1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621
|
<pre>Internet Engineering Task Force (IETF) D. Gillmor
Request for Comments: 7919 ACLU
Updates: <a href="./rfc2246">2246</a>, <a href="./rfc4346">4346</a>, <a href="./rfc4492">4492</a>, <a href="./rfc5246">5246</a> August 2016
Category: Standards Track
ISSN: 2070-1721
<span class="h1">Negotiated Finite Field Diffie-Hellman Ephemeral Parameters</span>
<span class="h1">for Transport Layer Security (TLS)</span>
Abstract
Traditional finite-field-based Diffie-Hellman (DH) key exchange
during the Transport Layer Security (TLS) handshake suffers from a
number of security, interoperability, and efficiency shortcomings.
These shortcomings arise from lack of clarity about which DH group
parameters TLS servers should offer and clients should accept. This
document offers a solution to these shortcomings for compatible peers
by using a section of the TLS "Supported Groups Registry" (renamed
from "EC Named Curve Registry" by this document) to establish common
finite field DH parameters with known structure and a mechanism for
peers to negotiate support for these groups.
This document updates TLS versions 1.0 (<a href="./rfc2246">RFC 2246</a>), 1.1 (<a href="./rfc4346">RFC 4346</a>),
and 1.2 (<a href="./rfc5246">RFC 5246</a>), as well as the TLS Elliptic Curve Cryptography
(ECC) extensions (<a href="./rfc4492">RFC 4492</a>).
Status of This Memo
This is an Internet Standards Track document.
This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Further information on
Internet Standards is available in <a href="./rfc7841#section-2">Section 2 of RFC 7841</a>.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
<a href="http://www.rfc-editor.org/info/rfc7919">http://www.rfc-editor.org/info/rfc7919</a>.
<span class="grey">Gillmor Standards Track [Page 1]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-2" ></span>
<span class="grey"><a href="./rfc7919">RFC 7919</a> Negotiated FFDHE for TLS August 2016</span>
Copyright Notice
Copyright (c) 2016 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to <a href="https://www.rfc-editor.org/bcp/bcp78">BCP 78</a> and the IETF Trust's Legal
Provisions Relating to IETF Documents
(<a href="http://trustee.ietf.org/license-info">http://trustee.ietf.org/license-info</a>) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
<span class="grey">Gillmor Standards Track [Page 2]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-3" ></span>
<span class="grey"><a href="./rfc7919">RFC 7919</a> Negotiated FFDHE for TLS August 2016</span>
Table of Contents
<a href="#section-1">1</a>. Introduction . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-4">4</a>
<a href="#section-1.1">1.1</a>. Requirements Language . . . . . . . . . . . . . . . . . . <a href="#page-5">5</a>
<a href="#section-1.2">1.2</a>. Vocabulary . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-5">5</a>
<a href="#section-2">2</a>. Named Group Overview . . . . . . . . . . . . . . . . . . . . <a href="#page-5">5</a>
<a href="#section-3">3</a>. Client Behavior . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-6">6</a>
<a href="#section-3.1">3.1</a>. Client Local Policy on Custom Groups . . . . . . . . . . <a href="#page-7">7</a>
<a href="#section-4">4</a>. Server Behavior . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-8">8</a>
<a href="#section-5">5</a>. Optimizations . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-9">9</a>
<a href="#section-5.1">5.1</a>. Checking the Peer's Public Key . . . . . . . . . . . . . <a href="#page-9">9</a>
<a href="#section-5.2">5.2</a>. Short Exponents . . . . . . . . . . . . . . . . . . . . . <a href="#page-9">9</a>
<a href="#section-5.3">5.3</a>. Table Acceleration . . . . . . . . . . . . . . . . . . . <a href="#page-10">10</a>
<a href="#section-6">6</a>. Operational Considerations . . . . . . . . . . . . . . . . . <a href="#page-10">10</a>
<a href="#section-6.1">6.1</a>. Preference Ordering . . . . . . . . . . . . . . . . . . . <a href="#page-10">10</a>
<a href="#section-7">7</a>. IANA Considerations . . . . . . . . . . . . . . . . . . . . . <a href="#page-11">11</a>
<a href="#section-8">8</a>. Security Considerations . . . . . . . . . . . . . . . . . . . <a href="#page-12">12</a>
<a href="#section-8.1">8.1</a>. Negotiation Resistance to Active Attacks . . . . . . . . <a href="#page-12">12</a>
<a href="#section-8.2">8.2</a>. Group Strength Considerations . . . . . . . . . . . . . . <a href="#page-13">13</a>
<a href="#section-8.3">8.3</a>. Finite Field DHE Only . . . . . . . . . . . . . . . . . . <a href="#page-13">13</a>
<a href="#section-8.4">8.4</a>. Deprecating Weak Groups . . . . . . . . . . . . . . . . . <a href="#page-14">14</a>
<a href="#section-8.5">8.5</a>. Choice of Groups . . . . . . . . . . . . . . . . . . . . <a href="#page-14">14</a>
<a href="#section-8.6">8.6</a>. Timing Attacks . . . . . . . . . . . . . . . . . . . . . <a href="#page-14">14</a>
<a href="#section-8.7">8.7</a>. Replay Attacks from Non-negotiated FFDHE . . . . . . . . <a href="#page-15">15</a>
<a href="#section-8.8">8.8</a>. Forward Secrecy . . . . . . . . . . . . . . . . . . . . . <a href="#page-15">15</a>
<a href="#section-8.9">8.9</a>. False Start . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-15">15</a>
<a href="#section-9">9</a>. Privacy Considerations . . . . . . . . . . . . . . . . . . . <a href="#page-16">16</a>
<a href="#section-9.1">9.1</a>. Client Fingerprinting . . . . . . . . . . . . . . . . . . <a href="#page-16">16</a>
<a href="#section-10">10</a>. References . . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-16">16</a>
<a href="#section-10.1">10.1</a>. Normative References . . . . . . . . . . . . . . . . . . <a href="#page-16">16</a>
<a href="#section-10.2">10.2</a>. Informative References . . . . . . . . . . . . . . . . . <a href="#page-17">17</a>
