 12480 12481 12482 12483 12484 12485 12486 12487 12488 12489 12490 12491 12492 12493 12494 12495 12496 12497 12498 12499 12500 12501 12502 12503 12504 12505 12506 12507 12508 12509 12510 12511 12512 12513 12514 12515 12516 12517 12518 12519 12520 12521 12522 12523 12524 12525 12526 12527 12528 12529 12530 12531 12532 12533 12534 12535 12536 12537 12538 12539 12540 12541 12542 12543 12544 12545 12546 12547 12548 12549 12550 12551 12552 12553 12554 12555 12556 12557 12558 12559 12560 12561 12562 12563 12564 12565 12566 12567 12568 12569 12570 12571 12572 12573 12574 12575 12576 12577 12578 12579 12580 12581 12582 12583 12584 12585 12586 12587 12588 12589 12590 12591 12592 12593 12594 12595 12596 12597 12598 12599 12600 12601 12602 12603 12604 12605 12606 12607 12608 12609 12610 12611 12612 12613 12614 12615 12616 12617 12618 12619 12620 12621 12622 12623 12624 12625 12626 12627 12628 12629 12630 12631 12632 12633 12634 12635 12636 12637 12638 12639 12640 12641 12642 12643 12644 12645 12646 12647 12648 12649 12650 12651 12652 12653 12654 12655 12656 12657 12658 12659 12660 12661 12662 12663 12664 12665 12666 12667 12668 12669 12670 12671 12672 12673 12674 12675 12676 12677 12678 12679 12680 12681 12682 12683 12684 12685 12686 12687 12688 12689 12690 12691 12692 12693 12694 12695 12696 12697 12698 12699 12700 12701 12702 12703 12704 12705 12706 12707 12708 12709 12710 12711 12712 12713 12714 12715 12716 12717 12718 12719 12720 12721 12722 12723 12724 12725 12726 12727 12728 12729 12730 12731 12732 12733 12734 12735 12736 12737 12738 12739 12740 12741 12742 12743 12744 12745 12746 12747 12748 12749 12750 12751 12752 12753 12754 12755 12756 12757 12758 12759 12760 12761 12762 12763 12764 12765 12766 12767 12768 12769 12770 12771 12772 12773 12774 12775 12776 12777 12778 12779 12780 12781 12782 12783 12784 12785 12786 12787 12788 12789 12790 12791 12792 12793 12794 12795 12796 12797 12798 12799 12800 12801 12802 12803 12804 12805 12806 12807 12808 12809 12810 12811 12812 12813 12814 12815 12816 12817 12818 12819 12820 12821 12822 12823 12824 12825 12826 12827 12828 12829 12830 12831 12832 12833 12834 12835 12836 12837 12838 12839 12840 12841 12842 12843 12844 12845 12846 12847 12848 12849 12850 12851 12852 12853 12854 12855 12856 12857 12858 12859 12860 12861 12862 12863 12864 12865 12866 12867 12868 12869 12870 12871 12872 12873 12874 12875 12876 12877 12878 12879 12880 12881 12882 12883 12884 12885 12886 12887 12888 12889 12890 12891 12892 12893 12894 12895 12896 12897 12898 12899 12900 12901 12902 12903 12904 12905 12906 12907 12908 12909 12910 12911 12912 12913 12914 12915 12916 12917 12918 12919 12920 12921 12922 12923 12924 12925 12926 12927 12928 12929 12930 12931 12932 12933 12934 12935 12936 12937 12938 12939 12940 12941 12942 12943 12944 12945 12946 12947 12948 12949 12950 12951 12952 12953 12954 12955 12956 12957 12958 12959 12960 12961 12962 12963 12964 12965 12966 12967 12968 12969 12970 12971 12972 12973 12974 12975 12976 12977 12978 12979 12980 12981 12982 12983 12984 12985 12986 12987 12988 12989 12990 12991 12992 12993 12994 12995 12996 12997 12998 12999 13000 13001 13002 13003 13004 13005 13006 13007 13008 13009 13010 13011 13012 13013 13014 13015 13016 13017 13018 13019 13020 13021 13022 13023 13024 13025 13026 13027 13028 13029 13030 13031 13032 13033 13034 13035 13036 13037 13038 13039 13040 13041 13042 13043 13044 13045 13046 13047 13048 13049 13050 13051 13052 13053 13054 13055 13056 13057 13058 13059 13060 13061 13062 13063 13064 13065 13066 13067 13068 13069 13070 13071 13072 13073 13074 13075 13076 13077 13078 13079 13080 13081 13082 13083 13084 13085 13086 13087 13088 13089 13090 13091 13092 13093 13094 13095 13096 13097 13098 13099 13100 13101 13102 13103 13104 13105 13106 13107 13108 13109 13110 13111 13112 13113 13114 13115 13116 13117 13118 13119 13120 13121 13122 13123 13124 13125 13126 13127 13128 13129 13130 13131 13132 13133 13134 13135 13136 13137 13138 13139 13140 13141 13142 13143 13144 13145 13146 13147 13148 13149 13150 13151 13152 13153 13154 13155 13156 13157 13158 13159 13160 13161 13162 13163 13164 13165 13166 13167 13168 13169 13170 13171 13172 13173 13174 13175 13176 13177 13178 13179 13180 13181 13182 13183 13184 13185 13186 13187 13188 13189 13190 13191 13192 13193 13194 13195 13196 13197 13198 13199 13200 13201 13202 13203 13204 13205 13206 13207 13208 13209 13210 13211 13212 13213 13214 13215 13216 13217 13218 13219 13220 13221 13222 13223 13224 13225 13226 13227 13228 13229 13230 13231 13232 13233 13234 13235 13236 13237 13238 13239 13240 13241 13242 13243 13244 13245 13246 13247 13248 13249 13250 13251 13252 13253 13254 13255 13256 13257 13258 13259 13260 13261 13262 13263 13264 13265 13266 13267 13268 13269 13270 13271 13272 13273 13274 13275 13276 13277 13278 13279 13280 13281 13282 13283 13284 13285 13286 13287 13288 13289 13290 13291 13292 13293 13294 13295 13296 13297 13298 13299 13300 13301 13302 13303 13304 13305 13306 13307 13308 13309 13310 13311 13312 13313 13314 13315 13316 13317 13318 13319 13320 13321 13322 13323 13324 13325 13326 13327 13328 13329 13330 13331 13332 13333 13334 13335 13336 13337 13338 13339 13340 13341 13342 13343 13344 13345 13346 13347 13348 13349 13350 13351 13352 13353 13354 13355 13356 13357 13358 13359 13360 13361 13362 13363 13364 13365 13366 13367 13368 13369 13370 13371 13372 13373 13374 13375 13376 13377 13378 13379 13380 13381 13382 13383 13384 13385 13386 13387 13388 13389 13390 13391 13392 13393 13394 13395 13396 13397 13398 13399 13400 13401 13402 13403 13404 13405 13406 13407 13408 13409 13410 13411 13412 13413 13414 13415 13416 13417 13418 13419 13420 13421 13422 13423 13424 13425 13426 13427 13428 13429 13430 13431 13432 13433 13434 13435 13436 13437 13438 13439 13440 13441 13442 13443 13444 13445 13446 13447 13448 13449 13450 13451 13452 13453 13454 13455 13456 13457 13458 13459 13460 13461 13462 13463 13464 13465 13466 13467 13468 13469 13470 13471 13472 13473 13474 13475 13476 13477 13478 13479 13480 13481 13482 13483 13484 13485 13486 13487 13488 13489 13490 13491 13492 13493 13494 13495 13496 13497 13498 13499 13500 13501 13502 13503 13504 13505 13506 13507 13508 13509 13510 13511 13512 13513 13514 13515 13516 13517 13518 13519 13520 13521 13522 13523 13524 13525 13526 13527 13528 13529 13530 13531 13532 13533 13534 13535 13536 13537 13538 13539 13540 13541 13542 13543 13544 13545 13546 13547 13548 13549 13550 13551 13552 13553 13554 13555 13556 13557 13558 13559 13560 13561 13562 13563 13564 13565 13566 13567 13568 13569 13570 13571 13572 13573 13574 13575 13576 13577 13578 13579 13580 13581 13582 13583 13584 13585 13586 13587 13588 13589 13590 13591 13592 13593 13594 13595 13596 13597 13598 13599 13600 13601 13602 13603 13604 13605 13606 13607 13608 13609 13610 13611 13612 13613 13614 13615 13616 13617 13618 13619 13620 13621 13622 13623 13624 13625 13626 13627 13628 13629 13630 13631 13632 13633 13634 13635 13636 13637 13638 13639 13640 13641 13642 13643 13644 13645 13646 13647 13648 13649 13650 13651 13652 13653 13654 13655 13656 13657 13658 13659 13660 13661 13662 13663 13664 13665 13666 13667 13668 13669 13670 13671 13672 13673 13674 13675 13676 13677 13678 13679 13680 13681 13682 13683 13684 13685 13686 13687 13688 13689 13690 13691 13692 13693 13694 13695 13696 13697 13698 13699 13700 13701 13702 13703 13704 13705 13706 13707 13708 13709 13710 13711 13712 13713 13714 13715 13716 13717 13718 13719 13720 13721 13722 13723 13724 13725 13726 13727 13728 13729 13730 13731 13732 13733 13734 13735 13736 13737 13738 13739 13740 13741 13742 13743 13744 13745 13746 13747 13748 13749 13750 13751 13752 13753 13754 13755 13756 13757 13758 13759 13760 13761 13762 13763 13764 13765 13766 13767 13768 13769 13770 13771 13772 13773 13774 13775 13776 13777 13778 13779 13780 13781 13782 13783 13784 13785 13786 13787 13788 13789 13790 13791 13792 13793 13794 13795 13796 13797 13798 13799 13800 13801 13802 13803 13804 13805 13806 13807 13808 13809 13810 13811 13812 13813 13814 13815 13816 13817 13818 13819 13820 13821 13822 13823 13824 13825 13826 13827 13828 13829 13830 13831 13832 13833 13834 13835 13836 13837 13838 13839 13840 13841 13842 13843 13844 13845 13846 13847 13848 13849 13850 13851 13852 13853 13854 13855 13856 13857 13858 13859 13860 13861 13862 13863 13864 13865 13866 13867 13868 13869 13870 13871 13872 13873 13874 13875 13876 13877 13878 13879 13880 13881 13882 13883 13884 13885 13886 13887 13888 13889 13890 13891 13892 13893 13894 13895 13896 13897 13898 13899 13900 13901 13902 13903 13904 13905 13906 13907 13908 13909 13910 13911 13912 13913 13914 13915 13916 13917 13918 13919 13920 13921 13922 13923 13924 13925 13926 13927 13928 13929 13930 13931 13932 13933 13934 13935 13936 13937 13938 13939 13940 13941 13942 13943 13944 13945 13946 13947 13948 13949 13950 13951 13952 13953 13954 13955 13956 13957 13958 13959 13960 13961 13962 13963 13964 13965 13966 13967 13968 13969 13970 13971 13972 13973 13974 13975 13976 13977 13978 13979 13980 13981 13982 13983 13984 13985 13986 13987 13988 13989 13990 13991 13992 13993 13994 13995 13996 13997 13998 13999 14000 14001 14002 14003 14004 14005 14006 14007 14008 14009 14010 14011 14012 14013 14014 14015 14016 14017 14018 14019 14020 14021 14022 14023 14024 14025 14026 14027 14028 14029 14030 14031 14032 14033 14034 14035 14036 14037 14038 14039 14040 14041 14042 14043 14044 14045 14046 14047 14048 14049 14050 14051 14052 14053 14054 14055 14056 14057 14058 14059 14060 14061 14062 14063 14064 14065 14066 14067 14068 14069 14070 14071 14072 14073 14074 14075 14076 14077 14078 14079 14080 14081 14082 14083 14084 14085 14086 14087 14088 14089 14090 14091 14092 14093 14094 14095 14096 14097 14098 14099 14100 14101 14102 14103 14104 14105 14106 14107 14108 14109 14110 14111 14112 14113 14114 14115 14116 14117 14118 14119 14120 14121 14122 14123 14124 14125 14126 14127 14128 14129 14130 14131 14132 14133 14134 14135 14136 14137 14138 14139 14140 14141 14142 14143 14144 14145 14146 14147 14148 14149 14150 14151 14152 14153 14154 14155 14156 14157 14158 14159 14160 14161 14162 14163 14164 14165 14166 14167 14168 14169 14170 14171 14172 14173 14174 14175 14176 14177 14178 14179 14180 14181 14182 14183 14184 14185 14186 14187 14188 14189 14190 14191 14192 14193 14194 14195 14196 14197 14198 14199 14200 14201 14202 14203 14204 14205 14206 14207 14208 14209 14210 14211 14212 14213 14214 14215 14216 14217 14218 14219 14220 14221 14222 14223 14224 14225 14226 14227 14228 14229 14230 14231 14232 14233 14234 14235 14236 14237 14238 14239 14240 14241 14242 14243 14244 14245 14246 14247 14248 14249 14250 14251 14252 14253 14254 14255 14256 14257 14258 14259 14260 14261 14262 14263 14264 14265 14266 14267 14268 14269 14270 14271 14272 14273 14274 14275 14276 14277 14278 14279 14280 14281 14282 14283 14284 14285 14286 14287 14288 14289 14290 14291 14292 14293 14294 14295 14296 14297 14298 14299 14300 14301 14302 14303 14304 14305 14306 14307 14308 14309 14310 14311 14312 14313 14314 14315 14316 14317 14318 14319 14320 14321 14322 14323 14324 14325 14326 14327 14328 14329 14330 14331 14332 14333 14334 14335 14336 14337 14338 14339 14340 14341 14342 14343 14344 14345 14346 14347 14348 14349 14350 14351 14352 14353 14354 14355 14356 14357 14358 14359 14360 14361 14362 14363 14364 14365 14366 14367 14368 14369 14370 14371 14372 14373 14374 14375 14376 14377 14378 14379 14380 14381 14382 14383 14384 14385 14386 14387 14388 14389 14390 14391 14392 14393 14394 14395 14396 14397 14398 14399 14400 14401 14402 14403 14404 14405 14406 14407 14408 14409 14410 14411 14412 14413 14414 14415 14416 14417 14418 14419 14420 14421 14422 14423 14424 14425 14426 14427 14428 14429 14430 14431 14432 14433 14434 14435 14436 14437 14438 14439 14440 14441 14442 14443 14444 14445 14446 14447 14448 14449 14450 14451 14452 14453 14454 14455 14456 14457 14458 14459 14460 14461 14462 14463 14464 14465 14466 14467 14468 14469 14470 14471 14472 14473 14474 14475 14476 14477 14478 14479 14480 14481 14482 14483 14484 14485 14486 14487 14488 14489 14490 14491 14492 14493 14494 14495 14496 14497 14498 14499 14500 14501 14502 14503 14504 14505 14506 14507 14508 14509 14510 14511 14512 14513 14514 14515 14516 14517 14518 14519 14520 14521 14522 14523 14524 14525 14526 14527 14528 14529 14530 14531 14532 14533 14534 14535 14536 14537 14538 14539 14540 14541 14542 14543 14544 14545 14546 14547 14548 14549 14550 14551 14552 14553 14554 14555 14556 14557 14558 14559 14560 14561 14562 14563 14564 14565 14566 14567 14568 14569 14570 14571 14572 14573 14574 14575 14576 14577 14578 14579 14580 14581 14582 14583 14584 14585 14586 14587 14588 14589 14590 14591 14592 14593 14594 14595 14596 14597 14598 14599 14600 14601 14602 14603 14604 14605 14606 14607 14608 14609 14610 14611 14612 14613 14614 14615 14616 14617 14618 14619 14620 14621 14622 14623 14624 14625 14626 14627 14628 14629 14630 14631 14632 14633 14634 14635 14636 14637 14638 14639 14640 14641 14642 14643 14644 14645 14646 14647 14648 14649 14650 14651 14652 14653 14654 14655 14656 14657 14658 14659 14660 14661 14662 14663 14664 14665 14666 14667 14668 14669 14670 14671 14672 14673 14674 14675 14676 14677 14678 14679 14680 14681 14682 14683 14684 14685 14686 14687 14688 14689 14690 14691 14692 14693 14694 14695 14696 14697 14698 14699 14700 14701 14702 14703 14704 14705 14706 14707 14708 14709 14710 14711 14712 14713 14714 14715 14716 14717 14718 14719 14720 14721 14722 14723 14724 14725 14726 14727 14728 14729 14730 14731 14732 14733 14734 14735 14736 14737 14738 14739 14740 14741 14742 14743 14744 14745 14746 14747 14748 14749 14750 14751 14752 14753 14754 14755 14756 14757 14758 14759 14760 14761 14762 14763 14764 14765 14766 14767 14768 14769 14770 14771 14772 14773 14774 14775 14776 14777 14778 14779 14780 14781 14782 14783 14784 14785 14786 14787 14788 14789 14790 14791 14792 14793 14794 14795 14796 14797 14798 14799 14800 14801 14802 14803 14804 14805 14806 14807 14808 14809 14810 14811 14812 14813 14814 14815 14816 14817 14818 14819 14820 14821 14822 14823 14824 14825 14826 14827 14828 14829 14830 14831 14832 14833 14834 14835 14836 14837 14838 14839 14840 14841 14842 14843 14844 14845 14846 14847 14848 14849 14850 14851 14852 14853 14854 14855 14856 14857 14858 14859 14860 14861 14862 14863 14864 14865 14866 14867 14868 14869 14870 14871 14872 14873 14874 14875 14876 14877 14878 14879 14880 14881 14882 14883 14884 14885 14886 14887 14888 14889 14890 14891 14892 14893 14894 14895 14896 14897 14898 14899 14900 14901 14902 14903 14904 14905 14906 14907 14908 14909 14910 14911 14912 14913 14914 14915 14916 14917 14918 14919 14920 14921 14922 14923 14924 14925 14926 14927 14928 14929 14930 14931 14932 14933 14934 14935 14936 14937 14938 14939 14940 14941 14942 14943 14944 14945 14946 14947 14948 14949 14950 14951 14952 14953 14954 14955 14956 14957 14958 14959 14960 14961 14962 14963 14964 14965 14966 14967 14968 14969 14970 14971 14972 14973 14974 14975 14976 14977 14978 14979 14980 14981 14982 14983 14984 14985 14986 14987 14988 14989 14990 14991 14992 14993 14994 14995 14996 14997 14998 14999 15000 15001 15002 15003 15004 15005 15006 15007 15008 15009 15010 15011 15012 15013 15014 15015 15016 15017 15018 15019 15020 15021 15022 15023 15024 15025 15026 15027 15028 15029 15030 15031 15032 15033 15034 15035 15036 15037 15038 15039 15040 15041 15042 15043 15044 15045 15046 15047 15048 15049 15050 15051 15052 15053 15054 15055 15056 15057 15058 15059 15060 15061 15062 15063 15064 15065 15066 15067 15068 15069 15070 15071 15072 15073 15074 15075 15076 15077 15078 15079 15080 15081 15082 15083 15084 15085 15086 15087 15088 15089 15090 15091 15092 15093 15094 15095 15096 15097 15098 15099 15100 15101 15102 15103 15104 15105 15106 15107 15108 15109 15110 15111 15112 15113 15114 15115 15116 15117 15118 15119 15120 15121 15122 15123 15124 15125 15126 15127 15128 15129 15130 15131 15132 15133 15134 15135 15136 15137 15138 15139 15140 15141 15142 15143 15144 15145 15146 15147 15148 15149 15150 15151 15152 15153 15154 15155 15156 15157 15158 15159 15160 15161 15162 15163 15164 15165 15166 15167 15168 15169 15170 15171 15172 15173 15174 15175 15176 15177 15178 15179 15180 15181 15182 15183 15184 15185 15186 15187 15188 15189 15190 15191 15192 15193 15194 15195 15196 15197 15198 15199 15200 15201 15202 15203 15204 15205 15206 15207 15208 15209 15210 15211 15212 15213 15214 15215 15216 15217 15218 15219 15220 15221 15222 15223 15224 15225 15226 15227 15228 15229 15230 15231 15232 15233 15234 15235 15236 15237 15238 15239 15240 15241 15242 15243 15244 15245 15246 15247 15248 15249 15250 15251 15252 15253 15254 15255 15256 15257 15258 15259 15260 15261 15262 15263 15264 15265 15266 15267 15268 15269 15270 15271 15272 15273 15274 15275 15276 15277 15278 15279 15280 15281 15282 15283 15284 15285 15286 15287 15288 15289 15290 15291 15292 15293 15294 15295 15296 15297 15298 15299 15300 15301 15302 15303 15304 15305 15306 15307 15308 15309 15310 15311 15312 15313 15314 15315 15316 15317 15318 15319 15320 15321 15322 15323 15324 15325 15326 15327 15328 15329 15330 15331 15332 15333 15334 15335 15336 15337 15338 15339 15340 15341 15342 15343 15344 15345 15346 15347 15348 15349 15350 15351 15352 15353 15354 15355 15356 15357 15358 15359 15360 15361 15362 15363 15364 15365 15366 15367 15368 15369 15370 15371 15372 15373 15374 15375 15376 15377 15378 15379 15380 15381 15382 15383 15384 15385 15386 15387 15388 15389 15390 15391 15392 15393 15394 15395 15396 15397 15398 15399 15400 15401 15402 15403 15404 15405 15406 15407 15408 15409 15410 15411 15412 15413 15414 15415 15416 15417 15418 15419 15420 15421 15422 15423 15424 15425 15426 15427 15428 15429 15430 15431 15432 15433 15434 15435 15436 15437 15438 15439 15440 15441 15442 15443 15444 15445 15446 15447 15448 15449 15450 15451 15452 15453 15454 15455 15456 15457 15458 15459 15460 15461 15462 15463 15464 15465 15466 15467 15468 15469 15470 15471 15472 15473 15474 15475 15476 15477 15478 15479 15480 15481 15482 15483 15484 15485 15486 15487 15488 15489 15490 15491 15492 15493 15494 15495 15496 15497 15498 15499 15500 15501 15502 15503 15504 15505 15506 15507 15508 15509 15510 15511 15512 15513 15514 15515 15516 15517 15518 15519 15520 15521 15522 15523 15524 15525 15526 15527 15528 15529 15530 15531 15532 15533 15534 15535 15536 15537 15538 15539 15540 15541 15542 15543 15544 15545 15546 15547 15548 15549 15550 15551 15552 15553 15554 15555 15556 15557 15558 15559 15560 15561 15562 15563 15564 15565 15566 15567 15568 15569 15570 15571 15572 15573 15574 15575 15576 15577 15578 15579 15580 15581 15582 15583 15584 15585 15586 15587 15588 15589 15590 15591 15592 15593 15594 15595 15596 15597 15598 15599 15600 15601 15602 15603 15604 15605 15606 15607 15608 15609 15610 15611 15612 15613 15614 15615 15616 15617 15618 15619 15620 15621 15622 15623 15624 15625 15626 15627 15628 15629 15630 15631 15632 15633 15634 15635 15636 15637 15638 15639 15640 15641 15642 15643 15644 15645 15646 15647 15648 15649 15650 15651 15652 15653 15654 15655 15656 15657 15658 15659 15660 15661 15662 15663 15664 15665 15666 15667 15668 15669 15670 15671 15672 15673 15674 15675 15676 15677 15678 15679 15680 15681 15682 15683 15684 15685 15686 15687 15688 15689 15690 15691 15692 15693 15694 15695 15696 15697 15698 15699 15700 15701 15702 15703 15704 15705 15706 15707 15708 15709 15710 15711 15712 15713 15714 15715 15716 15717 15718 15719 15720 15721 15722 15723 15724 15725 15726 15727 15728 15729 15730 15731 15732 15733 15734 15735 15736 15737 15738 15739 15740 15741 15742 15743 15744 15745 15746 15747 15748 15749 15750 15751 15752 15753 15754 15755 15756 15757 15758 15759 15760 15761 15762 15763 15764 15765 15766 15767 15768 15769 15770 15771 15772 15773 15774 15775 15776 15777 15778 15779 15780 15781 15782 15783 15784 15785 15786 15787 15788 15789 15790 15791 15792 15793 15794 15795 15796 15797 15798 15799 15800 15801 15802 15803 15804 15805 15806 15807 15808 15809 15810 15811 15812 15813 15814 15815 15816 15817 15818 15819 15820 15821 15822 15823 15824 15825 15826 15827 15828 15829 15830 15831 15832 15833 15834 15835 15836 15837 15838 15839 15840 15841 15842 15843 15844 15845 15846 15847 15848 15849 15850 15851 15852 15853 15854 15855 15856 15857 15858 15859 15860 15861 15862 15863 15864 15865 15866 15867 15868 15869 15870 15871 15872 15873 15874 15875 15876 15877 15878 15879 15880 15881 15882 15883 15884 15885 15886 15887 15888 15889 15890 15891 15892 15893 15894 15895 15896 15897 15898 15899 15900 15901 15902 15903 15904 15905 15906 15907 15908 15909 15910 15911 15912 15913 15914 15915 15916 15917 15918 15919 15920 15921 15922 15923 15924 15925 15926 15927 15928 15929 15930 15931 15932 15933 15934 15935 15936 15937 15938 15939 15940 15941 15942 15943 15944 15945 15946 15947 15948 15949 15950 15951 15952 15953 15954 15955 15956 15957 15958 15959 15960 15961 15962 15963 15964 15965 15966 15967 15968 15969 15970 15971 15972 15973 15974 15975 15976 15977 15978 15979 15980 15981 15982 15983 15984 15985 15986 15987 15988 15989 15990 15991 15992 15993 15994 15995 15996 15997 15998 15999 16000 16001 16002 16003 16004 16005 16006 16007 16008 16009 16010 16011 16012 16013 16014 16015 16016 16017 16018 16019 16020 16021 16022 16023 16024 16025 16026 16027 16028 16029 16030 16031 16032 16033 16034 16035 16036 16037 16038 16039 16040 16041 16042 16043 16044 16045 16046 16047 16048 16049 16050 16051 16052 16053 16054 16055 16056 16057 16058 16059 16060 16061 16062 16063 16064 16065 16066 16067 16068 16069 16070 16071 16072 16073 16074 16075 16076 16077 16078 16079 16080 16081 16082 16083 16084 16085 16086 16087 16088 16089 16090 16091 16092 16093 16094 16095 16096 16097 16098 16099 16100 16101 16102 16103 16104 16105 16106 16107 16108 16109 16110 16111 16112 16113 16114 16115 16116 16117 16118 16119 16120 16121 16122 16123 16124 16125 16126 16127 16128 16129 16130 16131 16132 16133 16134 16135 16136 16137 16138 16139 16140 16141 16142 16143 16144 16145 16146 16147 16148 16149 16150 16151 16152 16153 16154 16155 16156 16157 16158 16159 16160 16161 16162 16163 16164 16165 16166 16167 16168 16169 16170 16171 16172 16173 16174 16175 16176 16177 16178 16179 16180 16181 16182 16183 16184 16185 16186 16187 16188 16189 16190 16191 16192 16193 16194 16195 16196 16197 16198 16199 16200 16201 16202 16203 16204 16205 16206 16207 16208 16209 16210 16211 16212 16213 16214 16215 16216 16217 16218 16219 16220 16221 16222 16223 16224 16225 16226 16227 16228 16229 16230 16231 16232 16233 16234 16235 16236 16237 16238 16239 16240 16241 16242 16243 16244 16245 16246 16247 16248 16249 16250 16251 16252 16253 16254 16255 16256 16257 16258 16259 16260 16261 16262 16263 16264 16265 16266 16267 16268 16269 16270 16271 16272 16273 16274 16275 16276 16277 16278 16279 16280 16281 16282 16283 16284 16285 16286 16287 16288 16289 16290 16291 16292 16293 16294 16295 16296 16297 16298 16299 16300 16301 16302 16303 16304 16305 16306 16307 16308 16309 16310 16311 16312 16313 16314 16315 16316 16317 16318 16319 16320 16321 16322 16323 16324 16325 16326 16327 16328 16329 16330 16331 16332 16333 16334 16335 16336 16337 16338 16339 16340 16341 16342 16343 16344 16345 16346 16347 16348 16349 16350 16351 16352 16353 16354 16355 16356 16357 16358 16359 16360 16361 16362 16363 16364 16365 16366 16367 16368 16369 16370 16371 16372 16373 16374 16375 16376 16377 16378 16379 16380 16381 16382 16383 16384 16385 16386 16387 16388 16389 16390 16391 16392 16393 16394 16395 16396 16397 16398 16399 16400 16401 16402 16403 16404 16405 16406 16407 16408 16409 16410 16411 16412 16413 16414 16415 16416 16417 16418 16419 16420 16421 16422 16423 16424 16425 16426 16427 16428 16429 16430 16431 16432 16433 16434 16435 16436 16437 16438 16439 16440 16441 16442 16443 16444 16445 16446 16447 16448 16449 16450 16451 16452 16453 16454 16455 16456 16457 16458 16459 16460 16461 16462 16463 16464 16465 16466 16467 16468 16469 16470 16471 16472 16473 16474 16475 16476 16477 16478 16479 16480 16481 16482 16483 16484 16485 16486 16487 16488 16489 16490 16491 16492 16493 16494 16495 16496 16497 16498 16499 16500 16501 16502 16503 16504 16505 16506 16507 16508 16509 16510 16511 16512 16513 16514 16515 16516 16517 16518 16519 16520 16521 16522 16523 16524 16525 16526 16527 16528 16529 16530 16531 16532 16533 16534 16535 16536 16537 16538 16539 16540 16541 16542 16543 16544 16545 16546 16547 16548 16549 16550 16551 16552 16553 16554 16555 16556 16557 16558 16559 16560 16561 16562 16563 16564 16565 16566 16567 16568 16569 16570 16571 16572 16573 16574 16575 16576 16577 16578 16579 16580 16581 16582 16583 16584 16585 16586 16587 16588 16589 16590 16591 16592 16593 16594 16595 16596 16597 16598 16599 16600 16601 16602 16603 16604 16605 16606 16607 16608 16609 16610 16611 16612 16613 16614 16615 16616 16617 16618 16619 16620 16621 16622 16623 16624 16625 16626 16627 16628 16629 16630 16631 16632 16633 16634 16635 16636 16637 16638 16639 16640 16641 16642 16643 16644 16645 16646 16647 16648 16649 16650 16651 16652 16653 16654 16655 16656 16657 16658 16659 16660 16661 16662 16663 16664 16665 16666 16667 16668 16669 16670 16671 16672 16673 16674 16675 16676 16677 16678 16679 16680 16681 16682 16683 16684 16685 16686 16687 16688 16689 16690 16691 16692 16693 16694 16695 16696 16697 16698 16699 16700 16701 16702 16703 16704 16705 16706 16707 16708 16709 16710 16711 16712 16713 16714 16715 16716 16717 16718 16719 16720 16721 16722 16723 16724 16725 16726 16727 16728 16729 16730 16731 16732 16733 16734 16735 16736 16737 16738 16739 16740 16741 16742 16743 16744 16745 16746 16747 16748 16749 16750 16751 16752 16753 16754 16755 16756 16757 16758 16759 16760 16761 16762 16763 16764 16765 16766 16767 16768 16769 16770 16771 16772 16773 16774 16775 16776 16777 16778 16779 16780 16781 16782 16783 16784 16785 16786 16787 16788 16789 16790 16791 16792 16793 16794 16795 16796 16797 16798 16799 16800 16801 16802 16803 16804 16805 16806 16807 16808 16809 16810 16811 16812 16813 16814 16815 16816 16817 16818 16819 16820 16821 16822 16823 16824 16825 16826 16827 16828 16829 16830 16831 16832 16833 16834 16835 16836 16837 16838 16839 16840 16841 16842 16843 16844 16845 16846 16847 16848 16849 16850 16851 16852 16853 16854 16855 16856 16857 16858 16859 16860 16861 16862 16863 16864 16865 16866 16867 16868 16869 16870 16871 16872 16873 16874 16875 16876 16877 16878 16879 16880 16881 16882 16883 16884 16885 16886 16887 16888 16889 16890 16891 16892 16893 16894 16895 16896 16897 16898 16899 16900 16901 16902 16903 16904 16905 16906 16907 16908 16909 16910 16911 16912 16913 16914 16915 16916 16917 16918 16919 16920 16921 16922 16923 16924 16925 16926 16927 16928 16929 16930 16931 16932 16933 16934 16935 16936 16937 16938 16939 16940 16941 16942 16943 16944 16945 16946 16947 16948 16949 16950 16951 16952 16953 16954 16955 16956 16957 16958 16959 16960 16961 16962 16963 16964 16965 16966 16967 16968 16969 16970 16971 16972 16973 16974 16975 16976 16977 16978 16979 16980 16981 16982 16983 16984 16985 16986 16987 16988 16989 16990 16991 16992 16993 16994 16995 16996 16997 16998 16999 17000 17001 17002 17003 17004 17005 17006 17007 17008 17009 17010 17011 17012 17013 17014 17015 17016 17017 17018 17019 17020 17021 17022 17023 17024 17025 17026 17027 17028 17029 17030 17031 17032 17033 17034 17035 17036 17037 17038 17039 17040 17041 17042 17043 17044 17045 17046 17047 17048 17049 17050 17051 17052 17053 17054 17055 17056 17057 17058 17059 17060 17061 17062 17063 17064 17065 17066 17067 17068 17069 17070 17071 17072 17073 17074 17075 17076 17077 17078 17079 17080 17081 17082 17083 17084 17085 17086 17087 17088 17089 17090 17091 17092 17093 17094 17095 17096 17097 17098 17099 17100 17101 17102 17103 17104 17105 17106 17107 17108 17109 17110 17111 17112 17113 17114 17115 17116 17117 17118 17119 17120 17121 17122 17123 17124 17125 17126 17127 17128 17129 17130 17131 17132 17133 17134 17135 17136 17137 17138 17139 17140 17141 17142 17143 17144 17145 17146 17147 17148 17149 17150 17151 17152 17153 17154 17155 17156 17157 17158 17159 17160 17161 17162 17163 17164 17165 17166 17167 17168 17169 17170 17171 17172 17173 17174 17175 17176 17177 17178 17179 17180 17181 17182 17183 17184 17185 17186 17187 17188 17189 17190 17191 17192 17193 17194 17195 17196 17197 17198 17199 17200 17201 17202 17203 17204 17205 17206 17207 17208 17209 17210 17211 17212 17213 17214 17215 17216 17217 17218 17219 17220 17221 17222 17223 17224 17225 17226 17227 17228 17229 17230 17231 17232 17233 17234 17235 17236 17237 17238 17239 17240 17241 17242 17243 17244 17245 17246 17247 17248 17249 17250 17251 17252 17253 17254 17255 17256 17257 17258 17259 17260 17261 17262 17263 17264 17265 17266 17267 17268 17269 17270 17271 17272 17273 17274 17275 17276 17277 17278 17279 17280 17281 17282 17283 17284 17285 17286 17287 17288 17289 17290 17291 17292 17293 17294 17295 17296 17297 17298 17299 17300 17301 17302 17303 17304 17305 17306 17307 17308 17309 17310 17311 17312 17313 17314 17315 17316 17317 17318 17319 17320 17321 17322 17323 17324 17325 17326 17327 17328 17329 17330 17331 17332 17333 17334 17335 17336 17337 17338 17339 17340 17341 17342 17343 17344 17345 17346 17347 17348 17349 17350 17351 17352 17353 17354 17355 17356 17357 17358 17359 17360 17361 17362 17363 17364 17365 17366 17367 17368 17369 17370 17371 17372 17373 17374 17375 17376 17377 17378 17379 17380 17381 17382 17383 17384 17385 17386 17387 17388 17389 17390 17391 17392 17393 17394 17395 17396 17397 17398 17399 17400 17401 17402 17403 17404 17405 17406 17407 17408 17409 17410 17411 17412 17413 17414 17415 17416 17417 17418 17419 17420 17421 17422 17423 17424 17425 17426 17427 17428 17429 17430 17431 17432 17433 17434 17435 17436 17437 17438 17439 17440 17441 17442 17443 17444 17445 17446 17447 17448 17449 17450 17451 17452 17453 17454 17455 17456 17457 17458 17459 17460 17461 17462 17463 17464 17465 17466 17467 17468 17469 17470 17471 17472 17473 17474 17475 17476 17477 17478 17479 17480 17481 17482 17483 17484 17485 17486 17487 17488 17489 17490 17491 17492 17493 17494 17495 17496 17497 17498 17499 17500 17501 17502 17503 17504 17505 17506 17507 17508 17509 17510 17511 17512 17513 17514 17515 17516 17517 17518 17519 17520 17521 17522 17523 17524 17525 17526 17527 17528 17529 17530 17531 17532 17533 17534 17535 17536 17537 17538 17539 17540 17541 17542 17543 17544 17545 17546 17547 17548 17549 17550 17551 17552 17553 17554 17555 17556 17557 17558 17559 17560 17561 17562 17563 17564 17565 17566 17567 17568 17569 17570 17571 17572 17573 17574 17575 17576 17577 17578 17579 17580 17581 17582 17583 17584 17585 17586 17587 17588 17589 17590 17591 17592 17593 17594 17595 17596 17597 17598 17599 17600 17601 17602 17603 17604 17605 17606 17607 17608 17609 17610 17611 17612 17613 17614 17615 17616 17617 17618 17619 17620 17621 17622 17623 17624 17625 17626 17627 17628 17629 17630 17631 17632 17633 17634 17635 17636 17637 17638 17639 17640 17641 17642 17643 17644 17645 17646 17647 17648 17649 17650 17651 17652 17653 17654 17655 17656 17657 17658 17659 17660 17661 17662 17663 17664 17665 17666 17667 17668 17669 17670 17671 17672 17673 17674 17675 17676 17677 17678 17679 17680 17681 17682 17683 17684 17685 17686 17687 17688 17689 17690 17691 17692 17693 17694 17695 17696 17697 17698 17699 17700 17701 17702 17703 17704 17705 17706 17707 17708 17709 17710 17711 17712 17713 17714 17715 17716 17717 17718 17719 17720 17721 17722 17723 17724 17725 17726 17727 17728 17729 17730 17731 17732 17733 17734 17735 17736 17737 17738 17739 17740 17741 17742 17743 17744 17745 17746 17747 17748 17749 17750 17751 17752 17753 17754 17755 17756 17757 17758 17759 17760 17761 17762 17763 17764 17765 17766 17767 17768 17769 17770 17771 17772 17773 17774 17775 17776 17777 17778 17779 17780 17781 17782 17783 17784 17785 17786 17787 17788 17789 17790 17791 17792 17793 17794 17795 17796 17797 17798 17799 17800 17801 17802 17803 17804 17805
|
<pre>Internet Engineering Task Force (IETF) H. Schulzrinne
Request for Comments: 7826 Columbia University
Obsoletes: <a href="./rfc2326">2326</a> A. Rao
Category: Standards Track Cisco
ISSN: 2070-1721 R. Lanphier
M. Westerlund
Ericsson
M. Stiemerling, Ed.
University of Applied Sciences Darmstadt
December 2016
<span class="h1">Real-Time Streaming Protocol Version 2.0</span>
Abstract
This memorandum defines the Real-Time Streaming Protocol (RTSP)
version 2.0, which obsoletes RTSP version 1.0 defined in <a href="./rfc2326">RFC 2326</a>.
RTSP is an application-layer protocol for the setup and control of
the delivery of data with real-time properties. RTSP provides an
extensible framework to enable controlled, on-demand delivery of
real-time data, such as audio and video. Sources of data can include
both live data feeds and stored clips. This protocol is intended to
control multiple data delivery sessions; provide a means for choosing
delivery channels such as UDP, multicast UDP, and TCP; and provide a
means for choosing delivery mechanisms based upon RTP (<a href="./rfc3550">RFC 3550</a>).
Status of This Memo
This is an Internet Standards Track document.
This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Further information on
Internet Standards is available in <a href="./rfc7841#section-2">Section 2 of RFC 7841</a>.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
<a href="http://www.rfc-editor.org/info/rfc7826">http://www.rfc-editor.org/info/rfc7826</a>.
<span class="grey">Schulzrinne, et al. Standards Track [Page 1]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-2" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
Copyright Notice
Copyright (c) 2016 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to <a href="https://www.rfc-editor.org/bcp/bcp78">BCP 78</a> and the IETF Trust's Legal
Provisions Relating to IETF Documents
(<a href="http://trustee.ietf.org/license-info">http://trustee.ietf.org/license-info</a>) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
This document may contain material from IETF Documents or IETF
Contributions published or made publicly available before November
10, 2008. The person(s) controlling the copyright in some of this
material may not have granted the IETF Trust the right to allow
modifications of such material outside the IETF Standards Process.
Without obtaining an adequate license from the person(s) controlling
the copyright in such materials, this document may not be modified
outside the IETF Standards Process, and derivative works of it may
not be created outside the IETF Standards Process, except to format
it for publication as an RFC or to translate it into languages other
than English.
Table of Contents
<a href="#section-1">1</a>. Introduction ...................................................<a href="#page-10">10</a>
<a href="#section-2">2</a>. Protocol Overview ..............................................<a href="#page-11">11</a>
<a href="#section-2.1">2.1</a>. Presentation Description ..................................<a href="#page-12">12</a>
<a href="#section-2.2">2.2</a>. Session Establishment .....................................<a href="#page-12">12</a>
<a href="#section-2.3">2.3</a>. Media Delivery Control ....................................<a href="#page-14">14</a>
<a href="#section-2.4">2.4</a>. Session Parameter Manipulations ...........................<a href="#page-15">15</a>
<a href="#section-2.5">2.5</a>. Media Delivery ............................................<a href="#page-16">16</a>
<a href="#section-2.5.1">2.5.1</a>. Media Delivery Manipulations .......................<a href="#page-16">16</a>
<a href="#section-2.6">2.6</a>. Session Maintenance and Termination .......................<a href="#page-19">19</a>
<a href="#section-2.7">2.7</a>. Extending RTSP ............................................<a href="#page-20">20</a>
<a href="#section-3">3</a>. Document Conventions ...........................................<a href="#page-21">21</a>
<a href="#section-3.1">3.1</a>. Notational Conventions ....................................<a href="#page-21">21</a>
<a href="#section-3.2">3.2</a>. Terminology ...............................................<a href="#page-21">21</a>
<a href="#section-4">4</a>. Protocol Parameters ............................................<a href="#page-25">25</a>
<a href="#section-4.1">4.1</a>. RTSP Version ..............................................<a href="#page-25">25</a>
<a href="#section-4.2">4.2</a>. RTSP IRI and URI ..........................................<a href="#page-25">25</a>
<a href="#section-4.3">4.3</a>. Session Identifiers .......................................<a href="#page-28">28</a>
<span class="grey">Schulzrinne, et al. Standards Track [Page 2]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-3" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
<a href="#section-4.4">4.4</a>. Media-Time Formats ........................................<a href="#page-28">28</a>
<a href="#section-4.4.1">4.4.1</a>. SMPTE-Relative Timestamps ..........................<a href="#page-28">28</a>
<a href="#section-4.4.2">4.4.2</a>. Normal Play Time ...................................<a href="#page-29">29</a>
<a href="#section-4.4.3">4.4.3</a>. Absolute Time ......................................<a href="#page-30">30</a>
<a href="#section-4.5">4.5</a>. Feature Tags ..............................................<a href="#page-31">31</a>
<a href="#section-4.6">4.6</a>. Message Body Tags .........................................<a href="#page-32">32</a>
<a href="#section-4.7">4.7</a>. Media Properties ..........................................<a href="#page-32">32</a>
<a href="#section-4.7.1">4.7.1</a>. Random Access and Seeking ..........................<a href="#page-33">33</a>
<a href="#section-4.7.2">4.7.2</a>. Retention ..........................................<a href="#page-34">34</a>
<a href="#section-4.7.3">4.7.3</a>. Content Modifications ..............................<a href="#page-34">34</a>
<a href="#section-4.7.4">4.7.4</a>. Supported Scale Factors ............................<a href="#page-34">34</a>
<a href="#section-4.7.5">4.7.5</a>. Mapping to the Attributes ..........................<a href="#page-35">35</a>
<a href="#section-5">5</a>. RTSP Message ...................................................<a href="#page-35">35</a>
<a href="#section-5.1">5.1</a>. Message Types .............................................<a href="#page-36">36</a>
<a href="#section-5.2">5.2</a>. Message Headers ...........................................<a href="#page-36">36</a>
<a href="#section-5.3">5.3</a>. Message Body ..............................................<a href="#page-37">37</a>
<a href="#section-5.4">5.4</a>. Message Length ............................................<a href="#page-37">37</a>
<a href="#section-6">6</a>. General-Header Fields ..........................................<a href="#page-37">37</a>
<a href="#section-7">7</a>. Request ........................................................<a href="#page-39">39</a>
<a href="#section-7.1">7.1</a>. Request Line ..............................................<a href="#page-40">40</a>
<a href="#section-7.2">7.2</a>. Request-Header Fields .....................................<a href="#page-42">42</a>
<a href="#section-8">8</a>. Response .......................................................<a href="#page-43">43</a>
<a href="#section-8.1">8.1</a>. Status-Line ...............................................<a href="#page-43">43</a>
<a href="#section-8.1.1">8.1.1</a>. Status Code and Reason Phrase ......................<a href="#page-43">43</a>
<a href="#section-8.2">8.2</a>. Response Headers ..........................................<a href="#page-47">47</a>
<a href="#section-9">9</a>. Message Body ...................................................<a href="#page-47">47</a>
<a href="#section-9.1">9.1</a>. Message Body Header Fields ................................<a href="#page-48">48</a>
<a href="#section-9.2">9.2</a>. Message Body ..............................................<a href="#page-49">49</a>
<a href="#section-9.3">9.3</a>. Message Body Format Negotiation ...........................<a href="#page-49">49</a>
<a href="#section-10">10</a>. Connections ...................................................<a href="#page-50">50</a>
<a href="#section-10.1">10.1</a>. Reliability and Acknowledgements .........................<a href="#page-50">50</a>
<a href="#section-10.2">10.2</a>. Using Connections ........................................<a href="#page-51">51</a>
<a href="#section-10.3">10.3</a>. Closing Connections ......................................<a href="#page-54">54</a>
<a href="#section-10.4">10.4</a>. Timing Out Connections and RTSP Messages .................<a href="#page-56">56</a>
<a href="#section-10.5">10.5</a>. Showing Liveness .........................................<a href="#page-57">57</a>
<a href="#section-10.6">10.6</a>. Use of IPv6 ..............................................<a href="#page-58">58</a>
<a href="#section-10.7">10.7</a>. Overload Control .........................................<a href="#page-58">58</a>
<a href="#section-11">11</a>. Capability Handling ...........................................<a href="#page-60">60</a>
<a href="#section-11.1">11.1</a>. Feature Tag: play.basic ..................................<a href="#page-62">62</a>
<a href="#section-12">12</a>. Pipelining Support ............................................<a href="#page-62">62</a>
<a href="#section-13">13</a>. Method Definitions ............................................<a href="#page-63">63</a>
<a href="#section-13.1">13.1</a>. OPTIONS ..................................................<a href="#page-65">65</a>
<a href="#section-13.2">13.2</a>. DESCRIBE .................................................<a href="#page-66">66</a>
<a href="#section-13.3">13.3</a>. SETUP ....................................................<a href="#page-68">68</a>
<a href="#section-13.3.1">13.3.1</a>. Changing Transport Parameters .....................<a href="#page-71">71</a>
<a href="#section-13.4">13.4</a>. PLAY .....................................................<a href="#page-72">72</a>
<a href="#section-13.4.1">13.4.1</a>. General Usage .....................................<a href="#page-72">72</a>
<a href="#section-13.4.2">13.4.2</a>. Aggregated Sessions ...............................<a href="#page-77">77</a>
<span class="grey">Schulzrinne, et al. Standards Track [Page 3]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-4" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
<a href="#section-13.4.3">13.4.3</a>. Updating Current PLAY Requests ....................<a href="#page-78">78</a>
<a href="#section-13.4.4">13.4.4</a>. Playing On-Demand Media ...........................<a href="#page-81">81</a>
<a href="#section-13.4.5">13.4.5</a>. Playing Dynamic On-Demand Media ...................<a href="#page-81">81</a>
<a href="#section-13.4.6">13.4.6</a>. Playing Live Media ................................<a href="#page-81">81</a>
<a href="#section-13.4.7">13.4.7</a>. Playing Live with Recording .......................<a href="#page-82">82</a>
<a href="#section-13.4.8">13.4.8</a>. Playing Live with Time-Shift ......................<a href="#page-83">83</a>
<a href="#section-13.5">13.5</a>. PLAY_NOTIFY ..............................................<a href="#page-83">83</a>
<a href="#section-13.5.1">13.5.1</a>. End-of-Stream .....................................<a href="#page-84">84</a>
<a href="#section-13.5.2">13.5.2</a>. Media-Properties-Update ...........................<a href="#page-86">86</a>
<a href="#section-13.5.3">13.5.3</a>. Scale-Change ......................................<a href="#page-87">87</a>
<a href="#section-13.6">13.6</a>. PAUSE ....................................................<a href="#page-89">89</a>
<a href="#section-13.7">13.7</a>. TEARDOWN .................................................<a href="#page-92">92</a>
<a href="#section-13.7.1">13.7.1</a>. Client to Server ..................................<a href="#page-92">92</a>
<a href="#section-13.7.2">13.7.2</a>. Server to Client ..................................<a href="#page-93">93</a>
<a href="#section-13.8">13.8</a>. GET_PARAMETER ............................................<a href="#page-94">94</a>
<a href="#section-13.9">13.9</a>. SET_PARAMETER ............................................<a href="#page-96">96</a>
<a href="#section-13.10">13.10</a>. REDIRECT ................................................<a href="#page-98">98</a>
<a href="#section-14">14</a>. Embedded (Interleaved) Binary Data ...........................<a href="#page-101">101</a>
<a href="#section-15">15</a>. Proxies ......................................................<a href="#page-103">103</a>
<a href="#section-15.1">15.1</a>. Proxies and Protocol Extensions .........................<a href="#page-104">104</a>
<a href="#section-15.2">15.2</a>. Multiplexing and Demultiplexing of Messages .............<a href="#page-105">105</a>
<a href="#section-16">16</a>. Caching ......................................................<a href="#page-106">106</a>
<a href="#section-16.1">16.1</a>. Validation Model ........................................<a href="#page-107">107</a>
<a href="#section-16.1.1">16.1.1</a>. Last-Modified Dates ..............................<a href="#page-108">108</a>
<a href="#section-16.1.2">16.1.2</a>. Message Body Tag Cache Validators ................<a href="#page-108">108</a>
<a href="#section-16.1.3">16.1.3</a>. Weak and Strong Validators .......................<a href="#page-108">108</a>
16.1.4. Rules for When to Use Message Body Tags
and Last-Modified Dates ..........................<a href="#page-110">110</a>
<a href="#section-16.1.5">16.1.5</a>. Non-validating Conditionals ......................<a href="#page-112">112</a>
<a href="#section-16.2">16.2</a>. Invalidation after Updates or Deletions .................<a href="#page-112">112</a>
<a href="#section-17">17</a>. Status Code Definitions ......................................<a href="#page-113">113</a>
<a href="#section-17.1">17.1</a>. Informational 1xx .......................................<a href="#page-113">113</a>
<a href="#section-17.1.1">17.1.1</a>. 100 Continue .....................................<a href="#page-113">113</a>
<a href="#section-17.2">17.2</a>. Success 2xx .............................................<a href="#page-113">113</a>
<a href="#section-17.2.1">17.2.1</a>. 200 OK ...........................................<a href="#page-113">113</a>
<a href="#section-17.3">17.3</a>. Redirection 3xx .........................................<a href="#page-113">113</a>
<a href="#section-17.3.1">17.3.1</a>. 300 ..............................................<a href="#page-114">114</a>
<a href="#section-17.3.2">17.3.2</a>. 301 Moved Permanently ............................<a href="#page-114">114</a>
<a href="#section-17.3.3">17.3.3</a>. 302 Found ........................................<a href="#page-114">114</a>
<a href="#section-17.3.4">17.3.4</a>. 303 See Other ....................................<a href="#page-115">115</a>
<a href="#section-17.3.5">17.3.5</a>. 304 Not Modified .................................<a href="#page-115">115</a>
<a href="#section-17.3.6">17.3.6</a>. 305 Use Proxy ....................................<a href="#page-115">115</a>
<a href="#section-17.4">17.4</a>. Client Error 4xx ........................................<a href="#page-116">116</a>
<a href="#section-17.4.1">17.4.1</a>. 400 Bad Request ..................................<a href="#page-116">116</a>
<a href="#section-17.4.2">17.4.2</a>. 401 Unauthorized .................................<a href="#page-116">116</a>
<a href="#section-17.4.3">17.4.3</a>. 402 Payment Required .............................<a href="#page-116">116</a>
<a href="#section-17.4.4">17.4.4</a>. 403 Forbidden ....................................<a href="#page-116">116</a>
<a href="#section-17.4.5">17.4.5</a>. 404 Not Found ....................................<a href="#page-116">116</a>
<span class="grey">Schulzrinne, et al. Standards Track [Page 4]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-5" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
<a href="#section-17.4.6">17.4.6</a>. 405 Method Not Allowed ...........................<a href="#page-117">117</a>
<a href="#section-17.4.7">17.4.7</a>. 406 Not Acceptable ...............................<a href="#page-117">117</a>
<a href="#section-17.4.8">17.4.8</a>. 407 Proxy Authentication Required ................<a href="#page-117">117</a>
<a href="#section-17.4.9">17.4.9</a>. 408 Request Timeout ..............................<a href="#page-117">117</a>
<a href="#section-17.4.10">17.4.10</a>. 410 Gone ........................................<a href="#page-118">118</a>
<a href="#section-17.4.11">17.4.11</a>. 412 Precondition Failed .........................<a href="#page-118">118</a>
<a href="#section-17.4.12">17.4.12</a>. 413 Request Message Body Too Large ..............<a href="#page-118">118</a>
<a href="#section-17.4.13">17.4.13</a>. 414 Request-URI Too Long ........................<a href="#page-118">118</a>
<a href="#section-17.4.14">17.4.14</a>. 415 Unsupported Media Type ......................<a href="#page-119">119</a>
<a href="#section-17.4.15">17.4.15</a>. 451 Parameter Not Understood ....................<a href="#page-119">119</a>
<a href="#section-17.4.16">17.4.16</a>. 452 Illegal Conference Identifier ...............<a href="#page-119">119</a>
<a href="#section-17.4.17">17.4.17</a>. 453 Not Enough Bandwidth ........................<a href="#page-119">119</a>
<a href="#section-17.4.18">17.4.18</a>. 454 Session Not Found ...........................<a href="#page-119">119</a>
<a href="#section-17.4.19">17.4.19</a>. 455 Method Not Valid in This State ..............<a href="#page-119">119</a>
<a href="#section-17.4.20">17.4.20</a>. 456 Header Field Not Valid for Resource .........<a href="#page-119">119</a>
<a href="#section-17.4.21">17.4.21</a>. 457 Invalid Range ...............................<a href="#page-120">120</a>
<a href="#section-17.4.22">17.4.22</a>. 458 Parameter Is Read-Only ......................<a href="#page-120">120</a>
<a href="#section-17.4.23">17.4.23</a>. 459 Aggregate Operation Not Allowed .............<a href="#page-120">120</a>
<a href="#section-17.4.24">17.4.24</a>. 460 Only Aggregate Operation Allowed ............<a href="#page-120">120</a>
<a href="#section-17.4.25">17.4.25</a>. 461 Unsupported Transport .......................<a href="#page-120">120</a>
<a href="#section-17.4.26">17.4.26</a>. 462 Destination Unreachable .....................<a href="#page-120">120</a>
<a href="#section-17.4.27">17.4.27</a>. 463 Destination Prohibited ......................<a href="#page-120">120</a>
<a href="#section-17.4.28">17.4.28</a>. 464 Data Transport Not Ready Yet ................<a href="#page-121">121</a>
<a href="#section-17.4.29">17.4.29</a>. 465 Notification Reason Unknown .................<a href="#page-121">121</a>
<a href="#section-17.4.30">17.4.30</a>. 466 Key Management Error ........................<a href="#page-121">121</a>
<a href="#section-17.4.31">17.4.31</a>. 470 Connection Authorization Required ...........<a href="#page-121">121</a>
<a href="#section-17.4.32">17.4.32</a>. 471 Connection Credentials Not Accepted .........<a href="#page-121">121</a>
<a href="#section-17.4.33">17.4.33</a>. 472 Failure to Establish Secure Connection ......<a href="#page-121">121</a>
<a href="#section-17.5">17.5</a>. Server Error 5xx ........................................<a href="#page-122">122</a>
<a href="#section-17.5.1">17.5.1</a>. 500 Internal Server Error ........................<a href="#page-122">122</a>
<a href="#section-17.5.2">17.5.2</a>. 501 Not Implemented ..............................<a href="#page-122">122</a>
<a href="#section-17.5.3">17.5.3</a>. 502 Bad Gateway ..................................<a href="#page-122">122</a>
<a href="#section-17.5.4">17.5.4</a>. 503 Service Unavailable ..........................<a href="#page-122">122</a>
<a href="#section-17.5.5">17.5.5</a>. 504 Gateway Timeout ..............................<a href="#page-123">123</a>
<a href="#section-17.5.6">17.5.6</a>. 505 RTSP Version Not Supported ...................<a href="#page-123">123</a>
<a href="#section-17.5.7">17.5.7</a>. 551 Option Not Supported .........................<a href="#page-123">123</a>
<a href="#section-17.5.8">17.5.8</a>. 553 Proxy Unavailable ............................<a href="#page-123">123</a>
<a href="#section-18">18</a>. Header Field Definitions .....................................<a href="#page-124">124</a>
<a href="#section-18.1">18.1</a>. Accept ..................................................<a href="#page-134">134</a>
<a href="#section-18.2">18.2</a>. Accept-Credentials ......................................<a href="#page-135">135</a>
<a href="#section-18.3">18.3</a>. Accept-Encoding .........................................<a href="#page-135">135</a>
<a href="#section-18.4">18.4</a>. Accept-Language .........................................<a href="#page-136">136</a>
<a href="#section-18.5">18.5</a>. Accept-Ranges ...........................................<a href="#page-137">137</a>
<a href="#section-18.6">18.6</a>. Allow ...................................................<a href="#page-138">138</a>
<a href="#section-18.7">18.7</a>. Authentication-Info .....................................<a href="#page-138">138</a>
<a href="#section-18.8">18.8</a>. Authorization ...........................................<a href="#page-138">138</a>
<a href="#section-18.9">18.9</a>. Bandwidth ...............................................<a href="#page-139">139</a>
<a href="#section-18.10">18.10</a>. Blocksize ..............................................<a href="#page-140">140</a>
<span class="grey">Schulzrinne, et al. Standards Track [Page 5]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-6" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
<a href="#section-18.11">18.11</a>. Cache-Control ..........................................<a href="#page-140">140</a>
<a href="#section-18.12">18.12</a>. Connection .............................................<a href="#page-143">143</a>
<a href="#section-18.13">18.13</a>. Connection-Credentials .................................<a href="#page-143">143</a>
<a href="#section-18.14">18.14</a>. Content-Base ...........................................<a href="#page-144">144</a>
<a href="#section-18.15">18.15</a>. Content-Encoding .......................................<a href="#page-145">145</a>
<a href="#section-18.16">18.16</a>. Content-Language .......................................<a href="#page-145">145</a>
<a href="#section-18.17">18.17</a>. Content-Length .........................................<a href="#page-146">146</a>
<a href="#section-18.18">18.18</a>. Content-Location .......................................<a href="#page-146">146</a>
<a href="#section-18.19">18.19</a>. Content-Type ...........................................<a href="#page-148">148</a>
<a href="#section-18.20">18.20</a>. CSeq ...................................................<a href="#page-148">148</a>
<a href="#section-18.21">18.21</a>. Date ...................................................<a href="#page-150">150</a>
<a href="#section-18.22">18.22</a>. Expires ................................................<a href="#page-151">151</a>
<a href="#section-18.23">18.23</a>. From ...................................................<a href="#page-151">151</a>
<a href="#section-18.24">18.24</a>. If-Match ...............................................<a href="#page-152">152</a>
<a href="#section-18.25">18.25</a>. If-Modified-Since ......................................<a href="#page-152">152</a>
<a href="#section-18.26">18.26</a>. If-None-Match ..........................................<a href="#page-153">153</a>
<a href="#section-18.27">18.27</a>. Last-Modified ..........................................<a href="#page-154">154</a>
<a href="#section-18.28">18.28</a>. Location ...............................................<a href="#page-154">154</a>
<a href="#section-18.29">18.29</a>. Media-Properties .......................................<a href="#page-154">154</a>
<a href="#section-18.30">18.30</a>. Media-Range ............................................<a href="#page-156">156</a>
<a href="#section-18.31">18.31</a>. MTag ...................................................<a href="#page-157">157</a>
<a href="#section-18.32">18.32</a>. Notify-Reason ..........................................<a href="#page-158">158</a>
<a href="#section-18.33">18.33</a>. Pipelined-Requests .....................................<a href="#page-158">158</a>
<a href="#section-18.34">18.34</a>. Proxy-Authenticate .....................................<a href="#page-159">159</a>
<a href="#section-18.35">18.35</a>. Proxy-Authentication-Info ..............................<a href="#page-159">159</a>
<a href="#section-18.36">18.36</a>. Proxy-Authorization ....................................<a href="#page-159">159</a>
<a href="#section-18.37">18.37</a>. Proxy-Require ..........................................<a href="#page-160">160</a>
<a href="#section-18.38">18.38</a>. Proxy-Supported ........................................<a href="#page-160">160</a>
<a href="#section-18.39">18.39</a>. Public .................................................<a href="#page-161">161</a>
<a href="#section-18.40">18.40</a>. Range ..................................................<a href="#page-162">162</a>
<a href="#section-18.41">18.41</a>. Referrer ...............................................<a href="#page-164">164</a>
<a href="#section-18.42">18.42</a>. Request-Status .........................................<a href="#page-164">164</a>
<a href="#section-18.43">18.43</a>. Require ................................................<a href="#page-165">165</a>
<a href="#section-18.44">18.44</a>. Retry-After ............................................<a href="#page-166">166</a>
<a href="#section-18.45">18.45</a>. RTP-Info ...............................................<a href="#page-167">167</a>
<a href="#section-18.46">18.46</a>. Scale ..................................................<a href="#page-169">169</a>
<a href="#section-18.47">18.47</a>. Seek-Style .............................................<a href="#page-170">170</a>
<a href="#section-18.48">18.48</a>. Server .................................................<a href="#page-171">171</a>
<a href="#section-18.49">18.49</a>. Session ................................................<a href="#page-172">172</a>
<a href="#section-18.50">18.50</a>. Speed ..................................................<a href="#page-173">173</a>
<a href="#section-18.51">18.51</a>. Supported ..............................................<a href="#page-174">174</a>
<a href="#section-18.52">18.52</a>. Terminate-Reason .......................................<a href="#page-175">175</a>
<a href="#section-18.53">18.53</a>. Timestamp ..............................................<a href="#page-175">175</a>
<a href="#section-18.54">18.54</a>. Transport ..............................................<a href="#page-176">176</a>
<a href="#section-18.55">18.55</a>. Unsupported ............................................<a href="#page-183">183</a>
<a href="#section-18.56">18.56</a>. User-Agent .............................................<a href="#page-184">184</a>
<a href="#section-18.57">18.57</a>. Via ....................................................<a href="#page-184">184</a>
<a href="#section-18.58">18.58</a>. WWW-Authenticate .......................................<a href="#page-185">185</a>
<span class="grey">Schulzrinne, et al. Standards Track [Page 6]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-7" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
<a href="#section-19">19</a>. Security Framework ...........................................<a href="#page-185">185</a>
<a href="#section-19.1">19.1</a>. RTSP and HTTP Authentication ............................<a href="#page-185">185</a>
<a href="#section-19.1.1">19.1.1</a>. Digest Authentication ............................<a href="#page-186">186</a>
<a href="#section-19.2">19.2</a>. RTSP over TLS ...........................................<a href="#page-187">187</a>
<a href="#section-19.3">19.3</a>. Security and Proxies ....................................<a href="#page-188">188</a>
<a href="#section-19.3.1">19.3.1</a>. Accept-Credentials ...............................<a href="#page-189">189</a>
<a href="#section-19.3.2">19.3.2</a>. User-Approved TLS Procedure ......................<a href="#page-190">190</a>
<a href="#section-20">20</a>. Syntax .......................................................<a href="#page-192">192</a>
<a href="#section-20.1">20.1</a>. Base Syntax .............................................<a href="#page-193">193</a>
<a href="#section-20.2">20.2</a>. RTSP Protocol Definition ................................<a href="#page-195">195</a>
<a href="#section-20.2.1">20.2.1</a>. Generic Protocol Elements ........................<a href="#page-195">195</a>
<a href="#section-20.2.2">20.2.2</a>. Message Syntax ...................................<a href="#page-198">198</a>
<a href="#section-20.2.3">20.2.3</a>. Header Syntax ....................................<a href="#page-201">201</a>
<a href="#section-20.3">20.3</a>. SDP Extension Syntax ....................................<a href="#page-209">209</a>
<a href="#section-21">21</a>. Security Considerations ......................................<a href="#page-209">209</a>
<a href="#section-21.1">21.1</a>. Signaling Protocol Threats ..............................<a href="#page-210">210</a>
<a href="#section-21.2">21.2</a>. Media Stream Delivery Threats ...........................<a href="#page-213">213</a>
<a href="#section-21.2.1">21.2.1</a>. Remote DoS Attack ................................<a href="#page-215">215</a>
<a href="#section-21.2.2">21.2.2</a>. RTP Security Analysis ............................<a href="#page-216">216</a>
<a href="#section-22">22</a>. IANA Considerations ..........................................<a href="#page-217">217</a>
<a href="#section-22.1">22.1</a>. Feature Tags ............................................<a href="#page-218">218</a>
<a href="#section-22.1.1">22.1.1</a>. Description ......................................<a href="#page-218">218</a>
<a href="#section-22.1.2">22.1.2</a>. Registering New Feature Tags with IANA ...........<a href="#page-218">218</a>
<a href="#section-22.1.3">22.1.3</a>. Registered Entries ...............................<a href="#page-219">219</a>
<a href="#section-22.2">22.2</a>. RTSP Methods ............................................<a href="#page-219">219</a>
<a href="#section-22.2.1">22.2.1</a>. Description ......................................<a href="#page-219">219</a>
<a href="#section-22.2.2">22.2.2</a>. Registering New Methods with IANA ................<a href="#page-219">219</a>
<a href="#section-22.2.3">22.2.3</a>. Registered Entries ...............................<a href="#page-220">220</a>
<a href="#section-22.3">22.3</a>. RTSP Status Codes .......................................<a href="#page-220">220</a>
<a href="#section-22.3.1">22.3.1</a>. Description ......................................<a href="#page-220">220</a>
<a href="#section-22.3.2">22.3.2</a>. Registering New Status Codes with IANA ...........<a href="#page-220">220</a>
<a href="#section-22.3.3">22.3.3</a>. Registered Entries ...............................<a href="#page-221">221</a>
<a href="#section-22.4">22.4</a>. RTSP Headers ............................................<a href="#page-221">221</a>
<a href="#section-22.4.1">22.4.1</a>. Description ......................................<a href="#page-221">221</a>
<a href="#section-22.4.2">22.4.2</a>. Registering New Headers with IANA ................<a href="#page-221">221</a>
<a href="#section-22.4.3">22.4.3</a>. Registered Entries ...............................<a href="#page-222">222</a>
<a href="#section-22.5">22.5</a>. Accept-Credentials ......................................<a href="#page-223">223</a>
<a href="#section-22.5.1">22.5.1</a>. Accept-Credentials Policies ......................<a href="#page-223">223</a>
<a href="#section-22.5.2">22.5.2</a>. Accept-Credentials Hash Algorithms ...............<a href="#page-224">224</a>
<a href="#section-22.6">22.6</a>. Cache-Control Cache Directive Extensions ................<a href="#page-224">224</a>
<a href="#section-22.7">22.7</a>. Media Properties ........................................<a href="#page-225">225</a>
<a href="#section-22.7.1">22.7.1</a>. Description ......................................<a href="#page-225">225</a>
<a href="#section-22.7.2">22.7.2</a>. Registration Rules ...............................<a href="#page-226">226</a>
<a href="#section-22.7.3">22.7.3</a>. Registered Values ................................<a href="#page-226">226</a>
<a href="#section-22.8">22.8</a>. Notify-Reason Values ....................................<a href="#page-226">226</a>
<a href="#section-22.8.1">22.8.1</a>. Description ......................................<a href="#page-226">226</a>
<a href="#section-22.8.2">22.8.2</a>. Registration Rules ...............................<a href="#page-226">226</a>
<a href="#section-22.8.3">22.8.3</a>. Registered Values ................................<a href="#page-227">227</a>
<span class="grey">Schulzrinne, et al. Standards Track [Page 7]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-8" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
<a href="#section-22.9">22.9</a>. Range Header Formats ....................................<a href="#page-227">227</a>
<a href="#section-22.9.1">22.9.1</a>. Description ......................................<a href="#page-227">227</a>
<a href="#section-22.9.2">22.9.2</a>. Registration Rules ...............................<a href="#page-227">227</a>
<a href="#section-22.9.3">22.9.3</a>. Registered Values ................................<a href="#page-228">228</a>
<a href="#section-22.10">22.10</a>. Terminate-Reason Header ................................<a href="#page-228">228</a>
<a href="#section-22.10.1">22.10.1</a>. Redirect Reasons ................................<a href="#page-228">228</a>
<a href="#section-22.10.2">22.10.2</a>. Terminate-Reason Header Parameters ..............<a href="#page-229">229</a>
<a href="#section-22.11">22.11</a>. RTP-Info Header Parameters .............................<a href="#page-229">229</a>
<a href="#section-22.11.1">22.11.1</a>. Description .....................................<a href="#page-229">229</a>
<a href="#section-22.11.2">22.11.2</a>. Registration Rules ..............................<a href="#page-229">229</a>
<a href="#section-22.11.3">22.11.3</a>. Registered Values ...............................<a href="#page-230">230</a>
<a href="#section-22.12">22.12</a>. Seek-Style Policies ....................................<a href="#page-230">230</a>
<a href="#section-22.12.1">22.12.1</a>. Description .....................................<a href="#page-230">230</a>
<a href="#section-22.12.2">22.12.2</a>. Registration Rules ..............................<a href="#page-230">230</a>
<a href="#section-22.12.3">22.12.3</a>. Registered Values ...............................<a href="#page-230">230</a>
<a href="#section-22.13">22.13</a>. Transport Header Registries ............................<a href="#page-231">231</a>
<a href="#section-22.13.1">22.13.1</a>. Transport Protocol Identifier ...................<a href="#page-231">231</a>
<a href="#section-22.13.2">22.13.2</a>. Transport Modes .................................<a href="#page-233">233</a>
<a href="#section-22.13.3">22.13.3</a>. Transport Parameters ............................<a href="#page-233">233</a>
<a href="#section-22.14">22.14</a>. URI Schemes ............................................<a href="#page-234">234</a>
<a href="#section-22.14.1">22.14.1</a>. The "rtsp" URI Scheme ...........................<a href="#page-234">234</a>
<a href="#section-22.14.2">22.14.2</a>. The "rtsps" URI Scheme ..........................<a href="#page-235">235</a>
<a href="#section-22.14.3">22.14.3</a>. The "rtspu" URI Scheme ..........................<a href="#page-237">237</a>
<a href="#section-22.15">22.15</a>. SDP Attributes .........................................<a href="#page-238">238</a>
<a href="#section-22.16">22.16</a>. Media Type Registration for text/parameters ............<a href="#page-238">238</a>
<a href="#section-23">23</a>. References ...................................................<a href="#page-240">240</a>
<a href="#section-23.1">23.1</a>. Normative References ....................................<a href="#page-240">240</a>
<a href="#section-23.2">23.2</a>. Informative References ..................................<a href="#page-245">245</a>
<a href="#appendix-A">Appendix A</a>. Examples .............................................<a href="#page-248">248</a>
<a href="#appendix-A.1">A.1</a>. Media on Demand (Unicast) ................................<a href="#page-248">248</a>
<a href="#appendix-A.2">A.2</a>. Media on Demand Using Pipelining .........................<a href="#page-251">251</a>
<a href="#appendix-A.3">A.3</a>. Secured Media Session for On-Demand Content ..............<a href="#page-254">254</a>
<a href="#appendix-A.4">A.4</a>. Media on Demand (Unicast) ................................<a href="#page-257">257</a>
<a href="#appendix-A.5">A.5</a>. Single-Stream Container Files ............................<a href="#page-260">260</a>
<a href="#appendix-A.6">A.6</a>. Live Media Presentation Using Multicast ..................<a href="#page-263">263</a>
<a href="#appendix-A.7">A.7</a>. Capability Negotiation ...................................<a href="#page-264">264</a>
<a href="#appendix-B">Appendix B</a>. RTSP Protocol State Machine ..........................<a href="#page-265">265</a>
<a href="#appendix-B.1">B.1</a>. States ...................................................<a href="#page-266">266</a>
<a href="#appendix-B.2">B.2</a>. State Variables ..........................................<a href="#page-266">266</a>
<a href="#appendix-B.3">B.3</a>. Abbreviations ............................................<a href="#page-266">266</a>
<a href="#appendix-B.4">B.4</a>. State Tables .............................................<a href="#page-267">267</a>
<a href="#appendix-C">Appendix C</a>. Media-Transport Alternatives .........................<a href="#page-272">272</a>
<a href="#appendix-C.1">C.1</a>. RTP ......................................................<a href="#page-272">272</a>
<a href="#appendix-C.1.1">C.1.1</a>. AVP ..................................................<a href="#page-272">272</a>
<a href="#appendix-C.1.2">C.1.2</a>. AVP/UDP ..............................................<a href="#page-273">273</a>
<a href="#appendix-C.1.3">C.1.3</a>. AVPF/UDP .............................................<a href="#page-274">274</a>
<a href="#appendix-C.1.4">C.1.4</a>. SAVP/UDP .............................................<a href="#page-275">275</a>
<a href="#appendix-C.1.5">C.1.5</a>. SAVPF/UDP ............................................<a href="#page-277">277</a>
<span class="grey">Schulzrinne, et al. Standards Track [Page 8]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-9" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
<a href="#appendix-C.1.6">C.1.6</a>. RTCP Usage with RTSP .................................<a href="#page-278">278</a>
<a href="#appendix-C.2">C.2</a>. RTP over TCP .............................................<a href="#page-279">279</a>
<a href="#appendix-C.2.1">C.2.1</a>. Interleaved RTP over TCP .............................<a href="#page-280">280</a>
<a href="#appendix-C.2.2">C.2.2</a>. RTP over Independent TCP .............................<a href="#page-280">280</a>
<a href="#appendix-C.3">C.3</a>. Handling Media-Clock Time Jumps in the RTP Media Layer ...<a href="#page-284">284</a>
<a href="#appendix-C.4">C.4</a>. Handling RTP Timestamps after PAUSE ......................<a href="#page-287">287</a>
<a href="#appendix-C.5">C.5</a>. RTSP/RTP Integration ....................................<a href="#page-290">290</a>
<a href="#appendix-C.6">C.6</a>. Scaling with RTP .........................................<a href="#page-290">290</a>
<a href="#appendix-C.7">C.7</a>. Maintaining NPT Synchronization with RTP Timestamps ......<a href="#page-290">290</a>
<a href="#appendix-C.8">C.8</a>. Continuous Audio .........................................<a href="#page-290">290</a>
<a href="#appendix-C.9">C.9</a>. Multiple Sources in an RTP Session .......................<a href="#page-290">290</a>
C.10. Usage of SSRCs and the RTCP BYE Message during an RTSP
Session .................................................<a href="#page-290">290</a>
<a href="#appendix-C.11">C.11</a>. Future Additions ........................................<a href="#page-291">291</a>
<a href="#appendix-D">Appendix D</a>. Use of SDP for RTSP Session Descriptions .............<a href="#page-292">292</a>
<a href="#appendix-D.1">D.1</a>. Definitions .............................................<a href="#page-292">292</a>
<a href="#appendix-D.1.1">D.1.1</a>. Control URI ..........................................<a href="#page-292">292</a>
<a href="#appendix-D.1.2">D.1.2</a>. Media Streams ........................................<a href="#page-294">294</a>
<a href="#appendix-D.1.3">D.1.3</a>. Payload Type(s) ......................................<a href="#page-294">294</a>
<a href="#appendix-D.1.4">D.1.4</a>. Format-Specific Parameters ...........................<a href="#page-294">294</a>
<a href="#appendix-D.1.5">D.1.5</a>. Directionality of Media Stream .......................<a href="#page-295">295</a>
<a href="#appendix-D.1.6">D.1.6</a>. Range of Presentation ................................<a href="#page-295">295</a>
<a href="#appendix-D.1.7">D.1.7</a>. Time of Availability .................................<a href="#page-296">296</a>
<a href="#appendix-D.1.8">D.1.8</a>. Connection Information ...............................<a href="#page-297">297</a>
<a href="#appendix-D.1.9">D.1.9</a>. Message Body Tag .....................................<a href="#page-297">297</a>
<a href="#appendix-D.2">D.2</a>. Aggregate Control Not Available ..........................<a href="#page-298">298</a>
<a href="#appendix-D.3">D.3</a>. Aggregate Control Available ..............................<a href="#page-298">298</a>
<a href="#appendix-D.4">D.4</a>. Grouping of Media Lines in SDP ...........................<a href="#page-299">299</a>
<a href="#appendix-D.5">D.5</a>. RTSP External SDP Delivery ...............................<a href="#page-300">300</a>
<a href="#appendix-E">Appendix E</a>. RTSP Use Cases .......................................<a href="#page-300">300</a>
<a href="#appendix-E.1">E.1</a>. On-Demand Playback of Stored Content .....................<a href="#page-300">300</a>
<a href="#appendix-E.2">E.2</a>. Unicast Distribution of Live Content .....................<a href="#page-302">302</a>
<a href="#appendix-E.3">E.3</a>. On-Demand Playback Using Multicast .......................<a href="#page-303">303</a>
<a href="#appendix-E.4">E.4</a>. Inviting an RTSP Server into a Conference ................<a href="#page-303">303</a>
<a href="#appendix-E.5">E.5</a>. Live Content Using Multicast .............................<a href="#page-304">304</a>
<a href="#appendix-F">Appendix F</a>. Text Format for Parameters ...........................<a href="#page-305">305</a>
<a href="#appendix-G">Appendix G</a>. Requirements for Unreliable Transport of RTSP ........<a href="#page-305">305</a>
<a href="#appendix-H">Appendix H</a>. Backwards-Compatibility Considerations ...............<a href="#page-306">306</a>
<a href="#appendix-H.1">H.1</a>. Play Request in Play State ...............................<a href="#page-307">307</a>
<a href="#appendix-H.2">H.2</a>. Using Persistent Connections .............................<a href="#page-307">307</a>
<a href="#appendix-I">Appendix I</a>. Changes ..............................................<a href="#page-307">307</a>
<a href="#appendix-I.1">I.1</a>. Brief Overview ...........................................<a href="#page-308">308</a>
<a href="#appendix-I.2">I.2</a>. Detailed List of Changes .................................<a href="#page-309">309</a>
Acknowledgements .................................................<a href="#page-316">316</a>
Contributors ....................................................<a href="#page-317">317</a>
Authors' Addresses ...............................................<a href="#page-318">318</a>
<span class="grey">Schulzrinne, et al. Standards Track [Page 9]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-10" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
<span class="h2"><a class="selflink" id="section-1" href="#section-1">1</a>. Introduction</span>
This memo defines version 2.0 of the Real-Time Streaming Protocol
(RTSP 2.0). RTSP 2.0 is an application-layer protocol for the setup
and control over the delivery of data with real-time properties,
typically streaming media. Streaming media is, for instance, video
on demand or audio live streaming. Put simply, RTSP acts as a
"network remote control" for multimedia servers.
The protocol operates between RTSP 2.0 clients and servers, but it
also supports the use of proxies placed between clients and servers.
Clients can request information about streaming media from servers by
asking for a description of the media or use media description
provided externally. The media delivery protocol is used to
establish the media streams described by the media description.
Clients can then request to play out the media, pause it, or stop it
completely. The requested media can consist of multiple audio and
video streams that are delivered as time-synchronized streams from
servers to clients.
RTSP 2.0 is a replacement of RTSP 1.0 [<a href="./rfc2326" title=""Real Time Streaming Protocol (RTSP)"">RFC2326</a>] and this document
obsoletes that specification. This protocol is based on RTSP 1.0 but
is not backwards compatible other than in the basic version
negotiation mechanism. The changes between the two documents are
listed in <a href="#appendix-I">Appendix I</a>. There are many reasons why RTSP 2.0 can't be
backwards compatible with RTSP 1.0; some of the main ones are as
follows:
o Most headers that needed to be extensible did not define the
allowed syntax, preventing safe deployment of extensions;
o the changed behavior of the PLAY method when received in Play
state;
o the changed behavior of the extensibility model and its mechanism;
and
o the change of syntax for some headers.
There are so many small updates that changing versions became
necessary to enable clarification and consistent behavior. Anyone
implementing RTSP for a new use case in which they have not installed
RTSP 1.0 should only implement RTSP 2.0 to avoid having to deal with
RTSP 1.0 inconsistencies.
This document is structured as follows. It begins with an overview
of the protocol operations and its functions in an informal way.
Then, a set of definitions of terms used and document conventions is
<span class="grey">Schulzrinne, et al. Standards Track [Page 10]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-11" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
introduced. These are followed by the actual RTSP 2.0 core protocol
specification. The appendices describe and define some
functionalities that are not part of the core RTSP specification, but
which are still important to enable some usages. Among them, the RTP
usage is defined in <a href="#appendix-C">Appendix C</a>, the Session Description Protocol
(SDP) usage with RTSP is defined in <a href="#appendix-D">Appendix D</a>, and the "text/
parameters" file format <a href="#appendix-F">Appendix F</a>, are three normative specification
appendices. Other appendices include a number of informational parts
discussing the changes, use cases, different considerations or
motivations.
<span class="h2"><a class="selflink" id="section-2" href="#section-2">2</a>. Protocol Overview</span>
This section provides an informative overview of the different
mechanisms in the RTSP 2.0 protocol to give the reader a high-level
understanding before getting into all the specific details. In case
of conflict with this description and the later sections, the later
sections take precedence. For more information about use cases
considered for RTSP, see <a href="#appendix-E">Appendix E</a>.
RTSP 2.0 is a bidirectional request and response protocol that first
establishes a context including content resources (the media) and
then controls the delivery of these content resources from the
provider to the consumer. RTSP has three fundamental parts: Session
Establishment, Media Delivery Control, and an extensibility model
described below. The protocol is based on some assumptions about
existing functionality to provide a complete solution for client-
controlled real-time media delivery.
RTSP uses text-based messages, requests and responses, that may
contain a binary message body. An RTSP request starts with a method
line that identifies the method, the protocol, and version and the
resource on which to act. The resource is identified by a URI and
the hostname part of the URI is used by RTSP client to resolve the
IPv4 or IPv6 address of the RTSP server. Following the method line
are a number of RTSP headers. These lines are ended by two
consecutive carriage return line feed (CRLF) character pairs. The
message body, if present, follows the two CRLF character pairs, and
the body's length is described by a message header. RTSP responses
are similar, but they start with a response line with the protocol
and version followed by a status code and a reason phrase. RTSP
messages are sent over a reliable transport protocol between the
client and server. RTSP 2.0 requires clients and servers to
implement TCP and TLS over TCP as mandatory transports for RTSP
messages.
<span class="grey">Schulzrinne, et al. Standards Track [Page 11]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-12" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
<span class="h3"><a class="selflink" id="section-2.1" href="#section-2.1">2.1</a>. Presentation Description</span>
RTSP exists to provide access to multimedia presentations and content
but tries to be agnostic about the media type or the actual media
delivery protocol that is used. To enable a client to implement a
complete system, an RTSP-external mechanism for describing the
presentation and the delivery protocol(s) is used. RTSP assumes that
this description is either delivered completely out of band or as a
data object in the response to a client's request using the DESCRIBE
method (<a href="#section-13.2">Section 13.2</a>).
Parameters that commonly have to be included in the presentation
description are the following:
o The number of media streams;
o the resource identifier for each media stream/resource that is to
be controlled by RTSP;
o the protocol that will be used to deliver each media stream;
o the transport protocol parameters that are not negotiated or vary
with each client;
o the media-encoding information enabling a client to correctly
decode the media upon reception; and
o an aggregate control resource identifier.
RTSP uses its own URI schemes ("rtsp" and "rtsps") to reference media
resources and aggregates under common control (see <a href="#section-4.2">Section 4.2</a>).
This specification describes in <a href="#appendix-D">Appendix D</a> how one uses SDP [<a href="./rfc4566" title=""SDP: Session Description Protocol"">RFC4566</a>]
for describing the presentation.
<span class="h3"><a class="selflink" id="section-2.2" href="#section-2.2">2.2</a>. Session Establishment</span>
The RTSP client can request the establishment of an RTSP session
after having used the presentation description to determine which
media streams are available, which media delivery protocol is used,
and the resource identifiers of the media streams. The RTSP session
is a common context between the client and the server that consists
of one or more media resources that are to be under common media
delivery control.
The client creates an RTSP session by sending a request using the
SETUP method (<a href="#section-13.3">Section 13.3</a>) to the server. In the Transport header
(<a href="#section-18.54">Section 18.54</a>) of the SETUP request, the client also includes all
<span class="grey">Schulzrinne, et al. Standards Track [Page 12]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-13" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
the transport parameters necessary to enable the media delivery
protocol to function. This includes parameters that are
preestablished by the presentation description but necessary for any
middlebox to correctly handle the media delivery protocols. The
Transport header in a request may contain multiple alternatives for
media delivery in a prioritized list, which the server can select
from. These alternatives are typically based on information in the
presentation description.
When receiving a SETUP request, the server determines if the media
resource is available and if one or more of the of the transport
parameter specifications are acceptable. If that is successful, an
RTSP session context is created and the relevant parameters and state
is stored. An identifier is created for the RTSP session and
included in the response in the Session header (<a href="#section-18.49">Section 18.49</a>). The
SETUP response includes a Transport header that specifies which of
the alternatives has been selected and relevant parameters.
A SETUP request that references an existing RTSP session but
identifies a new media resource is a request to add that media
resource under common control with the already-present media
resources in an aggregated session. A client can expect this to work
for all media resources under RTSP control within a multimedia
content container. However, a server will likely refuse to aggregate
resources from different content containers. Even if an RTSP session
contains only a single media stream, the RTSP session can be
referenced by the aggregate control URI.
To avoid an extra round trip in the session establishment of
aggregated RTSP sessions, RTSP 2.0 supports pipelined requests; i.e.,
the client can send multiple requests back-to-back without waiting
first for the completion of any of them. The client uses a client-
selected identifier in the Pipelined-Requests header (<a href="#section-18.33">Section 18.33</a>)
to instruct the server to bind multiple requests together as if they
included the session identifier.
