1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
|
<pre>Internet Engineering Task Force (IETF) D. Dhody
Request for Comments: 7898 U. Palle
Category: Experimental V. Kondreddy
ISSN: 2070-1721 Huawei Technologies
R. Casellas
CTTC
June 2016
<span class="h1">Domain Subobjects</span>
<span class="h1">for Resource Reservation Protocol - Traffic Engineering (RSVP-TE)</span>
Abstract
The Resource Reservation Protocol - Traffic Engineering (RSVP-TE)
specification and the Generalized Multiprotocol Label Switching
(GMPLS) extensions to RSVP-TE allow abstract nodes and resources to
be explicitly included in a path setup. Further, Exclude Route
extensions to RSVP-TE allow abstract nodes and resources to be
explicitly excluded in a path setup.
This document specifies new subobjects to include or exclude
Autonomous Systems (ASes), which are identified by a 4-byte AS
number, and Interior Gateway Protocol (IGP) areas during path setup.
Status of This Memo
This document is not an Internet Standards Track specification; it is
published for examination, experimental implementation, and
evaluation.
This document defines an Experimental Protocol for the Internet
community. This document is a product of the Internet Engineering
Task Force (IETF). It represents the consensus of the IETF
community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Not
all documents approved by the IESG are a candidate for any level of
Internet Standard; see <a href="./rfc7841#section-2">Section 2 of RFC 7841</a>.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
<a href="http://www.rfc-editor.org/info/rfc7898">http://www.rfc-editor.org/info/rfc7898</a>.
<span class="grey">Dhody, et al. Experimental [Page 1]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-2" ></span>
<span class="grey"><a href="./rfc7898">RFC 7898</a> Domain Subobjects for RSVP-TE June 2016</span>
Copyright Notice
Copyright (c) 2016 IETF Trust and the persons identified as the
document authors. All rights reserved. This document is subject to
<a href="https://www.rfc-editor.org/bcp/bcp78">BCP 78</a> and the IETF Trust's Legal Provisions Relating to IETF
Documents (<a href="http://trustee.ietf.org/license-info">http://trustee.ietf.org/license-info</a>) in effect on the
date of publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
Table of Contents
<a href="#section-1">1</a>. Introduction . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-3">3</a>
<a href="#section-1.1">1.1</a>. Scope . . . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-3">3</a>
<a href="#section-1.2">1.2</a>. Requirements Language . . . . . . . . . . . . . . . . . . <a href="#page-4">4</a>
<a href="#section-2">2</a>. Terminology . . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-4">4</a>
<a href="#section-3">3</a>. Subobjects for Domains . . . . . . . . . . . . . . . . . . . <a href="#page-5">5</a>
<a href="#section-3.1">3.1</a>. Domains . . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-5">5</a>
<a href="#section-3.2">3.2</a>. Explicit Route Object (ERO) Subobjects . . . . . . . . . <a href="#page-6">6</a>
<a href="#section-3.2.1">3.2.1</a>. Autonomous System . . . . . . . . . . . . . . . . . . <a href="#page-6">6</a>
<a href="#section-3.2.2">3.2.2</a>. IGP Area . . . . . . . . . . . . . . . . . . . . . . <a href="#page-7">7</a>
<a href="#section-3.2.3">3.2.3</a>. Mode of Operation . . . . . . . . . . . . . . . . . . <a href="#page-8">8</a>
<a href="#section-3.3">3.3</a>. Exclude Route Object (XRO) Subobjects . . . . . . . . . . <a href="#page-9">9</a>
<a href="#section-3.3.1">3.3.1</a>. Autonomous System . . . . . . . . . . . . . . . . . . <a href="#page-9">9</a>
<a href="#section-3.3.2">3.3.2</a>. IGP Area . . . . . . . . . . . . . . . . . . . . . . <a href="#page-9">9</a>
<a href="#section-3.3.3">3.3.3</a>. Mode of Operation . . . . . . . . . . . . . . . . . . <a href="#page-10">10</a>
<a href="#section-3.4">3.4</a>. Explicit Exclusion Route Subobject . . . . . . . . . . . <a href="#page-10">10</a>
<a href="#section-4">4</a>. Interaction with Path Computation Element (PCE) . . . . . . . <a href="#page-10">10</a>
<a href="#section-5">5</a>. IANA Considerations . . . . . . . . . . . . . . . . . . . . . <a href="#page-11">11</a>
<a href="#section-5.1">5.1</a>. New Subobjects . . . . . . . . . . . . . . . . . . . . . <a href="#page-11">11</a>
<a href="#section-6">6</a>. Security Considerations . . . . . . . . . . . . . . . . . . . <a href="#page-11">11</a>
<a href="#section-7">7</a>. References . . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-12">12</a>
<a href="#section-7.1">7.1</a>. Normative References . . . . . . . . . . . . . . . . . . <a href="#page-12">12</a>
<a href="#section-7.2">7.2</a>. Informative References . . . . . . . . . . . . . . . . . <a href="#page-13">13</a>
<a href="#appendix-A">Appendix A</a>. Examples . . . . . . . . . . . . . . . . . . . . . . <a href="#page-14">14</a>
<a href="#appendix-A.1">A.1</a>. Inter-Area LSP Path Setup . . . . . . . . . . . . . . . . <a href="#page-14">14</a>
<a href="#appendix-A.2">A.2</a>. Inter-AS LSP Path Setup . . . . . . . . . . . . . . . . . <a href="#page-15">15</a>
<a href="#appendix-A.2.1">A.2.1</a>. Example 1 . . . . . . . . . . . . . . . . . . . . . . <a href="#page-15">15</a>
<a href="#appendix-A.2.2">A.2.2</a>. Example 2 . . . . . . . . . . . . . . . . . . . . . . <a href="#page-16">16</a>
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-17">17</a>
Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-18">18</a>
<span class="grey">Dhody, et al. Experimental [Page 2]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-3" ></span>
<span class="grey"><a href="./rfc7898">RFC 7898</a> Domain Subobjects for RSVP-TE June 2016</span>
<span class="h2"><a class="selflink" id="section-1" href="#section-1">1</a>. Introduction</span>
The RSVP-TE specification [<a href="./rfc3209" title=""RSVP-TE: Extensions to RSVP for LSP Tunnels"">RFC3209</a>] and the GMPLS extensions to
RSVP-TE [<a href="./rfc3473" title=""Generalized Multi-Protocol Label Switching (GMPLS) Signaling Resource ReserVation Protocol- Traffic Engineering (RSVP-TE) Extensions"">RFC3473</a>] allow abstract nodes and resources to be explicitly
included in a path setup using the Explicit Route Object (ERO).