<a href="#appendix-A">Appendix A</a>. Supported Groups Registry (Formerly "EC Named Curve
Registry") . . . . . . . . . . . . . . . . . . . . . <a href="#page-19">19</a>
<a href="#appendix-A.1">A.1</a>. ffdhe2048 . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-19">19</a>
<a href="#appendix-A.2">A.2</a>. ffdhe3072 . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-20">20</a>
<a href="#appendix-A.3">A.3</a>. ffdhe4096 . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-22">22</a>
<a href="#appendix-A.4">A.4</a>. ffdhe6144 . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-23">23</a>
<a href="#appendix-A.5">A.5</a>. ffdhe8192 . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-26">26</a>
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-29">29</a>
Author's Address . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-29">29</a>
<span class="grey">Gillmor Standards Track [Page 3]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-4" ></span>
<span class="grey"><a href="./rfc7919">RFC 7919</a> Negotiated FFDHE for TLS August 2016</span>
<span class="h2"><a class="selflink" id="section-1" href="#section-1">1</a>. Introduction</span>
Traditional TLS [<a href="./rfc5246" title=""The Transport Layer Security (TLS) Protocol Version 1.2"">RFC5246</a>] offers a Diffie-Hellman Ephemeral (DHE) key
exchange mode that provides forward secrecy for the connection. The
client offers a cipher suite in the ClientHello that includes DHE,
and the server offers the client group parameters generator g and
modulus p. If the client does not consider the group strong enough
(e.g., p is too small, p is not prime, or there are small subgroups
that cannot be easily avoided) or if it is unable to process the
group for other reasons, the client has no recourse but to terminate
the connection.
Conversely, when a TLS server receives a suggestion for a DHE cipher
suite from a client, it has no way of knowing what kinds of DH groups
the client is capable of handling or what the client's security
requirements are for this key exchange session. For example, some
widely distributed TLS clients are not capable of DH groups where p >
1024 bits. Other TLS clients may, by policy, wish to use DHE only if
the server can offer a stronger group (and are willing to use a non-
PFS (Perfect Forward Secrecy) key exchange mechanism otherwise). The
server has no way of knowing which type of client is connecting but
must select DH parameters with insufficient knowledge.
Additionally, the DH parameters selected by the server may have a
known structure that renders them secure against a small subgroup
attack, but a client receiving an arbitrary p and g has no efficient
way to verify that the structure of a new group is reasonable for
use.
This modification to TLS solves these problems by using a section of
the "Supported Groups Registry" (renamed from "EC Named Curve
Registry" by this document) to select common DH groups with known
structure and defining the use of the "elliptic_curves(10)" extension
(described here as the Supported Groups extension) for clients
advertising support for DHE with these groups. This document also
provides guidance for compatible peers to take advantage of the
additional security, availability, and efficiency offered.
The use of this mechanism by one compatible peer when interacting
with a non-compatible peer should have no detrimental effects.
This document updates TLS versions 1.0 [<a href="./rfc2246" title=""The TLS Protocol Version 1.0"">RFC2246</a>], 1.1 [<a href="./rfc4346" title=""The Transport Layer Security (TLS) Protocol Version 1.1"">RFC4346</a>], and
1.2 [<a href="./rfc5246" title=""The Transport Layer Security (TLS) Protocol Version 1.2"">RFC5246</a>], as well as the TLS ECC extensions [<a href="./rfc4492" title=""Elliptic Curve Cryptography (ECC) Cipher Suites for Transport Layer Security (TLS)"">RFC4492</a>].
<span class="grey">Gillmor Standards Track [Page 4]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-5" ></span>
<span class="grey"><a href="./rfc7919">RFC 7919</a> Negotiated FFDHE for TLS August 2016</span>
<span class="h3"><a class="selflink" id="section-1.1" href="#section-1.1">1.1</a>. Requirements Language</span>
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [<a href="./rfc2119" title=""Key words for use in RFCs to Indicate Requirement Levels"">RFC2119</a>].
<span class="h3"><a class="selflink" id="section-1.2" href="#section-1.2">1.2</a>. Vocabulary</span>
The terms "DHE" or "FFDHE" are used in this document to refer to the
finite-field-based Diffie-Hellman ephemeral key exchange mechanism in
TLS. TLS also supports Elliptic Curve Diffie-Hellman Ephemeral
(ECDHE) key exchanges [<a href="./rfc4492" title=""Elliptic Curve Cryptography (ECC) Cipher Suites for Transport Layer Security (TLS)"">RFC4492</a>], but this document does not document
their use. A registry previously used only by ECDHE-capable
implementations is expanded in this document to cover FFDHE groups as
well. "FFDHE cipher suites" is used in this document to refer
exclusively to cipher suites with FFDHE key exchange mechanisms, but
note that these suites are typically labeled with a TLS_DHE_ prefix.
<span class="h2"><a class="selflink" id="section-2" href="#section-2">2</a>. Named Group Overview</span>
We use previously unallocated codepoints within the extension
currently known as "elliptic_curves" (<a href="./rfc4492#section-5.1.1">Section 5.1.1. of [RFC4492]</a>) to
indicate known finite field groups. The extension's semantics are
expanded from "Supported Elliptic Curves" to "Supported Groups". The
enum datatype used in the extension has been renamed from NamedCurve
to NamedGroup. Its semantics are likewise expanded from "named
curve" to "named group".