The SETUP response also provides additional information about the
established sessions in a couple of different headers. The Media-
Properties header (<a href="#section-18.29">Section 18.29</a>) includes a number of properties
that apply for the aggregate that is valuable when doing media
delivery control and configuring user interface. The Accept-Ranges
header (<a href="#section-18.5">Section 18.5</a>) informs the client about range formats that the
server supports for these media resources. The Media-Range header
(<a href="#section-18.30">Section 18.30</a>) informs the client about the time range of the media
currently available.
<span class="grey">Schulzrinne, et al. Standards Track [Page 13]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-14" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
<span class="h3"><a class="selflink" id="section-2.3" href="#section-2.3">2.3</a>. Media Delivery Control</span>
After having established an RTSP session, the client can start
controlling the media delivery. The basic operations are "begin
playback", using the PLAY method (<a href="#section-13.4">Section 13.4</a>) and "suspend (pause)
playback" by using the PAUSE method (<a href="#section-13.6">Section 13.6</a>). PLAY also allows
for choosing the starting media position from which the server should
deliver the media. The positioning is done by using the Range header
(<a href="#section-18.40">Section 18.40</a>) that supports several different time formats: Normal
Play Time (NPT) (<a href="#section-4.4.2">Section 4.4.2</a>), Society of Motion Picture and
Television Engineers (SMPTE) Timestamps (<a href="#section-4.4.1">Section 4.4.1</a>), and absolute
time (<a href="#section-4.4.3">Section 4.4.3</a>). The Range header also allows the client to
specify a position where delivery should end, thus allowing a
specific interval to be delivered.
The support for positioning/searching within media content depends on
the content's media properties. Content exists in a number of
different types, such as on-demand, live, and live with simultaneous
recording. Even within these categories, there are differences in
how the content is generated and distributed, which affect how it can
be accessed for playback. The properties applicable for the RTSP
session are provided by the server in the SETUP response using the
Media-Properties header (<a href="#section-18.29">Section 18.29</a>). These are expressed using
one or several independent attributes. A first attribute is Random-
Access, which indicates whether positioning is possible, and with
what granularity. Another aspect is whether the content will change
during the lifetime of the session. While on-demand content will be
provided in full from the beginning, a live stream being recorded
results in the length of the accessible content growing as the
session goes on. There also exists content that is dynamically built
by a protocol other than RTSP and, thus, also changes in steps during
the session, but maybe not continuously. Furthermore, when content
is recorded, there are cases where the complete content is not
maintained, but, for example, only the last hour. All of these
properties result in the need for mechanisms that will be discussed
below.
When the client accesses on-demand content that allows random access,
the client can issue the PLAY request for any point in the content
between the start and the end. The server will deliver media from
the closest random access point prior to the requested point and
indicate that in its PLAY response. If the client issues a PAUSE,
the delivery will be halted and the point at which the server stopped
will be reported back in the response. The client can later resume
by sending a PLAY request without a Range header. When the server is
about to complete the PLAY request by delivering the end of the
content or the requested range, the server will send a PLAY_NOTIFY
request (<a href="#section-13.5">Section 13.5</a>) indicating this.
<span class="grey">Schulzrinne, et al. Standards Track [Page 14]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-15" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
When playing live content with no extra functions, such as recording,
the client will receive the live media from the server after having
sent a PLAY request. Seeking in such content is not possible as the
server does not store it, but only forwards it from the source of the
session. Thus, delivery continues until the client sends a PAUSE
request, tears down the session, or the content ends.
For live sessions that are being recorded, the client will need to
keep track of how the recording progresses. Upon session
establishment, the client will learn the current duration of the
recording from the Media-Range header. Because the recording is
ongoing, the content grows in direct relation to the time passed.
Therefore, each server's response to a PLAY request will contain the
current Media-Range header. The server should also regularly send
(approximately every 5 minutes) the current media range in a
PLAY_NOTIFY request (<a href="#section-13.5.2">Section 13.5.2</a>). If the live transmission ends,
the server must send a PLAY_NOTIFY request with the updated Media-
Properties indicating that the content stopped being a recorded live
session and instead became on-demand content; the request also
contains the final media range. While the live delivery continues,
the client can request to play the current live point by using the
NPT timescale symbol "now", or it can request a specific point in the
available content by an explicit range request for that point. If
the requested point is outside of the available interval, the server
will adjust the position to the closest available point, i.e., either
at the beginning or the end.
A special case of recording is that where the recording is not
retained longer than a specific time period; thus, as the live
delivery continues, the client can access any media within a moving
window that covers, for example, "now" to "now" minus 1 hour. A
client that pauses on a specific point within the content may not be
able to retrieve the content anymore. If the client waits too long
before resuming the pause point, the content may no longer be
available. In this case, the pause point will be adjusted to the
closest point in the available media.
<span class="h3"><a class="selflink" id="section-2.4" href="#section-2.4">2.4</a>. Session Parameter Manipulations</span>
A session may have additional state or functionality that affects how
the server or client treats the session or content, how it functions,
or feedback on how well the session works. Such extensions are not
defined in this specification, but they may be covered in various
extensions. RTSP has two methods for retrieving and setting
parameter values on either the client or the server: GET_PARAMETER
(<a href="#section-13.8">Section 13.8</a>) and SET_PARAMETER (<a href="#section-13.9">Section 13.9</a>). These methods carry
the parameters in a message body of the appropriate format. One can
also use headers to query state with the GET_PARAMETER method. As an
<span class="grey">Schulzrinne, et al. Standards Track [Page 15]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-16" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
example, clients needing to know the current media range for a time-
progressing session can use the GET_PARAMETER method and include the
media range. Furthermore, synchronization information can be
requested by using a combination of RTP-Info (<a href="#section-18.45">Section 18.45</a>) and
Range (<a href="#section-18.40">Section 18.40</a>).
RTSP 2.0 does not have a strong mechanism for negotiating the headers
or parameters and their formats. However, responses will indicate
request-headers or parameters that are not supported. A priori
determination of what features are available needs to be done through
out-of-band mechanisms, like the session description, or through the
usage of feature tags (<a href="#section-4.5">Section 4.5</a>).
<span class="h3"><a class="selflink" id="section-2.5" href="#section-2.5">2.5</a>. Media Delivery</span>
This document specifies how media is delivered with RTP [<a href="./rfc3550" title=""RTP: A Transport Protocol for Real-Time Applications"">RFC3550</a>]
over UDP [<a href="./rfc768" title=""User Datagram Protocol"">RFC768</a>], TCP [<a href="./rfc793" title=""Transmission Control Protocol"">RFC793</a>], or the RTSP connection. Additional
protocols may be specified in the future as needed.
The usage of RTP as a media delivery protocol requires some
additional information to function well. The PLAY response contains
information to enable reliable and timely delivery of how a client
should synchronize different sources in the different RTP sessions.
It also provides a mapping between RTP timestamps and the content-
time scale. When the server wants to notify the client about the
completion of the media delivery, it sends a PLAY_NOTIFY request to
the client. The PLAY_NOTIFY request includes information about the
stream end, including the last RTP sequence number for each stream,
thus enabling the client to empty the buffer smoothly.
<span class="h4"><a class="selflink" id="section-2.5.1" href="#section-2.5.1">2.5.1</a>. Media Delivery Manipulations</span>
The basic playback functionality of RTSP enables delivery of a range
of requested content to the client at the pace intended by the
content's creator. However, RTSP can also manipulate the delivery to
the client in two ways.
Scale: The ratio of media-content time delivered per unit of
playback time.
Speed: The ratio of playback time delivered per unit of wallclock
time.
Both affect the media delivery per time unit. However, they
manipulate two independent timescales and the effects are possible to
combine.
<span class="grey">Schulzrinne, et al. Standards Track [Page 16]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-17" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
Scale (<a href="#section-18.46">Section 18.46</a>) is used for fast-forward or slow-motion control
as it changes the amount of content timescale that should be played
back per time unit. Scale > 1.0, means fast forward, e.g., scale =
2.0 results in that 2 seconds of content being played back every
second of playback. Scale = 1.0 is the default value that is used if
no scale is specified, i.e., playback at the content's original rate.
Scale values between 0 and 1.0 provide for slow motion. Scale can be
negative to allow for reverse playback in either regular pace
(scale = -1.0), fast backwards (scale < -1.0), or slow-motion
backwards (-1.0 < scale < 0). Scale = 0 would be equal to pause and
is not allowed.
In most cases, the realization of scale means server-side
manipulation of the media to ensure that the client can actually play
it back. The nature of these media manipulations and when they are
needed is highly media-type dependent. Let's consider two common
media types, audio and video.
It is very difficult to modify the playback rate of audio.
Typically, no more than a factor of two is possible while maintaining
intelligibility by changing the pitch and rate of speech. Music goes
out of tune if one tries to manipulate the playback rate by
resampling it. This is a well-known problem, and audio is commonly
muted or played back in short segments with skips to keep up with the
current playback point.
For video, it is possible to manipulate the frame rate, although the
rendering capabilities are often limited to certain frame rates.
Also, the allowed bitrates in decoding, the structure used in the
encoding, and the dependency between frames and other capabilities of
the rendering device limits the possible manipulations. Therefore,
the basic fast-forward capabilities often are implemented by
selecting certain subsets of frames.
Due to the media restrictions, the possible scale values are commonly
restricted to the set of realizable scale ratios. To enable the
clients to select from the possible scale values, RTSP can signal the
supported scale ratios for the content. To support aggregated or
dynamic content, where this may change during the ongoing session and
dependent on the location within the content, a mechanism for
updating the media properties and the scale factor currently in use,
exists.
Speed (<a href="#section-18.50">Section 18.50</a>) affects how much of the playback timeline is
delivered in a given wallclock period. The default is Speed = 1
which means to deliver at the same rate the media is consumed.
Speed > 1 means that the receiver will get content faster than it
regularly would consume it. Speed < 1 means that delivery is slower
<span class="grey">Schulzrinne, et al. Standards Track [Page 17]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-18" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
than the regular media rate. Speed values of 0 or lower have no
meaning and are not allowed. This mechanism enables two general
functionalities. One is client-side scale operations, i.e., the
client receives all the frames and makes the adjustment to the
playback locally. The second is delivery control for the buffering
of media. By specifying a speed over 1.0, the client can build up
the amount of playback time it has present in its buffers to a level
that is sufficient for its needs.
A naive implementation of Speed would only affect the transmission
schedule of the media and has a clear impact on the needed bandwidth.
This would result in the data rate being proportional to the speed
factor. Speed = 1.5, i.e., 50% faster than normal delivery, would
result in a 50% increase in the data-transport rate. Whether or not
that can be supported depends solely on the underlying network path.
Scale may also have some impact on the required bandwidth due to the
manipulation of the content in the new playback schedule. An example
is fast forward where only the independently decodable intra-frames
are included in the media stream. This usage of solely intra-frames
increases the data rate significantly compared to a normal sequence
with the same number of frames, where most frames are encoded using
prediction.
This potential increase of the data rate needs to be handled by the
media sender. The client has requested that the media be delivered
in a specific way, which should be honored. However, the media
sender cannot ignore if the network path between the sender and the
receiver can't handle the resulting media stream. In that case, the
media stream needs to be adapted to fit the available resources of
the path. This can result in a reduced media quality.
The need for bitrate adaptation becomes especially problematic in
connection with the Speed semantics. If the goal is to fill up the
buffer, the client may not want to do that at the cost of reduced
quality. If the client wants to make local playout changes, then it
may actually require that the requested speed be honored. To resolve
this issue, Speed uses a range so that both cases can be supported.
The server is requested to use the highest possible speed value
within the range, which is compatible with the available bandwidth.
As long as the server can maintain a speed value within the range, it
shall not change the media quality, but instead modify the actual
delivery rate in response to available bandwidth and reflect this in
the Speed value in the response. However, if this is not possible,
the server should instead modify the media quality to respect the
lowest speed value and the available bandwidth.
<span class="grey">Schulzrinne, et al. Standards Track [Page 18]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-19" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
This functionality enables the local scaling implementation to use a
tight range, or even a range where the lower bound equals the upper
bound, to identify that it requires the server to deliver the
requested amount of media time per delivery time, independent of how
much it needs to adapt the media quality to fit within the available
path bandwidth. For buffer filling, it is suitable to use a range
with a reasonable span and with a lower bound at the nominal media
rate 1.0, such as 1.0 - 2.5. If the client wants to reduce the
buffer, it can specify an upper bound that is below 1.0 to force the
server to deliver slower than the nominal media rate.
<span class="h3"><a class="selflink" id="section-2.6" href="#section-2.6">2.6</a>. Session Maintenance and Termination</span>
The session context that has been established is kept alive by having
the client show liveness. This is done in two main ways:
o Media-transport protocol keep-alive. RTP Control Protocol (RTCP)
may be used when using RTP.
o Any RTSP request referencing the session context.
<a href="#section-10.5">Section 10.5</a> discusses the methods for showing liveness in more
depth. If the client fails to show liveness for more than the
established session timeout value (normally 60 seconds), the server
may terminate the context. Other values may be selected by the
server through the inclusion of the timeout parameter in the session
header.
The session context is normally terminated by the client sending a
TEARDOWN request (<a href="#section-13.7">Section 13.7</a>) to the server referencing the
aggregated control URI. An individual media resource can be removed
from a session context by a TEARDOWN request referencing that
particular media resource. If all media resources are removed from a
session context, the session context is terminated.
A client may keep the session alive indefinitely if allowed by the
server; however, a client is advised to release the session context
when an extended period of time without media delivery activity has
passed. The client can re-establish the session context if required
later. What constitutes an extended period of time is dependent on
the client, server, and their usage. It is recommended that the
client terminate the session before ten times the session timeout
value has passed. A server may terminate the session after one
session timeout period without any client activity beyond keep-alive.
When a server terminates the session context, it does so by sending a
TEARDOWN request indicating the reason.
<span class="grey">Schulzrinne, et al. Standards Track [Page 19]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-20" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
A server can also request that the client tear down the session and
re-establish it at an alternative server, as may be needed for
maintenance. This is done by using the REDIRECT method
(<a href="#section-13.10">Section 13.10</a>). The Terminate-Reason header (<a href="#section-18.52">Section 18.52</a>) is used
to indicate when and why. The Location header indicates where it
should connect if there is an alternative server available. When the
deadline expires, the server simply stops providing the service. To
achieve a clean closure, the client needs to initiate session
termination prior to the deadline. In case the server has no other
server to redirect to, and it wants to close the session for
maintenance, it shall use the TEARDOWN method with a Terminate-Reason
header.
<span class="h3"><a class="selflink" id="section-2.7" href="#section-2.7">2.7</a>. Extending RTSP</span>
RTSP is quite a versatile protocol that supports extensions in many
different directions. Even this core specification contains several
blocks of functionality that are optional to implement. The use case
and need for the protocol deployment should determine what parts are
implemented. Allowing for extensions makes it possible for RTSP to
address additional use cases. However, extensions will affect the
interoperability of the protocol; therefore, it is important that
they can be added in a structured way.
The client can learn the capability of a server by using the OPTIONS
method (<a href="#section-13.1">Section 13.1</a>) and the Supported header (<a href="#section-18.51">Section 18.51</a>). It
can also try and possibly fail using new methods or require that
particular features be supported using the Require (<a href="#section-18.43">Section 18.43</a>) or
Proxy-Require (<a href="#section-18.37">Section 18.37</a>) header.
The RTSP, in itself, can be extended in three ways, listed here in
increasing order of the magnitude of changes supported:
o Existing methods can be extended with new parameters, for example,
headers, as long as these parameters can be safely ignored by the
recipient. If the client needs negative acknowledgment when a
method extension is not supported, a tag corresponding to the
extension may be added in the field of the Require or Proxy-
Require headers.
o New methods can be added. If the recipient of the message does
not understand the request, it must respond with error code 501
(Not Implemented) so that the sender can avoid using this method
again. A client may also use the OPTIONS method to inquire about
methods supported by the server. The server must list the methods
it supports using the Public response-header.
<span class="grey">Schulzrinne, et al. Standards Track [Page 20]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-21" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
o A new version of the protocol can be defined, allowing almost all
aspects (except the position of the protocol version number) to
change. A new version of the protocol must be registered through
a Standards Track document.
The basic capability discovery mechanism can be used to both discover
support for a certain feature and to ensure that a feature is
available when performing a request. For a detailed explanation of
this, see <a href="#section-11">Section 11</a>.
New media delivery protocols may be added and negotiated at session
establishment, in addition to extensions to the core protocol.
Certain types of protocol manipulations can be done through parameter
formats using SET_PARAMETER and GET_PARAMETER.
<span class="h2"><a class="selflink" id="section-3" href="#section-3">3</a>. Document Conventions</span>
<span class="h3"><a class="selflink" id="section-3.1" href="#section-3.1">3.1</a>. Notational Conventions</span>
All the mechanisms specified in this document are described in both
prose and the Augmented Backus-Naur form (ABNF) described in detail
in [<a href="./rfc5234" title=""Augmented BNF for Syntax Specifications: ABNF"">RFC5234</a>].
Indented paragraphs are used to provide informative background and
motivation. This is intended to give readers who were not involved
with the formulation of the specification an understanding of why
things are the way they are in RTSP.
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in
[<a href="./rfc2119" title=""Key words for use in RFCs to Indicate Requirement Levels"">RFC2119</a>].
The word, "unspecified" is used to indicate functionality or features
that are not defined in this specification. Such functionality
cannot be used in a standardized manner without further definition in
an extension specification to RTSP.
<span class="h3"><a class="selflink" id="section-3.2" href="#section-3.2">3.2</a>. Terminology</span>
Aggregate control: The concept of controlling multiple streams using
a single timeline, generally one maintained by the server. A
client, for example, uses aggregate control when it issues a
single play or pause message to simultaneously control both the
audio and video in a movie. A session that is under aggregate
control is referred to as an "aggregated session".
<span class="grey">Schulzrinne, et al. Standards Track [Page 21]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-22" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
Aggregate control URI: The URI used in an RTSP request to refer to
and control an aggregated session. It normally, but not always,
corresponds to the presentation URI specified in the session
description. See <a href="#section-13.3">Section 13.3</a> for more information.
Client: The client is the requester of media service from the media
server.
Connection: A transport-layer virtual circuit established between
two programs for the purpose of communication.
Container file: A file that may contain multiple media streams that
often constitute a presentation when played together. The concept
of a container file is not embedded in the protocol. However,
RTSP servers may offer aggregate control on the media streams
within these files.
Continuous media: Data where there is a timing relationship between
source and sink; that is, the sink needs to reproduce the timing
relationship that existed at the source. The most common examples
of continuous media are audio and motion video. Continuous media
can be real time (interactive or conversational), where there is a
"tight" timing relationship between source and sink or it can be
streaming where the relationship is less strict.
Feature tag: A tag representing a certain set of functionality,
i.e., a feature.
IRI: An Internationalized Resource Identifier is similar to a URI
but allows characters from the whole Universal Character Set
(Unicode/ISO 10646), rather than the US-ASCII only. See [<a href="./rfc3987" title=""Internationalized Resource Identifiers (IRIs)"">RFC3987</a>]
for more information.
Live: A live presentation or session originates media from an event
taking place at the same time as the media delivery. Live
sessions often have an unbound or only loosely defined duration
and seek operations may not be possible.
Media initialization: The datatype- or codec-specific
initialization. This includes such things as clock rates, color
tables, etc. Any transport-independent information that is
required by a client for playback of a media stream occurs in the
media initialization phase of stream setup.
Media parameter: A parameter specific to a media type that may be
changed before or during stream delivery.
<span class="grey">Schulzrinne, et al. Standards Track [Page 22]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-23" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
Media server: The server providing media-delivery services for one
or more media streams. Different media streams within a
presentation may originate from different media servers. A media
server may reside on the same host or on a different host from
which the presentation is invoked.
(Media) Stream: A single media instance, e.g., an audio stream or a
video stream as well as a single whiteboard or shared application
group. When using RTP, a stream consists of all RTP and RTCP
packets created by a media source within an RTP session.
Message: The basic unit of RTSP communication, consisting of a
structured sequence of octets matching the syntax defined in
<a href="#section-20">Section 20</a> and transmitted over a transport between RTSP agents.
A message is either a request or a response.
Message body: The information transferred as the payload of a
message (request or response). A message body consists of meta-
information in the form of message body headers and content in the
form of an arbitrary number of data octets, as described in
<a href="#section-9">Section 9</a>.
Non-aggregated control: Control of a single media stream.
Presentation: A set of one or more streams presented to the client
as a complete media feed and described by a presentation
description as defined below. Presentations with more than one
media stream are often handled in RTSP under aggregate control.
Presentation description: A presentation description contains
information about one or more media streams within a presentation,
such as the set of encodings, network addresses, and information
about the content. Other IETF protocols, such as SDP ([<a href="./rfc4566" title=""SDP: Session Description Protocol"">RFC4566</a>]),
use the term "session" for a presentation. The presentation
description may take several different formats, including but not
limited to SDP format.
Response: An RTSP response to a request. One type of RTSP message.
If an HTTP response is meant, it is indicated explicitly.
Request: An RTSP request. One type of RTSP message. If an HTTP
request is meant, it is indicated explicitly.
Request-URI: The URI used in a request to indicate the resource on
which the request is to be performed.
<span class="grey">Schulzrinne, et al. Standards Track [Page 23]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-24" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
RTSP agent: Either an RTSP client, an RTSP server, or an RTSP proxy.
In this specification, there are many capabilities that are common
to these three entities such as the capability to send requests or
receive responses. This term will be used when describing
functionality that is applicable to all three of these entities.
RTSP session: A stateful abstraction upon which the main control
methods of RTSP operate. An RTSP session is a common context; it
is created and maintained on a client's request and can be
destroyed by either the client or server. It is established by an
RTSP server upon the completion of a successful SETUP request
(when a 200 OK response is sent) and is labeled with a session
identifier at that time. The session exists until timed out by
the server or explicitly removed by a TEARDOWN request. An RTSP
session is a stateful entity; an RTSP server maintains an explicit
session state machine (see <a href="#appendix-B">Appendix B</a>) where most state
transitions are triggered by client requests. The existence of a
session implies the existence of state about the session's media
streams and their respective transport mechanisms. A given
session can have one or more media streams associated with it. An
RTSP server uses the session to aggregate control over multiple
media streams.
Origin server: The server on which a given resource resides.
Seeking: Requesting playback from a particular point in the content
time line.
Transport initialization: The negotiation of transport information
(e.g., port numbers, transport protocols) between the client and
the server.
URI: A Universal Resource Identifier; see [<a href="./rfc3986" title=""Uniform Resource Identifier (URI): Generic Syntax"">RFC3986</a>]. The URIs used
in RTSP are generally URLs as they give a location for the
resource. As URLs are a subset of URIs, they will be referred to
as URIs to cover also the cases when an RTSP URI would not be a
URL.
URL: A Universal Resource Locator is a URI that identifies the
resource through its primary access mechanism rather than
identifying the resource by name or by some other attribute(s) of
that resource.
<span class="grey">Schulzrinne, et al. Standards Track [Page 24]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-25" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
<span class="h2"><a class="selflink" id="section-4" href="#section-4">4</a>. Protocol Parameters</span>
<span class="h3"><a class="selflink" id="section-4.1" href="#section-4.1">4.1</a>. RTSP Version</span>
This specification defines version 2.0 of RTSP.
RTSP uses a "<major>.<minor>" numbering scheme to indicate versions
of the protocol. The protocol versioning policy is intended to allow
the sender to indicate the format of a message and its capacity for
understanding further RTSP communication rather than the features
obtained via that communication. No change is made to the version
number for the addition of message components that do not affect
communication behavior or that only add to extensible field values.
The <minor> number is incremented when the changes made to the
protocol add features that do not change the general message parsing
algorithm but that may add to the message semantics and imply
additional capabilities of the sender. The <major> number is
incremented when the format of a message within the protocol is
changed. The version of an RTSP message is indicated by an RTSP-
Version field in the first line of the message. Note that the major
and minor numbers MUST be treated as separate integers and that each
MAY be incremented higher than a single digit. Thus, RTSP/2.4 is a
lower version than RTSP/2.13, which, in turn, is lower than
RTSP/12.3. Leading zeros SHALL NOT be sent and MUST be ignored by
recipients.
<span class="h3"><a class="selflink" id="section-4.2" href="#section-4.2">4.2</a>. RTSP IRI and URI</span>
RTSP 2.0 defines and registers or updates three URI schemes "rtsp",
"rtsps", and "rtspu". The usage of the last, "rtspu", is unspecified
in RTSP 2.0 and is defined here to register the URI scheme that was
defined in RTSP 1.0. The "rtspu" scheme indicates unspecified
transport of the RTSP messages over unreliable transport means (UDP
in RTSP 1.0). An RTSP server MUST respond with an error code
indicating the "rtspu" scheme is not implemented (501) to a request
that carries a "rtspu" URI scheme.
The details of the syntax of "rtsp" and "rtsps" URIs have been
changed from RTSP 1.0. These changes include the addition of:
o Support for an IPv6 literal in the host part and future IP
literals through a mechanism defined in [<a href="./rfc3986" title=""Uniform Resource Identifier (URI): Generic Syntax"">RFC3986</a>].
o A new relative format to use in the RTSP elements that is not
required to start with "/".
<span class="grey">Schulzrinne, et al. Standards Track [Page 25]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-26" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
Neither should have any significant impact on interoperability. If
IPv6 literals are needed in the RTSP URI, then that RTSP server must
be IPv6 capable, and RTSP 1.0 is not a fully IPv6 capable protocol.
If an RTSP 1.0 client attempts to process the URI, the URI will not
match the allowed syntax, it will be considered invalid, and
processing will be stopped. This is clearly a failure to reach the
resource; however, it is not a signification issue as RTSP 2.0
support was needed anyway in both server and client. Thus, failure
will only occur in a later step when there is an RTSP version
mismatch between client and server. The second change will only
occur inside RTSP message headers, as the Request-URI must be an
absolute URI. Thus, such usages will only occur after an agent has
accepted and started processing RTSP 2.0 messages, and an agent using
RTSP 1.0 only will not be required to parse such types of relative
URIs.
This specification also defines the format of RTSP IRIs [<a href="./rfc3987" title=""Internationalized Resource Identifiers (IRIs)"">RFC3987</a>]
that can be used as RTSP resource identifiers and locators on web
pages, user interfaces, on paper, etc. However, the RTSP request
message format only allows usage of the absolute URI format. The
RTSP IRI format MUST use the rules and transformation for IRIs to
URIs, as defined in [<a href="./rfc3987" title=""Internationalized Resource Identifiers (IRIs)"">RFC3987</a>]. This allows a URI that matches the
RTSP 2.0 specification, and so is suitable for use in a request, to
be created from an RTSP IRI.
The RTSP IRI and URI are both syntax restricted compared to the
generic syntax defined in [<a href="./rfc3986" title=""Uniform Resource Identifier (URI): Generic Syntax"">RFC3986</a>] and [<a href="./rfc3987" title=""Internationalized Resource Identifiers (IRIs)"">RFC3987</a>]:
o An absolute URI requires the authority part; i.e., a host identity
MUST be provided.
o Parameters in the path element are prefixed with the reserved
separator ";".
The "scheme" and "host" parts of all URIs [<a href="./rfc3986" title=""Uniform Resource Identifier (URI): Generic Syntax"">RFC3986</a>] and IRIs
[<a href="./rfc3987" title=""Internationalized Resource Identifiers (IRIs)"">RFC3987</a>] are case insensitive. All other parts of RTSP URIs and
IRIs are case sensitive, and they MUST NOT be case mapped.
The fragment identifier is used as defined in Sections <a href="#section-3.5">3.5</a> and <a href="#section-4.3">4.3</a> of
[<a href="./rfc3986" title=""Uniform Resource Identifier (URI): Generic Syntax"">RFC3986</a>], i.e., the fragment is to be stripped from the IRI by the
requester and not included in the Request-URI. The user agent needs
to interpret the value of the fragment based on the media type the
request relates to; i.e., the media type indicated in Content-Type
header in the response to a DESCRIBE request.
The syntax of any URI query string is unspecified and responder
(usually the server) specific. The query is, from the requester's
perspective, an opaque string and needs to be handled as such.
<span class="grey">Schulzrinne, et al. Standards Track [Page 26]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-27" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
Please note that relative URIs with queries are difficult to handle
due to the relative URI handling rules of <a href="./rfc3986">RFC 3986</a>. Any change of
the path element using a relative URI results in the stripping of the
query, which means the relative part needs to contain the query.
The URI scheme "rtsp" requires that commands be issued via a reliable
protocol (within the Internet, TCP), while the scheme "rtsps"
identifies a reliable transport using secure transport (TLS
[<a href="./rfc5246" title=""The Transport Layer Security (TLS) Protocol Version 1.2"">RFC5246</a>]); see <a href="#section-19">Section 19</a>.
For the scheme "rtsp", if no port number is provided in the authority
part of the URI, the port number 554 MUST be used. For the scheme
"rtsps", if no port number is provided in the authority part of the
URI port number, the TCP port 322 MUST be used.
A presentation or a stream is identified by a textual media
identifier, using the character set and escape conventions of URIs
[<a href="./rfc3986" title=""Uniform Resource Identifier (URI): Generic Syntax"">RFC3986</a>]. URIs may refer to a stream or an aggregate of streams;
i.e., a presentation. Accordingly, requests described in <a href="#section-13">Section 13</a>
can apply to either the whole presentation or an individual stream
within the presentation. Note that some request methods can only be
applied to streams, not presentations, and vice versa.
For example, the RTSP URI:
rtsp://media.example.com:554/twister/audiotrack
may identify the audio stream within the presentation "twister",
which can be controlled via RTSP requests issued over a TCP
connection to port 554 of host media.example.com.
Also, the RTSP URI:
rtsp://media.example.com:554/twister
identifies the presentation "twister", which may be composed of audio
and video streams, but could also be something else, such as a random
media redirector.
This does not imply a standard way to reference streams in URIs.
The presentation description defines the hierarchical
relationships in the presentation and the URIs for the individual
streams. A presentation description may name a stream "a.mov" and
the whole presentation "b.mov".
The path components of the RTSP URI are opaque to the client and do
not imply any particular file system structure for the server.
<span class="grey">Schulzrinne, et al. Standards Track [Page 27]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-28" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
This decoupling also allows presentation descriptions to be used
with non-RTSP media control protocols simply by replacing the
scheme in the URI.
<span class="h3"><a class="selflink" id="section-4.3" href="#section-4.3">4.3</a>. Session Identifiers</span>
Session identifiers are strings of a length between 8-128 characters.
A session identifier MUST be generated using methods that make it
cryptographically random (see [<a href="./rfc4086" title=""Randomness Requirements for Security"">RFC4086</a>]). It is RECOMMENDED that a
session identifier contain 128 bits of entropy, i.e., approximately
22 characters from a high-quality generator (see <a href="#section-21">Section 21</a>).
However, note that the session identifier does not provide any
security against session hijacking unless it is kept confidential by
the client, server, and trusted proxies.
<span class="h3"><a class="selflink" id="section-4.4" href="#section-4.4">4.4</a>. Media-Time Formats</span>
RTSP currently supports three different media-time formats defined
below. Additional time formats may be specified in the future.
These time formats can be used with the Range header (<a href="#section-18.40">Section 18.40</a>)
to request playback and specify at which media position protocol
requests actually will or have taken place. They are also used in
description of the media's properties using the Media-Range header
(<a href="#section-18.30">Section 18.30</a>). The unqualified format identifier is used on its
own in Accept-Ranges header (<a href="#section-18.5">Section 18.5</a>) to declare supported time
formats and also in the Range header (<a href="#section-18.40">Section 18.40</a>) to request the
time format used in the response.
<span class="h4"><a class="selflink" id="section-4.4.1" href="#section-4.4.1">4.4.1</a>. SMPTE-Relative Timestamps</span>
A timestamp may use a format derived from a Society of Motion Picture
and Television Engineers (SMPTE) specification and expresses time
offsets anchored at the start of the media clip. Relative timestamps
are expressed as SMPTE time codes [<a href="#ref-SMPTE-TC" title=""ST 12-1:2008 For Television -- Time and Control Code"">SMPTE-TC</a>] for frame-level access
accuracy. The time code has the format:
hours:minutes:seconds:frames.subframes
with the origin at the start of the clip. The default SMPTE format
is "SMPTE 30 drop" format, with a frame rate of 29.97 frames per
second. Other SMPTE codes MAY be supported (such as "SMPTE 25")
through the use of "smpte-type". For SMPTE 30, the "frames" field in
the time value can assume the values 0 through 29. The difference
between 30 and 29.97 frames per second is handled by dropping the
first two frame indices (values 00 and 01) of every minute, except
every tenth minute. If the frame and the subframe values are zero,
they may be omitted. Subframes are measured in hundredths of a
frame.
<span class="grey">Schulzrinne, et al. Standards Track [Page 28]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-29" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
Examples:
smpte=10:12:33:20-
smpte=10:07:33-
smpte=10:07:00-10:07:33:05.01
smpte-25=10:07:00-10:07:33:05.01
<span class="h4"><a class="selflink" id="section-4.4.2" href="#section-4.4.2">4.4.2</a>. Normal Play Time</span>
Normal Play Time (NPT) indicates the stream-absolute position
relative to the beginning of the presentation. The timestamp
consists of two parts: The mandatory first part may be expressed in
either seconds only or in hours, minutes, and seconds. The optional
second part consists of a decimal point and decimal figures and
indicates fractions of a second.
The beginning of a presentation corresponds to 0.0 seconds. Negative
values are not defined.
The special constant "now" is defined as the current instant of a
live event. It MAY only be used for live events and MUST NOT be used
for on-demand (i.e., non-live) content.
NPT is defined as in Digital Storage Media Command and Control
(DSMb;CC) [<a href="#ref-ISO.13818-6.1995">ISO.13818-6.1995</a>]:
Intuitively, NPT is the clock the viewer associates with a
program. It is often digitally displayed on a DVD player. NPT
advances normally when in normal play mode (scale = 1), advances
at a faster rate when in fast-scan forward (high positive scale
ratio), decrements when in scan reverse (negative scale ratio) and
is fixed in pause mode. NPT is (logically) equivalent to SMPTE
time codes.
Examples:
npt=123.45-125
npt=12:05:35.3-
npt=now-
<span class="grey">Schulzrinne, et al. Standards Track [Page 29]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-30" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
The syntax is based on ISO 8601 [<a href="#ref-ISO.8601.2000">ISO.8601.2000</a>] and expresses the
time elapsed since presentation start, with two different notations
allowed:
o The npt-hhmmss notation uses an ISO 8601 extended complete
representation of the time of the day format (Section 5.3.1.1 of
[<a href="#ref-ISO.8601.2000">ISO.8601.2000</a>] ) using colons (":") as separators between hours,
minutes, and seconds (hh:mm:ss). The hour counter is not limited
to 0-24 hours; up to nineteen (19) hour digits are allowed.
* In accordance with the requirements of the ISO 8601 time
format, the hours, minutes, and seconds MUST all be present,
with two digits used for minutes and for seconds and with at
least two digits for hours. An NPT of 7 minutes and 0 seconds
is represented as "00:07:00", and an NPT of 392 hours, 0
minutes, and 6 seconds is represented as "392:00:06".
* RTSP 1.0 allowed NPT in the npt-hhmmss notation without any
leading zeros to ensure that implementations don't fail; for
backward compatibility, all RTSP 2.0 implementations are
REQUIRED to support receiving NPT values, hours, minutes, or
seconds, without leading zeros.
o The npt-sec notation expresses the time in seconds, using between
one and nineteen (19) digits.
Both notations allow decimal fractions of seconds as specified in
Section 5.3.1.3 of [<a href="#ref-ISO.8601.2000">ISO.8601.2000</a>], using at most nine digits, and
allowing only "." (full stop) as the decimal separator.
The npt-sec notation is optimized for automatic generation; the npt-
hhmmss notation is optimized for consumption by human readers. The
"now" constant allows clients to request to receive the live feed
rather than the stored or time-delayed version. This is needed since
neither absolute time nor zero time are appropriate for this case.
<span class="h4"><a class="selflink" id="section-4.4.3" href="#section-4.4.3">4.4.3</a>. Absolute Time</span>
Absolute time is expressed using a timestamp based on ISO 8601
[<a href="#ref-ISO.8601.2000">ISO.8601.2000</a>]. The date is a complete representation of the
calendar date in basic format (YYYYMMDD) without separators (per
Section 5.2.1.1 of [<a href="#ref-ISO.8601.2000">ISO.8601.2000</a>]). The time of day is provided in
the complete representation basic format (hhmmss) as specified in
Section 5.3.1.1 of [<a href="#ref-ISO.8601.2000">ISO.8601.2000</a>], allowing decimal fractions of
seconds following <a href="#section-5.3.1.3">Section 5.3.1.3</a> requiring "." (full stop) as
decimal separator and limiting the number of digits to no more than
nine. The time expressed MUST use UTC (GMT), i.e., no time zone
offsets are allowed. The full date and time specification is the
<span class="grey">Schulzrinne, et al. Standards Track [Page 30]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-31" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
eight-digit date followed by a "T" followed by the six-digit time
value, optionally followed by a full stop followed by one to nine
fractions of a second and ended by "Z", e.g., YYYYMMDDThhmmss.ssZ.
The reasons for this time format rather than using "Date and Time
on the Internet: Timestamps" [<a href="./rfc3339" title=""Date and Time on the Internet: Timestamps"">RFC3339</a>] are historic. We continue
to use the format specified in RTSP 1.0. The motivations raised
in <a href="./rfc3339">RFC 3339</a> apply to why a selection from ISO 8601 was made;
however, a different and even more restrictive selection was
applied in this case.
Below are three examples of media time formats, first, a request for
a clock format range request for a starting time of November 8, 1996
at 14 h 37 min and 20 1/4 seconds UTC playing for 10 min and 5
seconds, followed by a Media-Properties header's "Time-Limited" UTC
property for the 24th of December 2014 at 15 hours and 00 minutes,
and finally a Terminate-Reason header "time" property for the 18th of
June 2013 at 16 hours, 12 minutes, and 56 seconds:
clock=19961108T143720.25Z-19961108T144725.25Z
Time-Limited=20141224T1500Z
time=20130618T161256Z
<span class="h3"><a class="selflink" id="section-4.5" href="#section-4.5">4.5</a>. Feature Tags</span>
Feature tags are unique identifiers used to designate features in
RTSP. These tags are used in Require (<a href="#section-18.43">Section 18.43</a>), Proxy-Require
(<a href="#section-18.37">Section 18.37</a>), Proxy-Supported (<a href="#section-18.38">Section 18.38</a>), Supported
(<a href="#section-18.51">Section 18.51</a>), and Unsupported (<a href="#section-18.55">Section 18.55</a>) header fields.
A feature tag definition MUST indicate which combination of clients,
servers, or proxies to which it applies.
The creator of a new RTSP feature tag should either prefix the
feature tag with a reverse domain name (e.g.,
"com.example.mynewfeature" is an apt name for a feature whose
inventor can be reached at "example.com") or register the new feature
tag with the Internet Assigned Numbers Authority (IANA). (See
<a href="#section-22">Section 22</a>, "IANA Considerations".)
The usage of feature tags is further described in <a href="#section-11">Section 11</a>, which
deals with capability handling.
<span class="grey">Schulzrinne, et al. Standards Track [Page 31]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-32" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
<span class="h3"><a class="selflink" id="section-4.6" href="#section-4.6">4.6</a>. Message Body Tags</span>
Message body tags are opaque strings that are used to compare two
message bodies from the same resource, for example, in caches or to
optimize setup after a redirect. Message body tags can be carried in
the MTag header (see <a href="#section-18.31">Section 18.31</a>) or in SDP (see <a href="#appendix-D.1.9">Appendix D.1.9</a>).
MTag is similar to ETag in HTTP/1.1 (see <a href="./rfc2068#section-3.11">Section 3.11 of [RFC2068]</a>).
A message body tag MUST be unique across all versions of all message
bodies associated with a particular resource. A given message body
tag value MAY be used for message bodies obtained by requests on
different URIs. The use of the same message body tag value in
conjunction with message bodies obtained by requests on different
URIs does not imply the equivalence of those message bodies.
Message body tags are used in RTSP to make some methods conditional.
The methods are made conditional through the inclusion of headers;
see <a href="#section-18.24">Section 18.24</a> and <a href="#section-18.26">Section 18.26</a> for information on the If-Match
and If-None-Match headers, respectively. Note that RTSP message body
tags apply to the complete presentation, i.e., both the presentation
description and the individual media streams. Thus, message body
tags can be used to verify at setup time after a redirect that the
same session description applies to the media at the new location
using the If-Match header.
<span class="h3"><a class="selflink" id="section-4.7" href="#section-4.7">4.7</a>. Media Properties</span>
When an RTSP server handles media, it is important to consider the
different properties a media instance for delivery and playback can
have. This specification considers the media properties listed below
in its protocol operations. They are derived from the differences
between a number of supported usages.
On-demand: Media that has a fixed (given) duration that doesn't
change during the lifetime of the RTSP session and is known at the
time of the creation of the session. It is expected that the
content of the media will not change, even if the representation,
such as encoding, or quality, may change. Generally, one can
seek, i.e., request any range, within the media.
Dynamic On-demand: This is a variation of the on-demand case where
external methods are used to manipulate the actual content of the
media setup for the RTSP session. The main example is content
defined by a playlist.
<span class="grey">Schulzrinne, et al. Standards Track [Page 32]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-33" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
Live: Live media represents a progressing content stream (such as
broadcast TV) where the duration may or may not be known. It is
not seekable, only the content presently being delivered can be
accessed.
Live with Recording: A live stream that is combined with a server-
side capability to store and retain the content of the live
session and allow for random access delivery within the part of
the already-recorded content. The actual behavior of the media
stream is very much dependent on the retention policy for the
media stream; either the server will be able to capture the
complete media stream or it will have a limitation in how much
will be retained. The media range will dynamically change as the
session progress. For servers with a limited amount of storage
available for recording, there will typically be a sliding window
that moves forward while new data is made available and older data
is discarded.
To cover the above usages, the following media properties with
appropriate values are specified.
<span class="h4"><a class="selflink" id="section-4.7.1" href="#section-4.7.1">4.7.1</a>. Random Access and Seeking</span>
Random access is the ability to specify and get media delivered
starting from any time (instant) within the content, an operation
called "seeking". The Media-Properties header will indicate the
general capability for a media resource to perform random access.
Random-Access: The media is seekable to any out of a large number of
points within the media. Due to media-encoding limitations, a
particular point may not be reachable, but seeking to a point
close by is enabled. A floating-point number of seconds may be
provided to express the worst-case distance between random access
points.
Beginning-Only: Seeking is only possible to the beginning of the
content.
No-Seeking: Seeking is not possible at all.
If random access is possible, as indicated by the Media-Properties
header, the actual behavior policy when seeking can be controlled
using the Seek-Style header (<a href="#section-18.47">Section 18.47</a>).
<span class="grey">Schulzrinne, et al. Standards Track [Page 33]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-34" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
<span class="h4"><a class="selflink" id="section-4.7.2" href="#section-4.7.2">4.7.2</a>. Retention</span>
The following retention policies are used by media to limit possible
protocol operations:
Unlimited: The media will not be removed as long as the RTSP session
is in existence.
Time-Limited: The media will not be removed before the given
wallclock time. After that time, it may or may not be available
anymore.
Time-Duration: The media (on fragment or unit basis) will be
retained for the specified duration.
<span class="h4"><a class="selflink" id="section-4.7.3" href="#section-4.7.3">4.7.3</a>. Content Modifications</span>
The media content and its timeline can be of different types, e.g.
pre-produced content on demand, a live source that is being generated
as time progresses, or something that is dynamically altered or
recomposed during playback. Therefore, a media property for content
modifications is needed and the following initial values are defined:
Immutable: The content of the media will not change, even if the
representation, such as encoding or quality changes.
Dynamic: The content can change due to external methods or triggers,
such as playlists, but this will be announced by explicit updates.
Time-Progressing: As time progresses, new content will become
available. If the content is also retained, it will become longer
as everything between the start point and the point currently
being made available can be accessed. If the media server uses a
sliding-window policy for retention, the start point will also
change as time progresses.
<span class="h4"><a class="selflink" id="section-4.7.4" href="#section-4.7.4">4.7.4</a>. Supported Scale Factors</span>
A particular media content item often supports only a limited set or
range of scales when delivering the media. To enable the client to
know what values or ranges of scale operations that the whole content
or the current position supports, a media properties attribute for
this is defined that contains a list with the values or ranges that
are supported. The attribute is named "Scales". The "Scales"
attribute may be updated at any point in the content due to content
consisting of spliced pieces or content being dynamically updated by
out-of-band mechanisms.
<span class="grey">Schulzrinne, et al. Standards Track [Page 34]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-35" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
<span class="h4"><a class="selflink" id="section-4.7.5" href="#section-4.7.5">4.7.5</a>. Mapping to the Attributes</span>
This section shows examples of how one would map the above usages to
the properties and their values.
Example of On-Demand:
Random Access: Random-Access=5.0, Content Modifications:
Immutable, Retention: Unlimited or Time-Limited.
Example of Dynamic On-Demand:
Random Access: Random-Access=3.0, Content Modifications: Dynamic,
Retention: Unlimited or Time-Limited.
Example of Live:
Random Access: No-Seeking, Content Modifications: Time-
Progressing, Retention: Time-Duration=0.0
Example of Live with Recording:
Random Access: Random-Access=3.0, Content Modifications: Time-
Progressing, Retention: Time-Duration=7200.0
<span class="h2"><a class="selflink" id="section-5" href="#section-5">5</a>. RTSP Message</span>
RTSP is a text-based protocol that uses the ISO 10646 character set
in UTF-8 encoding per <a href="./rfc3629">RFC 3629</a> [<a href="./rfc3629" title=""UTF-8, a transformation format of ISO 10646"">RFC3629</a>]. Lines MUST be terminated
by a CRLF.
Text-based protocols make it easier to add optional parameters in
a self-describing manner. Since the number of parameters and the
frequency of commands is low, processing efficiency is not a
concern. Text-based protocols, if used carefully, also allow easy
implementation of research prototypes in scripting languages such
as Python, PHP, Perl and TCL.
The ISO 10646 character set avoids character-set switching, but is
invisible to the application as long as US-ASCII is being used. This
is also the encoding used for text fields in RTCP [<a href="./rfc3550" title=""RTP: A Transport Protocol for Real-Time Applications"">RFC3550</a>].
A request contains a method, the object the method is operating upon,
and parameters to further describe the method. Methods are
idempotent unless otherwise noted. Methods are also designed to
require little or no state maintenance at the media server.
<span class="grey">Schulzrinne, et al. Standards Track [Page 35]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-36" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
<span class="h3"><a class="selflink" id="section-5.1" href="#section-5.1">5.1</a>. Message Types</span>
RTSP messages are either requests from client to server or from
server to client, and responses in the reverse direction. Request
(<a href="#section-7">Section 7</a>) and response (<a href="#section-8">Section 8</a>) messages use a format based on
the generic message format of <a href="./rfc5322">RFC 5322</a> [<a href="./rfc5322" title=""Internet Message Format"">RFC5322</a>] for transferring
bodies (the payload of the message). Both types of messages consist
of a start-line, zero or more header fields (also known as
"headers"), an empty line (i.e., a line with nothing preceding the
CRLF) indicating the end of the headers, and possibly the data of the
message body. The ABNF [<a href="./rfc5234" title=""Augmented BNF for Syntax Specifications: ABNF"">RFC5234</a>] below is for illustration only; the
formal message specification is presented in <a href="#section-20.2.2">Section 20.2.2</a>.
generic-message = start-line
*(rtsp-header CRLF)
CRLF
[ message-body-data ]
start-line = Request-Line / Status-Line
In the interest of robustness, agents MUST ignore any empty line(s)
received where a Request-Line or Status-Line is expected. In other
words, if the agent is reading the protocol stream at the beginning
of a message and receives any number of CRLFs first, it MUST ignore
all of the CRLFs.
<span class="h3"><a class="selflink" id="section-5.2" href="#section-5.2">5.2</a>. Message Headers</span>
RTSP header fields (see <a href="#section-18">Section 18</a>) include general-header, request-
header, response-header, and message body header fields.
The order in which header fields with differing field names are
received is not significant. However, it is "good practice" to send
general-header fields first, followed by a request-header or
response-header field, and ending with the message body header
fields.
Multiple header fields with the same field-name MAY be present in a
message if and only if the entire field-value for that header field
is defined as a comma-separated list. It MUST be possible to combine
the multiple header fields into one "field-name: field-value" pair,
without changing the semantics of the message, by appending each
subsequent field-value to the first, each separated by a comma. The
order in which header fields with the same field-name are received is
therefore significant to the interpretation of the combined field
value; thus, a proxy MUST NOT change the order of these field-values
when a message is forwarded.
<span class="grey">Schulzrinne, et al. Standards Track [Page 36]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-37" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
Unknown message headers MUST be ignored (skipping over the header to
the next protocol element, and not causing an error) by an RTSP
server or client. An RTSP proxy MUST forward unknown message
headers. Message headers defined outside of this specification that
are required to be interpreted by the RTSP agent will need to use
feature tags (<a href="#section-4.5">Section 4.5</a>) and include them in the appropriate
Require (<a href="#section-18.43">Section 18.43</a>) or Proxy-Require (<a href="#section-18.37">Section 18.37</a>) header.
<span class="h3"><a class="selflink" id="section-5.3" href="#section-5.3">5.3</a>. Message Body</span>
The message body (if any) of an RTSP message is used to carry further
information for a particular resource associated with the request or
response. An example of a message body is an SDP message.
The presence of a message body in either a request or a response MUST
be signaled by the inclusion of a Content-Length header (see
<a href="#section-18.17">Section 18.17</a>) and Content-Type header (see <a href="#section-18.19">Section 18.19</a>). A
message body MUST NOT be included in a request or response if the
specification of the particular method (see Method Definitions
(<a href="#section-13">Section 13</a>)) does not allow sending a message body. In case a
message body is received in a message when not expected, the message
body data SHOULD be discarded. This is to allow future extensions to
define optional use of a message body.
<span class="h3"><a class="selflink" id="section-5.4" href="#section-5.4">5.4</a>. Message Length</span>
An RTSP message that does not contain any message body is terminated
by the first empty line after the header fields (note: an empty line
is a line with nothing preceding the CRLF.). In RTSP messages that
contain message bodies, the empty line is followed by the message
body. The length of that body is determined by the value of the
Content-Length header (<a href="#section-18.17">Section 18.17</a>). The value in the header
represents the length of the message body in octets. If this header
field is not present, a value of zero is assumed, i.e., no message
body present in the message. Unlike an HTTP message, an RTSP message
MUST contain a Content-Length header whenever it contains a message
body. Note that RTSP does not support the HTTP/1.1 "chunked"
transfer coding (see <a href="./rfc7230#section-4.1">Section 4.1 of [RFC7230]</a>).
Given the moderate length of presentation descriptions returned,
the server should always be able to determine its length, even if
it is generated dynamically, making the chunked transfer encoding
unnecessary.
<span class="h2"><a class="selflink" id="section-6" href="#section-6">6</a>. General-Header Fields</span>
General headers are headers that may be used in both requests and
responses. The general-headers are listed in Table 1:
<span class="grey">Schulzrinne, et al. Standards Track [Page 37]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-38" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
+--------------------+----------------+
| Header Name | Defined in |
+--------------------+----------------+
| Accept-Ranges | <a href="#section-18.5">Section 18.5</a> |
| | |
| Cache-Control | <a href="#section-18.11">Section 18.11</a> |
| | |
| Connection | <a href="#section-18.12">Section 18.12</a> |
| | |
| CSeq | <a href="#section-18.20">Section 18.20</a> |
| | |
| Date | <a href="#section-18.21">Section 18.21</a> |
| | |
| Media-Properties | <a href="#section-18.29">Section 18.29</a> |
| | |
| Media-Range | <a href="#section-18.30">Section 18.30</a> |
| | |
| Pipelined-Requests | <a href="#section-18.33">Section 18.33</a> |
| | |
| Proxy-Supported | <a href="#section-18.38">Section 18.38</a> |
| | |
| Range | <a href="#section-18.40">Section 18.40</a> |
| | |
| RTP-Info | <a href="#section-18.45">Section 18.45</a> |
| | |
| Scale | <a href="#section-18.46">Section 18.46</a> |
| | |
| Seek-Style | <a href="#section-18.47">Section 18.47</a> |
| | |
| Server | <a href="#section-18.48">Section 18.48</a> |
| | |
| Session | <a href="#section-18.49">Section 18.49</a> |
| | |
| Speed | <a href="#section-18.50">Section 18.50</a> |
| | |
| Supported | <a href="#section-18.51">Section 18.51</a> |
| | |
| Timestamp | <a href="#section-18.53">Section 18.53</a> |
| | |
| Transport | <a href="#section-18.54">Section 18.54</a> |
| | |
| User-Agent | <a href="#section-18.56">Section 18.56</a> |
| | |
| Via | <a href="#section-18.57">Section 18.57</a> |
+--------------------+----------------+
Table 1: The General Headers Used in RTSP
<span class="grey">Schulzrinne, et al. Standards Track [Page 38]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-39" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
<span class="h2"><a class="selflink" id="section-7" href="#section-7">7</a>. Request</span>
A request message uses the format outlined below regardless of the
direction of a request, whether client to server or server to client:
o Request line, containing the method to be applied to the resource,
the identifier of the resource, and the protocol version in use;
o Zero or more Header lines, which can be of the following types:
general-headers (<a href="#section-6">Section 6</a>), request-headers (<a href="#section-7.2">Section 7.2</a>), or
message body headers (<a href="#section-9.1">Section 9.1</a>);
o One empty line (CRLF) to indicate the end of the header section;
o Optionally, a message body, consisting of one or more lines. The
length of the message body in octets is indicated by the Content-
Length message header.
<span class="grey">Schulzrinne, et al. Standards Track [Page 39]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-40" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
<span class="h3"><a class="selflink" id="section-7.1" href="#section-7.1">7.1</a>. Request Line</span>
The request line provides the key information about the request: what
method, on what resources, and using which RTSP version. The methods
that are defined by this specification are listed in Table 2.
+---------------+----------------+
| Method | Defined in |
+---------------+----------------+
| DESCRIBE | <a href="#section-13.2">Section 13.2</a> |
| | |
| GET_PARAMETER | <a href="#section-13.8">Section 13.8</a> |
| | |
| OPTIONS | <a href="#section-13.1">Section 13.1</a> |
| | |
| PAUSE | <a href="#section-13.6">Section 13.6</a> |
| | |
| PLAY | <a href="#section-13.4">Section 13.4</a> |
| | |
| PLAY_NOTIFY | <a href="#section-13.5">Section 13.5</a> |
| | |
| REDIRECT | <a href="#section-13.10">Section 13.10</a> |
| | |
| SETUP | <a href="#section-13.3">Section 13.3</a> |
| | |
| SET_PARAMETER | <a href="#section-13.9">Section 13.9</a> |
| | |
| TEARDOWN | <a href="#section-13.7">Section 13.7</a> |
+---------------+----------------+
Table 2: The RTSP Methods
The syntax of the RTSP request line has the following:
<Method> SP <Request-URI> SP <RTSP-Version> CRLF
Note: This syntax cannot be freely changed in future versions of
RTSP. This line needs to remain parsable by older RTSP
implementations since it indicates the RTSP version of the message.
In contrast to HTTP/1.1 [<a href="./rfc7230" title=""Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and Routing"">RFC7230</a>], RTSP requests identify the
resource through an absolute RTSP URI (including scheme, host, and
port) (see <a href="#section-4.2">Section 4.2</a>) rather than just the absolute path.
HTTP/1.1 requires servers to understand the absolute URI, but
clients are supposed to use the Host request-header. This is
purely needed for backward compatibility with HTTP/1.0 servers, a
consideration that does not apply to RTSP.
<span class="grey">Schulzrinne, et al. Standards Track [Page 40]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-41" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
An asterisk "*" can be used instead of an absolute URI in the
Request-URI part to indicate that the request does not apply to a
particular resource but to the server or proxy itself, and is only
allowed when the request method does not necessarily apply to a
resource.
For example:
OPTIONS * RTSP/2.0
An OPTIONS in this form will determine the capabilities of the server
or the proxy that first receives the request. If the capability of
the specific server needs to be determined, without regard to the
capability of an intervening proxy, the server should be addressed
explicitly with an absolute URI that contains the server's address.
For example:
OPTIONS rtsp://example.com RTSP/2.0
<span class="grey">Schulzrinne, et al. Standards Track [Page 41]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-42" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
<span class="h3"><a class="selflink" id="section-7.2" href="#section-7.2">7.2</a>. Request-Header Fields</span>
The RTSP headers in Table 3 can be included in a request, as request-
headers, to modify the specifics of the request.
+---------------------+----------------+
| Header | Defined in |
+---------------------+----------------+
| Accept | <a href="#section-18.1">Section 18.1</a> |
| | |
| Accept-Credentials | <a href="#section-18.2">Section 18.2</a> |
| | |
| Accept-Encoding | <a href="#section-18.3">Section 18.3</a> |
| | |
| Accept-Language | <a href="#section-18.4">Section 18.4</a> |
| | |
| Authorization | <a href="#section-18.8">Section 18.8</a> |
| | |
| Bandwidth | <a href="#section-18.9">Section 18.9</a> |
| | |
| Blocksize | <a href="#section-18.10">Section 18.10</a> |
| | |
| From | <a href="#section-18.23">Section 18.23</a> |
| | |
| If-Match | <a href="#section-18.24">Section 18.24</a> |
| | |
| If-Modified-Since | <a href="#section-18.25">Section 18.25</a> |
| | |
| If-None-Match | <a href="#section-18.26">Section 18.26</a> |
| | |
| Notify-Reason | <a href="#section-18.32">Section 18.32</a> |
| | |
| Proxy-Authorization | <a href="#section-18.36">Section 18.36</a> |
| | |
| Proxy-Require | <a href="#section-18.37">Section 18.37</a> |
| | |
| Referrer | <a href="#section-18.41">Section 18.41</a> |
| | |
| Request-Status | <a href="#section-18.42">Section 18.42</a> |
| | |
| Require | <a href="#section-18.43">Section 18.43</a> |
| | |
| Terminate-Reason | <a href="#section-18.52">Section 18.52</a> |
+---------------------+----------------+
Table 3: The RTSP Request-Headers
Detailed header definitions are provided in <a href="#section-18">Section 18</a>.
<span class="grey">Schulzrinne, et al. Standards Track [Page 42]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-43" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
New request-headers may be defined. If the receiver of the request
is required to understand the request-header, the request MUST
include a corresponding feature tag in a Require or Proxy-Require
header to ensure the processing of the header.
<span class="h2"><a class="selflink" id="section-8" href="#section-8">8</a>. Response</span>
After receiving and interpreting a request message, the recipient
responds with an RTSP response message. Normally, there is only one,
final, response. Responses using the response code class 1xx is the
only class for which there MAY be sent one or more responses prior to
the final response message.
The valid response codes and the methods they can be used with are
listed in Table 4.
<span class="h3"><a class="selflink" id="section-8.1" href="#section-8.1">8.1</a>. Status-Line</span>
The first line of a response message is the Status-Line, consisting
of the protocol version followed by a numeric status code and the
textual phrase associated with the status code, with each element
separated by SP characters. No CR or LF is allowed except in the
final CRLF sequence.
<RTSP-Version> SP <Status-Code> SP <Reason Phrase> CRLF
<span class="h4"><a class="selflink" id="section-8.1.1" href="#section-8.1.1">8.1.1</a>. Status Code and Reason Phrase</span>
The Status-Code element is a 3-digit integer result code of the
attempt to understand and satisfy the request. These codes are fully
defined in <a href="#section-17">Section 17</a>. The reason phrase is intended to give a short
textual description of the Status-Code. The Status-Code is intended
for use by automata and the reason phrase is intended for the human
user. The client is not required to examine or display the reason
phrase.
The first digit of the Status-Code defines the class of response.
The last two digits do not have any categorization role. There are
five values for the first digit:
1xx: Informational - Request received, continuing process
2xx: Success - The action was successfully received, understood, and
accepted
3rr: Redirection - Further action needs to be taken in order to
complete the request (3rr rather than 3xx is used as 304 is
excluded; see <a href="#section-17.3">Section 17.3</a>)
<span class="grey">Schulzrinne, et al. Standards Track [Page 43]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-44" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
4xx: Client Error - The request contains bad syntax or cannot be
fulfilled
5xx: Server Error - The server failed to fulfill an apparently valid
request
The individual values of the numeric status codes defined for RTSP
2.0, and an example set of corresponding reason phrases, are
presented in Table 4. The reason phrases listed here are only
recommended; they may be replaced by local equivalents without
affecting the protocol. Note that RTSP adopted most HTTP/1.1
[<a href="./rfc2068" title=""Hypertext Transfer Protocol -- HTTP/1.1"">RFC2068</a>] status codes and then added RTSP-specific status codes
starting at x50 to avoid conflicts with future HTTP status codes that
are desirable to import into RTSP. All these codes are RTSP specific
and RTSP has its own registry separate from HTTP for status codes.
RTSP status codes are extensible. RTSP applications are not required
to understand the meaning of all registered status codes, though such
understanding is obviously desirable. However, applications MUST
understand the class of any status code, as indicated by the first
digit, and treat any unrecognized response as being equivalent to the
x00 status code of that class, with an exception for unknown 3xx
codes, which MUST be treated as a 302 (Found). The reason for that
exception is that the status code 300 (Multiple Choices in HTTP) is
not defined for RTSP. A response with an unrecognized status code
MUST NOT be cached. For example, if an unrecognized status code of
431 is received by the client, it can safely assume that there was
something wrong with its request and treat the response as if it had
received a 400 status code. In such cases, user agents SHOULD
present to the user the message body returned with the response,
since that message body is likely to include human-readable
information that will explain the unusual status.
+------+---------------------------------+--------------------------+
| Code | Reason | Method |
+------+---------------------------------+--------------------------+
| 100 | Continue | all |
| | | |
| 200 | OK | all |
| | | |
| 301 | Moved Permanently | all |
| | | |
| 302 | Found | all |
| | | |
| 303 | See Other | n/a |
| | | |
| 304 | Not Modified | all |
| | | |
<span class="grey">Schulzrinne, et al. Standards Track [Page 44]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-45" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
| 305 | Use Proxy | all |
| | | |
| 400 | Bad Request | all |
| | | |
| 401 | Unauthorized | all |
| | | |
| 402 | Payment Required | all |
| | | |
| 403 | Forbidden | all |
| | | |
| 404 | Not Found | all |
| | | |
| 405 | Method Not Allowed | all |
| | | |
| 406 | Not Acceptable | all |
| | | |
| 407 | Proxy Authentication Required | all |
| | | |
| 408 | Request Timeout | all |
| | | |
| 410 | Gone | all |
| | | |
| 412 | Precondition Failed | DESCRIBE, SETUP |
| | | |
| 413 | Request Message Body Too Large | all |
| | | |
| 414 | Request-URI Too Long | all |
| | | |
| 415 | Unsupported Media Type | all |
| | | |
| 451 | Parameter Not Understood | SET_PARAMETER, |
| | | GET_PARAMETER |
| | | |
| 452 | reserved | n/a |
| | | |
| 453 | Not Enough Bandwidth | SETUP |
| | | |
| 454 | Session Not Found | all |
| | | |
| 455 | Method Not Valid in This State | all |
| | | |
| 456 | Header Field Not Valid for | all |
| | Resource | |
| | | |
| 457 | Invalid Range | PLAY, PAUSE |
| | | |
| 458 | Parameter Is Read-Only | SET_PARAMETER |
| | | |
<span class="grey">Schulzrinne, et al. Standards Track [Page 45]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-46" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
| 459 | Aggregate Operation Not Allowed | all |
| | | |
| 460 | Only Aggregate Operation | all |
| | Allowed | |
| | | |
| 461 | Unsupported Transport | all |
| | | |
| 462 | Destination Unreachable | all |
| | | |
| 463 | Destination Prohibited | SETUP |
| | | |
| 464 | Data Transport Not Ready Yet | PLAY |
| | | |
| 465 | Notification Reason Unknown | PLAY_NOTIFY |
| | | |
| 466 | Key Management Error | all |
| | | |
| 470 | Connection Authorization | all |
| | Required | |
| | | |
| 471 | Connection Credentials Not | all |
| | Accepted | |
| | | |
| 472 | Failure to Establish Secure | all |
| | Connection | |
| | | |
| 500 | Internal Server Error | all |
| | | |
| 501 | Not Implemented | all |
| | | |
| 502 | Bad Gateway | all |
| | | |
| 503 | Service Unavailable | all |
| | | |
| 504 | Gateway Timeout | all |
| | | |
| 505 | RTSP Version Not Supported | all |
| | | |
| 551 | Option Not Supported | all |
| | | |
| 553 | Proxy Unavailable | all |
+------+---------------------------------+--------------------------+
Table 4: Status Codes and Their Usage with RTSP Methods
<span class="grey">Schulzrinne, et al. Standards Track [Page 46]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-47" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
<span class="h3"><a class="selflink" id="section-8.2" href="#section-8.2">8.2</a>. Response Headers</span>
The response-headers allow the request recipient to pass additional
information about the response that cannot be placed in the Status-
Line. This header gives information about the server and about
further access to the resource identified by the Request-URI. All
headers currently classified as response-headers are listed in
Table 5.
+------------------------+----------------+
| Header | Defined in |
+------------------------+----------------+
| Authentication-Info | <a href="#section-18.7">Section 18.7</a> |
| | |
| Connection-Credentials | <a href="#section-18.13">Section 18.13</a> |
| | |
| Location | <a href="#section-18.28">Section 18.28</a> |
| | |
| MTag | <a href="#section-18.31">Section 18.31</a> |
| | |
| Proxy-Authenticate | <a href="#section-18.34">Section 18.34</a> |
| | |
| Public | <a href="#section-18.39">Section 18.39</a> |
| | |
| Retry-After | <a href="#section-18.44">Section 18.44</a> |
| | |
| Unsupported | <a href="#section-18.55">Section 18.55</a> |
| | |
| WWW-Authenticate | <a href="#section-18.58">Section 18.58</a> |
+------------------------+----------------+
Table 5: The RTSP Response Headers
Response-header names can be extended reliably only in combination
with a change in the protocol version. However, the usage of feature
tags in the request allows the responding party to learn the
capability of the receiver of the response. A new or experimental
header can be given the semantics of response-header if all parties
in the communication recognize them to be a response-header.
Unrecognized headers in responses MUST be ignored.
<span class="h2"><a class="selflink" id="section-9" href="#section-9">9</a>. Message Body</span>
Some request and response messages include a message body, if not
otherwise restricted by the request method or response status code.
The message body consists of the content data itself (see also
<a href="#section-5.3">Section 5.3</a>).
<span class="grey">Schulzrinne, et al. Standards Track [Page 47]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-48" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
The SET_PARAMETER and GET_PARAMETER requests and responses, and the
DESCRIBE response as defined by this specification, can have a
message body; the purpose of the message body is defined in each
case. All 4xx and 5xx responses MAY also have a message body to
carry additional response information. Generally, a message body MAY
be attached to any RTSP 2.0 request or response, but the content of
the message body MAY be ignored by the receiver. Extensions to this
specification can specify the purpose and content of message bodies,
including requiring their inclusion.
In this section, both sender and recipient refer to either the client
or the server, depending on who sends and who receives the message
body.
<span class="h3"><a class="selflink" id="section-9.1" href="#section-9.1">9.1</a>. Message Body Header Fields</span>
Message body header fields define meta-information about the content
data in the message body. The message body header fields are listed
in Table 6.
+------------------+----------------+
| Header | Defined in |
+------------------+----------------+
| Allow | <a href="#section-18.6">Section 18.6</a> |
| | |
| Content-Base | <a href="#section-18.14">Section 18.14</a> |
| | |
| Content-Encoding | <a href="#section-18.15">Section 18.15</a> |
| | |
| Content-Language | <a href="#section-18.16">Section 18.16</a> |
| | |
| Content-Length | <a href="#section-18.17">Section 18.17</a> |
| | |
| Content-Location | <a href="#section-18.18">Section 18.18</a> |
| | |
| Content-Type | <a href="#section-18.19">Section 18.19</a> |
| | |
| Expires | <a href="#section-18.22">Section 18.22</a> |
| | |
| Last-Modified | <a href="#section-18.27">Section 18.27</a> |
+------------------+----------------+
Table 6: The RTSP Message Body Headers
<span class="grey">Schulzrinne, et al. Standards Track [Page 48]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-49" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
The extension-header mechanism allows additional message body header
fields to be defined without changing the protocol, but these fields
cannot be assumed to be recognizable by the recipient. Unrecognized
header fields MUST be ignored by the recipient and forwarded by
proxies.
<span class="h3"><a class="selflink" id="section-9.2" href="#section-9.2">9.2</a>. Message Body</span>
An RTSP message with a message body MUST include the Content-Type and
Content-Length headers. When a message body is included with a
message, the data type of that content data is determined via the
Content-Type and Content-Encoding header fields.
Content-Type specifies the media type of the underlying data. There
is no default media format and the actual format used in the body is
required to be explicitly stated in the Content-Type header. By
being explicit and always requiring the inclusion of the Content-Type
header with accurate information, one avoids the many pitfalls in a
heuristic-based interpretation of the body content. The user
experience of HTTP and email have suffered from relying on such
heuristics.
Content-Encoding may be used to indicate any additional content-
codings applied to the data, usually for the purpose of data
compression, that are a property of the requested resource. The
default encoding is 'identity', i.e. no transformation of the message
body.
The Content-Length of a message is the length of the content,
measured in octets.
<span class="h3"><a class="selflink" id="section-9.3" href="#section-9.3">9.3</a>. Message Body Format Negotiation</span>
The content format of the message body is provided using the Content-
Type header (<a href="#section-18.19">Section 18.19</a>). To enable the responder of a request to
determine which media type it should use, the requester may include
the Accept header (<a href="#section-18.1">Section 18.1</a>) in a request to identify supported
media types or media type ranges suitable to the response. In case
the responder is not supporting any of the specified formats, then
the request response will be a 406 (Not Acceptable) error code.
The media types that may be used on requests with message bodies need
to be determined through the use of feature tags, specification
requirement, or trial and error. Trial and error works because when
the responder does not support the media type of the message body, it
will respond with a 415 (Unsupported Media Type).
<span class="grey">Schulzrinne, et al. Standards Track [Page 49]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-50" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
The formats supported and their negotiation is done individually on a
per method and direction (request or response body) direction.
Requirements on supporting particular media types for use as message
bodies in requests and response SHALL also be specified on a per-
method and per-direction basis.
<span class="h2"><a class="selflink" id="section-10" href="#section-10">10</a>. Connections</span>
RTSP messages are transferred between RTSP agents and proxies using a
transport connection. This transport connection uses TCP or TCP/TLS.
This transport connection is referred to as the "connection" or "RTSP
connection" within this document.
RTSP requests can be transmitted using the two different connection
scenarios listed below:
o persistent - a transport connection is used for several request/
response transactions;
o transient - a transport connection is used for each single
request/response transaction.
<a href="./rfc2326">RFC 2326</a> attempted to specify an optional mechanism for transmitting
RTSP messages in connectionless mode over a transport protocol such
as UDP. However, it was not specified in sufficient detail to allow
for interoperable implementations. In an attempt to reduce
complexity and scope, and due to lack of interest, RTSP 2.0 does not
attempt to define a mechanism for supporting RTSP over UDP or other
connectionless transport protocols. A side effect of this is that
RTSP requests MUST NOT be sent to multicast groups since no
connection can be established with a specific receiver in multicast
environments.
Certain RTSP headers, such as the CSeq header (<a href="#section-18.20">Section 18.20</a>), which
may appear to be relevant only to connectionless transport scenarios,
are still retained and MUST be implemented according to this
specification. In the case of CSeq, it is quite useful for matching
responses to requests if the requests are pipelined (see <a href="#section-12">Section 12</a>).
It is also useful in proxies for keeping track of the different
requests when aggregating several client requests on a single TCP
connection.
<span class="h3"><a class="selflink" id="section-10.1" href="#section-10.1">10.1</a>. Reliability and Acknowledgements</span>
Since RTSP messages are transmitted using reliable transport
protocols, they MUST NOT be retransmitted at the RTSP level.
Instead, the implementation must rely on the underlying transport to
<span class="grey">Schulzrinne, et al. Standards Track [Page 50]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-51" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
provide reliability. The RTSP implementation may use any indication
of reception acknowledgment of the message from the underlying
transport protocols to optimize the RTSP behavior.
If both the underlying reliable transport, such as TCP, and the
RTSP application retransmit requests, each packet loss or message
loss may result in two retransmissions. The receiver typically
cannot take advantage of the application-layer retransmission
since the transport stack will not deliver the application-layer
retransmission before the first attempt has reached the receiver.
If the packet loss is caused by congestion, multiple
retransmissions at different layers will exacerbate the
congestion.
Lack of acknowledgment of an RTSP request should be handled within
the constraints of the connection timeout considerations described
below (<a href="#section-10.4">Section 10.4</a>).
<span class="h3"><a class="selflink" id="section-10.2" href="#section-10.2">10.2</a>. Using Connections</span>
A TCP transport can be used for both persistent connections (for
several message exchanges) and transient connections (for a single
message exchange). Implementations of this specification MUST
support RTSP over TCP. The scheme of the RTSP URI (<a href="#section-4.2">Section 4.2</a>)
allows the client to specify the port it will contact the server on,
and defines the default port to use if one is not explicitly given.
In addition to the registered default ports, i.e., 554 (rtsp) and 322
(rtsps), there is an alternative port 8554 registered. This port may
provide some benefits over non-registered ports if an RTSP server is
unable to use the default ports. The benefits may include
preconfigured security policies as well as classifiers in network
monitoring tools.
An RTSP client opening a TCP connection to access a particular
resource as identified by a URI uses the IP address and port derived
from the host and port parts of the URI. The IP address is either
the explicit address provided in the URI or any of the addresses
provided when performing A and AAAA record DNS lookups of the
hostname in the URI.
A server MUST handle both persistent and transient connections.
Transient connections facilitate mechanisms for fault tolerance.
They also allow for application-layer mobility. A server-and-
client pair that supports transient connections can survive the
<span class="grey">Schulzrinne, et al. Standards Track [Page 51]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-52" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
loss of a TCP connection; e.g., due to a NAT timeout. When the
client has discovered that the TCP connection has been lost, it
can set up a new one when there is need to communicate again.
A persistent connection is RECOMMENDED to be used for all
transactions between the server and client, including messages for
multiple RTSP sessions. However, a persistent connection MAY be
closed after a few message exchanges. For example, a client may use
a persistent connection for the initial SETUP and PLAY message
exchanges in a session and then close the connection. Later, when
the client wishes to send a new request, such as a PAUSE for the
session, a new connection would be opened. This connection may be
either transient or persistent.
An RTSP agent MAY use one connection to handle multiple RTSP sessions
on the same server. The RTSP agent SHALL NOT use more than one
connection per RTSP session at any given point.
Having only one connection in use at any time avoids confusion
regarding on which connection any server-to-client requests shall
be sent. Using a single connection for multiple RTSP sessions
also saves complexity by enabling the server to maintain less
state about its connection resources on the server. Not using
more than one connection at a time for a particular RTSP session
avoids wasting connection resources and allows the server to track
only the most recently used client-to-server connection for each
RTSP session as being the currently valid server-to-client
connection.
RTSP allows a server to send requests to a client. However, this can
be supported only if a client establishes a persistent connection
with the server. In cases where a persistent connection does not
exist between a server and its client, due to the lack of a signaling
channel, the server may be forced to silently discard RTSP messages,
and it may even drop an RTSP session without notifying the client.
An example of such a case is when the server desires to send a
REDIRECT request for an RTSP session to the client but is not able to
do so because it cannot reach the client. A server that attempts to
send a request to a client that has no connection currently to the
server SHALL discard the request.
Without a persistent connection between the client and the server,
the media server has no reliable way of reaching the client.
Because of the likely failure of server-to-client established
connections, the server will not even attempt establishing any
connection.
<span class="grey">Schulzrinne, et al. Standards Track [Page 52]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-53" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
Queuing of server-to-client requests has been considered.
However, a security issue exists as to how it might be possible to
authorize a client establishing a new connection as being a
legitimate receiver of a request related to a particular RTSP
session, without the client first issuing requests related to the
pending request. Thus, it would be likely to make any such
requests even more delayed and less useful.
The sending of client and server requests can be asynchronous events.
To avoid deadlock situations, both client and server MUST be able to
send and receive requests simultaneously. As an RTSP response may be
queued up for transmission, reception or processing behind the peer
RTSP agent's own requests, all RTSP agents are required to have a
certain capability of handling outstanding messages. A potential
issue is that outstanding requests may time out despite being
processed by the peer; this can be due to the response being caught
in the queue behind a number of requests that the RTSP agent is
processing but that take some time to complete. To avoid this
problem, an RTSP agent should buffer incoming messages locally so
that any response messages can be processed immediately upon
reception. If responses are separated from requests and directly
forwarded for processing, not only can the result be used
immediately, the state associated with that outstanding request can
also be released. However, buffering a number of requests on the
receiving RTSP agent consumes resources and enables a resource
exhaustion attack on the agent. Therefore, this buffer should be
limited so that an unreasonable number of requests or total message
size is not allowed to consume the receiving agent's resources. In
most APIs, having the receiving agent stop reading from the TCP
socket will result in TCP's window being clamped, thus forcing the
buffering onto the sending agent when the load is larger than
expected. However, as both RTSP message sizes and frequency may be
changed in the future by protocol extensions, an agent should be
careful about taking harsher measurements against a potential attack.
When under attack, an RTSP agent can close TCP connections and
release state associated with that TCP connection.
To provide some guidance on what is reasonable, the following
guidelines are given. It is RECOMMENDED that:
o an RTSP agent should not have more than 10 outstanding requests
per RTSP session;
o an RTSP agent should not have more than 10 outstanding requests
that are not related to an RTSP session or that are requesting to
create an RTSP session.
<span class="grey">Schulzrinne, et al. Standards Track [Page 53]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-54" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
In light of the above, it is RECOMMENDED that clients use persistent
connections whenever possible. A client that supports persistent
connections MAY "pipeline" its requests (see <a href="#section-12">Section 12</a>).
RTSP agents can send requests to multiple different destinations,
either server or client contexts over the same connection to a proxy.
Then, the proxy forks the message to the different destinations over
proxy-to-agent connections. In these cases when multiple requests
are outstanding, the requesting agent MUST be ready to receive the
responses out of order compared to the order they where sent on the
connection. The order between multiple messages for each destination
will be maintained; however, the order between response from
different destinations can be different.
The reason for this is to avoid a head-of-line blocking situation.
In a sequence of requests, an early outstanding request may take
time to be processed at one destination. Simultaneously, a
response from any other destination that was later in the sequence
of requests may have arrived at the proxy; thus, allowing out-of-
order responses avoids forcing the proxy to buffer this response
and instead deliver it as soon as possible. Note, this will not
affect the order in which the messages sent to each separate
destination were processed at the request destination.
This scenario can occur in two cases involving proxies. The first is
a client issuing requests for sessions on different servers using a
common client-to-proxy connection. The second is for server-to-
client requests, like REDIRECT being sent by the server over a common
transport connection the proxy created for its different connecting
clients.
<span class="h3"><a class="selflink" id="section-10.3" href="#section-10.3">10.3</a>. Closing Connections</span>
The client MAY close a connection at any point when no outstanding
request/response transactions exist for any RTSP session being
managed through the connection. The server, however, SHOULD NOT
close a connection until all RTSP sessions being managed through the
connection have been timed out (<a href="#section-18.49">Section 18.49</a>). A server SHOULD NOT
close a connection immediately after responding to a session-level
TEARDOWN request for the last RTSP session being controlled through
the connection. Instead, the server should wait for a reasonable
amount of time for the client to receive and act upon the TEARDOWN
<span class="grey">Schulzrinne, et al. Standards Track [Page 54]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-55" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
response and then initiate the connection closing. The server SHOULD
wait at least 10 seconds after sending the TEARDOWN response before
closing the connection.
This is to ensure that the client has time to issue a SETUP for a
new session on the existing connection after having torn the last
one down. Ten seconds should give the client ample opportunity to
get its message to the server.
A server SHOULD NOT close the connection directly as a result of
responding to a request with an error code.
Certain error responses such as 460 (Only Aggregate Operation
Allowed) (<a href="#section-17.4.24">Section 17.4.24</a>) are used for negotiating capabilities
of a server with respect to content or other factors. In such
cases, it is inefficient for the server to close a connection on
an error response. Also, such behavior would prevent
implementation of advanced or special types of requests or result
in extra overhead for the client when testing for new features.
On the other hand, keeping connections open after sending an error
response poses a Denial-of-Service (DoS) security risk
(<a href="#section-21">Section 21</a>).
The server MAY close a connection if it receives an incomplete
message and if the message is not completed within a reasonable
amount of time. It is RECOMMENDED that the server wait at least 10
seconds for the completion of a message or for the next part of the
message to arrive (which is an indication that the transport and the
client are still alive). Servers believing they are under attack or
that are otherwise starved for resources during that event MAY
consider using a shorter timeout.
If a server closes a connection while the client is attempting to
send a new request, the client will have to close its current
connection, establish a new connection, and send its request over the
new connection.
An RTSP message SHOULD NOT be terminated by closing the connection.
Such a message MAY be considered to be incomplete by the receiver and
discarded. An RTSP message is properly terminated as defined in
<a href="#section-5">Section 5</a>.
<span class="grey">Schulzrinne, et al. Standards Track [Page 55]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-56" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
<span class="h3"><a class="selflink" id="section-10.4" href="#section-10.4">10.4</a>. Timing Out Connections and RTSP Messages</span>
Receivers of a request (responders) SHOULD respond to requests in a
timely manner even when a reliable transport such as TCP is used.
Similarly, the sender of a request (requester) SHOULD wait for a
sufficient time for a response before concluding that the responder
will not be acting upon its request.
A responder SHOULD respond to all requests within 5 seconds. If the
responder recognizes that the processing of a request will take
longer than 5 seconds, it SHOULD send a 100 (Continue) response as
soon as possible. It SHOULD continue sending a 100 response every 5
seconds thereafter until it is ready to send the final response to
the requester. After sending a 100 response, the responder MUST send
a final response indicating the success or failure of the request.
A requester SHOULD wait at least 10 seconds for a response before
concluding that the responder will not be responding to its request.
After receiving a 100 response, the requester SHOULD continue waiting
for further responses. If more than 10 seconds elapse without
receiving any response, the requester MAY assume that the responder
is unresponsive and abort the connection by closing the TCP
connection.
In some cases, multiple RTSP sessions share the same transport
connection; abandoning a request and closing the connection may have
significant impact on those other sessions. First of all, other RTSP
requests may have become queued up due to the request taking a long
time to process. Secondly, those sessions also lose the possibility
to receive server-to-client requests. To mitigate that situation,
the RTSP client or server SHOULD establish a new connection and send
any requests that are queued up or that haven't received a response
on this new connection. Thirdly, to ensure that the RTSP server
knows which connection is valid for a particular RTSP session, the
RTSP agent SHOULD send a keep-alive request, if no other request will
be sent immediately for that RTSP session, for each RTSP session on
the old connection. The keep-alive request will normally be a
SET_PARAMETER with a session header to inform the server that this
agent cares about this RTSP session.
A requester SHOULD wait longer than 10 seconds for a response if it
is experiencing significant transport delays on its connection to the
responder. The requester is capable of determining the Round-Trip
Time (RTT) of the request/response cycle using the Timestamp header
(<a href="#section-18.53">Section 18.53</a>) in any RTSP request.
<span class="grey">Schulzrinne, et al. Standards Track [Page 56]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-57" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
The 10-second wait was chosen for the following reasons. It gives
TCP time to perform a couple of retransmissions, even if operating
on default values. It is short enough that users may not abandon
the process themselves. However, it should be noted that 10
seconds can be aggressive on certain types of networks. The
5-second value for 1xx messages is half the timeout giving a
reasonable chance of successful delivery before timeout happens on
the requester side.
<span class="h3"><a class="selflink" id="section-10.5" href="#section-10.5">10.5</a>. Showing Liveness</span>
RTSP requires the client to periodically show its liveness to the
server or the server may terminate any session state. Several
different protocol mechanism include in their usage a liveness proof
from the client. These mechanisms are RTSP requests with a Session
header to the server; if RTP & RTCP is used for media data transport
and the transport is established, the RTCP message proves liveness;
or through any other used media-transport protocol capable of
indicating liveness of the RTSP client. It is RECOMMENDED that a
client not wait to the last second of the timeout before trying to
send a liveness message. The RTSP message may take some time to
arrive safely at the receiver, due to packet loss and TCP
retransmissions. To show liveness between RTSP requests being issued
to accomplish other things, the following mechanisms can be used, in
descending order of preference:
RTCP: If RTP is used for media transport, RTCP SHOULD be used. If
RTCP is used to report transport statistics, it will
necessarily also function as a keep-alive. The server can
determine the client by network address and port together with
the fact that the client is reporting on the server's RTP
sender sources (synchronization source (SSRCs)). A downside of
using RTCP is that it only gives statistical guarantees of
reaching the server. However, the probability of a false
client timeout is so low that it can be ignored in most cases.
For example, assume a session with a 60-second timeout and
enough bitrate assigned to RTCP messages to send a message from
client to server on average every 5 seconds. That client has,
for a network with 5% packet loss, a probability of failing to
confirm liveness within the timeout interval for that session
of 2.4*E-16. Sessions with shorter timeouts, much higher
packet loss, or small RTCP bandwidths SHOULD also implement one
or more of the mechanisms below.
<span class="grey">Schulzrinne, et al. Standards Track [Page 57]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-58" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
SET_PARAMETER: When using SET_PARAMETER for keep-alives, a body
SHOULD NOT be included. This method is the RECOMMENDED RTSP
method to use for a request intended only to perform keep-
alives. RTSP servers MUST support the SET_PARAMETER method, so
that clients can always use this mechanism.
GET_PARAMETER: When using GET_PARAMETER for keep-alives, a body
SHOULD NOT be included, dependent on implementation support in
the server. Use the OPTIONS method to determine if there is
method support or simply try.
OPTIONS: This method is also usable, but it causes the server to
perform more unnecessary processing and results in bigger
responses than necessary for the task. The reason is that the
server needs to determine the capabilities associated with the
media resource to correctly populate the Public and Allow
headers.
The timeout parameter of the Session header (<a href="#section-18.49">Section 18.49</a>) MAY be
included in a SETUP response and MUST NOT be included in requests.
The server uses it to indicate to the client how long the server is
prepared to wait between RTSP commands or other signs of life before
closing the session due to lack of activity (see <a href="#appendix-B">Appendix B</a>). The
timeout is measured in seconds, with a default of 60 seconds. The
length of the session timeout MUST NOT be changed in an established
session.