Further, Exclude Route extensions [<a href="./rfc4874" title=""Exclude Routes - Extension to Resource ReserVation Protocol-Traffic Engineering (RSVP-TE)"">RFC4874</a>] allow abstract nodes or
resources to be excluded from the whole path using the Exclude Route
Object (XRO). To exclude certain abstract nodes or resources between
a specific pair of abstract nodes present in an ERO, an Explicit
Exclusion Route subobject (EXRS) is used.
[<a id="ref-RFC3209">RFC3209</a>] already describes the notion of abstract nodes, where an
abstract node is a group of nodes whose internal topology is opaque
to the ingress node of the Label Switched Path (LSP). It further
defines a subobject for AS, but with a 2-byte AS number only.
This document extends the notion of abstract nodes by adding new
subobjects for IGP areas and 4-byte AS numbers (as per [<a href="./rfc6793" title=""BGP Support for Four-Octet Autonomous System (AS) Number Space"">RFC6793</a>]).
These subobjects can be included in ERO, XRO, or EXRS.
In case of per-domain path computation [<a href="./rfc5152" title=""A Per-Domain Path Computation Method for Establishing Inter- Domain Traffic Engineering (TE) Label Switched Paths (LSPs)"">RFC5152</a>], where the full path
of an inter-domain TE LSP cannot be or is not determined at the
ingress node, the signaling message could use domain identifiers.
The use of these new subobjects is illustrated in <a href="#appendix-A">Appendix A</a>.
Further, the domain identifier could simply act as a delimiter to
specify where the domain boundary starts and ends.
This is a companion document to Path Computation Element Protocol
(PCEP) extensions for the domain sequence [<a href="./rfc7897" title=""Domain Subobjects for the Path Computation Element Communication Protocol (PCEP)"">RFC7897</a>].
<span class="h3"><a class="selflink" id="section-1.1" href="#section-1.1">1.1</a>. Scope</span>
The procedures described in this document are experimental. The
experiment is intended to enable research for the usage of domain
subobjects for inter-domain path setup. For this purpose, this
document specifies new domain subobjects as well as how they
incorporate with existing subobjects.
The experiment will end two years after the RFC is published. At
that point, the RFC authors will attempt to determine how widely this
has been implemented and deployed.
This document does not change the procedures for handling subobjects
in RSVP-TE.
<span class="grey">Dhody, et al. Experimental [Page 3]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-4" ></span>
<span class="grey"><a href="./rfc7898">RFC 7898</a> Domain Subobjects for RSVP-TE June 2016</span>
The new subobjects introduced by this document will not be understood
by legacy implementations. If a legacy implementation receives one
of the subobjects that it does not understand in an RSVP-TE object,
the legacy implementation will behave as described in [<a href="./rfc3209" title=""RSVP-TE: Extensions to RSVP for LSP Tunnels"">RFC3209</a>] and
[<a href="./rfc4874" title=""Exclude Routes - Extension to Resource ReserVation Protocol-Traffic Engineering (RSVP-TE)"">RFC4874</a>]. Therefore, it is assumed that this experiment will be
conducted only when all nodes processing the new subobject form part
of the experiment.
When the result of implementation and deployment are available, this
document will be updated and refined, and then it will be moved from
Experimental to Standards Track.
It should be noted that there are other ways such as the use of a
boundary node to identify the domain (instead of a domain
identifier); the mechanism defined in this document is just another
tool in the toolkit for the operator.
<span class="h3"><a class="selflink" id="section-1.2" href="#section-1.2">1.2</a>. Requirements Language</span>
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [<a href="./rfc2119" title=""Key words for use in RFCs to Indicate Requirement Levels"">RFC2119</a>].
<span class="h2"><a class="selflink" id="section-2" href="#section-2">2</a>. Terminology</span>
The following terminology is used in this document.
AS: Autonomous System
Domain: As per [<a href="./rfc4655" title=""A Path Computation Element (PCE)-Based Architecture"">RFC4655</a>], any collection of network elements within
a common sphere of address management or path computational
responsibility. Examples of domains include IGP areas and ASes.
ERO: Explicit Route Object
EXRS: Explicit Exclusion Route subobject
IGP: Interior Gateway Protocol. Either of the two routing
protocols: Open Shortest Path First (OSPF) or Intermediate System
to Intermediate System (IS-IS).