Additionally, we explicitly relax the requirement about when the
Supported Groups extension can be sent. This extension MAY be sent
by the client when either FFDHE or ECDHE cipher suites are listed.
Codepoints in the "Supported Groups Registry" with a high byte of
0x01 (that is, between 256 and 511, inclusive) are set aside for
FFDHE groups, though only a small number of them are initially
defined and we do not expect many other FFDHE groups to be added to
this range. No codepoints outside of this range will be allocated to
FFDHE groups. The new codepoints for the "Supported Groups Registry"
are:
enum {
// other already defined elliptic curves (see <a href="./rfc4492">RFC 4492</a>)
ffdhe2048(256), ffdhe3072(257), ffdhe4096(258),
ffdhe6144(259), ffdhe8192(260),
//
} NamedGroup;
<span class="grey">Gillmor Standards Track [Page 5]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-6" ></span>
<span class="grey"><a href="./rfc7919">RFC 7919</a> Negotiated FFDHE for TLS August 2016</span>
These additions to the "Supported Groups Registry" are described in
detail in <a href="#appendix-A">Appendix A</a>. They are all safe primes derived from the base
of the natural logarithm ("e"), with the high and low 64 bits set to
1 for efficient Montgomery or Barrett reduction.
The use of the base of the natural logarithm here is as a "nothing-
up-my-sleeve" number. The goal is to guarantee that the bits in the
middle of the modulus are effectively random, while avoiding any
suspicion that the primes have secretly been selected to be weak
according to some secret criteria. [<a href="./rfc3526" title=""More Modular Exponential (MODP) Diffie-Hellman groups for Internet Key Exchange (IKE)"">RFC3526</a>] used pi for this value.
See <a href="#section-8.5">Section 8.5</a> for reasons that this document does not reuse pi.
<span class="h2"><a class="selflink" id="section-3" href="#section-3">3</a>. Client Behavior</span>
A TLS client that is capable of using strong finite field Diffie-
Hellman groups can advertise its capabilities and its preferences for
stronger key exchange by using this mechanism.
The compatible client that wants to be able to negotiate strong FFDHE
sends a Supported Groups extension (identified by type
elliptic_curves(10) in [<a href="./rfc4492" title=""Elliptic Curve Cryptography (ECC) Cipher Suites for Transport Layer Security (TLS)"">RFC4492</a>]) in the ClientHello and includes a
list of known FFDHE groups in the extension data, ordered from most
preferred to least preferred. If the client also supports and wants
to offer ECDHE key exchange, it MUST use a single Supported Groups
extension to include all supported groups (both ECDHE and FFDHE
groups). The ordering SHOULD be based on client preference, but see
<a href="#section-6.1">Section 6.1</a> for more nuance.
A client that offers a Supported Groups extension containing an FFDHE
group SHOULD also include at least one FFDHE cipher suite in the
ClientHello.
A client that offers a group MUST be able and willing to perform a DH
key exchange using that group.
A client that offers one or more FFDHE groups in the Supported Groups
extension and an FFDHE cipher suite and that receives an FFDHE cipher
suite from the server SHOULD take the following steps upon receiving
the ServerKeyExchange:
o For non-anonymous cipher suites where the offered certificate is
valid and appropriate for the peer, validate the signature over
the ServerDHParams. If not valid, terminate the connection.
<span class="grey">Gillmor Standards Track [Page 6]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-7" ></span>
<span class="grey"><a href="./rfc7919">RFC 7919</a> Negotiated FFDHE for TLS August 2016</span>
o If the signature over ServerDHParams is valid, compare the
selected dh_p and dh_g with the FFDHE groups offered by the
client. If none of the offered groups match, the server is not
compatible with this document. The client MAY decide to continue
the connection if the selected group is acceptable under local
policy, or it MAY decide to terminate the connection with a fatal
insufficient_security(71) alert.
o If the client continues (either because the server offered a
matching group or because local policy permits the offered custom
group), the client MUST verify that dh_Ys is in the range 1 <
dh_Ys < dh_p - 1. If dh_Ys is not in this range, the client MUST
terminate the connection with a fatal handshake_failure(40) alert.
o If dh_Ys is in range, then the client SHOULD continue with the
connection as usual.
<span class="h3"><a class="selflink" id="section-3.1" href="#section-3.1">3.1</a>. Client Local Policy on Custom Groups</span>
Compatible clients that are willing to accept FFDHE cipher suites
from non-compatible servers may have local policy about what custom
FFDHE groups they are willing to accept. This local policy presents
a risk to clients, who may accept weakly protected communications
from misconfigured servers.
This document cannot enumerate all possible safe local policy (the
safest may be to simply reject all custom groups), but compatible
clients that accept some custom groups from the server MUST do at
least cursory checks on group size and may take other properties into
consideration as well.
A compatible client that accepts FFDHE cipher suites using custom
groups from non-compatible servers MUST reject any group with |dh_p|
< 768 bits and SHOULD reject any group with |dh_p| < 1024 bits.
A compatible client that rejects a non-compatible server's custom
group may decide to retry the connection while omitting all FFDHE
cipher suites from the ClientHello. A client SHOULD only use this
approach if it successfully verified the server's expected signature
over the ServerDHParams, to avoid being forced by an active attacker
into a non-preferred cipher suite.