<span class="h3"><a class="selflink" id="section-10.6" href="#section-10.6">10.6</a>. Use of IPv6</span>
Explicit IPv6 [<a href="./rfc2460" title=""Internet Protocol, Version 6 (IPv6) Specification"">RFC2460</a>] support was not present in RTSP 1.0. RTSP
2.0 has been updated for explicit IPv6 support. Implementations of
RTSP 2.0 MUST understand literal IPv6 addresses in URIs and RTSP
headers. Although the general URI format envisages potential future
new versions of the literal IP address, usage of any such new version
would require other modifications to the RTSP specification (e.g.,
address fields in the Transport header (<a href="#section-18.54">Section 18.54</a>)).
<span class="h3"><a class="selflink" id="section-10.7" href="#section-10.7">10.7</a>. Overload Control</span>
Overload in RTSP can occur when servers and proxies have insufficient
resources to complete the processing of a request. An improper
handling of such an overload situation at proxies and servers can
impact the operation of the RTSP deployment, and probably worsen the
situation. RTSP defines the 503 (Service Unavailable) response
(<a href="#section-17.5.4">Section 17.5.4</a>) to let servers and proxies notify requesting proxies
and RTSP clients about an overload situation. In conjunction with
<span class="grey">Schulzrinne, et al. Standards Track [Page 58]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-59" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
the Retry-After header (<a href="#section-18.44">Section 18.44</a>), the server or proxy can
indicate the time after which the requesting entity can send another
request to the proxy or server.
There are two scopes of such 503 answers. The first scope is for an
established RTSP session, where the request resulting in the 503
response as well as the response itself carries a Session header
identifying the session that is suffering overload. This response
only applies to this particular session. The other scope is the
general RTSP server as identified by the host in the Request-URI.
Such a 503 answer with any Retry-After header applies to all requests
that are not session specific to that server, including a SETUP
request intended to create a new RTSP session.
Another scope for overload situations exists: the RTSP proxy. To
enable an RTSP proxy to signal that it is overloaded, or otherwise
unavailable and unable to handle the request, a 553 response code has
been defined with the meaning "Proxy Unavailable". As with servers,
there is a separation in response scopes between requests associated
with existing RTSP sessions and requests to create new sessions or
general proxy requests.
Simply implementing and using the 503 (Service Unavailable) and 553
(Proxy Unavailable) response codes is not sufficient for properly
handling overload situations. For instance, a simplistic approach
would be to send the 503 response with a Retry-After header set to a
fixed value. However, this can cause a situation in which multiple
RTSP clients again send requests to a proxy or server at roughly the
same time, which may again cause an overload situation. Another
situation would be if the "old" overload situation is not yet
resolved, i.e., the length indicated in the Retry-After header was
too short for the overload situation to subside.
An RTSP server or proxy in an overload situation must select the
value of the Retry-After header carefully, bearing in mind its
current load situation. It is REQUIRED to increase the timeout
period in proportion to the current load on the server, i.e., an
increasing workload should result in an increased length of the
indicated unavailability. It is REQUIRED not to send the same value
in the Retry-After header to all requesting proxies and clients, but
to add a variation to the mean value of the Retry-After header.
A more complex case may arise when a load-balancing RTSP proxy is in
use. This is the case when an RTSP proxy is used to select amongst a
set of RTSP servers to handle the requests or when multiple server
addresses are available for a given server name. The proxy or client
may receive a 503 (Service Unavailable) or 553 (Proxy Unavailable)
response code from one of its RTSP servers or proxies, or a TCP
<span class="grey">Schulzrinne, et al. Standards Track [Page 59]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-60" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
timeout (if the server is even unable to handle the request message).
The proxy or client simply retries the other addresses or configured
proxies, but it may also receive a 503 (Service Unavailable) or 553
(Proxy Unavailable) response or TCP timeouts from those addresses.
In such a situation, where none of the RTSP servers/proxies/addresses
can handle the request, the RTSP agent has to wait before it can send
any new requests to the RTSP server. Any additional request to a
specific address MUST be delayed according to the Retry-After headers
received. For addresses where no response was received or TCP
timeout occurred, an initial wait timer SHOULD be set to 5 seconds.
That timer MUST be doubled for each additional failure to connect or
receive response until the value exceeds 30 minutes when the timer's
mean value may be set to 30 minutes. It is REQUIRED not to set the
same value in the timer for each scheduling, but instead to add a
variation to the mean value, resulting in picking a random value
within the range of 0.5 to 1.5 times the mean value.
<span class="h2"><a class="selflink" id="section-11" href="#section-11">11</a>. Capability Handling</span>
This section describes the available capability-handling mechanism
that allows RTSP to be extended. Extensions to this version of the
protocol are basically done in two ways. Firstly, new headers can be
added. Secondly, new methods can be added. The capability-handling
mechanism is designed to handle both cases.
When a method is added, the involved parties can use the OPTIONS
method to discover whether it is supported. This is done by issuing
an OPTIONS request to the other party. Depending on the URI, it will
either apply in regard to a certain media resource, the whole server
in general, or simply the next hop. The OPTIONS response MUST
contain a Public header that declares all methods supported for the
indicated resource.
It is not necessary to use OPTIONS to discover support of a method,
as the client could simply try the method. If the receiver of the
request does not support the method, it will respond with an error
code indicating the method is either not implemented (501) or does
not apply for the resource (405). The choice between the two
discovery methods depends on the requirements of the service.
Feature tags are defined to handle functionality additions that are
not new methods. Each feature tag represents a certain block of
functionality. The amount of functionality that a feature tag
represents can vary significantly. For example, a feature tag can
represent the functionality a single RTSP header provides. Another
feature tag can represent much more functionality, such as the
"play.basic" feature tag (<a href="#section-11.1">Section 11.1</a>), which represents the minimal
media delivery for playback implementation.
<span class="grey">Schulzrinne, et al. Standards Track [Page 60]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-61" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
Feature tags are used to determine whether the client, server, or
proxy supports the functionality that is necessary to achieve the
desired service. To determine support of a feature tag, several
different headers can be used, each explained below:
Supported: This header is used to determine the complete set of
functionality that both client and server have, in general, and
is not dependent on a specific resource. The intended usage is
to determine before one needs to use a functionality that it is
supported. It can be used in any method, but OPTIONS is the
most suitable as it simultaneously determines all methods that
are implemented. When sending a request, the requester
declares all its capabilities by including all supported
feature tags. This results in the receiver learning the
requester's feature support. The receiver then includes its
set of features in the response.
Proxy-Supported: This header is used in a similar fashion as the
Supported header, but instead of giving the supported
functionality of the client or server, it provides both the
requester and the responder a view of the common functionality
supported in general by all members of the proxy chain between
the client and server; it does not depend on the resource.
Proxies are required to add this header whenever the Supported
header is present, but proxies may also add it independently of
the requester.
Require: This header can be included in any request where the
endpoint, i.e., the client or server, is required to understand
the feature to correctly perform the request. This can, for
example, be a SETUP request, where the server is required to
understand a certain parameter to be able to set up the media
delivery correctly. Ignoring this parameter would not have the
desired effect and is not acceptable. Therefore, the endpoint
receiving a request containing a Require MUST negatively
acknowledge any feature that it does not understand and not
perform the request. The response in cases where features are
not supported is 551 (Option Not Supported). Also, the
features that are not supported are given in the Unsupported
header in the response.
Proxy-Require: This header has the same purpose and behavior as
Require except that it only applies to proxies and not the
endpoint. Features that need to be supported by both proxies
and endpoints need to be included in both the Require and
Proxy-Require header.
<span class="grey">Schulzrinne, et al. Standards Track [Page 61]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-62" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
Unsupported: This header is used in a 551 (Option Not Supported)
error response, to indicate which features were not supported.
Such a response is only the result of the usage of the Require
or Proxy-Require headers where one or more features were not
supported. This information allows the requester to make the
best of situations as it knows which features are not
supported.
<span class="h3"><a class="selflink" id="section-11.1" href="#section-11.1">11.1</a>. Feature Tag: play.basic</span>
An implementation supporting all normative parts of this
specification for the setup and control of playback of media uses the
feature tag "play.basic" to indicate this support. The appendices
(starting with letters) are not part of the functionality included in
the feature tag unless the appendix is explicitly specified in a main
section as being a required appendix.
Note: This feature tag does not mandate any media delivery
protocol, such as RTP.
In RTSP 1.0, there was a minimal implementation section. However,
that was not consistent with the rest of the specification. So,
rather than making an attempt to explicitly enumerate the features
for play.basic, this specification has to be taken as a whole and
the necessary features normatively defined as being required are
included.
<span class="h2"><a class="selflink" id="section-12" href="#section-12">12</a>. Pipelining Support</span>
Pipelining is a general method to improve performance of request/
response protocols by allowing the requesting agent to have more than
one request outstanding and to send them over the same persistent
connection. For RTSP, where the relative order of requests will
matter, it is important to maintain the order of the requests.
Because of this, the responding agent MUST process the incoming
requests in their sending order. The sending order can be determined
by the CSeq header and its sequence number. For TCP, the delivery
order will be the same, between two agents, as the sending order.
The processing of the request MUST also have been finished before
processing the next request from the same agent. The responses MUST
be sent in the order the requests were processed.
RTSP 2.0 has extended support for pipelining beyond the capabilities
in RTSP 1.0. As a major improvement, all requests involved in
setting up and initiating media delivery can now be pipelined,
indicated by the Pipelined-Request header (see <a href="#section-18.33">Section 18.33</a>). This
header allows a client to request that two or more requests be
processed in the same RTSP session context that the first request
<span class="grey">Schulzrinne, et al. Standards Track [Page 62]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-63" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
creates. In other words, a client can request that two or more media
streams be set up and then played without needing to wait for a
single response. This speeds up the initial start-up time for an
RTSP session by at least one RTT.
If a pipelined request builds on the successful completion of one or
more prior requests, the requester must verify that all requests were
executed as expected. A common example will be two SETUP requests
and a PLAY request. In case one of the SETUP requests fails
unexpectedly, the PLAY request can still be successfully executed.
However, the resulting presentation will not be as expected by the
requesting client, as only a single media instead of two will be
played. In this case, the client can send a PAUSE request, correct
the failing SETUP request, and then request it be played.
<span class="h2"><a class="selflink" id="section-13" href="#section-13">13</a>. Method Definitions</span>
The method indicates what is to be performed on the resource
identified by the Request-URI. The method name is case sensitive.
New methods may be defined in the future. Method names MUST NOT
start with a $ character (decimal 36) and MUST be a token as defined
by the ABNF [<a href="./rfc5234" title=""Augmented BNF for Syntax Specifications: ABNF"">RFC5234</a>] in <a href="#section-20">Section 20</a>. The methods are summarized in
Table 7.
<span class="grey">Schulzrinne, et al. Standards Track [Page 63]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-64" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
+---------------+-----------+--------+-------------+-------------+
| method | direction | object | Server req. | Client req. |
+---------------+-----------+--------+-------------+-------------+
| DESCRIBE | C -> S | P,S | recommended | recommended |
| | | | | |
| GET_PARAMETER | C -> S | P,S | optional | optional |
| | | | | |
| | S -> C | P,S | optional | optional |
| | | | | |
| OPTIONS | C -> S | P,S | required | required |
| | | | | |
| | S -> C | P,S | optional | optional |
| | | | | |
| PAUSE | C -> S | P,S | required | required |
| | | | | |
| PLAY | C -> S | P,S | required | required |
| | | | | |
| PLAY_NOTIFY | S -> C | P,S | required | required |
| | | | | |
| REDIRECT | S -> C | P,S | optional | required |
| | | | | |
| SETUP | C -> S | S | required | required |
| | | | | |
| SET_PARAMETER | C -> S | P,S | required | optional |
| | | | | |
| | S -> C | P,S | optional | optional |
| | | | | |
| TEARDOWN | C -> S | P,S | required | required |
| | | | | |
| | S -> C | P | required | required |
+---------------+-----------+--------+-------------+-------------+
Table 7: Overview of RTSP Methods
Note on Table 7: This table covers RTSP methods, their direction,
and on what objects (P: presentation, S: stream) they operate.
Further, it indicates whether a server or a client implementation
is required (mandatory), recommended, or optional.
Further note on Table 7: the GET_PARAMETER is optional. For
example, a fully functional server can be built to deliver media
without any parameters. However, SET_PARAMETER is required, i.e.,
mandatory to implement for the server; this is due to its usage
for keep-alive. PAUSE is required because it is the only way of
leaving the Play state without terminating the whole session.
<span class="grey">Schulzrinne, et al. Standards Track [Page 64]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-65" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
If an RTSP agent does not support a particular method, it MUST return
a 501 (Not Implemented) response code and the requesting RTSP agent,
in turn, SHOULD NOT try this method again for the given agent/
resource combination. An RTSP proxy whose main function is to log or
audit and not modify transport or media handling in any way MAY
forward RTSP messages with unknown methods. Note that the proxy
still needs to perform the minimal required processing, like adding
the Via header.
<span class="h3"><a class="selflink" id="section-13.1" href="#section-13.1">13.1</a>. OPTIONS</span>
The semantics of the RTSP OPTIONS method is similar to that of the
HTTP OPTIONS method described in <a href="./rfc7231#section-4.3.7">Section 4.3.7 of [RFC7231]</a>.
However, in RTSP, OPTIONS is bidirectional in that a client can send
the request to a server and vice versa. A client MUST implement the
capability to send an OPTIONS request and a server or a proxy MUST
implement the capability to respond to an OPTIONS request. In
addition to this "MUST-implement" functionality, clients, servers and
proxies MAY provide support both for sending OPTIONS requests and for
generating responses to the requests.
An OPTIONS request may be issued at any time. Such a request does
not modify the session state. However, it may prolong the session
lifespan (see below). The URI in an OPTIONS request determines the
scope of the request and the corresponding response. If the Request-
URI refers to a specific media resource on a given host, the scope is
limited to the set of methods supported for that media resource by
the indicated RTSP agent. A Request-URI with only the host address
limits the scope to the specified RTSP agent's general capabilities
without regard to any specific media. If the Request-URI is an
asterisk ("*"), the scope is limited to the general capabilities of
the next hop (i.e., the RTSP agent in direct communication with the
request sender).
Regardless of the scope of the request, the Public header MUST always
be included in the OPTIONS response, listing the methods that are
supported by the responding RTSP agent. In addition, if the scope of
the request is limited to a media resource, the Allow header MUST be
included in the response to enumerate the set of methods that are
allowed for that resource unless the set of methods completely
matches the set in the Public header. If the given resource is not
available, the RTSP agent SHOULD return an appropriate response code,
such as 3rr or 4xx. The Supported header MAY be included in the
request to query the set of features that are supported by the
responding RTSP agent.
<span class="grey">Schulzrinne, et al. Standards Track [Page 65]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-66" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
The OPTIONS method can be used to keep an RTSP session alive.
However, this is not the preferred way of session keep-alive
signaling; see <a href="#section-18.49">Section 18.49</a>. An OPTIONS request intended for
keeping alive an RTSP session MUST include the Session header with
the associated session identifier. Such a request SHOULD also use
the media or the aggregated control URI as the Request-URI.
Example:
C->S: OPTIONS rtsp://server.example.com RTSP/2.0
CSeq: 1
User-Agent: PhonyClient/1.2
Proxy-Require: gzipped-messages
Supported: play.basic
S->C: RTSP/2.0 200 OK
CSeq: 1
Public: DESCRIBE, SETUP, TEARDOWN, PLAY, PAUSE, OPTIONS
Supported: play.basic, setup.rtp.rtcp.mux, play.scale
Server: PhonyServer/1.1
Note that the "gzipped-messages" feature tag in the Proxy-Require is
a fictitious feature.
<span class="h3"><a class="selflink" id="section-13.2" href="#section-13.2">13.2</a>. DESCRIBE</span>
The DESCRIBE method is used to retrieve the description of a
presentation or media object from a server. The Request-URI of the
DESCRIBE request identifies the media resource of interest. The
client MAY include the Accept header in the request to list the
description formats that it understands. The server MUST respond
with a description of the requested resource and return the
description in the message body of the response, if the DESCRIBE
method request can be successfully fulfilled. The DESCRIBE reply-
response pair constitutes the media initialization phase of RTSP.
The DESCRIBE response SHOULD contain all media initialization
information for the resource(s) that it describes. Servers SHOULD
NOT use the DESCRIBE response as a means of media indirection by
having the description point at another server; instead, using the
3rr responses is RECOMMENDED.
By forcing a DESCRIBE response to contain all media initialization
information for the set of streams that it describes, and
discouraging the use of DESCRIBE for media indirection, any
looping problems can be avoided that might have resulted from
other approaches.
<span class="grey">Schulzrinne, et al. Standards Track [Page 66]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-67" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
Example:
C->S: DESCRIBE rtsp://server.example.com/fizzle/foo RTSP/2.0
CSeq: 312
User-Agent: PhonyClient/1.2
Accept: application/sdp, application/example
S->C: RTSP/2.0 200 OK
CSeq: 312
Date: Thu, 23 Jan 1997 15:35:06 GMT
Server: PhonyServer/1.1
Content-Base: rtsp://server.example.com/fizzle/foo/
Content-Type: application/sdp
Content-Length: 358
v=0
o=MNobody 2890844526 2890842807 IN IP4 192.0.2.46
s=SDP Seminar
i=A Seminar on the session description protocol
u=http://www.example.com/lectures/sdp.ps
e=seminar@example.com (Seminar Management)
c=IN IP4 0.0.0.0
a=control:*
t=2873397496 2873404696
m=audio 3456 RTP/AVP 0
a=control:audio
m=video 2232 RTP/AVP 31
a=control:video
Media initialization is a requirement for any RTSP-based system, but
the RTSP specification does not dictate that this is required to be
done via the DESCRIBE method. There are three ways that an RTSP
client may receive initialization information:
o via an RTSP DESCRIBE request
o via some other protocol (HTTP, email attachment, etc.)
o via some form of user interface
If a client obtains a valid description from an alternate source, the
client MAY use this description for initialization purposes without
issuing a DESCRIBE request for the same media. The client should use
any MTag to either validate the presentation description or make the
session establishment conditional on being valid.
<span class="grey">Schulzrinne, et al. Standards Track [Page 67]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-68" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
It is RECOMMENDED that minimal servers support the DESCRIBE method,
and highly recommended that minimal clients support the ability to
act as "helper applications" that accept a media initialization file
from a user interface, or other means that are appropriate to the
operating environment of the clients.
<span class="h3"><a class="selflink" id="section-13.3" href="#section-13.3">13.3</a>. SETUP</span>
The description below uses the following states in a protocol state
machine that is related to a specific session when that session has
been created. The state transitions are driven by protocol
interactions. For additional information about the state machine,
see <a href="#appendix-B">Appendix B</a>.
Init: Initial state. No session exists.
Ready: Session is ready to start playing.
Play: Session is playing, i.e., sending media-stream data in the
direction S->C.
The SETUP request for a URI specifies the transport mechanism to be
used for the streamed media. The SETUP method may be used in two
different cases, namely, creating an RTSP session and changing the
transport parameters of media streams that are already set up. SETUP
can be used in all three states, Init, Ready, and Play, to change the
transport parameters. Additionally, Init and Ready can also be used
for the creation of the RTSP session. The usage of the SETUP method
in the Play state to add a media resource to the session is
unspecified.
The Transport header, see <a href="#section-18.54">Section 18.54</a>, specifies the media-
transport parameters acceptable to the client for data transmission;
the response will contain the transport parameters selected by the
server. This allows the client to enumerate, in descending order of
preference, the transport mechanisms and parameters acceptable to it,
so the server can select the most appropriate. It is expected that
the session description format used will enable the client to select
a limited number of possible configurations that are offered as
choices to the server. All transport-related parameters SHALL be
included in the Transport header; the use of other headers for this
purpose is NOT RECOMMENDED due to middleboxes, such as firewalls or
NATs.
For the benefit of any intervening firewalls, a client MUST indicate
the known transport parameters, even if it has no influence over
these parameters, for example, where the server advertises a fixed-
multicast address as destination.
<span class="grey">Schulzrinne, et al. Standards Track [Page 68]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-69" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
Since SETUP includes all transport initialization information,
firewalls and other intermediate network devices (which need this
information) are spared the more arduous task of parsing the
DESCRIBE response, which has been reserved for media
initialization.
The client MUST include the Accept-Ranges header in the request,
indicating all supported unit formats in the Range header. This
allows the server to know which formats it may use in future session-
related responses, such as a PLAY response without any range in the
request. If the client does not support a time format necessary for
the presentation, the server MUST respond using 456 (Header Field Not
Valid for Resource) and include the Accept-Ranges header with the
range unit formats supported for the resource.
In a SETUP response, the server MUST include the Accept-Ranges header
(see <a href="#section-18.5">Section 18.5</a>) to indicate which time formats are acceptable to
use for this media resource.
The SETUP 200 OK response MUST include the Media-Properties header
(see <a href="#section-18.29">Section 18.29</a>). The combination of the parameters of the Media-
Properties header indicates the nature of the content present in the
session (see also <a href="#section-4.7">Section 4.7</a>). For example, a live stream with time
shifting is indicated by
o Random access set to Random-Access,
o Content Modifications set to Time-Progressing, and
o Retention set to Time-Duration (with specific recording window
time value).
The SETUP 200 OK response MUST include the Media-Range header (see
<a href="#section-18.30">Section 18.30</a>) if the media is Time-Progressing.
<span class="grey">Schulzrinne, et al. Standards Track [Page 69]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-70" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
A basic example for SETUP:
C->S: SETUP rtsp://example.com/foo/bar/baz.rm RTSP/2.0
CSeq: 302
Transport: RTP/AVP;unicast;dest_addr=":4588"/":4589",
RTP/AVP/TCP;unicast;interleaved=0-1
Accept-Ranges: npt, clock
User-Agent: PhonyClient/1.2
S->C: RTSP/2.0 200 OK
CSeq: 302
Date: Thu, 23 Jan 1997 15:35:06 GMT
Server: PhonyServer/1.1
Session: QKyjN8nt2WqbWw4tIYof52;timeout=60
Transport: RTP/AVP;unicast;dest_addr="192.0.2.53:4588"/
"192.0.2.53:4589"; src_addr="198.51.100.241:6256"/
"198.51.100.241:6257"; ssrc=2A3F93ED
Accept-Ranges: npt
Media-Properties: Random-Access=3.2, Time-Progressing,
Time-Duration=3600.0
Media-Range: npt=0-2893.23
In the above example, the client wants to create an RTSP session
containing the media resource "rtsp://example.com/foo/bar/baz.rm".
The transport parameters acceptable to the client are either RTP/AVP/
UDP (UDP per default) to be received on client port 4588 and 4589 at
the address the RTSP setup connection comes from or RTP/AVP
interleaved on the RTSP control channel. The server selects the
RTP/AVP/UDP transport and adds the address and ports it will send and
receive RTP and RTCP from, and the RTP SSRC that will be used by the
server.
The server MUST generate a session identifier in response to a
successful SETUP request unless a SETUP request to a server includes
a session identifier or a Pipelined-Requests header referencing an
existing session context. In that latter case, the server MUST
bundle this SETUP request into the existing session (aggregated
session) or return a 459 (Aggregate Operation Not Allowed) error code
(see <a href="#section-17.4.23">Section 17.4.23</a>). An aggregate control URI MUST be used to
control an aggregated session. This URI MUST be different from the
stream control URIs of the individual media streams included in the
aggregate (see <a href="#section-13.4.2">Section 13.4.2</a> for aggregated sessions and for the
particular URIs see <a href="#appendix-D.1.1">Appendix D.1.1</a>). The aggregate control URI is to
be specified by the session description if the server supports
aggregated control and aggregated control is desired for the session.
<span class="grey">Schulzrinne, et al. Standards Track [Page 70]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-71" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
However, even if aggregated control is offered, the client MAY choose
not to set up the session in aggregated control. If an aggregate
control URI is not specified in the session description, it is
normally an indication that non-aggregated control should be used.
The SETUP of media streams in an aggregate that has not been given an
aggregated control URI is unspecified.
While the session ID sometimes carries enough information for
aggregate control of a session, the aggregate control URI is still
important for some methods such as SET_PARAMETER where the control
URI enables the resource in question to be easily identified. The
aggregate control URI is also useful for proxies, enabling them to
route the request to the appropriate server, and for logging,
where it is useful to note the actual resource on which a request
was operating.
A session will exist until it is either removed by a TEARDOWN request
or is timed out by the server. The server MAY remove a session that
has not demonstrated liveness signs from the client(s) within a
certain timeout period. The default timeout value is 60 seconds; the
server MAY set this to a different value and indicate so in the
timeout field of the Session header in the SETUP response. For
further discussion, see <a href="#section-18.49">Section 18.49</a>. Signs of liveness for an RTSP
session include any RTSP requests from a client that contain a
Session header with the ID for that session, as well as RTCP sender
or receiver reports if RTP is used to transport the underlying media
stream. RTCP sender reports may, for example, be received in session
where the server is invited into a conference session and are thus
valid as a liveness indicator.
If a SETUP request on a session fails for any reason, the session
state, as well as transport and other parameters for associated
streams, MUST remain unchanged from their values as if the SETUP
request had never been received by the server.
<span class="h4"><a class="selflink" id="section-13.3.1" href="#section-13.3.1">13.3.1</a>. Changing Transport Parameters</span>
A client MAY issue a SETUP request for a stream that is already set
up or playing in the session to change transport parameters, which a
server MAY allow. If it does not allow the changing of parameters,
it MUST respond with error 455 (Method Not Valid in This State). The
reasons to support changing transport parameters include allowing
application-layer mobility and flexibility to utilize the best
available transport as it becomes available. If a client receives a
455 error when trying to change transport parameters while the server
is in Play state, it MAY try to put the server in Ready state using
PAUSE before issuing the SETUP request again. If that also fails,
<span class="grey">Schulzrinne, et al. Standards Track [Page 71]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-72" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
the changing of transport parameters will require that the client
perform a TEARDOWN of the affected media and then set it up again.
For an aggregated session, not tearing down all the media at the same
time will avoid the creation of a new session.
All transport parameters MAY be changed. However, the primary usage
expected is to either change the transport protocol completely, like
switching from Interleaved TCP mode to UDP or vice versa, or to
change the delivery address.
In a SETUP response for a request to change the transport parameters
while in Play state, the server MUST include the Range header to
indicate at what point the new transport parameters will be used.
Further, if RTP is used for delivery, the server MUST also include
the RTP-Info header to indicate at what timestamp and RTP sequence
number the change will take place. If both RTP-Info and Range are
included in the response, the "rtp_time" parameter and start point in
the Range header MUST be for the corresponding time, i.e., be used in
the same way as for PLAY to ensure the correct synchronization
information is available.
If the transport-parameters change that happened while in Play state
results in a change of synchronization-related information, for
example, changing RTP SSRC, the server MUST include the necessary
synchronization information in the SETUP response. However, the
server SHOULD avoid changing the synchronization information if
possible.
<span class="h3"><a class="selflink" id="section-13.4" href="#section-13.4">13.4</a>. PLAY</span>
This section describes the usage of the PLAY method in general, for
aggregated sessions, and in different usage scenarios.
<span class="h4"><a class="selflink" id="section-13.4.1" href="#section-13.4.1">13.4.1</a>. General Usage</span>
The PLAY method tells the server to start sending data via the
mechanism specified in SETUP and which part of the media should be
played out. PLAY requests are valid when the session is in Ready or
Play state. A PLAY request MUST include a Session header to indicate
to which session the request applies.
Upon receipt of the PLAY request, the server MUST position the normal
play time to the beginning of the range specified in the received
Range header, within the limits of the media resource and in
accordance with the Seek-Style header (<a href="#section-18.47">Section 18.47</a>). It MUST
deliver stream data until the end of the range if given, until a new
PLAY request is received, until a PAUSE request (<a href="#section-13.5">Section 13.5</a>) is
received, or until the end of the media is reached. If no Range
<span class="grey">Schulzrinne, et al. Standards Track [Page 72]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-73" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
header is present in the PLAY request, the server SHALL play from
current pause point until the end of media. The pause point defaults
at session start to the beginning of the media. For media that is
time-progressing and has no retention, the pause point will always be
set equal to NPT "now", i.e., the current delivery point. The pause
point may also be set to a particular point in the media by the PAUSE
method; see <a href="#section-13.6">Section 13.6</a>. The pause point for media that is
currently playing is equal to the current media position. For time-
progressing media with time-limited retention, if the pause point
represents a position that is older than what is retained by the
server, the pause point will be moved to the oldest retained
position.
What range values are valid depends on the type of content. For
content that isn't time-progressing, the range value is valid if the
given range is part of any media within the aggregate. In other
words, the valid media range for the aggregate is the union of all of
the media components in the aggregate. If a given range value points
outside of the media, the response MUST be the 457 (Invalid Range)
error code and include the Media-Range header (<a href="#section-18.30">Section 18.30</a>) with
the valid range for the media. Except for time-progressing content
where the client requests a start point prior to what is retained,
the start point is adjusted to the oldest retained content. For a
start point that is beyond the media front edge, i.e., beyond the
current value for "now", the server SHALL adjust the start value to
the current front edge. The Range header's stop point value may
point beyond the current media edge. In that case, the server SHALL
deliver media from the requested (and possibly adjusted) start point
until the first of either the provided stop point or the end of the
media. Please note that if one simply wants to play from a
particular start point until the end of media, using a Range header
with an implicit stop point is RECOMMENDED.
If a client requests to start playing at the end of media, either
explicitly with a Range header or implicitly with a pause point that
is at the end of media, a 457 (Invalid Range) error MUST be sent and
include the Media-Range header (<a href="#section-18.30">Section 18.30</a>). It is specified
below that the Range header also must be included in the response and
that it will carry the pause point in the media, in the case of the
session being in Ready State. Note that this also applies if the
pause point or requested start point is at the beginning of the media
and a Scale header (<a href="#section-18.46">Section 18.46</a>) is included with a negative value
(playing backwards).
For media with random access properties, a client may indicate which
policy for start point selection the server should use. This is done
by including the Seek-Style header (<a href="#section-18.47">Section 18.47</a>) in the PLAY
<span class="grey">Schulzrinne, et al. Standards Track [Page 73]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-74" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
request. The Seek-Style applied will affect the content of the Range
header as it will be adjusted to indicate from what point the media
actually is delivered.
A client desiring to play the media from the beginning MUST send a
PLAY request with a Range header pointing at the beginning, e.g.,
"npt=0-". If a PLAY request is received without a Range header and
media delivery has stopped at the end, the server SHOULD respond with
a 457 (Invalid Range) error response. In that response, the current
pause point MUST be included in a Range header.
All range specifiers in this specification allow for ranges with an
implicit start point (e.g., "npt=-30"). When used in a PLAY request,
the server treats this as a request to start or resume delivery from
the current pause point, ending at the end time specified in the
Range header. If the pause point is located later than the given end
value, a 457 (Invalid Range) response MUST be returned.
The example below will play seconds 10 through 25. It also requests
that the server deliver media from the first random access point
prior to the indicated start point.
C->S: PLAY rtsp://audio.example.com/audio RTSP/2.0
CSeq: 835
Session: ULExwZCXh2pd0xuFgkgZJW
Range: npt=10-25
Seek-Style: RAP
User-Agent: PhonyClient/1.2
Servers MUST include a Range header in any PLAY response, even if no
Range header was present in the request. The response MUST use the
same format as the request's Range header contained. If no Range
header was in the request, the format used in any previous PLAY
request within the session SHOULD be used. If no format has been
indicated in a previous request, the server MAY use any time format
supported by the media and indicated in the Accept-Ranges header in
the SETUP request. It is RECOMMENDED that NPT is used if supported
by the media.
For any error response to a PLAY request, the server's response
depends on the current session state. If the session is in Ready
state, the current pause point is returned using a Range header with
the pause point as the explicit start point and an implicit stop
point. For time-progressing content, where the pause-point moves
with real-time due to limited retention, the current pause point is
returned. For sessions in Play state, the current playout point and
<span class="grey">Schulzrinne, et al. Standards Track [Page 74]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-75" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
the remaining parts of the range request are returned. For any media
with retention longer than 0 seconds, the currently valid Media-Range
header SHALL also be included in the response.
A PLAY response MAY include a header carrying synchronization
information. As the information necessary is dependent on the media-
transport format, further rules specifying the header and its usage
are needed. For RTP the RTP-Info header is specified, see
<a href="#section-18.45">Section 18.45</a>, and used in the following example.
Here is a simple example for a single audio stream where the client
requests the media starting from 3.52 seconds and to the end. The
server sends a 200 OK response with the actual play time, which is 10
ms prior (3.51), and the RTP-Info header that contains the necessary
parameters for the RTP stack.
C->S: PLAY rtsp://example.com/audio RTSP/2.0
CSeq: 836
Session: ULExwZCXh2pd0xuFgkgZJW
Range: npt=3.52-
User-Agent: PhonyClient/1.2
S->C: RTSP/2.0 200 OK
CSeq: 836
Date: Thu, 23 Jan 1997 15:35:06 GMT
Server: PhonyServer/1.0
Range: npt=3.51-324.39
Seek-Style: First-Prior
Session: ULExwZCXh2pd0xuFgkgZJW
RTP-Info:url="rtsp://example.com/audio"
ssrc=0D12F123:seq=14783;rtptime=2345962545
S->C: RTP Packet TS=2345962545 => NPT=3.51
Media duration=0.16 seconds
The server replies with the actual start point that will be
delivered. This may differ from the requested range if alignment of
the requested range to valid frame boundaries is required for the
media source. Note that some media streams in an aggregate may need
to be delivered from even earlier points. Also, some media formats
have a very long duration per individual data unit; therefore, it
might be necessary for the client to parse the data unit, and select
where to start. The server SHALL also indicate which policy it uses
for selecting the actual start point by including a Seek-Style
header.
<span class="grey">Schulzrinne, et al. Standards Track [Page 75]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-76" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
In the following example, the client receives the first media packet
that stretches all the way up and past the requested playtime. Thus,
it is the client's decision whether to render to the user the time
between 3.52 and 7.05 or to skip it. In most cases, it is probably
most suitable not to render that time period.
C->S: PLAY rtsp://example.com/audio RTSP/2.0
CSeq: 836
Session: ZGGyCJOs8xaLkdNK2dmxQO
Range: npt=7.05-
User-Agent: PhonyClient/1.2
S->C: RTSP/2.0 200 OK
CSeq: 836
Date: Thu, 23 Jan 1997 15:35:06 GMT
Server: PhonyServer/1.0
Session: ZGGyCJOs8xaLkdNK2dmxQO
Range: npt=3.52-
Seek-Style: First-Prior
RTP-Info:url="rtsp://example.com/audio"
ssrc=0D12F123:seq=14783;rtptime=2345962545
S->C: RTP Packet TS=2345962545 => NPT=3.52
Duration=4.15 seconds
After playing the desired range, the presentation does NOT change to
the Ready state, media delivery simply stops. If it is necessary to
put the stream into the Ready state, a PAUSE request MUST be issued.
A PLAY request while the stream is still in the Play state is legal
and can be issued without an intervening PAUSE request. Such a
request MUST replace the current PLAY action with the new one
requested, i.e., being handled in the same way as if as the request
was received in Ready state. In the case that the range in the Range
header has an implicit start time ("-endtime"), the server MUST
continue to play from where it currently was until the specified
endpoint. This is useful to change the end to at another point than
in the previous request.
The following example plays the whole presentation starting at SMPTE
time code 0:10:20 until the end of the clip. Note: the RTP-Info
headers have been broken into several lines, where subsequent lines
start with whitespace as allowed by the syntax.
<span class="grey">Schulzrinne, et al. Standards Track [Page 76]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-77" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
C->S: PLAY rtsp://audio.example.com/twister.en RTSP/2.0
CSeq: 833
Session: N465Wvsv0cjUy6tLqINkcf
Range: smpte=0:10:20-
User-Agent: PhonyClient/1.2
S->C: RTSP/2.0 200 OK
CSeq: 833
Date: Thu, 23 Jan 1997 15:35:06 GMT
Session: N465Wvsv0cjUy6tLqINkcf
Server: PhonyServer/1.0
Range: smpte=0:10:22-0:15:45
Seek-Style: Next
RTP-Info:url="rtsp://example.com/twister.en"
ssrc=0D12F123:seq=14783;rtptime=2345962545
For playing back a recording of a live presentation, it may be
desirable to use clock units:
C->S: PLAY rtsp://audio.example.com/meeting.en RTSP/2.0
CSeq: 835
Session: N465Wvsv0cjUy6tLqINkcf
Range: clock=19961108T142300Z-19961108T143520Z
User-Agent: PhonyClient/1.2
S->C: RTSP/2.0 200 OK
CSeq: 835
Date: Thu, 23 Jan 1997 15:35:06 GMT
Session: N465Wvsv0cjUy6tLqINkcf
Server: PhonyServer/1.0
Range: clock=19961108T142300Z-19961108T143520Z
Seek-Style: Next
RTP-Info:url="rtsp://example.com/meeting.en"
ssrc=0D12F123:seq=53745;rtptime=484589019
<span class="h4"><a class="selflink" id="section-13.4.2" href="#section-13.4.2">13.4.2</a>. Aggregated Sessions</span>
PLAY requests can operate on sessions controlling a single media
stream and on aggregated sessions controlling multiple media streams.
In an aggregated session, the PLAY request MUST contain an aggregated
control URI. A server MUST respond with a 460 error (Only Aggregate
Operation Allowed) if the client PLAY Request-URI is for a single
media. The media in an aggregate MUST be played in sync. If a
client wants individual control of the media, it needs to use
separate RTSP sessions for each media.
<span class="grey">Schulzrinne, et al. Standards Track [Page 77]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-78" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
For aggregated sessions where the initial SETUP request (creating a
session) is followed by one or more additional SETUP requests, a PLAY
request MAY be pipelined (<a href="#section-12">Section 12</a>) after those additional SETUP
requests without awaiting their responses. This procedure can reduce
the delay from the start of session establishment until media playout
has started with one RTT. However, a client needs to be aware that
using this procedure will result in the playout of the server state
established at the time of processing the PLAY, i.e., after the
processing of all the requests prior to the PLAY request in the
pipeline. This state may not be the intended one due to failure of
any of the prior requests. A client can easily determine this based
on the responses from those requests. In case of failure, the client
can halt the media playout using PAUSE and try to establish the
intended state again before issuing another PLAY request.
<span class="h4"><a class="selflink" id="section-13.4.3" href="#section-13.4.3">13.4.3</a>. Updating Current PLAY Requests</span>
Clients can issue PLAY requests while the stream is in Play state and
thus updating their request.
The important difference compared to a PLAY request in Ready state is
the handling of the current play point and how the Range header in
the request is constructed. The session is actively playing media
and the play point will be moving, making the exact time a request
will take effect hard to predict. Depending on how the PLAY header
appears, two different cases exist: total replacement or
continuation. A total replacement is signaled by having the first
range specification have an explicit start value, e.g., "npt=45-" or
"npt=45-60", in which case the server stops playout at the current
playout point and then starts delivering media according to the Range
header. This is equivalent to having the client first send a PAUSE
and then a new PLAY request that isn't based on the pause point. In
the case of continuation, the first range specifier has an implicit
start point and an explicit stop value (Z), e.g., "npt=-60", which
indicate that it MUST convert the range specifier being played prior
to this PLAY request (X to Y) into (X to Z) and continue as if this
was the request originally played. If the current delivery point is
beyond the stop point, the server SHALL immediately pause delivery.
As the request has been completed successfully, it shall be responded
to with a 200 OK response. A PLAY_NOTIFY with end-of-stream is also
sent to indicate the actual stop point. The pause point is set to
the requested stop point.
The following is an example of this behavior: The server has received
requests to play ranges 10 to 15. If the new PLAY request arrives at
the server 4 seconds after the previous one, it will take effect
<span class="grey">Schulzrinne, et al. Standards Track [Page 78]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-79" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
while the server still plays the first range (10-15). The server
changes the current play to continue to 25 seconds, i.e., the
equivalent single request would be PLAY with "range: npt=10-25".
C->S: PLAY rtsp://example.com/fizzle/foo RTSP/2.0
CSeq: 834
Session: apzA8LnjQ5KWTdw0kUkiRh
Range: npt=10-15
User-Agent: PhonyClient/1.2
S->C: RTSP/2.0 200 OK
CSeq: 834
Date: Thu, 23 Jan 1997 15:35:06 GMT
Session: apzA8LnjQ5KWTdw0kUkiRh
Server: PhonyServer/1.0
Range: npt=10-15
Seek-Style: Next
RTP-Info:url="rtsp://example.com/fizzle/audiotrack"
ssrc=0D12F123:seq=5712;rtptime=934207921,
url="rtsp://example.com/fizzle/videotrack"
ssrc=789DAF12:seq=57654;rtptime=2792482193
C->S: PLAY rtsp://example.com/fizzle/foo RTSP/2.0
CSeq: 835
Session: apzA8LnjQ5KWTdw0kUkiRh
Range: npt=-25
User-Agent: PhonyClient/1.2
S->C: RTSP/2.0 200 OK
CSeq: 835
Date: Thu, 23 Jan 1997 15:35:09 GMT
Session: apzA8LnjQ5KWTdw0kUkiRh
Server: PhonyServer/1.0
Range: npt=14-25
Seek-Style: Next
RTP-Info:url="rtsp://example.com/fizzle/audiotrack"
ssrc=0D12F123:seq=5712;rtptime=934239921,
url="rtsp://example.com/fizzle/videotrack"
ssrc=789DAF12:seq=57654;rtptime=2792842193
A common use of a PLAY request while in Play state is changing the
scale of the media, i.e., entering or leaving fast forward or fast
rewind. The client can issue an updating PLAY request that is either
a continuation or a complete replacement, as discussed above this
section. Below is an example of a client that is requesting a fast
forward (scale = 2) without giving a stop point and then a change
from fast forward to regular playout (scale = 1). In the second PLAY
<span class="grey">Schulzrinne, et al. Standards Track [Page 79]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-80" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
request, the time is set explicitly to be wherever the server
currently plays out (npt=now-) and the server responds with the
actual playback point where the new scale actually takes effect
(npt=02:17:27.144-).
C->S: PLAY rtsp://example.com/fizzle/foo RTSP/2.0
CSeq: 2034
Session: apzA8LnjQ5KWTdw0kUkiRh
Range: npt=now-
Scale: 2.0
User-Agent: PhonyClient/1.2
S->C: RTSP/2.0 200 OK
CSeq: 2034
Date: Thu, 23 Jan 1997 15:35:06 GMT
Session: apzA8LnjQ5KWTdw0kUkiRh
Server: PhonyServer/1.0
Range: npt=02:17:21.394-
Seek-Style: Next
Scale: 2.0
RTP-Info:url="rtsp://example.com/fizzle/audiotrack"
ssrc=0D12F123:seq=5712;rtptime=934207921,
url="rtsp://example.com/fizzle/videotrack"
ssrc=789DAF12:seq=57654;rtptime=2792482193
[playing in fast forward and now returning to scale = 1]
C->S: PLAY rtsp://example.com/fizzle/foo RTSP/2.0
CSeq: 2035
Session: apzA8LnjQ5KWTdw0kUkiRh
Range: npt=now-
Scale: 1.0
User-Agent: PhonyClient/1.2
S->C: RTSP/2.0 200 OK
CSeq: 2035
Date: Thu, 23 Jan 1997 15:35:09 GMT
Session: apzA8LnjQ5KWTdw0kUkiRh
Server: PhonyServer/1.0
Range: npt=02:17:27.144-
Seek-Style: Next
Scale: 1.0
RTP-Info:url="rtsp://example.com/fizzle/audiotrack"
ssrc=0D12F123:seq=5712;rtptime=934239921,
url="rtsp://example.com/fizzle/videotrack"
ssrc=789DAF12:seq=57654;rtptime=2792842193
<span class="grey">Schulzrinne, et al. Standards Track [Page 80]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-81" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
<span class="h4"><a class="selflink" id="section-13.4.4" href="#section-13.4.4">13.4.4</a>. Playing On-Demand Media</span>
On-demand media is indicated by the content of the Media-Properties
header in the SETUP response when (see also <a href="#section-18.29">Section 18.29</a>):
o the Random Access property is set to Random-Access;
o the Content Modifications property is set to Immutable;
o the Retention property is set to Unlimited or Time-Limited.
Playing on-demand media follows the general usage as described in
<a href="#section-13.4.1">Section 13.4.1</a>.
<span class="h4"><a class="selflink" id="section-13.4.5" href="#section-13.4.5">13.4.5</a>. Playing Dynamic On-Demand Media</span>
Dynamic on-demand media is indicated by the content of the Media-
Properties header in the SETUP response when (see also
<a href="#section-18.29">Section 18.29</a>):
o the Random Access property is set to Random-Access;
o the Content Modifications property is set to Dynamic;
o the Retention property is set to Unlimited or Time-Limited.
Playing on-demand media follows the general usage as described in
<a href="#section-13.4.1">Section 13.4.1</a> as long as the media has not been changed.
There are two ways for the client to be informed about changes of
media resources in Play state. The first being that the client will
receive a PLAY_NOTIFY request with the Notify-Reason header set to
media-properties-update (see <a href="#section-13.5.2">Section 13.5.2</a>). The client can use the
value of the Media-Range header to decide further actions, if the
Media-Range header is present in the PLAY_NOTIFY request. The second
way is that the client issues a GET_PARAMETER request without a body
but including a Media-Range header. The 200 OK response MUST include
the current Media-Range header (see <a href="#section-18.30">Section 18.30</a>).
<span class="h4"><a class="selflink" id="section-13.4.6" href="#section-13.4.6">13.4.6</a>. Playing Live Media</span>
Live media is indicated by the content of the Media-Properties header
in the SETUP response when (see also <a href="#section-18.29">Section 18.29</a>):
o the Random Access property is set to No-Seeking;
o the Content Modifications property is set to Time-Progressing;
<span class="grey">Schulzrinne, et al. Standards Track [Page 81]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-82" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
o the Retention property's Time-Duration is set to 0.0.
For live media, the SETUP 200 OK response MUST include the Media-
Range header (see <a href="#section-18.30">Section 18.30</a>).
A client MAY send PLAY requests without the Range header. If the
request includes the Range header, it MUST use a symbolic value
representing "now". For NPT, that range specification is "npt=now-".
The server MUST include the Range header in the response, and it MUST
indicate an explicit time value and not a symbolic value. In other
words, "npt=now-" cannot be used in the response. Instead, the time
since session start is recommended, expressed as an open interval,
e.g., "npt=96.23-". An absolute time value (clock) for the
corresponding time MAY be given, i.e., "clock=20030213T143205Z-".
The Absolute Time format can only be used if the client has shown
support for it using the Accept-Ranges header.
<span class="h4"><a class="selflink" id="section-13.4.7" href="#section-13.4.7">13.4.7</a>. Playing Live with Recording</span>
Certain media servers may offer recording services of live sessions
to their clients. This recording would normally be from the
beginning of the media session. Clients can randomly access the
media between now and the beginning of the media session. This live
media with recording is indicated by the content of the Media-
Properties header in the SETUP response when (see also
<a href="#section-18.29">Section 18.29</a>):
o the Random Access property is set to Random-Access;
o the Content Modifications property is set to Time-Progressing;
o the Retention property is set to Time-Limited or Unlimited
The SETUP 200 OK response MUST include the Media-Range header (see
<a href="#section-18.30">Section 18.30</a>) for this type of media. For live media with
recording, the Range header indicates the current delivery point in
the media and the Media-Range header indicates the currently
available media window around the current time. This window can
cover recorded content in the past (seen from current time in the
media) or recorded content in the future (seen from current time in
the media). The server adjusts the delivery point to the requested
border of the window. If the client requests a delivery point that
is located outside the recording window, e.g., if the requested point
is too far in the past, the server selects the oldest point in the
recording. The considerations in <a href="#section-13.5.3">Section 13.5.3</a> apply if a client
requests delivery with scale (<a href="#section-18.46">Section 18.46</a>) values other than 1.0
(normal playback rate) while delivering live media with recording.
<span class="grey">Schulzrinne, et al. Standards Track [Page 82]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-83" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
<span class="h4"><a class="selflink" id="section-13.4.8" href="#section-13.4.8">13.4.8</a>. Playing Live with Time-Shift</span>
Certain media servers may offer time-shift services to their clients.
This time shift records a fixed interval in the past, i.e., a sliding
window recording mechanism, but not past this interval. Clients can
randomly access the media between now and the interval. This live
media with recording is indicated by the content of the Media-
Properties header in the SETUP response when (see also
<a href="#section-18.29">Section 18.29</a>):
o the Random Access property is set to Random-Access;
o the Content Modifications property is set to Time-Progressing;
o the Retention property is set to Time-Duration and a value
indicating the recording interval (>0).
The SETUP 200 OK response MUST include the Media-Range header (see
<a href="#section-18.30">Section 18.30</a>) for this type of media. For live media with
recording, the Range header indicates the current time in the media
and the Media-Range header indicates a window around the current
time. This window can cover recorded content in the past (seen from
current time in the media) or recorded content in the future (seen
from current time in the media). The server adjusts the play point
to the requested border of the window, if the client requests a play
point that is located outside the recording windows, e.g., if
requested too far in the past, the server selects the oldest range in
the recording. The considerations in <a href="#section-13.5.3">Section 13.5.3</a> apply if a
client requests delivery using a scale (<a href="#section-18.46">Section 18.46</a>) value other
than 1.0 (normal playback rate) while delivering live media with
time-shift.
<span class="h3"><a class="selflink" id="section-13.5" href="#section-13.5">13.5</a>. PLAY_NOTIFY</span>
The PLAY_NOTIFY method is issued by a server to inform a client about
an asynchronous event for a session in Play state. The Session
header MUST be presented in a PLAY_NOTIFY request and indicates the
scope of the request. Sending of PLAY_NOTIFY requests requires a
persistent connection between server and client; otherwise, there is
no way for the server to send this request method to the client.
PLAY_NOTIFY requests have an end-to-end (i.e., server-to-client)
scope, as they carry the Session header, and apply only to the given
session. The client SHOULD immediately return a response to the
server.
<span class="grey">Schulzrinne, et al. Standards Track [Page 83]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-84" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
PLAY_NOTIFY requests MAY use both an aggregate control URI and
individual media resource URIs, depending on the scope of the
notification. This scope may have important distinctions for
aggregated sessions, and each reason for a PLAY_NOTIFY request needs
to specify the interpretation as well as if aggregated control URIs
or individual URIs may be used in requests.
PLAY_NOTIFY requests can be used with a message body, depending on
the value of the Notify-Reason header. It is described in the
particular section for each Notify-Reason if a message body is used.
However, currently there is no Notify-Reason that allows the use of a
message body. In this case, there is a need to obey some limitations
when adding new Notify-Reasons that intend to use a message body: the
server can send any type of message body, but it is not ensured that
the client can understand the received message body. This is related
to DESCRIBE (see <a href="#section-13.2">Section 13.2</a> ); but, in this particular case, the
client can state its acceptable message bodies by using the Accept
header. In the case of PLAY_NOTIFY, the server does not know which
message bodies are understood by the client.
The Notify-Reason header (see <a href="#section-18.32">Section 18.32</a>) specifies the reason why
the server sends the PLAY_NOTIFY request. This is extensible and new
reasons can be added in the future (see <a href="#section-22.8">Section 22.8</a>). In case the
client does not understand the reason for the notification, it MUST
respond with a 465 (Notification Reason Unknown) (<a href="#section-17.4.29">Section 17.4.29</a>)
error code. This document defines how servers can send PLAY_NOTIFY
with Notify-Reason values of these types:
o end-of-stream (see <a href="#section-13.5.1">Section 13.5.1</a>);
o media-properties-update (see <a href="#section-13.5.2">Section 13.5.2</a>);
o scale-change (see <a href="#section-13.5.3">Section 13.5.3</a>).
<span class="h4"><a class="selflink" id="section-13.5.1" href="#section-13.5.1">13.5.1</a>. End-of-Stream</span>
A PLAY_NOTIFY request with the Notify-Reason header set to end-of-
stream indicates the completion or near completion of the PLAY
request and the ending delivery of the media stream(s). The request
MUST NOT be issued unless the server is in the Play state. The end
of the media stream delivery notification may be used either to
indicate a successful completion of the PLAY request currently being
served or to indicate some error resulting in failure to complete the
request. The Request-Status header (<a href="#section-18.42">Section 18.42</a>) MUST be included
to indicate which request the notification is for and its completion
status. The message response status codes (<a href="#section-8.1.1">Section 8.1.1</a>) are used
to indicate how the PLAY request concluded. The sender of a
PLAY_NOTIFY MAY issue an updated PLAY_NOTIFY, in the case of a
<span class="grey">Schulzrinne, et al. Standards Track [Page 84]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-85" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
PLAY_NOTIFY sent with wrong information. For instance, a PLAY_NOTIFY
was issued before reaching the end-of-stream, but some error occurred
resulting in that the previously sent PLAY_NOTIFY contained a wrong
time when the stream will end. In this case, a new PLAY_NOTIFY MUST
be sent including the correct status for the completion and all
additional information.
PLAY_NOTIFY requests with the Notify-Reason header set to end-of-
stream MUST include a Range header and the Scale header if the scale
value is not 1. The Range header indicates the point in the stream
or streams where delivery is ending with the timescale that was used
by the server in the PLAY response for the request being fulfilled.
The server MUST NOT use the "now" constant in the Range header; it
MUST use the actual numeric end position in the proper timescale.
When end-of-stream notifications are issued prior to having sent the
last media packets, this is made evident because the end time in the
Range header is beyond the current time in the media being received
by the client, e.g., "npt=-15", if npt is currently at 14.2 seconds.
The Scale header is to be included so that it is evident if the media
timescale is moving backwards or has a non-default pace. The end-of-
stream notification does not prevent the client from sending a new
PLAY request.
If RTP is used as media transport, an RTP-Info header MUST be
included, and the RTP-Info header MUST indicate the last sequence
number in the sequence parameter.
For an RTSP Session where media resources are under aggregated
control, the media resources will normally end at approximately the
same time, although some small differences may exist, on the scale of
a few hundred milliseconds. In those cases, an RTSP session under
aggregated control SHOULD send only a single PLAY_NOTIFY request. By
using the aggregate control URI in the PLAY_NOTIFY request, the RTSP
server indicates that this applies to all media resources within the
session. In cases in which RTP is used for media delivery,
corresponding RTP-Info needs to be included for all media resources.
In cases where one or more media resources have a significantly
shorter duration than some other resources in the aggregated session,
the server MAY send end-of-stream notifications using individual
media resource URIs to indicate to agents that there will be no more
media for this particular media resource related to the current
active PLAY request. In such cases, when the remaining media
resources come to the end of the stream, they MUST send a PLAY_NOTIFY
request using the aggregate control URI to indicate that no more
resources remain.
A PLAY_NOTIFY request with Notify-Reason header set to end-of-stream
MUST NOT carry a message body.
<span class="grey">Schulzrinne, et al. Standards Track [Page 85]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-86" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
This example request notifies the client about a future end-of-stream
event:
S->C: PLAY_NOTIFY rtsp://example.com/fizzle/foo RTSP/2.0
CSeq: 854
Notify-Reason: end-of-stream
Request-Status: cseq=853 status=200 reason="OK"
Range: npt=-145
RTP-Info:url="rtsp://example.com/fizzle/foo/audio"
ssrc=0D12F123:seq=14783;rtptime=2345962545,
url="rtsp://example.com/fizzle/video"
ssrc=789DAF12:seq=57654;rtptime=2792482193
Session: CDtUJfDQXJWtJ7Iqua2xOi
Date: Mon, 08 Mar 2010 13:37:16 GMT
C->S: RTSP/2.0 200 OK
CSeq: 854
User-Agent: PhonyClient/1.2
Session: CDtUJfDQXJWtJ7Iqua2xOi
<span class="h4"><a class="selflink" id="section-13.5.2" href="#section-13.5.2">13.5.2</a>. Media-Properties-Update</span>
A PLAY_NOTIFY request with a Notify-Reason header set to media-
properties-update indicates an update of the media properties for the
given session (see <a href="#section-18.29">Section 18.29</a>) or the available media range that
can be played as indicated by the Media-Range header (<a href="#section-18.30">Section 18.30</a>).
PLAY_NOTIFY requests with Notify-Reason header set to media-
properties-update MUST include a Media-Properties and Date header and
SHOULD include a Media-Range header. The Media-Properties header has
session scope; thus, for aggregated sessions, the PLAY_NOTIFY request
MUST use the aggregated control URI.
This notification MUST be sent for media that are time-progressing
every time an event happens that changes the basis for making
estimates on how the available for play-back media range will
progress with wall clock time. In addition, it is RECOMMENDED that
the server send these notifications approximately every 5 minutes for
time-progressing content to ensure the long-term stability of the
client estimation and allow for clock skew detection by the client.
The time between notifications should be greater than 1 minute and
less than 2 hours. For the reasons just explained, requests MUST
include a Media-Range header to provide current Media duration and a
Range header to indicate the current playing point and any remaining
parts of the requested range.
<span class="grey">Schulzrinne, et al. Standards Track [Page 86]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-87" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
The recommendation for sending updates every 5 minutes is due to
any clock skew issues. In 5 minutes, the clock skew should not
become too significant as this is not used for media playback and
synchronization, it is only for determining which content is
available to the user.
A PLAY_NOTIFY request with Notify-Reason header set to media-
properties-update MUST NOT carry a message body.
S->C: PLAY_NOTIFY rtsp://example.com/fizzle/foo RTSP/2.0
Date: Tue, 14 Apr 2008 15:48:06 GMT
CSeq: 854
Notify-Reason: media-properties-update
Session: CDtUJfDQXJWtJ7Iqua2xOi
Media-Properties: Time-Progressing,
Time-Limited=20080415T153919.36Z, Random-Access=5.0
Media-Range: npt=00:00:00-01:37:21.394
Range: npt=01:15:49.873-
C->S: RTSP/2.0 200 OK
CSeq: 854
User-Agent: PhonyClient/1.2
Session: CDtUJfDQXJWtJ7Iqua2xOi
<span class="h4"><a class="selflink" id="section-13.5.3" href="#section-13.5.3">13.5.3</a>. Scale-Change</span>
The server may be forced to change the rate of media time per
playback time when a client requests delivery using a scale
(<a href="#section-18.46">Section 18.46</a>) value other than 1.0 (normal playback rate). For
time-progressing media with some retention, i.e., the server stores
already-sent content, a client requesting to play with scale values
larger than 1 may catch up with the front end of the media. The
server will then be unable to continue to provide content at scale
larger than 1 as content is only made available by the server at
scale = 1. Another case is when scale < 1 and the media retention is
Time-Duration limited. In this case, the delivery point can reach
the oldest media unit available, and further playback at this scale
becomes impossible as there will be no media available. To avoid
having the client lose any media, the scale will need to be adjusted
to the same rate at which the media is removed from the storage
buffer, commonly scale = 1.0.
Another case is when the content itself consists of spliced pieces or
is dynamically updated. In these cases, the server may be required
to change from one supported scale value (different than scale = 1.0)
to another. In this case, the server will pick the closest value and
<span class="grey">Schulzrinne, et al. Standards Track [Page 87]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-88" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
inform the client of what it has picked. In these cases, the media
properties will also be sent, updating the supported scale values.
This enables a client to adjust the scale value used.
To minimize impact on playback in any of the above cases, the server
MUST modify the playback properties, set scale to a supportable
value, and continue delivery of the media. When doing this
modification, it MUST send a PLAY_NOTIFY message with the Notify-
Reason header set to "scale-change". The request MUST contain a
Range header with the media time when the change took effect, a Scale
header with the new value in use, a Session header with the
identifier for the session to which it applies, and a Date header
with the server wallclock time of the change. For time-progressing
content, the Media-Range and the Media-Properties headers at this
point in time also MUST be included. The Media-Properties header
MUST be included if the scale change was due to the content changing
what scale values ("Scales") are supported.
For media streams delivered using RTP, an RTP-Info header MUST also
be included. It MUST contain the rtptime parameter with a value
corresponding to the point of change in that media and optionally the
sequence number.
PLAY_NOTIFY requests for aggregated sessions MUST use the aggregated
control URI in the request. The scale change for any aggregated
session applies to all media streams that are part of the aggregate.
A PLAY_NOTIFY request with Notify-Reason header set to "Scale-Change"
MUST NOT carry a message body.
<span class="grey">Schulzrinne, et al. Standards Track [Page 88]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-89" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
S->C: PLAY_NOTIFY rtsp://example.com/fizzle/foo RTSP/2.0
Date: Tue, 14 Apr 2008 15:48:06 GMT
CSeq: 854
Notify-Reason: scale-change
Session: CDtUJfDQXJWtJ7Iqua2xOi
Media-Properties: Time-Progressing,
Time-Limited=20080415T153919.36Z, Random-Access=5.0
Media-Range: npt=00:00:00-01:37:21.394
Range: npt=01:37:21.394-
Scale: 1
RTP-Info: url="rtsp://example.com/fizzle/foo/audio"
ssrc=0D12F123:rtptime=2345962545,
url="rtsp://example.com/fizzle/foo/videotrack"
ssrc=789DAF12:seq=57654;rtptime=2792482193
C->S: RTSP/2.0 200 OK
CSeq: 854
User-Agent: PhonyClient/1.2
Session: CDtUJfDQXJWtJ7Iqua2xOi
<span class="h3"><a class="selflink" id="section-13.6" href="#section-13.6">13.6</a>. PAUSE</span>
The PAUSE request causes the stream delivery to immediately be
interrupted (halted). A PAUSE request MUST be made either with the
aggregated control URI for aggregated sessions, resulting in all
media being halted, or with the media URI for non-aggregated
sessions. Any attempt to mute a single media with a PAUSE request in
an aggregated session MUST be responded to with a 460 (Only Aggregate
Operation Allowed) error. After resuming playback, synchronization
of the tracks MUST be maintained. Any server resources are kept,
though servers MAY close the session and free resources after being
paused for the duration specified with the timeout parameter of the
Session header in the SETUP message.
Example:
C->S: PAUSE rtsp://example.com/fizzle/foo RTSP/2.0
CSeq: 834
Session: OoOUPyUwt0VeY9fFRHuZ6L
User-Agent: PhonyClient/1.2
S->C: RTSP/2.0 200 OK
CSeq: 834
Date: Thu, 23 Jan 1997 15:35:06 GMT
Session: OoOUPyUwt0VeY9fFRHuZ6L
Range: npt=45.76-75.00
<span class="grey">Schulzrinne, et al. Standards Track [Page 89]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-90" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
The PAUSE request causes stream delivery to be interrupted
immediately on receipt of the message, and the pause point is set to
the current point in the presentation. That pause point in the media
stream needs to be maintained. A subsequent PLAY request without a
Range header resumes from the pause point and plays until media end.
The pause point after any PAUSE request MUST be returned to the
client by adding a Range header with what remains unplayed of the
PLAY request's range. For media with random access properties, if
one desires to resume playing a ranged request, one simply includes
the Range header from the PAUSE response and includes the Seek-Style
header with the Next policy in the PLAY request. For media that is
time-progressing and has retention duration=0, the follow-up PLAY
request to start media delivery again MUST use "npt=now-" and not the
answer given in the response to PAUSE.
C->S: PLAY rtsp://example.com/fizzle/foo RTSP/2.0
CSeq: 834
Session: OccldOFFq23KwjYpAnBbUr
Range: npt=10-30
User-Agent: PhonyClient/1.2
S->C: RTSP/2.0 200 OK
CSeq: 834
Date: Thu, 23 Jan 1997 15:35:06 GMT
Server: PhonyServer/1.0
Range: npt=10-30
Seek-Style: First-Prior
RTP-Info:url="rtsp://example.com/fizzle/audiotrack"
ssrc=0D12F123:seq=5712;rtptime=934207921,
url="rtsp://example.com/fizzle/videotrack"
ssrc=4FAD8726:seq=57654;rtptime=2792482193
Session: OccldOFFq23KwjYpAnBbUr
<span class="grey">Schulzrinne, et al. Standards Track [Page 90]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-91" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
After 11 seconds, i.e., at 21 seconds into the presentation:
C->S: PAUSE rtsp://example.com/fizzle/foo RTSP/2.0
CSeq: 835
Session: OccldOFFq23KwjYpAnBbUr
User-Agent: PhonyClient/1.2
S->C: RTSP/2.0 200 OK
CSeq: 835
Date: 23 Jan 1997 15:35:17 GMT
Server: PhonyServer/1.0
Range: npt=21-30
Session: OccldOFFq23KwjYpAnBbUr
If a client issues a PAUSE request and the server acknowledges and
enters the Ready state, the proper server response, if the player
issues another PAUSE, is still 200 OK. The 200 OK response MUST
include the Range header with the current pause point. See examples
below:
C->S: PAUSE rtsp://example.com/fizzle/foo RTSP/2.0
CSeq: 834
Session: OccldOFFq23KwjYpAnBbUr
User-Agent: PhonyClient/1.2
S->C: RTSP/2.0 200 OK
CSeq: 834
Session: OccldOFFq23KwjYpAnBbUr
Date: Thu, 23 Jan 1997 15:35:06 GMT
Range: npt=45.76-98.36
C->S: PAUSE rtsp://example.com/fizzle/foo RTSP/2.0
CSeq: 835
Session: OccldOFFq23KwjYpAnBbUr
User-Agent: PhonyClient/1.2
S->C: RTSP/2.0 200 OK
CSeq: 835
Session: OccldOFFq23KwjYpAnBbUr
Date: 23 Jan 1997 15:35:07 GMT
Range: npt=45.76-98.36
<span class="grey">Schulzrinne, et al. Standards Track [Page 91]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-92" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
<span class="h3"><a class="selflink" id="section-13.7" href="#section-13.7">13.7</a>. TEARDOWN</span>
<span class="h4"><a class="selflink" id="section-13.7.1" href="#section-13.7.1">13.7.1</a>. Client to Server</span>
The TEARDOWN client-to-server request stops the stream delivery for
the given URI, freeing the resources associated with it. A TEARDOWN
request can be performed on either an aggregated or a media control
URI. However, some restrictions apply depending on the current
state. The TEARDOWN request MUST contain a Session header indicating
to what session the request applies. The TEARDOWN request MUST NOT
include a Terminate-Reason header.
A TEARDOWN using the aggregated control URI or the media URI in a
session under non-aggregated control (single media session) MAY be
done in any state (Ready and Play). A successful request MUST result
in that media delivery being immediately halted and the session state
being destroyed. This MUST be indicated through the lack of a
Session header in the response.
A TEARDOWN using a media URI in an aggregated session can only be
done in Ready state. Such a request only removes the indicated media
stream and associated resources from the session. This may result in
a session returning to non-aggregated control, because it only
contains a single media after the request's completion. A session
that will exist after the processing of the TEARDOWN request MUST, in
the response to that TEARDOWN request, contain a Session header.
Thus, the presence of the Session header indicates to the receiver of
the response if the session is still extant or has been removed.
<span class="grey">Schulzrinne, et al. Standards Track [Page 92]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-93" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
Example:
C->S: TEARDOWN rtsp://example.com/fizzle/foo RTSP/2.0
CSeq: 892
Session: OccldOFFq23KwjYpAnBbUr
User-Agent: PhonyClient/1.2
S->C: RTSP/2.0 200 OK
CSeq: 892
Server: PhonyServer/1.0
<span class="h4"><a class="selflink" id="section-13.7.2" href="#section-13.7.2">13.7.2</a>. Server to Client</span>
The server can send TEARDOWN requests in the server-to-client
direction to indicate that the server has been forced to terminate
the ongoing session. This may happen for several reasons, such as
server maintenance without available backup, or that the session has
been inactive for extended periods of time. The reason is provided
in the Terminate-Reason header (<a href="#section-18.52">Section 18.52</a>).
When an RTSP client has maintained an RTSP session that otherwise is
inactive for an extended period of time, the server may reclaim the
resources. That is done by issuing a TEARDOWN request with the
Terminate-Reason set to "Session-Timeout". This MAY be done when the
client has been inactive in the RTSP session for more than one
Session Timeout period (<a href="#section-18.49">Section 18.49</a>). However, the server is NOT
RECOMMENDED to perform this operation until an extended period of
inactivity of 10 times the Session-Timeout period has passed. It is
up to the operator of the RTSP server to actually configure how long
this extended period of inactivity is. An operator should take into
account, when doing this configuration, what the served content is
and what this means for the extended period of inactivity.
In case the server needs to stop providing service to the established
sessions and there is no server to point at in a REDIRECT request,
then TEARDOWN SHALL be used to terminate the session. This method
can also be used when non-recoverable internal errors have happened
and the server has no other option than to terminate the sessions.
The TEARDOWN request MUST be made only on the session aggregate
control URI (i.e., it is not allowed to terminate individual media
streams, if it is a session aggregate), and it MUST include the
following headers: Session and Terminate-Reason. The request only
applies to the session identified in the Session header. The server
may include a message to the client's user with the "user-msg"
parameter.
<span class="grey">Schulzrinne, et al. Standards Track [Page 93]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-94" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
The TEARDOWN request may alternatively be done on the wildcard URI
"*" and without any session header. The scope of such a request is
limited to the next-hop (i.e., the RTSP agent in direct communication
with the server) and applies, as well, to the RTSP connection between
the next-hop RTSP agent and the server. This request indicates that
all sessions and pending requests being managed via the connection
are terminated. Any intervening proxies SHOULD do all of the
following in the order listed:
1. respond to the TEARDOWN request
2. disconnect the control channel from the requesting server
3. pass the TEARDOWN request to each applicable client (typically
those clients with an active session or an unanswered request)
Note: The proxy is responsible for accepting TEARDOWN responses
from its clients; these responses MUST NOT be passed on to either
the original server or the target server in the redirect.
<span class="h3"><a class="selflink" id="section-13.8" href="#section-13.8">13.8</a>. GET_PARAMETER</span>
The GET_PARAMETER request retrieves the value of any specified
parameter or parameters for a presentation or stream specified in the
URI. If the Session header is present in a request, the value of a
parameter MUST be retrieved in the specified session context. There
are two ways of specifying the parameters to be retrieved.
The first approach includes headers that have been defined to be
usable for this purpose. Headers for this purpose should allow
empty, or stripped value parts to avoid having to specify bogus data
when indicating the desire to retrieve a value. The successful
completion of the request should also be evident from any filled out
values in the response. The headers in this specification that MAY
be used for retrieving their current value using GET_PARAMETER are
listed below; additional headers MAY be specified in the future:
o Accept-Ranges
o Media-Range
o Media-Properties
o Range
o RTP-Info
<span class="grey">Schulzrinne, et al. Standards Track [Page 94]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-95" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
The other way is to specify a message body that lists the
parameter(s) that are desired to be retrieved. The Content-Type
header (<a href="#section-18.19">Section 18.19</a>) is used to specify which format the message
body has. If the receiver of the request does not support the media
type used for the message body, it SHALL respond using the error code
415 (Unsupported Media Type). The responder to a GET_PARAMETER
request MUST use the media type of the request for the response. For
additional considerations regarding message body negotiation, see
<a href="#section-9.3">Section 9.3</a>.
RTSP agents implementing support for responding to GET_PARAMETER
requests SHALL implement the "text/parameters" format (Appendix F).
This to ensure that at least one known format for parameters is
implemented and, thus, prevent parameter format negotiation failure.
Parameters specified within the body of the message must all be
understood by the request-receiving agent. If one or more parameters
are not understood a 451 (Parameter Not Understood) MUST be sent
including a body listing the parameters that weren't understood. If
all parameters are understood, their values are filled in and
returned in the response message body.
The method can also be used without a message body or any header that
requests parameters for keep-alive purposes. The keep-alive timer
has been updated for any request that is successful, i.e., a 200 OK
response is received. Any non-required header present in such a
request may or may not have been processed. Normally, the presence
of filled-out values in the header will be indication that the header
has been processed. However, for cases when this is difficult to
determine, it is recommended to use a feature tag and the Require
header. For this reason, it is usually easier if any parameters to
be retrieved are sent in the body, rather than using any header.
<span class="grey">Schulzrinne, et al. Standards Track [Page 95]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-96" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
Example:
S->C: GET_PARAMETER rtsp://example.com/fizzle/foo RTSP/2.0
CSeq: 431
User-Agent: PhonyClient/1.2
Session: OccldOFFq23KwjYpAnBbUr
Content-Length: 26
Content-Type: text/parameters
packets_received
jitter
C->S: RTSP/2.0 200 OK
CSeq: 431
Session: OccldOFFq23KwjYpAnBbUr
Server: PhonyServer/1.1
Date: Mon, 08 Mar 2010 13:43:23 GMT
Content-Length: 38
Content-Type: text/parameters
packets_received: 10
jitter: 0.3838
<span class="h3"><a class="selflink" id="section-13.9" href="#section-13.9">13.9</a>. SET_PARAMETER</span>
This method requests the setting of the value of a parameter or a set
of parameters for a presentation or stream specified by the URI. If
the Session header is present in a request, the value of a parameter
MUST be retrieved in the specified session context. The method MAY
also be used without a message body. It is the RECOMMENDED method to
be used in a request sent for the sole purpose of updating the keep-
alive timer. If this request is successful, i.e., a 200 OK response
is received, then the keep-alive timer has been updated. Any non-
required header present in such a request may or may not have been
processed. To allow a client to determine if any such header has
been processed, it is necessary to use a feature tag and the Require
header. Due to this reason it is RECOMMENDED that any parameters are
sent in the body rather than using any header.
When using a message body to list the parameter(s) desired to be set,
the Content-Type header (<a href="#section-18.19">Section 18.19</a>) is used to specify which
format the message body has. If the receiver of the request is not
supporting the media type used for the message body, it SHALL respond
using the error code 415 (Unsupported Media Type). For additional
considerations regarding message body negotiation, see <a href="#section-9.3">Section 9.3</a>.
The responder to a SET_PARAMETER request MUST use the media type of
the request for the response. For additional considerations
regarding message body negotiation, see <a href="#section-9.3">Section 9.3</a>.
<span class="grey">Schulzrinne, et al. Standards Track [Page 96]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-97" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
RTSP agents implementing support for responding to SET_PARAMETER
requests SHALL implement the text/parameters format (Appendix F).
This is to ensure that at least one known format for parameters is
implemented and, thus, prevent parameter format negotiation failure.
A request is RECOMMENDED to only contain a single parameter to allow
the client to determine why a particular request failed. If the
request contains several parameters, the server MUST only act on the
request if all of the parameters can be set successfully. A server
MUST allow a parameter to be set repeatedly to the same value, but it
MAY disallow changing parameter values. If the receiver of the
request does not understand or cannot locate a parameter, error 451
(Parameter Not Understood) MUST be used. When a parameter is not
allowed to change, the error code is 458 (Parameter Is Read-Only).
The response body MUST contain only the parameters that have errors.
Otherwise, a body MUST NOT be returned. The response body MUST use
the media type of the request for the response.
Note: transport parameters for the media stream MUST only be set with
the SETUP command.
Restricting setting transport parameters to SETUP is for the
benefit of firewalls connected to border RTSP proxies.
The parameters are split in a fine-grained fashion so that there
can be more meaningful error indications. However, it may make
sense to allow the setting of several parameters if an atomic
setting is desirable. Imagine device control where the client
does not want the camera to pan unless it can also tilt to the
right angle at the same time.
<span class="grey">Schulzrinne, et al. Standards Track [Page 97]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-98" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
Example:
C->S: SET_PARAMETER rtsp://example.com/fizzle/foo RTSP/2.0
CSeq: 421
User-Agent: PhonyClient/1.2
Session: iixT43KLc
Date: Mon, 08 Mar 2010 14:45:04 GMT
Content-length: 20
Content-type: text/parameters
barparam: barstuff
S->C: RTSP/2.0 451 Parameter Not Understood
CSeq: 421
Session: iixT43KLc
Server: PhonyServer/1.0
Date: Mon, 08 Mar 2010 14:44:56 GMT
Content-length: 20
Content-type: text/parameters
barparam: barstuff
<span class="h3"><a class="selflink" id="section-13.10" href="#section-13.10">13.10</a>. REDIRECT</span>
The REDIRECT method is issued by a server to inform a client that the
service provided will be terminated and where a corresponding service
can be provided instead. This may happen for different reasons. One
is that the server is being administered such that it must stop
providing service. Thus, the client is required to connect to
another server location to access the resource indicated by the
Request-URI.
The REDIRECT request SHALL contain a Terminate-Reason header
(<a href="#section-18.52">Section 18.52</a>) to inform the client of the reason for the request.
Additional parameters related to the reason may also be included.
The intention here is to allow a server administrator to do a
controlled shutdown of the RTSP server. That requires sufficient
time to inform all entities having associated state with the server
and for them to perform a controlled migration from this server to a
fall-back server.
A REDIRECT request with a Session header has end-to-end (i.e.,
server-to-client) scope and applies only to the given session. Any
intervening proxies SHOULD NOT disconnect the control channel while
there are other remaining end-to-end sessions. The REQUIRED Location
header MUST contain a complete absolute URI pointing to the resource
to which the client SHOULD reconnect. Specifically, the Location
<span class="grey">Schulzrinne, et al. Standards Track [Page 98]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-99" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
MUST NOT contain just the host and port. A client may receive a
REDIRECT request with a Session header, if and only if, an end-to-end
session has been established.
A client may receive a REDIRECT request without a Session header at
any time when it has communication or a connection established with a
server. The scope of such a request is limited to the next-hop
(i.e., the RTSP agent in direct communication with the server) and
applies to all sessions controlled, as well as the connection between
the next-hop RTSP agent and the server. A REDIRECT request without a
Session header indicates that all sessions and pending requests being
managed via the connection MUST be redirected. The Location header,
if included in such a request, SHOULD contain an absolute URI with
only the host address and the OPTIONAL port number of the server to
which the RTSP agent SHOULD reconnect. Any intervening proxies
SHOULD do all of the following in the order listed:
1. respond to the REDIRECT request
2. disconnect the control channel from the requesting server
3. connect to the server at the given host address
4. pass the REDIRECT request to each applicable client (typically
those clients with an active session or an unanswered request)
Note: The proxy is responsible for accepting REDIRECT responses
from its clients; these responses MUST NOT be passed on to either
the original server or the redirected server.
A server that needs to terminate a session or all its sessions and
lacks an alternative server to redirect to, SHALL instead use
TEARDOWN requests.
When no Terminate-Reason "time" parameter is included in a REDIRECT
request, the client SHALL perform the redirection immediately and
return a response to the server. The server shall consider the
session to be terminated and can free any associated state after it
receives the successful (2xx) response. The server MAY close the
signaling connection upon receiving the response, and the client
SHOULD close the signaling connection after sending the 2xx response.
The exception to this is when the client has several sessions on the
server being managed by the given signaling connection. In this
case, the client SHOULD close the connection when it has received and
responded to REDIRECT requests for all the sessions managed by the
signaling connection.
<span class="grey">Schulzrinne, et al. Standards Track [Page 99]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-100" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
The Terminate-Reason header "time" parameter MAY be used to indicate
the wallclock time by which the redirection MUST have taken place.
To allow a client to determine that redirect time without being time
synchronized with the server, the server MUST include a Date header
in the request. The client should have terminated the session and
closed the connection before the redirection time-line terminated.
The server MAY simply cease to provide service when the deadline time
has been reached, or it can issue a TEARDOWN requests to the
remaining sessions.
If the REDIRECT request times out following the rules in
<a href="#section-10.4">Section 10.4</a>, the server MAY terminate the session or transport
connection that would be redirected by the request. This is a
safeguard against misbehaving clients that refuse to respond to a
REDIRECT request. This action removes any incentive of not
acknowledging the reception of a REDIRECT request.
After a REDIRECT request has been processed, a client that wants to
continue to receive media for the resource identified by the Request-
URI will have to establish a new session with the designated host.
If the URI given in the Location header is a valid resource URI, a
client SHOULD issue a DESCRIBE request for the URI.
Note: The media resource indicated by the Location header can be
identical, slightly different, or totally different. This is the
reason why a new DESCRIBE request SHOULD be issued.
If the Location header contains only a host address, the client may
assume that the media on the new server is identical to the media on
the old server, i.e., all media configuration information from the
old session is still valid except for the host address. However, the
usage of conditional SETUP using MTag identifiers is RECOMMENDED as a
means to verify the assumption.
This example request redirects traffic for this session to the new
server at the given absolute time:
S->C: REDIRECT rtsp://example.com/fizzle/foo RTSP/2.0
CSeq: 732
Location: rtsp://s2.example.com:8001/fizzle/foo
Terminate-Reason: Server-Admin ;time=19960213T143205Z
Session: uZ3ci0K+Ld-M
Date: Thu, 13 Feb 1996 14:30:43 GMT
C->S: RTSP/2.0 200 OK
CSeq: 732
User-Agent: PhonyClient/1.2
Session: uZ3ci0K+Ld-M
<span class="grey">Schulzrinne, et al. Standards Track [Page 100]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-101" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
<span class="h2"><a class="selflink" id="section-14" href="#section-14">14</a>. Embedded (Interleaved) Binary Data</span>
In order to fulfill certain requirements on the network side, e.g.,
in conjunction with network address translators that block RTP
traffic over UDP, it may be necessary to interleave RTSP messages and
media-stream data. This interleaving should generally be avoided
unless necessary since it complicates client and server operation and
imposes additional overhead. Also, head-of-line blocking may cause
problems. Interleaved binary data SHOULD only be used if RTSP is
carried over TCP. Interleaved data is not allowed inside RTSP
messages.
Stream data, such as RTP packets, is encapsulated by an ASCII dollar
sign (36 decimal) followed by a one-octet channel identifier and the
length of the encapsulated binary data as a binary, two-octet
unsigned integer in network octet order (Appendix B of [<a href="./rfc791" title=""Internet Protocol"">RFC791</a>]).
The stream data follows immediately afterwards, without a CRLF, but
including the upper-layer protocol headers. Each dollar sign block
MUST contain exactly one upper-layer protocol data unit, e.g., one
RTP packet.
Note that this mechanism does not support PDUs larger than 65535
octets, which matches the maximum payload size of regular, non-
jumbo IPv4 and IPv6 packets. If the media delivery protocol
intended to be used has larger PDUs than that, a definition of a
PDU fragmentation mechanism will be required to support embedded
binary data.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| "$" = 36 | Channel ID | Length in octets |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
: Binary data (Length according to Length field) :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 1: Embedded Interleaved Binary Data Format
The channel identifier is defined in the Transport header with the
interleaved parameter (<a href="#section-18.54">Section 18.54</a>).
When the transport choice is RTP, RTCP messages are also interleaved
by the server over the TCP connection. The usage of RTCP messages is
indicated by including an interval containing a second channel in the
interleaved parameter of the Transport header (see <a href="#section-18.54">Section 18.54</a>).
If RTCP is used, packets MUST be sent on the first available channel
<span class="grey">Schulzrinne, et al. Standards Track [Page 101]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-102" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
that is higher than the RTP channel. The channels are bidirectional,
using the same Channel ID in both directions; therefore, RTCP traffic
is sent on the second channel in both directions.
RTCP is sometimes needed for synchronization when two or more
streams are interleaved in such a fashion. Also, this provides a
convenient way to tunnel RTP/RTCP packets through the RTSP
connection (TCP or TCP/TLS) when required by the network
configuration and to transfer them onto UDP when possible.
C->S: SETUP rtsp://example.com/bar.file RTSP/2.0
CSeq: 2
Transport: RTP/AVP/TCP;unicast;interleaved=0-1
Accept-Ranges: npt, smpte, clock
User-Agent: PhonyClient/1.2
S->C: RTSP/2.0 200 OK
CSeq: 2
Date: Thu, 05 Jun 1997 18:57:18 GMT
Transport: RTP/AVP/TCP;unicast;interleaved=5-6
Session: OccldOFFq23KwjYpAnBbUr
Accept-Ranges: npt
Media-Properties: Random-Access=0.2, Immutable, Unlimited
C->S: PLAY rtsp://example.com/bar.file RTSP/2.0
CSeq: 3
Session: OccldOFFq23KwjYpAnBbUr
User-Agent: PhonyClient/1.2
S->C: RTSP/2.0 200 OK
CSeq: 3
Session: OccldOFFq23KwjYpAnBbUr
Date: Thu, 05 Jun 1997 18:57:19 GMT
RTP-Info: url="rtsp://example.com/bar.file"
ssrc=0D12F123:seq=232433;rtptime=972948234
Range: npt=0-56.8
Seek-Style: RAP
S->C: $005{2 octet length}{"length" octets data, w/RTP header}
S->C: $005{2 octet length}{"length" octets data, w/RTP header}
S->C: $006{2 octet length}{"length" octets RTCP packet}
<span class="grey">Schulzrinne, et al. Standards Track [Page 102]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-103" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
<span class="h2"><a class="selflink" id="section-15" href="#section-15">15</a>. Proxies</span>
RTSP Proxies are RTSP agents that are located in between a client and
a server. A proxy can take on the roles of both client and server
depending on what it tries to accomplish. RTSP proxies use two
transport-layer connections: one from the RTSP client to the RTSP
proxy and a second from the RTSP proxy to the RTSP server. Proxies
are introduced for several different reasons; those listed below are
often combined.
Caching Proxy: This type of proxy is used to reduce the workload on
servers and connections. By caching the description and media
streams, i.e., the presentation, the proxy can serve a client
with content, but without requesting it from the server once it
has been cached and has not become stale. See <a href="#section-16">Section 16</a>.
This type of proxy is also expected to understand RTSP endpoint
functionality, i.e., functionality identified in the Require
header in addition to what Proxy-Require demands.
Translator Proxy: This type of proxy is used to ensure that an RTSP
client gets access to servers and content on an external
network or gets access by using content encodings not supported
by the client. The proxy performs the necessary translation of
addresses, protocols, or encodings. This type of proxy is
expected also to understand RTSP endpoint functionality, i.e.,
functionality identified in the Require header in addition to
what Proxy-Require demands.
Access Proxy: This type of proxy is used to ensure that an RTSP
client gets access to servers on an external network. Thus,
this proxy is placed on the border between two domains, e.g., a
private address space and the public Internet. The proxy
performs the necessary translation, usually addresses. This
type of proxy is required to redirect the media to itself or a
controlled gateway that performs the translation before the
media can reach the client.
Security Proxy: This type of proxy is used to help facilitate
security functions around RTSP. For example, in the case of a
firewalled network, the security proxy requests that the
necessary pinholes in the firewall are opened when a client in
the protected network wants to access media streams on the
external side. This proxy can perform its function without
redirecting the media between the server and client. However,
in deployments with private address spaces, this proxy is
likely to be combined with the access proxy. The functionality
of this proxy is usually closely tied into understanding all
aspects of the media transport.
<span class="grey">Schulzrinne, et al. Standards Track [Page 103]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-104" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
Auditing Proxy: RTSP proxies can also provide network owners with a
logging and auditing point for RTSP sessions, e.g., for
corporations that track their employees usage of the network.
This type of proxy can perform its function without inserting
itself or any other node in the media transport. This proxy
type can also accept unknown methods as it doesn't interfere
with the clients' requests.
