1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
|
<pre>Internet Engineering Task Force (IETF) A. Langley
Request for Comments: 7905 W. Chang
Updates: <a href="./rfc5246">5246</a>, <a href="./rfc6347">6347</a> Google, Inc.
Category: Standards Track N. Mavrogiannopoulos
ISSN: 2070-1721 Red Hat
J. Strombergson
Secworks Sweden AB
S. Josefsson
SJD AB
June 2016
<span class="h1">ChaCha20-Poly1305 Cipher Suites for Transport Layer Security (TLS)</span>
Abstract
This document describes the use of the ChaCha stream cipher and
Poly1305 authenticator in the Transport Layer Security (TLS) and
Datagram Transport Layer Security (DTLS) protocols.
This document updates RFCs 5246 and 6347.
Status of This Memo
This is an Internet Standards Track document.
This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Further information on
Internet Standards is available in <a href="./rfc7841#section-2">Section 2 of RFC 7841</a>.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
<a href="http://www.rfc-editor.org/info/rfc7905">http://www.rfc-editor.org/info/rfc7905</a>.
<span class="grey">Langley, et al. Standards Track [Page 1]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-2" ></span>
<span class="grey"><a href="./rfc7905">RFC 7905</a> ChaCha-Poly1305 for TLS June 2016</span>
Copyright Notice
Copyright (c) 2016 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to <a href="https://www.rfc-editor.org/bcp/bcp78">BCP 78</a> and the IETF Trust's Legal
Provisions Relating to IETF Documents
(<a href="http://trustee.ietf.org/license-info">http://trustee.ietf.org/license-info</a>) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
Table of Contents
<a href="#section-1">1</a>. Introduction . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-3">3</a>
<a href="#section-2">2</a>. ChaCha20 Cipher Suites . . . . . . . . . . . . . . . . . . . <a href="#page-4">4</a>
<a href="#section-3">3</a>. IANA Considerations . . . . . . . . . . . . . . . . . . . . . <a href="#page-5">5</a>
<a href="#section-4">4</a>. Security Considerations . . . . . . . . . . . . . . . . . . . <a href="#page-5">5</a>
<a href="#section-5">5</a>. References . . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-6">6</a>
<a href="#section-5.1">5.1</a>. Normative References . . . . . . . . . . . . . . . . . . <a href="#page-6">6</a>
<a href="#section-5.2">5.2</a>. Informative References . . . . . . . . . . . . . . . . . <a href="#page-6">6</a>
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-8">8</a>
Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-8">8</a>
<span class="grey">Langley, et al. Standards Track [Page 2]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-3" ></span>
<span class="grey"><a href="./rfc7905">RFC 7905</a> ChaCha-Poly1305 for TLS June 2016</span>
<span class="h2"><a class="selflink" id="section-1" href="#section-1">1</a>. Introduction</span>
This document describes the use of the ChaCha stream cipher and
Poly1305 authenticator in version 1.2 or later of the Transport Layer
Security (TLS) protocol [<a href="./rfc5246" title=""The Transport Layer Security (TLS) Protocol Version 1.2"">RFC5246</a>] as well as version 1.2 or later of
the Datagram Transport Layer Security (DTLS) protocol [<a href="./rfc6347" title=""Datagram Transport Layer Security Version 1.2"">RFC6347</a>].
ChaCha [<a href="#ref-CHACHA" title=""ChaCha, a variant of Salsa20"">CHACHA</a>] is a stream cipher developed by D. J. Bernstein in
2008. It is a refinement of Salsa20, which is one of the selected
ciphers in the eSTREAM portfolio [<a href="#ref-ESTREAM" title=""The eSTREAM Portfolio (rev. 1)"">ESTREAM</a>], and it was used as the
core of the SHA-3 finalist, BLAKE.
The variant of ChaCha used in this document has 20 rounds, a 96-bit
nonce, and a 256-bit key; it is referred to as "ChaCha20". This is
the conservative variant (with respect to security) of the ChaCha
family and is described in [<a href="./rfc7539" title=""ChaCha20 and Poly1305 for IETF Protocols"">RFC7539</a>].