<span class="grey">Gillmor Standards Track [Page 7]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-8" ></span>
<span class="grey"><a href="./rfc7919">RFC 7919</a> Negotiated FFDHE for TLS August 2016</span>
<span class="h2"><a class="selflink" id="section-4" href="#section-4">4</a>. Server Behavior</span>
If a compatible TLS server receives a Supported Groups extension from
a client that includes any FFDHE group (i.e., any codepoint between
256 and 511, inclusive, even if unknown to the server), and if none
of the client-proposed FFDHE groups are known and acceptable to the
server, then the server MUST NOT select an FFDHE cipher suite. In
this case, the server SHOULD select an acceptable non-FFDHE cipher
suite from the client's offered list. If the extension is present
with FFDHE groups, none of the client's offered groups are acceptable
by the server, and none of the client's proposed non-FFDHE cipher
suites are acceptable to the server, the server MUST end the
connection with a fatal TLS alert of type insufficient_security(71).
If at least one FFDHE cipher suite is present in the client cipher
suite list and the Supported Groups extension is either absent from
the ClientHello entirely or contains no FFDHE groups (i.e., no
codepoints between 256 and 511, inclusive), then the server knows
that the client is not compatible with this document. In this
scenario, a server MAY select a non-FFDHE cipher suite, or it MAY
select an FFDHE cipher suite and offer an FFDHE group of its choice
to the client as part of a traditional ServerKeyExchange.
A compatible TLS server that receives the Supported Groups extension
with FFDHE codepoints in it and that selects an FFDHE cipher suite
MUST select one of the client's offered groups. The server indicates
the choice of group to the client by sending the group's parameters
as usual in the ServerKeyExchange as described in <a href="./rfc5246#section-7.4.3">Section 7.4.3 of
[RFC5246]</a>.
A TLS server MUST NOT select a named FFDHE group that was not offered
by a compatible client.
A TLS server MUST NOT select an FFDHE cipher suite if the client did
not offer one, even if the client offered an FFDHE group in the
Supported Groups extension.
If a non-anonymous FFDHE cipher suite is selected and the TLS client
has used this extension to offer an FFDHE group of comparable or
greater strength than the server's public key, the server SHOULD
select an FFDHE group at least as strong as the server's public key.
For example, if the server has a 3072-bit RSA key and the client
offers only ffdhe2048 and ffdhe4096, the server SHOULD select
ffdhe4096.
<span class="grey">Gillmor Standards Track [Page 8]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-9" ></span>
<span class="grey"><a href="./rfc7919">RFC 7919</a> Negotiated FFDHE for TLS August 2016</span>
When an FFDHE cipher suite is selected and the client sends a
ClientKeyExchange, the server MUST verify that 1 < dh_Yc < dh_p - 1.
If dh_Yc is out of range, the server MUST terminate the connection
with a fatal handshake_failure(40) alert.
<span class="h2"><a class="selflink" id="section-5" href="#section-5">5</a>. Optimizations</span>
In a key exchange with a successfully negotiated known FFDHE group,
both peers know that the group in question uses a safe prime as a
modulus and that the group in use is of size p-1 or (p-1)/2. This
allows at least three optimizations that can be used to improve
performance.
<span class="h3"><a class="selflink" id="section-5.1" href="#section-5.1">5.1</a>. Checking the Peer's Public Key</span>
Peers MUST validate each other's public key Y (dh_Ys offered by the
server or dh_Yc offered by the client) by ensuring that 1 < Y < p-1.
This simple check ensures that the remote peer is properly behaved
and isn't forcing the local system into the 2-element subgroup.
To reach the same assurance with an unknown group, the client would
need to verify the primality of the modulus, learn the factors of
p-1, and test both the generator g and Y against each factor to avoid
small subgroup attacks.
<span class="h3"><a class="selflink" id="section-5.2" href="#section-5.2">5.2</a>. Short Exponents</span>
Traditional finite field Diffie-Hellman has each peer choose their
secret exponent from the range [2, p-2]. Using exponentiation by
squaring, this means each peer must do roughly 2*log_2(p)
multiplications, twice (once for the generator and once for the
peer's public key).
Peers concerned with performance may also prefer to choose their
secret exponent from a smaller range, doing fewer multiplications,
while retaining the same level of overall security. Each named group
indicates its approximate security level and provides a lower bound
on the range of secret exponents that should preserve it. For
example, rather than doing 2*2*3072 multiplications for an ffdhe3072
handshake, each peer can choose to do 2*2*275 multiplications by
choosing their secret exponent from the range [2^274, 2^275] (that
is, an m-bit integer where m is at least 275) and still keep the same
approximate security level.
A similar short-exponent approach is suggested in a Secure SHell
(SSH) Diffie-Hellman key exchange (see <a href="./rfc4419#section-6.2">Section 6.2 of [RFC4419]</a>).
<span class="grey">Gillmor Standards Track [Page 9]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-10" ></span>
<span class="grey"><a href="./rfc7919">RFC 7919</a> Negotiated FFDHE for TLS August 2016</span>
<span class="h3"><a class="selflink" id="section-5.3" href="#section-5.3">5.3</a>. Table Acceleration</span>
Peers wishing to further accelerate FFDHE key exchange can also pre-
compute a table of powers of the generator of a known group. This is
a memory vs. time trade-off, and it only accelerates the first
exponentiation of the ephemeral DH exchange (the fixed-base
exponentiation). The variable-base exponentiation (using the peer's
public exponent as a base) still needs to be calculated as normal.
<span class="h2"><a class="selflink" id="section-6" href="#section-6">6</a>. Operational Considerations</span>
<span class="h3"><a class="selflink" id="section-6.1" href="#section-6.1">6.1</a>. Preference Ordering</span>
The ordering of named groups in the Supported Groups extension may
contain some ECDHE groups and some FFDHE groups. These SHOULD be
ranked in the order preferred by the client.