All types of proxies can also be used when using secured
communication with TLS, as RTSP 2.0 allows the client to approve
certificate chains used for connection establishment from a proxy;
see <a href="#section-19.3.2">Section 19.3.2</a>. However, that trust model may not be suitable
for all types of deployment. In those cases, the secured sessions do
bypass the proxies.
Access proxies SHOULD NOT be used in equipment like NATs and
firewalls that aren't expected to be regularly maintained, like home
or small office equipment. In these cases, it is better to use the
NAT traversal procedures defined for RTSP 2.0 [<a href="./rfc7825" title=""A Network Address Translator (NAT) Traversal Mechanism for Media Controlled by Real-Time Streaming Protocol (RTSP)"">RFC7825</a>]. The reason
for these recommendations is that any extensions of RTSP resulting in
new media-transport protocols or profiles, new parameters, etc., may
fail in a proxy that isn't maintained. This would impede RTSP's
future development and usage.
<span class="h3"><a class="selflink" id="section-15.1" href="#section-15.1">15.1</a>. Proxies and Protocol Extensions</span>
The existence of proxies must always be considered when developing
new RTSP extensions. Most types of proxies will need to implement
any new method to operate correctly in the presence of that
extension. New headers can be introduced and will not be blocked by
older proxies. However, it is important to consider if this header
and its function are required to be understood by the proxy or if it
can be simply forwarded. If the header needs to be understood, a
feature tag representing the functionality MUST be included in the
Proxy-Require header. Below are guidelines for analysis whether the
header needs to be understood. The Transport header and its
parameters are extensible, which requires handling rules for a proxy
in order to ensure a correct interpretation.
<span class="grey">Schulzrinne, et al. Standards Track [Page 104]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-105" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
Whether or not a proxy needs to understand a header is not easy to
determine as they serve a broad variety of functions. When
evaluating if a header needs to be understood, one can divide the
functionality into three main categories:
Media modifying: The caching and translator proxies modify the
actual media and therefore need also to understand the request
directed to the server that affects how the media is rendered.
Thus, this type of proxy also needs to understand the server-side
functionality.
Transport modifying: The access and the security proxy both need to
understand how the media transport is performed, either for
opening pinholes or translating the outer headers, e.g., IP and
UDP or TCP.
Non-modifying: The audit proxy is special in that it does not modify
the messages in other ways than to insert the Via header. That
makes it possible for this type to forward RTSP messages that
contain different types of unknown methods, headers, or header
parameters.
An extension has to be classified as mandatory to be implemented for
a proxy, if an extension has to be understood by a "Transport
modifying" type of proxy.
<span class="h3"><a class="selflink" id="section-15.2" href="#section-15.2">15.2</a>. Multiplexing and Demultiplexing of Messages</span>
RTSP proxies may have to multiplex several RTSP sessions from their
clients towards RTSP servers. This requires that RTSP requests from
multiple clients be multiplexed onto a common connection for requests
outgoing to an RTSP server, and, on the way back, the responses be
demultiplexed from the server to per-client responses. On the
protocol level, this requires that request and response messages be
handled in both directions, requiring that there be a mechanism to
correlate which request/response pair exchanged between proxy and
server is mapped to which client (or client request).
This multiplexing of requests and demultiplexing of responses is done
by using the CSeq header field. The proxy has to rewrite the CSeq in
requests to the server and responses from the server and remember
which CSeq is mapped to which client. The proxy also needs to ensure
that the order of the message related to each client is maintained.
<a href="#section-18.20">Section 18.20</a> defines the handling of how requests and responses are
rewritten.
<span class="grey">Schulzrinne, et al. Standards Track [Page 105]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-106" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
<span class="h2"><a class="selflink" id="section-16" href="#section-16">16</a>. Caching</span>
In HTTP, request/response pairs are cached. RTSP differs
significantly in that respect. Responses are not cacheable, with the
exception of the presentation description returned by DESCRIBE.
(Since the responses for anything but DESCRIBE and GET_PARAMETER do
not return any data, caching is not really an issue for these
requests.) However, it is desirable for the continuous media data,
typically delivered out-of-band with respect to RTSP, to be cached,
as well as the session description.
On receiving a SETUP or PLAY request, a proxy ascertains whether it
has an up-to-date copy of the continuous media content and its
description. It can determine whether the copy is up to date by
issuing a SETUP or DESCRIBE request, respectively, and comparing the
Last-Modified header with that of the cached copy. If the copy is
not up to date, it modifies the SETUP transport parameters as
appropriate and forwards the request to the origin server.
Subsequent control commands such as PLAY or PAUSE then pass the proxy
unmodified. The proxy delivers the continuous media data to the
client, while possibly making a local copy for later reuse. The
exact allowed behavior of the cache is given by the cache-response
directives described in <a href="#section-18.11">Section 18.11</a>. A cache MUST answer any
DESCRIBE requests if it is currently serving the stream to the
requester, as it is possible that low-level details of the stream
description may have changed on the origin server.
Note that an RTSP cache is of the "cut-through" variety. Rather than
retrieving the whole resource from the origin server, the cache
simply copies the streaming data as it passes by on its way to the
client. Thus, it does not introduce additional latency.
To the client, an RTSP proxy cache appears like a regular media
server. To the media origin server, an RTSP proxy cache appears like
a client. Just as an HTTP cache has to store the content type,
content language, and so on for the objects it caches, a media cache
has to store the presentation description. Typically, a cache
eliminates all transport references (e.g., multicast information)
from the presentation description, since these are independent of the
data delivery from the cache to the client. Information on the
encodings remains the same. If the cache is able to translate the
cached media data, it would create a new presentation description
with all the encoding possibilities it can offer.
<span class="grey">Schulzrinne, et al. Standards Track [Page 106]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-107" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
<span class="h3"><a class="selflink" id="section-16.1" href="#section-16.1">16.1</a>. Validation Model</span>
When a cache has a stale entry that it would like to use as a
response to a client's request, it first has to check with the origin
server (or possibly an intermediate cache with a fresh response) to
see if its cached entry is still usable. This is called "validating"
the cache entry. To avoid having to pay the overhead of
retransmitting the full response if the cached entry is good, and at
the same time avoiding having to pay the overhead of an extra round
trip if the cached entry is invalid, RTSP supports the use of
conditional methods.
The key protocol features for supporting conditional methods are
those concerned with "cache validators." When an origin server
generates a full response, it attaches some sort of validator to it,
which is kept with the cache entry. When a client (user agent or
proxy cache) makes a conditional request for a resource for which it
has a cache entry, it includes the associated validator in the
request.
The server then checks that validator against the current validator
for the requested resource, and, if they match (see <a href="#section-16.1.3">Section 16.1.3</a>),
it responds with a special status code (usually, 304 (Not Modified))
and no message body. Otherwise, it returns a full response
(including message body). Thus, avoiding transmitting the full
response if the validator matches and avoiding an extra round trip if
it does not match.
In RTSP, a conditional request looks exactly the same as a normal
request for the same resource, except that it carries a special
header (which includes the validator) that implicitly turns the
method (usually DESCRIBE or SETUP) into a conditional.
The protocol includes both positive and negative senses of cache-
validating conditions. That is, it is possible to request that a
method be performed either if and only if a validator matches or if
and only if no validators match.
Note: a response that lacks a validator may still be cached, and
served from cache until it expires, unless this is explicitly
prohibited by a cache directive (see <a href="#section-18.11">Section 18.11</a>). However, a
cache cannot perform a conditional retrieval if it does not have a
validator for the resource, which means it will not be refreshable
after it expires.
<span class="grey">Schulzrinne, et al. Standards Track [Page 107]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-108" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
Media streams that are being adapted based on the transport capacity
between the server and the cache make caching more difficult. A
server needs to consider how it views the caching of media streams
that it adapts and potentially instruct any caches not to cache such
streams.
<span class="h4"><a class="selflink" id="section-16.1.1" href="#section-16.1.1">16.1.1</a>. Last-Modified Dates</span>
The Last-Modified header (<a href="#section-18.27">Section 18.27</a>) value is often used as a
cache validator. In simple terms, a cache entry is considered to be
valid if the cache entry was created after the Last-Modified time.
<span class="h4"><a class="selflink" id="section-16.1.2" href="#section-16.1.2">16.1.2</a>. Message Body Tag Cache Validators</span>
The MTag response-header field-value, a message body tag, provides
for an "opaque" cache validator. This might allow more reliable
validation in situations where it is inconvenient to store
modification dates, where the one-second resolution of RTSP-date
values is not sufficient, or where the origin server wishes to avoid
certain paradoxes that might arise from the use of modification
dates.
Message body tags are described in <a href="#section-4.6">Section 4.6</a>
<span class="h4"><a class="selflink" id="section-16.1.3" href="#section-16.1.3">16.1.3</a>. Weak and Strong Validators</span>
Since both origin servers and caches will compare two validators to
decide if they represent the same or different entities, one normally
would expect that if the message body (i.e., the presentation
description) or any associated message body headers changes in any
way, then the associated validator would change as well. If this is
true, then this validator is a "strong validator". The Message body
(i.e., the presentation description) or any associated message body
headers is named an entity for a better understanding.
However, there might be cases when a server prefers to change the
validator only on semantically significant changes and not when
insignificant aspects of the entity change. A validator that does
not always change when the resource changes is a "weak validator".
Message body tags are normally strong validators, but the protocol
provides a mechanism to tag a message body tag as "weak". One can
think of a strong validator as one that changes whenever the bits of
an entity changes, while a weak value changes whenever the meaning of
an entity changes. Alternatively, one can think of a strong
validator as part of an identifier for a specific entity, while a
weak validator is part of an identifier for a set of semantically
equivalent entities.
<span class="grey">Schulzrinne, et al. Standards Track [Page 108]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-109" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
Note: One example of a strong validator is an integer that is
incremented in stable storage every time an entity is changed.
An entity's modification time, if represented with one-second
resolution, could be a weak validator, since it is possible that
the resource might be modified twice during a single second.
Support for weak validators is optional. However, weak validators
allow for more efficient caching of equivalent objects.
A "use" of a validator is either when a client generates a request
and includes the validator in a validating header field or when a
server compares two validators.
Strong validators are usable in any context. Weak validators are
only usable in contexts that do not depend on exact equality of an
entity. For example, either kind is usable for a conditional
DESCRIBE of a full entity. However, only a strong validator is
usable for a subrange retrieval, since otherwise the client might end
up with an internally inconsistent entity.
Clients MAY issue DESCRIBE requests with either weak or strong
validators. Clients MUST NOT use weak validators in other forms of
requests.
The only function that RTSP defines on validators is comparison.
There are two validator comparison functions, depending on whether or
not the comparison context allows the use of weak validators:
o The strong comparison function: in order to be considered equal,
both validators MUST be identical in every way, and both MUST NOT
be weak.
o The weak comparison function: in order to be considered equal,
both validators MUST be identical in every way, but either or both
of them MAY be tagged as "weak" without affecting the result.
A message body tag is strong unless it is explicitly tagged as weak.
A Last-Modified time, when used as a validator in a request, is
implicitly weak unless it is possible to deduce that it is strong,
using the following rules:
o The validator is being compared by an origin server to the actual
current validator for the entity and,
<span class="grey">Schulzrinne, et al. Standards Track [Page 109]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-110" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
o That origin server reliably knows that the associated entity did
not change more than once during the second covered by the
presented validator.
OR
o The validator is about to be used by a client in an If-Modified-
Since, because the client has a cache entry for the associated
entity, and
o That cache entry includes a Date value, which gives the time when
the origin server sent the original response, and
o The presented Last-Modified time is at least 60 seconds before the
Date value.
OR
o The validator is being compared by an intermediate cache to the
validator stored in its cache entry for the entity, and
o That cache entry includes a Date value, which gives the time when
the origin server sent the original response, and
o The presented Last-Modified time is at least 60 seconds before the
Date value.
This method relies on the fact that if two different responses were
sent by the origin server during the same second, but both had the
same Last-Modified time, then at least one of those responses would
have a Date value equal to its Last-Modified time. The arbitrary
60-second limit guards against the possibility that the Date and
Last-Modified values are generated from different clocks or at
somewhat different times during the preparation of the response. An
implementation MAY use a value larger than 60 seconds, if it is
believed that 60 seconds is too short.
If a client wishes to perform a subrange retrieval on a value for
which it has only a Last-Modified time and no opaque validator, it
MAY do this only if the Last-Modified time is strong in the sense
described here.
<span class="h4"><a class="selflink" id="section-16.1.4" href="#section-16.1.4">16.1.4</a>. Rules for When to Use Message Body Tags and Last-Modified Dates</span>
This document adopts a set of rules and recommendations for origin
servers, clients, and caches regarding when various validator types
ought to be used, and for what purposes.
<span class="grey">Schulzrinne, et al. Standards Track [Page 110]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-111" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
RTSP origin servers:
o SHOULD send a message body tag validator unless it is not feasible
to generate one.
o MAY send a weak message body tag instead of a strong message body
tag, if performance considerations support the use of weak message
body tags, or if it is unfeasible to send a strong message body
tag.
o SHOULD send a Last-Modified value if it is feasible to send one,
unless the risk of a breakdown in semantic transparency that could
result from using this date in an If-Modified-Since header would
lead to serious problems.
In other words, the preferred behavior for an RTSP origin server is
to send both a strong message body tag and a Last-Modified value.
In order to be legal, a strong message body tag MUST change whenever
the associated entity value changes in any way. A weak message body
tag SHOULD change whenever the associated entity changes in a
semantically significant way.
Note: in order to provide semantically transparent caching, an
origin server MUST avoid reusing a specific strong message body
tag value for two different entities or reusing a specific weak
message body tag value for two semantically different entities.
Cache entries might persist for arbitrarily long periods,
regardless of expiration times, so it might be inappropriate to
expect that a cache will never again attempt to validate an entry
using a validator that it obtained at some point in the past.
RTSP clients:
o If a message body tag has been provided by the origin server, MUST
use that message body tag in any cache-conditional request (using
If-Match or If-None-Match).
o If only a Last-Modified value has been provided by the origin
server, SHOULD use that value in non-subrange cache-conditional
requests (using If-Modified-Since).
o If both a message body tag and a Last-Modified value have been
provided by the origin server, SHOULD use both validators in
cache-conditional requests.
An RTSP origin server, upon receiving a conditional request that
includes both a Last-Modified date (e.g., in an If-Modified-Since
header) and one or more message body tags (e.g., in an If-Match,
<span class="grey">Schulzrinne, et al. Standards Track [Page 111]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-112" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
If-None-Match, or If-Range header field) as cache validators, MUST
NOT return a response status of 304 (Not Modified) unless doing so is
consistent with all of the conditional header fields in the request.
Note: The general principle behind these rules is that RTSP
servers and clients should transmit as much non-redundant
information as is available in their responses and requests. RTSP
systems receiving this information will make the most conservative
assumptions about the validators they receive.
<span class="h4"><a class="selflink" id="section-16.1.5" href="#section-16.1.5">16.1.5</a>. Non-validating Conditionals</span>
The principle behind message body tags is that only the service
author knows the semantics of a resource well enough to select an
appropriate cache validation mechanism, and the specification of any
validator comparison function more complex than octet equality would
open up a can of worms. Thus, comparisons of any other headers are
never used for purposes of validating a cache entry.
<span class="h3"><a class="selflink" id="section-16.2" href="#section-16.2">16.2</a>. Invalidation after Updates or Deletions</span>
The effect of certain methods performed on a resource at the origin
server might cause one or more existing cache entries to become non-
transparently invalid. That is, although they might continue to be
"fresh," they do not accurately reflect what the origin server would
return for a new request on that resource.
There is no way for RTSP to guarantee that all such cache entries are
marked invalid. For example, the request that caused the change at
the origin server might not have gone through the proxy where a cache
entry is stored. However, several rules help reduce the likelihood
of erroneous behavior.
In this section, the phrase "invalidate an entity" means that the
cache will either remove all instances of that entity from its
storage or mark these as "invalid" and in need of a mandatory
revalidation before they can be returned in response to a subsequent
request.
Some RTSP methods MUST cause a cache to invalidate an entity. This
is either the entity referred to by the Request-URI or by the
Location or Content-Location headers (if present). These methods
are:
o DESCRIBE
o SETUP
<span class="grey">Schulzrinne, et al. Standards Track [Page 112]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-113" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
In order to prevent DoS attacks, an invalidation based on the URI in
a Location or Content-Location header MUST only be performed if the
host part is the same as in the Request-URI.
A cache that passes through requests for methods it does not
understand SHOULD invalidate any entities referred to by the Request-
URI.
<span class="h2"><a class="selflink" id="section-17" href="#section-17">17</a>. Status Code Definitions</span>
Where applicable, HTTP status codes (see <a href="./rfc7231#section-6">Section 6 of [RFC7231]</a>) are
reused. See Table 4 in <a href="#section-8.1">Section 8.1</a> for a listing of which status
codes may be returned by which requests. All error messages, 4xx and
5xx, MAY return a body containing further information about the
error.
<span class="h3"><a class="selflink" id="section-17.1" href="#section-17.1">17.1</a>. Informational 1xx</span>
<span class="h4"><a class="selflink" id="section-17.1.1" href="#section-17.1.1">17.1.1</a>. 100 Continue</span>
The requesting agent SHOULD continue with its request. This interim
response is used to inform the requesting agent that the initial part
of the request has been received and has not yet been rejected by the
responding agent. The requesting agent SHOULD continue by sending
the remainder of the request or, if the request has already been
completed, continue to wait for a final response (see <a href="#section-10.4">Section 10.4</a>).
The responding agent MUST send a final response after the request has
been completed.
<span class="h3"><a class="selflink" id="section-17.2" href="#section-17.2">17.2</a>. Success 2xx</span>
This class of status code indicates that the agent's request was
successfully received, understood, and accepted.
<span class="h4"><a class="selflink" id="section-17.2.1" href="#section-17.2.1">17.2.1</a>. 200 OK</span>
The request has succeeded. The information returned with the
response is dependent on the method used in the request.
<span class="h3"><a class="selflink" id="section-17.3" href="#section-17.3">17.3</a>. Redirection 3xx</span>
The notation "3xx" indicates response codes from 300 to 399 inclusive
that are meant for redirection. We use the notation "3rr" to
indicate all 3xx codes used for redirection, i.e., excluding 304.
The 304 response code appears here, rather than a 2xx response code,
which would have been appropriate; 304 has also been used in RTSP 1.0
[<a href="./rfc2326" title=""Real Time Streaming Protocol (RTSP)"">RFC2326</a>].
<span class="grey">Schulzrinne, et al. Standards Track [Page 113]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-114" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
Within RTSP, redirection may be used for load-balancing or
redirecting stream requests to a server topologically closer to the
agent. Mechanisms to determine topological proximity are beyond the
scope of this specification.
A 3rr code MAY be used to respond to any request. The Location
header MUST be included in any 3rr response. It is RECOMMENDED that
they are used if necessary before a session is established, i.e., in
response to DESCRIBE or SETUP. However, in cases where a server is
not able to send a REDIRECT request to the agent, the server MAY need
to resort to using 3rr responses to inform an agent with an
established session about the need for redirecting the session. If a
3rr response is received for a request in relation to an established
session, the agent SHOULD send a TEARDOWN request for the session and
MAY reestablish the session using the resource indicated by the
Location.
If the Location header is used in a response, it MUST contain an
absolute URI pointing out the media resource the agent is redirected
to; the URI MUST NOT only contain the hostname.
In the event that an unknown 3rr status code is received, the agent
SHOULD behave as if a 302 response code had been received
(<a href="#section-17.3.3">Section 17.3.3</a>).
<span class="h4"><a class="selflink" id="section-17.3.1" href="#section-17.3.1">17.3.1</a>. 300</span>
The 300 response code is not used in RTSP 2.0.
<span class="h4"><a class="selflink" id="section-17.3.2" href="#section-17.3.2">17.3.2</a>. 301 Moved Permanently</span>
The requested resource is moved permanently and resides now at the
URI given by the Location header. The user agent SHOULD redirect
automatically to the given URI. This response MUST NOT contain a
message body. The Location header MUST be included in the response.
<span class="h4"><a class="selflink" id="section-17.3.3" href="#section-17.3.3">17.3.3</a>. 302 Found</span>
The requested resource resides temporarily at the URI given by the
Location header. This response is intended to be used for many types
of temporary redirects, e.g., load balancing. It is RECOMMENDED that
the server set the reason phrase to something more meaningful than
"Found" in these cases. The Location header MUST be included in the
response. The user agent SHOULD redirect automatically to the given
URI. This response MUST NOT contain a message body.
<span class="grey">Schulzrinne, et al. Standards Track [Page 114]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-115" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
This example shows a client being redirected to a different server:
C->S: SETUP rtsp://example.com/fizzle/foo RTSP/2.0
CSeq: 2
Transport: RTP/AVP/TCP;unicast;interleaved=0-1
Accept-Ranges: npt, smpte, clock
User-Agent: PhonyClient/1.2
S->C: RTSP/2.0 302 Try Other Server
CSeq: 2
Location: rtsp://s2.example.com:8001/fizzle/foo
<span class="h4"><a class="selflink" id="section-17.3.4" href="#section-17.3.4">17.3.4</a>. 303 See Other</span>
This status code MUST NOT be used in RTSP 2.0. However, it was
allowed in RTSP 1.0 [<a href="./rfc2326" title=""Real Time Streaming Protocol (RTSP)"">RFC2326</a>].
<span class="h4"><a class="selflink" id="section-17.3.5" href="#section-17.3.5">17.3.5</a>. 304 Not Modified</span>
If the agent has performed a conditional DESCRIBE or SETUP (see
Sections <a href="#section-18.25">18.25</a> and <a href="#section-18.26">18.26</a>) and the requested resource has not been
modified, the server SHOULD send a 304 response. This response MUST
NOT contain a message body.
The response MUST include the following header fields:
o Date
o MTag or Content-Location, if the headers would have been sent in a
200 response to the same request.
o Expires and Cache-Control if the field-value might differ from
that sent in any previous response for the same variant.
This response is independent for the DESCRIBE and SETUP requests.
That is, a 304 response to DESCRIBE does NOT imply that the resource
content is unchanged (only the session description) and a 304
response to SETUP does NOT imply that the resource description is
unchanged. The MTag and If-Match header (<a href="#section-18.24">Section 18.24</a>) may be used
to link the DESCRIBE and SETUP in this manner.
<span class="h4"><a class="selflink" id="section-17.3.6" href="#section-17.3.6">17.3.6</a>. 305 Use Proxy</span>
The requested resource MUST be accessed through the proxy given by
the Location header that MUST be included. The Location header
field-value gives the URI of the proxy. The recipient is expected to
repeat this single request via the proxy. 305 responses MUST only be
generated by origin servers.
<span class="grey">Schulzrinne, et al. Standards Track [Page 115]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-116" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
<span class="h3"><a class="selflink" id="section-17.4" href="#section-17.4">17.4</a>. Client Error 4xx</span>
<span class="h4"><a class="selflink" id="section-17.4.1" href="#section-17.4.1">17.4.1</a>. 400 Bad Request</span>
The request could not be understood by the agent due to malformed
syntax. The agent SHOULD NOT repeat the request without
modifications. If the request does not have a CSeq header, the agent
MUST NOT include a CSeq in the response.
<span class="h4"><a class="selflink" id="section-17.4.2" href="#section-17.4.2">17.4.2</a>. 401 Unauthorized</span>
The request requires user authentication using the HTTP
authentication mechanism [<a href="./rfc7235" title=""Hypertext Transfer Protocol (HTTP/1.1): Authentication"">RFC7235</a>]. The usage of the error code is
defined in [<a href="./rfc7235" title=""Hypertext Transfer Protocol (HTTP/1.1): Authentication"">RFC7235</a>] and any applicable HTTP authentication scheme,
such as Digest [<a href="./rfc7616" title=""HTTP Digest Access Authentication"">RFC7616</a>]. The response is to include a WWW-
Authenticate header (<a href="#section-18.58">Section 18.58</a>) field containing a challenge
applicable to the requested resource. The agent can repeat the
request with a suitable Authorization header field. If the request
already included authorization credentials, then the 401 response
indicates that authorization has been refused for those credentials.
If the 401 response contains the same challenge as the prior
response, and the user agent has already attempted authentication at
least once, then the user SHOULD be presented the message body that
was given in the response, since that message body might include
relevant diagnostic information.
<span class="h4"><a class="selflink" id="section-17.4.3" href="#section-17.4.3">17.4.3</a>. 402 Payment Required</span>
This code is reserved for future use.
<span class="h4"><a class="selflink" id="section-17.4.4" href="#section-17.4.4">17.4.4</a>. 403 Forbidden</span>
The agent understood the request, but is refusing to fulfill it.
Authorization will not help, and the request SHOULD NOT be repeated.
If the agent wishes to make public why the request has not been
fulfilled, it SHOULD describe the reason for the refusal in the
message body. If the agent does not wish to make this information
available to the agent, the status code 404 (Not Found) can be used
instead.
<span class="h4"><a class="selflink" id="section-17.4.5" href="#section-17.4.5">17.4.5</a>. 404 Not Found</span>
The agent has not found anything matching the Request-URI. No
indication is given of whether the condition is temporary or
permanent. The 410 (Gone) status code SHOULD be used if the agent
knows, through some internally configurable mechanism, that an old
resource is permanently unavailable and has no forwarding address.
<span class="grey">Schulzrinne, et al. Standards Track [Page 116]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-117" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
This status code is commonly used when the agent does not wish to
reveal exactly why the request has been refused, or when no other
response is applicable.
<span class="h4"><a class="selflink" id="section-17.4.6" href="#section-17.4.6">17.4.6</a>. 405 Method Not Allowed</span>
The method specified in the request is not allowed for the resource
identified by the Request-URI. The response MUST include an Allow
header containing a list of valid methods for the requested resource.
This status code is also to be used if a request attempts to use a
method not indicated during SETUP.
<span class="h4"><a class="selflink" id="section-17.4.7" href="#section-17.4.7">17.4.7</a>. 406 Not Acceptable</span>
The resource identified by the request is only capable of generating
response message bodies that have content characteristics not
acceptable according to the Accept headers sent in the request.
The response SHOULD include a message body containing a list of
available message body characteristics and location(s) from which the
user or user agent can choose the one most appropriate. The message
body format is specified by the media type given in the Content-Type
header field. Depending upon the format and the capabilities of the
user agent, selection of the most appropriate choice MAY be performed
automatically. However, this specification does not define any
standard for such automatic selection.
If the response could be unacceptable, a user agent SHOULD
temporarily stop receipt of more data and query the user for a
decision on further actions.
<span class="h4"><a class="selflink" id="section-17.4.8" href="#section-17.4.8">17.4.8</a>. 407 Proxy Authentication Required</span>
This code is similar to 401 (Unauthorized) (<a href="#section-17.4.2">Section 17.4.2</a>), but it
indicates that the client must first authenticate itself with the
proxy. The usage of this error code is defined in [<a href="./rfc7235" title=""Hypertext Transfer Protocol (HTTP/1.1): Authentication"">RFC7235</a>] and any
applicable HTTP authentication scheme, such as Digest [<a href="./rfc7616" title=""HTTP Digest Access Authentication"">RFC7616</a>]. The
proxy MUST return a Proxy-Authenticate header field (<a href="#section-18.34">Section 18.34</a>)
containing a challenge applicable to the proxy for the requested
resource.
<span class="h4"><a class="selflink" id="section-17.4.9" href="#section-17.4.9">17.4.9</a>. 408 Request Timeout</span>
The agent did not produce a request within the time that the agent
was prepared to wait. The agent MAY repeat the request without
modifications at any later time.
<span class="grey">Schulzrinne, et al. Standards Track [Page 117]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-118" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
<span class="h4"><a class="selflink" id="section-17.4.10" href="#section-17.4.10">17.4.10</a>. 410 Gone</span>
The requested resource is no longer available at the server and the
forwarding address is not known. This condition is expected to be
considered permanent. If the server does not know, or has no
facility to determine, whether or not the condition is permanent, the
status code 404 (Not Found) SHOULD be used instead. This response is
cacheable unless indicated otherwise.
The 410 response is primarily intended to assist the task of
repository maintenance by notifying the recipient that the resource
is intentionally unavailable and that the server owners desire that
remote links to that resource be removed. Such an event is common
for limited-time, promotional services and for resources belonging to
individuals no longer working at the server's site. It is not
necessary to mark all permanently unavailable resources as "gone" or
to keep the mark for any length of time -- that is left to the
discretion of the owner of the server.
<span class="h4"><a class="selflink" id="section-17.4.11" href="#section-17.4.11">17.4.11</a>. 412 Precondition Failed</span>
The precondition given in one or more of the 'if-' request-header
fields evaluated to false when it was tested on the agent. See these
sections for the 'if-' headers: If-Match <a href="#section-18.24">Section 18.24</a>, If-Modified-
Since <a href="#section-18.25">Section 18.25</a>, and If-None-Match <a href="#section-18.26">Section 18.26</a>. This response
code allows the agent to place preconditions on the current resource
meta-information (header field data) and, thus, prevent the requested
method from being applied to a resource other than the one intended.
<span class="h4"><a class="selflink" id="section-17.4.12" href="#section-17.4.12">17.4.12</a>. 413 Request Message Body Too Large</span>
The agent is refusing to process a request because the request
message body is larger than the agent is willing or able to process.
The agent MAY close the connection to prevent the requesting agent
from continuing the request.
If the condition is temporary, the agent SHOULD include a Retry-After
header field to indicate that it is temporary and after what time the
requesting agent MAY try again.
<span class="h4"><a class="selflink" id="section-17.4.13" href="#section-17.4.13">17.4.13</a>. 414 Request-URI Too Long</span>
The responding agent is refusing to service the request because the
Request-URI is longer than the agent is willing to interpret. This
rare condition is only likely to occur when an agent has used a
request with long query information, when the agent has descended
into a URI "black hole" of redirection (e.g., a redirected URI prefix
that points to a suffix of itself), or when the agent is under attack
<span class="grey">Schulzrinne, et al. Standards Track [Page 118]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-119" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
by an agent attempting to exploit security holes present in some
agents using fixed-length buffers for reading or manipulating the
Request-URI.
<span class="h4"><a class="selflink" id="section-17.4.14" href="#section-17.4.14">17.4.14</a>. 415 Unsupported Media Type</span>
The server is refusing to service the request because the message
body of the request is in a format not supported by the requested
resource for the requested method.
<span class="h4"><a class="selflink" id="section-17.4.15" href="#section-17.4.15">17.4.15</a>. 451 Parameter Not Understood</span>
The recipient of the request does not support one or more parameters
contained in the request. When returning this error message the
agent SHOULD return a message body containing the offending
parameter(s).
<span class="h4"><a class="selflink" id="section-17.4.16" href="#section-17.4.16">17.4.16</a>. 452 Illegal Conference Identifier</span>
This status code MUST NOT be used in RTSP 2.0. However, it was
allowed in RTSP 1.0 [<a href="./rfc2326" title=""Real Time Streaming Protocol (RTSP)"">RFC2326</a>].
<span class="h4"><a class="selflink" id="section-17.4.17" href="#section-17.4.17">17.4.17</a>. 453 Not Enough Bandwidth</span>
The request was refused because there was insufficient bandwidth.
This may, for example, be the result of a resource reservation
failure.
<span class="h4"><a class="selflink" id="section-17.4.18" href="#section-17.4.18">17.4.18</a>. 454 Session Not Found</span>
The RTSP session identifier in the Session header is missing, is
invalid, or has timed out.
<span class="h4"><a class="selflink" id="section-17.4.19" href="#section-17.4.19">17.4.19</a>. 455 Method Not Valid in This State</span>
The agent cannot process this request in its current state. The
response MUST contain an Allow header to make error recovery
possible.
<span class="h4"><a class="selflink" id="section-17.4.20" href="#section-17.4.20">17.4.20</a>. 456 Header Field Not Valid for Resource</span>
The targeted agent could not act on a required request-header. For
example, if PLAY request contains the Range header field but the
stream does not allow seeking. This error message may also be used
for specifying when the time format in Range is impossible for the
resource. In that case, the Accept-Ranges header MUST be returned to
inform the agent of which formats are allowed.
<span class="grey">Schulzrinne, et al. Standards Track [Page 119]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-120" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
<span class="h4"><a class="selflink" id="section-17.4.21" href="#section-17.4.21">17.4.21</a>. 457 Invalid Range</span>
The Range value given is out of bounds, e.g., beyond the end of the
presentation.
<span class="h4"><a class="selflink" id="section-17.4.22" href="#section-17.4.22">17.4.22</a>. 458 Parameter Is Read-Only</span>
The parameter to be set by SET_PARAMETER can be read but not
modified. When returning this error message, the sender SHOULD
return a message body containing the offending parameter(s).
<span class="h4"><a class="selflink" id="section-17.4.23" href="#section-17.4.23">17.4.23</a>. 459 Aggregate Operation Not Allowed</span>
The requested method may not be applied on the URI in question since
it is an aggregate (presentation) URI. The method may be applied on
a media URI.
<span class="h4"><a class="selflink" id="section-17.4.24" href="#section-17.4.24">17.4.24</a>. 460 Only Aggregate Operation Allowed</span>
The requested method may not be applied on the URI in question since
it is not an aggregate control (presentation) URI. The method may be
applied on the aggregate control URI.
<span class="h4"><a class="selflink" id="section-17.4.25" href="#section-17.4.25">17.4.25</a>. 461 Unsupported Transport</span>
The Transport field did not contain a supported transport
specification.
<span class="h4"><a class="selflink" id="section-17.4.26" href="#section-17.4.26">17.4.26</a>. 462 Destination Unreachable</span>
The data transmission channel could not be established because the
agent address could not be reached. This error will most likely be
the result of an agent attempt to place an invalid dest_addr
parameter in the Transport field.
<span class="h4"><a class="selflink" id="section-17.4.27" href="#section-17.4.27">17.4.27</a>. 463 Destination Prohibited</span>
The data transmission channel was not established because the server
prohibited access to the agent address. This error is most likely
the result of an agent attempt to redirect media traffic to another
destination with a dest_addr parameter in the Transport header.
<span class="grey">Schulzrinne, et al. Standards Track [Page 120]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-121" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
<span class="h4"><a class="selflink" id="section-17.4.28" href="#section-17.4.28">17.4.28</a>. 464 Data Transport Not Ready Yet</span>
The data transmission channel to the media destination is not yet
ready for carrying data. However, the responding agent still expects
that the data transmission channel will be established at some point
in time. Note, however, that this may result in a permanent failure
like 462 (Destination Unreachable).
An example of when this error may occur is in the case in which a
client sends a PLAY request to a server prior to ensuring that the
TCP connections negotiated for carrying media data were successfully
established (in violation of this specification). The server would
use this error code to indicate that the requested action could not
be performed due to the failure of completing the connection
establishment.
<span class="h4"><a class="selflink" id="section-17.4.29" href="#section-17.4.29">17.4.29</a>. 465 Notification Reason Unknown</span>
This indicates that the client has received a PLAY_NOTIFY
(<a href="#section-13.5">Section 13.5</a>) with a Notify-Reason header (<a href="#section-18.32">Section 18.32</a>) unknown to
the client.
<span class="h4"><a class="selflink" id="section-17.4.30" href="#section-17.4.30">17.4.30</a>. 466 Key Management Error</span>
This indicates that there has been an error in a Key Management
function used in conjunction with a request. For example, usage of
Multimedia Internet KEYing (MIKEY) [<a href="./rfc3830" title=""MIKEY: Multimedia Internet KEYing"">RFC3830</a>] according to
<a href="#appendix-C.1.4.1">Appendix C.1.4.1</a> may result in this error.
<span class="h4"><a class="selflink" id="section-17.4.31" href="#section-17.4.31">17.4.31</a>. 470 Connection Authorization Required</span>
The secured connection attempt needs user or client authorization
before proceeding. The next hop's certificate is included in this
response in the Accept-Credentials header.
<span class="h4"><a class="selflink" id="section-17.4.32" href="#section-17.4.32">17.4.32</a>. 471 Connection Credentials Not Accepted</span>
When performing a secure connection over multiple connections, an
intermediary has refused to connect to the next hop and carry out the
request due to unacceptable credentials for the used policy.
<span class="h4"><a class="selflink" id="section-17.4.33" href="#section-17.4.33">17.4.33</a>. 472 Failure to Establish Secure Connection</span>
A proxy fails to establish a secure connection to the next-hop RTSP
agent. This is primarily caused by a fatal failure at the TLS
handshake, for example, due to the agent not accepting any cipher
suites.
<span class="grey">Schulzrinne, et al. Standards Track [Page 121]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-122" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
<span class="h3"><a class="selflink" id="section-17.5" href="#section-17.5">17.5</a>. Server Error 5xx</span>
Response status codes beginning with the digit "5" indicate cases in
which the server is aware that it has erred or is incapable of
performing the request. The server SHOULD include a message body
containing an explanation of the error situation and whether it is a
temporary or permanent condition. User agents SHOULD display any
included message body to the user. These response codes are
applicable to any request method.
<span class="h4"><a class="selflink" id="section-17.5.1" href="#section-17.5.1">17.5.1</a>. 500 Internal Server Error</span>
The agent encountered an unexpected condition that prevented it from
fulfilling the request.
<span class="h4"><a class="selflink" id="section-17.5.2" href="#section-17.5.2">17.5.2</a>. 501 Not Implemented</span>
The agent does not support the functionality required to fulfill the
request. This is the appropriate response when the agent does not
recognize the request method and is not capable of supporting it for
any resource.
<span class="h4"><a class="selflink" id="section-17.5.3" href="#section-17.5.3">17.5.3</a>. 502 Bad Gateway</span>
The agent, while acting as a gateway or proxy, received an invalid
response from the upstream agent it accessed in attempting to fulfill
the request.
<span class="h4"><a class="selflink" id="section-17.5.4" href="#section-17.5.4">17.5.4</a>. 503 Service Unavailable</span>
The server is currently unable to handle the request due to a
temporary overloading or maintenance of the server. The implication
is that this is a temporary condition that will be alleviated after
some delay. If known, the length of the delay MAY be indicated in a
Retry-After header. If no Retry-After is given, the agent SHOULD
handle the response as it would for a 500 response. The agent MUST
honor the length, if given, in the Retry-After header.
Note: The existence of the 503 status code does not imply that
a server must use it when becoming overloaded. Some servers
may wish to simply refuse the transport connection.
The response scope is dependent on the request. If the request was
in relation to an existing RTSP session, the scope of the overload
response is to this individual RTSP session. If the request was not
session specific or intended to form an RTSP session, it applies to
the RTSP server identified by the hostname in the Request-URI.
<span class="grey">Schulzrinne, et al. Standards Track [Page 122]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-123" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
<span class="h4"><a class="selflink" id="section-17.5.5" href="#section-17.5.5">17.5.5</a>. 504 Gateway Timeout</span>
The agent, while acting as a proxy, did not receive a timely response
from the upstream agent specified by the URI or some other auxiliary
server (e.g., DNS) that it needed to access in attempting to complete
the request.
<span class="h4"><a class="selflink" id="section-17.5.6" href="#section-17.5.6">17.5.6</a>. 505 RTSP Version Not Supported</span>
The agent does not support, or refuses to support, the RTSP version
that was used in the request message. The agent is indicating that
it is unable or unwilling to complete the request using the same
major version as the agent other than with this error message. The
response SHOULD contain a message body describing why that version is
not supported and what other protocols are supported by that agent.
<span class="h4"><a class="selflink" id="section-17.5.7" href="#section-17.5.7">17.5.7</a>. 551 Option Not Supported</span>
A feature tag given in the Require or the Proxy-Require fields was
not supported. The Unsupported header MUST be returned stating the
feature for which there is no support.
<span class="h4"><a class="selflink" id="section-17.5.8" href="#section-17.5.8">17.5.8</a>. 553 Proxy Unavailable</span>
The proxy is currently unable to handle the request due to a
temporary overloading or maintenance of the proxy. The implication
is that this is a temporary condition that will be alleviated after
some delay. If known, the length of the delay MAY be indicated in a
Retry-After header. If no Retry-After is given, the agent SHOULD
handle the response as it would for a 500 response. The agent MUST
honor the length, if given in the Retry-After header.
Note: The existence of the 553 status code does not imply that
a proxy must use it when becoming overloaded. Some proxies may
wish to simply refuse the connection.
The response scope is dependent on the Request. If the request was
in relation to an existing RTSP session, the scope of the overload
response is to this individual RTSP session. If the request was non-
session specific or intended to form an RTSP session, it applies to
all such requests to this proxy.
<span class="grey">Schulzrinne, et al. Standards Track [Page 123]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-124" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
<span class="h2"><a class="selflink" id="section-18" href="#section-18">18</a>. Header Field Definitions</span>
+---------------+----------------+--------+---------+------+
| method | direction | object | acronym | Body |
+---------------+----------------+--------+---------+------+
| DESCRIBE | C -> S | P,S | DES | r |
| | | | | |
| GET_PARAMETER | C -> S, S -> C | P,S | GPR | R,r |
| | | | | |
| OPTIONS | C -> S, S -> C | P,S | OPT | |
| | | | | |
| PAUSE | C -> S | P,S | PSE | |
| | | | | |
| PLAY | C -> S | P,S | PLY | |
| | | | | |
| PLAY_NOTIFY | S -> C | P,S | PNY | R |
| | | | | |
| REDIRECT | S -> C | P,S | RDR | |
| | | | | |
| SETUP | C -> S | S | STP | |
| | | | | |
| SET_PARAMETER | C -> S, S -> C | P,S | SPR | R,r |
| | | | | |
| TEARDOWN | C -> S | P,S | TRD | |
| | | | | |
| | S -> C | P | TRD | |
+---------------+----------------+--------+---------+------+
This table is an overview of RTSP methods, their direction, and what
objects (P: presentation, S: stream) they operate on. "Body" denotes
if a method is allowed to carry body and in which direction; R =
request, r=response. Note: All error messages for statuses 4xx and
5xx are allowed to carry a body.
Table 8: Overview of RTSP Methods
The general syntax for header fields is covered in <a href="#section-5.2">Section 5.2</a>. This
section lists the full set of header fields along with notes on
meaning and usage. The syntax definitions for header fields are
present in <a href="#section-20.2.3">Section 20.2.3</a>. Examples of each header field are given.
Information about header fields in relation to methods and proxy
processing is summarized in Figures 2, 3, 4, and 5.
<span class="grey">Schulzrinne, et al. Standards Track [Page 124]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-125" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
The "where" column describes the request and response types in which
the header field can be used. Values in this column are:
R: header field may only appear in requests;
r: header field may only appear in responses;
2xx, 4xx, etc.: numerical value or range indicates response codes
with which the header field can be used;
c: header field is copied from the request to the
response.
G: header field is a general-header and may be present
in both requests and responses.
Note: General headers do not always use the "G" value in the "where"
column. This is due to differences when the header may be applied in
requests compared to responses. When such differences exist, they
are expressed using two different rows: one with "where" being "R"
and one with it being "r".
The "proxy" column describes the operations a proxy may perform on a
header field. An empty proxy column indicates that the proxy MUST
NOT make any changes to that header, all allowed operations are
explicitly stated:
a: A proxy can add or concatenate the header field if not present.
m: A proxy can modify an existing header field value.
d: A proxy can delete a header field-value.
r: A proxy needs to be able to read the header field; thus, this
header field cannot be encrypted.
The rest of the columns relate to the presence of a header field in a
method. The method names when abbreviated, are according to Table 8:
c: Conditional; requirements on the header field depend on the
context of the message.
m: The header field is mandatory.
m*: The header field SHOULD be sent, but agents need to be prepared
to receive messages without that header field.
o: The header field is optional.
<span class="grey">Schulzrinne, et al. Standards Track [Page 125]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-126" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
*: The header field MUST be present if the message body is not
empty. See Sections <a href="#section-18.17">18.17</a>, <a href="#section-18.19">18.19</a> and <a href="#section-5.3">5.3</a> for details.
-: The header field is not applicable.
"Optional" means that an agent MAY include the header field in a
request or response. The agent behavior when receiving such headers
varies; for some, it may ignore the header field. In other cases, it
is a request to process the header. This is regulated by the method
and header descriptions. Examples of headers that require processing
are the Require and Proxy-Require header fields discussed in Sections
18.43 and 18.37. A "mandatory" header field MUST be present in a
request, and it MUST be understood by the agent receiving the
request. A mandatory response-header field MUST be present in the
response, and the header field MUST be understood by the processing
the response. "Not applicable" means that the header field MUST NOT
be present in a request. If one is placed in a request by mistake,
it MUST be ignored by the agent receiving the request. Similarly, a
header field labeled "not applicable" for a response means that the
agent MUST NOT place the header field in the response, and the agent
MUST ignore the header field in the response.
An RTSP agent MUST ignore extension headers that are not understood.
The From and Location header fields contain a URI. If the URI
contains a comma (') or semicolon (;), the URI MUST be enclosed in
double quotes ("). Any URI parameters are contained within these
quotes. If the URI is not enclosed in double quotes, any semicolon-
delimited parameters are header-parameters, not URI parameters.
<span class="grey">Schulzrinne, et al. Standards Track [Page 126]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-127" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
+-------------------+------+------+----+----+-----+-----+-----+-----+
| Header |Where |Proxy |DES | OPT| STP | PLY | PSE | TRD |
+-------------------+------+------+----+----+-----+-----+-----+-----+
| Accept | R | | o | - | - | - | - | - |
| Accept- | R | rm | o | o | o | o | o | o |
| Credentials | | | | | | | | |
| Accept-Encoding | R | r | o | - | - | - | - | - |
| Accept-Language | R | r | o | - | - | - | - | - |
| Accept-Ranges | G | r | - | - | m | - | - | - |
| Accept-Ranges | 456 | r | - | - | - | m | - | - |
| Allow | r | am | c | c | c | - | - | - |
| Allow | 405 | am | m | m | m | m | m | m |
| Authentication- | r | | o | o | o | o | o | o/- |
| Info | | | | | | | | |
| Authorization | R | | o | o | o | o | o | o/- |
| Bandwidth | R | | o | o | o | o | - | - |
| Blocksize | R | | o | - | o | o | - | - |
| Cache-Control | G | r | o | - | o | - | - | - |
| Connection | G | ad | o | o | o | o | o | o |
| Connection- | 470, | ar | o | o | o | o | o | o |
| Credentials | 407 | | | | | | | |
| Content-Base | r | | o | - | - | - | - | - |
| Content-Base | 4xx, | | o | o | o | o | o | o |
| | 5xx | | | | | | | |
| Content-Encoding | R | r | - | - | - | - | - | - |
| Content-Encoding | r | r | o | - | - | - | - | - |
| Content-Encoding | 4xx, | r | o | o | o | o | o | o |
| | 5xx | | | | | | | |
| Content-Language | R | r | - | - | - | - | - | - |
| Content-Language | r | r | o | - | - | - | - | - |
| Content-Language | 4xx, | r | o | o | o | o | o | o |
| | 5xx | | | | | | | |
| Content-Length | r | r | * | - | - | - | - | - |
| Content-Length | 4xx, | r | * | * | * | * | * | * |
| | 5xx | | | | | | | |
| Content-Location | r | r | o | - | - | - | - | - |
| Content-Location | 4xx, | r | o | o | o | o | o | o |
| | 5xx | | | | | | | |
| Content-Type | r | r | * | - | - | - | - | - |
| Content-Type | 4xx, | ar | * | * | * | * | * | * |
| | 5xx | | | | | | | |
| CSeq | Gc | rm | m | m | m | m | m | m |
| Date | G | am | o/*| o/*| o/* | o/* | o/* | o/* |
| Expires | r | r | o | - | o | - | - | - |
| From | R | r | o | o | o | o | o | o |
| If-Match | R | r | - | - | o | - | - | - |
| If-Modified-Since | R | r | o | - | o | - | - | - |
| If-None-Match | R | r | o | - | o | - | - | - |
<span class="grey">Schulzrinne, et al. Standards Track [Page 127]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-128" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
| Last-Modified | r | r | o | - | o | - | - | - |
| Location | 3rr | | m | m | m | m | m | m |
+-------------------+------+------+----+----+-----+-----+-----+-----+
| Header |Where |Proxy |DES | OPT| STP | PLY | PSE | TRD |
+-------------------+------+------+----+----+-----+-----+-----+-----+
Figure 2: Overview of RTSP Header Fields (A-L) Related to Methods
DESCRIBE, OPTIONS, SETUP, PLAY, PAUSE, and TEARDOWN
<span class="grey">Schulzrinne, et al. Standards Track [Page 128]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-129" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
+------------------+---------+-----+----+----+----+-----+-----+-----+
| Header | Where |Proxy|DES |OPT |STP | PLY | PSE | TRD |
+------------------+---------+-----+----+----+----+-----+-----+-----+
| Media-Properties | r | | - | - | m | o | o | - |
| Media-Range | r | | - | - | c | c | c | - |
| MTag | r | r | o | - | o | - | - | - |
| Pipelined- | G | amd | - | o | o | o | o | o |
| Requests | | r | | | | | | |
| Proxy- | 407 | amr | m | m | m | m | m | m |
| Authenticate | | | | | | | | |
| Proxy- | r | amd | o | o | o | o | o | o/- |
| Authentication- | | r | | | | | | |
| Info | | | | | | | | |
| Proxy- | R | rd | o | o | o | o | o | o |
| Authorization | | | | | | | | |
| Proxy-Require | R | ar | o | o | o | o | o | o |
| Proxy-Require | r | r | c | c | c | c | c | c |
| Proxy-Supported | R | amr | c | c | c | c | c | c |
| Proxy-Supported | r | | c | c | c | c | c | c |
| Public | r | amr | - | m | - | - | - | - |
| Public | 501 | amr | m | m | m | m | m | m |
| Range | R | | - | - | - | o | - | - |
| Range | r | | - | - | c | m | m | - |
| Referrer | R | | o | o | o | o | o | o |
| Request-Status | R | | - | - | - | - | - | - |
| Require | R | | o | o | o | o | o | o |
| Retry-After | 3rr,503 | | o | o | o | o | o | - |
| | ,553 | | | | | | | |
| Retry-After | 413 | | o | - | - | - | - | - |
| RTP-Info | r | | - | - | c | c | - | - |
| Scale | R | r | - | - | - | o | - | - |
| Scale | r | amr | - | - | c | c | c | - |
| Seek-Style | R | | - | - | - | o | - | - |
| Seek-Style | r | | - | - | - | m | - | - |
| Server | R | r | - | o | - | - | - | o |
| Server | r | r | o | o | o | o | o | o |
| Session | R | r | - | o | o | m | m | m |
| Session | r | r | - | c | m | m | m | o |
| Speed | R | admr| - | - | - | o | - | - |
| Speed | r | admr| - | - | - | c | - | - |
| Supported | R | r | o | o | o | o | o | o |
| Supported | r | r | c | c | c | c | c | c |
| Terminate-Reason | R | r | - | - | - | - | - | -/o |
| Timestamp | R | admr| o | o | o | o | o | o |
| Timestamp | c | admr| m | m | m | m | m | m |
| Transport | G | mr | - | - | m | - | - | - |
| Unsupported | r | | c | c | c | c | c | c |
| User-Agent | R | | m* | m* | m* | m* | m* | m* |
<span class="grey">Schulzrinne, et al. Standards Track [Page 129]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-130" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
| Via | R | amr | c | c | c | c | c | c |
| Via | r | amr | c | c | c | c | c | c |
| WWW-Authenticate | 401 | | m | m | m | m | m | m |
+------------------+---------+-----+----+----+----+-----+-----+-----+
| Header | Where |Proxy|DES |OPT |STP | PLY | PSE | TRD |
+------------------+---------+-----+----+----+----+-----+-----+-----+
Figure 3: Overview of RTSP Header Fields (M-W) Related to Methods
DESCRIBE, OPTIONS, SETUP, PLAY, PAUSE, and TEARDOWN
<span class="grey">Schulzrinne, et al. Standards Track [Page 130]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-131" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
+---------------------------+-------+-------+-----+-----+-----+-----+
| Header | Where | Proxy | GPR | SPR | RDR | PNY |
+---------------------------+-------+-------+-----+-----+-----+-----+
| Accept-Credentials | R | rm | o | o | o | - |
| Accept-Encoding | R | r | o | o | o | - |
| Accept-Language | R | r | o | o | o | - |
| Accept-Ranges | G | rm | o | - | - | - |
| Allow | 405 | amr | m | m | m | m |
| Authentication-Info | r | | o/- | o/- | - | - |
| Authorization | R | | o | o | o | - |
| Bandwidth | R | | - | o | - | - |
| Blocksize | R | | - | o | - | - |
| Cache-Control | G | r | o | o | - | - |
| Connection | G | | o | o | o | o |
| Connection-Credentials | 470, | ar | o | o | o | - |
| | 407 | | | | | |
| Content-Base | R | | o | o | - | o |
| Content-Base | r | | o | o | - | - |
| Content-Base | 4xx, | | o | o | o | o |
| | 5xx | | | | | |
| Content-Encoding | R | r | o | o | - | o |
| Content-Encoding | r | r | o | o | - | - |
| Content-Encoding | 4xx, | r | o | o | o | o |
| | 5xx | | | | | |
| Content-Language | R | r | o | o | - | o |
| Content-Language | r | r | o | o | - | - |
| Content-Language | 4xx, | r | o | o | o | o |
| | 5xx | | | | | |
| Content-Length | R | r | * | * | - | * |
| Content-Length | r | r | * | * | - | - |
| Content-Length | 4xx, | r | * | * | * | * |
| | 5xx | | | | | |
| Content-Location | R | | o | o | - | o |
| Content-Location | r | | o | o | - | - |
| Content-Location | 4xx, | | o | o | o | o |
| | 5xx | | | | | |
| Content-Type | R | | * | * | - | * |
| Content-Type | r | | * | * | - | - |
| Content-Type | 4xx, | | * | * | * | * |
| | 5xx | | | | | |
| CSeq | R,c | mr | m | m | m | m |
| Date | R | a | o/* | o/* | m | o/* |
| Date | r | am | o/* | o/* | o/* | o/* |
| Expires | r | r | - | - | - | - |
| From | R | r | o | o | o | - |
| If-Match | R | r | - | - | - | - |
| If-Modified-Since | R | am | o | - | - | - |
| If-None-Match | R | am | o | - | - | - |
<span class="grey">Schulzrinne, et al. Standards Track [Page 131]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-132" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
| Last-Modified | R | r | - | - | - | - |
| Last-Modified | r | r | o | - | - | - |
| Location | 3rr | | m | m | m | - |
| Location | R | | - | - | m | - |
+---------------------------+-------+-------+-----+-----+-----+-----+
| Header | Where | Proxy | GPR | SPR | RDR | PNY |
+---------------------------+-------+-------+-----+-----+-----+-----+
Figure 4: Overview of RTSP Header Fields (A-L) Related to Methods
GET_PARAMETER, SET_PARAMETER, REDIRECT, and PLAY_NOTIFY
<span class="grey">Schulzrinne, et al. Standards Track [Page 132]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-133" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
+---------------------------+---------+-------+-----+-----+-----+-----+
| Header | Where | Proxy | GPR | SPR | RDR | PNY |
+---------------------------+---------+-------+-----+-----+-----+-----+
| Media-Properties | R | amr | o | - | - | c |
| Media-Properties | r | mr | c | - | - | - |
| Media-Range | R | | o | - | - | c |
| Media-Range | r | | c | - | - | - |
| MTag | r | r | o | - | - | - |
| Notify-Reason | R | | - | - | - | m |
| Pipelined-Requests | R | amdr | o | o | - | - |
| Proxy-Authenticate | 407 | amdr | m | m | m | - |
| Proxy-Authentication-Info | r | amdr | o/- | o/- | - | - |
| Proxy-Authorization | R | amdr | o | o | o | - |
| Proxy-Require | R | ar | o | o | o | - |
| Proxy-Supported | R | amr | c | c | c | - |
| Proxy-Supported | r | | c | c | c | - |
| Public | 501 | admr | m | m | m | - |
| Range | R | | o | - | - | m |
| Range | r | | c | - | - | - |
| Referrer | R | | o | o | o | - |
| Request-Status | R | mr | - | - | - | c |
| Require | R | r | o | o | o | o |
| Retry-After | 3rr,503,| | o | o | - | - |
| | 553 | | | | | |
| Retry-After | 413 | | o | o | - | - |
| RTP-Info | R | r | o | - | - | C |
| RTP-Info | r | r | c | - | - | - |
| Scale | G | | c | - | c | c |
| Seek-Style | G | | - | - | - | - |
| Server | R | r | o | o | o | o |
| Server | r | r | o | o | - | - |
| Session | R | r | o | o | o | m |
| Session | r | r | c | c | o | m |
| Speed | G | | - | - | - | - |
| Supported | R | r | o | o | o | - |
| Supported | r | r | c | c | c | - |
| Terminate-Reason | R | r | - | - | m | - |
| Timestamp | R | adrm | o | o | o | o |
| Timestamp | c | adrm | m | m | m | m |
| Transport | G | mr | - | - | - | - |
| Unsupported | r | arm | c | c | c | c |
| User-Agent | R | r | m* | m* | - | - |
| User-Agent | r | r | m* | m* | m* | m* |
| Via | R | amr | c | c | c | c |
<span class="grey">Schulzrinne, et al. Standards Track [Page 133]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-134" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
| Via | r | amr | c | c | c | c |
| WWW-Authenticate | 401 | | m | m | m | - |
+---------------------------+---------+-------+-----+-----+-----+-----+
| Header | Where | Proxy | GPR | SPR | RDR | PNY |
+---------------------------+---------+-------+-----+-----+-----+-----+
Figure 5: Overview of RTSP Header Fields (M-W) Related to Methods
GET_PARAMETER, SET_PARAMETER, REDIRECT, and PLAY_NOTIFY
<span class="h3"><a class="selflink" id="section-18.1" href="#section-18.1">18.1</a>. Accept</span>
The Accept request-header field can be used to specify certain
presentation description and parameter media types [<a href="./rfc6838" title=""Media Type Specifications and Registration Procedures"">RFC6838</a>] that are
acceptable for the response to the DESCRIBE request.
See <a href="#section-20.2.3">Section 20.2.3</a> for the syntax.
The asterisk "*" character is used to group media types into ranges,
with "*/*" indicating all media types and "type/*" indicating all
subtypes of that type. The range MAY include media type parameters
that are generally applicable to that range.
Each media type or range MAY be followed by one or more accept-
params, beginning with the "q" parameter to indicate a relative
quality factor. The first "q" parameter (if any) separates the media
type or range's parameters from the accept-params. Quality factors
allow the user or user agent to indicate the relative degree of
preference for that media type, using the qvalue scale from 0 to 1
(<a href="./rfc7231#section-5.3.1">Section 5.3.1 of [RFC7231]</a>). The default value is q=1.
Example of use:
Accept: application/example ;q=0.7, application/sdp
Indicates that the requesting agent prefers the media type
application/sdp through the default 1.0 rating but also accepts the
application/example media type with a 0.7 quality rating.
If no Accept header field is present, then it is assumed that the
client accepts all media types. If an Accept header field is
present, and if the server cannot send a response that is acceptable
according to the combined Accept field-value, then the server SHOULD
send a 406 (Not Acceptable) response.
<span class="grey">Schulzrinne, et al. Standards Track [Page 134]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-135" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
<span class="h3"><a class="selflink" id="section-18.2" href="#section-18.2">18.2</a>. Accept-Credentials</span>
The Accept-Credentials header is a request-header used to indicate to
any trusted intermediary how to handle further secured connections to
proxies or servers. It MUST NOT be included in server-to-client
requests. See <a href="#section-19">Section 19</a> for the usage of this header
In a request, the header MUST contain the method (User, Proxy, or
Any) for approving credentials selected by the requester. The method
MUST NOT be changed by any proxy, unless it is "Proxy" when a proxy
MAY change it to "user" to take the role of user approving each
further hop. If the method is "User", the header contains zero or
more of the credentials that the client accepts. The header may
contain zero credentials in the first RTSP request to an RTSP server
via a proxy when using the "User" method. This is because the client
has not yet received any credentials to accept. Each credential MUST
consist of one URI identifying the proxy or server, the hash
algorithm identifier, and the hash over that agent's ASN.1 DER-
encoded certificate [<a href="./rfc5280" title=""Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile"">RFC5280</a>] in Base64, according to <a href="./rfc4648#section-4">Section 4 of
[RFC4648]</a> and where the padding bits are set to zero. All RTSP
clients and proxies MUST implement the SHA-256 [<a href="#ref-FIPS180-4">FIPS180-4</a>] algorithm
for computation of the hash of the DER-encoded certificate. The
SHA-256 algorithm is identified by the token "sha-256".
The intention of allowing for other hash algorithms is to enable the
future retirement of algorithms that are not implemented somewhere
other than here. Thus, the definition of future algorithms for this
purpose is intended to be extremely limited. A feature tag can be
used to ensure that support for the replacement algorithm exists.
Example:
Accept-Credentials:User
"rtsps://proxy2.example.com/";sha-256;exaIl9VMbQMOFGClx5rXnPJKVNI=,
"rtsps://server.example.com/";sha-256;lurbjj5khhB0NhIuOXtt4bBRH1M=
<span class="h3"><a class="selflink" id="section-18.3" href="#section-18.3">18.3</a>. Accept-Encoding</span>
The Accept-Encoding request-header field is similar to Accept, but it
restricts the content-codings (see <a href="#section-18.15">Section 18.15</a>), i.e.,
transformation codings of the message body, such as gzip compression,
that are acceptable in the response.
<span class="grey">Schulzrinne, et al. Standards Track [Page 135]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-136" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
A server tests whether a content-coding is acceptable, according to
an Accept-Encoding field, using these rules:
1. If the content-coding is one of the content-codings listed in the
Accept-Encoding field, then it is acceptable, unless it is
accompanied by a qvalue of 0. (As defined in <a href="./rfc7231#section-5.3.1">Section 5.3.1 of
[RFC7231]</a>, a qvalue of 0 means "not acceptable.")
2. The special "*" symbol in an Accept-Encoding field matches any
available content-coding not explicitly listed in the header
field.
3. If multiple content-codings are acceptable, then the acceptable
content-coding with the highest non-zero qvalue is preferred.
4. The "identity" content-coding is always acceptable, i.e., no
transformation at all, unless specifically refused because the
Accept-Encoding field includes "identity;q=0" or because the
field includes "*;q=0" and does not explicitly include the
"identity" content-coding. If the Accept-Encoding field-value is
empty, then only the "identity" encoding is acceptable.
If an Accept-Encoding field is present in a request, and if the
server cannot send a response that is acceptable according to the
Accept-Encoding header, then the server SHOULD send an error response
with the 406 (Not Acceptable) status code.
If no Accept-Encoding field is present in a request, the server MAY
assume that the client will accept any content-coding. In this case,
if "identity" is one of the available content-codings, then the
server SHOULD use the "identity" content-coding, unless it has
additional information that a different content-coding is meaningful
to the client.
<span class="h3"><a class="selflink" id="section-18.4" href="#section-18.4">18.4</a>. Accept-Language</span>
The Accept-Language request-header field is similar to Accept, but
restricts the set of natural languages that are preferred as a
response to the request. Note that the language specified applies to
the presentation description (response message body) and any reason
phrases, but not the media content.
A language tag identifies a natural language spoken, written, or
otherwise conveyed by human beings for communication of information
to other human beings. Computer languages are explicitly excluded.
The syntax and registry of RTSP 2.0 language tags are the same as
those defined by [<a href="./rfc5646" title=""Tags for Identifying Languages"">RFC5646</a>].
<span class="grey">Schulzrinne, et al. Standards Track [Page 136]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-137" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
Each language-range MAY be given an associated quality value that
represents an estimate of the user's preference for the languages
specified by that range. The quality value defaults to "q=1". For
example:
Accept-Language: da, en-gb;q=0.8, en;q=0.7
would mean: "I prefer Danish, but will accept British English and
other types of English." A language-range matches a language tag if
it exactly equals the full tag or if it exactly equals a prefix of
the tag, i.e., the primary-tag in the ABNF, such that the character
following primary-tag is "-". The special range "*", if present in
the Accept-Language field, matches every tag not matched by any other
range present in the Accept-Language field.
Note: This use of a prefix matching rule does not imply that
language tags are assigned to languages in such a way that it is
always true that if a user understands a language with a certain
tag, then this user will also understand all languages with tags
for which this tag is a prefix. The prefix rule simply allows the
use of prefix tags if this is the case.
In the process of selecting a language, each language tag is assigned
a qualification factor, i.e., if a language being supported by the
client is actually supported by the server and what "preference"
level the language achieves. The quality value (q-value) of the
longest language-range in the field that matches the language tag is
assigned as the qualification factor for a particular language tag.
If no language-range in the field matches the tag, the language
qualification factor assigned is 0. If no Accept-Language header is
present in the request, the server SHOULD assume that all languages
are equally acceptable. If an Accept-Language header is present,
then all languages that are assigned a qualification factor greater
than 0 are acceptable.
<span class="h3"><a class="selflink" id="section-18.5" href="#section-18.5">18.5</a>. Accept-Ranges</span>
The Accept-Ranges general-header field allows indication of the
format supported in the Range header. The client MUST include the
header in SETUP requests to indicate which formats are acceptable
when received in PLAY and PAUSE responses and REDIRECT requests. The
server MUST include the header in SETUP responses and 456 (Header
Field Not Valid for Resource) error responses to indicate the formats
supported for the resource indicated by the Request-URI. The header
MAY be included in GET_PARAMETER request and response pairs. The
GET_PARAMETER request MUST contain a Session header to identify the
<span class="grey">Schulzrinne, et al. Standards Track [Page 137]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-138" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
session context the request is related to. The requester and
responder will indicate their capabilities regarding Range formats
respectively.
Accept-Ranges: npt, smpte, clock
The syntax is defined in <a href="#section-20.2.3">Section 20.2.3</a>.
<span class="h3"><a class="selflink" id="section-18.6" href="#section-18.6">18.6</a>. Allow</span>
The Allow message body header field lists the methods supported by
the resource identified by the Request-URI. The purpose of this
field is to inform the recipient of the complete set of valid methods
associated with the resource. An Allow header field MUST be present
in a 405 (Method Not Allowed) response. The Allow header MUST also
be present in all OPTIONS responses where the content of the header
will not include exactly the same methods as listed in the Public
header.
The Allow message body header MUST also be included in SETUP and
DESCRIBE responses, if the methods allowed for the resource are
different from the complete set of methods defined in this memo.
Example of use:
Allow: SETUP, PLAY, SET_PARAMETER, DESCRIBE
<span class="h3"><a class="selflink" id="section-18.7" href="#section-18.7">18.7</a>. Authentication-Info</span>
The Authentication-Info response-header is used by the server to
communicate some information regarding the successful HTTP
authentication [<a href="./rfc7235" title=""Hypertext Transfer Protocol (HTTP/1.1): Authentication"">RFC7235</a>] in the response message. The definition of
the header is in [<a href="./rfc7615" title=""HTTP Authentication-Info and Proxy- Authentication-Info Response Header Fields"">RFC7615</a>], and any applicable HTTP authentication
schemes appear in other RFCs, such as Digest [<a href="./rfc7616" title=""HTTP Digest Access Authentication"">RFC7616</a>]. This header
MUST only be used in response messages related to client to server
requests.
<span class="h3"><a class="selflink" id="section-18.8" href="#section-18.8">18.8</a>. Authorization</span>
An RTSP client that wishes to authenticate itself with a server using
the authentication mechanism from HTTP [<a href="./rfc7235" title=""Hypertext Transfer Protocol (HTTP/1.1): Authentication"">RFC7235</a>], usually (but not
necessarily) after receiving a 401 response, does so by including an
Authorization request-header field with the request. The
Authorization field-value consists of credentials containing the
authentication information of the user agent for the realm of the
resource being requested. The definition of the header is in
<span class="grey">Schulzrinne, et al. Standards Track [Page 138]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-139" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
[<a href="./rfc7235" title=""Hypertext Transfer Protocol (HTTP/1.1): Authentication"">RFC7235</a>], and any applicable HTTP authentication schemes appear in
other RFCs, such as Digest [<a href="./rfc7616" title=""HTTP Digest Access Authentication"">RFC7616</a>] and Basic [<a href="./rfc7617" title=""The 'Basic' HTTP Authentication Scheme"">RFC7617</a>]. This
header MUST only be used in client-to-server requests.
If a request is authenticated and a realm specified, the same
credentials SHOULD be valid for all other requests within this realm
(assuming that the authentication scheme itself does not require
otherwise, such as credentials that vary according to a challenge
value or using synchronized clocks). Each client-to-server request
MUST be individually authorized by including the Authorization header
with the information.
When a shared cache (see <a href="#section-16">Section 16</a>) receives a request containing an
Authorization field, it MUST NOT return the corresponding response as
a reply to any other request, unless one of the following specific
exceptions holds:
1. If the response includes the "max-age" cache directive, the cache
MAY use that response in replying to a subsequent request. But
(if the specified maximum age has passed) a proxy cache MUST
first revalidate it with the origin server, using the request-
headers from the new request to allow the origin server to
authenticate the new request. (This is the defined behavior for
max-age.) If the response includes "max-age=0", the proxy MUST
always revalidate it before reusing it.
2. If the response includes the "must-revalidate" cache-control
directive, the cache MAY use that response in replying to a
subsequent request. But if the response is stale, all caches
MUST first revalidate it with the origin server, using the
request-headers from the new request to allow the origin server
to authenticate the new request.
3. If the response includes the "public" cache directive, it MAY be
returned in reply to any subsequent request.
<span class="h3"><a class="selflink" id="section-18.9" href="#section-18.9">18.9</a>. Bandwidth</span>
The Bandwidth request-header field describes the estimated bandwidth
available to the client, expressed as a positive integer and measured
in kilobits per second. The bandwidth available to the client may
change during an RTSP session, e.g., due to mobility, congestion,
etc.
Clients may not be able to accurately determine the available
bandwidth, for example, because the first hop is not a bottleneck.
Such a case is when the local area network (LAN) is not the
bottleneck, instead the LAN's Internet access link is, if the server
<span class="grey">Schulzrinne, et al. Standards Track [Page 139]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-140" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
is not in the same LAN. Thus, link speeds of WLAN or Ethernet
networks are normally not a basis for estimating the available
bandwidth. Cellular devices or other devices directly connected to a
modem or connection-enabling device may more accurately estimate the
bottleneck bandwidth and what is a reasonable share of it for RTSP-
controlled media. The client will also need to take into account
other traffic sharing the bottleneck. For example, by only assigning
a certain fraction to RTSP and its media streams. It is RECOMMENDED
that only clients that have accurate and explicit information about
bandwidth bottlenecks use this header.
This header is not a substitute for proper congestion control. It is
only a method providing an initial estimate and coarsely determines
if the selected content can be delivered at all.
Example:
Bandwidth: 62360
<span class="h3"><a class="selflink" id="section-18.10" href="#section-18.10">18.10</a>. Blocksize</span>
The Blocksize request-header field is sent from the client to the
media server asking the server for a particular media packet size.
This packet size does not include lower-layer headers such as IP,
UDP, or RTP. The server is free to use a blocksize that is lower
than the one requested. The server MAY truncate this packet size to
the closest multiple of the minimum, media-specific block size or
override it with the media-specific size, if necessary. The block
size MUST be a positive decimal number measured in octets. The
server only returns an error (4xx) if the value is syntactically
invalid.
<span class="h3"><a class="selflink" id="section-18.11" href="#section-18.11">18.11</a>. Cache-Control</span>
The Cache-Control general-header field is used to specify directives
that MUST be obeyed by all caching mechanisms along the request/
response chain.
Cache directives MUST be passed through by a proxy or gateway
application, regardless of their significance to that application,
since the directives may be applicable to all recipients along the
request/response chain. It is not possible to specify a cache-
directive for a specific cache.
Cache-Control should only be specified in a DESCRIBE, GET_PARAMETER,
SET_PARAMETER, and SETUP request and its response. Note: Cache-
Control does not govern only the caching of responses for the RTSP
messages, instead it also applies to the media stream identified by
<span class="grey">Schulzrinne, et al. Standards Track [Page 140]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-141" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
the SETUP request. The RTSP requests are generally not cacheable;
for further information, see <a href="#section-16">Section 16</a>. Below are the descriptions
of the cache directives that can be included in the Cache-Control
header.
no-cache: Indicates that the media stream or RTSP response MUST NOT
be cached anywhere. This allows an origin server to prevent
caching even by caches that have been configured to return
stale responses to client requests. Note: there is no security
function preventing the caching of content.
public: Indicates that the media stream or RTSP response is
cacheable by any cache.
private: Indicates that the media stream or RTSP response is
intended for a single user and MUST NOT be cached by a shared
cache. A private (non-shared) cache may cache the media
streams.
no-transform: An intermediate cache (proxy) may find it useful to
convert the media type of a certain stream. A proxy might, for
example, convert between video formats to save cache space or
to reduce the amount of traffic on a slow link. Serious
operational problems may occur, however, when these
transformations have been applied to streams intended for
certain kinds of applications. For example, applications for
medical imaging, scientific data analysis and those using end-
to-end authentication all depend on receiving a stream that is
bit-for-bit identical to the original media stream or RTSP
response. Therefore, if a response includes the no-transform
directive, an intermediate cache or proxy MUST NOT change the
encoding of the stream or response. Unlike HTTP, RTSP does not
provide for partial transformation at this point, e.g.,
allowing translation into a different language.
only-if-cached: In some cases, such as times of extremely poor
network connectivity, a client may want a cache to return only
those media streams or RTSP responses that it currently has
stored and not to receive these from the origin server. To do
this, the client may include the only-if-cached directive in a
request. If the cache receives this directive, it SHOULD
either respond using a cached media stream or response that is
consistent with the other constraints of the request or respond
with a 504 (Gateway Timeout) status. However, if a group of
caches is being operated as a unified system with good internal
connectivity, such a request MAY be forwarded within that group
of caches.
<span class="grey">Schulzrinne, et al. Standards Track [Page 141]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-142" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
max-stale: Indicates that the client is willing to accept a media
stream or RTSP response that has exceeded its expiration time.
If max-stale is assigned a value, then the client is willing to
accept a response that has exceeded its expiration time by no
more than the specified number of seconds. If no value is
assigned to max-stale, then the client is willing to accept a
stale response of any age.
min-fresh: Indicates that the client is willing to accept a media
stream or RTSP response whose freshness lifetime is no less
than its current age plus the specified time in seconds. That
is, the client wants a response that will still be fresh for at
least the specified number of seconds.
must-revalidate: When the must-revalidate directive is present in a
SETUP response received by a cache, that cache MUST NOT use the
cache entry after it becomes stale to respond to a subsequent
request without first revalidating it with the origin server.
That is, the cache is required to do an end-to-end revalidation
every time, if, based solely on the origin server's Expires,
the cached response is stale.
proxy-revalidate: The proxy-revalidate directive has the same
meaning as the must-revalidate directive, except that it does
not apply to non-shared user agent caches. It can be used on a
response to an authenticated request to permit the user's cache
to store and later return the response without needing to
revalidate it (since it has already been authenticated once by
that user), while still requiring proxies that service many
users to revalidate each time (in order to make sure that each
user has been authenticated). Note that such authenticated
responses also need the "public" cache directive in order to
allow them to be cached at all.
max-age: When an intermediate cache is forced, by means of a max-
age=0 directive, to revalidate its own cache entry, and the
client has supplied its own validator in the request, the
supplied validator might differ from the validator currently
stored with the cache entry. In this case, the cache MAY use
either validator in making its own request without affecting
semantic transparency.
However, the choice of validator might affect performance. The
best approach is for the intermediate cache to use its own
validator when making its request. If the server replies with
304 (Not Modified), then the cache can return its now validated
copy to the client with a 200 (OK) response. If the server
replies with a new message body and cache validator, however,
<span class="grey">Schulzrinne, et al. Standards Track [Page 142]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-143" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
the intermediate cache can compare the returned validator with
the one provided in the client's request, using the strong
comparison function. If the client's validator is equal to the
origin server's, then the intermediate cache simply returns 304
(Not Modified). Otherwise, it returns the new message body
with a 200 (OK) response.
<span class="h3"><a class="selflink" id="section-18.12" href="#section-18.12">18.12</a>. Connection</span>
The Connection general-header field allows the sender to specify
options that are desired for that particular connection. It MUST NOT
be communicated by proxies over further connections.
RTSP 2.0 proxies MUST parse the Connection header field before a
message is forwarded and, for each connection-token in this field,
remove any header field(s) from the message with the same name as the
connection-token. Connection options are signaled by the presence of
a connection-token in the Connection header field, not by any
corresponding additional header field(s), since the additional header
field may not be sent if there are no parameters associated with that
connection option.
Message headers listed in the Connection header MUST NOT include end-
to-end headers, such as Cache-Control.
RTSP 2.0 defines the "close" connection option for the sender to
signal that the connection will be closed after completion of the
response. For example, "Connection: close in either the request or
the response-header fields" indicates that the connection SHOULD NOT
be considered "persistent" (<a href="#section-10.2">Section 10.2</a>) after the current request/
response is complete.
The use of the connection option "close" in RTSP messages SHOULD be
limited to error messages when the server is unable to recover and
therefore sees it necessary to close the connection. The reason
being that the client has the choice of continuing using a connection
indefinitely, as long as it sends valid messages.
<span class="h3"><a class="selflink" id="section-18.13" href="#section-18.13">18.13</a>. Connection-Credentials</span>
The Connection-Credentials response-header is used to carry the chain
of credentials for any next hop that needs to be approved by the
requester. It MUST only be used in server-to-client responses.
The Connection-Credentials header in an RTSP response MUST, if
included, contain the credential information (in the form of a list
of certificates providing the chain of certification) of the next hop
to which an intermediary needs to securely connect. The header MUST
<span class="grey">Schulzrinne, et al. Standards Track [Page 143]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-144" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
include the URI of the next hop (proxy or server) and a
Base64-encoded (according to <a href="./rfc4648#section-4">Section 4 of [RFC4648]</a> and where the
padding bits are set to zero) binary structure containing a sequence
of DER-encoded X.509v3 certificates [<a href="./rfc5280" title=""Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile"">RFC5280</a>].
The binary structure starts with the number of certificates
(NR_CERTS) included as a 16-bit unsigned integer. This is followed
by an NR_CERTS number of 16-bit unsigned integers providing the size,
in octets, of each DER-encoded certificate. This is followed by an
NR_CERTS number of DER-encoded X.509v3 certificates in a sequence
(chain). This format is exemplified in Figure 6. The certificate of
the proxy or server must come first in the structure. Each following
certificate must directly certify the one preceding it. Because
certificate validation requires that root keys be distributed
independently, the self-signed certificate that specifies the root
certificate authority may optionally be omitted from the chain, under
the assumption that the remote end must already possess it in order
to validate it in any case.
Example:
Connection-Credentials:"rtsps://proxy2.example.com/";MIIDNTCC...
Where MIIDNTCC... is a Base64 encoding of the following structure:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Number of certificates | Size of certificate #1 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Size of certificate #2 | Size of certificate #3 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
: DER Encoding of Certificate #1 :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
: DER Encoding of Certificate #2 :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
: DER Encoding of Certificate #3 :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 6: Format Example of Connection-Credentials Header Certificate
<span class="h3"><a class="selflink" id="section-18.14" href="#section-18.14">18.14</a>. Content-Base</span>
The Content-Base message body header field may be used to specify the
base URI for resolving relative URIs within the message body.
Content-Base: rtsp://media.example.com/movie/twister/
<span class="grey">Schulzrinne, et al. Standards Track [Page 144]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-145" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
If no Content-Base field is present, the base URI of a message body
is defined by either its Content-Location (if that Content-Location
URI is an absolute URI) or the URI used to initiate the request, in
that order of precedence. Note, however, that the base URI of the
contents within the message body may be redefined within that message
body.
<span class="h3"><a class="selflink" id="section-18.15" href="#section-18.15">18.15</a>. Content-Encoding</span>
The Content-Encoding message body header field is used as a modifier
of the media-type. When present, its value indicates what additional
content-codings have been applied to the message body, and thus what
decoding mechanisms must be applied in order to obtain the media-type
referenced by the Content-Type header field. Content-Encoding is
primarily used to allow a document to be compressed without losing
the identity of its underlying media type.
The content-coding is a characteristic of the message body identified
by the Request-URI. Typically, the message body is stored with this
encoding and is only decoded before rendering or analogous usage.
However, an RTSP proxy MAY modify the content-coding if the new
coding is known to be acceptable to the recipient, unless the "no-
transform" cache directive is present in the message.
If the content-coding of a message body is not "identity", then the
message MUST include a Content-Encoding message body header that
lists the non-identity content-coding(s) used.
If the content-coding of a message body in a request message is not
acceptable to the origin server, the server SHOULD respond with a
status code of 415 (Unsupported Media Type).
If multiple encodings have been applied to a message body, the
content-codings MUST be listed in the order in which they were
applied, first to last from left to right. Additional information
about the encoding parameters MAY be provided by other header fields
not defined by this specification.
<span class="h3"><a class="selflink" id="section-18.16" href="#section-18.16">18.16</a>. Content-Language</span>
The Content-Language message body header field describes the natural
language(s) of the intended audience for the enclosed message body.
Note that this might not be equivalent to all the languages used
within the message body.
<span class="grey">Schulzrinne, et al. Standards Track [Page 145]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-146" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
Language tags are mentioned in <a href="#section-18.4">Section 18.4</a>. The primary purpose of
Content-Language is to allow a user to identify and differentiate
entities according to the user's own preferred language. Thus, if
the body content is intended only for a Danish-literate audience, the
appropriate field is
Content-Language: da
If no Content-Language is specified, the default is that the content
is intended for all language audiences. This might mean that the
sender does not consider it to be specific to any natural language or
that the sender does not know for which language it is intended.
Multiple languages MAY be listed for content that is intended for
multiple audiences. For example, a rendition of the "Treaty of
Waitangi", presented simultaneously in the original Maori and English
versions, would call for
Content-Language: mi, en
However, just because multiple languages are present within a message
body does not mean that it is intended for multiple linguistic
audiences. An example would be a beginner's language primer, such as
"A First Lesson in Latin", which is clearly intended to be used by an
English-literate audience. In this case, the Content-Language would
properly only include "en".
Content-Language MAY be applied to any media type -- it is not
limited to textual documents.
<span class="h3"><a class="selflink" id="section-18.17" href="#section-18.17">18.17</a>. Content-Length</span>
The Content-Length message body header field contains the length of
the message body of the RTSP message (i.e., after the double CRLF
following the last header) in octets of bits. Unlike HTTP, it MUST
be included in all messages that carry a message body beyond the
header portion of the RTSP message. If it is missing, a default
value of zero is assumed. Any Content-Length greater than or equal
to zero is a valid value.
<span class="h3"><a class="selflink" id="section-18.18" href="#section-18.18">18.18</a>. Content-Location</span>
The Content-Location message body header field MAY be used to supply
the resource location for the message body enclosed in the message
when that body is accessible from a location separate from the
requested resource's URI. A server SHOULD provide a Content-Location
for the variant corresponding to the response message body;
especially in the case where a resource has multiple variants
<span class="grey">Schulzrinne, et al. Standards Track [Page 146]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-147" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
associated with it, and those entities actually have separate
locations by which they might be individually accessed, the server
SHOULD provide a Content-Location for the particular variant that is
returned.
As an example, if an RTSP client performs a DESCRIBE request on a
given resource, e.g., "rtsp://a.example.com/movie/
Plan9FromOuterSpace", then the server may use additional information,
such as the User-Agent header, to determine the capabilities of the
agent. The server will then return a media description tailored to
that class of RTSP agents. To indicate which specific description
the agent receives, the resource identifier
("rtsp://a.example.com/movie/Plan9FromOuterSpace/FullHD.sdp") is
provided in Content-Location, while the description is still a valid
response for the generic resource identifier, thus enabling both
debugging and cache operation as discussed below.
The Content-Location value is not a replacement for the original
requested URI; it is only a statement of the location of the resource
corresponding to this particular variant at the time of the request.
Future requests MAY specify the Content-Location URI as the Request-
URI if the desire is to identify the source of that particular
variant. This is useful if the RTSP agent desires to verify if the
resource variant is current through a conditional request.
A cache cannot assume that a message body with a Content-Location
different from the URI used to retrieve it can be used to respond to
later requests on that Content-Location URI. However, the Content-
Location can be used to differentiate between multiple variants
retrieved from a single requested resource.
If the Content-Location is a relative URI, the relative URI is
interpreted relative to the Request-URI.
Note that Content-Location can be used in some cases to derive the
base-URI for relative URI(s) present in session description formats.
This needs to be taken into account when Content-Location is used.
The easiest way to avoid needing to consider that issue is to include
the Content-Base whenever the Content-Location is included.
Note also, when using Media Tags in conjunction with Content-
Location, it is important that the different versions have different
MTags, even if provided under different Content-Location URIs. This
is because the different content variants still have been provided in
response to the same request URI.
<span class="grey">Schulzrinne, et al. Standards Track [Page 147]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-148" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
Note also, as in most cases, the URIs used in the DESCRIBE and the
SETUP requests are different: the URI provided in a DESCRIBE Content-
Location response can't directly be used in a SETUP request.
Instead, the steps of deriving the media resource URIs are necessary.
This commonly involves combing the media description's relative URIs,
e.g., from the SDP's a=control attribute, with the base-URI to create
the absolute URIs needed in the SETUP request.
<span class="h3"><a class="selflink" id="section-18.19" href="#section-18.19">18.19</a>. Content-Type</span>
The Content-Type message body header indicates the media type of the
message body sent to the recipient. Note that the content types
suitable for RTSP are likely to be restricted in practice to
presentation descriptions and parameter-value types.
<span class="h3"><a class="selflink" id="section-18.20" href="#section-18.20">18.20</a>. CSeq</span>
The CSeq general-header field specifies the sequence number (integer)
for an RTSP request/response pair. This field MUST be present in all
requests and responses. RTSP agents maintain a sequence number
series for each responder to which they have an open message
transport channel. For each new RTSP request an agent originates on
a particular RTSP message transport, the CSeq value MUST be
incremented by one. The initial sequence number can be any number;
however, it is RECOMMENDED to start at 0. Each sequence number
series is unique between each requester and responder, i.e., the
client has one series for its requests to a server and the server has
another when sending requests to the client. Each requester and
responder is identified by its socket address (IP address and port
number), i.e., per direction of a TCP connection. Any retransmitted
request MUST contain the same sequence number as the original, i.e.,
the sequence number is not incremented for retransmissions of the
same request. The RTSP agent receiving requests MUST process the
requests arriving on a particular transport in the order of the
sequence numbers. Responses are sent in the order that they are
generated. The RTSP response MUST have the same sequence number as
was present in the corresponding request. An RTSP agent receiving a
response MAY receive the responses out of order compared to the order
of the requests it sent. Thus, the agent MUST use the sequence
number in the response to pair it with the corresponding request.
The main purpose of the sequence number is to map responses to
requests.
The requirement to use a sequence-number increment of one for each
new request is to support any future specification of RTSP message
transport over a protocol that does not provide in-order delivery
or is unreliable.