Poly1305 [<a href="#ref-POLY1305" title=""The Poly1305-AES message-authentication code"">POLY1305</a>] is a Wegman-Carter, one-time authenticator
designed by D. J. Bernstein. Poly1305 takes a 256-bit, one-time key
and a message, and it produces a 16-byte tag that authenticates the
message such that an attacker has a negligible chance of producing a
valid tag for an inauthentic message. It is described in [<a href="./rfc7539" title=""ChaCha20 and Poly1305 for IETF Protocols"">RFC7539</a>].
ChaCha and Poly1305 have both been designed for high performance in
software implementations. They typically admit a compact
implementation that uses few resources and inexpensive operations,
which makes them suitable on a wide range of architectures. They
have also been designed to minimize leakage of information through
side-channels.
Recent attacks [<a href="#ref-CBC-ATTACK">CBC-ATTACK</a>] have indicated problems with the CBC-mode
cipher suites in TLS and DTLS, as well as issues with the only
supported stream cipher (RC4) [<a href="#ref-RC4-ATTACK">RC4-ATTACK</a>]. While the existing
Authenticated Encryption with Associated Data (AEAD) cipher suites
(based on AES-GCM) address some of these issues, there are concerns
about their performance and ease of software implementation.
Therefore, a new stream cipher to replace RC4 and address all the
previous issues is needed. It is the purpose of this document to
describe a secure stream cipher for both TLS and DTLS that is
comparable to RC4 in speed on a wide range of platforms and can be
implemented easily without being vulnerable to software side-channel
attacks.
<span class="grey">Langley, et al. Standards Track [Page 3]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-4" ></span>
<span class="grey"><a href="./rfc7905">RFC 7905</a> ChaCha-Poly1305 for TLS June 2016</span>
<span class="h2"><a class="selflink" id="section-2" href="#section-2">2</a>. ChaCha20 Cipher Suites</span>
The ChaCha20 and Poly1305 primitives are built into an AEAD algorithm
[<a href="./rfc5116" title=""An Interface and Algorithms for Authenticated Encryption"">RFC5116</a>], AEAD_CHACHA20_POLY1305, as described in [<a href="./rfc7539" title=""ChaCha20 and Poly1305 for IETF Protocols"">RFC7539</a>]. This
AEAD is incorporated into TLS and DTLS as specified in
<a href="./rfc5246#section-6.2.3.3">Section 6.2.3.3 of [RFC5246]</a>.
AEAD_CHACHA20_POLY1305 requires a 96-bit nonce, which is formed as
follows:
1. The 64-bit record sequence number is serialized as an 8-byte,
big-endian value and padded on the left with four 0x00 bytes.
2. The padded sequence number is XORed with the client_write_IV
(when the client is sending) or server_write_IV (when the server
is sending).
In DTLS, the 64-bit seq_num is the 16-bit epoch concatenated with the
48-bit sequence_number.
This nonce construction is different from the one used with AES-GCM
in TLS 1.2 but matches the scheme expected to be used in TLS 1.3.
The nonce is constructed from the record sequence number and the
shared secret, both of which are known to the recipient. The
advantage is that no per-record, explicit nonce need be transmitted,
which saves eight bytes per record and prevents implementations from
mistakenly using a random nonce. Thus, in the terms of [<a href="./rfc5246" title=""The Transport Layer Security (TLS) Protocol Version 1.2"">RFC5246</a>],
SecurityParameters.fixed_iv_length is twelve bytes and
SecurityParameters.record_iv_length is zero bytes.
The following cipher suites are defined:
TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256 = {0xCC, 0xA8}
TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256 = {0xCC, 0xA9}
TLS_DHE_RSA_WITH_CHACHA20_POLY1305_SHA256 = {0xCC, 0xAA}
TLS_PSK_WITH_CHACHA20_POLY1305_SHA256 = {0xCC, 0xAB}
TLS_ECDHE_PSK_WITH_CHACHA20_POLY1305_SHA256 = {0xCC, 0xAC}
TLS_DHE_PSK_WITH_CHACHA20_POLY1305_SHA256 = {0xCC, 0xAD}
TLS_RSA_PSK_WITH_CHACHA20_POLY1305_SHA256 = {0xCC, 0xAE}
The DHE_RSA, ECDHE_RSA, ECDHE_ECDSA, PSK, ECDHE_PSK, DHE_PSK, and
RSA_PSK key exchanges for these cipher suites are unaltered; thus,
they are performed as defined in [<a href="./rfc5246" title=""The Transport Layer Security (TLS) Protocol Version 1.2"">RFC5246</a>], [<a href="./rfc4492" title=""Elliptic Curve Cryptography (ECC) Cipher Suites for Transport Layer Security (TLS)"">RFC4492</a>], and [<a href="./rfc5489" title=""ECDHE_PSK Cipher Suites for Transport Layer Security (TLS)"">RFC5489</a>].