However, the ClientHello also contains a list of desired cipher
suites, also ranked in preference order. This presents the
possibility of conflicted preferences. For example, if the
ClientHello contains a cipher_suite field with two choices in order
<TLS_DHE_RSA_WITH_AES_128_CBC_SHA,
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA> and the Supported Groups
extension contains two choices in order <secp256r1,ffdhe3072>, then
there is a clear contradiction. Clients SHOULD NOT present such a
contradiction since it does not represent a sensible ordering. A
server that encounters such a contradiction when selecting between an
ECDHE or FFDHE key exchange mechanism while trying to respect client
preferences SHOULD give priority to the Supported Groups extension
(in the example case, it should select
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA with secp256r1) but MAY resolve
the contradiction any way it sees fit.
More subtly, clients MAY interleave preferences between ECDHE and
FFDHE groups; for example, if stronger groups are preferred
regardless of cost, but weaker groups are acceptable, the Supported
Groups extension could consist of
<ffdhe8192,secp384p1,ffdhe3072,secp256r1>. In this example, with the
same cipher_suite field offered as the previous example, a server
configured to respect client preferences and with support for all
listed groups SHOULD select TLS_DHE_RSA_WITH_AES_128_CBC_SHA with
ffdhe8192. A server configured to respect client preferences and
with support for only secp384p1 and ffdhe3072 SHOULD select
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA with secp384p1.
<span class="grey">Gillmor Standards Track [Page 10]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-11" ></span>
<span class="grey"><a href="./rfc7919">RFC 7919</a> Negotiated FFDHE for TLS August 2016</span>
<span class="h2"><a class="selflink" id="section-7" href="#section-7">7</a>. IANA Considerations</span>
This document renames the "EC Named Curve Registry" (originally
defined in [<a href="./rfc4492" title=""Elliptic Curve Cryptography (ECC) Cipher Suites for Transport Layer Security (TLS)"">RFC4492</a>] and updated by [<a href="./rfc7027" title=""Elliptic Curve Cryptography (ECC) Brainpool Curves for Transport Layer Security (TLS)"">RFC7027</a>]) to the "Supported
Groups Registry". See
<<a href="https://www.iana.org/assignments/tls-parameters">https://www.iana.org/assignments/tls-parameters</a>>.
This document expands the semantics of this registry to include
groups based on finite fields in addition to groups based on elliptic
curves. IANA has added a range designation to the registry,
indicating that values from 256-511 (inclusive) are set aside for
"Finite Field Diffie-Hellman groups" and that all other entries in
the registry are "Elliptic curve groups".
This document allocates five well-defined codepoints in the registry
for specific finite field Diffie-Hellman groups defined in
<a href="#appendix-A">Appendix A</a>.
In addition, the four highest codepoints in the range 508-511,
inclusive, are designated for Private Use [<a href="./rfc5226" title="">RFC5226</a>] by peers who have
privately developed finite field Diffie-Hellman groups that they wish
to signal internally.
The updated registry section is as follows:
+---------+-------------+---------+-----------+
| Value | Description | DTLS-OK | Reference |
+---------+-------------+---------+-----------+
| 256 | ffdhe2048 | Y | <a href="./rfc7919">RFC 7919</a> |
| 257 | ffdhe3072 | Y | <a href="./rfc7919">RFC 7919</a> |
| 258 | ffdhe4096 | Y | <a href="./rfc7919">RFC 7919</a> |
| 259 | ffdhe6144 | Y | <a href="./rfc7919">RFC 7919</a> |
| 260 | ffdhe8192 | Y | <a href="./rfc7919">RFC 7919</a> |
| 508-511 | Private Use | - | <a href="./rfc7919">RFC 7919</a> |
+---------+-------------+---------+-----------+
IANA has also renamed the "elliptic_curves" extension as
"supported_groups" and added a reference to this document in the
"ExtensionType Values" registry. See
<<a href="http://www.iana.org/assignments/tls-extensiontype-values">http://www.iana.org/assignments/tls-extensiontype-values</a>>.
<span class="grey">Gillmor Standards Track [Page 11]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-12" ></span>
<span class="grey"><a href="./rfc7919">RFC 7919</a> Negotiated FFDHE for TLS August 2016</span>
<span class="h2"><a class="selflink" id="section-8" href="#section-8">8</a>. Security Considerations</span>
<span class="h3"><a class="selflink" id="section-8.1" href="#section-8.1">8.1</a>. Negotiation Resistance to Active Attacks</span>
Because the contents of the Supported Groups extension are hashed in
the Finished message, an active Man in the Middle (MITM) that tries
to filter or omit groups will cause the handshake to fail, but
possibly not before getting the peer to do something it would not
otherwise have done.
An attacker who impersonates the server can try to do any of the
following:
o Pretend that a non-compatible server is actually capable of this
extension and select a group from the client's list, causing the
client to select a group it is willing to negotiate. It is
unclear how this would be an effective attack.
o Pretend that a compatible server is actually non-compatible by
negotiating a non-FFDHE cipher suite. This is no different than
MITM cipher suite filtering.
o Pretend that a compatible server is actually non-compatible by
negotiating a DHE cipher suite with a custom (perhaps weak) group
selected by the attacker. This is no worse than the current
scenario and would require the attacker to be able to sign the
ServerDHParams, which should not be possible without access to the
server's secret key.
An attacker who impersonates the client can try to do the following:
o Pretend that a compatible client is not compatible (e.g., by not
offering the Supported Groups extension or by replacing the
Supported Groups extension with one that includes no FFDHE
groups). This could cause the server to negotiate a weaker DHE
group during the handshake or to select a non-FFDHE cipher suite,
but it would fail to complete during the final check of the
Finished message.
o Pretend that a non-compatible client is compatible (e.g., by
adding the Supported Groups extension or by adding FFDHE groups to
the extension). This could cause the server to select a
particular named group in the ServerKeyExchange or to avoid
selecting an FFDHE cipher suite. The peers would fail to compute
the final check of the Finished message.