<span class="grey">Schulzrinne, et al. Standards Track [Page 148]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-149" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
The above rules relating to the initial sequence number may appear
unnecessarily loose. The reason for this is to cater to some
common behavior of existing implementations: when using multiple
reliable connections in sequence, it may still be easiest to use a
single sequence-number series for a client connecting with a
particular server. Thus, the initial sequence number may be
arbitrary depending on the number of previous requests. For any
unreliable transport, a stricter definition or other solution will
be required to enable detection of any loss of the first request.
When using multiple sequential transport connections, there is no
protocol mechanism to ensure in-order processing as the sequence
number is scoped on the individual transport connection and its
five tuple. Thus, there are potential issues with opening a new
transport connection to the same host for which there already
exists a transport connection with outstanding requests and
previously dispatched requests related to the same RTSP session.
RTSP Proxies also need to follow the above rules. This implies that
proxies that aggregate requests from multiple clients onto a single
transport towards a server or a next-hop proxy need to renumber these
requests to form a unified sequence on that transport, fulfilling the
above rules. A proxy capable of fulfilling some agent's request
without emitting its own request (e.g., a caching proxy that fulfills
a request from its cache) also causes a need to renumber as the
number of received requests with a particular target may not be the
same as the number of emitted requests towards that target agent. A
proxy that needs to renumber needs to perform the corresponding
renumbering back to the original sequence number for any received
response before forwarding it back to the originator of the request.
A client connected to a proxy, and using that transport to send
requests to multiple servers, creates a situation where it is
quite likely to receive the responses out of order. This is
because the proxy will establish separate transports from the
proxy to the servers on which to forward the client's requests.
When the responses arrive from the different servers, they will be
forwarded to the client in the order they arrive at the proxy and
can be processed, not the order of the client's original sequence
numbers. This is intentional to avoid some session's requests
being blocked by another server's slow processing of requests.
<span class="grey">Schulzrinne, et al. Standards Track [Page 149]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-150" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
<span class="h3"><a class="selflink" id="section-18.21" href="#section-18.21">18.21</a>. Date</span>
The Date general-header field represents the date and time at which
the message was originated. The inclusion of the Date header in an
RTSP message follows these rules:
o An RTSP message, sent by either the client or the server,
containing a body MUST include a Date header, if the sending host
has a clock;
o Clients and servers are RECOMMENDED to include a Date header in
all other RTSP messages, if the sending host has a clock;
o If the server does not have a clock that can provide a reasonable
approximation of the current time, its responses MUST NOT include
a Date header field. In this case, this rule MUST be followed:
some origin-server implementations might not have a clock
available. An origin server without a clock MUST NOT assign
Expires or Last-Modified values to a response, unless these values
were associated with the resource by a system or user with a
reliable clock. It MAY assign an Expires value that is known, at
or before server-configuration time, to be in the past (this
allows "pre-expiration" of responses without storing separate
Expires values for each resource).
A received message that does not have a Date header field MUST be
assigned one by the recipient if the message will be cached by that
recipient. An RTSP implementation without a clock MUST NOT cache
responses without revalidating them on every use. An RTSP cache,
especially a shared cache, SHOULD use a mechanism, such as the
Network Time Protocol (NTP) [<a href="./rfc5905" title=""Network Time Protocol Version 4: Protocol and Algorithms Specification"">RFC5905</a>], to synchronize its clock with
a reliable external standard.
The RTSP-date, a full date as specified by <a href="./rfc5322#section-3.3">Section 3.3 of [RFC5322]</a>,
sent in a Date header SHOULD NOT represent a date and time subsequent
to the generation of the message. It SHOULD represent the best
available approximation of the date and time of message generation,
unless the implementation has no means of generating a reasonably
accurate date and time. In theory, the date ought to represent the
moment just before the message body is generated. In practice, the
date can be generated at any time during the message origination
without affecting its semantic value.
Note: The RTSP 2.0 date format is defined to be the full-date
format in <a href="./rfc5322">RFC 5322</a>. This format is more flexible than the date
format in <a href="./rfc1123">RFC 1123</a> used by RTSP 1.0. Thus, implementations should
use single spaces as separators, as recommended by <a href="./rfc5322">RFC 5322</a>, and
support receiving the obsolete format.
<span class="grey">Schulzrinne, et al. Standards Track [Page 150]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-151" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
Further, note that the syntax allows for a comment to be added at
the end of the date.
<span class="h3"><a class="selflink" id="section-18.22" href="#section-18.22">18.22</a>. Expires</span>
The Expires message body header field gives a date and time after
which the description or media-stream should be considered stale.
The interpretation depends on the method:
DESCRIBE response: The Expires header indicates a date and time
after which the presentation description (body) SHOULD be
considered stale.
SETUP response: The Expires header indicates a date and time after
which the media stream SHOULD be considered stale.
A stale cache entry should not be returned by a cache (either a proxy
cache or a user agent cache) unless it is first validated with the
origin server (or with an intermediate cache that has a fresh copy of
the message body). See <a href="#section-16">Section 16</a> for further discussion of the
expiration model.
The presence of an Expires field does not imply that the original
resource will change or cease to exist at, before, or after that
time.
The format is an absolute date and time as defined by RTSP-date. An
example of its use is
Expires: Wed, 23 Jan 2013 15:36:52 +0000
RTSP 2.0 clients and caches MUST treat other invalid date formats,
especially those including the value "0", as having occurred in the
past (i.e., already expired).
To mark a response as "already expired," an origin server should use
an Expires date that is equal to the Date header value. To mark a
response as "never expires", an origin server SHOULD use an Expires
date approximately one year from the time the response is sent. RTSP
2.0 servers SHOULD NOT send Expires dates that are more than one year
in the future.
<span class="h3"><a class="selflink" id="section-18.23" href="#section-18.23">18.23</a>. From</span>
The From request-header field, if given, SHOULD contain an Internet
email address for the human user who controls the requesting user
agent. The address SHOULD be machine usable, as defined by "mailbox"
in [<a href="./rfc1123" title=""Requirements for Internet Hosts - Application and Support"">RFC1123</a>].
<span class="grey">Schulzrinne, et al. Standards Track [Page 151]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-152" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
This header field MAY be used for logging purposes and as a means for
identifying the source of invalid or unwanted requests. It SHOULD
NOT be used as an insecure form of access protection. The
interpretation of this field is that the request is being performed
on behalf of the person given, who accepts responsibility for the
method performed. In particular, robot agents SHOULD include this
header so that the person responsible for running the robot can be
contacted if problems occur on the receiving end.
The Internet email address in this field MAY be separate from the
Internet host that issued the request. For example, when a request
is passed through a proxy, the original issuer's address SHOULD be
used.
The client SHOULD NOT send the From header field without the user's
approval, as it might conflict with the user's privacy interests or
their site's security policy. It is strongly recommended that the
user be able to disable, enable, and modify the value of this field
at any time prior to a request.
<span class="h3"><a class="selflink" id="section-18.24" href="#section-18.24">18.24</a>. If-Match</span>
The If-Match request-header field is especially useful for ensuring
the integrity of the presentation description, independent of how the
presentation description was received. The presentation description
can be fetched via means external to RTSP (such as HTTP) or via the
DESCRIBE message. In the case of retrieving the presentation
description via RTSP, the server implementation is guaranteeing the
integrity of the description between the time of the DESCRIBE message
and the SETUP message. By including the MTag given in or with the
session description in an If-Match header part of the SETUP request,
the client ensures that resources set up are matching the
description. A SETUP request with the If-Match header for which the
MTag validation check fails MUST generate a response using 412
(Precondition Failed).
This validation check is also very useful if a session has been
redirected from one server to another.
<span class="h3"><a class="selflink" id="section-18.25" href="#section-18.25">18.25</a>. If-Modified-Since</span>
The If-Modified-Since request-header field is used with the DESCRIBE
and SETUP methods to make them conditional. If the requested variant
has not been modified since the time specified in this field, a
description will not be returned from the server (DESCRIBE) or a
stream will not be set up (SETUP). Instead, a 304 (Not Modified)
response MUST be returned without any message body.
<span class="grey">Schulzrinne, et al. Standards Track [Page 152]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-153" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
An example of the field is:
If-Modified-Since: Sat, 29 Oct 1994 19:43:31 GMT
<span class="h3"><a class="selflink" id="section-18.26" href="#section-18.26">18.26</a>. If-None-Match</span>
This request-header can be used with one or several message body tags
to make DESCRIBE requests conditional. A client that has one or more
message bodies previously obtained from the resource can verify that
none of those entities is current by including a list of their
associated message body tags in the If-None-Match header field. The
purpose of this feature is to allow efficient updates of cached
information with a minimum amount of transaction overhead. As a
special case, the value "*" matches any current entity of the
resource.
If any of the message body tags match the message body tag of the
message body that would have been returned in the response to a
similar DESCRIBE request (without the If-None-Match header) on that
resource, or if "*" is given and any current entity exists for that
resource, then the server MUST NOT perform the requested method,
unless required to do so because the resource's modification date
fails to match that supplied in an If-Modified-Since header field in
the request. Instead, if the request method was DESCRIBE, the server
SHOULD respond with a 304 (Not Modified) response, including the
cache-related header fields (particularly MTag) of one of the message
bodies that matched. For all other request methods, the server MUST
respond with a status of 412 (Precondition Failed).
See <a href="#section-16.1.3">Section 16.1.3</a> for rules on how to determine if two message body
tags match.
If none of the message body tags match, then the server MAY perform
the requested method as if the If-None-Match header field did not
exist, but MUST also ignore any If-Modified-Since header field(s) in
the request. That is, if no message body tags match, then the server
MUST NOT return a 304 (Not Modified) response.
If the request would, without the If-None-Match header field, result
in anything other than a 2xx or 304 status, then the If-None-Match
header MUST be ignored. (See <a href="#section-16.1.4">Section 16.1.4</a> for a discussion of
server behavior when both If-Modified-Since and If-None-Match appear
in the same request.)
The result of a request having both an If-None-Match header field and
an If-Match header field is unspecified and MUST be considered an
illegal request.
<span class="grey">Schulzrinne, et al. Standards Track [Page 153]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-154" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
<span class="h3"><a class="selflink" id="section-18.27" href="#section-18.27">18.27</a>. Last-Modified</span>
The Last-Modified message body header field indicates the date and
time at which the origin server believes the presentation description
or media stream was last modified. For the DESCRIBE method, the
header field indicates the last modification date and time of the
description, for the SETUP of the media stream.
An origin server MUST NOT send a Last-Modified date that is later
than the server's time of message origination. In such cases, where
the resource's last modification would indicate some time in the
future, the server MUST replace that date with the message
origination date.
An origin server SHOULD obtain the Last-Modified value of the message
body as close as possible to the time that it generates the Date
value of its response. This allows a recipient to make an accurate
assessment of the message body's modification time, especially if the
message body changes near the time that the response is generated.
RTSP servers SHOULD send Last-Modified whenever feasible.
<span class="h3"><a class="selflink" id="section-18.28" href="#section-18.28">18.28</a>. Location</span>
The Location response-header field is used to redirect the recipient
to a location other than the Request-URI for completion of the
request or identification of a new resource. For 3rr responses, the
location SHOULD indicate the server's preferred URI for automatic
redirection to the resource. The field-value consists of a single
absolute URI.
Note: The Content-Location header field (<a href="#section-18.18">Section 18.18</a>) differs from
Location in that the Content-Location identifies the original
location of the message body enclosed in the request. Therefore, it
is possible for a response to contain header fields for both Location
and Content-Location. Also, see <a href="#section-16.2">Section 16.2</a> for cache requirements
of some methods.
<span class="h3"><a class="selflink" id="section-18.29" href="#section-18.29">18.29</a>. Media-Properties</span>
This general-header is used in SETUP responses or PLAY_NOTIFY
requests to indicate the media's properties that currently are
applicable to the RTSP session. PLAY_NOTIFY MAY be used to modify
these properties at any point. However, the client SHOULD have
received the update prior to any action related to the new media
properties taking effect. For aggregated sessions, the Media-
Properties header will be returned in each SETUP response. The
header received in the latest response is the one that applies on the
<span class="grey">Schulzrinne, et al. Standards Track [Page 154]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-155" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
whole session from this point until any future update. The header
MAY be included without value in GET_PARAMETER requests to the server
with a Session header included to query the current Media-Properties
for the session. The responder MUST include the current session's
media properties.
The media properties expressed by this header are the ones applicable
to all media in the RTSP session. For aggregated sessions, the
header expressed the combined media-properties. As a result,
aggregation of media MAY result in a change of the media properties
and, thus, the content of the Media-Properties header contained in
subsequent SETUP responses.
The header contains a list of property values that are applicable to
the currently setup media or aggregate of media as indicated by the
RTSP URI in the request. No ordering is enforced within the header.
Property values should be placed into a single group that handles a
particular orthogonal property. Values or groups that express
multiple properties SHOULD NOT be used. The list of properties that
can be expressed MAY be extended at any time. Unknown property
values MUST be ignored.
This specification defines the following four groups and their
property values:
Random Access:
Random-Access: Indicates that random access is possible. May
optionally include a floating-point value in seconds indicating
the longest duration between any two random access points in
the media.
Beginning-Only: Seeking is limited to the beginning only.
No-Seeking: No seeking is possible.
Content Modifications:
Immutable: The content will not be changed during the lifetime of
the RTSP session.
Dynamic: The content may be changed based on external methods or
triggers.
Time-Progressing: The media accessible progresses as wallclock
time progresses.
<span class="grey">Schulzrinne, et al. Standards Track [Page 155]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-156" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
Retention:
Unlimited: Content will be retained for the duration of the
lifetime of the RTSP session.
Time-Limited: Content will be retained at least until the
specified wallclock time. The time must be provided in the
absolute time format specified in <a href="#section-4.4.3">Section 4.4.3</a>.
Time-Duration: Each individual media unit is retained for at
least the specified Time-Duration. This definition allows for
retaining data with a time-based sliding window. The time
duration is expressed as floating-point number in seconds. The
value 0.0 is a valid as this indicates that no data is retained
in a time-progressing session.
Supported Scale:
Scales: A quoted comma-separated list of one or more decimal
values or ranges of scale values supported by the content in
arbitrary order. A range has a start and stop value separated
by a colon. A range indicates that the content supports a
fine-grained selection of scale values. Fine-graining allows
for steps at least as small as one tenth of a scale value.
Content is considered to support fine-grained selection when
the server in response to a given scale value can produce
content with an actual scale that is less than one tenth of
scale unit, i.e., 0.1, from the requested value. Negative
values are supported. The value 0 has no meaning and MUST NOT
be used.
Examples of this header for on-demand content and a live stream
without recording are:
On-demand:
Media-Properties: Random-Access=2.5, Unlimited, Immutable,
Scales="-20, -10, -4, 0.5:1.5, 4, 8, 10, 15, 20"
Live stream without recording/timeshifting:
Media-Properties: No-Seeking, Time-Progressing, Time-Duration=0.0
<span class="h3"><a class="selflink" id="section-18.30" href="#section-18.30">18.30</a>. Media-Range</span>
The Media-Range general-header is used to give the range of the media
at the time of sending the RTSP message. This header MUST be
included in the SETUP response, PLAY and PAUSE responses for media
that are time-progressing, PLAY and PAUSE responses after any change
for media that are Dynamic, and in PLAY_NOTIFY requests that are sent
<span class="grey">Schulzrinne, et al. Standards Track [Page 156]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-157" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
due to Media-Property-Update. A Media-Range header without any range
specifications MAY be included in GET_PARAMETER requests to the
server to request the current range. In this case, the server MUST
include the current range at the time of sending the response.
The header MUST include range specifications for all time formats
supported for the media, as indicated in Accept-Ranges header
(<a href="#section-18.5">Section 18.5</a>) when setting up the media. The server MAY include
more than one range specification of any given time format to
indicate media that has non-continuous range. The range
specifications SHALL be ordered with the range with the lowest value
or earliest start time first, followed by ranges with increasingly
higher values or later start time.
For media that has the time-progressing property, the Media-Range
header values will only be valid for the particular point in time
when it was issued. As the wallclock progresses, so will the media
range. However, it shall be assumed that media time progresses in
direct relationship to wallclock time (with the exception of clock
skew) so that a reasonably accurate estimation of the media range can
be calculated.
<span class="h3"><a class="selflink" id="section-18.31" href="#section-18.31">18.31</a>. MTag</span>
The MTag response-header MAY be included in DESCRIBE, GET_PARAMETER,
or SETUP responses. The message body tags (<a href="#section-4.6">Section 4.6</a>) returned in
a DESCRIBE response and the one in SETUP refer to the presentation,
i.e., both the returned session description and the media stream.
This allows for verification that one has the right session
description to a media resource at the time of the SETUP request.
However, it has the disadvantage that a change in any of the parts
results in invalidation of all the parts.
If the MTag is provided both inside the message body, e.g., within
the "a=mtag" attribute in SDP, and in the response message, then both
tags MUST be identical. It is RECOMMENDED that the MTag be primarily
given in the RTSP response message, to ensure that caches can use the
MTag without requiring content inspection. However, for session
descriptions that are distributed outside of RTSP, for example, using
HTTP, etc., it will be necessary to include the message body tag in
the session description as specified in <a href="#appendix-D.1.9">Appendix D.1.9</a>.
SETUP and DESCRIBE requests can be made conditional upon the MTag
using the headers If-Match (<a href="#section-18.24">Section 18.24</a>) and If-None-Match
(<a href="#section-18.26">Section 18.26</a>).
<span class="grey">Schulzrinne, et al. Standards Track [Page 157]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-158" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
<span class="h3"><a class="selflink" id="section-18.32" href="#section-18.32">18.32</a>. Notify-Reason</span>
The Notify-Reason response-header is solely used in the PLAY_NOTIFY
method. It indicates the reason why the server has sent the
asynchronous PLAY_NOTIFY request (see <a href="#section-13.5">Section 13.5</a>).
<span class="h3"><a class="selflink" id="section-18.33" href="#section-18.33">18.33</a>. Pipelined-Requests</span>
The Pipelined-Requests general-header is used to indicate that a
request is to be executed in the context created by a previous
request(s). The primary usage of this header is to allow pipelining
of SETUP requests so that any additional SETUP request after the
first one does not need to wait for the session ID to be sent back to
the requesting agent. The header contains a unique identifier that
is scoped by the persistent connection used to send the requests.
Upon receiving a request with the Pipelined-Requests, the responding
agent MUST look up if there exists a binding between this Pipelined-
Requests identifier for the current persistent connection and an RTSP
session ID. If the binding exists, then the received request is
processed the same way as if it contained the Session header with the
found session ID. If there does not exist a mapping and no Session
header is included in the request, the responding agent MUST create a
binding upon the successful completion of a session creating request,
i.e., SETUP. A binding MUST NOT be created, if the request failed to
create an RTSP session. In case the request contains both a Session
header and the Pipelined-Requests header, the Pipelined-Requests
header MUST be ignored.
Note: Based on the above definition, at least the first request
containing a new unique Pipelined-Requests header will be required to
be a SETUP request (unless the protocol is extended with new methods
of creating a session). After that first one, additional SETUP
requests or requests of any type using the RTSP session context may
include the Pipelined-Requests header.
When responding to any request that contained the Pipelined-Requests
header, the server MUST also include the Session header when a
binding to a session context exists. An RTSP agent that knows the
session identifier SHOULD NOT use the Pipelined-Requests header in
any request and only use the Session header. This as the Session
identifier is persistent across transport contexts, like TCP
connections, which the Pipelined-Requests identifier is not.
The RTSP agent sending the request with a Pipelined-Requests header
has the responsibility for using a unique and previously unused
identifier within the transport context. Currently, only a TCP
connection is defined as such a transport context. A server MUST
<span class="grey">Schulzrinne, et al. Standards Track [Page 158]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-159" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
delete the Pipelined-Requests identifier and its binding to a session
upon the termination of that session. Despite the previous mandate,
RTSP agents are RECOMMENDED not to reuse identifiers to allow for
better error handling and logging.
RTSP Proxies may need to translate Pipelined-Requests identifier
values from incoming requests to outgoing to allow for aggregation of
requests onto a persistent connection.
<span class="h3"><a class="selflink" id="section-18.34" href="#section-18.34">18.34</a>. Proxy-Authenticate</span>
The Proxy-Authenticate response-header field MUST be included as part
of a 407 (Proxy Authentication Required) response. The field-value
consists of a challenge that indicates the authentication scheme and
parameters applicable to the proxy for this Request-URI. The
definition of the header is in [<a href="./rfc7235" title=""Hypertext Transfer Protocol (HTTP/1.1): Authentication"">RFC7235</a>], and any applicable HTTP
authentication schemes appear in other RFCs, such as Digest [<a href="./rfc7616" title=""HTTP Digest Access Authentication"">RFC7616</a>]
and Basic [<a href="./rfc7617" title=""The 'Basic' HTTP Authentication Scheme"">RFC7617</a>].
The HTTP access authentication process is described in [<a href="./rfc7235" title=""Hypertext Transfer Protocol (HTTP/1.1): Authentication"">RFC7235</a>].
This header MUST only be used in response messages related to client-
to-server requests.
<span class="h3"><a class="selflink" id="section-18.35" href="#section-18.35">18.35</a>. Proxy-Authentication-Info</span>
The Proxy-Authentication-Info response-header is used by the proxy to
communicate some information regarding the successful authentication
to the proxy in the message response in some authentication schemes,
such as the Digest scheme [<a href="./rfc7616" title=""HTTP Digest Access Authentication"">RFC7616</a>]. The definition of the header is
in [<a href="./rfc7615" title=""HTTP Authentication-Info and Proxy- Authentication-Info Response Header Fields"">RFC7615</a>], and any applicable HTTP authentication schemes appear
in other RFCs. This header MUST only be used in response messages
related to client-to-server requests. This header has hop-by-hop
scope.
<span class="h3"><a class="selflink" id="section-18.36" href="#section-18.36">18.36</a>. Proxy-Authorization</span>
The Proxy-Authorization request-header field allows the client to
identify itself (or its user) to a proxy that requires
authentication. The Proxy-Authorization field-value consists of
credentials containing the authentication information of the user
agent for the proxy or realm of the resource being requested. The
definition of the header is in [<a href="./rfc7235" title=""Hypertext Transfer Protocol (HTTP/1.1): Authentication"">RFC7235</a>], and any applicable HTTP
authentication schemes appear in other RFCs, such as Digest [<a href="./rfc7616" title=""HTTP Digest Access Authentication"">RFC7616</a>]
and Basic [<a href="./rfc7617" title=""The 'Basic' HTTP Authentication Scheme"">RFC7617</a>].
<span class="grey">Schulzrinne, et al. Standards Track [Page 159]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-160" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
The HTTP access authentication process is described in [<a href="./rfc7235" title=""Hypertext Transfer Protocol (HTTP/1.1): Authentication"">RFC7235</a>].
Unlike Authorization, the Proxy-Authorization header field applies
only to the next-hop proxy. This header MUST only be used in client-
to-server requests.
<span class="h3"><a class="selflink" id="section-18.37" href="#section-18.37">18.37</a>. Proxy-Require</span>
The Proxy-Require request-header field is used to indicate proxy-
sensitive features that MUST be supported by the proxy. Any Proxy-
Require header features that are not supported by the proxy MUST be
negatively acknowledged by the proxy to the client using the
Unsupported header. The proxy MUST use the 551 (Option Not
Supported) status code in the response. Any feature tag included in
the Proxy-Require does not apply to the endpoint (server or client).
To ensure that a feature is supported by both proxies and servers,
the tag needs to be included in also a Require header.
See <a href="#section-18.43">Section 18.43</a> for more details on the mechanics of this message
and a usage example. See discussion in the proxies section
(<a href="#section-15.1">Section 15.1</a>) about when to consider that a feature requires proxy
support.
Example of use:
Proxy-Require: play.basic
<span class="h3"><a class="selflink" id="section-18.38" href="#section-18.38">18.38</a>. Proxy-Supported</span>
The Proxy-Supported general-header field enumerates all the
extensions supported by the proxy using feature tags. The header
carries the intersection of extensions supported by the forwarding
proxies. The Proxy-Supported header MAY be included in any request
by a proxy. It MUST be added by any proxy if the Supported header is
present in a request. When present in a request, the receiver MUST
copy the received Proxy-Supported header in the response.
The Proxy-Supported header field contains a list of feature tags
applicable to proxies, as described in <a href="#section-4.5">Section 4.5</a>. The list is the
intersection of all feature tags understood by the proxies. To
achieve an intersection, the proxy adding the Proxy-Supported header
includes all proxy feature tags it understands. Any proxy receiving
a request with the header MUST check the list and remove any feature
tag(s) it does not support. A Proxy-Supported header present in the
response MUST NOT be modified by the proxies. These feature tags are
the ones the proxy chains support in general and are not specific to
the request resource.
<span class="grey">Schulzrinne, et al. Standards Track [Page 160]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-161" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
Example:
C->P1: OPTIONS rtsp://example.com/ RTSP/2.0
Supported: foo, bar, blech
User-Agent: PhonyClient/1.2
P1->P2: OPTIONS rtsp://example.com/ RTSP/2.0
Supported: foo, bar, blech
Proxy-Supported: proxy-foo, proxy-bar, proxy-blech
Via: 2.0 pro.example.com
P2->S: OPTIONS rtsp://example.com/ RTSP/2.0
Supported: foo, bar, blech
Proxy-Supported: proxy-foo, proxy-blech
Via: 2.0 pro.example.com, 2.0 prox2.example.com
S->C: RTSP/2.0 200 OK
Supported: foo, bar, baz
Proxy-Supported: proxy-foo, proxy-blech
Public: OPTIONS, SETUP, PLAY, PAUSE, TEARDOWN
Via: 2.0 pro.example.com, 2.0 prox2.example.com
<span class="h3"><a class="selflink" id="section-18.39" href="#section-18.39">18.39</a>. Public</span>
The Public response-header field lists the set of methods supported
by the response sender. This header applies to the general
capabilities of the sender, and its only purpose is to indicate the
sender's capabilities to the recipient. The methods listed may or
may not be applicable to the Request-URI; the Allow header field
(<a href="#section-18.6">Section 18.6</a>) MAY be used to indicate methods allowed for a
particular URI.
Example of use:
Public: OPTIONS, SETUP, PLAY, PAUSE, TEARDOWN
In the event that there are proxies between the sender and the
recipient of a response, each intervening proxy MUST modify the
Public header field to remove any methods that are not supported via
that proxy. The resulting Public header field will contain an
intersection of the sender's methods and the methods allowed through
by the intervening proxies.
In general, proxies should allow all methods to transparently pass
through from the sending RTSP agent to the receiving RTSP agent,
but there may be cases where this is not desirable for a given
proxy. Modification of the Public response-header field by the
<span class="grey">Schulzrinne, et al. Standards Track [Page 161]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-162" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
intervening proxies ensures that the request sender gets an
accurate response indicating the methods that can be used on the
target agent via the proxy chain.
<span class="h3"><a class="selflink" id="section-18.40" href="#section-18.40">18.40</a>. Range</span>
The Range general-header specifies a time range in PLAY
(<a href="#section-13.4">Section 13.4</a>), PAUSE (<a href="#section-13.6">Section 13.6</a>), SETUP (<a href="#section-13.3">Section 13.3</a>), and
PLAY_NOTIFY (<a href="#section-13.5">Section 13.5</a>) requests and responses. It MAY be
included in GET_PARAMETER requests from the client to the server with
only a Range format and no value to request the current media
position, whether the session is in Play or Ready state in the
included format. The server SHALL, if supporting the range format,
respond with the current playing point or pause point as the start of
the range. If an explicit stop point was used in the previous PLAY
request, then that value shall be included as stop point. Note that
if the server is currently under any type of media playback
manipulation affecting the interpretation of the Range header, like
scale value other than 1, that fact is also required to be included
in any GET_PARAMETER response by including the Scale header to
provide complete information.
The range can be specified in a number of units. This specification
defines smpte (<a href="#section-4.4.1">Section 4.4.1</a>), npt (<a href="#section-4.4.2">Section 4.4.2</a>), and clock
(<a href="#section-4.4.3">Section 4.4.3</a>) range units. While octet ranges (Byte Ranges) (see
<a href="./rfc7233#section-2.1">Section 2.1 of [RFC7233]</a>) and other extended units MAY be used, their
behavior is unspecified since they are not normally meaningful in
RTSP. Servers supporting the Range header MUST understand the NPT
range format and SHOULD understand the SMPTE range format. If the
Range header is sent in a time format that is not understood, the
recipient SHOULD return 456 (Header Field Not Valid for Resource) and
include an Accept-Ranges header indicating the supported time formats
for the given resource.
Example:
Range: clock=19960213T143205Z-
The Range header contains a range of one single range format. A
range is a half-open interval with a start and an end point,
including the start point but excluding the end point. A range may
either be fully specified with explicit values for start point and
end point or have either the start or end point be implicit. An
implicit start point indicates the session's pause point, and if no
pause point is set, the start of the content. An implicit end point
indicates the end of the content. The usage of both implicit start
<span class="grey">Schulzrinne, et al. Standards Track [Page 162]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-163" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
and end points is not allowed in the same Range header; however, the
omission of the Range header has that meaning, i.e., from pause point
(or start) until end of content.
As noted, Range headers define half-open intervals. A range of
A-B starts exactly at time A, but ends just before B. Only the
start time of a media unit such as a video or audio frame is
relevant. For example, assume that video frames are generated
every 40 ms. A range of 10.0-10.1 would include a video frame
starting at 10.0 or later time and would include a video frame
starting at 10.08, even though it lasted beyond the interval. A
range of 10.0-10.08, on the other hand, would exclude the frame at
10.08.
Please note the difference between NPT timescales' "now" and an
implicit start value. Implicit values reference the current
pause-point, while "now" is the current time. In a time-
progressing session with recording (retention for some or full
time), the pause point may be 2 min into the session while now
could be 1 hour into the session.
By default, range intervals increase, where the second point is
larger than the first point.
Example:
Range: npt=10-15
However, range intervals can also decrease if the Scale header (see
<a href="#section-18.46">Section 18.46</a>) indicates a negative scale value. For example, this
would be the case when a playback in reverse is desired.
Example:
Scale: -1
Range: npt=15-10
Decreasing ranges are still half-open intervals as described above.
Thus, for range A-B, A is closed and B is open. In the above
example, 15 is closed and 10 is open. An exception to this rule is
the case when B=0 is in a decreasing range. In this case, the range
is closed on both ends, as otherwise there would be no way to reach 0
on a reverse playback for formats that have such a notion, like NPT
and SMPTE.
<span class="grey">Schulzrinne, et al. Standards Track [Page 163]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-164" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
Example:
Scale: -1
Range: npt=15-0
In this range, both 15 and 0 are closed.
A decreasing range interval without a corresponding negative value in
the Scale header is not valid.
<span class="h3"><a class="selflink" id="section-18.41" href="#section-18.41">18.41</a>. Referrer</span>
The Referrer request-header field allows the client to specify, for
the server's benefit, the address (URI) of the resource from which
the Request-URI was obtained. The URI refers to that of the
presentation description, typically retrieved via HTTP. The Referrer
request-header allows a server to generate lists of back-links to
resources for interest, logging, optimized caching, etc. It also
allows obsolete or mistyped links to be traced for maintenance. The
Referrer field MUST NOT be sent if the Request-URI was obtained from
a source that does not have its own URI, such as input from the user
keyboard.
If the field-value is a relative URI, it SHOULD be interpreted
relative to the Request-URI. The URI MUST NOT include a fragment
identifier.
Because the source of a link might be private information or might
reveal an otherwise private information source, it is strongly
recommended that the user be able to select whether or not the
Referrer field is sent. For example, a streaming client could have a
toggle switch for openly/anonymously, which would respectively
enable/disable the sending of Referrer and From information.
Clients SHOULD NOT include a Referrer header field in an (non-secure)
RTSP request if the referring page was transferred with a secure
protocol.
<span class="h3"><a class="selflink" id="section-18.42" href="#section-18.42">18.42</a>. Request-Status</span>
This request-header is used to indicate the end result for requests
that take time to complete, such as PLAY (<a href="#section-13.4">Section 13.4</a>). It is sent
in PLAY_NOTIFY (<a href="#section-13.5">Section 13.5</a>) with the end-of-stream reason to report
how the PLAY request concluded, either in success or in failure. The
header carries a reference to the request it reports on using the
CSeq number and the Session ID used in the request reported on. This
is not ensured to be unambiguous due to the fact that the CSeq number
is scoped by the transport connection. Agents originating requests
<span class="grey">Schulzrinne, et al. Standards Track [Page 164]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-165" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
can reduce the issue by using a monotonically increasing counter
across all sequential transports used. The header provides both a
numerical status code (according to <a href="#section-8.1.1">Section 8.1.1</a>) and a human-
readable reason phrase.
Example:
Request-Status: cseq=63 status=500 reason="Media data unavailable"
Proxies that renumber the CSeq header need to perform corresponding
remapping of the cseq parameter in this header when forwarding the
request to the next-hop agent.
<span class="h3"><a class="selflink" id="section-18.43" href="#section-18.43">18.43</a>. Require</span>
The Require request-header field is used by agents to ensure that the
other endpoint supports features that are required in respect to this
request. It can also be used to query if the other endpoint supports
certain features; however, the use of the Supported general-header
(<a href="#section-18.51">Section 18.51</a>) is much more effective in this purpose. In case any
of the feature tags listed by the Require header are not supported by
the server or client receiving the request, it MUST respond to the
request using the error code 551 (Option Not Supported) and include
the Unsupported header listing those feature tags that are NOT
supported. This header does not apply to proxies; for the same
functionality with respect to proxies, see the Proxy-Require header
(<a href="#section-18.37">Section 18.37</a>) with the exception of media-modifying proxies.
Media-modifying proxies, due to their nature of handling media in a
way that is very similar to a server, do need to understand also the
server's features to correctly serve the client.
This is to make sure that the client-server interaction will
proceed without delay when all features are understood by both
sides and only slow down if features are not understood (as in the
example below). For a well-matched client-server pair, the
interaction proceeds quickly, saving a round trip often required
by negotiation mechanisms. In addition, it also removes state
ambiguity when the client requires features that the server does
not understand.
<span class="grey">Schulzrinne, et al. Standards Track [Page 165]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-166" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
Example (Not complete):
C->S: SETUP rtsp://server.com/foo/bar/baz.rm RTSP/2.0
CSeq: 302
Require: funky-feature
Funky-Parameter: funkystuff
S->C: RTSP/2.0 551 Option not supported
CSeq: 302
Unsupported: funky-feature
In this example, "funky-feature" is the feature tag that indicates to
the client that the fictional Funky-Parameter field is required. The
relationship between "funky-feature" and Funky-Parameter is not
communicated via the RTSP exchange, since that relationship is an
immutable property of "funky-feature" and thus should not be
transmitted with every exchange.
Proxies and other intermediary devices MUST ignore this header. If a
particular extension requires that intermediate devices support it,
the extension should be tagged in the Proxy-Require field instead
(see <a href="#section-18.37">Section 18.37</a>). See discussion in the proxies section
(<a href="#section-15.1">Section 15.1</a>) about when to consider that a feature requires proxy
support.
<span class="h3"><a class="selflink" id="section-18.44" href="#section-18.44">18.44</a>. Retry-After</span>
The Retry-After response-header field can be used with a 503 (Service
Unavailable) or 553 (Proxy Unavailable) response to indicate how long
the service is expected to be unavailable to the requesting client.
This field MAY also be used with any 3rr (Redirection) response to
indicate the minimum time the user agent is asked to wait before
issuing the redirected request. A response using 413 (Request
Message Body Too Large) when the restriction is temporary MAY also
include the Retry-After header. The value of this field can be
either an RTSP-date or an integer number of seconds (in decimal)
after the time of the response.
Example:
Retry-After: Fri, 31 Dec 1999 23:59:59 GMT
Retry-After: 120
In the latter example, the delay is 2 minutes.
<span class="grey">Schulzrinne, et al. Standards Track [Page 166]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-167" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
<span class="h3"><a class="selflink" id="section-18.45" href="#section-18.45">18.45</a>. RTP-Info</span>
The RTP-Info general-header field is used to set RTP-specific
parameters in the PLAY and GET_PARAMETER responses or PLAY_NOTIFY and
GET_PARAMETER requests. For streams using RTP as transport protocol,
the RTP-Info header SHOULD be part of a 200 response to PLAY.
The exclusion of the RTP-Info in a PLAY response for RTP-
transported media will result in a client needing to synchronize
the media streams using RTCP. This may have negative impact as
the RTCP can be lost and does not need to be particularly timely
in its arrival. Also, functionality that informs the client from
which packet a seek has occurred is affected.
The RTP-Info MAY be included in SETUP responses to provide
synchronization information when changing transport parameters, see
<a href="#section-13.3">Section 13.3</a>. The RTP-Info header and the Range header MAY be
included in a GET_PARAMETER request from client to server without any
values to request the current playback point and corresponding RTP
synchronization information. When the RTP-Info header is included in
a Request, the Range header MUST also be included. The server
response SHALL include both the Range header and the RTP-Info header.
If the session is in Play state, then the value of the Range header
SHALL be filled in with the current playback point and with the
corresponding RTP-Info values. If the server is in another state, no
values are included in the RTP-Info header. The header is included
in PLAY_NOTIFY requests with the Notify-Reason of the end of stream
to provide RTP information about the end of the stream.
The header can carry the following parameters:
url: Indicates the stream URI for which the following RTP parameters
correspond; this URI MUST be the same as used in the SETUP
request for this media stream. Any relative URI MUST use the
Request-URI as base URI. This parameter MUST be present.
ssrc: The SSRC to which the RTP timestamp and sequence number
provided applies. This parameter MUST be present.
seq: Indicates the sequence number of the first packet of the stream
that is direct result of the request. This allows clients to
gracefully deal with packets when seeking. The client uses
this value to differentiate packets that originated before the
seek from packets that originated after the seek. Note that a
client may not receive the packet with the expressed sequence
number and instead may receive packets with a higher sequence
number due to packet loss or reordering. This parameter is
RECOMMENDED to be present.
<span class="grey">Schulzrinne, et al. Standards Track [Page 167]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-168" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
rtptime: MUST indicate the RTP timestamp value corresponding to the
start time value in the Range response-header or, if not
explicitly given, the implied start point. The client uses
this value to calculate the mapping of RTP time to NPT or other
media timescale. This parameter SHOULD be present to ensure
inter-media synchronization is achieved. There exists no
requirement that any received RTP packet will have the same RTP
timestamp value as the one in the parameter used to establish
synchronization.
A mapping from RTP timestamps to NTP format timestamps (wallclock)
is available via RTCP. However, this information is not
sufficient to generate a mapping from RTP timestamps to media
clock time (NPT, etc.). Furthermore, in order to ensure that this
information is available at the necessary time (immediately at
startup or after a seek), and that it is delivered reliably, this
mapping is placed in the RTSP control channel.
In order to compensate for drift for long, uninterrupted
presentations, RTSP clients should additionally map NPT to NTP,
using initial RTCP sender reports to do the mapping, and later
reports to check drift against the mapping.
Example:
Range:npt=3.25-15
RTP-Info:url="rtsp://example.com/foo/audio" ssrc=0A13C760:seq=45102;
rtptime=12345678,url="rtsp://example.com/foo/video"
ssrc=9A9DE123:seq=30211;rtptime=29567112
Lets assume that Audio uses a 16 kHz RTP timestamp clock and Video
a 90 kHz RTP timestamp clock. Then, the media synchronization is
depicted in the following way.
NPT 3.0---3.1---3.2-X-3.3---3.4---3.5---3.6
Audio PA A
Video V PV
X: NPT time value = 3.25, from Range header.
A: RTP timestamp value for Audio from RTP-Info header (12345678).
V: RTP timestamp value for Video from RTP-Info header (29567112).
PA: RTP audio packet carrying an RTP timestamp of 12344878, which
corresponds to NPT = (12344878 - A) / 16000 + 3.25 = 3.2
PV: RTP video packet carrying an RTP timestamp of 29573412, which
corresponds to NPT = (29573412 - V) / 90000 + 3.25 = 3.32
<span class="grey">Schulzrinne, et al. Standards Track [Page 168]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-169" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
<span class="h3"><a class="selflink" id="section-18.46" href="#section-18.46">18.46</a>. Scale</span>
The Scale general-header indicates the requested or used view rate
for the media resource being played back. A scale value of 1
indicates normal play at the normal forward viewing rate. If not 1,
the value corresponds to the rate with respect to normal viewing
rate. For example, a value of 2 indicates twice the normal viewing
rate ("fast forward") and a value of 0.5 indicates half the normal
viewing rate. In other words, a value of 2 has content time increase
at twice the playback time. For every second of elapsed (wallclock)
time, 2 seconds of content time will be delivered. A negative value
indicates reverse direction. For certain media transports, this may
require certain considerations to work consistently; see <a href="#appendix-C.1">Appendix C.1</a>
for description on how RTP handles this.
The transmitted-data rate SHOULD NOT be changed by selection of a
different scale value. The resulting bitrate should be reasonably
close to the nominal bitrate of the content for scale = 1. The
server has to actively manipulate the data when needed to meet the
bitrate constraints. Implementation of scale changes depends on the
server and media type. For video, a server may, for example, deliver
only key frames or selected frames. For audio, it may time-scale the
audio while preserving pitch or, less desirably, deliver fragments of
audio, or completely mute the audio.
The server and content may restrict the range of scale values that it
supports. The supported values are indicated by the Media-Properties
header (<a href="#section-18.29">Section 18.29</a>). The client SHOULD only indicate request
values to be supported. However, as the values may change as the
content progresses, a requested value may no longer be valid when the
request arrives. Thus, a non-supported value in a request does not
generate an error, it only forces the server to choose the closest
value. The response MUST always contain the actual scale value
chosen by the server.
If the server does not implement the possibility to scale, it will
not return a Scale header. A server supporting scale operations for
PLAY MUST indicate this with the use of the "play.scale" feature tag.
When indicating a negative scale for a reverse playback, the Range
header MUST indicate a decreasing range as described in
<a href="#section-18.40">Section 18.40</a>.
Example of playing in reverse at 3.5 times normal rate:
Scale: -3.5
Range: npt=15-10
<span class="grey">Schulzrinne, et al. Standards Track [Page 169]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-170" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
<span class="h3"><a class="selflink" id="section-18.47" href="#section-18.47">18.47</a>. Seek-Style</span>
When a client sends a PLAY request with a Range header to perform a
random access to the media, the client does not know if the server
will pick the first media samples or the first random access point
prior to the request range. Depending on the use case, the client
may have a strong preference. To express this preference and provide
the client with information on how the server actually acted on that
preference, the Seek-Style general-header is defined.
Seek-Style is a general-header that MAY be included in any PLAY
request to indicate the client's preference for any media stream that
has the random access properties. The server MUST always include the
header in any PLAY response for media with random access properties
to indicate what policy was applied. A server that receives an
unknown Seek-Style policy MUST ignore it and select the server
default policy. A client receiving an unknown policy MUST ignore it
and use the Range header and any media synchronization information as
basis to determine what the server did.
This specification defines the following seek policies that may be
requested (see also <a href="#section-4.7.1">Section 4.7.1</a>):
RAP: Random Access Point (RAP) is the behavior of requesting the
server to locate the closest previous random access point that
exists in the media aggregate and deliver from that. By
requesting a RAP, media quality will be the best possible as all
media will be delivered from a point where full media state can be
established in the media decoder.
CoRAP: Conditional Random Access Point (CoRAP) is a variant of the
above RAP behavior. This policy is primarily intended for cases
where there is larger distance between the random access points in
the media. CoRAP uses the RAP policy if the condition that there
is a Random Access Point closer to the requested start point than
to the current pause point is fulfilled. Otherwise, no seeking is
performed and playback will continue from the current pause point.
This policy assumes that the media state existing prior to the
pause is usable if delivery is continued. If the client or server
knows that this is not the fact, the RAP policy should be used.
In other words, in most cases when the client requests a start
point prior to the current pause point, a valid decoding
dependency chain from the media delivered prior to the pause and
to the requested media unit will not exist. If the server
searched to a random access point, the server MUST return the
CoRAP policy in the Seek-Style header and adjust the Range header
to reflect the position of the selected RAP. In case the random
access point is farther away and the server chooses to continue
<span class="grey">Schulzrinne, et al. Standards Track [Page 170]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-171" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
from the current pause point, it MUST include the "Next" policy in
the Seek-Style header and adjust the Range header start point to
the current pause point.
First-Prior: The first-prior policy will start delivery with the
media unit that has a playout time first prior to the requested
time. For discrete media, that would only include media units
that would still be rendered at the request time. For continuous
media, that is media that will be rendered during the requested
start time of the range.
Next: The next media units after the provided start time of the
range: for continuous framed media, that would mean the first next
frame after the provided time and for discrete media, the first
unit that is to be rendered after the provided time. The main
usage for this case is when the client knows it has all media up
to a certain point and would like to continue delivery so that a
complete uninterrupted media playback can be achieved. An example
of such a scenario would be switching from a broadcast/multicast
delivery to a unicast-based delivery. This policy MUST only be
used on the client's explicit request.
Please note that these expressed preferences exist for optimizing the
startup time or the media quality. The "Next" policy breaks the
normal definition of the Range header to enable a client to request
media with minimal overlap, although some may still occur for
aggregated sessions. RAP and First-Prior both fulfill the
requirement of providing media from the requested range and forward.
However, unless RAP is used, the media quality for many media codecs
using predictive methods can be severely degraded unless additional
data is available as, for example, already buffered, or through other
side channels.
<span class="h3"><a class="selflink" id="section-18.48" href="#section-18.48">18.48</a>. Server</span>
The Server general-header field contains information about the
software used by the origin server to create or handle the request.
This field can contain multiple product tokens and comments
identifying the server and any significant subproducts. The product
tokens are listed in order of their significance for identifying the
application.
Example:
Server: PhonyServer/1.0
<span class="grey">Schulzrinne, et al. Standards Track [Page 171]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-172" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
If the response is being forwarded through a proxy, the proxy
application MUST NOT modify the Server response-header. Instead, it
SHOULD include a Via field (<a href="#section-18.57">Section 18.57</a>). If the response is
generated by the proxy, the proxy application MUST return the Server
response-header as previously returned by the server.
<span class="h3"><a class="selflink" id="section-18.49" href="#section-18.49">18.49</a>. Session</span>
The Session general-header field identifies an RTSP session. An RTSP
session is created by the server as a result of a successful SETUP
request, and in the response, the session identifier is given to the
client. The RTSP session exists until destroyed by a TEARDOWN or a
REDIRECT or is timed out by the server.
The session identifier is chosen by the server (see <a href="#section-4.3">Section 4.3</a>) and
MUST be returned in the SETUP response. Once a client receives a
session identifier, it MUST be included in any request related to
that session. This means that the Session header MUST be included in
a request, using the following methods: PLAY, PAUSE, PLAY_NOTIFY and
TEARDOWN. It MAY be included in SETUP, OPTIONS, SET_PARAMETER,
GET_PARAMETER, and REDIRECT. It MUST NOT be included in DESCRIBE.
The Session header MUST NOT be included in the following methods, if
these requests are pipelined and if the session identifier is not yet
known: PLAY, PAUSE, TEARDOWN, SETUP, OPTIONS SET_PARAMETER, and
GET_PARAMETER.
In an RTSP response, the session header MUST be included in methods,
SETUP, PLAY, PAUSE, and PLAY_NOTIFY, and it MAY be included in
methods TEARDOWN and REDIRECT. If included in the request of the
following methods it MUST also be included in the response: OPTIONS,
GET_PARAMETER, and SET_PARAMETER. It MUST NOT be included in
DESCRIBE responses.
Note that a session identifier identifies an RTSP session across
transport sessions or connections. RTSP requests for a given session
can use different URIs (Presentation and media URIs). Note, that
there are restrictions depending on the session as to which URIs are
acceptable for a given method. However, multiple "user" sessions for
the same URI from the same client will require use of different
session identifiers.
The session identifier is needed to distinguish several delivery
requests for the same URI coming from the same client.
The response 454 (Session Not Found) MUST be returned if the session
identifier is invalid.
<span class="grey">Schulzrinne, et al. Standards Track [Page 172]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-173" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
The header MAY include a parameter for session timeout period. If
not explicitly provided, this value is set to 60 seconds. As this
affects how often session keep-alives are needed, values smaller than
30 seconds are not recommended. However, larger-than-default values
can be useful in applications of RTSP that have inactive but
established sessions for longer time periods.
The 60-second value was chosen as the session timeout value as it
results in keep-alive messages that are not too frequent and low
sensitivity to variations in request/response timing. If one
reduces the timeout value to below 30 seconds, the corresponding
request/response timeout becomes a significant part of the session
timeout. The 60-second value also allows for reasonably rapid
recovery of committed server resources in case of client failure.
<span class="h3"><a class="selflink" id="section-18.50" href="#section-18.50">18.50</a>. Speed</span>
The Speed general-header field requests the server to deliver
specific amounts of nominal media time per unit of delivery time,
contingent on the server's ability and desire to serve the media
stream at the given speed. The client requests the delivery speed to
be within a given range with a lower and upper bound. The server
SHALL deliver at the highest possible speed within the range, but not
faster than the upper bound, for which the underlying network path
can support the resulting transport data rates. As long as any speed
value within the given range can be provided, the server SHALL NOT
modify the media quality. Only if the server is unable to deliver
media at the speed value provided by the lower bound shall it reduce
the media quality.
Implementation of the Speed functionality by the server is OPTIONAL.
The server can indicate its support through a feature tag,
play.speed. The lack of a Speed header in the response is an
indication of lack of support of this functionality.
The speed parameter values are expressed as a positive decimal value,
e.g., a value of 2.0 indicates that data is to be delivered twice as
fast as normal. A speed value of zero is invalid. The range is
specified in the form "lower bound - upper bound". The lower-bound
value may be smaller or equal to the upper bound. All speeds may not
be possible to support. Therefore, the server MAY modify the
requested values to the closest supported. The actual supported
speed MUST be included in the response. However, note that the use
cases may vary and that Speed value ranges such as 0.7-0.8, 0.3-2.0,
1.0-2.5, and 2.5-2.5 all have their usages.
<span class="grey">Schulzrinne, et al. Standards Track [Page 173]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-174" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
Example:
Speed: 1.0-2.5
Use of this header changes the bandwidth used for data delivery. It
is meant for use in specific circumstances where delivery of the
presentation at a higher or lower rate is desired. The main use
cases are buffer operations or local scale operations. Implementers
should keep in mind that bandwidth for the session may be negotiated
beforehand (by means other than RTSP) and, therefore, renegotiation
may be necessary. To perform Speed operations, the server needs to
ensure that the network path can support the resulting bitrate.
Thus, the media transport needs to support feedback so that the
server can react and adapt to the available bitrate.
<span class="h3"><a class="selflink" id="section-18.51" href="#section-18.51">18.51</a>. Supported</span>
The Supported general-header enumerates all the extensions supported
by the client or server using feature tags. The header carries the
extensions supported by the message-sending client or server. The
Supported header MAY be included in any request. When present in a
request, the receiver MUST respond with its corresponding Supported
header. Note that the Supported header is also included in 4xx and
5xx responses.
The Supported header contains a list of feature tags, described in
<a href="#section-4.5">Section 4.5</a>, that are understood by the client or server. These
feature tags are the ones the server or client supports in general
and are not specific to the request resource.
Example:
C->S: OPTIONS rtsp://example.com/ RTSP/2.0
Supported: foo, bar, blech
User-Agent: PhonyClient/1.2
S->C: RTSP/2.0 200 OK
Supported: bar, blech, baz
<span class="grey">Schulzrinne, et al. Standards Track [Page 174]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-175" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
<span class="h3"><a class="selflink" id="section-18.52" href="#section-18.52">18.52</a>. Terminate-Reason</span>
The Terminate-Reason request-header allows the server, when sending a
REDIRECT or TEARDOWN request, to provide a reason for the session
termination and any additional information. This specification
identifies three reasons for Redirections and may be extended in the
future:
Server-Admin: The server needs to be shut down for some
administrative reason.
Session-Timeout: A client's session has been kept alive for extended
periods of time and the server has determined that it needs to
reclaim the resources associated with this session.
Internal-Error An internal error that is impossible to recover from
has occurred, forcing the server to terminate the session.
The Server may provide additional parameters containing information
around the redirect. This specification defines the following ones.
time: Provides a wallclock time when the server will stop providing
any service.
user-msg: A UTF-8 text string with a message from the server to the
user. This message SHOULD be displayed to the user.
<span class="h3"><a class="selflink" id="section-18.53" href="#section-18.53">18.53</a>. Timestamp</span>
The Timestamp general-header describes when the agent sent the
request. The value of the timestamp is of significance only to the
agent and may use any timescale. The responding agent MUST echo the
exact same value and MAY, if it has accurate information about this,
add a floating-point number indicating the number of seconds that has
elapsed since it has received the request. The timestamp can be used
by the agent to compute the round-trip time to the responding agent
so that it can adjust the timeout value for retransmissions when
running over an unreliable protocol. It also resolves retransmission
ambiguities for unreliable transport of RTSP.
Note that the present specification provides only for reliable
transport of RTSP messages. The Timestamp general-header is
specified in case the protocol is extended in the future to use
unreliable transport.
<span class="grey">Schulzrinne, et al. Standards Track [Page 175]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-176" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
<span class="h3"><a class="selflink" id="section-18.54" href="#section-18.54">18.54</a>. Transport</span>
The Transport general-header indicates which transport protocol is to
be used and configures its parameters such as destination address,
compression, multicast time-to-live and destination port for a single
stream. It sets those values not already determined by a
presentation description.
A Transport request-header MAY contain a list of transport options
acceptable to the client, in the form of multiple transport
specification entries. Transport specifications are comma separated
and listed in decreasing order of preference. Each transport
specification consists of a transport protocol identifier, followed
by any number of parameters separated by semicolons. A Transport
request-header MAY contain multiple transport specifications using
the same transport protocol identifier. The server MUST return a
Transport response-header in the response to indicate the values
actually chosen, if any. If no transport specification is supported,
no transport header is returned and the response MUST use the status
code 461 (Unsupported Transport) (<a href="#section-17.4.25">Section 17.4.25</a>). In case more
than one transport specification was present in the request, the
server MUST return the single transport specification (transport-
spec) that was actually chosen, if any. The number of transport-spec
entries is expected to be limited as the client will receive guidance
on what configurations are possible from the presentation
description.
The Transport header MAY also be used in subsequent SETUP requests to
change transport parameters. A server MAY refuse to change
parameters of an existing stream.
The transport protocol identifier defines, for each transport
specification, which transport protocol to use and any related rules.
Each transport protocol identifier defines the parameters that are
required to occur; additional optional parameters MAY occur. This
flexibility is provided as parameters may be different and provide
different options to the RTSP agent. A transport specification may
only contain one of any given parameter within it. A parameter
consists of a name and optionally a value string. Parameters MAY be
given in any order. Additionally, a transport specification may only
contain either the unicast or the multicast transport type parameter.
The transport protocol identifier, and all parameters, need to be
understood in a transport specification; if not, the transport
specification MUST be ignored. An RTSP proxy of any type that uses
or modifies the transport specification, e.g., access proxy or
security proxy, MUST remove specifications with unknown parameters
<span class="grey">Schulzrinne, et al. Standards Track [Page 176]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-177" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
before forwarding the RTSP message. If that results in no remaining
transport specification, the proxy SHALL send a 461 (Unsupported
Transport) (<a href="#section-17.4.25">Section 17.4.25</a>) response without any Transport header.
The Transport header is restricted to describing a single media
stream. (RTSP can also control multiple streams as a single
entity.) Making it part of RTSP rather than relying on a
multitude of session description formats greatly simplifies
designs of firewalls.
The general syntax for the transport protocol identifier is a list of
slash-separated tokens:
Value1/Value2/Value3...
Which, for RTP transports, takes the form:
RTP/profile/lower-transport.
The default value for the "lower-transport" parameters is specific to
the profile. For RTP/AVP, the default is UDP.
There are two different methods for how to specify where the media
should be delivered for unicast transport:
dest_addr: The presence of this parameter and its values indicates
the destination address or addresses (host address and port
pairs for IP flows) necessary for the media transport.
No dest_addr: The lack of the dest_addr parameter indicates that the
server MUST send media to the same address from which the RTSP
messages originates.
The choice of method for indicating where the media is to be
delivered depends on the use case. In some cases, the only allowed
method will be to use no explicit address indication and have the
server deliver media to the source of the RTSP messages.
For multicast, there are several methods for specifying addresses,
but they are different in how they work compared with unicast:
dest_addr with client picked address: The address and relevant
parameters, like TTL (scope), for the actual multicast group to
deliver the media to. There are security implications
(<a href="#section-21">Section 21</a>) with this method that need to be addressed because
an RTSP server can be used as a DoS attacker on an existing
multicast group.
<span class="grey">Schulzrinne, et al. Standards Track [Page 177]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-178" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
dest_addr using Session Description Information: The information
included in the transport header can all be coming from the
session description, e.g., the SDP "c=" and "m=" lines. This
mitigates some of the security issues of the previous methods
as it is the session provider that picks the multicast group
and scope. The client MUST include the information if it is
available in the session description.
No dest_addr: The behavior when no explicit multicast group is
present in a request is not defined.
An RTSP proxy will need to take care. If the media is not desired to
be routed through the proxy, the proxy will need to introduce the
destination indication.
Below are the configuration parameters associated with transport:
General parameters:
unicast / multicast: This parameter is a mutually exclusive
indication of whether unicast or multicast delivery will be
attempted. One of the two values MUST be specified. Clients
that are capable of handling both unicast and multicast
transmission need to indicate such capability by including two
full transport-specs with separate parameters for each.
layers: The number of multicast layers to be used for this media
stream. The layers are sent to consecutive addresses starting
at the dest_addr address. If the parameter is not included, it
defaults to a single layer.
dest_addr: A general destination address parameter that can contain
one or more address specifications. Each combination of
protocol/profile/lower transport needs to have the format and
interpretation of its address specification defined. For
RTP/AVP/UDP and RTP/AVP/TCP, the address specification is a
tuple containing a host address and port. Note, only a single
destination parameter per transport spec is intended. The
usage of multiple destinations to distribute a single media to
multiple entities is unspecified.
The client originating the RTSP request MAY specify the
destination address of the stream recipient with the host
address as part of the tuple. When the destination address is
specified, the recipient may be a different party than the
originator of the request. To avoid becoming the unwitting
perpetrator of a remote-controlled DoS attack, a server MUST
perform security checks (see <a href="#section-21.2.1">Section 21.2.1</a>) and SHOULD log
<span class="grey">Schulzrinne, et al. Standards Track [Page 178]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-179" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
such attempts before allowing the client to direct a media
stream to a recipient address not chosen by the server.
Implementations cannot rely on TCP as a reliable means of
client identification. If the server does not allow the host
address part of the tuple to be set, it MUST return 463
(Destination Prohibited).
The host address part of the tuple MAY be empty, for example
":58044", in cases when it is desired to specify only the
destination port. Responses to requests including the
Transport header with a dest_addr parameter SHOULD include the
full destination address that is actually used by the server.
The server MUST NOT remove address information that is already
present in the request when responding, unless the protocol
requires it.
src_addr: A general source address parameter that can contain one or
more address specifications. Each combination of
protocol/profile/lower transport needs to have the format and
interpretation of its address specification defined. For
RTP/AVP/UDP and RTP/AVP/TCP, the address specification is a
tuple containing a host address and port.
This parameter MUST be specified by the server if it transmits
media packets from an address other than the one RTSP messages
are sent to. This will allow the client to verify the source
address and give it a destination address for its RTCP feedback
packets, if RTP is used. The address or addresses indicated in
the src_addr parameter SHOULD be used both for the sending and
receiving of the media stream's data packets. The main reasons
are threefold: First, indicating the port and source address(s)
lets the receiver know where from the packets is expected to
originate. Second, traversal of NATs is greatly simplified
when traffic is flowing symmetrically over a NAT binding.
Third, certain NAT traversal mechanisms need to know to which
address and port to send so-called "binding packets" from the
receiver to the sender, thus creating an address binding in the
NAT that the sender-to-receiver packet flow can use.
This information may also be available through SDP.
However, since this is more a feature of transport than
media initialization, the authoritative source for this
information should be in the SETUP response.
<span class="grey">Schulzrinne, et al. Standards Track [Page 179]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-180" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
mode: The mode parameter indicates the methods to be supported for
this session. The currently defined valid value is "PLAY". If
not provided, the default is "PLAY". The "RECORD" value was
defined in <a href="./rfc2326">RFC 2326</a>; in this specification, it is unspecified
but reserved. RECORD and other values may be specified in the
future.
interleaved: The interleaved parameter implies mixing the media
stream with the control stream in whatever protocol is being
used by the control stream, using the mechanism defined in
<a href="#section-14">Section 14</a>. The argument provides the channel number to be
used in the $ block (see <a href="#section-14">Section 14</a>) and MUST be present. This
parameter MAY be specified as an interval, e.g.,
interleaved=4-5 in cases where the transport choice for the
media stream requires it, e.g., for RTP with RTCP. The channel
number given in the request is only a guidance from the client
to the server on what channel number(s) to use. The server MAY
set any valid channel number in the response. The declared
channels are bidirectional, so both end parties MAY send data
on the given channel. One example of such usage is the second
channel used for RTCP, where both server and client send RTCP
packets on the same channel.
This allows RTP/RTCP to be handled similarly to the way that
it is done with UDP, i.e., one channel for RTP and the other
for RTCP.
MIKEY: This parameter is used in conjunction with transport
specifications that can utilize MIKEY [<a href="./rfc3830" title=""MIKEY: Multimedia Internet KEYing"">RFC3830</a>] for security
context establishment. So far, only the SRTP-based RTP
profiles SAVP and SAVPF can utilize MIKEY, and this is defined
in <a href="#appendix-C.1.4.1">Appendix C.1.4.1</a>. This parameter can be included both in
request and response messages. The binary MIKEY message SHALL
be Base64-encoded [<a href="./rfc4648" title=""The Base16, Base32, and Base64 Data Encodings"">RFC4648</a>] before being included in the value
part of the parameter, where the encoding adheres to the
definition in <a href="./rfc4648#section-4">Section 4 of RFC 4648</a> and where the padding bits
are set to zero.
Multicast-specific:
ttl: multicast time-to-live for IPv4. When included in requests,
the value indicates the TTL value that the client requests the
server to use. In a response, the value actually being used by
the server is returned. A server will need to consider what
values that are reasonable and also the authority of the user
to set this value. Corresponding functions are not needed for
IPv6 as the scoping is part of the IPv6 multicast address
[<a href="./rfc4291" title=""IP Version 6 Addressing Architecture"">RFC4291</a>].
<span class="grey">Schulzrinne, et al. Standards Track [Page 180]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-181" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
RTP-specific:
These parameters MAY only be used if the media-transport protocol is
RTP.
ssrc: The ssrc parameter, if included in a SETUP response, indicates
the RTP SSRC [<a href="./rfc3550" title=""RTP: A Transport Protocol for Real-Time Applications"">RFC3550</a>] value(s) that will be used by the media
server for RTP packets within the stream. The values are
expressed as a slash-separated sequence of SSRC values, each
SSRC expressed as an eight-digit hexadecimal value.
The ssrc parameter MUST NOT be specified in requests. The
functionality of specifying the ssrc parameter in a SETUP
request is deprecated as it is incompatible with the
specification of RTP [<a href="./rfc3550" title=""RTP: A Transport Protocol for Real-Time Applications"">RFC3550</a>]. If the parameter is included
in the Transport header of a SETUP request, the server SHOULD
ignore it, and choose appropriate SSRCs for the stream. The
server SHOULD set the ssrc parameter in the Transport header of
the response.
RTCP-mux: Used to negotiate the usage of RTP and RTCP multiplexing
[<a href="./rfc5761" title=""Multiplexing RTP Data and Control Packets on a Single Port"">RFC5761</a>] on a single underlying transport stream/flow. The
presence of this parameter in a SETUP request indicates the
client's support and requires the server to use RTP and RTCP
multiplexing. The client SHALL only include one transport
stream in the Transport header specification. To provide the
server with a choice between using RTP/RTCP multiplexing or
not, two different transport header specifications must be
included.
The parameter setup and connection defined below MAY only be used if
the media-transport protocol of the lower-level transport is
connection oriented (such as TCP). However, these parameters MUST
NOT be used when interleaving data over the RTSP connection.
setup: Clients use the setup parameter on the Transport line in a
SETUP request to indicate the roles it wishes to play in a TCP
connection. This parameter is adapted from [<a href="./rfc4145" title=""TCP-Based Media Transport in the Session Description Protocol (SDP)"">RFC4145</a>]. The use
of this parameter in RTP/AVP/TCP non-interleaved transport is
discussed in <a href="#appendix-C.2.2">Appendix C.2.2</a>; the discussion below is limited to
syntactic issues. Clients may specify the following values for
the setup parameter:
active: The client will initiate an outgoing connection.
passive: The client will accept an incoming connection.
<span class="grey">Schulzrinne, et al. Standards Track [Page 181]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-182" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
actpass: The client is willing to accept an incoming
connection or to initiate an outgoing connection.
If a client does not specify a setup value, the "active" value
is assumed.
In response to a client SETUP request where the setup parameter
is set to "active", a server's 2xx reply MUST assign the setup
parameter to "passive" on the Transport header line.
In response to a client SETUP request where the setup parameter
is set to "passive", a server's 2xx reply MUST assign the setup
parameter to "active" on the Transport header line.
In response to a client SETUP request where the setup parameter
is set to "actpass", a server's 2xx reply MUST assign the setup
parameter to "active" or "passive" on the Transport header
line.
Note that the "holdconn" value for setup is not defined for
RTSP use, and MUST NOT appear on a Transport line.
connection: Clients use the connection parameter in a transport
specification part of the Transport header in a SETUP request
to indicate the client's preference for either reusing an
existing connection between client and server (in which case
the client sets the "connection" parameter to "existing") or
requesting the creation of a new connection between client and
server (in which cast the client sets the "connection"
parameter to "new"). Typically, clients use the "new" value
for the first SETUP request for a URL, and "existing" for
subsequent SETUP requests for a URL.
If a client SETUP request assigns the "new" value to
"connection", the server response MUST also assign the "new"
value to "connection" on the Transport line.
If a client SETUP request assigns the "existing" value to
"connection", the server response MUST assign a value of
"existing" or "new" to "connection" on the Transport line, at
its discretion.
The default value of "connection" is "existing", for all SETUP
requests (initial and subsequent).
The combination of transport protocol, profile and lower transport
needs to be defined. A number of combinations are defined in the
<a href="#appendix-C">Appendix C</a>.
<span class="grey">Schulzrinne, et al. Standards Track [Page 182]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-183" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
Below is a usage example, showing a client advertising the capability
to handle multicast or unicast, preferring multicast. Since this is
a unicast-only stream, the server responds with the proper transport
parameters for unicast.
C->S: SETUP rtsp://example.com/foo/bar/baz.rm RTSP/2.0
CSeq: 302
Transport: RTP/AVP;multicast;mode="PLAY",
RTP/AVP;unicast;dest_addr="192.0.2.5:3456"/
"192.0.2.5:3457";mode="PLAY"
Accept-Ranges: npt, smpte, clock
User-Agent: PhonyClient/1.2
S->C: RTSP/2.0 200 OK
CSeq: 302
Date: Fri, 20 Dec 2013 10:20:32 +0000
Session: rQi1hBrGlFdiYld241FxUO
Transport: RTP/AVP;unicast;dest_addr="192.0.2.5:3456"/
"192.0.2.5:3457";src_addr="192.0.2.224:6256"/
"192.0.2.224:6257";mode="PLAY"
Accept-Ranges: npt
Media-Properties: Random-Access=0.6, Dynamic,
Time-Limited=20081128T165900
<span class="h3"><a class="selflink" id="section-18.55" href="#section-18.55">18.55</a>. Unsupported</span>
The Unsupported response-header lists the features not supported by
the responding RTSP agent. In the case where the feature was
specified via the Proxy-Require field (<a href="#section-18.37">Section 18.37</a>), if there is a
proxy on the path between the client and the server, the proxy MUST
send a response message with a status code of 551 (Option Not
Supported). The request MUST NOT be forwarded.
See <a href="#section-18.43">Section 18.43</a> for a usage example.
<span class="grey">Schulzrinne, et al. Standards Track [Page 183]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-184" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
<span class="h3"><a class="selflink" id="section-18.56" href="#section-18.56">18.56</a>. User-Agent</span>
The User-Agent general-header field contains information about the
user agent originating the request or producing a response. This is
for statistical purposes, the tracing of protocol violations, and
automated recognition of user agents for the sake of tailoring
responses to avoid particular user agent limitations. User agents
SHOULD include this field with requests. The field can contain
multiple product tokens and comments identifying the agent and any
subproducts which form a significant part of the user agent. By
convention, the product tokens are listed in order of their
significance for identifying the application.
Example:
User-Agent: PhonyClient/1.2
<span class="h3"><a class="selflink" id="section-18.57" href="#section-18.57">18.57</a>. Via</span>
The Via general-header field MUST be used by proxies to indicate the
intermediate protocols and recipients between the user agent and the
server on requests and between the origin server and the client on
responses. The field is intended to be used for tracking message
forwards, avoiding request loops, and identifying the protocol
capabilities of all senders along the request/response chain.
Each of multiple values in the Via field represents each proxy that
has forwarded the message. Each recipient MUST append its
information such that the end result is ordered according to the
sequence of forwarding applications. So messages originating with
the client or server do not include the Via header. The first proxy
or other intermediate adds the header and its information into the
field. Any additional intermediate adds additional field-values.
Resulting in the server seeing the chains of intermediates in a
client-to-server request and the client seeing the full chain in the
response message.
Proxies (e.g., Access Proxy or Translator Proxy) SHOULD NOT, by
default, forward the names and ports of hosts within the private/
protected region. This information SHOULD only be propagated if
explicitly enabled. If not enabled, the via-received of any host
behind the firewall/NAT SHOULD be replaced by an appropriate
pseudonym for that host.
<span class="grey">Schulzrinne, et al. Standards Track [Page 184]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-185" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
For organizations that have strong privacy requirements for hiding
internal structures, a proxy MAY combine an ordered subsequence of
Via header field entries with identical sent-protocol values into a
single such entry. Applications MUST NOT combine entries that have
different received-protocol values.
<span class="h3"><a class="selflink" id="section-18.58" href="#section-18.58">18.58</a>. WWW-Authenticate</span>
The WWW-Authenticate header is specified in [<a href="./rfc7235" title=""Hypertext Transfer Protocol (HTTP/1.1): Authentication"">RFC7235</a>]; its usage
depends on the used authentication schemes, such as Digest [<a href="./rfc7616" title=""HTTP Digest Access Authentication"">RFC7616</a>]
and Basic [<a href="./rfc7617" title=""The 'Basic' HTTP Authentication Scheme"">RFC7617</a>]. The WWW-Authenticate response-header field MUST
be included in 401 (Unauthorized) response messages. The field-value
consists of at least one challenge that indicates the authentication
scheme(s) and parameters applicable to the Request-URI. This header
MUST only be used in response messages related to client to server
requests.
The HTTP access authentication process is described in [<a href="./rfc7235" title=""Hypertext Transfer Protocol (HTTP/1.1): Authentication"">RFC7235</a>] with
some clarification in <a href="#section-19.1">Section 19.1</a>. User agents are advised to take
special care in parsing the WWW-Authenticate field-value as it might
contain more than one challenge, or if more than one WWW-Authenticate
header field is provided, the contents of a challenge itself can
contain a comma-separated list of authentication parameters.
<span class="h2"><a class="selflink" id="section-19" href="#section-19">19</a>. Security Framework</span>
The RTSP security framework consists of two high-level components:
the pure authentication mechanisms based on HTTP authentication and
the message transport protection based on TLS, which is independent
of RTSP. Because of the similarity in syntax and usage between RTSP
servers and HTTP servers, the security for HTTP is reused to a large
extent.
<span class="h3"><a class="selflink" id="section-19.1" href="#section-19.1">19.1</a>. RTSP and HTTP Authentication</span>
RTSP and HTTP share common authentication schemes; thus, they follow
the same framework as specified in [<a href="./rfc7235" title=""Hypertext Transfer Protocol (HTTP/1.1): Authentication"">RFC7235</a>]. RTSP uses the
corresponding RTSP error codes (401 and 407) and headers (WWW-
Authenticate, Authorization, Proxy-Authenticate, Proxy-Authorization)
by importing the definitions from [<a href="./rfc7235" title=""Hypertext Transfer Protocol (HTTP/1.1): Authentication"">RFC7235</a>]. Servers SHOULD
implement both the Basic [<a href="./rfc7617" title=""The 'Basic' HTTP Authentication Scheme"">RFC7617</a>] and the Digest [<a href="./rfc7616" title=""HTTP Digest Access Authentication"">RFC7616</a>]
authentication schemes. Clients MUST implement both the Basic and
the Digest authentication schemes so that a server that requires the
client to authenticate can trust that the capability is present. If
implementing the Digest authentication scheme, then the additional
considerations specified below in <a href="#section-19.1.1">Section 19.1.1</a> MUST be followed.
<span class="grey">Schulzrinne, et al. Standards Track [Page 185]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-186" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
It should be stressed that using the HTTP authentication alone does
not provide full RTSP message security. Therefore, TLS SHOULD be
used; see <a href="#section-19.2">Section 19.2</a>. Any RTSP message containing an Authorization
header using the Basic authentication scheme MUST be using a TLS
connection with confidentiality protection enabled, i.e., no NULL
encryption.
In cases where there is a chain of proxies between the client and the
server, each proxy may individually request the client or previous
proxy to authenticate itself. This is done using the Proxy-
Authenticate (<a href="#section-18.34">Section 18.34</a>), the Proxy-Authorization
(<a href="#section-18.36">Section 18.36</a>), and the Proxy-Authentication-Info (<a href="#section-18.35">Section 18.35</a>)
headers. These headers are hop-by-hop headers and are only scoped to
the current connection and hop. Thus, if a proxy chain exists, a
proxy connecting to another proxy will have to act as a client to
authorize itself towards the next proxy. The WWW-Authenticate
(<a href="#section-18.58">Section 18.58</a>), Authorization (<a href="#section-18.8">Section 18.8</a>), and Authentication-
Info (<a href="#section-18.7">Section 18.7</a>) headers are end-to-end and MUST NOT be modified
by proxies.
This authentication mechanism works only for client-to-server
requests as currently defined. This leaves server-to-client request
outside of the context of TLS-based communication more vulnerable to
message-injection attacks on the client. Based on the server-to-
client methods that exist, the potential risks are various: hijacking
(REDIRECT), denial of service (TEARDOWN and PLAY_NOTIFY), or attacks
with uncertain results (SET_PARAMETER).
<span class="h4"><a class="selflink" id="section-19.1.1" href="#section-19.1.1">19.1.1</a>. Digest Authentication</span>
This section describes the modifications and clarifications required
to apply the HTTP Digest authentication scheme to RTSP. The RTSP
scheme usage is almost completely identical to that for HTTP
[<a href="./rfc7616" title=""HTTP Digest Access Authentication"">RFC7616</a>]. These modifications are based on the procedures defined
for SIP 2.0 [<a href="./rfc3261" title=""SIP: Session Initiation Protocol"">RFC3261</a>] (in <a href="#section-22.4">Section 22.4</a>) but updated to use <a href="./rfc7235">RFC 7235</a>,
<a href="./rfc7616">RFC 7616</a> and <a href="./rfc7615">RFC 7615</a> instead of <a href="./rfc2617">RFC 2617</a>.
Digest authentication uses two additional headers, Authentication-
Info and Proxy-Authentication-Info, that are defined as in [<a href="./rfc7615" title=""HTTP Authentication-Info and Proxy- Authentication-Info Response Header Fields"">RFC7615</a>].
The rules for Digest authentication follow those defined in
[<a href="./rfc7616" title=""HTTP Digest Access Authentication"">RFC7616</a>], with "HTTP/1.1" replaced by "RTSP/2.0" in addition to the
following differences:
1. Use the ABNF specified in the referenced documents, with the
difference that the URI parameter uses the request URI format for
RTSP, i.e. the ABNF element: Request-URI (see <a href="#section-20.2.1">Section 20.2.1</a>).
The domain parameter uses the RTSP-URI-Ref element for absolute
and relative URIs.
<span class="grey">Schulzrinne, et al. Standards Track [Page 186]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-187" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
2. If MTags are used, then the example procedure for choosing a
nonce based on ETag can work, based on replacing the ETag with
the MTag.
3. As a clarification to the calculation of the A2 value for message
integrity assurance in the Digest authentication scheme,
implementers should assume, when the entity-body is empty (that
is, when the RTSP messages have no message body) that the hash of
the message body resolves to the hash of an empty string, or:
H(entity-body), example MD5("") =
"d41d8cd98f00b204e9800998ecf8427e".
<span class="h3"><a class="selflink" id="section-19.2" href="#section-19.2">19.2</a>. RTSP over TLS</span>
RTSP agents MUST implement RTSP over TLS as defined in this section
and the next <a href="#section-19.3">Section 19.3</a>. RTSP MUST follow the same guidelines with
regard to TLS [<a href="./rfc5246" title=""The Transport Layer Security (TLS) Protocol Version 1.2"">RFC5246</a>] usage as specified for HTTP; see [<a href="./rfc2818" title=""HTTP Over TLS"">RFC2818</a>].
RTSP over TLS is separated from unsecured RTSP both on the URI level
and the port level. Instead of using the "rtsp" scheme identifier in
the URI, the "rtsps" scheme identifier MUST be used to signal RTSP
over TLS. If no port is given in a URI with the "rtsps" scheme, port
322 MUST be used for TLS over TCP/IP.
When a client tries to set up an insecure channel to the server
(using the "rtsp" URI), and the policy for the resource requires a
secure channel, the server MUST redirect the client to the secure
service by sending a 301 redirect response code together with the
correct Location URI (using the "rtsps" scheme). A user or client
MAY upgrade a non secured URI to a secured by changing the scheme
from "rtsp" to "rtsps". A server implementing support for "rtsps"
MUST allow this.
It should be noted that TLS allows for mutual authentication (when
using both server and client certificates). Still, one of the more
common ways TLS is used is to provide only server-side authentication
(often to avoid client certificates). TLS is then used in addition
to HTTP authentication, providing transport security and server
authentication, while HTTP Authentication is used to authenticate the
client.
RTSP includes the possibility to keep a TCP session up between the
client and server, throughout the RTSP session lifetime. It may be
convenient to keep the TCP session, not only to save the extra setup
time for TCP, but also the extra setup time for TLS (even if TLS uses
the resume function, there will be almost two extra round trips).
Still, when TLS is used, such behavior introduces extra active state
in the server, not only for TCP and RTSP, but also for TLS. This may
increase the vulnerability to DoS attacks.
<span class="grey">Schulzrinne, et al. Standards Track [Page 187]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-188" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
There exists a potential security vulnerability when reusing TCP and
TLS state for different resources (URIs). If two different hostnames
point at the same IP address, it can be desirable to reuse the TCP/
TLS connection to that server. In that case, the RTSP agent having
the TCP/TLS connection MUST verify that the server certificate
associated with the connection has a SubjectAltName matching the
hostname present in the URI for the resource an RTSP request is to be
issued.
In addition to these recommendations, <a href="#section-19.3">Section 19.3</a> gives further
recommendations of TLS usage with proxies.
<span class="h3"><a class="selflink" id="section-19.3" href="#section-19.3">19.3</a>. Security and Proxies</span>
The nature of a proxy is often to act as a "man in the middle", while
security is often about preventing the existence of one. This
section provides clients with the possibility to use proxies even
when applying secure transports (TLS) between the RTSP agents. The
TLS proxy mechanism allows for server and proxy identification using
certificates. However, the client cannot be identified based on
certificates. The client needs to select between using the procedure
specified below or using a TLS connection directly (bypassing any
proxies) to the server. The choice may be dependent on policies.
In general, there are two categories of proxies: the transparent
proxies (of which the client is not aware) and the non-transparent
proxies (of which the client is aware). This memo specifies only
non-transparent RTSP proxies, i.e., proxies visible to the RTSP
client and RTSP server. An infrastructure based on proxies requires
that the trust model be such that both client and server can trust
the proxies to handle the RTSP messages correctly. To be able to
trust a proxy, the client and server also need to be aware of the
proxy. Hence, transparent proxies cannot generally be seen as
trusted and will not work well with security (unless they work only
at the transport layer). In the rest of this section, any reference
to "proxy" will be to a non-transparent proxy, which inspects or
manipulates the RTSP messages.
HTTP Authentication is built on the assumption of proxies and can
provide user-proxy authentication and proxy-proxy/server
authentication in addition to the client-server authentication.
When TLS is applied and a proxy is used, the client will connect to
the proxy's address when connecting to any RTSP server. This implies
that for TLS, the client will authenticate the proxy server and not
the end server. Note that when the client checks the server
<span class="grey">Schulzrinne, et al. Standards Track [Page 188]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-189" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
certificate in TLS, it MUST check the proxy's identity (URI or
possibly other known identity) against the proxy's identity as
presented in the proxy's Certificate message.
The problem is that for a proxy accepted by the client, the proxy
needs to be provided information on which grounds it should accept
the next-hop certificate. Both the proxy and the user may have rules
for this, and the user should have the possibility to select the
desired behavior. To handle this case, the Accept-Credentials header
(see <a href="#section-18.2">Section 18.2</a>) is used, where the client can request the proxy or
proxies to relay back the chain of certificates used to authenticate
any intermediate proxies as well as the server. The assumption that
the proxies are viewed as trusted gives the user a possibility to
enforce policies on each trusted proxy of whether it should accept
the next agent in the chain. However, it should be noted that not
all deployments will return the chain of certificates used to
authenticate any intermediate proxies as well as the server. An
operator of such a deployment may want to hide its topology from the
client. It should be noted well that the client does not have any
insight into the proxy's operation. Even if the proxy is trusted, it
can still return an incomplete chain of certificates.
A proxy MUST use TLS for the next hop if the RTSP request includes an
"rtsps" URI. TLS MAY be applied on intermediate links (e.g., between
client and proxy or between proxy and proxy) even if the resource and
the end server are not required to use it. The chain of proxies used
by a client to reach a server and its TLS sessions MUST have
commensurate security. Therefore, a proxy MUST, when initiating the
next-hop TLS connection, use the incoming TLS connections cipher-
suite list, only modified by removing any cipher suites that the
proxy does not support. In case a proxy fails to establish a TLS
connection due to cipher-suite mismatch between proxy and next-hop
proxy or server, this is indicated using error code 472 (Failure to
Establish Secure Connection).
<span class="h4"><a class="selflink" id="section-19.3.1" href="#section-19.3.1">19.3.1</a>. Accept-Credentials</span>
The Accept-Credentials header can be used by the client to distribute
simple authorization policies to intermediate proxies. The client
includes the Accept-Credentials header to dictate how the proxy
treats the server / next proxy certificate. There are currently
three methods defined:
Any: With "any", the proxy (or proxies) MUST accept whatever
certificate is presented. Of course, this is not a recommended
option to use, but it may be useful in certain circumstances
(such as testing).
<span class="grey">Schulzrinne, et al. Standards Track [Page 189]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-190" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
Proxy: For the "proxy" method, the proxy (or proxies) MUST use its
own policies to validate the certificate and decide whether or
not to accept it. This is convenient in cases where the user
has a strong trust relation with the proxy. Reasons why a
strong trust relation may exist are personal/company proxy or
the proxy has an out-of-band policy configuration mechanism.
User: For the "user" method, the proxy (or proxies) MUST send
credential information about the next hop to the client for
authorization. The client can then decide whether or not the
proxy should accept the certificate. See <a href="#section-19.3.2">Section 19.3.2</a> for
further details.
If the Accept-Credentials header is not included in the RTSP request
from the client, then the "Proxy" method MUST be used as default. If
a method other than the "Proxy" is to be used, then the Accept-
Credentials header MUST be included in all of the RTSP requests from
the client. This is because it cannot be assumed that the proxy
always keeps the TLS state or the user's previous preference between
different RTSP messages (in particular, if the time interval between
the messages is long).
With the "Any" and "Proxy" methods, the proxy will apply the policy
as defined for each method. If the policy does not accept the
credentials of the next hop, the proxy MUST respond with a message
using status code 471 (Connection Credentials Not Accepted).
An RTSP request in the direction server to client MUST NOT include
the Accept-Credentials header. As for the non-secured communication,
the possibility for these requests depends on the presence of a
client established connection. However, if the server-to-client
request is in relation to a session established over a TLS secured
channel, it MUST be sent in a TLS secured connection. That secured
connection MUST also be the one used by the last client-to-server
request. If no such transport connection exists at the time when the
server desires to send the request, the server MUST discard the
message.
Further policies MAY be defined and registered, but this should be
done with caution.
<span class="h4"><a class="selflink" id="section-19.3.2" href="#section-19.3.2">19.3.2</a>. User-Approved TLS Procedure</span>
For the "User" method, each proxy MUST perform the following
procedure for each RTSP request:
o Set up the TLS session to the next hop if not already present
(i.e., run the TLS handshake, but do not send the RTSP request).
<span class="grey">Schulzrinne, et al. Standards Track [Page 190]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-191" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
o Extract the peer certificate chain for the TLS session.
o Check if a matching identity and hash of the peer certificate are
present in the Accept-Credentials header. If present, send the
message to the next hop and conclude these procedures. If not, go
to the next step.
o The proxy responds to the RTSP request with a 470 or 407 response
code. The 407 response code MAY be used when the proxy requires
both user and connection authorization from user or client. In
this message the proxy MUST include a Connection-Credentials
header, see <a href="#section-18.13">Section 18.13</a>, with the next hop's identity and
certificate.
The client MUST upon receiving a 470 (Connection Authorization
Required) or 407 (Proxy Authentication Required) response with
Connection-Credentials header take the decision on whether or not to
accept the certificate (if it cannot do so, the user SHOULD be
consulted). Using IP addresses in the next-hop URI and certificates
rather than domain names makes it very difficult for a user to
determine whether or not it should approve the next hop. Proxies are
RECOMMENDED to use domain names to identify themselves in URIs and in
the certificates. If the certificate is accepted, the client has to
again send the RTSP request. In that request, the client has to
include the Accept-Credentials header including the hash over the
DER-encoded certificate for all trusted proxies in the chain.
<span class="grey">Schulzrinne, et al. Standards Track [Page 191]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-192" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
Example:
C->P: SETUP rtsps://test.example.org/secret/audio RTSP/2.0
CSeq: 2
Transport: RTP/AVP;unicast;dest_addr="192.0.2.5:4588"/
"192.0.2.5:4589"
Accept-Ranges: npt, smpte, clock
Accept-Credentials: User
P->C: RTSP/2.0 470 Connection Authorization Required
CSeq: 2
Connection-Credentials: "rtsps://test.example.org";
MIIDNTCCAp...