IS-IS: Intermediate System to Intermediate System
OSPF: Open Shortest Path First
<span class="grey">Dhody, et al. Experimental [Page 4]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-5" ></span>
<span class="grey"><a href="./rfc7898">RFC 7898</a> Domain Subobjects for RSVP-TE June 2016</span>
PCE: Path Computation Element. An entity (component, application,
or network node) that is capable of computing a network path or
route based on a network graph and applying computational
constraints.
PCEP: Path Computation Element Protocol
RSVP: Resource Reservation Protocol
TE LSP: Traffic Engineering Label Switched Path
XRO: Exclude Route Object
<span class="h2"><a class="selflink" id="section-3" href="#section-3">3</a>. Subobjects for Domains</span>
<span class="h3"><a class="selflink" id="section-3.1" href="#section-3.1">3.1</a>. Domains</span>
[<a id="ref-RFC4726">RFC4726</a>] and [<a href="./rfc4655" title=""A Path Computation Element (PCE)-Based Architecture"">RFC4655</a>] define domain as a separate administrative or
geographic environment within the network. A domain could be further
defined as a zone of routing or computational ability. Under these
definitions, a domain might be categorized as an AS or an IGP area.
As per [<a href="./rfc3209" title=""RSVP-TE: Extensions to RSVP for LSP Tunnels"">RFC3209</a>], an abstract node is a group of nodes whose internal
topology is opaque to the ingress node of the LSP. Using this
concept of abstraction, an explicitly routed LSP can be specified as
a sequence of IP prefixes or a sequence of ASes. In this document,
we extend the notion to include the IGP area and 4-byte AS number.
These subobjects appear in RSVP-TE, notably in:
o Explicit Route Object (ERO): As per [<a href="./rfc3209" title=""RSVP-TE: Extensions to RSVP for LSP Tunnels"">RFC3209</a>], an explicit route
is a particular path in the network topology including abstract
nodes (including domains).
o Exclude Route Object (XRO): As per [<a href="./rfc4874" title=""Exclude Routes - Extension to Resource ReserVation Protocol-Traffic Engineering (RSVP-TE)"">RFC4874</a>], an Exclude Route
identifies a list of abstract nodes (including domains) that
should not be traversed along the path of the LSP being
established.
o Explicit Exclusion Route Subobject (EXRS): As per [<a href="./rfc4874" title=""Exclude Routes - Extension to Resource ReserVation Protocol-Traffic Engineering (RSVP-TE)"">RFC4874</a>], used
to specify exclusion of certain abstract nodes between a specific
pair of nodes. EXRS is a subobject carried inside the ERO. These
subobjects can be used to specify the domains to be excluded
between two abstract nodes.
<span class="grey">Dhody, et al. Experimental [Page 5]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-6" ></span>
<span class="grey"><a href="./rfc7898">RFC 7898</a> Domain Subobjects for RSVP-TE June 2016</span>
<span class="h3"><a class="selflink" id="section-3.2" href="#section-3.2">3.2</a>. Explicit Route Object (ERO) Subobjects</span>
As stated in [<a href="./rfc3209" title=""RSVP-TE: Extensions to RSVP for LSP Tunnels"">RFC3209</a>], an explicit route is a particular path in the
network topology. In addition to the ability to identify specific
nodes along the path, an explicit route can identify a group of nodes
(abstract nodes) to be traversed along the path.
Some subobjects are defined in [<a href="./rfc3209" title=""RSVP-TE: Extensions to RSVP for LSP Tunnels"">RFC3209</a>], [<a href="./rfc3473" title=""Generalized Multi-Protocol Label Switching (GMPLS) Signaling Resource ReserVation Protocol- Traffic Engineering (RSVP-TE) Extensions"">RFC3473</a>], [<a href="./rfc3477" title=""Signalling Unnumbered Links in Resource ReSerVation Protocol - Traffic Engineering (RSVP-TE)"">RFC3477</a>],
[<a href="./rfc4874" title=""Exclude Routes - Extension to Resource ReserVation Protocol-Traffic Engineering (RSVP-TE)"">RFC4874</a>], and [<a href="./rfc5553" title=""Resource Reservation Protocol (RSVP) Extensions for Path Key Support"">RFC5553</a>], but new subobjects related to domains are
needed.
This document extends the support for 4-byte AS numbers and IGP
areas.
Value Description
----- ---------
5 4-byte AS number
6 OSPF Area ID
7 IS-IS Area ID
<span class="h4"><a class="selflink" id="section-3.2.1" href="#section-3.2.1">3.2.1</a>. Autonomous System</span>
[<a id="ref-RFC3209">RFC3209</a>] already defines 2-byte AS numbers.
To support 4-byte AS numbers as per [<a href="./rfc6793" title=""BGP Support for Four-Octet Autonomous System (AS) Number Space"">RFC6793</a>], the following
subobject is defined:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|L| Type | Length | Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| AS Number (4 bytes) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
L: The L bit is an attribute of the subobject as defined in
[<a href="./rfc3209" title=""RSVP-TE: Extensions to RSVP for LSP Tunnels"">RFC3209</a>], i.e., it's set if the subobject represents a loose hop
in the explicit route. If the bit is not set, the subobject
represents a strict hop in the explicit route.
Type: 5 (indicating a 4-byte AS number).
Length: 8 (total length of the subobject in bytes).
Reserved: Zero at transmission; ignored at receipt.