The pseudorandom function (PRF) for all the cipher suites defined in
this document is the TLS PRF with SHA-256 [<a href="#ref-FIPS180-4">FIPS180-4</a>] as the hash
function.
<span class="grey">Langley, et al. Standards Track [Page 4]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-5" ></span>
<span class="grey"><a href="./rfc7905">RFC 7905</a> ChaCha-Poly1305 for TLS June 2016</span>
<span class="h2"><a class="selflink" id="section-3" href="#section-3">3</a>. IANA Considerations</span>
IANA has added the following entries in the TLS Cipher Suite
Registry:
TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256 = {0xCC, 0xA8}
TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256 = {0xCC, 0xA9}
TLS_DHE_RSA_WITH_CHACHA20_POLY1305_SHA256 = {0xCC, 0xAA}
TLS_PSK_WITH_CHACHA20_POLY1305_SHA256 = {0xCC, 0xAB}
TLS_ECDHE_PSK_WITH_CHACHA20_POLY1305_SHA256 = {0xCC, 0xAC}
TLS_DHE_PSK_WITH_CHACHA20_POLY1305_SHA256 = {0xCC, 0xAD}
TLS_RSA_PSK_WITH_CHACHA20_POLY1305_SHA256 = {0xCC, 0xAE}
<span class="h2"><a class="selflink" id="section-4" href="#section-4">4</a>. Security Considerations</span>
ChaCha20 follows the same basic principle as Salsa20 [<a href="#ref-SALSA20SPEC">SALSA20SPEC</a>], a
cipher with significant security review [<a href="#ref-SALSA20-SECURITY">SALSA20-SECURITY</a>] [<a href="#ref-ESTREAM" title=""The eSTREAM Portfolio (rev. 1)"">ESTREAM</a>].
At the time of writing this document, there are no known significant
security problems with either cipher, and ChaCha20 is shown to be
more resistant in certain attacks than Salsa20 [<a href="#ref-SALSA20-ATTACK">SALSA20-ATTACK</a>].
Furthermore, ChaCha20 was used as the core of the BLAKE hash
function, a SHA3 finalist, which has received considerable
cryptanalytic attention [<a href="#ref-NIST-SHA3">NIST-SHA3</a>].
Poly1305 is designed to ensure that forged messages are rejected with
a probability of 1-(n/2^107), where n is the maximum length of the
input to Poly1305. In the case of (D)TLS, this means a maximum
forgery probability of about 1 in 2^93.
The cipher suites described in this document require that a nonce
never be repeated under the same key. The design presented ensures
this by using the TLS sequence number, which is unique and does not
wrap [<a href="./rfc5246" title=""The Transport Layer Security (TLS) Protocol Version 1.2"">RFC5246</a>].
It should be noted that AEADs, such as ChaCha20-Poly1305, are not
intended to hide the lengths of plaintexts. When this document
speaks of side-channel attacks, it is not considering traffic
analysis, but rather timing and cache side-channels. Traffic
analysis, while a valid concern, is outside the scope of the AEAD and
is being addressed elsewhere in future versions of TLS.
Otherwise, this document should not introduce any additional security
considerations other than those that follow from the use of the
AEAD_CHACHA20_POLY1305 construction, thus the reader is directed to
the Security Considerations section of [<a href="./rfc7539" title=""ChaCha20 and Poly1305 for IETF Protocols"">RFC7539</a>].