C->P: SETUP rtsps://test.example.org/secret/audio RTSP/2.0
CSeq: 3
Transport: RTP/AVP;unicast;dest_addr="192.0.2.5:4588"/
"192.0.2.5:4589"
Accept-Credentials: User "rtsps://test.example.org";sha-256;
dPYD7txpoGTbAqZZQJ+vaeOkyH4=
Accept-Ranges: npt, smpte, clock
P->S: SETUP rtsps://test.example.org/secret/audio RTSP/2.0
CSeq: 3
Transport: RTP/AVP;unicast;dest_addr="192.0.2.5:4588"/
"192.0.2.5:4589"
Via: RTSP/2.0 proxy.example.org
Accept-Credentials: User "rtsps://test.example.org";sha-256;
dPYD7txpoGTbAqZZQJ+vaeOkyH4=
Accept-Ranges: npt, smpte, clock
One implication of this process is that the connection for secured
RTSP messages may take significantly more round-trip times for the
first message. A complete extra message exchange between the proxy
connecting to the next hop and the client results because of the
process for approval for each hop. However, if each message contains
the chain of proxies that the requester accepts, the remaining
message exchange should not be delayed. The procedure of including
the credentials in each request rather than building state in each
proxy avoids the need for revocation procedures.
<span class="h2"><a class="selflink" id="section-20" href="#section-20">20</a>. Syntax</span>
The RTSP syntax is described in an Augmented Backus-Naur Form (ABNF)
as defined in <a href="./rfc5234">RFC 5234</a> [<a href="./rfc5234" title=""Augmented BNF for Syntax Specifications: ABNF"">RFC5234</a>]. It uses the basic definitions
present in <a href="./rfc5234">RFC 5234</a>.
<span class="grey">Schulzrinne, et al. Standards Track [Page 192]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-193" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
Please note that ABNF strings, e.g., "Accept", are case insensitive
as specified in <a href="./rfc5234#section-2.3">Section 2.3 of RFC 5234</a>.
The RTSP syntax makes use of the ISO 10646 character set in UTF-8
encoding [<a href="./rfc3629" title=""UTF-8, a transformation format of ISO 10646"">RFC3629</a>].
<span class="h3"><a class="selflink" id="section-20.1" href="#section-20.1">20.1</a>. Base Syntax</span>
RTSP header values can be folded onto multiple lines if the
continuation line begins with a space or horizontal tab. All linear
whitespace, including folding, has the same semantics as SP. A
recipient MAY replace any linear whitespace with a single SP before
interpreting the field-value or forwarding the message downstream.
The SWS construct is used when linear whitespace is optional,
generally between tokens and separators.
To separate the header name from the rest of value, a colon is used,
which, by the above rule, allows whitespace before, but no line
break, and whitespace after, including a line break. The HCOLON
defines this construct.
OCTET = %x00-FF ; any 8-bit sequence of data
CHAR = %x01-7F ; any US-ASCII character (octets 1 - 127)
UPALPHA = %x41-5A ; any US-ASCII uppercase letter "A".."Z"
LOALPHA = %x61-7A ; any US-ASCII lowercase letter "a".."z"
ALPHA = UPALPHA / LOALPHA
DIGIT = %x30-39 ; any US-ASCII digit "0".."9"
CTL = %x00-1F / %x7F ; any US-ASCII control character
; (octets 0 - 31) and DEL (127)
CR = %x0D ; US-ASCII CR, carriage return (13)
LF = %x0A ; US-ASCII LF, linefeed (10)
SP = %x20 ; US-ASCII SP, space (32)
HT = %x09 ; US-ASCII HT, horizontal-tab (9)
BACKSLASH = %x5C ; US-ASCII backslash (92)
CRLF = CR LF
LWS = [CRLF] 1*( SP / HT ) ; Line-breaking whitespace
SWS = [LWS] ; Separating whitespace
HCOLON = *( SP / HT ) ":" SWS
TEXT = %x20-7E / %x80-FF ; any OCTET except CTLs
tspecials = "(" / ")" / "<" / ">" / "@"
/ "," / ";" / ":" / BACKSLASH / DQUOTE
/ "/" / "[" / "]" / "?" / "="
/ "{" / "}" / SP / HT
token = 1*(%x21 / %x23-27 / %x2A-2B / %x2D-2E / %x30-39
/ %x41-5A / %x5E-7A / %x7C / %x7E)
; 1*<any CHAR except CTLs or tspecials>
quoted-string = ( DQUOTE *qdtext DQUOTE )
<span class="grey">Schulzrinne, et al. Standards Track [Page 193]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-194" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
qdtext = %x20-21 / %x23-5B / %x5D-7E / quoted-pair
/ UTF8-NONASCII
; No DQUOTE and no "\"
quoted-pair = "\\" / ( "\" DQUOTE )
ctext = %x20-27 / %x2A-7E
/ %x80-FF ; any OCTET except CTLs, "(" and ")"
generic-param = token [ EQUAL gen-value ]
gen-value = token / host / quoted-string
safe = "$" / "-" / "_" / "." / "+"
extra = "!" / "*" / "'" / "(" / ")" / ","
rtsp-extra = "!" / "*" / "'" / "(" / ")"
HEX = DIGIT / "A" / "B" / "C" / "D" / "E" / "F"
/ "a" / "b" / "c" / "d" / "e" / "f"
LHEX = DIGIT / "a" / "b" / "c" / "d" / "e" / "f"
; lowercase "a-f" Hex
reserved = ";" / "/" / "?" / ":" / "@" / "&" / "="
unreserved = ALPHA / DIGIT / safe / extra
rtsp-unreserved = ALPHA / DIGIT / safe / rtsp-extra
base64 = *base64-unit [base64-pad]
base64-unit = 4base64-char
base64-pad = (2base64-char "==") / (3base64-char "=")
base64-char = ALPHA / DIGIT / "+" / "/"
SLASH = SWS "/" SWS ; slash
EQUAL = SWS "=" SWS ; equal
LPAREN = SWS "(" SWS ; left parenthesis
RPAREN = SWS ")" SWS ; right parenthesis
COMMA = SWS "," SWS ; comma
SEMI = SWS ";" SWS ; semicolon
COLON = SWS ":" SWS ; colon
MINUS = SWS "-" SWS ; minus/dash
LDQUOT = SWS DQUOTE ; open double quotation mark
RDQUOT = DQUOTE SWS ; close double quotation mark
RAQUOT = ">" SWS ; right angle quote
LAQUOT = SWS "<" ; left angle quote
TEXT-UTF8char = %x21-7E / UTF8-NONASCII
UTF8-NONASCII = UTF8-2 / UTF8-3 / UTF8-4
UTF8-1 = <As defined in <a href="./rfc3629">RFC 3629</a>>
UTF8-2 = <As defined in <a href="./rfc3629">RFC 3629</a>>
UTF8-3 = <As defined in <a href="./rfc3629">RFC 3629</a>>
UTF8-4 = <As defined in <a href="./rfc3629">RFC 3629</a>>
UTF8-tail = <As defined in <a href="./rfc3629">RFC 3629</a>>
<span class="grey">Schulzrinne, et al. Standards Track [Page 194]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-195" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
POS-FLOAT = 1*12DIGIT ["." 1*9DIGIT]
FLOAT = ["-"] POS-FLOAT
<span class="h3"><a class="selflink" id="section-20.2" href="#section-20.2">20.2</a>. RTSP Protocol Definition</span>
<span class="h4"><a class="selflink" id="section-20.2.1" href="#section-20.2.1">20.2.1</a>. Generic Protocol Elements</span>
RTSP-IRI = schemes ":" IRI-rest
IRI-rest = ihier-part [ "?" iquery ]
ihier-part = "//" iauthority ipath-abempty
RTSP-IRI-ref = RTSP-IRI / irelative-ref
irelative-ref = irelative-part [ "?" iquery ]
irelative-part = "//" iauthority ipath-abempty
/ ipath-absolute
/ ipath-noscheme
/ ipath-empty
iauthority = < As defined in <a href="./rfc3987">RFC 3987</a>>
ipath = ipath-abempty ; begins with "/" or is empty
/ ipath-absolute ; begins with "/" but not "//"
/ ipath-noscheme ; begins with a non-colon segment
/ ipath-rootless ; begins with a segment
/ ipath-empty ; zero characters
ipath-abempty = *( "/" isegment )
ipath-absolute = "/" [ isegment-nz *( "/" isegment ) ]
ipath-noscheme = isegment-nz-nc *( "/" isegment )
ipath-rootless = isegment-nz *( "/" isegment )
ipath-empty = 0<ipchar>
isegment = *ipchar [";" *ipchar]
isegment-nz = 1*ipchar [";" *ipchar]
/ ";" *ipchar
isegment-nz-nc = (1*ipchar-nc [";" *ipchar-nc])
/ ";" *ipchar-nc
; non-zero-length segment without any colon ":"
; No parameter (; delimited) inside path.
ipchar = iunreserved / pct-encoded / sub-delims / ":" / "@"
ipchar-nc = iunreserved / pct-encoded / sub-delims / "@"
; sub-delims is different from <a href="./rfc3987">RFC 3987</a>
; not including ";"
iquery = < As defined in <a href="./rfc3987">RFC 3987</a>>
iunreserved = < As defined in <a href="./rfc3987">RFC 3987</a>>
pct-encoded = < As defined in <a href="./rfc3987">RFC 3987</a>>
<span class="grey">Schulzrinne, et al. Standards Track [Page 195]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-196" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
RTSP-URI = schemes ":" URI-rest
RTSP-REQ-URI = schemes ":" URI-req-rest
RTSP-URI-Ref = RTSP-URI / RTSP-Relative
RTSP-REQ-Ref = RTSP-REQ-URI / RTSP-REQ-Rel
schemes = "rtsp" / "rtsps" / scheme
scheme = < As defined in <a href="./rfc3986">RFC 3986</a>>
URI-rest = hier-part [ "?" query ]
URI-req-rest = hier-part [ "?" query ]
; Note fragment part not allowed in requests
hier-part = "//" authority path-abempty
RTSP-Relative = relative-part [ "?" query ]
RTSP-REQ-Rel = relative-part [ "?" query ]
relative-part = "//" authority path-abempty
/ path-absolute
/ path-noscheme
/ path-empty
authority = < As defined in <a href="./rfc3986">RFC 3986</a>>
query = < As defined in <a href="./rfc3986">RFC 3986</a>>
path = path-abempty ; begins with "/" or is empty
/ path-absolute ; begins with "/" but not "//"
/ path-noscheme ; begins with a non-colon segment
/ path-rootless ; begins with a segment
/ path-empty ; zero characters
path-abempty = *( "/" segment )
path-absolute = "/" [ segment-nz *( "/" segment ) ]
path-noscheme = segment-nz-nc *( "/" segment )
path-rootless = segment-nz *( "/" segment )
path-empty = 0<pchar>
segment = *pchar [";" *pchar]
segment-nz = ( 1*pchar [";" *pchar]) / (";" *pchar)
segment-nz-nc = ( 1*pchar-nc [";" *pchar-nc]) / (";" *pchar-nc)
; non-zero-length segment without any colon ":"
; No parameter (; delimited) inside path.
pchar = unreserved / pct-encoded / sub-delims / ":" / "@"
pchar-nc = unreserved / pct-encoded / sub-delims / "@"
sub-delims = "!" / "$" / "&" / "'" / "(" / ")"
/ "*" / "+" / "," / "="
; sub-delims is different from <a href="./rfc3986">RFC 3986</a>/3987
; not including ";"
<span class="grey">Schulzrinne, et al. Standards Track [Page 196]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-197" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
smpte-range = smpte-type [EQUAL smpte-range-spec]
; See <a href="#section-4.4">section 4.4</a>
smpte-range-spec = ( smpte-time "-" [ smpte-time ] )
/ ( "-" smpte-time )
smpte-type = "smpte" / "smpte-30-drop"
/ "smpte-25" / smpte-type-extension
; other timecodes may be added
smpte-type-extension = "smpte" token
smpte-time = 1*2DIGIT ":" 1*2DIGIT ":" 1*2DIGIT
[ ":" 1*2DIGIT [ "." 1*2DIGIT ] ]
npt-range = "npt" [EQUAL npt-range-spec]
npt-range-spec = ( npt-time "-" [ npt-time ] ) / ( "-" npt-time )
npt-time = "now" / npt-sec / npt-hhmmss / npt-hhmmss-comp
npt-sec = 1*19DIGIT [ "." 1*9DIGIT ]
npt-hhmmss = npt-hh ":" npt-mm ":" npt-ss [ "." 1*9DIGIT ]
npt-hh = 2*19DIGIT ; any positive number
npt-mm = 2*2DIGIT ; 0-59
npt-ss = 2*2DIGIT ; 0-59
npt-hhmmss-comp = npt-hh-comp ":" npt-mm-comp ":" npt-ss-comp
[ "." 1*9DIGIT ] ; Compatibility format
npt-hh-comp = 1*19DIGIT ; any positive number
npt-mm-comp = 1*2DIGIT ; 0-59
npt-ss-comp = 1*2DIGIT ; 0-59
utc-range = "clock" [EQUAL utc-range-spec]
utc-range-spec = ( utc-time "-" [ utc-time ] ) / ( "-" utc-time )
utc-time = utc-date "T" utc-clock "Z"
utc-date = 8DIGIT
utc-clock = 6DIGIT [ "." 1*9DIGIT ]
feature-tag = token
session-id = 1*256( ALPHA / DIGIT / safe )
extension-header = header-name HCOLON header-value
header-name = token
header-value = *(TEXT-UTF8char / LWS)
<span class="grey">Schulzrinne, et al. Standards Track [Page 197]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-198" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
<span class="h4"><a class="selflink" id="section-20.2.2" href="#section-20.2.2">20.2.2</a>. Message Syntax</span>
RTSP-message = Request / Response ; RTSP/2.0 messages
Request = Request-Line
*((general-header
/ request-header
/ message-body-header) CRLF)
CRLF
[ message-body-data ]
Response = Status-Line
*((general-header
/ response-header
/ message-body-header) CRLF)
CRLF
[ message-body-data ]
Request-Line = Method SP Request-URI SP RTSP-Version CRLF
Status-Line = RTSP-Version SP Status-Code SP Reason-Phrase CRLF
Method = "DESCRIBE"
/ "GET_PARAMETER"
/ "OPTIONS"
/ "PAUSE"
/ "PLAY"
/ "PLAY_NOTIFY"
/ "REDIRECT"
/ "SETUP"
/ "SET_PARAMETER"
/ "TEARDOWN"
/ extension-method
extension-method = token
Request-URI = "*" / RTSP-REQ-URI
RTSP-Version = "RTSP/" 1*DIGIT "." 1*DIGIT
message-body-data = 1*OCTET
Status-Code = "100" ; Continue
/ "200" ; OK
/ "301" ; Moved Permanently
/ "302" ; Found
/ "303" ; See Other
/ "304" ; Not Modified
/ "305" ; Use Proxy
<span class="grey">Schulzrinne, et al. Standards Track [Page 198]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-199" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
/ "400" ; Bad Request
/ "401" ; Unauthorized
/ "402" ; Payment Required
/ "403" ; Forbidden
/ "404" ; Not Found
/ "405" ; Method Not Allowed
/ "406" ; Not Acceptable
/ "407" ; Proxy Authentication Required
/ "408" ; Request Timeout
/ "410" ; Gone
/ "412" ; Precondition Failed
/ "413" ; Request Message Body Too Large
/ "414" ; Request-URI Too Long
/ "415" ; Unsupported Media Type
/ "451" ; Parameter Not Understood
/ "452" ; reserved
/ "453" ; Not Enough Bandwidth
/ "454" ; Session Not Found
/ "455" ; Method Not Valid In This State
/ "456" ; Header Field Not Valid for Resource
/ "457" ; Invalid Range
/ "458" ; Parameter Is Read-Only
/ "459" ; Aggregate Operation Not Allowed
/ "460" ; Only Aggregate Operation Allowed
/ "461" ; Unsupported Transport
/ "462" ; Destination Unreachable
/ "463" ; Destination Prohibited
/ "464" ; Data Transport Not Ready Yet
/ "465" ; Notification Reason Unknown
/ "466" ; Key Management Error
/ "470" ; Connection Authorization Required
/ "471" ; Connection Credentials Not Accepted
/ "472" ; Failure to Establish Secure Connection
/ "500" ; Internal Server Error
/ "501" ; Not Implemented
/ "502" ; Bad Gateway
/ "503" ; Service Unavailable
/ "504" ; Gateway Timeout
/ "505" ; RTSP Version Not Supported
/ "551" ; Option Not Supported
/ "553" ; Proxy Unavailable
/ extension-code
extension-code = 3DIGIT
Reason-Phrase = 1*(TEXT-UTF8char / HT / SP)
<span class="grey">Schulzrinne, et al. Standards Track [Page 199]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-200" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
rtsp-header = general-header
/ request-header
/ response-header
/ message-body-header
general-header = Accept-Ranges
/ Cache-Control
/ Connection
/ CSeq
/ Date
/ Media-Properties
/ Media-Range
/ Pipelined-Requests
/ Proxy-Supported
/ Range
/ RTP-Info
/ Scale
/ Seek-Style
/ Server
/ Session
/ Speed
/ Supported
/ Timestamp
/ Transport
/ User-Agent
/ Via
/ extension-header
request-header = Accept
/ Accept-Credentials
/ Accept-Encoding
/ Accept-Language
/ Authorization
/ Bandwidth
/ Blocksize
/ From
/ If-Match
/ If-Modified-Since
/ If-None-Match
/ Notify-Reason
/ Proxy-Authorization
/ Proxy-Require
/ Referrer
/ Request-Status
/ Require
/ Terminate-Reason
/ extension-header
<span class="grey">Schulzrinne, et al. Standards Track [Page 200]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-201" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
response-header = Authentication-Info
/ Connection-Credentials
/ Location
/ MTag
/ Proxy-Authenticate
/ Proxy-Authentication-Info
/ Public
/ Retry-After
/ Unsupported
/ WWW-Authenticate
/ extension-header
message-body-header = Allow
/ Content-Base
/ Content-Encoding
/ Content-Language
/ Content-Length
/ Content-Location
/ Content-Type
/ Expires
/ Last-Modified
/ extension-header
<span class="h4"><a class="selflink" id="section-20.2.3" href="#section-20.2.3">20.2.3</a>. Header Syntax</span>
Accept = "Accept" HCOLON
[ accept-range *(COMMA accept-range) ]
accept-range = media-type-range [SEMI accept-params]
media-type-range = ( "*/*"
/ ( m-type SLASH "*" )
/ ( m-type SLASH m-subtype )
) *( SEMI m-parameter )
accept-params = "q" EQUAL qvalue *(SEMI generic-param )
qvalue = ( "0" [ "." *3DIGIT ] )
/ ( "1" [ "." *3("0") ] )
Accept-Credentials = "Accept-Credentials" HCOLON cred-decision
cred-decision = ("User" [LWS cred-info])
/ "Proxy"
/ "Any"
/ (token [LWS 1*header-value])
; For future extensions
cred-info = cred-info-data *(COMMA cred-info-data)
cred-info-data = DQUOTE RTSP-REQ-URI DQUOTE SEMI hash-alg
SEMI base64
hash-alg = "sha-256" / extension-alg
extension-alg = token
Accept-Encoding = "Accept-Encoding" HCOLON
<span class="grey">Schulzrinne, et al. Standards Track [Page 201]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-202" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
[ encoding *(COMMA encoding) ]
encoding = codings [SEMI accept-params]
codings = content-coding / "*"
content-coding = "identity" / token
Accept-Language = "Accept-Language" HCOLON
language *(COMMA language)
language = language-range [SEMI accept-params]
language-range = language-tag / "*"
language-tag = primary-tag *( "-" subtag )
primary-tag = 1*8ALPHA
subtag = 1*8ALPHA
Accept-Ranges = "Accept-Ranges" HCOLON acceptable-ranges
acceptable-ranges = (range-unit *(COMMA range-unit))
range-unit = "npt" / "smpte" / "smpte-30-drop" / "smpte-25"
/ "clock" / extension-format
extension-format = token
Allow = "Allow" HCOLON Method *(COMMA Method)
Authentication-Info = "Authentication-Info" HCOLON auth-param-list
auth-param-list = <As the Authentication-Info element in <a href="./rfc7615">RFC 7615</a>>
Authorization = "Authorization" HCOLON credentials
credentials = <As defined by <a href="./rfc7235">RFC 7235</a>>
Bandwidth = "Bandwidth" HCOLON 1*19DIGIT
Blocksize = "Blocksize" HCOLON 1*9DIGIT
Cache-Control = "Cache-Control" HCOLON cache-directive
*(COMMA cache-directive)
cache-directive = cache-rqst-directive
/ cache-rspns-directive
cache-rqst-directive = "no-cache"
/ "max-stale" [EQUAL delta-seconds]
/ "min-fresh" EQUAL delta-seconds
/ "only-if-cached"
/ cache-extension
cache-rspns-directive = "public"
/ "private"
/ "no-cache"
/ "no-transform"
/ "must-revalidate"
/ "proxy-revalidate"
/ "max-age" EQUAL delta-seconds
/ cache-extension
cache-extension = token [EQUAL (token / quoted-string)]
delta-seconds = 1*19DIGIT
<span class="grey">Schulzrinne, et al. Standards Track [Page 202]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-203" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
Connection = "Connection" HCOLON connection-token
*(COMMA connection-token)
connection-token = "close" / token
Connection-Credentials = "Connection-Credentials" HCOLON cred-chain
cred-chain = DQUOTE RTSP-REQ-URI DQUOTE SEMI base64
Content-Base = "Content-Base" HCOLON RTSP-URI
Content-Encoding = "Content-Encoding" HCOLON
content-coding *(COMMA content-coding)
Content-Language = "Content-Language" HCOLON
language-tag *(COMMA language-tag)
Content-Length = "Content-Length" HCOLON 1*19DIGIT
Content-Location = "Content-Location" HCOLON RTSP-REQ-Ref
Content-Type = "Content-Type" HCOLON media-type
media-type = m-type SLASH m-subtype *(SEMI m-parameter)
m-type = discrete-type / composite-type
discrete-type = "text" / "image" / "audio" / "video"
/ "application" / extension-token
composite-type = "message" / "multipart" / extension-token
extension-token = ietf-token / x-token
ietf-token = token
x-token = "x-" token
m-subtype = extension-token / iana-token
iana-token = token
m-parameter = m-attribute EQUAL m-value
m-attribute = token
m-value = token / quoted-string
CSeq = "CSeq" HCOLON cseq-nr
cseq-nr = 1*9DIGIT
Date = "Date" HCOLON RTSP-date
RTSP-date = date-time ;
date-time = <As defined in <a href="./rfc5322">RFC 5322</a>>
Expires = "Expires" HCOLON RTSP-date
From = "From" HCOLON from-spec
from-spec = ( name-addr / addr-spec ) *( SEMI from-param )
name-addr = [ display-name ] LAQUOT addr-spec RAQUOT
addr-spec = RTSP-REQ-URI / absolute-URI
absolute-URI = < As defined in <a href="./rfc3986">RFC 3986</a>>
display-name = *(token LWS) / quoted-string
from-param = tag-param / generic-param
tag-param = "tag" EQUAL token
If-Match = "If-Match" HCOLON ("*" / message-tag-list)
message-tag-list = message-tag *(COMMA message-tag)
message-tag = [ weak ] opaque-tag
weak = "W/"
opaque-tag = quoted-string
<span class="grey">Schulzrinne, et al. Standards Track [Page 203]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-204" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
If-Modified-Since = "If-Modified-Since" HCOLON RTSP-date
If-None-Match = "If-None-Match" HCOLON ("*" / message-tag-list)
Last-Modified = "Last-Modified" HCOLON RTSP-date
Location = "Location" HCOLON RTSP-REQ-URI
Media-Properties = "Media-Properties" HCOLON [media-prop-list]
media-prop-list = media-prop-value *(COMMA media-prop-value)
media-prop-value = ("Random-Access" [EQUAL POS-FLOAT])
/ "Beginning-Only"
/ "No-Seeking"
/ "Immutable"
/ "Dynamic"
/ "Time-Progressing"
/ "Unlimited"
/ ("Time-Limited" EQUAL utc-time)
/ ("Time-Duration" EQUAL POS-FLOAT)
/ ("Scales" EQUAL scale-value-list)
/ media-prop-ext
media-prop-ext = token [EQUAL (1*rtsp-unreserved / quoted-string)]
scale-value-list = DQUOTE scale-entry *(COMMA scale-entry) DQUOTE
scale-entry = scale-value / (scale-value COLON scale-value)
scale-value = FLOAT
Media-Range = "Media-Range" HCOLON [ranges-list]
ranges-list = ranges-spec *(COMMA ranges-spec)
MTag = "MTag" HCOLON message-tag
Notify-Reason = "Notify-Reason" HCOLON Notify-Reas-val
Notify-Reas-val = "end-of-stream"
/ "media-properties-update"
/ "scale-change"
/ Notify-Reason-extension
Notify-Reason-extension = token
Pipelined-Requests = "Pipelined-Requests" HCOLON startup-id
startup-id = 1*8DIGIT
Proxy-Authenticate = "Proxy-Authenticate" HCOLON challenge-list
challenge-list = <As defined by the WWW-Authenticate in <a href="./rfc7235">RFC 7235</a>>
Proxy-Authentication-Info = "Proxy-Authentication-Info" HCOLON
auth-param-list
Proxy-Authorization = "Proxy-Authorization" HCOLON credentials
Proxy-Require = "Proxy-Require" HCOLON feature-tag-list
feature-tag-list = feature-tag *(COMMA feature-tag)
Proxy-Supported = "Proxy-Supported" HCOLON [feature-tag-list]
Public = "Public" HCOLON Method *(COMMA Method)
Range = "Range" HCOLON ranges-spec
ranges-spec = npt-range / utc-range / smpte-range
/ range-ext
<span class="grey">Schulzrinne, et al. Standards Track [Page 204]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-205" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
range-ext = extension-format [EQUAL range-value]
range-value = 1*(rtsp-unreserved / quoted-string / ":" )
Referrer = "Referrer" HCOLON (absolute-URI / RTSP-URI-Ref)
Request-Status = "Request-Status" HCOLON req-status-info
req-status-info = cseq-info LWS status-info LWS reason-info
cseq-info = "cseq" EQUAL cseq-nr
status-info = "status" EQUAL Status-Code
reason-info = "reason" EQUAL DQUOTE Reason-Phrase DQUOTE
Require = "Require" HCOLON feature-tag-list
<span class="grey">Schulzrinne, et al. Standards Track [Page 205]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-206" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
RTP-Info = "RTP-Info" HCOLON [rtsp-info-spec
*(COMMA rtsp-info-spec)]
rtsp-info-spec = stream-url 1*ssrc-parameter
stream-url = "url" EQUAL DQUOTE RTSP-REQ-Ref DQUOTE
ssrc-parameter = LWS "ssrc" EQUAL ssrc HCOLON
ri-parameter *(SEMI ri-parameter)
ri-parameter = ("seq" EQUAL 1*5DIGIT)
/ ("rtptime" EQUAL 1*10DIGIT)
/ generic-param
Retry-After = "Retry-After" HCOLON (RTSP-date / delta-seconds)
Scale = "Scale" HCOLON scale-value
Seek-Style = "Seek-Style" HCOLON Seek-S-values
Seek-S-values = "RAP"
/ "CoRAP"
/ "First-Prior"
/ "Next"
/ Seek-S-value-ext
Seek-S-value-ext = token
Server = "Server" HCOLON ( product / comment )
*(LWS (product / comment))
product = token [SLASH product-version]
product-version = token
comment = LPAREN *( ctext / quoted-pair) RPAREN
Session = "Session" HCOLON session-id
[ SEMI "timeout" EQUAL delta-seconds ]
Speed = "Speed" HCOLON lower-bound MINUS upper-bound
lower-bound = POS-FLOAT
upper-bound = POS-FLOAT
Supported = "Supported" HCOLON [feature-tag-list]
<span class="grey">Schulzrinne, et al. Standards Track [Page 206]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-207" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
Terminate-Reason = "Terminate-Reason" HCOLON TR-Info
TR-Info = TR-Reason *(SEMI TR-Parameter)
TR-Reason = "Session-Timeout"
/ "Server-Admin"
/ "Internal-Error"
/ token
TR-Parameter = TR-time / TR-user-msg / generic-param
TR-time = "time" EQUAL utc-time
TR-user-msg = "user-msg" EQUAL quoted-string
Timestamp = "Timestamp" HCOLON timestamp-value [LWS delay]
timestamp-value = *19DIGIT [ "." *9DIGIT ]
delay = *9DIGIT [ "." *9DIGIT ]
Transport = "Transport" HCOLON transport-spec
*(COMMA transport-spec)
transport-spec = transport-id *trns-parameter
transport-id = trans-id-rtp / other-trans
trans-id-rtp = "RTP/" profile ["/" lower-transport]
; no LWS is allowed inside transport-id
other-trans = token *("/" token)
<span class="grey">Schulzrinne, et al. Standards Track [Page 207]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-208" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
profile = "AVP" / "SAVP" / "AVPF" / "SAVPF" / token
lower-transport = "TCP" / "UDP" / token
trns-parameter = (SEMI ( "unicast" / "multicast" ))
/ (SEMI "interleaved" EQUAL channel ["-" channel])
/ (SEMI "ttl" EQUAL ttl)
/ (SEMI "layers" EQUAL 1*DIGIT)
/ (SEMI "ssrc" EQUAL ssrc *(SLASH ssrc))
/ (SEMI "mode" EQUAL mode-spec)
/ (SEMI "dest_addr" EQUAL addr-list)
/ (SEMI "src_addr" EQUAL addr-list)
/ (SEMI "setup" EQUAL contrans-setup)
/ (SEMI "connection" EQUAL contrans-con)
/ (SEMI "RTCP-mux")
/ (SEMI "MIKEY" EQUAL MIKEY-Value)
/ (SEMI trn-param-ext)
contrans-setup = "active" / "passive" / "actpass"
contrans-con = "new" / "existing"
trn-param-ext = par-name [EQUAL trn-par-value]
par-name = token
trn-par-value = *(rtsp-unreserved / quoted-string)
ttl = 1*3DIGIT ; 0 to 255
ssrc = 8HEX
channel = 1*3DIGIT ; 0 to 255
MIKEY-Value = base64
mode-spec = ( DQUOTE mode *(COMMA mode) DQUOTE )
mode = "PLAY" / token
addr-list = quoted-addr *(SLASH quoted-addr)
quoted-addr = DQUOTE (host-port / extension-addr) DQUOTE
host-port = ( host [":" port] )
/ ( ":" port )
extension-addr = 1*qdtext
host = < As defined in <a href="./rfc3986">RFC 3986</a>>
port = < As defined in <a href="./rfc3986">RFC 3986</a>>
<span class="grey">Schulzrinne, et al. Standards Track [Page 208]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-209" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
Unsupported = "Unsupported" HCOLON feature-tag-list
User-Agent = "User-Agent" HCOLON ( product / comment )
*(LWS (product / comment))
Via = "Via" HCOLON via-parm *(COMMA via-parm)
via-parm = sent-protocol LWS sent-by *( SEMI via-params )
via-params = via-ttl / via-maddr
/ via-received / via-extension
via-ttl = "ttl" EQUAL ttl
via-maddr = "maddr" EQUAL host
via-received = "received" EQUAL (IPv4address / IPv6address)
IPv4address = < As defined in <a href="./rfc3986">RFC 3986</a>>
IPv6address = < As defined in <a href="./rfc3986">RFC 3986</a>>
via-extension = generic-param
sent-protocol = protocol-name SLASH protocol-version
SLASH transport-prot
protocol-name = "RTSP" / token
protocol-version = token
transport-prot = "UDP" / "TCP" / "TLS" / other-transport
other-transport = token
sent-by = host [ COLON port ]
WWW-Authenticate = "WWW-Authenticate" HCOLON challenge-list
<span class="h3"><a class="selflink" id="section-20.3" href="#section-20.3">20.3</a>. SDP Extension Syntax</span>
This section defines in ABNF the SDP extensions defined for RTSP.
See <a href="#appendix-D">Appendix D</a> for the definition of the extensions in text.
control-attribute = "a=control:" *SP RTSP-REQ-Ref CRLF
a-range-def = "a=range:" ranges-spec CRLF
a-mtag-def = "a=mtag:" message-tag CRLF
<span class="h2"><a class="selflink" id="section-21" href="#section-21">21</a>. Security Considerations</span>
The security considerations and threats around RTSP and its usage can
be divided into considerations around the signaling protocol itself
and the issues related to the media-stream delivery. However, when
it comes to mitigation of security threats, a threat depending on the
media-stream delivery may in fact be mitigated by a mechanism in the
signaling protocol.
<span class="grey">Schulzrinne, et al. Standards Track [Page 209]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-210" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
There are several chapters and an appendix in this document that
define security solutions for the protocol. These sections will be
referenced when discussing the threats below. However, the reader
should take special notice of the Security Framework (<a href="#section-19">Section 19</a>) and
the specification of how to use SRTP and its key-management
(Appendix C.1.4) to achieve certain aspects of the media security.
<span class="h3"><a class="selflink" id="section-21.1" href="#section-21.1">21.1</a>. Signaling Protocol Threats</span>
This section focuses on issues related to the signaling protocol.
Because of the similarity in syntax and usage between RTSP servers
and HTTP servers, the security considerations outlined in [<a href="./rfc7230" title=""Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and Routing"">RFC7230</a>],
[<a href="./rfc7231" title=""Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content"">RFC7231</a>], [<a href="./rfc7232" title=""Hypertext Transfer Protocol (HTTP/1.1): Conditional Requests"">RFC7232</a>], [<a href="./rfc7233" title=""Hypertext Transfer Protocol (HTTP/1.1): Range Requests"">RFC7233</a>], [<a href="./rfc7234" title=""Hypertext Transfer Protocol (HTTP/1.1): Caching"">RFC7234</a>], and [<a href="./rfc7235" title=""Hypertext Transfer Protocol (HTTP/1.1): Authentication"">RFC7235</a>] apply as
well.
Specifically, please note the following:
Abuse of Server Log Information: A server is in the position to save
personal data about a user's requests that might identify their
media consumption patterns or subjects of interest. This
information is clearly confidential in nature, and its handling
can be constrained by law in certain countries. Log
information needs to be securely stored and appropriate
guidelines followed for its analysis. See <a href="./rfc7230#section-9.8">Section 9.8 of
[RFC7230]</a> for additional guidelines.
Transfer of Sensitive Information: There is no reason to believe
that information transferred in RTSP message, such as the URI
and the content of headers, especially the Server, Via,
Referrer, and From headers, may be any less sensitive than when
used in HTTP. Therefore, all of the precautions regarding the
protection of data privacy and user privacy apply to
implementers of RTSP clients, servers, and proxies. See
Sections <a href="#section-9.3">9.3</a>-<a href="#section-9.6">9.6</a> of [<a href="./rfc7231" title=""Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content"">RFC7231</a>] for further details.
The RTSP methods defined in this document are primarily used to
establish and control the delivery of the media data
represented by the URI; thus, the RTSP message bodies are
generally less sensitive than the ones in HTTP. Where HTTP
bodies could contain, for example, your medical records, in
RTSP, the sensitive video of your medical operation would be in
the media stream over the media-transport protocol, not in the
RTSP message. Still, one has to take note of what potential
sensitive information is included in RTSP. The protection of
the media data is separate, can be applied directly between
client and server, and is dependent on the media-transport
protocol in use. See <a href="#section-21.2">Section 21.2</a> for further discussion.
This possibility for separation of security between media-
<span class="grey">Schulzrinne, et al. Standards Track [Page 210]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-211" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
resource content and the signaling protocol mitigates the risk
of exposing the media content when using hop-by-hop security
for RTSP signaling using proxies (<a href="#section-19.3">Section 19.3</a>).
Attacks Based On File and Path Names: Though RTSP URIs are opaque
handles that do not necessarily have file-system semantics, it
is anticipated that many implementations will translate
portions of the Request-URIs directly to file-system calls. In
such cases, file systems SHOULD follow the precautions outlined
in <a href="./rfc7231#section-9.1">Section 9.1 of [RFC7231]</a>, such as checking for ".." in path
components.
Personal Information: RTSP clients are often privy to the same
information that HTTP clients are (username, location, etc.)
and thus should be equally sensitive. See <a href="./rfc7230#section-9.8">Section 9.8 of
[RFC7230]</a>, Sections <a href="#section-9.3">9.3</a>-<a href="#section-9.7">9.7</a> of [<a href="./rfc7231" title=""Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content"">RFC7231</a>], and <a href="./rfc7234#section-8">Section 8 of
[RFC7234]</a> for further recommendations.
Privacy Issues Connected to Accept Headers: Since similar usages of
the "Accept" headers exist in RTSP as in HTTP, the same caveats
outlined in <a href="./rfc7231#section-9.4">Section 9.4 of [RFC7231]</a> with regard to their use
should be followed.
Establishing Authority: RTSP shares with HTTP the question of how a
client communicates with the authoritative source for media
streams (<a href="./rfc7230#section-9.1">Section 9.1 of [RFC7230]</a>). The used DNS servers, the
security of the communication, and any possibility of a man in
the middle, and the trust in any RTSP proxies all affect the
possibility that a client has received a non-authoritative
response to a request. Ensuring that a client receives an
authoritative response is challenging, although using the
secure communication for RTSP signaling (rtsps) simplifies it
significantly as the server can provide a hostname identity
assertion in the TLS handshake.
Location Headers and Spoofing: If a single server supports multiple
organizations that do not trust each another, then it MUST
check the values of the Content-Location header fields in
responses that are generated under control of said
organizations to make sure that they do not attempt to
invalidate resources over which they have no authority (see
<a href="./rfc2616#section-15.4">Section 15.4 of [RFC2616]</a>).
In addition to the recommendations in the current HTTP specifications
([<a href="./rfc7230" title=""Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and Routing"">RFC7230</a>], [<a href="./rfc7231" title=""Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content"">RFC7231</a>], [<a href="./rfc7232" title=""Hypertext Transfer Protocol (HTTP/1.1): Conditional Requests"">RFC7232</a>], [<a href="./rfc7233" title=""Hypertext Transfer Protocol (HTTP/1.1): Range Requests"">RFC7233</a>], [<a href="./rfc7234" title=""Hypertext Transfer Protocol (HTTP/1.1): Caching"">RFC7234</a>], and [<a href="./rfc7235" title=""Hypertext Transfer Protocol (HTTP/1.1): Authentication"">RFC7235</a>]
as of this writing) and also those of the previous relevant RFCs
[<a href="./rfc2068" title=""Hypertext Transfer Protocol -- HTTP/1.1"">RFC2068</a>] [<a href="./rfc2616" title=""Hypertext Transfer Protocol -- HTTP/1.1"">RFC2616</a>], future HTTP specifications may provide
additional guidance on security issues.
<span class="grey">Schulzrinne, et al. Standards Track [Page 211]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-212" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
The following are added considerations for RTSP implementations.
Session Hijacking: Since there is no or little relation between a
transport-layer connection and an RTSP session, it is possible
for a malicious client to issue requests with random session
identifiers that could affect other clients of an unsuspecting
server. To mitigate this, the server SHALL use a large, random
and non-sequential session identifier to minimize the
possibility of this kind of attack. However, unless the RTSP
signaling is always confidentiality protected, e.g., using TLS,
an on-path attacker will be able to hijack a session. Another
choice for preventing session hijacking is to use client
authentication and only allow the authenticated client creating
the session to access that session.
Authentication: Servers SHOULD implement both basic and Digest
[<a href="./rfc2617" title=""HTTP Authentication: Basic and Digest Access Authentication"">RFC2617</a>] authentication. In environments requiring tighter
security for the control messages, the transport-layer
mechanism TLS [<a href="./rfc5246" title=""The Transport Layer Security (TLS) Protocol Version 1.2"">RFC5246</a>] SHOULD be used.
Suspicious Behavior: Upon detecting instances of behavior that is
deemed a security risk, RTSP servers SHOULD return error code
403 (Forbidden). RTSP servers SHOULD also be aware of attempts
to probe the server for weaknesses and entry points and MAY
arbitrarily disconnect and ignore further requests from clients
that are deemed to be in violation of local security policy.
TLS through Proxies: If one uses the possibility to connect TLS in
multiple legs (<a href="#section-19.3">Section 19.3</a>), one really needs to be aware of
the trust model. This procedure requires trust in all proxies
part of the path to the server. The proxies one connects
through are identified, assuming the proxies so far connected
through are well behaved and fulfilling the trust. The
accepted proxies are men in the middle and have access to all
that goes on over the TLS connection. Thus, it is important to
consider if that trust model is acceptable in the actual
application. Further discussion of the actual trust model is
in <a href="#section-19.3">Section 19.3</a>. It is important to note what difference in
security properties, if any, may exist with the used media-
transport protocol and its security mechanism. Using SRTP and
the MIKEY-based key-establishment defined in <a href="#appendix-C.1.4.1">Appendix C.1.4.1</a>
enables media key-establishment to be done end-to-end without
revealing the keys to the proxies.
<span class="grey">Schulzrinne, et al. Standards Track [Page 212]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-213" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
Resource Exhaustion: As RTSP is a stateful protocol and establishes
resource usage on the server, there is a clear possibility to
attack the server by trying to overbook these resources to
perform a DoS attack. This attack can be both against ongoing
sessions and to prevent others from establishing sessions.
RTSP agents will need to have mechanisms to prevent single
peers from consuming extensive amounts of resources. The
methods for guarding against this are varied and depend on the
agent's role and capabilities and policies. Each
implementation has to carefully consider its methods and
policies to mitigate this threat. There are recommendations
regarding the handling of connections in <a href="#section-10.7">Section 10.7</a>.
The above threats and considerations have resulted in a set of
security functions and mechanisms built into or used by the protocol.
The signaling protocol relies on two security features defined in the
Security Framework (<a href="#section-19">Section 19</a>): namely client authentication using
HTTP authentication and TLS-based transport protection of the
signaling messages. Both of these mechanisms are required to be
implemented by any RTSP agent.
A number of different security mitigations have been designed into
the protocol and will be instantiated if the specification is
implemented as written, for example, by ensuring sufficient amounts
of entropy in the randomly generated session identifiers when not
using client authentication to minimize the risk of session
hijacking. When client authentication is used, protection against
hijacking will be greatly improved by scoping the accessible sessions
to the one this client identity has created. Some of the above
threats are such that the implementation of the RTSP functionality
itself needs to consider which policy and strategy it uses to
mitigate them.
<span class="h3"><a class="selflink" id="section-21.2" href="#section-21.2">21.2</a>. Media Stream Delivery Threats</span>
The fact that RTSP establishes and controls a media-stream delivery
results in a set of security issues related to the media streams.
This section will attempt to analyze general threats; however, the
choice of media-stream transport protocol, such as RTP, will result
in some differences in threats and what mechanisms exist to mitigate
them. Thus, it becomes important that each specification of a new
media-stream transport and delivery protocol usable by RTSP requires
its own security analysis. This section includes one for RTP.
<span class="grey">Schulzrinne, et al. Standards Track [Page 213]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-214" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
The set of general threats from or by the media-stream delivery
itself are:
Concentrated Denial-of-Service Attack: The protocol offers the
opportunity for a remote-controlled DoS attack, where the media
stream is the hammer in that DoS attack. See <a href="#section-21.2.1">Section 21.2.1</a>.
Media Confidentiality: The media delivery may contain content of any
type, and it is not possible, in general, to determine how
sensitive this content is from a confidentiality point. Thus, it
is a strong requirement that any media delivery protocol supply a
method for providing confidentiality of the actual media content.
In addition to the media-level confidentiality, it becomes
critical that no resource identifiers used in the signaling be
exposed to an attacker as they may have human-understandable names
or may be available to the attacker, allowing it to determine the
content the user received. Thus, the signaling protocol must also
provide confidentiality protection of any information related to
the media resource.
Media Integrity and Authentication: There are several reasons why an
attacker will be interested in substituting the media stream sent
out from the RTSP server with one of the attacker's creation or
selection, such as discrediting the target and misinformation
about the target. Therefore, it is important that the media
protocol provide mechanisms to verify the source authentication
and integrity and to prevent replay attacks on the media stream.
Scope of Multicast: If RTSP is used to control the transmission of
media onto a multicast network, the scope of the delivery must be
considered. RTSP supports the TTL Transport header parameter to
indicate this scope for IPv4. IPv6 has a different mechanism for
the scope boundary. However, such scope control has risks, as it
may be set too large and distribute media beyond the intended
scope.
Below (<a href="#section-21.2.2">Section 21.2.2</a>) a protocol-specific analysis of security
considerations for RTP-based media transport is included. In that
section, the requirements on implementing security functions for RTSP
agents supporting media delivery over RTP are made clear.
<span class="grey">Schulzrinne, et al. Standards Track [Page 214]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-215" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
<span class="h4"><a class="selflink" id="section-21.2.1" href="#section-21.2.1">21.2.1</a>. Remote DoS Attack</span>
The attacker may initiate traffic flows to one or more IP addresses
by specifying them as the destination in SETUP requests. While the
attacker's IP address may be known in this case, this is not always
useful in the prevention of more attacks or ascertaining the
attacker's identity. Thus, an RTSP server MUST only allow client-
specified destinations for RTSP-initiated traffic flows if the server
has ensured that the specified destination address accepts receiving
media through different security mechanisms. Security mechanisms
that are acceptable in order of increasing generality are:
o Verification of the client's identity against a database of known
users using RTSP authentication mechanisms (preferably Digest
authentication or stronger)
o A list of addresses that have consented to be media destinations,
especially considering user identity
o Verification based on media path
The server SHOULD NOT allow the destination field to be set unless a
mechanism exists in the system to authorize the request originator to
direct streams to the recipient. It is preferred that this
authorization be performed by the media recipient (destination)
itself and the credentials be passed along to the server. However,
in certain cases, such as when the recipient address is a multicast
group or when the recipient is unable to communicate with the server
in an out-of-band manner, this may not be possible. In these cases,
the server may choose another method such as a server-resident
authorization list to ensure that the request originator has the
proper credentials to request stream delivery to the recipient.
One solution that performs the necessary verification of acceptance
of media suitable for unicast-based delivery is the NAT traversal
method based on Interactive Connectivity Establishment (ICE)
[<a href="./rfc5245" title=""Interactive Connectivity Establishment (ICE): A Protocol for Network Address Translator (NAT) Traversal for Offer/Answer Protocols"">RFC5245</a>] described in [<a href="./rfc7825" title=""A Network Address Translator (NAT) Traversal Mechanism for Media Controlled by Real-Time Streaming Protocol (RTSP)"">RFC7825</a>]. This mechanism uses random
passwords and a username so that the probability of unintended
indication as a valid media destination is very low. In addition,
the server includes in its Session Traversal Utilities for NAT (STUN)
[<a href="./rfc5389" title=""Session Traversal Utilities for NAT (STUN)"">RFC5389</a>] requests a cookie (consisting of random material) that the
destination echoes back; thus, the solution also safeguards against
having an off-path attacker being able to spoof the STUN checks.
This leaves this solution vulnerable only to on-path attackers that
can see the STUN requests go to the target of attack and thus forge a
response.
<span class="grey">Schulzrinne, et al. Standards Track [Page 215]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-216" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
For delivery to multicast addresses, there is a need for another
solution that is not specified in this memo.
<span class="h4"><a class="selflink" id="section-21.2.2" href="#section-21.2.2">21.2.2</a>. RTP Security Analysis</span>
RTP is a commonly used media-transport protocol and has been the most
common choice for RTSP 1.0 implementations. The core RTP protocol
has been in use for a long time, and it has well-known security
properties and the RTP security consideration (<a href="./rfc3550#section-9">Section 9 of
[RFC3550]</a>) needs to be reviewed. In perspective of the usage of RTP
in the context of RTSP, the following properties should be noted:
Stream Additions: RTP has support for multiple simultaneous media
streams in each RTP session. As some use cases require support
for non-synchronized adding and removal of media streams and their
identifiers, an attacker can easily insert additional media
streams into a session context that, according to protocol design,
is intended to be played out. Another threat vector is one of DoS
by exhausting the resources of the RTP session receiver, for
example, by using a large number of SSRC identifiers
simultaneously. The strong mitigation of this is to ensure that
one cryptographically authenticates any incoming packet flow to
the RTP session. Weak mitigations like blocking additional media
streams in session contexts easily lead to a DoS vulnerability in
addition to preventing certain RTP extensions or use cases that
rely on multiple media streams, such as RTP retransmission
[<a href="./rfc4588" title=""RTP Retransmission Payload Format"">RFC4588</a>] to function.
Forged Feedback: The built-in RTCP also offers a large attack
surface for a couple of different types of attacks. One venue is
to send RTCP feedback to the media sender indicating large amounts
of packet loss and thus trigger a media bitrate adaptation
response from the sender resulting in lowered media quality and
potentially a shutdown of the media stream. Another attack is to
perform a resource-exhaustion attack on the receiver by using many
SSRC identifiers to create large state tables and increase the
RTCP-related processing demands.
RTP/RTCP Extensions: RTP and RTCP extensions generally provide
additional and sometimes extremely powerful tools for DoS attacks
or service disruption. For example, the Code Control Message
[<a href="./rfc5104" title=""Codec Control Messages in the RTP Audio-Visual Profile with Feedback (AVPF)"">RFC5104</a>] RTCP extensions enables both the lock down of the
bitrate to low values and disruption of video quality by
requesting intra-frames.
Taking into account the above general discussion in <a href="#section-21.2">Section 21.2</a> and
the RTP-specific discussion in this section, it is clear that it is
necessary that a strong security mechanism be supported to protect
<span class="grey">Schulzrinne, et al. Standards Track [Page 216]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-217" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
RTP. Therefore, this specification has the following requirements on
RTP security functions for all RTSP agents that handle media streams
and where media-stream transport is completed using RTP.
RTSP agents supporting RTP MUST implement Secure RTP (SRTP) [<a href="./rfc3711" title=""The Secure Real-time Transport Protocol (SRTP)"">RFC3711</a>]
and, thus, SAVP. In addition, SAVPF [<a href="./rfc5124" title=""Extended Secure RTP Profile for Real-time Transport Control Protocol (RTCP)-Based Feedback (RTP/SAVPF)"">RFC5124</a>] MUST also be supported
if AVPF is implemented. This specification requires no additional
cryptographic transforms or configuration values beyond those
specified as mandatory to implement in <a href="./rfc3711">RFC 3711</a>, i.e., AES-CM and
HMAC-SHA1. The default key-management mechanism that MUST be
implemented is the one defined in MIKEY Key Establishment
(Appendix C.1.4.1). The MIKEY implementation MUST implement the
necessary functions for MIKEY-RSA-R mode [<a href="./rfc4738" title=""MIKEY- RSA-R: An Additional Mode of Key Distribution in Multimedia Internet KEYing (MIKEY)"">RFC4738</a>] and the SRTP
parameter negotiation necessary to negotiate the supported SRTP
transforms and parameters.
<span class="h2"><a class="selflink" id="section-22" href="#section-22">22</a>. IANA Considerations</span>
This section describes a number of registries for RTSP 2.0 that have
been established and are maintained by IANA. These registries are
separate from any registries existing for RTSP 1.0. For each
registry, there is a description of the required content, the
registration procedures, and the entries that this document
registers. For more information on extending RTSP, see <a href="#section-2.7">Section 2.7</a>.
In addition, this document registers three SDP attributes.
Registries or entries in registries that have been made for RTSP 1.0
are not moved to RTSP 2.0: the registries and entries of RTSP 1.0 and
RTSP 2.0 are independent. If any registry or entry in a registry is
also required in RTSP 2.0, it MUST follow the procedure defined below
to allocate the registry or entry in a registry.
The sections describing how to register an item use some of the
registration policies described in [<a href="./rfc5226" title="">RFC5226</a>] -- namely, "First Come
First Served", "Expert Review", "Specification Required", and
"Standards Action".
In case a registry requires a contact person, the authors (with
Magnus Westerlund <magnus.westerlund@ericsson.com> as primary) are
the contact persons for any entries created by this document.
IANA will request the following information for any registration
request:
o A name of the item to register according to the rules specified by
the intended registry
<span class="grey">Schulzrinne, et al. Standards Track [Page 217]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-218" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
o Indication of who has change control over the feature (for
example, the IETF, ISO, ITU-T, other international standardization
bodies, a consortium, a particular company or group of companies,
or an individual)
o A reference to a further description, if available, for example
(in decreasing order of preference), an RFC, a published standard,
a published paper, a patent filing, a technical report, documented
source code or a computer manual
o For proprietary features, contact information (postal and email
address)
<span class="h3"><a class="selflink" id="section-22.1" href="#section-22.1">22.1</a>. Feature Tags</span>
<span class="h4"><a class="selflink" id="section-22.1.1" href="#section-22.1.1">22.1.1</a>. Description</span>
When a client and server try to determine what part and functionality
of the RTSP specification and any future extensions that its
counterpart implements, there is need for a namespace. This registry
contains named entries representing certain functionality.
The usage of feature tags is explained in <a href="#section-11">Section 11</a> and
<a href="#section-13.1">Section 13.1</a>.
<span class="h4"><a class="selflink" id="section-22.1.2" href="#section-22.1.2">22.1.2</a>. Registering New Feature Tags with IANA</span>
The registering of feature tags is done on a First Come, First Served
[<a href="./rfc5226" title="">RFC5226</a>] basis.
The registry entry for a feature tag has the following information:
o The name of the feature tag
* If the registrant indicates that the feature is proprietary,
IANA should request a vendor "prefix" portion of the name. The
name will then be the vendor prefix followed by a "." followed
by the rest of the provided feature name.
* If the feature is not proprietary, then IANA need not collect a
prefix for the name.
o A one-paragraph description of what the feature tag represents
o The applicability (server, client, proxy, or some combination)
o A reference to a specification, if applicable
<span class="grey">Schulzrinne, et al. Standards Track [Page 218]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-219" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
Feature tag names (including the vendor prefix) may contain any non-
space and non-control characters. There is no length limit on
feature tags.
Examples for a vendor tag describing a proprietary feature are:
vendorA.specfeat01
vendorA.specfeat02
<span class="h4"><a class="selflink" id="section-22.1.3" href="#section-22.1.3">22.1.3</a>. Registered Entries</span>
The following feature tags are defined in this specification and
hereby registered. The change control belongs to the IETF.
play.basic: The implementation for delivery and playback operations
according to the core RTSP specification, as defined in this
memo. Applies for clients, servers, and proxies. See
<a href="#section-11.1">Section 11.1</a>.
play.scale: Support of scale operations for media playback. Applies
only for servers. See <a href="#section-18.46">Section 18.46</a>.
play.speed: Support of the speed functionality for media delivery.
Applies only for servers. See <a href="#section-18.50">Section 18.50</a>.
setup.rtp.rtcp.mux: Support of the RTP and RTCP multiplexing as
discussed in <a href="#appendix-C.1.6.4">Appendix C.1.6.4</a>. Applies for both client and
servers and any media caching proxy.
The IANA registry is a table with the name, description, and
reference for each feature tag.
<span class="h3"><a class="selflink" id="section-22.2" href="#section-22.2">22.2</a>. RTSP Methods</span>
<span class="h4"><a class="selflink" id="section-22.2.1" href="#section-22.2.1">22.2.1</a>. Description</span>
Methods are described in <a href="#section-13">Section 13</a>. Extending the protocol with new
methods allows for totally new functionality.
<span class="h4"><a class="selflink" id="section-22.2.2" href="#section-22.2.2">22.2.2</a>. Registering New Methods with IANA</span>
A new method is registered through a Standards Action [<a href="./rfc5226" title="">RFC5226</a>]
because new methods may radically change the protocol's behavior and
purpose.
<span class="grey">Schulzrinne, et al. Standards Track [Page 219]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-220" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
A specification for a new RTSP method consists of the following
items:
o A method name that follows the ABNF rules for methods.
o A clear specification of what a request using the method does and
what responses are expected. In which directions the method is
used: C->S, S->C, or both. How the use of headers, if any,
modifies the behavior and effect of the method.
o A list or table specifying which of the IANA-registered headers
that are allowed to be used with the method in the request or/and
response. The list or table SHOULD follow the format of tables in
<a href="#section-18">Section 18</a>.
o Describe how the method relates to network proxies.
<span class="h4"><a class="selflink" id="section-22.2.3" href="#section-22.2.3">22.2.3</a>. Registered Entries</span>
This specification, <a href="./rfc7826">RFC 7826</a>, registers 10 methods: DESCRIBE,
GET_PARAMETER, OPTIONS, PAUSE, PLAY, PLAY_NOTIFY, REDIRECT, SETUP,
SET_PARAMETER, and TEARDOWN. The initial table of the registry is
provided below.
Method Directionality Reference
-----------------------------------------------------
DESCRIBE C->S <a href="./rfc7826">RFC 7826</a>
GET_PARAMETER C->S, S->C <a href="./rfc7826">RFC 7826</a>
OPTIONS C->S, S->C <a href="./rfc7826">RFC 7826</a>
PAUSE C->S <a href="./rfc7826">RFC 7826</a>
PLAY C->S <a href="./rfc7826">RFC 7826</a>
PLAY_NOTIFY S->C <a href="./rfc7826">RFC 7826</a>
REDIRECT S->C <a href="./rfc7826">RFC 7826</a>
SETUP C->S <a href="./rfc7826">RFC 7826</a>
SET_PARAMETER C->S, S->C <a href="./rfc7826">RFC 7826</a>
TEARDOWN C->S, S->C <a href="./rfc7826">RFC 7826</a>
<span class="h3"><a class="selflink" id="section-22.3" href="#section-22.3">22.3</a>. RTSP Status Codes</span>
<span class="h4"><a class="selflink" id="section-22.3.1" href="#section-22.3.1">22.3.1</a>. Description</span>
A status code is the three-digit number used to convey information in
RTSP response messages; see <a href="#section-8">Section 8</a>. The number space is limited,
and care should be taken not to fill the space.
<span class="grey">Schulzrinne, et al. Standards Track [Page 220]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-221" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
<span class="h4"><a class="selflink" id="section-22.3.2" href="#section-22.3.2">22.3.2</a>. Registering New Status Codes with IANA</span>
A new status code registration follows the policy of IETF Review
[<a href="./rfc5226" title="">RFC5226</a>]. New RTSP functionality requiring Status Codes should
first be registered in the range of x50-x99. Only when the range is
full should registrations be made in the x00-x49 range, unless it is
to adopt an HTTP extension to RTSP. This is done to enable any HTTP
extension to be adopted to RTSP without needing to renumber any
related status codes. A specification for a new status code must
include the following:
o The registered number.
o A description of what the status code means and the expected
behavior of the sender and receiver of the code.
<span class="h4"><a class="selflink" id="section-22.3.3" href="#section-22.3.3">22.3.3</a>. Registered Entries</span>
<a href="./rfc7826">RFC 7826</a> (this document) registers the numbered status code defined
in the ABNF entry "Status-Code", except "extension-code" (that
defines the syntax allowed for future extensions) in <a href="#section-20.2.2">Section 20.2.2</a>.
<span class="h3"><a class="selflink" id="section-22.4" href="#section-22.4">22.4</a>. RTSP Headers</span>
<span class="h4"><a class="selflink" id="section-22.4.1" href="#section-22.4.1">22.4.1</a>. Description</span>
By specifying new headers, one or more methods can be enhanced in
many different ways. An unknown header will be ignored by the
receiving agent. If the new header is vital for certain
functionality, a feature tag for the functionality can be created and
demanded to be used by the counterpart with the inclusion of a
Require header carrying the feature tag.
<span class="h4"><a class="selflink" id="section-22.4.2" href="#section-22.4.2">22.4.2</a>. Registering New Headers with IANA</span>
Registrations can be made following the Expert Review policy
[<a href="./rfc5226" title="">RFC5226</a>]. A specification is recommended to be provided, preferably
an RFC or other specification from a Standards Developing
Organization. The minimal information in a registration request is
the header name and the contact information.
The expert reviewer verifies that the registration request contains
the following information:
o The name of the header.
o An ABNF specification of the header syntax.
<span class="grey">Schulzrinne, et al. Standards Track [Page 221]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-222" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
o A list or table specifying when the header may be used,
encompassing all methods, their request or response, and the
direction (C->S or S->C).
o How the header is to be handled by proxies.
o A description of the purpose of the header.
<span class="h4"><a class="selflink" id="section-22.4.3" href="#section-22.4.3">22.4.3</a>. Registered Entries</span>
All headers specified in <a href="./rfc7826#section-18">Section 18 in RFC 7826</a> have been registered.
The registry includes the header name and reference.
Furthermore, the following legacy RTSP headers defined in other
specifications are registered with header name, and reference
according to below list. Note: these references may not fulfill all
of the above rules for registrations due to their legacy status.
o x-wap-profile defined in [<a href="#ref-TS-26234" title=""Transparent end-to-end Packet-switched Streaming Service (PSS); Protocols and codecs"">TS-26234</a>]. The x-wap-profile request-
header contains one or more absolute URLs to the requesting
agent's device-capability profile.
o x-wap-profile-diff defined in [<a href="#ref-TS-26234" title=""Transparent end-to-end Packet-switched Streaming Service (PSS); Protocols and codecs"">TS-26234</a>]. The x-wap-profile-diff
request-header contains a subset of a device-capability profile.
o x-wap-profile-warning defined in [<a href="#ref-TS-26234" title=""Transparent end-to-end Packet-switched Streaming Service (PSS); Protocols and codecs"">TS-26234</a>]. The x-wap-profile-
warning is a response-header that contains error codes explaining
to what extent the server has been able to match the terminal
request in regard to device-capability profiles, as described
using x-wap-profile and x-wap-profile-diff headers.
o x-predecbufsize defined in [<a href="#ref-TS-26234" title=""Transparent end-to-end Packet-switched Streaming Service (PSS); Protocols and codecs"">TS-26234</a>]. This response-header
provides an RTSP agent with the TS 26.234 Annex G hypothetical
pre-decoder buffer size.
o x-initpredecbufperiod defined in [<a href="#ref-TS-26234" title=""Transparent end-to-end Packet-switched Streaming Service (PSS); Protocols and codecs"">TS-26234</a>]. This response-header
provides an RTSP agent with the TS 26.234 Annex G hypothetical
pre-decoder buffering period.
o x-initpostdecbufperiod defined in [<a href="#ref-TS-26234" title=""Transparent end-to-end Packet-switched Streaming Service (PSS); Protocols and codecs"">TS-26234</a>]. This response-
header provides an RTSP agent with the TS 26.234 Annex G post-
decoder buffering period.
o 3gpp-videopostdecbufsize defined in [<a href="#ref-TS-26234" title=""Transparent end-to-end Packet-switched Streaming Service (PSS); Protocols and codecs"">TS-26234</a>]. This response-
header provides an RTSP agent with the TS 26.234 defined post-
decoder buffer size usable for H.264 (AVC) video streams.
<span class="grey">Schulzrinne, et al. Standards Track [Page 222]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-223" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
o 3GPP-Link-Char defined in [<a href="#ref-TS-26234" title=""Transparent end-to-end Packet-switched Streaming Service (PSS); Protocols and codecs"">TS-26234</a>]. This request-header
provides the RTSP server with the RTSP client's link
characteristics as determined from the radio interface. The
information that can be provided are guaranteed bitrate, maximum
bitrate and maximum transfer delay.
o 3GPP-Adaptation defined in [<a href="#ref-TS-26234" title=""Transparent end-to-end Packet-switched Streaming Service (PSS); Protocols and codecs"">TS-26234</a>]. This general-header is
part of the bitrate adaptation solution specified for the Packet-
switched Streaming Service (PSS). It provides the RTSP client's
buffer sizes and target buffer levels to the server, and responses
are used to acknowledge the support and values.
o 3GPP-QoE-Metrics defined in [<a href="#ref-TS-26234" title=""Transparent end-to-end Packet-switched Streaming Service (PSS); Protocols and codecs"">TS-26234</a>]. This general-header is
used by PSS RTSP agents to negotiate the quality of experience
metrics that a client should gather and report to the server.
o 3GPP-QoE-Feedback defined in [<a href="#ref-TS-26234" title=""Transparent end-to-end Packet-switched Streaming Service (PSS); Protocols and codecs"">TS-26234</a>]. This request-header is
used by RTSP clients supporting PSS to report the actual values of
the metrics gathered in its quality of experience metering.
The use of "x-" is NOT RECOMMENDED, but the above headers in the list
were defined prior to the clarification.
<span class="h3"><a class="selflink" id="section-22.5" href="#section-22.5">22.5</a>. Accept-Credentials</span>
The security framework's TLS connection mechanism has two
registerable entities.
<span class="h4"><a class="selflink" id="section-22.5.1" href="#section-22.5.1">22.5.1</a>. Accept-Credentials Policies</span>
This registry is for policies for an RTSP proxy's handling and
verification of TLS certificates when establishing an outbound TLS
connection on behalf of a client. In <a href="#section-19.3.1">Section 19.3.1</a>, three policies
for how to handle certificates are specified. Further policies may
be defined; registration is made through Standards Action [<a href="./rfc5226" title="">RFC5226</a>].
A registration request is required to contain the following
information:
o Name of the policy.
o Text that describes how the policy works for handling the
certificates.
o A contact person.
<span class="grey">Schulzrinne, et al. Standards Track [Page 223]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-224" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
This specification registers the following values:
Any: A policy requiring the proxy to accept any received
certificate.
Proxy: A policy where the proxy applies its own policies to
determine which certificates are accepted.
User: A policy where the certificate is required to be forwarded down
the proxy chain to the client, thus allowing the user to
decided to accept or refuse a certificate.
<span class="h4"><a class="selflink" id="section-22.5.2" href="#section-22.5.2">22.5.2</a>. Accept-Credentials Hash Algorithms</span>
The Accept-Credentials header (see <a href="#section-18.2">Section 18.2</a>) allows for the usage
of other algorithms for hashing the DER records of accepted entities.
The registration of any future algorithm is expected to be extremely
rare and could also cause interoperability problems. Therefore, the
bar for registering new algorithms is intentionally placed high.
Any registration of a new hash algorithm requires Standards Action
[<a href="./rfc5226" title="">RFC5226</a>]. The registration needs to fulfill the following
requirement:
o The algorithms identifier meeting the "token" ABNF requirement.
o Provide a definition of the algorithm.
The registered value is:
Hash Alg. ID Reference
------------------------
sha-256 <a href="./rfc7826">RFC 7826</a>
<span class="h3"><a class="selflink" id="section-22.6" href="#section-22.6">22.6</a>. Cache-Control Cache Directive Extensions</span>
There exist a number of cache directives that can be sent in the
Cache-Control header. A registry for these cache directives has been
established by IANA. New registrations in this registry require
Standards Action or IESG Approval [<a href="./rfc5226" title="">RFC5226</a>]. A registration request
needs to contain the following information.
o The name of the cache directive.
o A definition of the parameter value, if any is allowed.
o The specification if it is a request or response directive.
<span class="grey">Schulzrinne, et al. Standards Track [Page 224]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-225" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
o Text that explains how the cache directive is used for RTSP-
controlled media streams.
o A contact person.
This specification registers the following values:
no-cache:
public:
private:
no-transform:
only-if-cached:
max-stale:
min-fresh:
must-revalidate:
proxy-revalidate:
max-age:
The registry contains the name of the directive and the reference.
<span class="h3"><a class="selflink" id="section-22.7" href="#section-22.7">22.7</a>. Media Properties</span>
<span class="h4"><a class="selflink" id="section-22.7.1" href="#section-22.7.1">22.7.1</a>. Description</span>
The media streams being controlled by RTSP can have many different
properties. The media properties required to cover the use cases
that were in mind when writing the specification are defined.
However, it can be expected that further innovation will result in
new use cases or media streams with properties not covered by the
ones specified here. Thus, new media properties can be specified.
As new media properties may need a substantial amount of new
definitions to correctly specify behavior for this property, the bar
is intended to be high.
<span class="grey">Schulzrinne, et al. Standards Track [Page 225]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-226" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
<span class="h4"><a class="selflink" id="section-22.7.2" href="#section-22.7.2">22.7.2</a>. Registration Rules</span>
Registering a new media property is done following the Specification
Required policy [<a href="./rfc5226" title="">RFC5226</a>]. The expert reviewer verifies that a
registration request fulfills the following requirements.
o An ABNF definition of the media property value name that meets
"media-prop-ext" definition is included.
o A definition of which media property group it belongs to or define
a new group is included.
o A description of all changes to the behavior of RTSP as result of
these changes is included.
o A contact person for the registration is listed.
<span class="h4"><a class="selflink" id="section-22.7.3" href="#section-22.7.3">22.7.3</a>. Registered Values</span>
This specification registers the ten values listed in <a href="#section-18.29">Section 18.29</a>.
The registry contains the property group, the name of the media
property, and the reference.
<span class="h3"><a class="selflink" id="section-22.8" href="#section-22.8">22.8</a>. Notify-Reason Values</span>
<span class="h4"><a class="selflink" id="section-22.8.1" href="#section-22.8.1">22.8.1</a>. Description</span>
Notify-Reason values are used to indicate the reason the notification
was sent. Each reason has its associated rules on what headers and
information may or must be included in the notification. New
notification behaviors need to be specified to enable interoperable
usage; thus, a specification of each new value is required.
<span class="h4"><a class="selflink" id="section-22.8.2" href="#section-22.8.2">22.8.2</a>. Registration Rules</span>
Registrations for new Notify-Reason values follow the Specification
Required policy [<a href="./rfc5226" title="">RFC5226</a>]. The expert reviewer verifies that the
request fulfills the following requirements:
o An ABNF definition of the Notify-Reason value name that meets
"Notify-Reason-extension" definition is included.
o A description of which headers shall be included in the request
and response, when it should be sent, and any effect it has on the
server client state is made clear.
o A contact person for the registration is listed.
<span class="grey">Schulzrinne, et al. Standards Track [Page 226]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-227" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
<span class="h4"><a class="selflink" id="section-22.8.3" href="#section-22.8.3">22.8.3</a>. Registered Values</span>
This specification registers three values defined in the Notify-Reas-
val ABNF, <a href="#section-20.2.3">Section 20.2.3</a>:
end-of-stream: This Notify-Reason value indicates the end of a media
stream.
media-properties-update: This Notify-Reason value allows the server
to indicate that the properties of the media have changed during
the playout.
scale-change: This Notify-Reason value allows the server to notify
the client about a change in the scale of the media.
The registry contains the name, description, and reference.
<span class="h3"><a class="selflink" id="section-22.9" href="#section-22.9">22.9</a>. Range Header Formats</span>
<span class="h4"><a class="selflink" id="section-22.9.1" href="#section-22.9.1">22.9.1</a>. Description</span>
The Range header (<a href="#section-18.40">Section 18.40</a>) allows for different range formats.
These range formats also need an identifier to be used in the Accept-
Ranges header (<a href="#section-18.5">Section 18.5</a>). New range formats may be registered,
but moderation should be applied as it makes interoperability more
difficult.
<span class="h4"><a class="selflink" id="section-22.9.2" href="#section-22.9.2">22.9.2</a>. Registration Rules</span>
A registration follows the Specification Required policy [<a href="./rfc5226" title="">RFC5226</a>].
The expert reviewer verifies that the request fulfills the following
requirements:
o An ABNF definition of the range format that fulfills the "range-
ext" definition is included.
o The range format identifier used in Accept-Ranges header according
to the "extension-format" definition is defined.
o Rules for how one handles the range when using a negative Scale
are included.
o A contact person for the registration is listed.
<span class="grey">Schulzrinne, et al. Standards Track [Page 227]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-228" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
<span class="h4"><a class="selflink" id="section-22.9.3" href="#section-22.9.3">22.9.3</a>. Registered Values</span>
The registry contains the Range header format identifier, the name of
the range format, and the reference. This specification registers
the following values.
npt: Normal Play Time
clock: UTC Absolute Time format
smpte: SMPTE Timestamps
smpte-30-drop: SMPTE Timestamps 29.97 Frames/sec (30 Hz with Drop)
smpte-25: SMPTE Timestamps 25 Frames/sec
<span class="h3"><a class="selflink" id="section-22.10" href="#section-22.10">22.10</a>. Terminate-Reason Header</span>
The Terminate-Reason header (<a href="#section-18.52">Section 18.52</a>) has two registries for
extensions.
<span class="h4"><a class="selflink" id="section-22.10.1" href="#section-22.10.1">22.10.1</a>. Redirect Reasons</span>
This registry contains reasons for session termination that can be
included in a Terminate-Reason header (<a href="#section-18.52">Section 18.52</a>). Registrations
follow the Expert Review policy [<a href="./rfc5226" title="">RFC5226</a>]. The expert reviewer
verifies that the registration request contains the following
information:
o That the value follows the Terminate-Reason ABNF, i.e., be a
token.
o That the specification provide a definition of what procedures are
to be followed when a client receives this redirect reason.
o A contact person
This specification registers three values:
o Session-Timeout
o Server-Admin
o Internal-Error
The registry contains the name of the Redirect Reason and the
reference.
<span class="grey">Schulzrinne, et al. Standards Track [Page 228]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-229" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
<span class="h4"><a class="selflink" id="section-22.10.2" href="#section-22.10.2">22.10.2</a>. Terminate-Reason Header Parameters</span>
This registry contains parameters that may be included in the
Terminate-Reason header (<a href="#section-18.52">Section 18.52</a>) in addition to a reason.
Registrations are made under the Specification Required policy
[<a href="./rfc5226" title="">RFC5226</a>]. The expert reviewer verifies that the registration
request contains the following:
o A parameter name.
o A parameter following the syntax allowed by the RTSP 2.0
specification.
o A reference to the specification.
o A contact person.
This specification registers:
o time
o user-msg
The registry contains the name of the Terminate Reason and the
reference.
<span class="h3"><a class="selflink" id="section-22.11" href="#section-22.11">22.11</a>. RTP-Info Header Parameters</span>
<span class="h4"><a class="selflink" id="section-22.11.1" href="#section-22.11.1">22.11.1</a>. Description</span>
The RTP-Info header (<a href="#section-18.45">Section 18.45</a>) carries one or more parameter
value pairs with information about a particular point in the RTP
stream. RTP extensions or new usages may need new types of
information. As RTP information that could be needed is likely to be
generic enough, and to maximize the interoperability, new
registration is made under the Specification Required policy.
<span class="h4"><a class="selflink" id="section-22.11.2" href="#section-22.11.2">22.11.2</a>. Registration Rules</span>
Registrations for new RTP-Info values follow the policy of
Specification Required [<a href="./rfc5226" title="">RFC5226</a>]. The expert reviewer verifies that
the registration request contains the following information.
o An ABNF definition that meets the "generic-param" definition.
o A reference to the specification.
o A contact person for the registration.
<span class="grey">Schulzrinne, et al. Standards Track [Page 229]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-230" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
<span class="h4"><a class="selflink" id="section-22.11.3" href="#section-22.11.3">22.11.3</a>. Registered Values</span>
This specification registers the following parameter value pairs:
o url
o ssrc
o seq
o rtptime
The registry contains the name of the parameter and the reference.
<span class="h3"><a class="selflink" id="section-22.12" href="#section-22.12">22.12</a>. Seek-Style Policies</span>
<span class="h4"><a class="selflink" id="section-22.12.1" href="#section-22.12.1">22.12.1</a>. Description</span>
Seek-Style policy defines how the RTSP agent seeks in media content
when given a position within the media content. New seek policies
may be registered; however, a large number of these will complicate
implementation substantially. The impact of unknown policies is that
the server will not honor the unknown and will use the server default
policy instead.
<span class="h4"><a class="selflink" id="section-22.12.2" href="#section-22.12.2">22.12.2</a>. Registration Rules</span>
Registrations of new Seek-Style policies follow the Specification
Required policy [<a href="./rfc5226" title="">RFC5226</a>]. The expert reviewer verifies that the
registration request fulfills the following requirements:
o Has an ABNF definition of the Seek-Style policy name that meets
"Seek-S-value-ext" definition.
o Includes a short description.
o Lists a contact person for the registration.
o Includes a description of which headers shall be included in the
request and response, when it should be sent, and any affect it
has on the server-client state.
<span class="h4"><a class="selflink" id="section-22.12.3" href="#section-22.12.3">22.12.3</a>. Registered Values</span>
This specification registers four values (Name - Short Description):
o RAP - Using the closest Random Access Point prior to or at the
requested start position.
<span class="grey">Schulzrinne, et al. Standards Track [Page 230]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-231" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
o CoRAP - Conditional Random Access Point is like RAP, but only if
the RAP is closer prior to the requested start position than
current pause point.
o First-Prior - The first-prior policy will start delivery with the
media unit that has a playout time first prior to the requested
start position.
o Next - The next media units after the provided start position.
The registry contains the name of the Seek-Style policy, the
description, and the reference.
<span class="h3"><a class="selflink" id="section-22.13" href="#section-22.13">22.13</a>. Transport Header Registries</span>
The transport header (<a href="#section-18.54">Section 18.54</a>) contains a number of parameters
that have possibilities for future extensions. Therefore, registries
for these are defined below.
<span class="h4"><a class="selflink" id="section-22.13.1" href="#section-22.13.1">22.13.1</a>. Transport Protocol Identifier</span>
A Transport Protocol specification consists of a transport protocol
identifier, representing some combination of transport protocols, and
any number of transport header parameters required or optional to use
with the identified protocol specification. This registry contains
the identifiers used by registered transport protocol identifiers.
A registration for the parameter transport protocol identifier
follows the Specification Required policy [<a href="./rfc5226" title="">RFC5226</a>]. The expert
reviewer verifies that the registration request fulfills the
following requirements:
o A contact person or organization with address and email.
o A value definition that follows the ABNF syntax definition of
"transport-id" <a href="#section-20.2.3">Section 20.2.3</a>.
o A descriptive text that explains how the registered values are
used in RTSP, which underlying transport protocols are used, and
any required Transport header parameters.
The registry contains the protocol ID string and the reference.
<span class="grey">Schulzrinne, et al. Standards Track [Page 231]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-232" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
This specification registers the following values:
RTP/AVP: Use of the RTP [<a href="./rfc3550" title=""RTP: A Transport Protocol for Real-Time Applications"">RFC3550</a>] protocol for media transport in
combination with the "RTP Profile for Audio and Video
Conferences with Minimal Control" [<a href="./rfc3551" title=""RTP Profile for Audio and Video Conferences with Minimal Control"">RFC3551</a>] over UDP. The
usage is explained in <a href="./rfc7826#appendix-C.1">RFC 7826, Appendix C.1</a>.
RTP/AVP/UDP: the same as RTP/AVP.
RTP/AVPF: Use of the RTP [<a href="./rfc3550" title=""RTP: A Transport Protocol for Real-Time Applications"">RFC3550</a>] protocol for media transport in
combination with the "Extended RTP Profile for RTCP-based
Feedback (RTP/AVPF)" [<a href="./rfc4585" title=""Extended RTP Profile for Real-time Transport Control Protocol (RTCP)-Based Feedback (RTP/AVPF)"">RFC4585</a>] over UDP. The usage is
explained in <a href="./rfc7826#appendix-C.1">RFC 7826, Appendix C.1</a>.
RTP/AVPF/UDP: the same as RTP/AVPF.
RTP/SAVP: Use of the RTP [<a href="./rfc3550" title=""RTP: A Transport Protocol for Real-Time Applications"">RFC3550</a>] protocol for media transport in
combination with the "The Secure Real-time Transport Protocol
(SRTP)" [<a href="./rfc3711" title=""The Secure Real-time Transport Protocol (SRTP)"">RFC3711</a>] over UDP. The usage is explained in <a href="./rfc7826">RFC</a>
<a href="./rfc7826">7826</a>, <a href="#appendix-C.1">Appendix C.1</a>.
RTP/SAVP/UDP: the same as RTP/SAVP.
RTP/SAVPF: Use of the RTP [<a href="./rfc3550" title=""RTP: A Transport Protocol for Real-Time Applications"">RFC3550</a>] protocol for media transport in
combination with the "Extended Secure RTP Profile for Real-time
Transport Control Protocol (RTCP)-Based Feedback (RTP/SAVPF)"
[<a href="./rfc5124" title=""Extended Secure RTP Profile for Real-time Transport Control Protocol (RTCP)-Based Feedback (RTP/SAVPF)"">RFC5124</a>] over UDP. The usage is explained in <a href="./rfc7826#appendix-C.1">RFC 7826,
Appendix C.1</a>.
RTP/SAVPF/UDP: the same as RTP/SAVPF.
RTP/AVP/TCP: Use of the RTP [<a href="./rfc3550" title=""RTP: A Transport Protocol for Real-Time Applications"">RFC3550</a>] protocol for media transport
in combination with the "RTP profile for audio and video
conferences with minimal control" [<a href="./rfc3551" title=""RTP Profile for Audio and Video Conferences with Minimal Control"">RFC3551</a>] over TCP. The
usage is explained in <a href="./rfc7826#appendix-C.2.2">RFC 7826, Appendix C.2.2</a>.
RTP/AVPF/TCP: Use of the RTP [<a href="./rfc3550" title=""RTP: A Transport Protocol for Real-Time Applications"">RFC3550</a>] protocol for media transport
in combination with the "Extended RTP Profile for Real-time
Transport Control Protocol (RTCP)-Based Feedback (RTP/AVPF)"
[<a href="./rfc4585" title=""Extended RTP Profile for Real-time Transport Control Protocol (RTCP)-Based Feedback (RTP/AVPF)"">RFC4585</a>] over TCP. The usage is explained in <a href="./rfc7826#appendix-C.2.2">RFC 7826,
Appendix C.2.2</a>.
RTP/SAVP/TCP: Use of the RTP [<a href="./rfc3550" title=""RTP: A Transport Protocol for Real-Time Applications"">RFC3550</a>] protocol for media transport
in combination with the "The Secure Real-time Transport
Protocol (SRTP)" [<a href="./rfc3711" title=""The Secure Real-time Transport Protocol (SRTP)"">RFC3711</a>] over TCP. The usage is explained in
<a href="./rfc7826#appendix-C.2.2">RFC 7826, Appendix C.2.2</a>.
<span class="grey">Schulzrinne, et al. Standards Track [Page 232]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-233" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
RTP/SAVPF/TCP: Use of the RTP [<a href="./rfc3550" title=""RTP: A Transport Protocol for Real-Time Applications"">RFC3550</a>] protocol for media transport
in combination with the "Extended Secure RTP Profile for Real-
time Transport Control Protocol (RTCP)-Based Feedback (RTP/
SAVPF)" [<a href="./rfc5124" title=""Extended Secure RTP Profile for Real-time Transport Control Protocol (RTCP)-Based Feedback (RTP/SAVPF)"">RFC5124</a>] over TCP. The usage is explained in <a href="./rfc7826">RFC</a>
<a href="./rfc7826">7826</a>, <a href="#appendix-C.2.2">Appendix C.2.2</a>.
<span class="h4"><a class="selflink" id="section-22.13.2" href="#section-22.13.2">22.13.2</a>. Transport Modes</span>
The Transport Mode is a Transport header (<a href="#section-18.54">Section 18.54</a>) parameter.
It is used to identify the general mode of media transport. The PLAY
value registered defines a PLAYBACK mode, where media flows from
server to client.
A registration for the transport parameter mode follows the Standards
Action policy [<a href="./rfc5226" title="">RFC5226</a>]. The registration request needs to meet the
following requirements:
o A value definition that follows the ABNF "token" definition
<a href="#section-20.2.3">Section 20.2.3</a>.
o Text that explains how the registered value is used in RTSP.
This specification registers one value:
PLAY: See <a href="./rfc7826">RFC 7826</a>.
The registry contains the transport mode value and the reference.
<span class="h4"><a class="selflink" id="section-22.13.3" href="#section-22.13.3">22.13.3</a>. Transport Parameters</span>
Transport Parameters are different parameters used in a Transport
header's transport specification (<a href="#section-18.54">Section 18.54</a>) to provide
additional information required beyond the transport protocol
identifier to establish a functioning transport.
A registration for parameters that may be included in the Transport
header follows the Specification Required policy [<a href="./rfc5226" title="">RFC5226</a>]. The
expert reviewer verifies that the registration request fulfills the
following requirements:
o A Transport Parameter Name following the "token" ABNF definition.
o A value definition, if the parameter takes a value, that follows
the ABNF definition of "trn-par-value" <a href="#section-20.2.3">Section 20.2.3</a>.
o Text that explains how the registered value is used in RTSP.
<span class="grey">Schulzrinne, et al. Standards Track [Page 233]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-234" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
This specification registers all the transport parameters defined in
<a href="#section-18.54">Section 18.54</a>. This is a copy of that list:
o unicast
o multicast
o interleaved
o ttl
o layers
o ssrc
o mode
o dest_addr
o src_addr
o setup
o connection
o RTCP-mux
o MIKEY
The registry contains the transport parameter name and the reference.
<span class="h3"><a class="selflink" id="section-22.14" href="#section-22.14">22.14</a>. URI Schemes</span>
This specification updates two URI schemes: one previously
registered, "rtsp", and one missing in the registry, "rtspu"
(previously only defined in RTSP 1.0 [<a href="./rfc2326" title=""Real Time Streaming Protocol (RTSP)"">RFC2326</a>]). One new URI scheme,
"rtsps", is also registered. These URI schemes are registered in an
existing registry ("Uniform Resource Identifier (URI) Schemes") not
created by this memo. Registrations follow [<a href="./rfc7595" title=""Guidelines and Registration Procedures for URI Schemes"">RFC7595</a>].
<span class="h4"><a class="selflink" id="section-22.14.1" href="#section-22.14.1">22.14.1</a>. The "rtsp" URI Scheme</span>
URI scheme name: rtsp
Status: Permanent
URI scheme syntax: See <a href="./rfc7826#section-20.2.1">Section 20.2.1 of RFC 7826</a>.
<span class="grey">Schulzrinne, et al. Standards Track [Page 234]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-235" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
URI scheme semantics: The rtsp scheme is used to indicate resources
accessible through the usage of the Real-Time Streaming
Protocol (RTSP). RTSP allows different operations on the
resource identified by the URI, but the primary purpose is the
streaming delivery of the resource to a client. However, the
operations that are currently defined are DESCRIBE,
GET_PARAMETER, OPTIONS, PLAY, PLAY_NOTIFY, PAUSE, REDIRECT,
SETUP, SET_PARAMETER, and TEARDOWN.
Encoding considerations: IRIs in this scheme are defined and need to
be encoded as RTSP URIs when used within RTSP. That encoding
is done according to <a href="./rfc3987">RFC 3987</a>.
Applications/protocols that use this URI scheme name: RTSP 1.0 (<a href="./rfc2326">RFC</a>
<a href="./rfc2326">2326</a>), RTSP 2.0 (<a href="./rfc7826">RFC 7826</a>).
Interoperability considerations: The extensions in the URI syntax
performed between RTSP 1.0 and 2.0 can create interoperability
issues. The changes are:
Support for IPv6 literals in the host part and future IP
literals through a mechanism as defined in <a href="./rfc3986">RFC 3986</a>.
A new relative format to use in RTSP elements that is not
required to start with "/".
The above changes should have no impact on interoperability as
discussed in detail in <a href="./rfc7826#section-4.2">Section 4.2 of RFC 7826</a>.