<span class="grey">Dhody, et al. Experimental [Page 6]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-7" ></span>
<span class="grey"><a href="./rfc7898">RFC 7898</a> Domain Subobjects for RSVP-TE June 2016</span>
AS Number: The 4-byte AS number. Note that if 2-byte AS numbers are
in use, the low-order bits (16 through 31) MUST be used, and the
high-order bits (0 through 15) MUST be set to zero. For the
purpose of this experiment, it is advised to use a 4-byte AS
number subobject as the default.
<span class="h4"><a class="selflink" id="section-3.2.2" href="#section-3.2.2">3.2.2</a>. IGP Area</span>
Since the length and format of Area ID is different for OSPF and
IS-IS, the following two subobjects are defined:
For OSPF, the Area ID is a 32-bit number. The subobject is encoded
as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|L| Type | Length | Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| OSPF Area ID (4 bytes) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
L: The L bit is an attribute of the subobject as defined in
[<a href="./rfc3209" title=""RSVP-TE: Extensions to RSVP for LSP Tunnels"">RFC3209</a>].
Type: 6 (indicating a 4-byte OSPF Area ID).
Length: 8 (total length of the subobject in bytes).
Reserved: Zero at transmission; ignored at receipt.
OSPF Area ID: The 4-byte OSPF Area ID.
<span class="grey">Dhody, et al. Experimental [Page 7]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-8" ></span>
<span class="grey"><a href="./rfc7898">RFC 7898</a> Domain Subobjects for RSVP-TE June 2016</span>
For IS-IS, the Area ID is of variable length; thus, the length of the
subobject is variable. The Area ID is as described in IS-IS by the
ISO standard [<a href="#ref-ISO10589">ISO10589</a>]. The subobject is encoded as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|L| Type | Length | Area-Len | Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
// IS-IS Area ID //
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
L: The L bit is an attribute of the subobject as defined in
[<a href="./rfc3209" title=""RSVP-TE: Extensions to RSVP for LSP Tunnels"">RFC3209</a>].
Type: 7 (indicating the IS-IS Area ID).
Length: Variable. The length MUST be at least 8 and MUST be a
multiple of 4.
Area-Len: Variable (length of the actual (non-padded) IS-IS area
identifier in octets; valid values are from 1 to 13, inclusive).
Reserved: Zero at transmission; ignored at receipt.
IS-IS Area ID: The variable-length IS-IS area identifier. Padded
with trailing zeroes to a 4-byte boundary.
<span class="h4"><a class="selflink" id="section-3.2.3" href="#section-3.2.3">3.2.3</a>. Mode of Operation</span>
The new subobjects to support 4-byte AS numbers and the IGP (OSPF /
IS-IS) area could be used in the ERO to specify an abstract node (a
group of nodes whose internal topology is opaque to the ingress node
of the LSP).
All the rules of processing (for example, next-hop selection, L bit
processing, unrecognized subobjects, etc.) are as per the [<a href="./rfc3209" title=""RSVP-TE: Extensions to RSVP for LSP Tunnels"">RFC3209</a>].
Note that if a node is called upon to process subobjects defined in
this document that it does not recognize, it will behave as described
in [<a href="./rfc3209" title=""RSVP-TE: Extensions to RSVP for LSP Tunnels"">RFC3209</a>] when an unrecognized ERO subobject is encountered. This
means that this node will return a PathErr with error code "Routing
Error" and error value "Bad EXPLICIT_ROUTE object" with the
EXPLICIT_ROUTE object included, truncated (on the left) to the
offending subobject.
<span class="grey">Dhody, et al. Experimental [Page 8]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-9" ></span>
<span class="grey"><a href="./rfc7898">RFC 7898</a> Domain Subobjects for RSVP-TE June 2016</span>
<span class="h3"><a class="selflink" id="section-3.3" href="#section-3.3">3.3</a>. Exclude Route Object (XRO) Subobjects</span>
As stated in [<a href="./rfc4874" title=""Exclude Routes - Extension to Resource ReserVation Protocol-Traffic Engineering (RSVP-TE)"">RFC4874</a>], the Exclude Route identifies a list of
abstract nodes to exclude (not be traversed) along the path of the
LSP being established.
Some subobjects are defined in [<a href="./rfc3209" title=""RSVP-TE: Extensions to RSVP for LSP Tunnels"">RFC3209</a>], [<a href="./rfc3477" title=""Signalling Unnumbered Links in Resource ReSerVation Protocol - Traffic Engineering (RSVP-TE)"">RFC3477</a>], [<a href="./rfc4874" title=""Exclude Routes - Extension to Resource ReserVation Protocol-Traffic Engineering (RSVP-TE)"">RFC4874</a>], and
[<a href="./rfc6001" title=""Generalized MPLS (GMPLS) Protocol Extensions for Multi-Layer and Multi-Region Networks (MLN/ MRN)"">RFC6001</a>], but new subobjects related to domains are needed.
This document extends the support for 4-byte AS numbers and IGP
areas.
Value Description
----- ---------
5 4-byte AS number
6 OSPF Area ID
7 IS-IS Area ID
<span class="h4"><a class="selflink" id="section-3.3.1" href="#section-3.3.1">3.3.1</a>. Autonomous System</span>
[<a id="ref-RFC3209">RFC3209</a>] and [<a href="./rfc4874" title=""Exclude Routes - Extension to Resource ReserVation Protocol-Traffic Engineering (RSVP-TE)"">RFC4874</a>] already define a 2-byte AS number.