<span class="grey">Gillmor Standards Track [Page 12]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-13" ></span>
<span class="grey"><a href="./rfc7919">RFC 7919</a> Negotiated FFDHE for TLS August 2016</span>
o Change the list of groups offered by the client (e.g., by removing
the stronger of the set of groups offered). This could cause the
server to negotiate a weaker group than desired, but again, should
be caught by the check in the Finished message.
<span class="h3"><a class="selflink" id="section-8.2" href="#section-8.2">8.2</a>. Group Strength Considerations</span>
TLS implementations using FFDHE key exchange should consider the
strength of the group they negotiate. The strength of the selected
group is one of the factors that define the connection's resilience
against attacks on the session's confidentiality and integrity, since
the session keys are derived from the DHE handshake.
While attacks on integrity must generally happen while the session is
in progress, attacks against session confidentiality can happen
significantly later if the entire TLS session is stored for offline
analysis. Therefore, FFDHE groups should be selected by clients and
servers based on confidentiality guarantees they need. Sessions that
need extremely long-term confidentiality should prefer stronger
groups.
[<a id="ref-ENISA">ENISA</a>] provides rough estimates of group resistance to attack and
recommends that forward-looking implementations ("future systems")
should use FFDHE group sizes of at least 3072 bits. ffdhe3072 is
intended for use in these implementations.
Other sources (e.g., [<a href="#ref-NIST" title=""Recommendation for Key Management - Part 1: General"">NIST</a>]) estimate the security levels of the
Discrete Log (DLOG) problem to be slightly more difficult than
[<a href="#ref-ENISA" title=""Algorithms, Key Sizes and Parameters Report - 2014"">ENISA</a>]. This document's suggested minimum exponent sizes in
<a href="#appendix-A">Appendix A</a> for implementations that use the short-exponent
optimization (<a href="#section-5.2">Section 5.2</a>) are deliberately conservative to account
for the range of these estimates.
<span class="h3"><a class="selflink" id="section-8.3" href="#section-8.3">8.3</a>. Finite Field DHE Only</span>
Note that this document specifically targets only finite field
Diffie-Hellman ephemeral key exchange mechanisms. It does not cover
the non-ephemeral DH key exchange mechanisms, nor does it address
ECDHE key exchange, which is defined in [<a href="./rfc4492" title=""Elliptic Curve Cryptography (ECC) Cipher Suites for Transport Layer Security (TLS)"">RFC4492</a>].
Measured by computational cost to the TLS peers, ECDHE appears today
to offer a much stronger key exchange mechanism than FFDHE.
<span class="grey">Gillmor Standards Track [Page 13]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-14" ></span>
<span class="grey"><a href="./rfc7919">RFC 7919</a> Negotiated FFDHE for TLS August 2016</span>
<span class="h3"><a class="selflink" id="section-8.4" href="#section-8.4">8.4</a>. Deprecating Weak Groups</span>
Advances in hardware or in finite field cryptanalysis may cause some
of the negotiated groups to not provide the desired security margins,
as indicated by the estimated work factor of an adversary to discover
the premaster secret (and may therefore compromise the
confidentiality and integrity of the TLS session).
Revisions of this document should mark known weak groups as
explicitly deprecated for use in TLS and should update the estimated
work factor needed to break the group if the cryptanalysis has
changed. Implementations that require strong confidentiality and
integrity guarantees should avoid using deprecated groups and should
be updated when the estimated security margins are updated.
<span class="h3"><a class="selflink" id="section-8.5" href="#section-8.5">8.5</a>. Choice of Groups</span>
Other lists of named finite field Diffie-Hellman groups
[<a href="#ref-STRONGSWAN-IKE">STRONGSWAN-IKE</a>] exist. This document chooses to not reuse them for
several reasons:
o Using the same groups in multiple protocols increases the value
for an attacker with the resources to crack any single group.
o The Internet Key Exchange Protocol (IKE) groups include weak
groups like MODP768 that are unacceptable for secure TLS traffic.
o Mixing group parameters across multiple implementations leaves
open the possibility of some sort of cross-protocol attack. This
shouldn't be relevant for ephemeral scenarios, and even with non-
ephemeral keying, services shouldn't share keys; however, using
different groups avoids these failure modes entirely.
<span class="h3"><a class="selflink" id="section-8.6" href="#section-8.6">8.6</a>. Timing Attacks</span>
Any implementation of finite field Diffie-Hellman key exchange should
use constant-time modular-exponentiation implementations. This is
particularly true for those implementations that ever reuse DHE
secret keys (so-called "semi-static" ephemeral keying) or share DHE
secret keys across a multiple machines (e.g., in a load-balancer
situation).
<span class="grey">Gillmor Standards Track [Page 14]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-15" ></span>
<span class="grey"><a href="./rfc7919">RFC 7919</a> Negotiated FFDHE for TLS August 2016</span>
<span class="h3"><a class="selflink" id="section-8.7" href="#section-8.7">8.7</a>. Replay Attacks from Non-negotiated FFDHE</span>
[<a href="#ref-SECURE-RESUMPTION">SECURE-RESUMPTION</a>], [<a href="#ref-CROSS-PROTOCOL">CROSS-PROTOCOL</a>], and [<a href="#ref-SSL3-ANALYSIS">SSL3-ANALYSIS</a>] all show a
malicious peer using a bad FFDHE group to maneuver a client into
selecting a premaster secret of the peer's choice, which can be
replayed to another server using a non-FFDHE key exchange and can
then be bootstrapped to replay client authentication.