Security considerations: All the security threats identified in
<a href="./rfc3986#section-7">Section 7 of RFC 3986</a> also apply to this scheme. They need to
be reviewed and considered in any implementation utilizing this
scheme.
Contact: Magnus Westerlund, magnus.westerlund@ericsson.com
Author/Change controller: IETF
References: <a href="./rfc2326">RFC 2326</a>, <a href="./rfc3986">RFC 3986</a>, <a href="./rfc3987">RFC 3987</a>, and <a href="./rfc7826">RFC 7826</a>
<span class="h4"><a class="selflink" id="section-22.14.2" href="#section-22.14.2">22.14.2</a>. The "rtsps" URI Scheme</span>
URI scheme name: rtsps
Status: Permanent
URI scheme syntax: See <a href="./rfc7826#section-20.2.1">Section 20.2.1 of RFC 7826</a>.
<span class="grey">Schulzrinne, et al. Standards Track [Page 235]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-236" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
URI scheme semantics: The rtsps scheme is used to indicate resources
accessible through the usage of the Real-Time Streaming
Protocol (RTSP) over TLS. RTSP allows different operations on
the resource identified by the URI, but the primary purpose is
the streaming delivery of the resource to a client. However,
the operations that are currently defined are DESCRIBE,
GET_PARAMETER, OPTIONS, PLAY, PLAY_NOTIFY, PAUSE, REDIRECT,
SETUP, SET_PARAMETER, and TEARDOWN.
Encoding considerations: IRIs in this scheme are defined and need to
be encoded as RTSP URIs when used within RTSP. That encoding
is done according to <a href="./rfc3987">RFC 3987</a>.
Applications/protocols that use this URI scheme name: RTSP 1.0 (<a href="./rfc2326">RFC</a>
<a href="./rfc2326">2326</a>), RTSP 2.0 (<a href="./rfc7826">RFC 7826</a>).
Interoperability considerations: The "rtsps" scheme was never
officially defined for RTSP 1.0; however, it has seen
widespread use in actual deployments of RTSP 1.0. Therefore,
this section discusses the believed changes between the
unspecified RTSP 1.0 "rtsps" scheme and RTSP 2.0 definition.
The extensions in the URI syntax performed between RTSP 1.0 and
2.0 can create interoperability issues. The changes are:
Support for IPv6 literals in the host part and future IP
literals through a mechanism as defined by <a href="./rfc3986">RFC 3986</a>.
A new relative format to use in RTSP elements that is not
required to start with "/".
The above changes should have no impact on interoperability as
discussed in detail in <a href="./rfc7826#section-4.2">Section 4.2 of RFC 7826</a>.
Security considerations: All the security threats identified in
<a href="./rfc3986#section-7">Section 7 of RFC 3986</a> also apply to this scheme. They need to
be reviewed and considered in any implementation utilizing this
scheme.
Contact: Magnus Westerlund, magnus.westerlund@ericsson.com
Author/Change controller: IETF
References: <a href="./rfc2326">RFC 2326</a>, <a href="./rfc3986">RFC 3986</a>, <a href="./rfc3987">RFC 3987</a>, and <a href="./rfc7826">RFC 7826</a>
<span class="grey">Schulzrinne, et al. Standards Track [Page 236]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-237" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
<span class="h4"><a class="selflink" id="section-22.14.3" href="#section-22.14.3">22.14.3</a>. The "rtspu" URI Scheme</span>
URI scheme name: rtspu
Status: Permanent
URI scheme syntax: See <a href="./rfc2326#section-3.2">Section 3.2 of RFC 2326</a>.
URI scheme semantics: The rtspu scheme is used to indicate resources
accessible through the usage of the Real-Time Streaming
Protocol (RTSP) over unreliable datagram transport. RTSP
allows different operations on the resource identified by the
URI, but the primary purpose is the streaming delivery of the
resource to a client. However, the operations that are
currently defined are DESCRIBE, GET_PARAMETER, OPTIONS,
REDIRECT,PLAY, PLAY_NOTIFY, PAUSE, SETUP, SET_PARAMETER, and
TEARDOWN.
Encoding considerations: This scheme is not intended to be used with
characters outside the US-ASCII repertoire.
Applications/protocols that use this URI scheme name: RTSP 1.0 (<a href="./rfc2326">RFC</a>
<a href="./rfc2326">2326</a>).
Interoperability considerations: The definition of the transport
mechanism of RTSP over UDP has interoperability issues. That
makes the usage of this scheme problematic.
Security considerations: All the security threats identified in
<a href="./rfc3986#section-7">Section 7 of RFC 3986</a> also apply to this scheme. They need to
be reviewed and considered in any implementation utilizing this
scheme.
Contact: Magnus Westerlund, magnus.westerlund@ericsson.com
Author/Change controller: IETF
References: <a href="./rfc2326">RFC 2326</a>
<span class="grey">Schulzrinne, et al. Standards Track [Page 237]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-238" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
<span class="h3"><a class="selflink" id="section-22.15" href="#section-22.15">22.15</a>. SDP Attributes</span>
This specification defines three SDP [<a href="./rfc4566" title=""SDP: Session Description Protocol"">RFC4566</a>] attributes that have
been registered by IANA.
SDP Attribute ("att-field"):
Attribute name: range
Long form: Media Range Attribute
Type of name: att-field
Type of attribute: both session and media level
Subject to charset: No
Purpose: <a href="./rfc7826">RFC 7826</a>
Reference: <a href="./rfc2326">RFC 2326</a>, <a href="./rfc7826">RFC 7826</a>
Values: See ABNF definition.
Attribute name: control
Long form: RTSP control URI
Type of name: att-field
Type of attribute: both session and media level
Subject to charset: No
Purpose: <a href="./rfc7826">RFC 7826</a>
Reference: <a href="./rfc2326">RFC 2326</a>, <a href="./rfc7826">RFC 7826</a>
Values: Absolute or Relative URIs.
Attribute name: mtag
Long form: Message Tag
Type of name: att-field
Type of attribute: both session and media level
Subject to charset: No
Purpose: <a href="./rfc7826">RFC 7826</a>
Reference: <a href="./rfc7826">RFC 7826</a>
Values: See ABNF definition
<span class="h3"><a class="selflink" id="section-22.16" href="#section-22.16">22.16</a>. Media Type Registration for text/parameters</span>
Type name: text
Subtype name: parameters
Required parameters:
Optional parameters: charset: The charset parameter is applicable to
the encoding of the parameter values. The default charset is
UTF-8, if the 'charset' parameter is not present.
Encoding considerations: 8bit
<span class="grey">Schulzrinne, et al. Standards Track [Page 238]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-239" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
Security considerations: This format may carry any type of
parameters. Some can have security requirements, like privacy,
confidentiality, or integrity requirements. The format has no
built-in security protection. For the usage, the transport can be
protected between server and client using TLS. However, care must
be taken to consider if the proxies are also trusted with the
parameters in case hop-by-hop security is used. If stored as a
file in a file system, the necessary precautions need to be taken
in relation to the parameter requirements including object
security such as S/MIME [<a href="./rfc5751" title=""Secure/Multipurpose Internet Mail Extensions (S/MIME) Version 3.2 Message Specification"">RFC5751</a>].
Interoperability considerations: This media type was mentioned as a
fictional example in [<a href="./rfc2326" title=""Real Time Streaming Protocol (RTSP)"">RFC2326</a>], but was not formally specified.
This has resulted in usage of this media type that may not match
its formal definition.
Published specification: <a href="./rfc7826#appendix-F">RFC 7826, Appendix F</a>.
Applications that use this media type: Applications that use RTSP
and have additional parameters they like to read and set using the
RTSP GET_PARAMETER and SET_PARAMETER methods.
Additional information:
Magic number(s): N/A
File extension(s): N/A
Macintosh file type code(s): N/A
Person & email address to contact for further information:
Magnus Westerlund (magnus.westerlund@ericsson.com)
Intended usage: Common
Restrictions on usage: None
Author: Magnus Westerlund (magnus.westerlund@ericsson.com)
Change controller: IETF
Addition Notes:
<span class="grey">Schulzrinne, et al. Standards Track [Page 239]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-240" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
<span class="h2"><a class="selflink" id="section-23" href="#section-23">23</a>. References</span>
<span class="h3"><a class="selflink" id="section-23.1" href="#section-23.1">23.1</a>. Normative References</span>
[<a id="ref-FIPS180-4">FIPS180-4</a>]
National Institute of Standards and Technology (NIST),
"Federal Information Processing Standards Publication:
Secure Hash Standard (SHS)", DOI 10.6028/NIST.FIPS.180-4,
August 2015, <<a href="http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf">http://nvlpubs.nist.gov/nistpubs/FIPS/</a>
<a href="http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf">NIST.FIPS.180-4.pdf</a>>.
[<a id="ref-RFC768">RFC768</a>] Postel, J., "User Datagram Protocol", STD 6, <a href="./rfc768">RFC 768</a>,
DOI 10.17487/RFC0768, August 1980,
<<a href="http://www.rfc-editor.org/info/rfc768">http://www.rfc-editor.org/info/rfc768</a>>.
[<a id="ref-RFC793">RFC793</a>] Postel, J., "Transmission Control Protocol", STD 7,
<a href="./rfc793">RFC 793</a>, DOI 10.17487/RFC0793, September 1981,
<<a href="http://www.rfc-editor.org/info/rfc793">http://www.rfc-editor.org/info/rfc793</a>>.
[<a id="ref-RFC2119">RFC2119</a>] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", <a href="https://www.rfc-editor.org/bcp/bcp14">BCP 14</a>, <a href="./rfc2119">RFC 2119</a>,
DOI 10.17487/RFC2119, March 1997,
<<a href="http://www.rfc-editor.org/info/rfc2119">http://www.rfc-editor.org/info/rfc2119</a>>.
[<a id="ref-RFC2460">RFC2460</a>] Deering, S. and R. Hinden, "Internet Protocol, Version 6
(IPv6) Specification", <a href="./rfc2460">RFC 2460</a>, DOI 10.17487/RFC2460,
December 1998, <<a href="http://www.rfc-editor.org/info/rfc2460">http://www.rfc-editor.org/info/rfc2460</a>>.
[<a id="ref-RFC2616">RFC2616</a>] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
Transfer Protocol -- HTTP/1.1", <a href="./rfc2616">RFC 2616</a>,
DOI 10.17487/RFC2616, June 1999,
<<a href="http://www.rfc-editor.org/info/rfc2616">http://www.rfc-editor.org/info/rfc2616</a>>.
[<a id="ref-RFC2617">RFC2617</a>] Franks, J., Hallam-Baker, P., Hostetler, J., Lawrence, S.,
Leach, P., Luotonen, A., and L. Stewart, "HTTP
Authentication: Basic and Digest Access Authentication",
<a href="./rfc2617">RFC 2617</a>, DOI 10.17487/RFC2617, June 1999,
<<a href="http://www.rfc-editor.org/info/rfc2617">http://www.rfc-editor.org/info/rfc2617</a>>.
[<a id="ref-RFC2818">RFC2818</a>] Rescorla, E., "HTTP Over TLS", <a href="./rfc2818">RFC 2818</a>,
DOI 10.17487/RFC2818, May 2000,
<<a href="http://www.rfc-editor.org/info/rfc2818">http://www.rfc-editor.org/info/rfc2818</a>>.
[<a id="ref-RFC3550">RFC3550</a>] Schulzrinne, H., Casner, S., Frederick, R., and V.
Jacobson, "RTP: A Transport Protocol for Real-Time
Applications", STD 64, <a href="./rfc3550">RFC 3550</a>, DOI 10.17487/RFC3550,
July 2003, <<a href="http://www.rfc-editor.org/info/rfc3550">http://www.rfc-editor.org/info/rfc3550</a>>.
<span class="grey">Schulzrinne, et al. Standards Track [Page 240]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-241" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
[<a id="ref-RFC3551">RFC3551</a>] Schulzrinne, H. and S. Casner, "RTP Profile for Audio and
Video Conferences with Minimal Control", STD 65, <a href="./rfc3551">RFC 3551</a>,
DOI 10.17487/RFC3551, July 2003,
<<a href="http://www.rfc-editor.org/info/rfc3551">http://www.rfc-editor.org/info/rfc3551</a>>.
[<a id="ref-RFC3629">RFC3629</a>] Yergeau, F., "UTF-8, a transformation format of ISO
10646", STD 63, <a href="./rfc3629">RFC 3629</a>, DOI 10.17487/RFC3629, November
2003, <<a href="http://www.rfc-editor.org/info/rfc3629">http://www.rfc-editor.org/info/rfc3629</a>>.
[<a id="ref-RFC3711">RFC3711</a>] Baugher, M., McGrew, D., Naslund, M., Carrara, E., and K.
Norrman, "The Secure Real-time Transport Protocol (SRTP)",
<a href="./rfc3711">RFC 3711</a>, DOI 10.17487/RFC3711, March 2004,
<<a href="http://www.rfc-editor.org/info/rfc3711">http://www.rfc-editor.org/info/rfc3711</a>>.
[<a id="ref-RFC3830">RFC3830</a>] Arkko, J., Carrara, E., Lindholm, F., Naslund, M., and K.
Norrman, "MIKEY: Multimedia Internet KEYing", <a href="./rfc3830">RFC 3830</a>,
DOI 10.17487/RFC3830, August 2004,
<<a href="http://www.rfc-editor.org/info/rfc3830">http://www.rfc-editor.org/info/rfc3830</a>>.
[<a id="ref-RFC3986">RFC3986</a>] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
Resource Identifier (URI): Generic Syntax", STD 66,
<a href="./rfc3986">RFC 3986</a>, DOI 10.17487/RFC3986, January 2005,
<<a href="http://www.rfc-editor.org/info/rfc3986">http://www.rfc-editor.org/info/rfc3986</a>>.
[<a id="ref-RFC3987">RFC3987</a>] Duerst, M. and M. Suignard, "Internationalized Resource
Identifiers (IRIs)", <a href="./rfc3987">RFC 3987</a>, DOI 10.17487/RFC3987,
January 2005, <<a href="http://www.rfc-editor.org/info/rfc3987">http://www.rfc-editor.org/info/rfc3987</a>>.
[<a id="ref-RFC4086">RFC4086</a>] Eastlake 3rd, D., Schiller, J., and S. Crocker,
"Randomness Requirements for Security", <a href="https://www.rfc-editor.org/bcp/bcp106">BCP 106</a>, <a href="./rfc4086">RFC 4086</a>,
DOI 10.17487/RFC4086, June 2005,
<<a href="http://www.rfc-editor.org/info/rfc4086">http://www.rfc-editor.org/info/rfc4086</a>>.
[<a id="ref-RFC4291">RFC4291</a>] Hinden, R. and S. Deering, "IP Version 6 Addressing
Architecture", <a href="./rfc4291">RFC 4291</a>, DOI 10.17487/RFC4291, February
2006, <<a href="http://www.rfc-editor.org/info/rfc4291">http://www.rfc-editor.org/info/rfc4291</a>>.
[<a id="ref-RFC7595">RFC7595</a>] Thaler, D., Ed., Hansen, T., and T. Hardie, "Guidelines
and Registration Procedures for URI Schemes", <a href="https://www.rfc-editor.org/bcp/bcp35">BCP 35</a>, <a href="./rfc7595">RFC</a>
<a href="./rfc7595">7595</a>, DOI 10.17487/RFC7595, June 2015, <<a href="http://www.rfc-editor.org/info/rfc7595">http://www.rfc-</a>
<a href="http://www.rfc-editor.org/info/rfc7595">editor.org/info/rfc7595</a>>.
[<a id="ref-RFC4566">RFC4566</a>] Handley, M., Jacobson, V., and C. Perkins, "SDP: Session
Description Protocol", <a href="./rfc4566">RFC 4566</a>, DOI 10.17487/RFC4566,
July 2006, <<a href="http://www.rfc-editor.org/info/rfc4566">http://www.rfc-editor.org/info/rfc4566</a>>.
<span class="grey">Schulzrinne, et al. Standards Track [Page 241]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-242" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
[<a id="ref-RFC4571">RFC4571</a>] Lazzaro, J., "Framing Real-time Transport Protocol (RTP)
and RTP Control Protocol (RTCP) Packets over Connection-
Oriented Transport", <a href="./rfc4571">RFC 4571</a>, DOI 10.17487/RFC4571, July
2006, <<a href="http://www.rfc-editor.org/info/rfc4571">http://www.rfc-editor.org/info/rfc4571</a>>.
[<a id="ref-RFC4585">RFC4585</a>] Ott, J., Wenger, S., Sato, N., Burmeister, C., and J. Rey,
"Extended RTP Profile for Real-time Transport Control
Protocol (RTCP)-Based Feedback (RTP/AVPF)", <a href="./rfc4585">RFC 4585</a>,
DOI 10.17487/RFC4585, July 2006,
<<a href="http://www.rfc-editor.org/info/rfc4585">http://www.rfc-editor.org/info/rfc4585</a>>.
[<a id="ref-RFC4648">RFC4648</a>] Josefsson, S., "The Base16, Base32, and Base64 Data
Encodings", <a href="./rfc4648">RFC 4648</a>, DOI 10.17487/RFC4648, October 2006,
<<a href="http://www.rfc-editor.org/info/rfc4648">http://www.rfc-editor.org/info/rfc4648</a>>.
[<a id="ref-RFC4738">RFC4738</a>] Ignjatic, D., Dondeti, L., Audet, F., and P. Lin, "MIKEY-
RSA-R: An Additional Mode of Key Distribution in
Multimedia Internet KEYing (MIKEY)", <a href="./rfc4738">RFC 4738</a>,
DOI 10.17487/RFC4738, November 2006,
<<a href="http://www.rfc-editor.org/info/rfc4738">http://www.rfc-editor.org/info/rfc4738</a>>.
[<a id="ref-RFC5124">RFC5124</a>] Ott, J. and E. Carrara, "Extended Secure RTP Profile for
Real-time Transport Control Protocol (RTCP)-Based Feedback
(RTP/SAVPF)", <a href="./rfc5124">RFC 5124</a>, DOI 10.17487/RFC5124, February
2008, <<a href="http://www.rfc-editor.org/info/rfc5124">http://www.rfc-editor.org/info/rfc5124</a>>.
[<a id="ref-RFC5226">RFC5226</a>] Narten, T. and H. Alvestrand, "Guidelines for Writing an
IANA Considerations Section in RFCs", <a href="https://www.rfc-editor.org/bcp/bcp26">BCP 26</a>, <a href="./rfc5226">RFC 5226</a>,
DOI 10.17487/RFC5226, May 2008,
<<a href="http://www.rfc-editor.org/info/rfc5226">http://www.rfc-editor.org/info/rfc5226</a>>.
[<a id="ref-RFC5234">RFC5234</a>] Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
Specifications: ABNF", STD 68, <a href="./rfc5234">RFC 5234</a>,
DOI 10.17487/RFC5234, January 2008,
<<a href="http://www.rfc-editor.org/info/rfc5234">http://www.rfc-editor.org/info/rfc5234</a>>.
[<a id="ref-RFC5246">RFC5246</a>] Dierks, T. and E. Rescorla, "The Transport Layer Security
(TLS) Protocol Version 1.2", <a href="./rfc5246">RFC 5246</a>,
DOI 10.17487/RFC5246, August 2008,
<<a href="http://www.rfc-editor.org/info/rfc5246">http://www.rfc-editor.org/info/rfc5246</a>>.
[<a id="ref-RFC5280">RFC5280</a>] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
Housley, R., and W. Polk, "Internet X.509 Public Key
Infrastructure Certificate and Certificate Revocation List
(CRL) Profile", <a href="./rfc5280">RFC 5280</a>, DOI 10.17487/RFC5280, May 2008,
<<a href="http://www.rfc-editor.org/info/rfc5280">http://www.rfc-editor.org/info/rfc5280</a>>.
<span class="grey">Schulzrinne, et al. Standards Track [Page 242]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-243" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
[<a id="ref-RFC5322">RFC5322</a>] Resnick, P., Ed., "Internet Message Format", <a href="./rfc5322">RFC 5322</a>,
DOI 10.17487/RFC5322, October 2008,
<<a href="http://www.rfc-editor.org/info/rfc5322">http://www.rfc-editor.org/info/rfc5322</a>>.
[<a id="ref-RFC5646">RFC5646</a>] Phillips, A., Ed. and M. Davis, Ed., "Tags for Identifying
Languages", <a href="https://www.rfc-editor.org/bcp/bcp47">BCP 47</a>, <a href="./rfc5646">RFC 5646</a>, DOI 10.17487/RFC5646,
September 2009, <<a href="http://www.rfc-editor.org/info/rfc5646">http://www.rfc-editor.org/info/rfc5646</a>>.
[<a id="ref-RFC5751">RFC5751</a>] Ramsdell, B. and S. Turner, "Secure/Multipurpose Internet
Mail Extensions (S/MIME) Version 3.2 Message
Specification", <a href="./rfc5751">RFC 5751</a>, DOI 10.17487/RFC5751, January
2010, <<a href="http://www.rfc-editor.org/info/rfc5751">http://www.rfc-editor.org/info/rfc5751</a>>.
[<a id="ref-RFC5761">RFC5761</a>] Perkins, C. and M. Westerlund, "Multiplexing RTP Data and
Control Packets on a Single Port", <a href="./rfc5761">RFC 5761</a>,
DOI 10.17487/RFC5761, April 2010,
<<a href="http://www.rfc-editor.org/info/rfc5761">http://www.rfc-editor.org/info/rfc5761</a>>.
[<a id="ref-RFC5888">RFC5888</a>] Camarillo, G. and H. Schulzrinne, "The Session Description
Protocol (SDP) Grouping Framework", <a href="./rfc5888">RFC 5888</a>,
DOI 10.17487/RFC5888, June 2010,
<<a href="http://www.rfc-editor.org/info/rfc5888">http://www.rfc-editor.org/info/rfc5888</a>>.
[<a id="ref-RFC6838">RFC6838</a>] Freed, N., Klensin, J., and T. Hansen, "Media Type
Specifications and Registration Procedures", <a href="https://www.rfc-editor.org/bcp/bcp13">BCP 13</a>,
<a href="./rfc6838">RFC 6838</a>, DOI 10.17487/RFC6838, January 2013,
<<a href="http://www.rfc-editor.org/info/rfc6838">http://www.rfc-editor.org/info/rfc6838</a>>.
[<a id="ref-RFC7230">RFC7230</a>] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
Protocol (HTTP/1.1): Message Syntax and Routing",
<a href="./rfc7230">RFC 7230</a>, DOI 10.17487/RFC7230, June 2014,
<<a href="http://www.rfc-editor.org/info/rfc7230">http://www.rfc-editor.org/info/rfc7230</a>>.
[<a id="ref-RFC7231">RFC7231</a>] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
Protocol (HTTP/1.1): Semantics and Content", <a href="./rfc7231">RFC 7231</a>,
DOI 10.17487/RFC7231, June 2014,
<<a href="http://www.rfc-editor.org/info/rfc7231">http://www.rfc-editor.org/info/rfc7231</a>>.
[<a id="ref-RFC7232">RFC7232</a>] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
Protocol (HTTP/1.1): Conditional Requests", <a href="./rfc7232">RFC 7232</a>,
DOI 10.17487/RFC7232, June 2014,
<<a href="http://www.rfc-editor.org/info/rfc7232">http://www.rfc-editor.org/info/rfc7232</a>>.
[<a id="ref-RFC7233">RFC7233</a>] Fielding, R., Ed., Lafon, Y., Ed., and J. Reschke, Ed.,
"Hypertext Transfer Protocol (HTTP/1.1): Range Requests",
<a href="./rfc7233">RFC 7233</a>, DOI 10.17487/RFC7233, June 2014,
<<a href="http://www.rfc-editor.org/info/rfc7233">http://www.rfc-editor.org/info/rfc7233</a>>.
<span class="grey">Schulzrinne, et al. Standards Track [Page 243]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-244" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
[<a id="ref-RFC7234">RFC7234</a>] Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke,
Ed., "Hypertext Transfer Protocol (HTTP/1.1): Caching",
<a href="./rfc7234">RFC 7234</a>, DOI 10.17487/RFC7234, June 2014,
<<a href="http://www.rfc-editor.org/info/rfc7234">http://www.rfc-editor.org/info/rfc7234</a>>.
[<a id="ref-RFC7235">RFC7235</a>] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
Protocol (HTTP/1.1): Authentication", <a href="./rfc7235">RFC 7235</a>,
DOI 10.17487/RFC7235, June 2014,
<<a href="http://www.rfc-editor.org/info/rfc7235">http://www.rfc-editor.org/info/rfc7235</a>>.
[<a id="ref-RFC7615">RFC7615</a>] Reschke, J., "HTTP Authentication-Info and Proxy-
Authentication-Info Response Header Fields", <a href="./rfc7615">RFC 7615</a>,
DOI 10.17487/RFC7615, September 2015,
<<a href="http://www.rfc-editor.org/info/rfc7615">http://www.rfc-editor.org/info/rfc7615</a>>.
[<a id="ref-RFC7616">RFC7616</a>] Shekh-Yusef, R., Ed., Ahrens, D., and S. Bremer, "HTTP
Digest Access Authentication", <a href="./rfc7616">RFC 7616</a>,
DOI 10.17487/RFC7616, September 2015,
<<a href="http://www.rfc-editor.org/info/rfc7616">http://www.rfc-editor.org/info/rfc7616</a>>.
[<a id="ref-RFC7617">RFC7617</a>] Reschke, J., "The 'Basic' HTTP Authentication Scheme",
<a href="./rfc7617">RFC 7617</a>, DOI 10.17487/RFC7617, September 2015,
<<a href="http://www.rfc-editor.org/info/rfc7617">http://www.rfc-editor.org/info/rfc7617</a>>.
[<a id="ref-RFC7825">RFC7825</a>] Goldberg, J., Westerlund, M., and T. Zeng, "A Network
Address Translator (NAT) Traversal Mechanism for Media
Controlled by Real-Time Streaming Protocol (RTSP)",
<a href="./rfc7825">RFC 7825</a>, DOI 10.17487/RFC7825, December 2016,
<<a href="http://www.rfc-editor.org/info/rfc7825">http://www.rfc-editor.org/info/rfc7825</a>>.
[<a id="ref-RTP-CIRCUIT-BREAKERS">RTP-CIRCUIT-BREAKERS</a>]
Perkins, C. and V. Singh, "Multimedia Congestion Control:
Circuit Breakers for Unicast RTP Sessions", Work in
Progress, <a href="./draft-ietf-avtcore-rtp-circuit-breakers-13">draft-ietf-avtcore-rtp-circuit-breakers-13</a>,
February 2016.
[<a id="ref-SMPTE-TC">SMPTE-TC</a>] Society of Motion Picture and Television Engineers, "ST
12-1:2008 For Television -- Time and Control Code",
DOI 10.5594/SMPTE.ST12-1.2008, February 2008,
<<a href="http://ieeexplore.ieee.org/servlet/opac?punumber=7289818">http://ieeexplore.ieee.org/servlet/</a>
<a href="http://ieeexplore.ieee.org/servlet/opac?punumber=7289818">opac?punumber=7289818</a>>.
[<a id="ref-TS-26234">TS-26234</a>] 3rd Generation Partnership Project (3GPP), "Transparent
end-to-end Packet-switched Streaming Service (PSS);
Protocols and codecs", Technical Specification 26.234,
Release 13, September 2015,
<<a href="http://www.3gpp.org/DynaReport/26234.htm">http://www.3gpp.org/DynaReport/26234.htm</a>>.
<span class="grey">Schulzrinne, et al. Standards Track [Page 244]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-245" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
<span class="h3"><a class="selflink" id="section-23.2" href="#section-23.2">23.2</a>. Informative References</span>
[<a id="ref-ISO.13818-6.1995">ISO.13818-6.1995</a>]
International Organization for Standardization,
"Information technology -- Generic coding of moving
pictures and associated audio information - part 6:
Extension for DSM-CC", ISO Draft Standard 13818-6:1998,
October 1998,
<<a href="http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=25039">http://www.iso.org/iso/home/store/catalogue_tc/</a>
<a href="http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=25039">catalogue_detail.htm?csnumber=25039</a>>.
[<a id="ref-ISO.8601.2000">ISO.8601.2000</a>]
International Organization for Standardization, "Data
elements and interchange formats - Information interchange
- Representation of dates and times", ISO/IEC Standard
8601, December 2000.
[<a id="ref-RFC791">RFC791</a>] Postel, J., "Internet Protocol", STD 5, <a href="./rfc791">RFC 791</a>,
DOI 10.17487/RFC0791, September 1981,
<<a href="http://www.rfc-editor.org/info/rfc791">http://www.rfc-editor.org/info/rfc791</a>>.
[<a id="ref-RFC1123">RFC1123</a>] Braden, R., Ed., "Requirements for Internet Hosts -
Application and Support", STD 3, <a href="./rfc1123">RFC 1123</a>,
DOI 10.17487/RFC1123, October 1989,
<<a href="http://www.rfc-editor.org/info/rfc1123">http://www.rfc-editor.org/info/rfc1123</a>>.
[<a id="ref-RFC2068">RFC2068</a>] Fielding, R., Gettys, J., Mogul, J., Frystyk, H., and T.
Berners-Lee, "Hypertext Transfer Protocol -- HTTP/1.1",
<a href="./rfc2068">RFC 2068</a>, DOI 10.17487/RFC2068, January 1997,
<<a href="http://www.rfc-editor.org/info/rfc2068">http://www.rfc-editor.org/info/rfc2068</a>>.
[<a id="ref-RFC2326">RFC2326</a>] Schulzrinne, H., Rao, A., and R. Lanphier, "Real Time
Streaming Protocol (RTSP)", <a href="./rfc2326">RFC 2326</a>,
DOI 10.17487/RFC2326, April 1998,
<<a href="http://www.rfc-editor.org/info/rfc2326">http://www.rfc-editor.org/info/rfc2326</a>>.
[<a id="ref-RFC2663">RFC2663</a>] Srisuresh, P. and M. Holdrege, "IP Network Address
Translator (NAT) Terminology and Considerations",
<a href="./rfc2663">RFC 2663</a>, DOI 10.17487/RFC2663, August 1999,
<<a href="http://www.rfc-editor.org/info/rfc2663">http://www.rfc-editor.org/info/rfc2663</a>>.
[<a id="ref-RFC2974">RFC2974</a>] Handley, M., Perkins, C., and E. Whelan, "Session
Announcement Protocol", <a href="./rfc2974">RFC 2974</a>, DOI 10.17487/RFC2974,
October 2000, <<a href="http://www.rfc-editor.org/info/rfc2974">http://www.rfc-editor.org/info/rfc2974</a>>.
<span class="grey">Schulzrinne, et al. Standards Track [Page 245]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-246" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
[<a id="ref-RFC3261">RFC3261</a>] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,
A., Peterson, J., Sparks, R., Handley, M., and E.
Schooler, "SIP: Session Initiation Protocol", <a href="./rfc3261">RFC 3261</a>,
DOI 10.17487/RFC3261, June 2002,
<<a href="http://www.rfc-editor.org/info/rfc3261">http://www.rfc-editor.org/info/rfc3261</a>>.
[<a id="ref-RFC3264">RFC3264</a>] Rosenberg, J. and H. Schulzrinne, "An Offer/Answer Model
with Session Description Protocol (SDP)", <a href="./rfc3264">RFC 3264</a>,
DOI 10.17487/RFC3264, June 2002,
<<a href="http://www.rfc-editor.org/info/rfc3264">http://www.rfc-editor.org/info/rfc3264</a>>.
[<a id="ref-RFC3339">RFC3339</a>] Klyne, G. and C. Newman, "Date and Time on the Internet:
Timestamps", <a href="./rfc3339">RFC 3339</a>, DOI 10.17487/RFC3339, July 2002,
<<a href="http://www.rfc-editor.org/info/rfc3339">http://www.rfc-editor.org/info/rfc3339</a>>.
[<a id="ref-RFC4145">RFC4145</a>] Yon, D. and G. Camarillo, "TCP-Based Media Transport in
the Session Description Protocol (SDP)", <a href="./rfc4145">RFC 4145</a>,
DOI 10.17487/RFC4145, September 2005,
<<a href="http://www.rfc-editor.org/info/rfc4145">http://www.rfc-editor.org/info/rfc4145</a>>.
[<a id="ref-RFC4567">RFC4567</a>] Arkko, J., Lindholm, F., Naslund, M., Norrman, K., and E.
Carrara, "Key Management Extensions for Session
Description Protocol (SDP) and Real Time Streaming
Protocol (RTSP)", <a href="./rfc4567">RFC 4567</a>, DOI 10.17487/RFC4567, July
2006, <<a href="http://www.rfc-editor.org/info/rfc4567">http://www.rfc-editor.org/info/rfc4567</a>>.
[<a id="ref-RFC4588">RFC4588</a>] Rey, J., Leon, D., Miyazaki, A., Varsa, V., and R.
Hakenberg, "RTP Retransmission Payload Format", <a href="./rfc4588">RFC 4588</a>,
DOI 10.17487/RFC4588, July 2006,
<<a href="http://www.rfc-editor.org/info/rfc4588">http://www.rfc-editor.org/info/rfc4588</a>>.
[<a id="ref-RFC4855">RFC4855</a>] Casner, S., "Media Type Registration of RTP Payload
Formats", <a href="./rfc4855">RFC 4855</a>, DOI 10.17487/RFC4855, February 2007,
<<a href="http://www.rfc-editor.org/info/rfc4855">http://www.rfc-editor.org/info/rfc4855</a>>.
[<a id="ref-RFC4856">RFC4856</a>] Casner, S., "Media Type Registration of Payload Formats in
the RTP Profile for Audio and Video Conferences",
<a href="./rfc4856">RFC 4856</a>, DOI 10.17487/RFC4856, February 2007,
<<a href="http://www.rfc-editor.org/info/rfc4856">http://www.rfc-editor.org/info/rfc4856</a>>.
[<a id="ref-RFC5104">RFC5104</a>] Wenger, S., Chandra, U., Westerlund, M., and B. Burman,
"Codec Control Messages in the RTP Audio-Visual Profile
with Feedback (AVPF)", <a href="./rfc5104">RFC 5104</a>, DOI 10.17487/RFC5104,
February 2008, <<a href="http://www.rfc-editor.org/info/rfc5104">http://www.rfc-editor.org/info/rfc5104</a>>.
<span class="grey">Schulzrinne, et al. Standards Track [Page 246]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-247" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
[<a id="ref-RFC5245">RFC5245</a>] Rosenberg, J., "Interactive Connectivity Establishment
(ICE): A Protocol for Network Address Translator (NAT)
Traversal for Offer/Answer Protocols", <a href="./rfc5245">RFC 5245</a>,
DOI 10.17487/RFC5245, April 2010,
<<a href="http://www.rfc-editor.org/info/rfc5245">http://www.rfc-editor.org/info/rfc5245</a>>.
[<a id="ref-RFC5389">RFC5389</a>] Rosenberg, J., Mahy, R., Matthews, P., and D. Wing,
"Session Traversal Utilities for NAT (STUN)", <a href="./rfc5389">RFC 5389</a>,
DOI 10.17487/RFC5389, October 2008,
<<a href="http://www.rfc-editor.org/info/rfc5389">http://www.rfc-editor.org/info/rfc5389</a>>.
[<a id="ref-RFC5583">RFC5583</a>] Schierl, T. and S. Wenger, "Signaling Media Decoding
Dependency in the Session Description Protocol (SDP)",
<a href="./rfc5583">RFC 5583</a>, DOI 10.17487/RFC5583, July 2009,
<<a href="http://www.rfc-editor.org/info/rfc5583">http://www.rfc-editor.org/info/rfc5583</a>>.
[<a id="ref-RFC5905">RFC5905</a>] Mills, D., Martin, J., Ed., Burbank, J., and W. Kasch,
"Network Time Protocol Version 4: Protocol and Algorithms
Specification", <a href="./rfc5905">RFC 5905</a>, DOI 10.17487/RFC5905, June 2010,
<<a href="http://www.rfc-editor.org/info/rfc5905">http://www.rfc-editor.org/info/rfc5905</a>>.
[<a id="ref-RFC6298">RFC6298</a>] Paxson, V., Allman, M., Chu, J., and M. Sargent,
"Computing TCP's Retransmission Timer", <a href="./rfc6298">RFC 6298</a>,
DOI 10.17487/RFC6298, June 2011,
<<a href="http://www.rfc-editor.org/info/rfc6298">http://www.rfc-editor.org/info/rfc6298</a>>.
[<a id="ref-Stevens98">Stevens98</a>]
Stevens, W., Fenner, B., and A. Rudoff, "Unix Networking
Programming, Volume 1: The Sockets Networking API (3rd
Edition)", 1998.
<span class="grey">Schulzrinne, et al. Standards Track [Page 247]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-248" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
<span class="h2"><a class="selflink" id="appendix-A" href="#appendix-A">Appendix A</a>. Examples</span>
This section contains several different examples trying to illustrate
possible ways of using RTSP. The examples can also help with the
understanding of how functions of RTSP work. However, remember that
these are examples and the normative and syntax descriptions in the
other sections take precedence. Please also note that many of the
examples have been broken into several lines, where following lines
start with whitespace as allowed by the syntax.
<span class="h3"><a class="selflink" id="appendix-A.1" href="#appendix-A.1">A.1</a>. Media on Demand (Unicast)</span>
This is an example of media-on-demand streaming of media stored in a
container file. For the purposes of this example, a container file
is a storage entity in which multiple continuous media types
pertaining to the same end-user presentation are present. In effect,
the container file represents an RTSP presentation, with each of its
components being RTSP-controlled media streams. Container files are
a widely used means to store such presentations. While the
components are transported as independent streams, it is desirable to
maintain a common context for those streams at the server end.
This enables the server to keep a single storage handle open
easily. It also allows treating all the streams equally in case
of any prioritization of streams by the server.
It is also possible that the presentation author may wish to prevent
selective retrieval of the streams by the client in order to preserve
the artistic effect of the combined media presentation. Similarly,
in such a tightly bound presentation, it is desirable to be able to
control all the streams via a single control message using an
aggregate URI.
The following is an example of using a single RTSP session to control
multiple streams. It also illustrates the use of aggregate URIs. In
a container file, it is also desirable not to write any URI parts
that are not kept when the container is distributed, like the host
and most of the path element. Therefore, this example also uses the
"*" and relative URI in the delivered SDP.
Also, this presentation description (SDP) is not cacheable, as the
Expires header is set to an equal value with date indicating
immediate expiration of its validity.
Client C requests a presentation from media server M. The movie is
stored in a container file. The client has obtained an RTSP URI to
the container file.
<span class="grey">Schulzrinne, et al. Standards Track [Page 248]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-249" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
C->M: DESCRIBE rtsp://example.com/twister.3gp RTSP/2.0
CSeq: 1
User-Agent: PhonyClient/1.2
M->C: RTSP/2.0 200 OK
CSeq: 1
Server: PhonyServer/1.0
Date: Fri, 20 Dec 2013 10:20:32 +0000
Content-Type: application/sdp
Content-Length: 271
Content-Base: rtsp://example.com/twister.3gp/
Expires: Fri, 20 Dec 2013 12:20:32 +0000
v=0
o=- 2890844256 2890842807 IN IP4 198.51.100.5
s=RTSP Session
i=An Example of RTSP Session Usage
e=adm@example.com
c=IN IP4 0.0.0.0
a=control: *
a=range:npt=00:00:00-00:10:34.10
t=0 0
m=audio 0 RTP/AVP 0
a=control: trackID=1
m=video 0 RTP/AVP 26
a=control: trackID=4
C->M: SETUP rtsp://example.com/twister.3gp/trackID=1 RTSP/2.0
CSeq: 2
User-Agent: PhonyClient/1.2
Require: play.basic
Transport: RTP/AVP;unicast;dest_addr=":8000"/":8001"
Accept-Ranges: npt, smpte, clock
M->C: RTSP/2.0 200 OK
CSeq: 2
Server: PhonyServer/1.0
Transport: RTP/AVP;unicast; ssrc=93CB001E;
dest_addr="192.0.2.53:8000"/"192.0.2.53:8001";
src_addr="198.51.100.5:9000"/"198.51.100.5:9001"
Session: OccldOFFq23KwjYpAnBbUr
Expires: Fri, 20 Dec 2013 12:20:33 +0000
Date: Fri, 20 Dec 2013 10:20:33 +0000
Accept-Ranges: npt
Media-Properties: Random-Access=0.02, Immutable, Unlimited
<span class="grey">Schulzrinne, et al. Standards Track [Page 249]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-250" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
C->M: SETUP rtsp://example.com/twister.3gp/trackID=4 RTSP/2.0
CSeq: 3
User-Agent: PhonyClient/1.2
Require: play.basic
Transport: RTP/AVP;unicast;dest_addr=":8002"/":8003"
Session: OccldOFFq23KwjYpAnBbUr
Accept-Ranges: npt, smpte, clock
M->C: RTSP/2.0 200 OK
CSeq: 3
Server: PhonyServer/1.0
Transport: RTP/AVP;unicast; ssrc=A813FC13;
dest_addr="192.0.2.53:8002"/"192.0.2.53:8003";
src_addr="198.51.100.5:9002"/"198.51.100.5:9003";
Session: OccldOFFq23KwjYpAnBbUr
Expires: Fri, 20 Dec 2013 12:20:33 +0000
Date: Fri, 20 Dec 2013 10:20:33 +0000
Accept-Range: NPT
Media-Properties: Random-Access=0.8, Immutable, Unlimited
C->M: PLAY rtsp://example.com/twister.3gp/ RTSP/2.0
CSeq: 4
User-Agent: PhonyClient/1.2
Range: npt=30-
Seek-Style: RAP
Session: OccldOFFq23KwjYpAnBbUr
M->C: RTSP/2.0 200 OK
CSeq: 4
Server: PhonyServer/1.0
Date: Fri, 20 Dec 2013 10:20:34 +0000
Session: OccldOFFq23KwjYpAnBbUr
Range: npt=30-634.10
Seek-Style: RAP
RTP-Info: url="rtsp://example.com/twister.3gp/trackID=4"
ssrc=0D12F123:seq=12345;rtptime=3450012,
url="rtsp://example.com/twister.3gp/trackID=1"
ssrc=4F312DD8:seq=54321;rtptime=2876889
C->M: PAUSE rtsp://example.com/twister.3gp/ RTSP/2.0
CSeq: 5
User-Agent: PhonyClient/1.2
Session: OccldOFFq23KwjYpAnBbUr
# Pause happens 0.87 seconds after starting to play
<span class="grey">Schulzrinne, et al. Standards Track [Page 250]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-251" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
M->C: RTSP/2.0 200 OK
CSeq: 5
Server: PhonyServer/1.0
Date: Fri, 20 Dec 2013 10:20:35 +0000
Session: OccldOFFq23KwjYpAnBbUr
Range: npt=30.87-634.10
C->M: PLAY rtsp://example.com/twister.3gp/ RTSP/2.0
CSeq: 6
User-Agent: PhonyClient/1.2
Range: npt=30.87-634.10
Seek-Style: Next
Session: OccldOFFq23KwjYpAnBbUr
M->C: RTSP/2.0 200 OK
CSeq: 6
Server: PhonyServer/1.0
Date: Fri, 20 Dec 2013 10:22:13 +0000
Session: OccldOFFq23KwjYpAnBbUr
Range: npt=30.87-634.10
Seek-Style: Next
RTP-Info: url="rtsp://example.com/twister.3gp/trackID=4"
ssrc=0D12F123:seq=12555;rtptime=6330012,
url="rtsp://example.com/twister.3gp/trackID=1"
ssrc=4F312DD8:seq=55021;rtptime=3132889
C->M: TEARDOWN rtsp://example.com/twister.3gp/ RTSP/2.0
CSeq: 7
User-Agent: PhonyClient/1.2
Session: OccldOFFq23KwjYpAnBbUr
M->C: RTSP/2.0 200 OK
CSeq: 7
Server: PhonyServer/1.0
Date: Fri, 20 Dec 2013 10:31:53 +0000
<span class="h3"><a class="selflink" id="appendix-A.2" href="#appendix-A.2">A.2</a>. Media on Demand Using Pipelining</span>
This example is basically the example above (Appendix A.1), but now
utilizing pipelining to speed up the setup. It requires only two
round-trip times until the media starts flowing. First of all, the
session description is retrieved to determine what media resources
need to be set up. In the second step, one sends the necessary SETUP
requests and the PLAY request to initiate media delivery.
<span class="grey">Schulzrinne, et al. Standards Track [Page 251]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-252" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
Client C requests a presentation from media server M. The movie is
stored in a container file. The client has obtained an RTSP URI to
the container file.
C->M: DESCRIBE rtsp://example.com/twister.3gp RTSP/2.0
CSeq: 1
User-Agent: PhonyClient/1.2
M->C: RTSP/2.0 200 OK
CSeq: 1
Server: PhonyServer/1.0
Date: Fri, 20 Dec 2013 10:20:32 +0000
Content-Type: application/sdp
Content-Length: 271
Content-Base: rtsp://example.com/twister.3gp/
Expires: Fri, 20 Dec 2013 12:20:32 +0000
v=0
o=- 2890844256 2890842807 IN IP4 192.0.2.5
s=RTSP Session
i=An Example of RTSP Session Usage
e=adm@example.com
c=IN IP4 0.0.0.0
a=control: *
a=range:npt=00:00:00-00:10:34.10
t=0 0
m=audio 0 RTP/AVP 0
a=control: trackID=1
m=video 0 RTP/AVP 26
a=control: trackID=4
C->M: SETUP rtsp://example.com/twister.3gp/trackID=1 RTSP/2.0
CSeq: 2
User-Agent: PhonyClient/1.2
Require: play.basic
Transport: RTP/AVP;unicast;dest_addr=":8000"/":8001"
Accept-Ranges: npt, smpte, clock
Pipelined-Requests: 7654
<span class="grey">Schulzrinne, et al. Standards Track [Page 252]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-253" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
C->M: SETUP rtsp://example.com/twister.3gp/trackID=4 RTSP/2.0
CSeq: 3
User-Agent: PhonyClient/1.2
Require: play.basic
Transport: RTP/AVP;unicast;dest_addr=":8002"/":8003"
Accept-Ranges: npt, smpte, clock
Pipelined-Requests: 7654
C->M: PLAY rtsp://example.com/twister.3gp/ RTSP/2.0
CSeq: 4
User-Agent: PhonyClient/1.2
Range: npt=0-
Seek-Style: RAP
Pipelined-Requests: 7654
M->C: RTSP/2.0 200 OK
CSeq: 2
Server: PhonyServer/1.0
Transport: RTP/AVP;unicast;
dest_addr="192.0.2.53:8000"/"192.0.2.53:8001";
src_addr="198.51.100.5:9000"/"198.51.100.5:9001";
ssrc=93CB001E
Session: OccldOFFq23KwjYpAnBbUr
Expires: Fri, 20 Dec 2013 12:20:32 +0000
Date: Fri, 20 Dec 2013 10:20:32 +0000
Accept-Ranges: npt
Pipelined-Requests: 7654
Media-Properties: Random-Access=0.2, Immutable, Unlimited
M->C: RTSP/2.0 200 OK
CSeq: 3
Server: PhonyServer/1.0
Transport: RTP/AVP;unicast;
dest_addr="192.0.2.53:8002"/"192.0.2.53:8003;
src_addr="198.51.100.5:9002"/"198.51.100.5:9003";
ssrc=A813FC13
Session: OccldOFFq23KwjYpAnBbUr
Expires: Sat, 21 Dec 2013 10:20:32 +0000
Date: Fri, 20 Dec 2013 10:20:32 +0000
Accept-Range: NPT
Pipelined-Requests: 7654
Media-Properties: Random-Access=0.8, Immutable, Unlimited
<span class="grey">Schulzrinne, et al. Standards Track [Page 253]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-254" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
M->C: RTSP/2.0 200 OK
CSeq: 4
Server: PhonyServer/1.0
Date: Fri, 20 Dec 2013 10:20:32 +0000
Session: OccldOFFq23KwjYpAnBbUr
Range: npt=0-623.10
Seek-Style: RAP
RTP-Info: url="rtsp://example.com/twister.3gp/trackID=4"
ssrc=0D12F123:seq=12345;rtptime=3450012,
url="rtsp://example.com/twister.3gp/trackID=1"
ssrc=4F312DD8:seq=54321;rtptime=2876889
Pipelined-Requests: 7654
<span class="h3"><a class="selflink" id="appendix-A.3" href="#appendix-A.3">A.3</a>. Secured Media Session for On-Demand Content</span>
This example is basically the above example (Appendix A.2), but now
including establishment of SRTP crypto contexts to get a secured
media delivery. First of all, the client attempts to fetch this
insecurely, but the server redirects to a URI indicating a
requirement on using a secure connection for the RTSP messages. The
client establishes a TCP/TLS connection, and the session description
is retrieved to determine what media resources need to be set up. In
the this session description, secure media (SRTP) is indicated. In
the next step, the client sends the necessary SETUP requests
including MIKEY messages. This is pipelined with a PLAY request to
initiate media delivery.
Client C requests a presentation from media server M. The movie is
stored in a container file. The client has obtained an RTSP URI to
the container file.
Note: The MIKEY messages below are not valid MIKEY messages and are
Base64-encoded random data to represent where the MIKEY messages
would go.
C->M: DESCRIBE rtsp://example.com/twister.3gp RTSP/2.0
CSeq: 1
User-Agent: PhonyClient/1.2
M->C: RTSP/2.0 301 Moved Permanently
CSeq: 1
Server: PhonyServer/1.0
Date: Fri, 20 Dec 2013 10:25:32 +0000
Location: rtsps://example.com/twister.3gp
C->M: Establish TCP/TLS connection and verify server's
certificate that represents example.com.
Used for all below RTSP messages.
<span class="grey">Schulzrinne, et al. Standards Track [Page 254]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-255" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
C->M: DESCRIBE rtsps://example.com/twister.3gp RTSP/2.0
CSeq: 2
User-Agent: PhonyClient/1.2
M->C: RTSP/2.0 200 OK
CSeq: 2
Server: PhonyServer/1.0
Date: Fri, 20 Dec 2013 10:25:33 +0000
Content-Type: application/sdp
Content-Length: 271
Content-Base: rtsps://example.com/twister.3gp/
Expires: Fri, 20 Dec 2013 12:25:33 +0000
v=0
o=- 2890844256 2890842807 IN IP4 192.0.2.5
s=RTSP Session
i=An Example of RTSP Session Usage
e=adm@example.com
c=IN IP4 0.0.0.0
a=control: *
a=range:npt=00:00:00-00:10:34.10
t=0 0
m=audio 0 RTP/SAVP 0
a=control: trackID=1
m=video 0 RTP/SAVP 26
a=control: trackID=4
C->M: SETUP rtsps://example.com/twister.3gp/trackID=1 RTSP/2.0
CSeq: 3
User-Agent: PhonyClient/1.2
Require: play.basic
Transport: RTP/SAVP;unicast;dest_addr=":8000"/":8001";
MIKEY=VGhpcyBpcyB0aGUgZmlyc3Qgc3RyZWFtcyBNSUtFWSBtZXNzYWdl
Accept-Ranges: npt, smpte, clock
Pipelined-Requests: 7654
C->M: SETUP rtsps://example.com/twister.3gp/trackID=4 RTSP/2.0
CSeq: 4
User-Agent: PhonyClient/1.2
Require: play.basic
Transport: RTP/SAVP;unicast;dest_addr=":8002"/":8003";
MIKEY=TUlLRVkgZm9yIHN0cmVhbSB0d2lzdGVyLjNncC90cmFja0lEPTQ=
Accept-Ranges: npt, smpte, clock
Pipelined-Requests: 7654
<span class="grey">Schulzrinne, et al. Standards Track [Page 255]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-256" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
C->M: PLAY rtsps://example.com/twister.3gp/ RTSP/2.0
CSeq: 5
User-Agent: PhonyClient/1.2
Range: npt=0-
Seek-Style: RAP
Pipelined-Requests: 7654
M->C: RTSP/2.0 200 OK
CSeq: 3
Server: PhonyServer/1.0
Transport: RTP/SAVP;unicast;
dest_addr="192.0.2.53:8000"/"192.0.2.53:8001";
src_addr="198.51.100.5:9000"/"198.51.100.5:9001";
ssrc=93CB001E;
MIKEY=TUlLRVkgUmVzcG9uc2UgdHdpc3Rlci4zZ3AvdHJhY2tJRD0x
Session: OccldOFFq23KwjYpAnBbUr
Expires: Fri, 20 Dec 2013 12:25:34 +0000
Date: Fri, 20 Dec 2013 10:25:34 +0000
Accept-Ranges: npt
Pipelined-Requests: 7654
Media-Properties: Random-Access=0.2, Immutable, Unlimited
M->C: RTSP/2.0 200 OK
CSeq: 4
Server: PhonyServer/1.0
Transport: RTP/SAVP;unicast;
dest_addr="192.0.2.53:8002"/"192.0.2.53:8003;
src_addr="198.51.100.5:9002"/"198.51.100.5:9003";
ssrc=A813FC13;
MIKEY=TUlLRVkgUmVzcG9uc2UgdHdpc3Rlci4zZ3AvdHJhY2tJRD00
Session: OccldOFFq23KwjYpAnBbUr
Expires: Fri, 20 Dec 2013 12:25:34 +0000
Date: Fri, 20 Dec 2013 10:25:34 +0000
Accept-Range: NPT
Pipelined-Requests: 7654
Media-Properties: Random-Access=0.8, Immutable, Unlimited
<span class="grey">Schulzrinne, et al. Standards Track [Page 256]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-257" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
M->C: RTSP/2.0 200 OK
CSeq: 5
Server: PhonyServer/1.0
Date: Fri, 20 Dec 2013 10:25:34 +0000
Session: OccldOFFq23KwjYpAnBbUr
Range: npt=0-623.10
Seek-Style: RAP
RTP-Info: url="rtsps://example.com/twister.3gp/trackID=4"
ssrc=0D12F123:seq=12345;rtptime=3450012,
url="rtsps://example.com/twister.3gp/trackID=1"
ssrc=4F312DD8:seq=54321;rtptime=2876889;
Pipelined-Requests: 7654
<span class="h3"><a class="selflink" id="appendix-A.4" href="#appendix-A.4">A.4</a>. Media on Demand (Unicast)</span>
An alternative example of media on demand with a few more tweaks is
the following. Client C requests a movie distributed from two
different media servers A (audio.example.com) and V
(video.example.com). The media description is stored on a web server
W. The media description contains descriptions of the presentation
and all its streams, including the codecs that are available and the
protocol stack.
In this example, the client is only interested in the last part of
the movie.
C->W: GET /twister.sdp HTTP/1.1
Host: www.example.com
Accept: application/sdp
W->C: HTTP/1.1 200 OK
Date: Wed, 23 Jan 2013 15:35:06 GMT
Content-Type: application/sdp
Content-Length: 278
Expires: Thu, 24 Jan 2013 15:35:06 GMT
v=0
o=- 2890844526 2890842807 IN IP4 198.51.100.5
s=RTSP Session
e=adm@example.com
c=IN IP4 0.0.0.0
a=range:npt=00:00:00-01:49:34
t=0 0
m=audio 0 RTP/AVP 0
a=control:rtsp://audio.example.com/twister/audio.en
m=video 0 RTP/AVP 31
a=control:rtsp://video.example.com/twister/video
<span class="grey">Schulzrinne, et al. Standards Track [Page 257]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-258" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
C->A: SETUP rtsp://audio.example.com/twister/audio.en RTSP/2.0
CSeq: 1
User-Agent: PhonyClient/1.2
Transport: RTP/AVP/UDP;unicast;dest_addr=":3056"/":3057",
RTP/AVP/TCP;unicast;interleaved=0-1
Accept-Ranges: npt, smpte, clock
A->C: RTSP/2.0 200 OK
CSeq: 1
Session: OccldOFFq23KwjYpAnBbUr
Transport: RTP/AVP/UDP;unicast;
dest_addr="192.0.2.53:3056"/"192.0.2.53:3057";
src_addr="198.51.100.5:5000"/"198.51.100.5:5001"
Date: Wed, 23 Jan 2013 15:35:12 +0000
Server: PhonyServer/1.0
Expires: Thu, 24 Jan 2013 15:35:12 +0000
Cache-Control: public
Accept-Ranges: npt, smpte
Media-Properties: Random-Access=0.02, Immutable, Unlimited
C->V: SETUP rtsp://video.example.com/twister/video RTSP/2.0
CSeq: 1
User-Agent: PhonyClient/1.2
Transport: RTP/AVP/UDP;unicast;
dest_addr="192.0.2.53:3058"/"192.0.2.53:3059",
RTP/AVP/TCP;unicast;interleaved=0-1
Accept-Ranges: npt, smpte, clock
<span class="grey">Schulzrinne, et al. Standards Track [Page 258]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-259" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
V->C: RTSP/2.0 200 OK
CSeq: 1
Session: P5it3pMo6xHkjUcDrNkBjf
Transport: RTP/AVP/UDP;unicast;
dest_addr="192.0.2.53:3058"/"192.0.2.53:3059";
src_addr="198.51.100.5:5002"/"198.51.100.5:5003"
Date: Wed, 23 Jan 2013 15:35:12 +0000
Server: PhonyServer/1.0
Cache-Control: public
Expires: Thu, 24 Jan 2013 15:35:12 +0000
Accept-Ranges: npt, smpte
Media-Properties: Random-Access=1.2, Immutable, Unlimited
C->V: PLAY rtsp://video.example.com/twister/video RTSP/2.0
CSeq: 2
User-Agent: PhonyClient/1.2
Session: P5it3pMo6xHkjUcDrNkBjf
Range: smpte=0:10:00-
V->C: RTSP/2.0 200 OK
CSeq: 2
Session: P5it3pMo6xHkjUcDrNkBjf
Range: smpte=0:10:00-1:49:23
Seek-Style: First-Prior
RTP-Info: url="rtsp://video.example.com/twister/video"
ssrc=A17E189D:seq=12312232;rtptime=78712811
Server: PhonyServer/2.0
Date: Wed, 23 Jan 2013 15:35:13 +0000
C->A: PLAY rtsp://audio.example.com/twister/audio.en RTSP/2.0
CSeq: 2
User-Agent: PhonyClient/1.2
Session: OccldOFFq23KwjYpAnBbUr
Range: smpte=0:10:00-
A->C: RTSP/2.0 200 OK
CSeq: 2
Session: OccldOFFq23KwjYpAnBbUr
Range: smpte=0:10:00-1:49:23
Seek-Style: First-Prior
RTP-Info: url="rtsp://audio.example.com/twister/audio.en"
ssrc=3D124F01:seq=876655;rtptime=1032181
Server: PhonyServer/1.0
Date: Wed, 23 Jan 2013 15:35:13 +0000
<span class="grey">Schulzrinne, et al. Standards Track [Page 259]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-260" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
C->A: TEARDOWN rtsp://audio.example.com/twister/audio.en RTSP/2.0
CSeq: 3
User-Agent: PhonyClient/1.2
Session: OccldOFFq23KwjYpAnBbUr
A->C: RTSP/2.0 200 OK
CSeq: 3
Server: PhonyServer/1.0
Date: Wed, 23 Jan 2013 15:36:52 +0000
C->V: TEARDOWN rtsp://video.example.com/twister/video RTSP/2.0
CSeq: 3
User-Agent: PhonyClient/1.2
Session: P5it3pMo6xHkjUcDrNkBjf
V->C: RTSP/2.0 200 OK
CSeq: 3
Server: PhonyServer/2.0
Date: Wed, 23 Jan 2013 15:36:52 +0000
Even though the audio and video track are on two different servers
that may start at slightly different times and may drift with respect
to each other over time, the client can perform initial
synchronization of the two media using RTP-Info and Range received in
the PLAY responses. If the two servers are time synchronized, the
RTCP packets can also be used to maintain synchronization.
<span class="h3"><a class="selflink" id="appendix-A.5" href="#appendix-A.5">A.5</a>. Single-Stream Container Files</span>
Some RTSP servers may treat all files as though they are "container
files", yet other servers may not support such a concept. Because of
this, clients needs to use the rules set forth in the session
description for Request-URIs rather than assuming that a consistent
URI may always be used throughout. Below is an example of how a
multi-stream server might expect a single-stream file to be served:
<span class="grey">Schulzrinne, et al. Standards Track [Page 260]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-261" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
C->S: DESCRIBE rtsp://foo.example.com/test.wav RTSP/2.0
Accept: application/x-rtsp-mh, application/sdp
CSeq: 1
User-Agent: PhonyClient/1.2
S->C: RTSP/2.0 200 OK
CSeq: 1
Content-base: rtsp://foo.example.com/test.wav/
Content-type: application/sdp
Content-length: 163
Server: PhonyServer/1.0
Date: Wed, 23 Jan 2013 15:36:52 +0000
Expires: Thu, 24 Jan 2013 15:36:52 +0000
v=0
o=- 872653257 872653257 IN IP4 192.0.2.5
s=mu-law wave file
i=audio test
c=IN IP4 0.0.0.0
t=0 0
a=control: *
m=audio 0 RTP/AVP 0
a=control:streamid=0
C->S: SETUP rtsp://foo.example.com/test.wav/streamid=0 RTSP/2.0
Transport: RTP/AVP/UDP;unicast;
dest_addr=":6970"/":6971";mode="PLAY"
CSeq: 2
User-Agent: PhonyClient/1.2
Accept-Ranges: npt, smpte, clock
S->C: RTSP/2.0 200 OK
Transport: RTP/AVP/UDP;unicast;
dest_addr="192.0.2.53:6970"/"192.0.2.53:6971";
src_addr="198.51.100.5:6970"/"198.51.100.5:6971";
mode="PLAY";ssrc=EAB98712
CSeq: 2
Session: NYkqQYKk0bb12BY3goyoyO
Expires: Thu, 24 Jan 2013 15:36:52 +0000
Server: PhonyServer/1.0
Date: Wed, 23 Jan 2013 15:36:52 +0000
Accept-Ranges: npt
Media-Properties: Random-Access=0.5, Immutable, Unlimited
<span class="grey">Schulzrinne, et al. Standards Track [Page 261]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-262" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
C->S: PLAY rtsp://foo.example.com/test.wav/ RTSP/2.0
CSeq: 3
User-Agent: PhonyClient/1.2
Session: NYkqQYKk0bb12BY3goyoyO
S->C: RTSP/2.0 200 OK
CSeq: 3
Server: PhonyServer/1.0
Date: Wed, 23 Jan 2013 15:36:52 +0000
Session: NYkqQYKk0bb12BY3goyoyO
Range: npt=0-600
Seek-Style: RAP
RTP-Info: url="rtsp://foo.example.com/test.wav/streamid=0"
ssrc=0D12F123:seq=981888;rtptime=3781123
Note the different URI in the SETUP command and then the switch back
to the aggregate URI in the PLAY command. This makes complete sense
when there are multiple streams with aggregate control, but it is
less than intuitive in the special case where the number of streams
is one. However, the server has declared the aggregated control URI
in the SDP; therefore, this is legal.
In this case, it is also required that servers accept implementations
that use the non-aggregated interpretation and use the individual
media URI, like this:
C->S: PLAY rtsp://example.com/test.wav/streamid=0 RTSP/2.0
CSeq: 3
User-Agent: PhonyClient/1.2
Session: NYkqQYKk0bb12BY3goyoyO
<span class="grey">Schulzrinne, et al. Standards Track [Page 262]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-263" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
<span class="h3"><a class="selflink" id="appendix-A.6" href="#appendix-A.6">A.6</a>. Live Media Presentation Using Multicast</span>
The media server M chooses the multicast address and port. Here, it
is assumed that the web server only contains a pointer to the full
description, while the media server M maintains the full description.
C->W: GET /sessions.html HTTP/1.1
Host: www.example.com
W->C: HTTP/1.1 200 OK
Content-Type: text/html
<html>
...
<a href "rtsp://live.example.com/concert/audio">
Streamed Live Music performance </a>
...
</html>
C->M: DESCRIBE rtsp://live.example.com/concert/audio RTSP/2.0
CSeq: 1
Supported: play.basic, play.scale
User-Agent: PhonyClient/1.2
M->C: RTSP/2.0 200 OK
CSeq: 1
Content-Type: application/sdp
Content-Length: 183
Server: PhonyServer/1.0
Date: Wed, 23 Jan 2013 15:36:52 +0000
Supported: play.basic
v=0
o=- 2890844526 2890842807 IN IP4 192.0.2.5
s=RTSP Session
t=0 0
m=audio 3456 RTP/AVP 0
c=IN IP4 233.252.0.54/16
a=control: rtsp://live.example.com/concert/audio
a=range:npt=0-
<span class="grey">Schulzrinne, et al. Standards Track [Page 263]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-264" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
C->M: SETUP rtsp://live.example.com/concert/audio RTSP/2.0
CSeq: 2
Transport: RTP/AVP;multicast;
dest_addr="233.252.0.54:3456"/"233.252.0.54:3457";ttl=16
Accept-Ranges: npt, smpte, clock
User-Agent: PhonyClient/1.2
M->C: RTSP/2.0 200 OK
CSeq: 2
Server: PhonyServer/1.0
Date: Wed, 23 Jan 2013 15:36:52 +0000
Transport: RTP/AVP;multicast;
dest_addr="233.252.0.54:3456"/"233.252.0.54:3457";ttl=16
;ssrc=4D12AB92/0DF876A3
Session: qHj4jidpmF6zy9v9tNbtxr
Accept-Ranges: npt, clock
Media-Properties: No-Seeking, Time-Progressing, Time-Duration=0
C->M: PLAY rtsp://live.example.com/concert/audio RTSP/2.0
CSeq: 3
Session: qHj4jidpmF6zy9v9tNbtxr
User-Agent: PhonyClient/1.2
M->C: RTSP/2.0 200 OK
CSeq: 3
Server: PhonyServer/1.0
Date: Wed, 23 Jan 2013 15:36:52 +0000
Session: qHj4jidpmF6zy9v9tNbtxr
Seek-Style: Next
Range:npt=1256-
RTP-Info: url="rtsp://live.example.com/concert/audio"
ssrc=0D12F123:seq=1473; rtptime=80000
<span class="h3"><a class="selflink" id="appendix-A.7" href="#appendix-A.7">A.7</a>. Capability Negotiation</span>
This example illustrates how the client and server determine their
capability to support a special feature, in this case, "play.scale".
The server, through the client request and the included Supported
header, learns that the client supports RTSP 2.0 and also supports
the playback time scaling feature of RTSP. The server's response
contains the following feature-related information to the client; it
supports the basic media delivery functions (play.basic), the
extended functionality of time scaling of content (play.scale), and
one "example.com" proprietary feature (com.example.flight). The
client also learns the methods supported (Public header) by the
server for the indicated resource.
<span class="grey">Schulzrinne, et al. Standards Track [Page 264]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-265" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
C->S: OPTIONS rtsp://media.example.com/movie/twister.3gp RTSP/2.0
CSeq: 1
Supported: play.basic, play.scale
User-Agent: PhonyClient/1.2
S->C: RTSP/2.0 200 OK
CSeq: 1
Public:OPTIONS,SETUP,PLAY,PAUSE,TEARDOWN,DESCRIBE,GET_PARAMETER
Allow: OPTIONS, SETUP, PLAY, PAUSE, TEARDOWN, DESCRIBE
Server: PhonyServer/2.0
Supported: play.basic, play.scale, com.example.flight
When the client sends its SETUP request, it tells the server that it
requires support of the play.scale feature for this session by
including the Require header.
C->S: SETUP rtsp://media.example.com/twister.3gp/trackID=1 RTSP/2.0
CSeq: 3
User-Agent: PhonyClient/1.2
Transport: RTP/AVP/UDP;unicast;
dest_addr="192.0.2.53:3056"/"192.0.2.53:3057",
RTP/AVP/TCP;unicast;interleaved=0-1
Require: play.scale
Accept-Ranges: npt, smpte, clock
User-Agent: PhonyClient/1.2
S->C: RTSP/2.0 200 OK
CSeq: 3
Session: OccldOFFq23KwjYpAnBbUr
Transport: RTP/AVP/UDP;unicast;
dest_addr="192.0.2.53:3056"/"192.0.2.53:3057";
src_addr="198.51.100.5:5000"/"198.51.100.5:5001"
Server: PhonyServer/2.0
Accept-Ranges: npt, smpte
Media-Properties: Random-Access=0.8, Immutable, Unlimited
<span class="h2"><a class="selflink" id="appendix-B" href="#appendix-B">Appendix B</a>. RTSP Protocol State Machine</span>
The RTSP session state machine describes the behavior of the protocol
from RTSP session initialization through RTSP session termination.
It is probably easiest to think of this as the server's state and
then view the client as needing to track what it believes the
server's state will be based on sent or received RTSP messages.
Thus, in most cases, the state tables below can be read as: if the
client does X, and assuming it fulfills any prerequisite(s), the
(server) state will move to the new state and the indicated response
will returned. However, there are also server-to-client
notifications or requests, where the action describes what
<span class="grey">Schulzrinne, et al. Standards Track [Page 265]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-266" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
notification or request will occur, its requisites, what new state
will result after the server has received the response, as well as
describing the client's response to the action.
The State machine is defined on a per-session basis, which is
uniquely identified by the RTSP session identifier. The session may
contain one or more media streams depending on state. If a single
media stream is part of the session, it is in non-aggregated control.
If two or more are part of the session, it is in aggregated control.
The below state machine is an informative description of the
protocol's behavior. In case of ambiguity with the earlier parts of
this specification, the description in the earlier parts take
precedence.
<span class="h3"><a class="selflink" id="appendix-B.1" href="#appendix-B.1">B.1</a>. States</span>
The state machine contains three states, described below. For each
state, there exists a table that shows which requests and events are
allowed and whether they will result in a state change.
Init: Initial state, no session exists.
Ready: Session is ready to start playing.
Play: Session is playing, i.e., sending media-stream data in the
direction S->C.
<span class="h3"><a class="selflink" id="appendix-B.2" href="#appendix-B.2">B.2</a>. State Variables</span>
This representation of the state machine needs more than its state to
work. A small number of variables are also needed, and they are
explained below.
NRM: The number of media streams that are part of this session.
RP: Resume point, the point in the presentation time line at which
a request to continue playing will resume from. A time format
for the variable is not mandated.
<span class="h3"><a class="selflink" id="appendix-B.3" href="#appendix-B.3">B.3</a>. Abbreviations</span>
To make the state tables more compact, a number of abbreviations are
used, which are explained below.
IFI: IF Implemented.
md: Media
<span class="grey">Schulzrinne, et al. Standards Track [Page 266]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-267" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
PP: Pause Point, the point in the presentation timeline at which
the presentation was paused.
Prs: Presentation, the complete multimedia presentation.
RedP: Redirect Point, the point in the presentation timeline at which
a REDIRECT was specified to occur.
SES: Session.
<span class="h3"><a class="selflink" id="appendix-B.4" href="#appendix-B.4">B.4</a>. State Tables</span>
This section contains a table for each state. The table contains all
the requests and events on which this state is allowed to act. The
events that are method names are, unless noted, requests with the
given method in the direction client to server (C->S). In some
cases, there exists one or more requisites. The response column
tells what type of response actions should be performed. Possible
actions that are requested for an event include: response codes,
e.g., 200, headers that need to be included in the response, setting
of state variables, or settings of other session-related parameters.
The new state column tells which state the state machine changes to.
The response to a valid request meeting the requisites is normally a
2xx (SUCCESS) unless otherwise noted in the response column. The
exceptions need to be given a response according to the response
column. If the request does not meet the requisite, is erroneous, or
some other type of error occurs, the appropriate response code is to
be sent. If the response code is a 4xx, the session state is
unchanged. A response code of 3rr will result in that the session
being ended and its state changed to Init. A response code of 304
results in no state change. However, there are restrictions to when
a 3rr response may be used. A 5xx response does not result in any
change of the session state, except if the error is not possible to
recover from. An unrecoverable error results in the ending of the
session. In the general case, if it can't be determined whether or
not it was an unrecoverable error, the client will be required to
test. In the case that the next request after a 5xx is responded to
with a 454 (Session Not Found), the client knows that the session has
ended. For any request message that cannot be responded to within
the time defined in <a href="#section-10.4">Section 10.4</a>, a 100 response must be sent.
The server will time out the session after the period of time
specified in the SETUP response, if no activity from the client is
detected. Therefore, there exists a timeout event for all states
except Init.
<span class="grey">Schulzrinne, et al. Standards Track [Page 267]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-268" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
In the case that NRM = 1, the presentation URI is equal to the media
URI or a specified presentation URI. For NRM > 1, the presentation
URI needs to be other than any of the media that are part of the
session. This applies to all states.
+---------------+-----------------+---------------------------------+
| Event | Prerequisite | Response |
+---------------+-----------------+---------------------------------+
| DESCRIBE | Needs REDIRECT | 3rr, Redirect |
| | | |
| DESCRIBE | | 200, Session description |
| | | |
| OPTIONS | Session ID | 200, Reset session timeout |
| | | timer |
| | | |
| OPTIONS | | 200 |
| | | |
| SET_PARAMETER | Valid parameter | 200, change value of parameter |
| | | |
| GET_PARAMETER | Valid parameter | 200, return value of parameter |
+---------------+-----------------+---------------------------------+
Table 9: Non-State-Machine Changing Events
The methods in Table 9 do not have any effect on the state machine or
the state variables. However, some methods do change other session-
related parameters, for example, SET_PARAMETER, which will set the
parameter(s) specified in its body. Also, all of these methods that
allow the Session header will also update the keep-alive timer for
the session.
+------------------+----------------+-----------+-------------------+
| Action | Requisite | New State | Response |
+------------------+----------------+-----------+-------------------+
| SETUP | | Ready | NRM=1, RP=0.0 |
| | | | |
| SETUP | Needs Redirect | Init | 3rr Redirect |
| | | | |
| S -> C: REDIRECT | No Session hdr | Init | Terminate all SES |
+------------------+----------------+-----------+-------------------+
Table 10: State: Init
The initial state of the state machine (Table 10) can only be left by
processing a correct SETUP request. As seen in the table, the two
state variables are also set by a correct request. This table also
shows that a correct SETUP can in some cases be redirected to another
URI or server by a 3rr response.
<span class="grey">Schulzrinne, et al. Standards Track [Page 268]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-269" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
+-------------+------------------------+---------+------------------+
| Action | Requisite | New | Response |
| | | State | |
+-------------+------------------------+---------+------------------+
| SETUP | New URI | Ready | NRM +=1 |
| | | | |
| SETUP | URI Setup prior | Ready | Change transport |
| | | | param |
| | | | |
| TEARDOWN | Prs URI, | Init | No session hdr, |
| | | | NRM = 0 |
| | | | |
| TEARDOWN | md URI,NRM=1 | Init | No Session hdr, |
| | | | NRM = 0 |
| | | | |
| TEARDOWN | md URI,NRM>1 | Ready | Session hdr, NRM |
| | | | -= 1 |
| | | | |
| PLAY | Prs URI, No range | Play | Play from RP |
| | | | |
| PLAY | Prs URI, Range | Play | According to |
| | | | range |
| | | | |
| PLAY | md URI, NRM=1, Range | Play | According to |
| | | | range |
| | | | |
| PLAY | md URI, NRM=1 | Play | Play from RP |
| | | | |
| PAUSE | Prs URI | Ready | Return PP |
| | | | |
| SC:REDIRECT | Terminate-Reason | Ready | Set RedP |
| | | | |
| SC:REDIRECT | No Terminate-Reason | Init | Session is |
| | time parameter | | removed |
| | | | |
| Timeout | | Init | |
| | | | |
| RedP | | Init | TEARDOWN of |
| reached | | | session |
+-------------+------------------------+---------+------------------+
Table 11: State: Ready
In the Ready state (Table 11), some of the actions depend on the
number of media streams (NRM) in the session, i.e., aggregated or
non-aggregated control. A SETUP request in the Ready state can
either add one more media stream to the session or, if the media
stream (same URI) already is part of the session, change the
<span class="grey">Schulzrinne, et al. Standards Track [Page 269]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-270" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
transport parameters. TEARDOWN depends on both the Request-URI and
the number of media streams within the session. If the Request-URI
is the presentation URI, the whole session is torn down. If a media
URI is used in the TEARDOWN request and more than one media exists in
the session, the session will remain and a session header is returned
in the response. If only a single media stream remains in the
session when performing a TEARDOWN with a media URI, the session is
removed. The number of media streams remaining after tearing down a
media stream determines the new state.
<span class="grey">Schulzrinne, et al. Standards Track [Page 270]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-271" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
+----------------+-----------------------+--------+-----------------+
| Action | Requisite | New | Response |
| | | State | |
+----------------+-----------------------+--------+-----------------+
| PAUSE | Prs URI | Ready | Set RP to |
| | | | present point |
| | | | |
| End of media | All media | Play | Set RP = End of |
| | | | media |
| | | | |
| End of range | | Play | Set RP = End of |
| | | | range |
| | | | |
| PLAY | Prs URI, No range | Play | Play from |
| | | | present point |
| | | | |
| PLAY | Prs URI, Range | Play | According to |
| | | | range |
| | | | |
| SC:PLAY_NOTIFY | | Play | 200 |
| | | | |
| SETUP | New URI | Play | 455 |
| | | | |
| SETUP | md URI | Play | 455 |
| | | | |
| SETUP | md URI, IFI | Play | Change |
| | | | transport param.|
| | | | |
| TEARDOWN | Prs URI | Init | No session hdr |
| | | | |
| TEARDOWN | md URI,NRM=1 | Init | No Session hdr, |
| | | | NRM=0 |
| | | | |
| TEARDOWN | md URI | Play | 455 |
| | | | |
| SC:REDIRECT | Terminate Reason with | Play | Set RedP |
| | Time parameter | | |
| | | | |
| SC:REDIRECT | | Init | Session is |
| | | | removed |
| | | | |
| RedP reached | | Init | TEARDOWN of |
| | | | session |
| | | | |
| Timeout | | Init | Stop Media |
| | | | playout |
+----------------+-----------------------+--------+-----------------+
Table 12: State: Play
<span class="grey">Schulzrinne, et al. Standards Track [Page 271]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-272" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
The Play state table (Table 12) contains a number of requests that
need a presentation URI (labeled as Prs URI) to work on (i.e., the
presentation URI has to be used as the Request-URI). This is due to
the exclusion of non-aggregated stream control in sessions with more
than one media stream.
To avoid inconsistencies between the client and server, automatic
state transitions are avoided. This can be seen at, for example, an
"End of media" event when all media has finished playing but the
session still remains in Play state. An explicit PAUSE request needs
to be sent to change the state to Ready. It may appear that there
exist automatic transitions in "RedP reached" and "PP reached".
However, they are requested and acknowledged before they take place.
The time at which the transition will happen is known by looking at
the Terminate-Reason header's time parameter and Range header,
respectively. If the client sends a request close in time to these
transitions, it needs to be prepared for receiving error messages, as
the state may or may not have changed.
<span class="h2"><a class="selflink" id="appendix-C" href="#appendix-C">Appendix C</a>. Media-Transport Alternatives</span>
This section defines how certain combinations of protocols, profiles,
and lower transports are used. This includes the usage of the
Transport header's source and destination address parameters:
"src_addr" and "dest_addr".
<span class="h3"><a class="selflink" id="appendix-C.1" href="#appendix-C.1">C.1</a>. RTP</span>
This section defines the interaction of RTSP with respect to the RTP
protocol [<a href="./rfc3550" title=""RTP: A Transport Protocol for Real-Time Applications"">RFC3550</a>]. It also defines any necessary media-transport
signaling with regard to RTP.
The available RTP profiles and lower-layer transports are described
below along with rules on signaling the available combinations.
<span class="h4"><a class="selflink" id="appendix-C.1.1" href="#appendix-C.1.1">C.1.1</a>. AVP</span>
The usage of the "RTP Profile for Audio and Video Conferences with
Minimal Control" [<a href="./rfc3551" title=""RTP Profile for Audio and Video Conferences with Minimal Control"">RFC3551</a>] when using RTP for media transport over
different lower-layer transport protocols is defined below in regard
to RTSP.
One such case is defined within this document: the use of embedded
(interleaved) binary data as defined in <a href="#section-14">Section 14</a>. The usage of
this method is indicated by including the "interleaved" parameter.
<span class="grey">Schulzrinne, et al. Standards Track [Page 272]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-273" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
When using embedded binary data, "src_addr" and "dest_addr" MUST NOT
be used. This addressing and multiplexing is used as defined with
use of channel numbers and the interleaved parameter.
<span class="h4"><a class="selflink" id="appendix-C.1.2" href="#appendix-C.1.2">C.1.2</a>. AVP/UDP</span>
This part describes the sending of RTP [<a href="./rfc3550" title=""RTP: A Transport Protocol for Real-Time Applications"">RFC3550</a>] over lower-
transport-layer UDP [<a href="./rfc768" title=""User Datagram Protocol"">RFC768</a>] according to the profile "RTP Profile
for Audio and Video Conferences with Minimal Control" defined in
[<a href="./rfc3551" title=""RTP Profile for Audio and Video Conferences with Minimal Control"">RFC3551</a>]. Implementations of RTP/AVP/UDP MUST implement RTCP
(Appendix C.1.6). This profile requires one or two unidirectional or
bidirectional UDP flows per media stream. The first UDP flow is for
RTP and the second is for RTCP. Multiplexing of RTP and RTCP
(Appendix C.1.6.4) MAY be used, in which case, a single UDP flow is
used for both parts. Embedding of RTP data with the RTSP messages,
in accordance with <a href="#section-14">Section 14</a>, SHOULD NOT be performed when RTSP
messages are transported over unreliable transport protocols, like
UDP [<a href="./rfc768" title=""User Datagram Protocol"">RFC768</a>].
The RTP/UDP and RTCP/UDP flows can be established using the Transport
header's "src_addr" and "dest_addr" parameters.
In RTSP PLAY mode, the transmission of RTP packets from client to
server is unspecified. The behavior in regard to such RTP packets
MAY be defined in future.
The "src_addr" and "dest_addr" parameters are used in the following
way for media delivery and playback mode, i.e., Mode=PLAY:
o The "src_addr" and "dest_addr" parameters MUST contain either 1 or
2 address specifications. Note that two address specifications
MAY be provided even if RTP and RTCP multiplexing is negotiated.
o Each address specification for RTP/AVP/UDP or RTP/AVP/TCP MUST
contain either:
* both an address and a port number, or
* a port number without an address.
o The first address specification given in either of the parameters
applies to the RTP stream. The second specification, if present,
applies to the RTCP stream, unless in the case RTP and RTCP
multiplexing is negotiated where both RTP and RTCP will use the
first specification.
<span class="grey">Schulzrinne, et al. Standards Track [Page 273]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-274" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
o The RTP/UDP packets from the server to the client MUST be sent to
the address and port given by the first address specification of
the "dest_addr" parameter.
o The RTCP/UDP packets from the server to the client MUST be sent to
the address and port given by the second address specification of
the "dest_addr" parameter, unless RTP and RTCP multiplexing has
been negotiated, in which case RTCP MUST be sent to the first
address specification. If no second pair is specified and RTP and
RTCP multiplexing has not been negotiated, RTCP MUST NOT be sent.
o The RTCP/UDP packets from the client to the server MUST be sent to
the address and port given by the second address specification of
the "src_addr" parameter, unless RTP and RTCP multiplexing has
been negotiated, in which case RTCP MUST be sent to the first
address specification. If no second pair is specified and RTP and
RTCP multiplexing has not been negotiated, RTCP MUST NOT be sent.
o The RTP/UDP packets from the client to the server MUST be sent to
the address and port given by the first address specification of
the "src_addr" parameter.
o RTP and RTCP packets SHOULD be sent from the corresponding
receiver port, i.e., RTCP packets from the server should be sent
from the "src_addr" parameters second address port pair, unless
RTP and RTCP multiplexing has been negotiated in which case the
first address port pair is used.
<span class="h4"><a class="selflink" id="appendix-C.1.3" href="#appendix-C.1.3">C.1.3</a>. AVPF/UDP</span>
The RTP profile "Extended RTP Profile for RTCP-based Feedback (RTP/
AVPF)" [<a href="./rfc4585" title=""Extended RTP Profile for Real-time Transport Control Protocol (RTCP)-Based Feedback (RTP/AVPF)"">RFC4585</a>] MAY be used as RTP profiles in sessions using RTP.
All that is defined for AVP MUST also apply for AVPF.
The usage of AVPF is indicated by the media initialization protocol
used. In the case of SDP, it is indicated by media lines ("m=")
containing the profile RTP/AVPF. That SDP MAY also contain further
AVPF-related SDP attributes configuring the AVPF session regarding
reporting interval and feedback messages to be used [<a href="./rfc4585" title=""Extended RTP Profile for Real-time Transport Control Protocol (RTCP)-Based Feedback (RTP/AVPF)"">RFC4585</a>]. This
configuration MUST be followed.
<span class="grey">Schulzrinne, et al. Standards Track [Page 274]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-275" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
<span class="h4"><a class="selflink" id="appendix-C.1.4" href="#appendix-C.1.4">C.1.4</a>. SAVP/UDP</span>
The RTP profile "The Secure Real-time Transport Protocol (SRTP)"
[<a href="./rfc3711" title=""The Secure Real-time Transport Protocol (SRTP)"">RFC3711</a>] is an RTP profile (SAVP) that MAY be used in RTSP sessions
using RTP. All that is defined for AVP MUST also apply for SAVP.
The usage of SRTP requires that a security context be established.
The default key-management unless otherwise signaled SHALL be MIKEY
in RSA-R mode as defined in <a href="#appendix-C.1.4.1">Appendix C.1.4.1</a> and not according to the
procedure defined in "Key Management Extensions for Session
Description Protocol (SDP) and Real Time Streaming Protocol (RTSP)"
[<a href="./rfc4567" title=""Key Management Extensions for Session Description Protocol (SDP) and Real Time Streaming Protocol (RTSP)"">RFC4567</a>]. The reason is that <a href="./rfc4567">RFC 4567</a> sends the initial MIKEY
message in SDP, thus, both requiring the usage of the DESCRIBE method
and forcing the server to keep state for clients performing DESCRIBE
in anticipation that they might require key management.
MIKEY is selected as the default method for establishing SRTP
cryptographic context within an RTSP session as it can be embedded in
the RTSP messages while still ensuring confidentiality of content of
the keying material, even when using hop-by-hop TLS security for the
RTSP messages. This method also supports pipelining of the RTSP
messages.
<span class="h5"><a class="selflink" id="appendix-C.1.4.1" href="#appendix-C.1.4.1">C.1.4.1</a>. MIKEY Key Establishment</span>
This method for using MIKEY [<a href="./rfc3830" title=""MIKEY: Multimedia Internet KEYing"">RFC3830</a>] to establish the SRTP
cryptographic context is initiated in the client's SETUP request, and
the server's response to the SETUP carries the MIKEY response. This
ensures that the crypto context establishment happens simultaneously
with the establishment of the media stream being protected. By using
MIKEY's RSA-R mode [<a href="./rfc4738" title=""MIKEY- RSA-R: An Additional Mode of Key Distribution in Multimedia Internet KEYing (MIKEY)"">RFC4738</a>] the client can be the initiator and
still allow the server to set the parameters in accordance with the
actual media stream.