<span class="grey">Langley, et al. Standards Track [Page 5]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-6" ></span>
<span class="grey"><a href="./rfc7905">RFC 7905</a> ChaCha-Poly1305 for TLS June 2016</span>
<span class="h2"><a class="selflink" id="section-5" href="#section-5">5</a>. References</span>
<span class="h3"><a class="selflink" id="section-5.1" href="#section-5.1">5.1</a>. Normative References</span>
[<a id="ref-FIPS180-4">FIPS180-4</a>]
National Institute of Standards and Technology, "Secure
Hash Standard (SHS)", FIPS PUB 180-4,
DOI 10.6028/NIST.FIPS180-4, August 2015,
<<a href="http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf">http://nvlpubs.nist.gov/nistpubs/FIPS/</a>
<a href="http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf">NIST.FIPS.180-4.pdf</a>>.
[<a id="ref-RFC4492">RFC4492</a>] Blake-Wilson, S., Bolyard, N., Gupta, V., Hawk, C., and B.
Moeller, "Elliptic Curve Cryptography (ECC) Cipher Suites
for Transport Layer Security (TLS)", <a href="./rfc4492">RFC 4492</a>,
DOI 10.17487/RFC4492, May 2006,
<<a href="http://www.rfc-editor.org/info/rfc4492">http://www.rfc-editor.org/info/rfc4492</a>>.
[<a id="ref-RFC5246">RFC5246</a>] Dierks, T. and E. Rescorla, "The Transport Layer Security
(TLS) Protocol Version 1.2", <a href="./rfc5246">RFC 5246</a>,
DOI 10.17487/RFC5246, August 2008,
<<a href="http://www.rfc-editor.org/info/rfc5246">http://www.rfc-editor.org/info/rfc5246</a>>.
[<a id="ref-RFC5489">RFC5489</a>] Badra, M. and I. Hajjeh, "ECDHE_PSK Cipher Suites for
Transport Layer Security (TLS)", <a href="./rfc5489">RFC 5489</a>,
DOI 10.17487/RFC5489, March 2009,
<<a href="http://www.rfc-editor.org/info/rfc5489">http://www.rfc-editor.org/info/rfc5489</a>>.
[<a id="ref-RFC6347">RFC6347</a>] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
Security Version 1.2", <a href="./rfc6347">RFC 6347</a>, DOI 10.17487/RFC6347,
January 2012, <<a href="http://www.rfc-editor.org/info/rfc6347">http://www.rfc-editor.org/info/rfc6347</a>>.
[<a id="ref-RFC7539">RFC7539</a>] Nir, Y. and A. Langley, "ChaCha20 and Poly1305 for IETF
Protocols", <a href="./rfc7539">RFC 7539</a>, DOI 10.17487/RFC7539, May 2015,
<<a href="http://www.rfc-editor.org/info/rfc7539">http://www.rfc-editor.org/info/rfc7539</a>>.
<span class="h3"><a class="selflink" id="section-5.2" href="#section-5.2">5.2</a>. Informative References</span>
[<a id="ref-CBC-ATTACK">CBC-ATTACK</a>]
AlFardan, N. and K. Paterson, "Lucky Thirteen: Breaking
the TLS and DTLS Record Protocols", IEEE Symposium
on Security and Privacy, 2013,
<<a href="http://www.ieee-security.org/TC/SP2013/papers/4977a526.pdf">http://www.ieee-security.org/TC/SP2013/papers/</a>
<a href="http://www.ieee-security.org/TC/SP2013/papers/4977a526.pdf">4977a526.pdf</a>>.
[<a id="ref-CHACHA">CHACHA</a>] Bernstein, D., "ChaCha, a variant of Salsa20", January
2008, <<a href="http://cr.yp.to/chacha/chacha-20080128.pdf">http://cr.yp.to/chacha/chacha-20080128.pdf</a>>.
<span class="grey">Langley, et al. Standards Track [Page 6]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-7" ></span>
<span class="grey"><a href="./rfc7905">RFC 7905</a> ChaCha-Poly1305 for TLS June 2016</span>
[<a id="ref-ESTREAM">ESTREAM</a>] Babbage, S., DeCanniere, C., Cantenaut, A., Cid, C.,
Gilbert, H., Johansson, T., Parker, M., Preneel, B.,
Rijmen, V., and M. Robshaw, "The eSTREAM Portfolio
(rev. 1)", September 2008,
<<a href="http://www.ecrypt.eu.org/stream/finallist.html">http://www.ecrypt.eu.org/stream/finallist.html</a>>.