To prevent this attack (barring the session hash fix documented in
[<a href="./rfc7627" title=""Transport Layer Security (TLS) Session Hash and Extended Master Secret Extension"">RFC7627</a>]), a client would need not only to implement this document,
but also to reject non-negotiated FFDHE cipher suites whose group
structure it cannot afford to verify. Such a client would need to
abort the initial handshake and reconnect to the server in question
without listing any FFDHE cipher suites on the subsequent connection.
This trade-off may be too costly for most TLS clients today but may
be a reasonable choice for clients performing client certificate
authentication or for clients who have other reasons to be concerned
about server-controlled premaster secrets.
<span class="h3"><a class="selflink" id="section-8.8" href="#section-8.8">8.8</a>. Forward Secrecy</span>
One of the main reasons to prefer FFDHE ciphersuites is forward
secrecy, the ability to resist decryption even if the endpoint's
long-term secret key (usually RSA) is revealed in the future.
This property depends on both sides of the connection discarding
their ephemeral keys promptly. Implementations should wipe their
FFDHE secret key material from memory as soon as it is no longer
needed and should never store it in persistent storage.
Forward secrecy also depends on the strength of the Diffie-Hellman
group; using a very strong symmetric cipher like AES256 with a
forward-secret cipher suite but generating the keys with a much
weaker group like dhe2048 simply moves the adversary's cost from
attacking the symmetric cipher to attacking the dh_Ys or dh_Yc
ephemeral key shares.
If the goal is to provide forward secrecy, attention should be paid
to all parts of the cipher suite selection process, both key exchange
and symmetric cipher choice.
<span class="h3"><a class="selflink" id="section-8.9" href="#section-8.9">8.9</a>. False Start</span>
Clients capable of TLS False Start [<a href="./rfc7918" title=""Transport Layer Security (TLS) False Start"">RFC7918</a>] may receive a proposed
FFDHE group from a server that is attacker controlled. In
particular, the attacker can modify the ClientHello to strip the
proposed FFDHE groups, which may cause the server to offer a weaker
<span class="grey">Gillmor Standards Track [Page 15]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-16" ></span>
<span class="grey"><a href="./rfc7919">RFC 7919</a> Negotiated FFDHE for TLS August 2016</span>
FFDHE group than it should, and this will not be detected until
receipt of the server's Finished message. This could cause a client
using the False Start protocol modification to send data encrypted
under a weak key agreement.
Clients should have their own classification of FFDHE groups that are
"cryptographically strong" in the same sense described in the
description of symmetric ciphers in [<a href="./rfc7918" title=""Transport Layer Security (TLS) False Start"">RFC7918</a>] and SHOULD offer at
least one of these in the initial handshake if they contemplate using
the False Start protocol modification with an FFDHE cipher suite.
Compatible clients performing a full handshake MUST NOT use the False
Start protocol modification if the server selects an FFDHE cipher
suite but sends a group that is not cryptographically strong from the
client's perspective.
<span class="h2"><a class="selflink" id="section-9" href="#section-9">9</a>. Privacy Considerations</span>
<span class="h3"><a class="selflink" id="section-9.1" href="#section-9.1">9.1</a>. Client Fingerprinting</span>
This extension provides a few additional bits of information to
distinguish between classes of TLS clients (e.g., see
[<a href="#ref-PANOPTICLICK">PANOPTICLICK</a>]). To minimize this sort of fingerprinting, clients
SHOULD support all named groups at or above their minimum security
threshold. New groups SHOULD NOT be added to the "Supported Groups
Registry" without consideration of the cost of browser
fingerprinting.
<span class="h2"><a class="selflink" id="section-10" href="#section-10">10</a>. References</span>
<span class="h3"><a class="selflink" id="section-10.1" href="#section-10.1">10.1</a>. Normative References</span>
[<a id="ref-RFC2119">RFC2119</a>] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", <a href="https://www.rfc-editor.org/bcp/bcp14">BCP 14</a>, <a href="./rfc2119">RFC 2119</a>,
DOI 10.17487/RFC2119, March 1997,
<<a href="http://www.rfc-editor.org/info/rfc2119">http://www.rfc-editor.org/info/rfc2119</a>>.
[<a id="ref-RFC4492">RFC4492</a>] Blake-Wilson, S., Bolyard, N., Gupta, V., Hawk, C., and B.
Moeller, "Elliptic Curve Cryptography (ECC) Cipher Suites
for Transport Layer Security (TLS)", <a href="./rfc4492">RFC 4492</a>,
DOI 10.17487/RFC4492, May 2006,
<<a href="http://www.rfc-editor.org/info/rfc4492">http://www.rfc-editor.org/info/rfc4492</a>>.
[<a id="ref-RFC5226">RFC5226</a>] Narten, T. and H. Alvestrand, "Guidelines for Writing an
IANA Considerations Section in RFCs", <a href="https://www.rfc-editor.org/bcp/bcp26">BCP 26</a>, <a href="./rfc5226">RFC 5226</a>,
DOI 10.17487/RFC5226, May 2008,
<<a href="http://www.rfc-editor.org/info/rfc5226">http://www.rfc-editor.org/info/rfc5226</a>>.
<span class="grey">Gillmor Standards Track [Page 16]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-17" ></span>
<span class="grey"><a href="./rfc7919">RFC 7919</a> Negotiated FFDHE for TLS August 2016</span>
[<a id="ref-RFC5246">RFC5246</a>] Dierks, T. and E. Rescorla, "The Transport Layer Security
(TLS) Protocol Version 1.2", <a href="./rfc5246">RFC 5246</a>,
DOI 10.17487/RFC5246, August 2008,
<<a href="http://www.rfc-editor.org/info/rfc5246">http://www.rfc-editor.org/info/rfc5246</a>>.