The SRTP cryptographic context establishment is done according to the
following process:
1. The client determines that SAVP or SAVPF shall be used from the
media-description format, e.g., SDP. If no other key-management
method is explicitly signaled, then MIKEY SHALL be used as
defined herein. The use of SRTP with RTSP is only defined with
MIKEY with keys established as defined in this section. Future
documents may define how an RTSP implementation treats SDP that
indicates some other key mechanism to be used. The need for
such specification includes [<a href="./rfc4567" title=""Key Management Extensions for Session Description Protocol (SDP) and Real Time Streaming Protocol (RTSP)"">RFC4567</a>], which is not defined for
use in RTSP 2.0 within this document.
<span class="grey">Schulzrinne, et al. Standards Track [Page 275]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-276" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
2. The client SHALL establish a TLS connection for RTSP messages,
directly or hop-by-hop with the server. If hop-by-hop TLS
security is used, the User method SHALL be indicated in the
Accept-Credentials header. Note that using hop-by-hop does
allow the proxy to insert itself as a man in the middle. This
can also occur in the MIKEY exchange by the proxy providing one
of its certificates rather than the server's in the Connection-
Credentials header. Therefore, the client SHALL validate the
server certificate.
3. The client retrieves the server's certificate from a direct TLS
connection or hop-by-hop from a Connection-Credentials header.
The client then checks that the server certificate is valid and
belongs to the server.
4. The client forms the MIKEY Initiator message using RSA-R mode in
unicast mode as specified in [<a href="./rfc4738" title=""MIKEY- RSA-R: An Additional Mode of Key Distribution in Multimedia Internet KEYing (MIKEY)"">RFC4738</a>]. The client SHOULD use
the same certificate for TLS and MIKEY to enable the server to
bind the two together. The client's certificate SHALL be
included in the MIKEY message. The client SHALL indicate its
SRTP capabilities in the message.
5. The MIKEY message from the previous step is base64-encoded
[<a href="./rfc4648" title=""The Base16, Base32, and Base64 Data Encodings"">RFC4648</a>] and becomes the value of the MIKEY parameter that is
included in the transport specification(s) that specifies an
SRTP-based profile (SAVP, SAVPF) in the SETUP request.
6. Any proxy encountering the MIKEY parameter SHALL forward it
without modification. A proxy that is required to understand
the Transport specifications will need to understand SAVP/SAVPF
with MIKEY to enable the default keying for SRTP-protected media
streams. If such a proxy does not support SAVP/SAVPF with
MIKEY, it will discard the whole transport specification. Most
types of proxies can easily support SAVP and SAVPF with MIKEY.
If a client encounters a proxy not supporting SAVP/SAVPF with
MIKEY, the client should attempt bypassing that proxy.
7. The server, upon receiving the SETUP request, will need to
decide upon the transport specification to use, if multiple are
included by the client. In the determination of which transport
specifications are supported and preferred, the server SHOULD
decode the MIKEY message to take the embedded SRTP parameters
into account. If all transport spec require SRTP but no MIKEY
parameter or other supported keying method is included, the
server SHALL respond with 403 (Forbidden).
<span class="grey">Schulzrinne, et al. Standards Track [Page 276]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-277" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
8. Upon generating a response, the following outcomes can occur:
* A transport spec not using SRTP and MIKEY is selected. Thus,
the response will not contain any MIKEY parameters.
* A transport spec using SRTP and MIKEY is selected but an
error is encountered in the MIKEY processing. In this case,
an RTSP error response code of 466 (Key Management Error)
SHALL be used. A MIKEY message describing the error MAY be
included.
* A transport spec using SRTP and MIKEY is selected and a MIKEY
response message can be created. The server SHOULD use the
same certificate for TLS and in MIKEY to enable the client to
bind the two together. If a different certificate is used,
it SHALL be included in the MIKEY message. It is RECOMMENDED
that the envelope key-cache type be set to 'Cache' and that a
single envelope key is reused for all MIKEY messages to the
client. That message is included in the MIKEY parameter part
of the single selected transport specification in the SETUP
response. The server will set the SRTP parameters as
preferred for this media stream within the supported range by
the client.
9. The server transmits the SETUP response back to the client.
10. The client receives the SETUP response and, if the response code
indicates a successful request, it decodes the MIKEY message and
establishes the SRTP cryptographic context from the parameters
in the MIKEY response.
In the above method, the client's certificate may be self signed in
cases where the client's identity is not necessary to authenticate
and the security goal is only to ensure that the RTSP signaling
client is the same as the one receiving the SRTP security context.
<span class="h4"><a class="selflink" id="appendix-C.1.5" href="#appendix-C.1.5">C.1.5</a>. SAVPF/UDP</span>
The RTP profile "Extended Secure RTP Profile for Real-time Transport
Control Protocol (RTCP)-Based Feedback (RTP/SAVPF)" [<a href="./rfc5124" title=""Extended Secure RTP Profile for Real-time Transport Control Protocol (RTCP)-Based Feedback (RTP/SAVPF)"">RFC5124</a>] is an
RTP profile (SAVPF) that MAY be used in RTSP sessions using RTP. All
that is defined for AVPF MUST also apply for SAVPF.
The usage of SRTP requires that a cryptographic context be
established. The default mechanism for establishing that security
association is to use MIKEY[RFC3830] with RTSP as defined in
<a href="#appendix-C.1.4.1">Appendix C.1.4.1</a>.
<span class="grey">Schulzrinne, et al. Standards Track [Page 277]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-278" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
<span class="h4"><a class="selflink" id="appendix-C.1.6" href="#appendix-C.1.6">C.1.6</a>. RTCP Usage with RTSP</span>
RTCP has several usages when RTP is implemented for media transport
as explained below. Thus, RTCP MUST be supported if an RTSP agent
handles RTP.
<span class="h5"><a class="selflink" id="appendix-C.1.6.1" href="#appendix-C.1.6.1">C.1.6.1</a>. Media Synchronization</span>
RTCP provides media synchronization and clock-drift compensation.
The initial media synchronization is available from RTP-Info header.
However, to be able to handle any clock drift between the media
streams, RTCP is needed.
<span class="h5"><a class="selflink" id="appendix-C.1.6.2" href="#appendix-C.1.6.2">C.1.6.2</a>. RTSP Session Keep-Alive</span>
RTCP traffic from the RTSP client to the RTSP server MUST function as
keep-alive. This requires an RTSP server supporting RTP to use the
received RTCP packets as indications that the client desires the
related RTSP session to be kept alive.
<span class="h5"><a class="selflink" id="appendix-C.1.6.3" href="#appendix-C.1.6.3">C.1.6.3</a>. Bitrate Adaption</span>
RTCP Receiver reports and any additional feedback from the client
MUST be used to adapt the bitrate used over the transport for all
cases when RTP is sent over UDP. An RTP sender without reserved
resources MUST NOT use more than its fair share of the available
resources. This can be determined by comparing on short-to-medium
terms (some seconds) the used bitrate and adapting it so that the RTP
sender sends at a bitrate comparable to what a TCP sender would
achieve on average over the same path.
To ensure that the implementation's adaptation mechanism has a well-
defined outer envelope, all implementations using a non-congestion-
controlled unicast transport protocol, like UDP, MUST implement
"Multimedia Congestion Control: Circuit Breakers for Unicast RTP
Sessions" [<a href="#ref-RTP-CIRCUIT-BREAKERS">RTP-CIRCUIT-BREAKERS</a>].
<span class="h5"><a class="selflink" id="appendix-C.1.6.4" href="#appendix-C.1.6.4">C.1.6.4</a>. RTP and RTCP Multiplexing</span>
RTSP can be used to negotiate the usage of RTP and RTCP multiplexing
as described in [<a href="./rfc5761" title=""Multiplexing RTP Data and Control Packets on a Single Port"">RFC5761</a>]. This allows servers and client to reduce
the amount of resources required for the session by only requiring
one underlying transport stream per media stream instead of two when
using RTP and RTCP. This lessens the server-port consumption and
also the necessary state and keep-alive work when operating across
NATs [<a href="./rfc2663" title=""IP Network Address Translator (NAT) Terminology and Considerations"">RFC2663</a>].
<span class="grey">Schulzrinne, et al. Standards Track [Page 278]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-279" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
Content must be prepared with some consideration for RTP and RTCP
multiplexing, mainly ensuring that the RTP payload types used do not
collide with the ones used for RTCP packet types. This option likely
needs explicit support from the content unless the RTP payload types
can be remapped by the server and that is correctly reflected in the
session description. Beyond that, support of this feature should
come at little cost and much gain.
It is recommended that, if the content and server support RTP and
RTCP multiplexing, this is indicated in the session description, for
example, using the SDP attribute "a=rtcp-mux". If the SDP message
contains the "a=rtcp-mux" attribute for a media stream, the server
MUST support RTP and RTCP multiplexing. If indicated or otherwise
desired by the client, it can include the Transport parameter "RTCP-
mux" in any transport specification where it desires to use "RTCP-
mux". The server will indicate if it supports "RTCP-mux". Servers
and Clients SHOULD support RTP and RTCP multiplexing.
For capability exchange, an RTSP feature tag for RTP and RTCP
multiplexing is defined: "setup.rtp.rtcp.mux".
To minimize the risk of negotiation failure while using RTP and RTCP
multiplexing, some recommendations are here provided. If the session
description includes explicit indication of support ("a=rtcp-mux" in
SDP), then an RTSP agent can safely create a SETUP request with a
transport specification with only a single "dest_addr" parameter
address specification. If no such explicit indication is provided,
then even if the feature tag "setup.rtp.rtcp.mux" is provided in a
Supported header by the RTSP server or the feature tag included in
the Required header in the SETUP request, the media resource may not
support RTP and RTCP multiplexing. Thus, to maximize the probability
of successful negotiation, the RTSP agent is recommended to include
two "dest_addr" parameter address specifications in the first or
first set (if pipelining is used) of SETUP request(s) for any media
resource aggregate. That way, the RTSP server can accept RTP and
RTCP multiplexing and only use the first address specification or, if
not, use both specifications. The RTSP agent, after having received
the response for a successful negotiation of the usage of RTP and
RTCP multiplexing, can then release the resources associated with the
second address specification.
<span class="h3"><a class="selflink" id="appendix-C.2" href="#appendix-C.2">C.2</a>. RTP over TCP</span>
Transport of RTP over TCP can be done in two ways: over independent
TCP connections using [<a href="./rfc4571" title=""Framing Real-time Transport Protocol (RTP) and RTP Control Protocol (RTCP) Packets over Connection- Oriented Transport"">RFC4571</a>] or interleaved in the RTSP
connection. In both cases, the protocol MUST be "rtp" and the lower-
layer MUST be TCP. The profile may be any of the above specified
ones: AVP, AVPF, SAVP, or SAVPF.
<span class="grey">Schulzrinne, et al. Standards Track [Page 279]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-280" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
<span class="h4"><a class="selflink" id="appendix-C.2.1" href="#appendix-C.2.1">C.2.1</a>. Interleaved RTP over TCP</span>
The use of embedded (interleaved) binary data transported on the RTSP
connection is possible as specified in <a href="#section-14">Section 14</a>. When using this
declared combination of interleaved binary data, the RTSP messages
MUST be transported over TCP. TLS may or may not be used. If TLS is
used, both RTSP messages and the binary data will be protected by
TLS.
One should, however, consider that this will result in all media
streams going through any proxy. Using independent TCP connections
can avoid that issue.
<span class="h4"><a class="selflink" id="appendix-C.2.2" href="#appendix-C.2.2">C.2.2</a>. RTP over Independent TCP</span>
In this section, the sending of RTP [<a href="./rfc3550" title=""RTP: A Transport Protocol for Real-Time Applications"">RFC3550</a>] over lower-layer
transport TCP [<a href="./rfc793" title=""Transmission Control Protocol"">RFC793</a>] according to "Framing Real-time Transport
Protocol (RTP) and RTP Control Protocol (RTCP) Packets over
Connection-Oriented Transport" [<a href="./rfc4571" title=""Framing Real-time Transport Protocol (RTP) and RTP Control Protocol (RTCP) Packets over Connection- Oriented Transport"">RFC4571</a>] is described. This section
adapts the guidelines for using RTP over TCP within SIP/SDP [<a href="./rfc4145" title=""TCP-Based Media Transport in the Session Description Protocol (SDP)"">RFC4145</a>]
to work with RTSP.
A client codes the support of RTP over independent TCP by specifying
an RTP/AVP/TCP transport option without an interleaved parameter in
the Transport line of a SETUP request. This transport option MUST
include the "unicast" parameter.
If the client wishes to use RTP with RTCP, two address specifications
need to be included in the "dest_addr" parameter. If the client
wishes to use RTP without RTCP, one address specification is included
in the "dest_addr" parameter. If the client wishes to multiplex RTP
and RTCP on a single transport flow (see <a href="#appendix-C.1.6.4">Appendix C.1.6.4</a>), one or
two address specifications are included in the "dest_addr" parameter
in addition to the "RTCP-mux" transport parameter. Two address
specifications are allowed to facilitate successful negotiation when
the server or content can't support RTP and RTCP multiplexing.
Ordering rules of dest_addr ports follow the rules for RTP/AVP/UDP.
If the client wishes to play the active role in initiating the TCP
connection, it MAY set the setup parameter (see <a href="#section-18.54">Section 18.54</a>) on the
Transport line to be "active", or it MAY omit the setup parameter, as
active is the default. If the client signals the active role, the
ports in the address specifications in the "dest_addr" parameter MUST
be set to 9 (the discard port).
If the client wishes to play the passive role in TCP connection
initiation, it MUST set the setup parameter on the Transport line to
be "passive". If the client is able to assume the active or the
<span class="grey">Schulzrinne, et al. Standards Track [Page 280]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-281" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
passive role, it MUST set the setup parameter on the Transport line
to be "actpass". In either case, the "dest_addr" parameter's address
specification port value for RTP MUST be set to the TCP port number
on which the client is expecting to receive the TCP connection for
RTP, and the "dest_addr" address specification port value for RTCP
MUST be set to the TCP port number on which the client is expecting
to receive the TCP connection for RTCP. In the case that the client
wishes to multiplex RTP and RTCP on a single transport flow, the
"RTCP-mux" parameter is included and one or two "dest_addr" parameter
address specifications are included, as mentioned earlier in this
section.
Upon receipt of a non-interleaved RTP/AVP/TCP SETUP request, if a
server decides to accept this requested option, the 2xx reply MUST
contain a Transport option that specifies RTP/AVP/TCP (without using
the interleaved parameter and using the unicast parameter). The
"dest_addr" parameter value MUST be echoed from the parameter value
in the client request unless the destination address (only port) was
not provided; in which case, the server MAY include the source
address of the RTSP TCP connection with the port number unchanged.
In addition, the server reply MUST set the setup parameter on the
Transport line, to indicate the role the server will play in the
connection setup. Permissible values are "active" (if a client set
setup to "passive" or "actpass") and "passive" (if a client set setup
to "active" or "actpass").
If a server sets setup to "passive", the "src_addr" in the reply MUST
indicate the ports on which the server is willing to receive a TCP
connection for RTP and (if the client requested a TCP connection for
RTCP by specifying two "dest_addr" address specifications) a TCP/
RTCP connection. If a server sets setup to "active", the ports
specified in "src_addr" address specifications MUST be set to 9. The
server MAY use the "ssrc" parameter, following the guidance in
<a href="#section-18.54">Section 18.54</a>. The server sets only one address specification in the
case that the client has indicated only a single address
specification or in case RTP and RTCP multiplexing was requested and
accepted by the server. Port ordering for "src_addr" follows the
rules for RTP/AVP/UDP.
Servers MUST support taking the passive role and MAY support taking
the active role. Servers with a public IP address take the passive
role, thus enabling clients behind NATs and firewalls a better chance
of successful connect to the server by actively connecting outwards.
Therefore, the clients are RECOMMENDED to take the active role.
<span class="grey">Schulzrinne, et al. Standards Track [Page 281]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-282" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
After sending (receiving) a 2xx reply for a SETUP method for a non-
interleaved RTP/AVP/TCP media stream, the active party SHOULD
initiate the TCP connection as soon as possible. The client MUST NOT
send a PLAY request prior to the establishment of all the TCP
connections negotiated using SETUP for the session. In case the
server receives a PLAY request in a session that has not yet
established all the TCP connections, it MUST respond using the 464
(Data Transport Not Ready Yet) (<a href="#section-17.4.28">Section 17.4.28</a>) error code.
Once the PLAY request for a media resource transported over non-
interleaved RTP/AVP/TCP occurs, media begins to flow from server to
client over the RTP TCP connection, and RTCP packets flow
bidirectionally over the RTCP TCP connection. Unless RTP and RTCP
multiplexing has been negotiated; in which case, RTP and RTCP will
flow over a common TCP connection. As in the RTP/UDP case, client-
to-server traffic on an RTP-only TCP session is unspecified by this
memo. The packets that travel on these connections MUST be framed
using the protocol defined in [<a href="./rfc4571" title=""Framing Real-time Transport Protocol (RTP) and RTP Control Protocol (RTCP) Packets over Connection- Oriented Transport"">RFC4571</a>], not by the framing defined
for interleaving RTP over the RTSP connection defined in <a href="#section-14">Section 14</a>.
A successful PAUSE request for media being transported over RTP/AVP/
TCP pauses the flow of packets over the connections, without closing
the connections. A successful TEARDOWN request signals that the TCP
connections for RTP and RTCP are to be closed by the RTSP client as
soon as possible.
Subsequent SETUP requests using a URI already set up in an RTSP
session using an RTP/AVP/TCP transport specification may be ambiguous
in the following way: does the client wish to open up a new TCP
connection for RTP or RTCP for the URI, or does the client wish to
continue using the existing TCP connections? The client SHOULD use
the "connection" parameter (defined in <a href="#section-18.54">Section 18.54</a>) on the
Transport line to make its intention clear (by setting "connection"
to "new" if new connections are needed, and by setting "connection"
to "existing" if the existing connections are to be used). After a
2xx reply for a SETUP request for a new connection, parties should
close the preexisting connections, after waiting a suitable period
for any stray RTP or RTCP packets to arrive.
The usage of SRTP, i.e., either SAVP or SAVPF profiles, requires that
a security association be established. The default mechanism for
establishing that security association is to use MIKEY[RFC3830] with
RTSP as defined <a href="#appendix-C.1.4.1">Appendix C.1.4.1</a>.
<span class="grey">Schulzrinne, et al. Standards Track [Page 282]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-283" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
Below, a rewritten version of the example "Media on Demand"
(Appendix A.1) shows the use of RTP/AVP/TCP non-interleaved:
C->M: DESCRIBE rtsp://example.com/twister.3gp RTSP/2.0
CSeq: 1
User-Agent: PhonyClient/1.2
M->C: RTSP/2.0 200 OK
CSeq: 1
Server: PhonyServer/1.0
Date: Wed, 23 Jan 2013 15:36:52 +0000
Content-Type: application/sdp
Content-Length: 227
Content-Base: rtsp://example.com/twister.3gp/
Expires: Thu, 24 Jan 2013 15:36:52 +0000
v=0
o=- 2890844256 2890842807 IN IP4 198.51.100.34
s=RTSP Session
i=An Example of RTSP Session Usage
e=adm@example.com
c=IN IP4 0.0.0.0
a=control: *
a=range:npt=00:00:00-00:10:34.10
t=0 0
m=audio 0 RTP/AVP 0
a=control: trackID=1
C->M: SETUP rtsp://example.com/twister.3gp/trackID=1 RTSP/2.0
CSeq: 2
User-Agent: PhonyClient/1.2
Require: play.basic
Transport: RTP/AVP/TCP;unicast;dest_addr=":9"/":9";
setup=active;connection=new
Accept-Ranges: npt, smpte, clock
M->C: RTSP/2.0 200 OK
CSeq: 2
Server: PhonyServer/1.0
Transport: RTP/AVP/TCP;unicast;
dest_addr=":9"/":9";
src_addr="198.51.100.5:53478"/"198.51.100:54091";
setup=passive;connection=new;ssrc=93CB001E
Session: OccldOFFq23KwjYpAnBbUr
Expires: Thu, 24 Jan 2013 15:36:52 +0000
Date: Wed, 23 Jan 2013 15:36:52 +0000
Accept-Ranges: npt
Media-Properties: Random-Access=0.8, Immutable, Unlimited
<span class="grey">Schulzrinne, et al. Standards Track [Page 283]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-284" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
C->M: TCP Connection Establishment x2
C->M: PLAY rtsp://example.com/twister.3gp/ RTSP/2.0
CSeq: 4
User-Agent: PhonyClient/1.2
Range: npt=30-
Session: OccldOFFq23KwjYpAnBbUr
M->C: RTSP/2.0 200 OK
CSeq: 4
Server: PhonyServer/1.0
Date: Wed, 23 Jan 2013 15:36:54 +0000
Session: OccldOFFq23KwjYpAnBbUr
Range: npt=30-623.10
Seek-Style: First-Prior
RTP-Info: url="rtsp://example.com/twister.3gp/trackID=1"
ssrc=4F312DD8:seq=54321;rtptime=2876889
<span class="h3"><a class="selflink" id="appendix-C.3" href="#appendix-C.3">C.3</a>. Handling Media-Clock Time Jumps in the RTP Media Layer</span>
RTSP allows media clients to control selected, non-contiguous
sections of media presentations, rendering those streams with an RTP
media layer [<a href="./rfc3550" title=""RTP: A Transport Protocol for Real-Time Applications"">RFC3550</a>]. Two cases occur, the first is when a new PLAY
request replaces an old ongoing request and the new request results
in a jump in the media. This should produce continuous media stream
at the RTP layer. A client may also immediately follow a completed
PLAY request with a new PLAY request. This will result in some gap
in the media layer. The below text will look into both cases.
A PLAY request that replaces an ongoing PLAY request allows the media
layer rendering the RTP stream to do so continuously without being
affected by jumps in media-clock time. The RTP timestamps for the
new media range are set so that they become continuous with the
previous media range in the previous request. The RTP sequence
number for the first packet in the new range will be the next
following the last packet in the previous range, i.e., monotonically
increasing. The goal is to allow the media-rendering layer to work
without interruption or reconfiguration across the jumps in media
clock. This should be possible in all cases of replaced PLAY
requests for media that has random access properties. In this case,
care is needed to align frames or similar media-dependent structures.
In cases where jumps in media-clock time are a result of RTSP
signaling operations arriving after a completed PLAY operation, the
request timing will result in that media becoming non-continuous.
The server becomes unable to send the media so that it arrives timely
and still carries timestamps to make the media stream continuous. In
these situations, the server will produce RTP streams where there are
<span class="grey">Schulzrinne, et al. Standards Track [Page 284]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-285" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
gaps in the RTP timeline for the media. If the media has frame
structure, aligning the timestamp for the next frame with the
previous structure reduces the burden to render this media. The gap
should represent the time the server hasn't been serving media, e.g.,
the time between the end of the media stream or a PAUSE request and
the new PLAY request. In these cases, the RTP sequence number would
normally be monotonically increasing across the gap.
For RTSP sessions with media that lacks random access properties,
such as live streams, any media-clock jump is commonly the result of
a correspondingly long pause of delivery. The RTP timestamp will
have increased in direct proportion to the duration of the paused
delivery. Note also that in this case the RTP sequence number should
be the next packet number. If not, the RTCP packet loss reporting
will indicate as loss all packets not received between the point of
pausing and later resuming. This may trigger congestion avoidance
mechanisms. An allowed exception from the above recommendation on
monotonically increasing RTP sequence number is live media streams,
likely being relayed. In this case, when the client resumes
delivery, it will get the media that is currently being delivered to
the server itself. For this type of basic delivery of live streams
to multiple users over unicast, individual rewriting of RTP sequence
numbers becomes quite a burden. For solutions that already cache
media or perform time shifting, the rewriting should impose only a
minor burden.
The goal when handling jumps in media-clock time is that the provided
stream is continuous without gaps in RTP timestamp or sequence
number. However, when delivery has been halted for some reason, the
RTP timestamp, when resuming, MUST represent the duration that the
delivery was halted. An RTP sequence number MUST generally be the
next number, i.e., monotonically increasing modulo 65536. For media
resources with the properties Time-Progressing and Time-Duration=0.0,
the server MAY create RTP media streams with RTP sequence number
jumps in them due to the client first halting delivery and later
resuming it (PAUSE and then later PLAY). However, servers utilizing
this exception must take into consideration the resulting RTCP
receiver reports that likely contain loss reports for all the packets
that were a part of the discontinuity. A client cannot rely on the
fact that a server will align when resuming play, even if it is
RECOMMENDED. The RTP-Info header will provide information on how the
server acts in each case.
One cannot assume that the RTSP client can communicate with the
RTP media agent, as the two may be independent processes. If the
RTP timestamp shows the same gap as the NPT, the media agent will
assume that there is a pause in the presentation. If the jump in
NPT is large enough, the RTP timestamp may roll over and the media
<span class="grey">Schulzrinne, et al. Standards Track [Page 285]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-286" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
agent may believe later packets to be duplicates of packets just
played out. Having the RTP timestamp jump will also affect the
RTCP measurements based on this.
As an example, assume an RTP timestamp frequency of 8000 Hz, a
packetization interval of 100 ms, and an initial sequence number and
timestamp of zero.
C->S: PLAY rtsp://example.com/fizzle RTSP/2.0
CSeq: 4
Session: ymIqLXufHkMHGdtENdblWK
Range: npt=10-15
User-Agent: PhonyClient/1.2
S->C: RTSP/2.0 200 OK
CSeq: 4
Session: ymIqLXufHkMHGdtENdblWK
Range: npt=10-15
RTP-Info: url="rtsp://example.com/fizzle/audiotrack"
ssrc=0D12F123:seq=0;rtptime=0
The ensuing RTP data stream is depicted below:
S -> C: RTP packet - seq = 0, rtptime = 0, NPT time = 10s
S -> C: RTP packet - seq = 1, rtptime = 800, NPT time = 10.1s
. . .
S -> C: RTP packet - seq = 49, rtptime = 39200, NPT time = 14.9s
Upon the completion of the requested delivery, the server sends a
PLAY_NOTIFY.
S->C: PLAY_NOTIFY rtsp://example.com/fizzle RTSP/2.0
CSeq: 5
Notify-Reason: end-of-stream
Request-Status: cseq=4 status=200 reason="OK"
Range: npt=-15
RTP-Info:url="rtsp://example.com/fizzle/audiotrack"
ssrc=0D12F123:seq=49;rtptime=39200
Session: ymIqLXufHkMHGdtENdblWK
C->S: RTSP/2.0 200 OK
CSeq: 5
User-Agent: PhonyClient/1.2
Upon the completion of the play range, the client follows up with a
request to PLAY from a new NPT.
<span class="grey">Schulzrinne, et al. Standards Track [Page 286]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-287" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
C->S: PLAY rtsp://example.com/fizzle RTSP/2.0
CSeq: 6
Session: ymIqLXufHkMHGdtENdblWK
Range: npt=18-20
User-Agent: PhonyClient/1.2
S->C: RTSP/2.0 200 OK
CSeq: 6
Session: ymIqLXufHkMHGdtENdblWK
Range: npt=18-20
RTP-Info: url="rtsp://example.com/fizzle/audiotrack"
ssrc=0D12F123:seq=50;rtptime=40100
The ensuing RTP data stream is depicted below:
S->C: RTP packet - seq = 50, rtptime = 40100, NPT time = 18s
S->C: RTP packet - seq = 51, rtptime = 40900, NPT time = 18.1s
. . .
S->C: RTP packet - seq = 69, rtptime = 55300, NPT time = 19.9s
In this example, first, NPT 10 through 15 are played, then the client
requests the server to skip ahead and play NPT 18 through 20. The
first segment is presented as RTP packets with sequence numbers 0
through 49 and timestamps 0 through 39,200. The second segment
consists of RTP packets with sequence numbers 50 through 69, with
timestamps 40,100 through 55,200. While there is a gap in the NPT,
there is no gap in the sequence-number space of the RTP data stream.
The RTP timestamp gap is present in the above example due to the time
it takes to perform the second play request, in this case, 12.5 ms
(100/8000).
<span class="h3"><a class="selflink" id="appendix-C.4" href="#appendix-C.4">C.4</a>. Handling RTP Timestamps after PAUSE</span>
During a PAUSE/PLAY interaction in an RTSP session, the duration of
time for which the RTP transmission was halted MUST be reflected in
the RTP timestamp of each RTP stream. The duration can be calculated
for each RTP stream as the time elapsed from when the last RTP packet
was sent before the PAUSE request was received and when the first RTP
packet was sent after the subsequent PLAY request was received. The
duration includes all latency incurred and processing time required
to complete the request.
<a href="./rfc3550">RFC 3550</a> [<a href="./rfc3550" title=""RTP: A Transport Protocol for Real-Time Applications"">RFC3550</a>] states that: "the RTP timestamp for each unit
[packet] would be related to the wallclock time at which the unit
becomes current on the virtual presentation timeline".
<span class="grey">Schulzrinne, et al. Standards Track [Page 287]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-288" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
In order to satisfy the requirements of [<a href="./rfc3550" title=""RTP: A Transport Protocol for Real-Time Applications"">RFC3550</a>], the RTP
timestamp space needs to increase continuously with real time.
While this is not optimal for stored media, it is required for RTP
and RTCP to function as intended. Using a continuous RTP
timestamp space allows the same timestamp model for both stored
and live media and allows better opportunity to integrate both
types of media under a single control.
As an example, assume a clock frequency of 8000 Hz, a packetization
interval of 100 ms, and an initial sequence number and timestamp of
zero.
C->S: PLAY rtsp://example.com/fizzle RTSP/2.0
CSeq: 4
Session: ymIqLXufHkMHGdtENdblWK
Range: npt=10-15
User-Agent: PhonyClient/1.2
S->C: RTSP/2.0 200 OK
CSeq: 4
Session: ymIqLXufHkMHGdtENdblWK
Range: npt=10-15
RTP-Info: url="rtsp://example.com/fizzle/audiotrack"
ssrc=0D12F123:seq=0;rtptime=0
The ensuing RTP data stream is depicted below:
S -> C: RTP packet - seq = 0, rtptime = 0, NPT time = 10s
S -> C: RTP packet - seq = 1, rtptime = 800, NPT time = 10.1s
S -> C: RTP packet - seq = 2, rtptime = 1600, NPT time = 10.2s
S -> C: RTP packet - seq = 3, rtptime = 2400, NPT time = 10.3s
<span class="grey">Schulzrinne, et al. Standards Track [Page 288]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-289" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
The client then sends a PAUSE request:
C->S: PAUSE rtsp://example.com/fizzle RTSP/2.0
CSeq: 5
Session: ymIqLXufHkMHGdtENdblWK
User-Agent: PhonyClient/1.2
S->C: RTSP/2.0 200 OK
CSeq: 5
Session: ymIqLXufHkMHGdtENdblWK
Range: npt=10.4-15
20 seconds elapse and then the client sends a PLAY request. In
addition, the server requires 15 ms to process the request:
C->S: PLAY rtsp://example.com/fizzle RTSP/2.0
CSeq: 6
Session: ymIqLXufHkMHGdtENdblWK
User-Agent: PhonyClient/1.2
S->C: RTSP/2.0 200 OK
CSeq: 6
Session: ymIqLXufHkMHGdtENdblWK
Range: npt=10.4-15
RTP-Info: url="rtsp://example.com/fizzle/audiotrack"
ssrc=0D12F123:seq=4;rtptime=164400
The ensuing RTP data stream is depicted below:
S -> C: RTP packet - seq = 4, rtptime = 164400, NPT time = 10.4s
S -> C: RTP packet - seq = 5, rtptime = 165200, NPT time = 10.5s
S -> C: RTP packet - seq = 6, rtptime = 166000, NPT time = 10.6s
First, NPT 10 through 10.3 is played, then a PAUSE is received by the
server. After 20 seconds, a PLAY is received by the server that
takes 15 ms to process. The duration of time for which the session
was paused is reflected in the RTP timestamp of the RTP packets sent
after this PLAY request.
A client can use the RTSP Range header and RTP-Info header to map NPT
time of a presentation with the RTP timestamp.
Note: in <a href="./rfc2326">RFC 2326</a> [<a href="./rfc2326" title=""Real Time Streaming Protocol (RTSP)"">RFC2326</a>], this matter was not clearly defined and
was misunderstood commonly. However, for RTSP 2.0, it is expected
that this will be handled correctly and no exception handling will be
required.
<span class="grey">Schulzrinne, et al. Standards Track [Page 289]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-290" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
Note further: it may be required to reset some of the state to ensure
the correct media decoding and the usual jitter-buffer handling when
issuing a PLAY request.
<span class="h3"><a class="selflink" id="appendix-C.5" href="#appendix-C.5">C.5</a>. RTSP/RTP Integration</span>
For certain data types, tight integration between the RTSP layer and
the RTP layer will be necessary. This by no means precludes the
above restrictions. Combined RTSP/RTP media clients should use the
RTP-Info field to determine whether incoming RTP packets were sent
before or after a seek or before or after a PAUSE.
<span class="h3"><a class="selflink" id="appendix-C.6" href="#appendix-C.6">C.6</a>. Scaling with RTP</span>
For scaling (see <a href="#section-18.46">Section 18.46</a>), RTP timestamps should correspond to
the rendering timing. For example, when playing video recorded at 30
frames per second at a scale of two and speed (<a href="#section-18.50">Section 18.50</a>) of one,
the server would drop every second frame to maintain and deliver
video packets with the normal timestamp spacing of 3,000 per frame,
but NPT would increase by 1/15 second for each video frame.
Note: the above scaling puts requirements on the media codec or a
media stream to support it. For example, motion JPEG or other
non-predictive video coding can easier handle the above example.
<span class="h3"><a class="selflink" id="appendix-C.7" href="#appendix-C.7">C.7</a>. Maintaining NPT Synchronization with RTP Timestamps</span>
The client can maintain a correct display of NPT by noting the RTP
timestamp value of the first packet arriving after repositioning.
The sequence parameter of the RTP-Info (<a href="#section-18.45">Section 18.45</a>) header
provides the first sequence number of the next segment.
<span class="h3"><a class="selflink" id="appendix-C.8" href="#appendix-C.8">C.8</a>. Continuous Audio</span>
For continuous audio, the server SHOULD set the RTP marker bit at the
beginning of serving a new PLAY request or at jumps in timeline.
This allows the client to perform playout delay adaptation.
<span class="h3"><a class="selflink" id="appendix-C.9" href="#appendix-C.9">C.9</a>. Multiple Sources in an RTP Session</span>
Note that more than one SSRC MAY be sent in the media stream. If it
happens, all sources are expected to be rendered simultaneously.
<span class="h3"><a class="selflink" id="appendix-C.10" href="#appendix-C.10">C.10</a>. Usage of SSRCs and the RTCP BYE Message during an RTSP Session</span>
The RTCP BYE message indicates the end of use of a given SSRC. If
all sources leave an RTP session, it can, in most cases, be assumed
to have ended. Therefore, a client or server MUST NOT send an RTCP
<span class="grey">Schulzrinne, et al. Standards Track [Page 290]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-291" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
BYE message until it has finished using a SSRC. A server SHOULD keep
using an SSRC until the RTP session is terminated. Prolonging the
use of a SSRC allows the established synchronization context
associated with that SSRC to be used to synchronize subsequent PLAY
requests even if the PLAY response is late.
An SSRC collision with the SSRC that transmits media does also have
consequences, as it will normally force the media sender to change
its SSRC in accordance with the RTP specification [<a href="./rfc3550" title=""RTP: A Transport Protocol for Real-Time Applications"">RFC3550</a>].
However, an RTSP server may wait and see if the client changes and
thus resolve the conflict to minimize the impact. As media sender,
SSRC change will result in a loss of synchronization context and
require any receiver to wait for RTCP sender reports for all media
requiring synchronization before being able to play out synchronized.
Due to these reasons, a client joining a session should take care not
to select the same SSRC(s) as the server indicates in the ssrc
Transport header parameter. Any SSRC signaled in the Transport
header MUST be avoided. A client detecting a collision prior to
sending any RTP or RTCP messages SHALL also select a new SSRC.
<span class="h3"><a class="selflink" id="appendix-C.11" href="#appendix-C.11">C.11</a>. Future Additions</span>
It is the intention that any future protocol or profile regarding
media delivery and lower transport should be easy to add to RTSP.
This section provides the necessary steps that need to be met.
The following things need to be considered when adding a new protocol
or profile for use with RTSP:
o The protocol or profile needs to define a name tag representing
it. This tag is required to be an ABNF "token" to be possible to
use in the Transport header specification.
o The useful combinations of protocol, profiles, and lower-layer
transport for this extension need to be defined. For each
combination, declare the necessary parameters to use in the
Transport header.
o For new media protocols, the interaction with RTSP needs to be
addressed. One important factor will be the media
synchronization. It may be necessary to have new headers similar
to RTP info to carry this information.
o Discussion needs to occur regarding congestion control for media,
especially if transport without built-in congestion control is
used.
<span class="grey">Schulzrinne, et al. Standards Track [Page 291]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-292" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
See the IANA Considerations section (<a href="#section-22">Section 22</a>) for information on
how to register new attributes.
<span class="h2"><a class="selflink" id="appendix-D" href="#appendix-D">Appendix D</a>. Use of SDP for RTSP Session Descriptions</span>
The Session Description Protocol (SDP, [<a href="./rfc4566" title=""SDP: Session Description Protocol"">RFC4566</a>]) may be used to
describe streams or presentations in RTSP. This description is
typically returned in reply to a DESCRIBE request on a URI from a
server to a client or received via HTTP from a server to a client.
This appendix describes how an SDP file determines the operation of
an RTSP session. Thus, it is worth pointing out that the
interpretation of the SDP is done in the context of the SDP receiver,
which is the one being configured. This is the same as in SAP
[<a href="./rfc2974" title=""Session Announcement Protocol"">RFC2974</a>]; this differs from SDP Offer/Answer [<a href="./rfc3264" title=""An Offer/Answer Model with Session Description Protocol (SDP)"">RFC3264</a>] where each
SDP is interpreted in the context of the agent providing it.
SDP as is provides no mechanism by which a client can distinguish,
without human guidance, between several media streams to be rendered
simultaneously and a set of alternatives (e.g., two audio streams
spoken in different languages). The SDP extension found in "The
Session Description Protocol (SDP) Grouping Framework" [<a href="./rfc5888" title=""The Session Description Protocol (SDP) Grouping Framework"">RFC5888</a>]
provides such functionality to some degree. <a href="#appendix-D.4">Appendix D.4</a> describes
the usage of SDP media line grouping for RTSP.
<span class="h3"><a class="selflink" id="appendix-D.1" href="#appendix-D.1">D.1</a>. Definitions</span>
The terms "session-level", "media-level", and other key/attribute
names and values used in this appendix are to be used as defined in
SDP [<a href="./rfc4566" title=""SDP: Session Description Protocol"">RFC4566</a>]:
<span class="h4"><a class="selflink" id="appendix-D.1.1" href="#appendix-D.1.1">D.1.1</a>. Control URI</span>
The "a=control" attribute is used to convey the control URI. This
attribute is used both for the session and media descriptions. If
used for individual media, it indicates the URI to be used for
controlling that particular media stream. If found at the session
level, the attribute indicates the URI for aggregate control
(presentation URI). The session-level URI MUST be different from any
media-level URI. The presence of a session-level control attribute
MUST be interpreted as support for aggregated control. The control
attribute MUST be present on the media level unless the presentation
only contains a single media stream; in which case, the attribute MAY
be present on the session level only and then also apply to that
single media stream.
ABNF for the attribute is defined in <a href="#section-20.3">Section 20.3</a>.
<span class="grey">Schulzrinne, et al. Standards Track [Page 292]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-293" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
Example:
a=control:rtsp://example.com/foo
This attribute MAY contain either relative or absolute URIs,
following the rules and conventions set out in <a href="./rfc3986">RFC 3986</a> [<a href="./rfc3986" title=""Uniform Resource Identifier (URI): Generic Syntax"">RFC3986</a>].
Implementations MUST look for a base URI in the following order:
1. the RTSP Content-Base field;
2. the RTSP Content-Location field;
3. the RTSP Request-URI.
If this attribute contains only an asterisk (*), then the URI MUST be
treated as if it were an empty embedded URI; thus, it will inherit
the entire base URI.
Note: <a href="./rfc2326">RFC 2326</a> was very unclear on the processing of relative URIs
and several RTSP 1.0 implementations at the point of publishing
this document did not perform <a href="./rfc3986">RFC 3986</a> processing to determine the
resulting URI; instead, simple concatenation is common. To avoid
this issue completely, it is recommended to use absolute URIs in
the SDP.
The URI handling for SDPs from container files needs special
consideration. For example, let's assume that a container file has
the URI: "rtsp://example.com/container.mp4". Let's further assume
this URI is the base URI and that there is an absolute media-level
URI: "rtsp://example.com/container.mp4/trackID=2". A relative media-
level URI that resolves in accordance with <a href="./rfc3986">RFC 3986</a> [<a href="./rfc3986" title=""Uniform Resource Identifier (URI): Generic Syntax"">RFC3986</a>] to the
above given media URI is "container.mp4/trackID=2". It is usually
not desirable to need to include or modify the SDP stored within the
container file with the server local name of the container file. To
avoid this, one can modify the base URI used to include a trailing
slash, e.g., "rtsp://example.com/container.mp4/". In this case, the
relative URI for the media will only need to be "trackID=2".
However, this will also mean that using "*" in the SDP will result in
the control URI including the trailing slash, i.e.,
"rtsp://example.com/container.mp4/".
Note: the usage of TrackID in the above is not a standardized
form, but one example out of several similar strings such as
TrackID, Track_ID, StreamID that is used by different server
vendors to indicate a particular piece of media inside a container
file.
<span class="grey">Schulzrinne, et al. Standards Track [Page 293]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-294" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
<span class="h4"><a class="selflink" id="appendix-D.1.2" href="#appendix-D.1.2">D.1.2</a>. Media Streams</span>
The "m=" field is used to enumerate the streams. It is expected that
all the specified streams will be rendered with appropriate
synchronization. If the session is over multicast, the port number
indicated SHOULD be used for reception. The client MAY try to
override the destination port, through the Transport header. The
servers MAY allow this: the response will indicate whether or not
this is allowed. If the session is unicast, the port numbers are the
ones RECOMMENDED by the server to the client, about which receiver
ports to use; the client MUST still include its receiver ports in its
SETUP request. The client MAY ignore this recommendation. If the
server has no preference, it SHOULD set the port number value to
zero.
The "m=" lines contain information about which transport protocol,
profile, and possibly lower-layer are to be used for the media
stream. The combination of transport, profile, and lower layer, like
RTP/AVP/UDP, needs to be defined for how to be used with RTSP. The
currently defined combinations are discussed in <a href="#appendix-C">Appendix C</a>; further
combinations MAY be specified.
Example:
m=audio 0 RTP/AVP 31
<span class="h4"><a class="selflink" id="appendix-D.1.3" href="#appendix-D.1.3">D.1.3</a>. Payload Type(s)</span>
The payload type or types are specified in the "m=" line. In case
the payload type is a static payload type from <a href="./rfc3551">RFC 3551</a> [<a href="./rfc3551" title=""RTP Profile for Audio and Video Conferences with Minimal Control"">RFC3551</a>], no
other information may be required. In case it is a dynamic payload
type, the media attribute "rtpmap" is used to specify what the media
is. The "encoding name" within the "rtpmap" attribute may be one of
those specified in [<a href="./rfc4856" title=""Media Type Registration of Payload Formats in the RTP Profile for Audio and Video Conferences"">RFC4856</a>], a media type registered with IANA
according to [<a href="./rfc4855" title=""Media Type Registration of RTP Payload Formats"">RFC4855</a>], or an experimental encoding as specified in
SDP [<a href="./rfc4566" title=""SDP: Session Description Protocol"">RFC4566</a>]). Codec-specific parameters are not specified in this
field, but rather in the "fmtp" attribute described below.
The selection of the RTP payload type numbers used may be required to
consider RTP and RTCP Multiplexing [<a href="./rfc5761" title=""Multiplexing RTP Data and Control Packets on a Single Port"">RFC5761</a>], if that is to be
supported by the server.
<span class="h4"><a class="selflink" id="appendix-D.1.4" href="#appendix-D.1.4">D.1.4</a>. Format-Specific Parameters</span>
Format-specific parameters are conveyed using the "fmtp" media
attribute. The syntax of the "fmtp" attribute is specific to the
encoding(s) to which the attribute refers. Note that some of the
<span class="grey">Schulzrinne, et al. Standards Track [Page 294]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-295" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
format-specific parameters may be specified outside of the "fmtp"
parameters, for example, like the "ptime" attribute for most audio
encodings.
<span class="h4"><a class="selflink" id="appendix-D.1.5" href="#appendix-D.1.5">D.1.5</a>. Directionality of Media Stream</span>
The SDP attributes "a=sendrecv", "a=recvonly", and "a=sendonly"
provide instructions about the direction the media streams flow
within a session. When using RTSP, the SDP can be delivered to a
client using either RTSP DESCRIBE or a number of RTSP external
methods, like HTTP, FTP, and email. Based on this, the SDP applies
to how the RTSP client will see the complete session. Thus, media
streams delivered from the RTSP server to the client would be given
the "a=recvonly" attribute.
"a=recvonly" in an SDP provided to the RTSP client indicates that
media delivery will only occur in the direction from the RTSP server
to the client. SDP provided to the RTSP client that lacks any of the
directionality attributes ("a=recvonly", "a=sendonly", "a=sendrecv")
would be interpreted as having "a=sendrecv". At the time of writing,
there exists no RTSP mode suitable for media traffic in the direction
from the RTSP client to the server. Thus, all RTSP SDP SHOULD have
an "a=recvonly" attribute when using the PLAY mode defined in this
document. If future modes are defined for media in the client-to-
server direction, then usage of "a=sendonly" or "a=sendrecv" may
become suitable to indicate intended media directions.
<span class="h4"><a class="selflink" id="appendix-D.1.6" href="#appendix-D.1.6">D.1.6</a>. Range of Presentation</span>
The "a=range" attribute defines the total time range of the stored
session or an individual media. Live sessions that are not seekable
can be indicated as specified below; whereas the length of live
sessions can be deduced from the "t=" and "r=" SDP parameters.
The attribute is both a session- and a media-level attribute. For
presentations that contain media streams of the same duration, the
range attribute SHOULD only be used at the session level. In case of
different lengths, the range attribute MUST be given at media level
for all media and SHOULD NOT be given at the session level. If the
attribute is present at both media level and session level, the
media-level values MUST be used.
Note: usually one will specify the same length for all media, even if
there isn't media available for the full duration on all media.
However, that requires that the server accept PLAY requests within
that range.
<span class="grey">Schulzrinne, et al. Standards Track [Page 295]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-296" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
Servers MUST take care to provide RTSP Range (see <a href="#section-18.40">Section 18.40</a>)
values that are consistent with what is presented in the SDP for the
content. There is no reason for non dynamic content, like media
clips provided on demand to have inconsistent values. Inconsistent
values between the SDP and the actual values for the content handled
by the server is likely to generate some failure, like 457 "Invalid
Range", in case the client uses PLAY requests with a Range header.
In case the content is dynamic in length and it is infeasible to
provide a correct value in the SDP, the server is recommended to
describe this as content that is not seekable (see below). The
server MAY override that property in the response to a PLAY request
using the correct values in the Range header.
The unit is specified first, followed by the value range. The units
and their values are as defined in <a href="#section-4.4.1">Section 4.4.1</a>, <a href="#section-4.4.2">Section 4.4.2</a>, and
<a href="#section-4.4.3">Section 4.4.3</a> and MAY be extended with further formats. Any open-
ended range (start-), i.e., without stop range, is of unspecified
duration and MUST be considered as content that is not seekable
unless this property is overridden. Multiple instances carrying
different clock formats MAY be included at either session or media
level.
ABNF for the attribute is defined in <a href="#section-20.3">Section 20.3</a>.
Examples:
a=range:npt=0-34.4368
a=range:clock=19971113T211503Z-19971113T220300Z
Non-seekable stream of unknown duration:
a=range:npt=0-
<span class="h4"><a class="selflink" id="appendix-D.1.7" href="#appendix-D.1.7">D.1.7</a>. Time of Availability</span>
The "t=" field defines when the SDP is valid. For on-demand content,
the server SHOULD indicate a stop time value for which it guarantees
the description to be valid and a start time that is equal to or
before the time at which the DESCRIBE request was received. It MAY
also indicate start and stop times of 0, meaning that the session is
always available.
For sessions that are of live type, i.e., specific start time,
unknown stop time, likely not seekable, the "t=" and "r=" field
SHOULD be used to indicate the start time of the event. The stop
time SHOULD be given so that the live event will have ended at that
time, while still not being unnecessary far into the future.
<span class="grey">Schulzrinne, et al. Standards Track [Page 296]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-297" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
<span class="h4"><a class="selflink" id="appendix-D.1.8" href="#appendix-D.1.8">D.1.8</a>. Connection Information</span>
In SDP used with RTSP, the "c=" field contains the destination
address for the media stream. If a multicast address is specified,
the client SHOULD use this address in any SETUP request as
destination address, including any additional parameters, such as
TTL. For on-demand unicast streams and some multicast streams, the
destination address MAY be specified by the client via the SETUP
request, thus overriding any specified address. To identify streams
without a fixed destination address, where the client is required to
specify a destination address, the "c=" field SHOULD be set to a null
value. For addresses of type "IP4", this value MUST be "0.0.0.0";
and for type "IP6", this value MUST be "0:0:0:0:0:0:0:0" (can also be
written as "::"), i.e., the unspecified address according to <a href="./rfc4291">RFC 4291</a>
[<a href="./rfc4291" title=""IP Version 6 Addressing Architecture"">RFC4291</a>].
<span class="h4"><a class="selflink" id="appendix-D.1.9" href="#appendix-D.1.9">D.1.9</a>. Message Body Tag</span>
The optional "a=mtag" attribute identifies a version of the session
description. It is opaque to the client. SETUP requests may include
this identifier in the If-Match field (see <a href="#section-18.24">Section 18.24</a>) to allow
session establishment only if this attribute value still corresponds
to that of the current description. The attribute value is opaque
and may contain any character allowed within SDP attribute values.
ABNF for the attribute is defined in <a href="#section-20.3">Section 20.3</a>.
Example:
a=mtag:"158bb3e7c7fd62ce67f12b533f06b83a"
One could argue that the "o=" field provides identical
functionality. However, it does so in a manner that would put
constraints on servers that need to support multiple session
description types other than SDP for the same piece of media
content.
<span class="grey">Schulzrinne, et al. Standards Track [Page 297]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-298" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
<span class="h3"><a class="selflink" id="appendix-D.2" href="#appendix-D.2">D.2</a>. Aggregate Control Not Available</span>
If a presentation does not support aggregate control, no session-
level "a=control" attribute is specified. For an SDP with multiple
media sections specified, each section will have its own control URI
specified via the "a=control" attribute.
Example:
v=0
o=- 2890844256 2890842807 IN IP4 192.0.2.56
s=I came from a web page
e=adm@example.com
c=IN IP4 0.0.0.0
t=0 0
m=video 8002 RTP/AVP 31
a=control:rtsp://audio.example.com/movie.aud
m=audio 8004 RTP/AVP 3
a=control:rtsp://video.example.com/movie.vid
Note that the position of the control URI in the description implies
that the client establishes separate RTSP control sessions to the
servers audio.example.com and video.example.com.
It is recommended that an SDP file contain the complete media-
initialization information even if it is delivered to the media
client through non-RTSP means. This is necessary as there is no
mechanism to indicate that the client should request more detailed
media stream information via DESCRIBE.
<span class="h3"><a class="selflink" id="appendix-D.3" href="#appendix-D.3">D.3</a>. Aggregate Control Available</span>
In this scenario, the server has multiple streams that can be
controlled as a whole. In this case, there are both a media-level
"a=control" attribute, which is used to specify the stream URIs, and
a session-level "a=control" attribute, which is used as the Request-
URI for aggregate control. If the media-level URI is relative, it is
resolved to absolute URIs according to <a href="#appendix-D.1.1">Appendix D.1.1</a> above.
<span class="grey">Schulzrinne, et al. Standards Track [Page 298]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-299" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
Example:
C->M: DESCRIBE rtsp://example.com/movie RTSP/2.0
CSeq: 1
User-Agent: PhonyClient/1.2
M->C: RTSP/2.0 200 OK
CSeq: 1
Date: Wed, 23 Jan 2013 15:36:52 +0000
Expires: Wed, 23 Jan 2013 16:36:52 +0000
Content-Type: application/sdp
Content-Base: rtsp://example.com/movie/
Content-Length: 227
v=0
o=- 2890844256 2890842807 IN IP4 192.0.2.211
s=I contain
i=<more info>
e=adm@example.com
c=IN IP4 0.0.0.0
a=control:*
t=0 0
m=video 8002 RTP/AVP 31
a=control:trackID=1
m=audio 8004 RTP/AVP 3
a=control:trackID=2
In this example, the client is recommended to establish a single RTSP
session to the server, and it uses the URIs rtsp://example.com/movie/
trackID=1 and rtsp://example.com/movie/trackID=2 to set up the video
and audio streams, respectively. The URI rtsp://example.com/movie/,
which is resolved from the "*", controls the whole presentation
(movie).
A client is not required to issue SETUP requests for all streams
within an aggregate object. Servers should allow the client to ask
for only a subset of the streams.
<span class="h3"><a class="selflink" id="appendix-D.4" href="#appendix-D.4">D.4</a>. Grouping of Media Lines in SDP</span>
For some types of media, it is desirable to express a relationship
between various media components, for instance, for lip
synchronization or Scalable Video Codec (SVC) [<a href="./rfc5583" title=""Signaling Media Decoding Dependency in the Session Description Protocol (SDP)"">RFC5583</a>]. This
relationship is expressed on the SDP level by grouping of media
lines, as described in [<a href="./rfc5888" title=""The Session Description Protocol (SDP) Grouping Framework"">RFC5888</a>], and can be exposed to RTSP.
<span class="grey">Schulzrinne, et al. Standards Track [Page 299]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-300" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
For RTSP, it is mainly important to know how to handle grouped media
received by means of SDP, i.e., if the media are under aggregate
control (see <a href="#appendix-D.3">Appendix D.3</a>) or if aggregate control is not available
(see <a href="#appendix-D.2">Appendix D.2</a>).
It is RECOMMENDED that grouped media are handled by aggregate
control, to give the client the ability to control either the whole
presentation or single media.
<span class="h3"><a class="selflink" id="appendix-D.5" href="#appendix-D.5">D.5</a>. RTSP External SDP Delivery</span>
There are some considerations that need to be made when the session
description is delivered to the client outside of RTSP, for example
via HTTP or email.
First of all, the SDP needs to contain absolute URIs, since relative
will, in most cases, not work as the delivery will not correctly
forward the base URI.
The writing of the SDP session availability information, i.e., "t="
and "r=", needs to be carefully considered. When the SDP is fetched
by the DESCRIBE method, the probability that it is valid is very
high. However, the same is much less certain for SDPs distributed
using other methods. Therefore, the publisher of the SDP should take
care to follow the recommendations about availability in the SDP
specification [<a href="./rfc4566" title=""SDP: Session Description Protocol"">RFC4566</a>] in <a href="#section-4.2">Section 4.2</a>.
<span class="h2"><a class="selflink" id="appendix-E" href="#appendix-E">Appendix E</a>. RTSP Use Cases</span>
This appendix describes the most important and considered use cases
for RTSP. They are listed in descending order of importance in
regard to ensuring that all necessary functionality is present. This
specification only fully supports usage of the two first. Also, in
these first two cases, there are special cases or exceptions that are
not supported without extensions, e.g., the redirection of media
delivery to an address other than the controlling agent's (client's).
<span class="h3"><a class="selflink" id="appendix-E.1" href="#appendix-E.1">E.1</a>. On-Demand Playback of Stored Content</span>
An RTSP-capable server stores content suitable for being streamed to
a client. A client desiring playback of any of the stored content
uses RTSP to set up the media transport required to deliver the
desired content. RTSP is then used to initiate, halt, and manipulate
the actual transmission (playout) of the content. RTSP is also
required to provide the necessary description and synchronization
information for the content.
<span class="grey">Schulzrinne, et al. Standards Track [Page 300]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-301" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
The above high-level description can be broken down into a number of
functions of which RTSP needs to be capable.
Presentation Description: Provide initialization information about
the presentation (content); for example, which media codecs are
needed for the content. Other information that is important
includes the number of media streams the presentation contains,
the transport protocols used for the media streams, and
identifiers for these media streams. This information is
required before setup of the content is possible and to
determine if the client is even capable of using the content.
This information need not be sent using RTSP; other external
protocols can be used to transmit the transport presentation
descriptions. Two good examples are the use of HTTP [<a href="./rfc7230" title=""Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and Routing"">RFC7230</a>]
or email to fetch or receive presentation descriptions like SDP
[<a href="./rfc4566" title=""SDP: Session Description Protocol"">RFC4566</a>]
Setup: Set up some or all of the media streams in a presentation.
The setup itself consists of selecting the protocol for media
transport and the necessary parameters for the protocol, like
addresses and ports.
Control of Transmission: After the necessary media streams have been
established, the client can request the server to start
transmitting the content. The client must be allowed to start
or stop the transmission of the content at arbitrary times.
The client must also be able to start the transmission at any
point in the timeline of the presentation.
Synchronization: For media-transport protocols like RTP [<a href="./rfc3550" title=""RTP: A Transport Protocol for Real-Time Applications"">RFC3550</a>],
it might be beneficial to carry synchronization information
within RTSP. This may be due to either the lack of inter-media
synchronization within the protocol itself or the potential
delay before the synchronization is established (which is the
case for RTP when using RTCP).
Termination: Terminate the established contexts.
For this use case, there are a number of assumptions about how it
works. These are:
On-Demand content: The content is stored at the server and can be
accessed at any time during a time period when it is intended
to be available.
<span class="grey">Schulzrinne, et al. Standards Track [Page 301]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-302" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
Independent sessions: A server is capable of serving a number of
clients simultaneously, including from the same piece of
content at different points in that presentations timeline.
Unicast Transport: Content for each individual client is transmitted
to them using unicast traffic.
It is also possible to redirect the media traffic to a different
destination than that of the agent controlling the traffic. However,
allowing this without appropriate mechanisms for checking that the
destination approves of this allows for Distributed DoS (DDoS).
<span class="h3"><a class="selflink" id="appendix-E.2" href="#appendix-E.2">E.2</a>. Unicast Distribution of Live Content</span>
This use case is similar to the above on-demand content case (see
<a href="#appendix-E.1">Appendix E.1</a>), the difference is the nature of the content itself.
Live content is continuously distributed as it becomes available from
a source; i.e., the main difference from on-demand is that one starts
distributing content before the end of it has become available to the
server.
In many cases, the consumer of live content is only interested in
consuming what actually happens "now"; i.e., very similar to
broadcast TV. However, in this case, it is assumed that there exists
no broadcast or multicast channel to the users, and instead the
server functions as a distribution node, sending the same content to
multiple receivers, using unicast traffic between server and client.
This unicast traffic and the transport parameters are individually
negotiated for each receiving client.
Another aspect of live content is that it often has a very limited
time of availability, as it is only available for the duration of the
event the content covers. An example of such live content could be a
music concert that lasts two hours and starts at a predetermined
time. Thus, there is a need to announce when and for how long the
live content is available.
In some cases, the server providing live content may be saving some
or all of the content to allow clients to pause the stream and resume
it from the paused point, or to "rewind" and play continuously from a
point earlier than the live point. Hence, this use case does not
necessarily exclude playing from other than the live point of the
stream, playing with scales other than 1.0, etc.
<span class="grey">Schulzrinne, et al. Standards Track [Page 302]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-303" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
<span class="h3"><a class="selflink" id="appendix-E.3" href="#appendix-E.3">E.3</a>. On-Demand Playback Using Multicast</span>
It is possible to use RTSP to request that media be delivered to a
multicast group. The entity setting up the session (the controller)
will then control when and what media is delivered to the group.
This use case has some potential for DoS attacks by flooding a
multicast group. Therefore, a mechanism is needed to indicate that
the group actually accepts the traffic from the RTSP server.
An open issue in this use case is how one ensures that all receivers
listening to the multicast or broadcast receives the session
presentation configuring the receivers. This specification has to
rely on an external solution to solve this issue.
<span class="h3"><a class="selflink" id="appendix-E.4" href="#appendix-E.4">E.4</a>. Inviting an RTSP Server into a Conference</span>
If one has an established conference or group session, it is possible
to have an RTSP server distribute media to the whole group.
Transmission to the group is simplest when controlled by a single
participant or leader of the conference. Shared control might be
possible, but would require further investigation and possibly
extensions.
This use case assumes that there exists either a multicast or a
conference focus that redistributes media to all participants.
This use case is intended to be able to handle the following
scenario: a conference leader or participant (hereafter called the
"controller") has some pre-stored content on an RTSP server that he
wants to share with the group. The controller sets up an RTSP
session at the streaming server for this content and retrieves the
session description for the content. The destination for the media
content is set to the shared multicast group or conference focus.
When desired by the controller, he/she can start and stop the
transmission of the media to the conference group.
There are several issues with this use case that are not solved by
this core specification for RTSP:
DoS: To avoid an RTSP server from being an unknowing participant in
a DoS attack, the server needs to be able to verify the
destination's acceptance of the media. Such a mechanism to
verify the approval of received media does not yet exist;
instead, only policies can be used, which can be made to work
in controlled environments.
<span class="grey">Schulzrinne, et al. Standards Track [Page 303]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-304" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
Distributing the presentation description to all participants in the
group:
To enable a media receiver to correctly decode the content,
the media configuration information needs to be distributed
reliably to all participants. This will most likely require
support from an external protocol.
Passing control of the session: If it is desired to pass control
of the RTSP session between the participants, some support
will be required by an external protocol to exchange state
information and possibly floor control of who is controlling
the RTSP session.
<span class="h3"><a class="selflink" id="appendix-E.5" href="#appendix-E.5">E.5</a>. Live Content Using Multicast</span>
This use case in its simplest form does not require any use of RTSP
at all; this is what multicast conferences being announced with SAP
[<a href="./rfc2974" title=""Session Announcement Protocol"">RFC2974</a>] and SDP are intended to handle. However, in use cases
where more advanced features like access control to the multicast
session are desired, RTSP could be used for session establishment.
A client desiring to join a live multicasted media session with
cryptographic (encryption) access control could use RTSP in the
following way. The source of the session announces the session and
gives all interested an RTSP URI. The client connects to the server
and requests the presentation description, allowing configuration for
reception of the media. In this step, it is possible for the client
to use secured transport and any desired level of authentication; for
example, for billing or access control. An RTSP link also allows for
load balancing between multiple servers.
If these were the only goals, they could be achieved by simply using
HTTP. However, for cases where the sender likes to keep track of
each individual receiver of a session, and possibly use the session
as a side channel for distributing key-updates or other information
on a per-receiver basis, and the full set of receivers is not known
prior to the session start, the state establishment that RTSP
provides can be beneficial. In this case, a client would establish
an RTSP session for this multicast group with the RTSP server. The
RTSP server will not transmit any media, but instead will point to
the multicast group. The client and server will be able to keep the
session alive for as long as the receiver participates in the session
thus enabling, for example, the server to push updates to the client.
This use case will most likely not be able to be implemented without
some extensions to the server-to-client push mechanism. Here the
PLAY_NOTIFY method (see <a href="#section-13.5">Section 13.5</a>) with a suitable extension could
provide clear benefits.
<span class="grey">Schulzrinne, et al. Standards Track [Page 304]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-305" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
<span class="h2"><a class="selflink" id="appendix-F" href="#appendix-F">Appendix F</a>. Text Format for Parameters</span>
A resource of type "text/parameters" consists of either 1) a list of
parameters (for a query) or 2) a list of parameters and associated
values (for a response or setting of the parameter). Each entry of
the list is a single line of text. Parameters are separated from
values by a colon. The parameter name MUST only use US-ASCII visible
characters while the values are UTF-8 text strings. The media type
registration form is in <a href="#section-22.16">Section 22.16</a>.
There is a potential interoperability issue for this format. It was
named in <a href="./rfc2326">RFC 2326</a> but never defined, even if used in examples that
hint at the syntax. This format matches the purpose and its syntax
supports the examples provided. However, it goes further by allowing
UTF-8 in the value part; thus, usage of UTF-8 strings may not be
supported. However, as individual parameters are not defined, the
implementing application needs to have out-of-band agreement or using
feature tag anyway to determine if the endpoint supports the
parameters.
The ABNF [<a href="./rfc5234" title=""Augmented BNF for Syntax Specifications: ABNF"">RFC5234</a>] grammar for "text/parameters" content is:
file = *((parameter / parameter-value) CRLF)
parameter = 1*visible-except-colon
parameter-value = parameter *WSP ":" value
visible-except-colon = %x21-39 / %x3B-7E ; VCHAR - ":"
value = *(TEXT-UTF8char / WSP)
TEXT-UTF8char = <as defined in <a href="#section-20.1">Section 20.1</a>>
WSP = <See <a href="./rfc5234">RFC 5234</a>> ; Space or HTAB
VCHAR = <See <a href="./rfc5234">RFC 5234</a>>
CRLF = <See <a href="./rfc5234">RFC 5234</a>>
<span class="h2"><a class="selflink" id="appendix-G" href="#appendix-G">Appendix G</a>. Requirements for Unreliable Transport of RTSP</span>
This appendix provides guidance for those who want to implement RTSP
messages over unreliable transports as has been defined in RTSP 1.0
[<a href="./rfc2326" title=""Real Time Streaming Protocol (RTSP)"">RFC2326</a>]. <a href="./rfc2326">RFC 2326</a> defined the "rtspu" URI scheme and provided some
basic information for the transport of RTSP messages over UDP. The
information is being provided here as there has been at least one
commercial implementation and compatibility with that should be
maintained.
<span class="grey">Schulzrinne, et al. Standards Track [Page 305]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-306" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
The following points should be considered for an interoperable
implementation:
o Requests shall be acknowledged by the receiver. If there is no
acknowledgement, the sender may resend the same message after a
timeout of one round-trip time (RTT). Any retransmissions due to
lack of acknowledgement must carry the same sequence number as the
original request.
o The RTT can be estimated as in TCP (<a href="./rfc6298">RFC 6298</a>) [<a href="./rfc6298" title=""Computing TCP's Retransmission Timer"">RFC6298</a>], with an
initial round-trip value of 500 ms. An implementation may cache
the last RTT measurement as the initial value for future
connections.
o The Timestamp header (<a href="#section-18.53">Section 18.53</a>) is used to avoid the
retransmission ambiguity problem [<a href="#ref-Stevens98">Stevens98</a>].
o The registered default port for RTSP over UDP for the server is
554.
o RTSP messages can be carried over any lower-layer transport
protocol that is 8-bit clean.
o RTSP messages are vulnerable to bit errors and should not be
subjected to them.
o Source authentication, or at least validation that RTSP messages
comes from the same entity becomes extremely important, as session
hijacking may be substantially easier for RTSP message transport
using an unreliable protocol like UDP than for TCP.
There are two RTSP headers that are primarily intended for being used
by the unreliable handling of RTSP messages and which will be
maintained:
o CSeq: See <a href="#section-18.20">Section 18.20</a>. It should be noted that the CSeq header
is also required to match requests and responses independent
whether a reliable or unreliable transport is used.
o Timestamp: See <a href="#section-18.53">Section 18.53</a>
<span class="h2"><a class="selflink" id="appendix-H" href="#appendix-H">Appendix H</a>. Backwards-Compatibility Considerations</span>
This section contains notes on issues about backwards compatibility
with clients or servers being implemented according to <a href="./rfc2326">RFC 2326</a>
[<a href="./rfc2326" title=""Real Time Streaming Protocol (RTSP)"">RFC2326</a>]. Note that there exists no requirement to implement RTSP
1.0; in fact, this document recommends against it as it is difficult
to do in an interoperable way.
<span class="grey">Schulzrinne, et al. Standards Track [Page 306]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-307" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
A server implementing RTSP 2.0 MUST include an RTSP-Version of
"RTSP/2.0" in all responses to requests containing RTSP-Version value
of "RTSP/2.0". If a server receives an RTSP 1.0 request, it MAY
respond with an RTSP 1.0 response if it chooses to support <a href="./rfc2326">RFC 2326</a>.
If the server chooses not to support <a href="./rfc2326">RFC 2326</a>, it MUST respond with a
505 (RTSP Version Not Supported) status code. A server MUST NOT
respond to an RTSP 1.0 request with an RTSP 2.0 response.
Clients implementing RTSP 2.0 MAY use an OPTIONS request with an
RTSP-Version of "RTSP/2.0" to determine whether a server supports
RTSP 2.0. If the server responds with either an RTSP-Version of
"RTSP/1.0" or a status code of 505 (RTSP Version Not Supported), the
client will have to use RTSP 1.0 requests if it chooses to support
<a href="./rfc2326">RFC 2326</a>.
<span class="h3"><a class="selflink" id="appendix-H.1" href="#appendix-H.1">H.1</a>. Play Request in Play State</span>
The behavior in the server when a Play is received in Play state has
changed (<a href="#section-13.4">Section 13.4</a>). In <a href="./rfc2326">RFC 2326</a>, the new PLAY request would be
queued until the current Play completed. Any new PLAY request now
takes effect immediately replacing the previous request.
<span class="h3"><a class="selflink" id="appendix-H.2" href="#appendix-H.2">H.2</a>. Using Persistent Connections</span>
Some server implementations of <a href="./rfc2326">RFC 2326</a> maintain a one-to-one
relationship between a connection and an RTSP session. Such
implementations require clients to use a persistent connection to
communicate with the server and when a client closes its connection,
the server may remove the RTSP session. This is worth noting if an
RTSP 2.0 client also supporting 1.0 connects to a 1.0 server.
<span class="h2"><a class="selflink" id="appendix-I" href="#appendix-I">Appendix I</a>. Changes</span>
This appendix briefly lists the differences between RTSP 1.0
[<a href="./rfc2326" title=""Real Time Streaming Protocol (RTSP)"">RFC2326</a>] and RTSP 2.0 for an informational purpose. For
implementers of RTSP 2.0, it is recommended to read carefully through
this memo and not to rely on the list of changes below to adapt from
RTSP 1.0 to RTSP 2.0, as RTSP 2.0 is not intended to be backwards
compatible with RTSP 1.0 [<a href="./rfc2326" title=""Real Time Streaming Protocol (RTSP)"">RFC2326</a>] other than the version negotiation
mechanism.
<span class="grey">Schulzrinne, et al. Standards Track [Page 307]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-308" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
<span class="h3"><a class="selflink" id="appendix-I.1" href="#appendix-I.1">I.1</a>. Brief Overview</span>
The following protocol elements were removed in RTSP 2.0 compared to
RTSP 1.0:
o the RECORD and ANNOUNCE methods and all related functionality
(including 201 (Created) and 250 (Low On Storage Space) status
codes);
o the use of UDP for RTSP message transport (due to missing interest
and to broken specification);
o the use of PLAY method for keep-alive in Play state.
The following protocol elements were added or changed in RTSP 2.0
compared to RTSP 1.0:
o RTSP session TEARDOWN from the server to the client;
o IPv6 support;
o extended IANA registries (e.g., transport headers parameters,
transport-protocol, profile, lower-transport, and mode);
o request pipelining for quick session start-up;
o fully reworked state machine;
o RTSP messages now use URIs rather than URLs;
o incorporated much of related HTTP text ([<a href="./rfc2616" title=""Hypertext Transfer Protocol -- HTTP/1.1"">RFC2616</a>]) in this memo,
compared to just referencing the sections in HTTP, to avoid
ambiguities;
o the REDIRECT method was expanded and diversified for different
situations;
o Includes a new section about how to set up different media-
transport alternatives and their profiles in addition to lower-
layer protocols. This caused the appendix on RTP interaction to
be moved to the new section instead of being in the part that
describes RTP. The section also includes guidelines what to
consider when writing usage guidelines for new protocols and
profiles;
<span class="grey">Schulzrinne, et al. Standards Track [Page 308]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-309" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
o Added an asynchronous notification method PLAY_NOTIFY. This
method is used by the RTSP server to asynchronously notify clients
about session changes while in Play state. To a limited extent,
this is comparable with some implementations of ANNOUNCE in RTSP
1.0 not intended for Recording.
<span class="h3"><a class="selflink" id="appendix-I.2" href="#appendix-I.2">I.2</a>. Detailed List of Changes</span>
The below changes have been made to RTSP 1.0 (<a href="./rfc2326">RFC 2326</a>) when defining
RTSP 2.0. Note that this list does not reflect minor changes in
wording or correction of typographical errors.
o The section on minimal implementation was deleted. Instead, the
main part of the specification defines the core of RTSP 2.0.
o The Transport header has been changed in the following ways:
* The ABNF has been changed to define that extensions are
possible and that unknown parameters result in servers ignoring
the transport specification.
* To prevent backwards compatibility issues, any extension or new
parameter requires the usage of a feature tag combined with the
Require header.
* Syntax ambiguities with the Mode parameter have been resolved.
* Syntax error with ";" for multicast and unicast has been
resolved.
* Two new addressing parameters have been defined: src_addr and
dest_addr. These replace the parameters "port", "client_port",
"server_port", "destination", and "source".
* Support for IPv6 explicit addresses in all address fields has
been included.
* To handle URI definitions that contain ";" or ",", a quoted-URI
format has been introduced and is required.
* IANA registries for the transport header parameters, transport-
protocol, profile, lower-transport, and mode have been defined.
* The Transport header's interleaved parameter's text was made
more strict and uses formal requirements levels. It was also
clarified that the interleaved channels are symmetric and that
it is the server that sets the channel numbers.
<span class="grey">Schulzrinne, et al. Standards Track [Page 309]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-310" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
* It has been clarified that the client can't request of the
server to use a certain RTP SSRC, using a request with the
transport parameter SSRC.
* Syntax definition for SSRC has been clarified to require 8HEX.
It has also been extended to allow multiple values for clients
supporting this version.
* Clarified the text on the Transport header's "dest_addr"
parameters regarding what security precautions the server is
required to perform.
o The Range formats have been changed in the following way:
* The NPT format has been given an initial NPT identifier that
must now be used.
* All formats now support initial open-ended formats of type
"npt=-10" and also format only "Range: smpte" ranges for usage
with GET_PARAMETER requests.
* The npt-hhmmss notation now follows ISO 8601 more strictly.
o RTSP message handling has been changed in the following ways:
* RTSP messages now use URIs rather than URLs.
* It has been clarified that a 4xx message due to a missing CSeq
header shall be returned without a CSeq header.
* The 300 (Multiple Choices) response code has been removed.
* Rules for how to handle the timing out RTSP messages have been
added.
* Extended Pipelining rules allowing for quick session startup.
* Sequence numbering and proxy handling of sequence numbers have
been defined, including cases when responses arrive out of
order.
o The HTTP references have been updated to first RFCs 2616 and 2617
and then to <a href="./rfc7230">RFC 7230</a>-7235. Most of the text has been copied and
then altered to fit RTSP into this specification. The Public and
the Content-Base headers have also been imported from <a href="./rfc2068">RFC 2068</a> so
that they are defined in the RTSP specification. Known effects on
RTSP due to HTTP clarifications:
<span class="grey">Schulzrinne, et al. Standards Track [Page 310]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-311" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
* Content-Encoding header can include encoding of type
"identity".
o The state machine section has been completely rewritten. It now
includes more details and is also more clear about the model used.
o An IANA section has been included that contains a number of
registries and their rules. This will allow us to use IANA to
keep track of RTSP extensions.
o The transport of RTSP messages has seen the following changes:
* The use of UDP for RTSP message transport has been deprecated
due to missing interest and to broken specification.
* The rules for how TCP connections are to be handled have been
clarified. Now it is made clear that servers should not close
the TCP connection unless they have been unused for significant
time.
* Strong recommendations why servers and clients should use
persistent connections have also been added.
* There is now a requirement on the servers to handle non-
persistent connections as this provides fault tolerance.
* Added wording on the usage of Connection:Close for RTSP.
* Specified usage of TLS for RTSP messages, including a scheme to
approve a proxy's TLS connection to the next hop.
o The following header-related changes have been made:
* Accept-Ranges response-header has been added. This header
clarifies which range formats can be used for a resource.
* Fixed the missing definitions for the Cache-Control header.
Also added to the syntax definition the missing delta-seconds
for max-stale and min-fresh parameters.
* Put requirement on CSeq header that the value is increased by
one for each new RTSP request. A recommendation to start at 0
has also been added.
* Added a requirement that the Date header must be used for all
messages with a message body and the Server should always
include it.
<span class="grey">Schulzrinne, et al. Standards Track [Page 311]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-312" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
* Removed the possibility of using Range header with Scale header
to indicate when it is to be activated, since it can't work as
defined. Also, added a rule that lack of Scale header in a
response indicates lack of support for the header. feature
tags for scaled playback have been defined.
* The Speed header must now be responded to in order to indicate
support and the actual speed going to be used. A feature tag
is defined. Notes on congestion control were also added.
* The Supported header was borrowed from SIP [<a href="./rfc3261" title=""SIP: Session Initiation Protocol"">RFC3261</a>] to help
with the feature negotiation in RTSP.
* Clarified that the Timestamp header can be used to resolve
retransmission ambiguities.
* The Session header text has been expanded with an explanation
on keep-alive and which methods to use. SET_PARAMETER is now
recommended to use if only keep-alive within RTSP is desired.
* It has been clarified how the Range header formats are used to
indicate pause points in the PAUSE response.
* Clarified that RTP-Info URIs that are relative use the Request-
URI as base URI. Also clarified that the used URI must be the
one that was used in the SETUP request. The URIs are now also
required to be quoted. The header also expresses the SSRC for
the provided RTP timestamp and sequence number values.
* Added text that requires the Range to always be present in PLAY
responses. Clarified what should be sent in case of live
streams.
* The headers table has been updated using a structure borrowed
from SIP. Those tables convey much more information and should
provide a good overview of the available headers.
* It has been clarified that any message with a message body is
required to have a Content-Length header. This was the case in
<a href="./rfc2326">RFC 2326</a>, but could be misinterpreted.
* ETag has changed its name to MTag.
* To resolve functionality around MTag, the MTag and If-None-
Match header have been added from HTTP with necessary
clarification in regard to RTSP operation.
<span class="grey">Schulzrinne, et al. Standards Track [Page 312]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-313" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
* Imported the Public header from HTTP (<a href="./rfc2068">RFC 2068</a> [<a href="./rfc2068" title=""Hypertext Transfer Protocol -- HTTP/1.1"">RFC2068</a>]) since
it has been removed from HTTP due to lack of use. Public is
used quite frequently in RTSP.
* Clarified rules for populating the Public header so that it is
an intersection of the capabilities of all the RTSP agents in a
chain.
* Added the Media-Range header for listing the current
availability of the media range.
* Added the Notify-Reason header for giving the reason when
sending PLAY_NOTIFY requests.
* A new header Seek-Style has been defined to direct and inform
how any seek operation should/have been performed.
o The Protocol Syntax has been changed in the following way:
* All ABNF definitions are updated according to the rules defined
in <a href="./rfc5234">RFC 5234</a> [<a href="./rfc5234" title=""Augmented BNF for Syntax Specifications: ABNF"">RFC5234</a>] and have been gathered in a separate
section (<a href="#section-20">Section 20</a>).
* The ABNF for the User-Agent and Server headers have been
corrected.
* Some definitions in the introduction regarding the RTSP session
have been changed.
* The protocol has been made fully IPv6 capable.
* The CHAR rule has been changed to exclude NULL.
o The Status codes have been changed in the following ways:
* The use of status code 303 (See Other) has been deprecated as
it does not make sense to use in RTSP.
* The never-defined status code 411 "Length Required" has been
completely removed.
* When sending response 451 (Parameter Not Understood) and 458
(Parameter Is Read-Only), the response body should contain the
offending parameters.
<span class="grey">Schulzrinne, et al. Standards Track [Page 313]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-314" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
* Clarification on when a 3rr redirect status code can be
received has been added. This includes receiving 3rr as a
result of a request within an established session. This
provides clarification to a previous unspecified behavior.
* Removed the 201 (Created) and 250 (Low On Storage Space) status
codes as they are only relevant to recording, which is
deprecated.
* Several new status codes have been defined: 464 (Data Transport
Not Ready Yet), 465 (Notification Reason Unknown), 470
(Connection Authorization Required), 471 (Connection
Credentials Not Accepted), and 472 (Failure to Establish Secure
Connection).
o The following functionality has been deprecated from the protocol:
* The use of Queued Play.
* The use of PLAY method for keep-alive in Play state.
* The RECORD and ANNOUNCE methods and all related functionality.
Some of the syntax has been removed.
* The possibility to use timed execution of methods with the time
parameter in the Range header.
* The description on how rtspu works is not part of the core
specification and will require external description. Only that
it exists is mentioned here and some requirements for the
transport are provided.
o The following changes have been made in relation to methods:
* The OPTIONS method has been clarified with regard to the use of
the Public and Allow headers.
* Added text clarifying the usage of SET_PARAMETER for keep-alive
and usage without a body.
* PLAY method is now allowed to be pipelined with the pipelining
of one or more SETUP requests following the initial that
generates the session for aggregated control.
* REDIRECT has been expanded and diversified for different
situations.
<span class="grey">Schulzrinne, et al. Standards Track [Page 314]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-315" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
* Added a new method PLAY_NOTIFY. This method is used by the
RTSP server to asynchronously notify clients about session
changes.
o Wrote a new section about how to set up different media-transport
alternatives and their profiles as well as lower-layer protocols.
This caused the appendix on RTP interaction to be moved to the new
section instead of being in the part that describes RTP. The new
section also includes guidelines what to consider when writing
usage guidelines for new protocols and profiles.
o Setup and usage of independent TCP connections for transport of
RTP has been specified.
o Added a new section describing the available mechanisms to
determine if functionality is supported, called "Capability
Handling". Renamed option-tags to feature tags.
o Added a Contributors section with people who have contributed
actual text to the specification.
o Added a section "Use Cases" that describes the major use cases for
RTSP.
o Clarified the usage of a=range and how to indicate live content
that are not seekable with this header.
o Text specifying the special behavior of PLAY for live content.
o Security features of RTSP have been clarified:
* HTTP-based authorization has been clarified requiring both
Basic and Digest support
* TLS support has been mandated
* If one implements RTP, then SRTP and defined MIKEY-based key-
exchange must be supported
* Various minor mitigations discussed or resulted in protocol
changes.
<span class="grey">Schulzrinne, et al. Standards Track [Page 315]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-316" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
Acknowledgements
This memorandum defines RTSP version 2.0, which is a revision of the
Proposed Standard RTSP version 1.0 defined in [<a href="./rfc2326" title=""Real Time Streaming Protocol (RTSP)"">RFC2326</a>]. The authors
of <a href="./rfc2326">RFC 2326</a> are Henning Schulzrinne, Anup Rao, and Robert Lanphier.
Both RTSP version 1.0 and RTSP version 2.0 borrow format and
descriptions from HTTP/1.1.
Robert Sparks and especially Elwyn Davies provided very valuable and
detailed reviews in the IETF Last Call that greatly improved the
document and resolved many issues, especially regarding consistency.
This document has benefited greatly from the comments of all those
participating in the MMUSIC WG. In addition to those already
mentioned, the following individuals have contributed to this
specification:
Rahul Agarwal, Claudio Allocchio, Jeff Ayars, Milko Boic, Torsten
Braun, Brent Browning, Bruce Butterfield, Steve Casner, Maureen
Chesire, Jinhang Choi, Francisco Cortes, Elwyn Davies, Spencer
Dawkins, Kelly Djahandari, Martin Dunsmuir, Adrian Farrel, Stephen
Farrell, Ross Finlayson, Eric Fleischman, Jay Geagan, Andy Grignon,
Christian Groves, V. Guruprasad, Peter Haight, Mark Handley, Brad
Hefta-Gaub, Volker Hilt, John K. Ho, Patrick Hoffman, Go Hori,
Philipp Hoschka, Anne Jones, Ingemar Johansson, Jae-Hwan Kim, Anders
Klemets, Ruth Lang, Barry Leiba, Stephanie Leif, Jonathan Lennox,
Eduardo F. Llach, Chris Lonvick, Xavier Marjou, Thomas Marshall, Rob
McCool, Martti Mela, David Oran, Joerg Ott, Joe Pallas, Maria
Papadopouli, Sujal Patel, Ema Patki, Alagu Periyannan, Colin Perkins,
Pekka Pessi, Igor Plotnikov, Pete Resnick, Peter Saint-Andre, Holger
Schmidt, Jonathan Sergent, Pinaki Shah, David Singer, Lior Sion, Jeff
Smith, Alexander Sokolsky, Dale Stammen, John Francis Stracke, Geetha
Srikantan, Scott Taylor, David Walker, Stephan Wenger, Dale R.
Worley, and Byungjo Yoon, and especially Flemming Andreasen.
<span class="grey">Schulzrinne, et al. Standards Track [Page 316]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-317" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
Contributors
The following people have made written contributions that were
included in the specification:
o Tom Marshall contributed text on the usage of 3rr status codes.
o Thomas Zheng contributed text on the usage of the Range in PLAY
responses and proposed an earlier version of the PLAY_NOTIFY
method.
o Sean Sheedy contributed text on the timeout behavior of RTSP
messages and connections, the 463 (Destination Prohibited) status
code, and proposed an earlier version of the PLAY_NOTIFY method.
o Greg Sherwood proposed an earlier version of the PLAY_NOTIFY
method.
o Fredrik Lindholm contributed text about the RTSP security
framework.
o John Lazzaro contributed the text for RTP over Independent TCP.
o Aravind Narasimhan contributed by rewriting "Media-Transport
Alternatives" (Appendix C) and making editorial improvements on a
number of places in the specification.
o Torbjorn Einarsson has done some editorial improvements of the
text.
<span class="grey">Schulzrinne, et al. Standards Track [Page 317]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-318" ></span>
<span class="grey"><a href="./rfc7826">RFC 7826</a> RTSP 2.0 December 2016</span>
Authors' Addresses
Henning Schulzrinne
Columbia University
1214 Amsterdam Avenue
New York, NY 10027
United States of America
Email: schulzrinne@cs.columbia.edu
Anup Rao
Cisco
United States of America
Email: anrao@cisco.com
Rob Lanphier
San Francisco, CA
United States of America
Email: robla@robla.net
Magnus Westerlund
Ericsson
Faeroegatan 2
Stockholm SE-164 80
Sweden
Email: magnus.westerlund@ericsson.com
Martin Stiemerling (editor)
University of Applied Sciences Darmstadt
Haardtring 100
64295 Darmstadt
Germany
Email: mls.ietf@gmail.com
URI: <a href="http://www.stiemerling.org">http://www.stiemerling.org</a>
Schulzrinne, et al. Standards Track [Page 318]
</pre>
|