To support 4-byte AS numbers as per [<a href="./rfc6793" title=""BGP Support for Four-Octet Autonomous System (AS) Number Space"">RFC6793</a>], a subobject has the
same format as defined in <a href="#section-3.2.1">Section 3.2.1</a> with the following
difference:
The meaning of the L bit is as per [<a href="./rfc4874" title=""Exclude Routes - Extension to Resource ReserVation Protocol-Traffic Engineering (RSVP-TE)"">RFC4874</a>], where:
0: indicates that the abstract node specified MUST be excluded.
1: indicates that the abstract node specified SHOULD be avoided.
<span class="h4"><a class="selflink" id="section-3.3.2" href="#section-3.3.2">3.3.2</a>. IGP Area</span>
Since the length and format of Area ID is different for OSPF and IS-
IS, the following two subobjects are defined:
For OSPF, the Area ID is a 32-bit number. Subobjects for OSPF and
IS-IS are of the same format as defined in <a href="#section-3.2.2">Section 3.2.2</a> with the
following difference:
The meaning of the L bit is as per [<a href="./rfc4874" title=""Exclude Routes - Extension to Resource ReserVation Protocol-Traffic Engineering (RSVP-TE)"">RFC4874</a>].
<span class="grey">Dhody, et al. Experimental [Page 9]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-10" ></span>
<span class="grey"><a href="./rfc7898">RFC 7898</a> Domain Subobjects for RSVP-TE June 2016</span>
<span class="h4"><a class="selflink" id="section-3.3.3" href="#section-3.3.3">3.3.3</a>. Mode of Operation</span>
The new subobjects to support 4-byte AS numbers and the IGP (OSPF /
IS-IS) area could also be used in the XRO to specify exclusion of an
abstract node (a group of nodes whose internal topology is opaque to
the ingress node of the LSP).
All the rules of processing are as per [<a href="./rfc4874" title=""Exclude Routes - Extension to Resource ReserVation Protocol-Traffic Engineering (RSVP-TE)"">RFC4874</a>].
Note that if a node is called upon to process a subobject defined in
this document that it does not recognize, it will behave as described
in [<a href="./rfc4874" title=""Exclude Routes - Extension to Resource ReserVation Protocol-Traffic Engineering (RSVP-TE)"">RFC4874</a>] when an unrecognized XRO subobject is encountered, i.e.,
ignore it. In this case, the desired exclusion will not be carried
out.
IGP area subobjects in the XRO are local to the current AS. In case
of multi-AS path computation that excludes an IGP area in a different
AS, an IGP area subobject should be part of EXRS in the ERO to
specify the AS in which the IGP area is to be excluded. Further,
policy may be applied to prune/ignore area subobjects in XRO at the
AS boundary.
<span class="h3"><a class="selflink" id="section-3.4" href="#section-3.4">3.4</a>. Explicit Exclusion Route Subobject</span>
As per [<a href="./rfc4874" title=""Exclude Routes - Extension to Resource ReserVation Protocol-Traffic Engineering (RSVP-TE)"">RFC4874</a>], the Explicit Exclusion Route is used to specify
exclusion of certain abstract nodes between a specific pair of nodes
or resources in the explicit route. EXRS is an ERO subobject that
contains one or more subobjects of its own, called EXRS subobjects.
The EXRS subobject could carry any of the subobjects defined for XRO;
thus, the new subobjects to support 4-byte AS numbers and the IGP
(OSPF / IS-IS) area can also be used in the EXRS. The meanings of
the fields of the new XRO subobjects are unchanged when the
subobjects are included in an EXRS, except that the scope of the
exclusion is limited to the single hop between the previous and
subsequent elements in the ERO.
All the rules of processing are as per [<a href="./rfc4874" title=""Exclude Routes - Extension to Resource ReserVation Protocol-Traffic Engineering (RSVP-TE)"">RFC4874</a>].
<span class="h2"><a class="selflink" id="section-4" href="#section-4">4</a>. Interaction with Path Computation Element (PCE)</span>
The domain subobjects to be used in PCEP are referred to in
[<a href="./rfc7897" title=""Domain Subobjects for the Path Computation Element Communication Protocol (PCEP)"">RFC7897</a>]. Note that the new domain subobjects follow the principle
that subobjects used in PCEP [<a href="./rfc5440" title=""Path Computation Element (PCE) Communication Protocol (PCEP)"">RFC5440</a>] are identical to the
subobjects used in RSVP-TE and thus are interchangeable between PCEP
and RSVP-TE.
<span class="grey">Dhody, et al. Experimental [Page 10]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-11" ></span>
<span class="grey"><a href="./rfc7898">RFC 7898</a> Domain Subobjects for RSVP-TE June 2016</span>
<span class="h2"><a class="selflink" id="section-5" href="#section-5">5</a>. IANA Considerations</span>
<span class="h3"><a class="selflink" id="section-5.1" href="#section-5.1">5.1</a>. New Subobjects</span>
IANA maintains the "Resource Reservation Protocol (RSVP) Parameters"
registry at <<a href="http://www.iana.org/assignments/rsvp-parameters">http://www.iana.org/assignments/rsvp-parameters</a>>.