[<a id="ref-NIST-SHA3">NIST-SHA3</a>]
Chang, S., Perlner, R., Burr, W., Turan, M., Kelsey, J.,
Paul, S., and L. Bassham, "Third-Round Report of the SHA-3
Cryptographic Hash Algorithm Competition",
DOI 10.6028/NIST.IR.7896, November 2012,
<<a href="http://dx.doi.org/10.6028/NIST.IR.7896">http://dx.doi.org/10.6028/NIST.IR.7896</a>>.
[<a id="ref-POLY1305">POLY1305</a>] Bernstein, D., "The Poly1305-AES message-authentication
code", FSE '05 Proceedings of the 12th international
conference on Fast Software Encryption Pages 32-49,
DOI 10.1007/11502760_3, February 2005,
<<a href="http://cr.yp.to/mac/poly1305-20050329.pdf">http://cr.yp.to/mac/poly1305-20050329.pdf</a>>.
[<a id="ref-RC4-ATTACK">RC4-ATTACK</a>]
Isobe, T., Ohigashi, T., Watanabe, Y., and M. Morii, "Full
Plaintext Recovery Attack on Broadcast RC4", International
Workshop on Fast Software Encryption FSE,
DOI 10.1007/978-3-662-43933-3_10, 2013,
<<a href="http://www.iacr.org/archive/fse2013/84240167/84240167.pdf">http://www.iacr.org/archive/</a>
<a href="http://www.iacr.org/archive/fse2013/84240167/84240167.pdf">fse2013/84240167/84240167.pdf</a>>.
[<a id="ref-RFC5116">RFC5116</a>] McGrew, D., "An Interface and Algorithms for Authenticated
Encryption", <a href="./rfc5116">RFC 5116</a>, DOI 10.17487/RFC5116, January 2008,
<<a href="http://www.rfc-editor.org/info/rfc5116">http://www.rfc-editor.org/info/rfc5116</a>>.
[<a id="ref-SALSA20-ATTACK">SALSA20-ATTACK</a>]
Aumasson, J-P., Fischer, S., Khazaei, S., Meier, W., and
C. Rechberger, "New Features of Latin Dances: Analysis of
Salsa, ChaCha, and Rumba",
DOI 10.1007/978-3-540-71039-4_30, 2007,
<<a href="http://eprint.iacr.org/2007/472.pdf">http://eprint.iacr.org/2007/472.pdf</a>>.
[<a id="ref-SALSA20-SECURITY">SALSA20-SECURITY</a>]
Bernstein, D., "Salsa20 security", April 2005,
<<a href="http://cr.yp.to/snuffle/security.pdf">http://cr.yp.to/snuffle/security.pdf</a>>.
[<a id="ref-SALSA20SPEC">SALSA20SPEC</a>]
Bernstein, D., "Salsa20 specification", April 2005,
<<a href="http://cr.yp.to/snuffle/spec.pdf">http://cr.yp.to/snuffle/spec.pdf</a>>.
<span class="grey">Langley, et al. Standards Track [Page 7]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-8" ></span>
<span class="grey"><a href="./rfc7905">RFC 7905</a> ChaCha-Poly1305 for TLS June 2016</span>
Acknowledgements
The authors would like to thank Zooko Wilcox-O'Hearn, Samuel Neves,
and Colm MacCarthaigh for their suggestions and guidance.
Authors' Addresses
Adam Langley
Google, Inc.
Email: agl@google.com
Wan-Teh Chang
Google, Inc.
Email: wtc@google.com
Nikos Mavrogiannopoulos
Red Hat
Email: nmav@redhat.com
Joachim Strombergson
Secworks Sweden AB
Email: joachim@secworks.se
URI: <a href="http://secworks.se/">http://secworks.se/</a>
Simon Josefsson
SJD AB
Email: simon@josefsson.org
URI: <a href="http://josefsson.org/">http://josefsson.org/</a>
Langley, et al. Standards Track [Page 8]
</pre>
|