Within this registry, IANA maintains two sub-registries:
o EXPLICIT_ROUTE subobjects (see "Sub-object type - 20
EXPLICIT_ROUTE - Type 1 Explicit Route")
o EXCLUDE_ROUTE subobjects (see "Sub-object types of Class Types or
C-Types - 232 EXCLUDE_ROUTE")
IANA has made identical additions to these registries as follows, in
sync with [<a href="./rfc7897" title=""Domain Subobjects for the Path Computation Element Communication Protocol (PCEP)"">RFC7897</a>]:
Value Description Reference
----- ---------------- -------------------
5 4-byte AS number [<a href="./rfc7897" title=""Domain Subobjects for the Path Computation Element Communication Protocol (PCEP)"">RFC7897</a>], <a href="./rfc7898">RFC 7898</a>
6 OSPF Area ID [<a href="./rfc7897" title=""Domain Subobjects for the Path Computation Element Communication Protocol (PCEP)"">RFC7897</a>], <a href="./rfc7898">RFC 7898</a>
7 IS-IS Area ID [<a href="./rfc7897" title=""Domain Subobjects for the Path Computation Element Communication Protocol (PCEP)"">RFC7897</a>], <a href="./rfc7898">RFC 7898</a>
Further, IANA has added a reference to this document to the new PCEP
numbers that are registered by [<a href="./rfc7897" title=""Domain Subobjects for the Path Computation Element Communication Protocol (PCEP)"">RFC7897</a>], as shown on
<<a href="http://www.iana.org/assignments/pcep">http://www.iana.org/assignments/pcep</a>>.
<span class="h2"><a class="selflink" id="section-6" href="#section-6">6</a>. Security Considerations</span>
Security considerations for RSVP-TE and GMPLS signaling RSVP-TE
extensions are covered in [<a href="./rfc3209" title=""RSVP-TE: Extensions to RSVP for LSP Tunnels"">RFC3209</a>] and [<a href="./rfc3473" title=""Generalized Multi-Protocol Label Switching (GMPLS) Signaling Resource ReserVation Protocol- Traffic Engineering (RSVP-TE) Extensions"">RFC3473</a>]. This document
does not introduce any new messages or any substantive new
processing, so those security considerations continue to apply.
Further, general considerations for securing RSVP-TE in MPLS-TE and
GMPLS networks can be found in [<a href="./rfc5920" title=""Security Framework for MPLS and GMPLS Networks"">RFC5920</a>]. <a href="./rfc5920#section-8">Section 8 of [RFC5920]</a>
describes the inter-provider security considerations, which continue
to apply.
The route exclusion security considerations are covered in [<a href="./rfc4874" title=""Exclude Routes - Extension to Resource ReserVation Protocol-Traffic Engineering (RSVP-TE)"">RFC4874</a>]
and continue to apply.
<span class="grey">Dhody, et al. Experimental [Page 11]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-12" ></span>
<span class="grey"><a href="./rfc7898">RFC 7898</a> Domain Subobjects for RSVP-TE June 2016</span>
<span class="h2"><a class="selflink" id="section-7" href="#section-7">7</a>. References</span>
<span class="h3"><a class="selflink" id="section-7.1" href="#section-7.1">7.1</a>. Normative References</span>
[<a id="ref-ISO10589">ISO10589</a>]
International Organization for Standardization,
"Information technology -- Telecommunications and
information exchange between systems -- Intermediate
System to Intermediate System intra-domain routeing
information exchange protocol for use in conjunction with
the protocol for providing the connectionless-mode network
service (ISO 8473)", ISO/IEC 10589:2002, Second Edition,
November 2002.
[<a id="ref-RFC2119">RFC2119</a>] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", <a href="https://www.rfc-editor.org/bcp/bcp14">BCP 14</a>, <a href="./rfc2119">RFC 2119</a>,
DOI 10.17487/RFC2119, March 1997,
<<a href="http://www.rfc-editor.org/info/rfc2119">http://www.rfc-editor.org/info/rfc2119</a>>.
[<a id="ref-RFC3209">RFC3209</a>] Awduche, D., Berger, L., Gan, D., Li, T., Srinivasan, V.,
and G. Swallow, "RSVP-TE: Extensions to RSVP for LSP
Tunnels", <a href="./rfc3209">RFC 3209</a>, DOI 10.17487/RFC3209, December 2001,
<<a href="http://www.rfc-editor.org/info/rfc3209">http://www.rfc-editor.org/info/rfc3209</a>>.
[<a id="ref-RFC3473">RFC3473</a>] Berger, L., Ed., "Generalized Multi-Protocol Label
Switching (GMPLS) Signaling Resource ReserVation Protocol-
Traffic Engineering (RSVP-TE) Extensions", <a href="./rfc3473">RFC 3473</a>,
DOI 10.17487/RFC3473, January 2003,
<<a href="http://www.rfc-editor.org/info/rfc3473">http://www.rfc-editor.org/info/rfc3473</a>>.
[<a id="ref-RFC3477">RFC3477</a>] Kompella, K. and Y. Rekhter, "Signalling Unnumbered Links
in Resource ReSerVation Protocol - Traffic Engineering
(RSVP-TE)", <a href="./rfc3477">RFC 3477</a>, DOI 10.17487/RFC3477, January 2003,
<<a href="http://www.rfc-editor.org/info/rfc3477">http://www.rfc-editor.org/info/rfc3477</a>>.
[<a id="ref-RFC4874">RFC4874</a>] Lee, CY., Farrel, A., and S. De Cnodder, "Exclude Routes -
Extension to Resource ReserVation Protocol-Traffic
Engineering (RSVP-TE)", <a href="./rfc4874">RFC 4874</a>, DOI 10.17487/RFC4874,
April 2007, <<a href="http://www.rfc-editor.org/info/rfc4874">http://www.rfc-editor.org/info/rfc4874</a>>.
[<a id="ref-RFC7897">RFC7897</a>] Dhody, D., Palle, U., and R. Casellas, "Domain Subobjects
for the Path Computation Element Communication Protocol
(PCEP)", <a href="./rfc7897">RFC 7897</a>, DOI 10.17487/RFC7897, June 2016,
<<a href="http://www.rfc-editor.org/info/rfc7897">http://www.rfc-editor.org/info/rfc7897</a>>.
<span class="grey">Dhody, et al. Experimental [Page 12]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-13" ></span>
<span class="grey"><a href="./rfc7898">RFC 7898</a> Domain Subobjects for RSVP-TE June 2016</span>
<span class="h3"><a class="selflink" id="section-7.2" href="#section-7.2">7.2</a>. Informative References</span>
[<a id="ref-RFC4655">RFC4655</a>] Farrel, A., Vasseur, J., and J. Ash, "A Path Computation
Element (PCE)-Based Architecture", <a href="./rfc4655">RFC 4655</a>,
DOI 10.17487/RFC4655, August 2006,
<<a href="http://www.rfc-editor.org/info/rfc4655">http://www.rfc-editor.org/info/rfc4655</a>>.
[<a id="ref-RFC4726">RFC4726</a>] Farrel, A., Vasseur, J., and A. Ayyangar, "A Framework for
Inter-Domain Multiprotocol Label Switching Traffic
Engineering", <a href="./rfc4726">RFC 4726</a>, DOI 10.17487/RFC4726, November
2006, <<a href="http://www.rfc-editor.org/info/rfc4726">http://www.rfc-editor.org/info/rfc4726</a>>.
[<a id="ref-RFC5152">RFC5152</a>] Vasseur, JP., Ed., Ayyangar, A., Ed., and R. Zhang, "A
Per-Domain Path Computation Method for Establishing Inter-
Domain Traffic Engineering (TE) Label Switched Paths
(LSPs)", <a href="./rfc5152">RFC 5152</a>, DOI 10.17487/RFC5152, February 2008,
<<a href="http://www.rfc-editor.org/info/rfc5152">http://www.rfc-editor.org/info/rfc5152</a>>.
[<a id="ref-RFC5440">RFC5440</a>] Vasseur, JP., Ed. and JL. Le Roux, Ed., "Path Computation
Element (PCE) Communication Protocol (PCEP)", <a href="./rfc5440">RFC 5440</a>,
DOI 10.17487/RFC5440, March 2009,
<<a href="http://www.rfc-editor.org/info/rfc5440">http://www.rfc-editor.org/info/rfc5440</a>>.
[<a id="ref-RFC5553">RFC5553</a>] Farrel, A., Ed., Bradford, R., and JP. Vasseur, "Resource
Reservation Protocol (RSVP) Extensions for Path Key
Support", <a href="./rfc5553">RFC 5553</a>, DOI 10.17487/RFC5553, May 2009,
<<a href="http://www.rfc-editor.org/info/rfc5553">http://www.rfc-editor.org/info/rfc5553</a>>.
[<a id="ref-RFC5920">RFC5920</a>] Fang, L., Ed., "Security Framework for MPLS and GMPLS
Networks", <a href="./rfc5920">RFC 5920</a>, DOI 10.17487/RFC5920, July 2010,
<<a href="http://www.rfc-editor.org/info/rfc5920">http://www.rfc-editor.org/info/rfc5920</a>>.
[<a id="ref-RFC6001">RFC6001</a>] Papadimitriou, D., Vigoureux, M., Shiomoto, K., Brungard,
D., and JL. Le Roux, "Generalized MPLS (GMPLS) Protocol
Extensions for Multi-Layer and Multi-Region Networks (MLN/
MRN)", <a href="./rfc6001">RFC 6001</a>, DOI 10.17487/RFC6001, October 2010,
<<a href="http://www.rfc-editor.org/info/rfc6001">http://www.rfc-editor.org/info/rfc6001</a>>.
[<a id="ref-RFC6793">RFC6793</a>] Vohra, Q. and E. Chen, "BGP Support for Four-Octet
Autonomous System (AS) Number Space", <a href="./rfc6793">RFC 6793</a>,
DOI 10.17487/RFC6793, December 2012,
<<a href="http://www.rfc-editor.org/info/rfc6793">http://www.rfc-editor.org/info/rfc6793</a>>.
<span class="grey">Dhody, et al. Experimental [Page 13]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-14" ></span>
<span class="grey"><a href="./rfc7898">RFC 7898</a> Domain Subobjects for RSVP-TE June 2016</span>
<span class="h2"><a class="selflink" id="appendix-A" href="#appendix-A">Appendix A</a>. Examples</span>
These examples are for illustration purposes only to show how the new
subobjects could be encoded. They are not meant to be an exhaustive
list of all possible use cases and combinations.
<span class="h3"><a class="selflink" id="appendix-A.1" href="#appendix-A.1">A.1</a>. Inter-Area LSP Path Setup</span>
In an inter-area LSP path setup where the ingress and the egress
belong to different IGP areas within the same AS, the domain
subobjects could be represented using an ordered list of IGP area
subobjects in an ERO.
D2 Area D
|
|
D1
|
|
********BD1******
* | *
* | * Area C
Area A * | *
* | *
Ingress------A1-----ABF1------B1------BC1------C1------Egress
/ * | *
/ * | *
/ * Area | B *
F1 * | *
/ ********BE1******
/ |
/ |
F2 E1
|
Area F |
E2 Area E
* All IGP areas in one AS (AS 100)
Figure 1: Domain Corresponding to IGP Area
As per Figure 1, the signaling at the ingress could be:
ERO:(A1, ABF1, area B, area C, egress)
It should be noted that there are other ways to achieve the desired
signaling; the area subobject provides another tool in the toolkit
and can have operational benefits when:
<span class="grey">Dhody, et al. Experimental [Page 14]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-15" ></span>
<span class="grey"><a href="./rfc7898">RFC 7898</a> Domain Subobjects for RSVP-TE June 2016</span>
o Use of PCEP-like domain sequence [<a href="./rfc7897" title=""Domain Subobjects for the Path Computation Element Communication Protocol (PCEP)"">RFC7897</a>] configurations in the
explicit path is such that area subobjects can be used to signal
the loose path.
o Alignment of subobjects and registries is between PCEP and RSVP-
TE, thus allowing easier interworking between path computation and
signaling, i.e., subobjects are able to switch between signaling
and path computation (if need be).
<span class="h3"><a class="selflink" id="appendix-A.2" href="#appendix-A.2">A.2</a>. Inter-AS LSP Path Setup</span>
<span class="h4"><a class="selflink" id="appendix-A.2.1" href="#appendix-A.2.1">A.2.1</a>. Example 1</span>
In an inter-AS LSP path setup where the ingress and the egress belong
to a different AS, the domain subobjects (ASes) could be used in an
ERO.
AS A AS E AS C
<-------------> <----------> <------------->
A4----------E1---E2---E3---------C4
/ / \
/ / \
/ / AS B \
/ / <----------> \
Ingress------A1---A2------B1---B2---B3------C1---C2------Egress
\ / /
\ / /
\ / /
\ / /
A3----------D1---D2---D3---------C3
<---------->
AS D
* All ASes have one area (area 0)
Figure 2: Domain Corresponding to AS
As per Figure 2, the signaling at the ingress could be:
ERO:(A1, A2, AS B, AS C, egress); or
ERO:(A1, A2, AS B, area 0, AS C, area 0, egress).
Each AS has a single IGP area (area 0); the area subobject is
optional.
<span class="grey">Dhody, et al. Experimental [Page 15]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-16" ></span>
<span class="grey"><a href="./rfc7898">RFC 7898</a> Domain Subobjects for RSVP-TE June 2016</span>
Note that to get a domain disjoint path, the ingress could also
signal the backup path with:
XRO:(AS B)
<span class="h4"><a class="selflink" id="appendix-A.2.2" href="#appendix-A.2.2">A.2.2</a>. Example 2</span>
As shown in Figure 3, where AS 200 is made up of multiple areas, the
signaling can include both an AS and area subobject to uniquely
identify a domain.
Ingress *
| *
| *
| *
X1 *
\\ *
\ \ *
\ \* Inter-AS
AS 100 \* \ Link
* \ \
* \ \
* \ \
\ \ D2 Area D
AS 200 \ \ |
\ \ |
Inter- \ \ D1
AS \ \ |
Link \ \|
\ ********BD1******
\ * | *
\ * | * Area C
Area A \ * | *
\* | *
A2------A1------AB1------B1------BC1------C1------Egress
* | *
* | *
* | *
* Area | B *
********BE1******
|
|
E1
|
|
E2 Area E
Figure 3: Domain Corresponding to AS and Area
<span class="grey">Dhody, et al. Experimental [Page 16]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-17" ></span>
<span class="grey"><a href="./rfc7898">RFC 7898</a> Domain Subobjects for RSVP-TE June 2016</span>
As per Figure 3, the signaling at the ingress could be:
ERO:(X1, AS 200, area B, area C, egress).
Acknowledgments
We would like to thank Adrian Farrel, Lou Berger, George Swallow,
Chirag Shah, Reeja Paul, Sandeep Boina, and Avantika for their useful
comments and suggestions.
Thanks to Vishnu Pavan Beeram for shepherding this document.
Thanks to Deborah Brungard for being the responsible AD.
Thanks to Amanda Baber for the IANA review.
Thanks to Brian Carpenter for the Gen-ART review.
Thanks to Liang Xia (Frank) for the SecDir review.
Thanks to Spencer Dawkins and Barry Leiba for comments during the
IESG review.
<span class="grey">Dhody, et al. Experimental [Page 17]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-18" ></span>
<span class="grey"><a href="./rfc7898">RFC 7898</a> Domain Subobjects for RSVP-TE June 2016</span>
Authors' Addresses
Dhruv Dhody
Huawei Technologies
Divyashree Techno Park, Whitefield
Bangalore, Karnataka 560066
India
Email: dhruv.ietf@gmail.com
Udayasree Palle
Huawei Technologies
Divyashree Techno Park, Whitefield
Bangalore, Karnataka 560066
India
Email: udayasree.palle@huawei.com
Venugopal Reddy Kondreddy
Huawei Technologies
Divyashree Techno Park, Whitefield
Bangalore, Karnataka 560066
India
Email: venugopalreddyk@huawei.com
Ramon Casellas
CTTC
Av. Carl Friedrich Gauss n7
Castelldefels, Barcelona 08860
Spain
Email: ramon.casellas@cttc.es
Dhody, et al. Experimental [Page 18]
</pre>
|