[<a id="ref-RFC7918">RFC7918</a>] Langley, A., Modadugu, N., and B. Moeller, "Transport
Layer Security (TLS) False Start", DOI 10.17487/RFC7918,
June 2016, <<a href="http://www.rfc-editor.org/info/rfc7918">http://www.rfc-editor.org/info/rfc7918</a>>.
<span class="h3"><a class="selflink" id="section-10.2" href="#section-10.2">10.2</a>. Informative References</span>
[<a id="ref-CROSS-PROTOCOL">CROSS-PROTOCOL</a>]
Mavrogiannopolous, N., Vercauteren, F., Velichkov, V., and
B. Preneel, "A Cross-Protocol Attack on the TLS Protocol",
In Proceedings of the 2012 ACM Conference on Computer and
Communications Security, DOI 10.1145/2382196.2382206,
October 2012, <<a href="http://www.cosic.esat.kuleuven.be/publications/article-2216.pdf">http://www.cosic.esat.kuleuven.be/</a>
<a href="http://www.cosic.esat.kuleuven.be/publications/article-2216.pdf">publications/article-2216.pdf</a>>.
[<a id="ref-ECRYPTII">ECRYPTII</a>]
European Network of Excellence in Cryptology II, "ECRYPT
II Yearly Report on Algorithms and Keysizes (2011-2012)",
Revision 1.0, September 2012,
<<a href="http://www.ecrypt.eu.org/ecrypt2/documents/D.SPA.20.pdf">http://www.ecrypt.eu.org/ecrypt2/documents/D.SPA.20.pdf</a>>.
[<a id="ref-ENISA">ENISA</a>] European Union Agency for Network and Information Security
(ENISA), "Algorithms, Key Sizes and Parameters Report -
2014", November 2014,
<<a href="https://www.enisa.europa.eu/publications/algorithms-key-size-and-parameters-report-2014">https://www.enisa.europa.eu/publications/</a>
<a href="https://www.enisa.europa.eu/publications/algorithms-key-size-and-parameters-report-2014">algorithms-key-size-and-parameters-report-2014</a>>.
[<a id="ref-NIST">NIST</a>] National Institute of Standards and Technology,
"Recommendation for Key Management - Part 1: General",
NIST Special Publication 800-57, Revision 4,
DOI 10.6028/NIST.SP.800-57pt1r4, January 2016,
<<a href="http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r4.pdf">http://nvlpubs.nist.gov/nistpubs/SpecialPublications/</a>
<a href="http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r4.pdf">NIST.SP.800-57pt1r4.pdf</a>>.
[<a id="ref-PANOPTICLICK">PANOPTICLICK</a>]
Electronic Frontier Foundation, "Panopticlick: Is your
browser safe against tracking?",
<<a href="https://panopticlick.eff.org/">https://panopticlick.eff.org/</a>>.
[<a id="ref-RFC2246">RFC2246</a>] Dierks, T. and C. Allen, "The TLS Protocol Version 1.0",
<a href="./rfc2246">RFC 2246</a>, DOI 10.17487/RFC2246, January 1999,
<<a href="http://www.rfc-editor.org/info/rfc2246">http://www.rfc-editor.org/info/rfc2246</a>>.
<span class="grey">Gillmor Standards Track [Page 17]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-18" ></span>
<span class="grey"><a href="./rfc7919">RFC 7919</a> Negotiated FFDHE for TLS August 2016</span>
[<a id="ref-RFC3526">RFC3526</a>] Kivinen, T. and M. Kojo, "More Modular Exponential (MODP)
Diffie-Hellman groups for Internet Key Exchange (IKE)",
<a href="./rfc3526">RFC 3526</a>, DOI 10.17487/RFC3526, May 2003,
<<a href="http://www.rfc-editor.org/info/rfc3526">http://www.rfc-editor.org/info/rfc3526</a>>.
[<a id="ref-RFC4346">RFC4346</a>] Dierks, T. and E. Rescorla, "The Transport Layer Security
(TLS) Protocol Version 1.1", <a href="./rfc4346">RFC 4346</a>,
DOI 10.17487/RFC4346, April 2006,
<<a href="http://www.rfc-editor.org/info/rfc4346">http://www.rfc-editor.org/info/rfc4346</a>>.
[<a id="ref-RFC4419">RFC4419</a>] Friedl, M., Provos, N., and W. Simpson, "Diffie-Hellman
Group Exchange for the Secure Shell (SSH) Transport Layer
Protocol", <a href="./rfc4419">RFC 4419</a>, DOI 10.17487/RFC4419, March 2006,
<<a href="http://www.rfc-editor.org/info/rfc4419">http://www.rfc-editor.org/info/rfc4419</a>>.
[<a id="ref-RFC7027">RFC7027</a>] Merkle, J. and M. Lochter, "Elliptic Curve Cryptography
(ECC) Brainpool Curves for Transport Layer Security
(TLS)", <a href="./rfc7027">RFC 7027</a>, DOI 10.17487/RFC7027, October 2013,
<<a href="http://www.rfc-editor.org/info/rfc7027">http://www.rfc-editor.org/info/rfc7027</a>>.
[<a id="ref-RFC7627">RFC7627</a>] Bhargavan, K., Ed., Delignat-Lavaud, A., Pironti, A.,
Langley, A., and M. Ray, "Transport Layer Security (TLS)
Session Hash and Extended Master Secret Extension",
<a href="./rfc7627">RFC 7627</a>, DOI 10.17487/RFC7627, September 2015,
<<a href="http://www.rfc-editor.org/info/rfc7627">http://www.rfc-editor.org/info/rfc7627</a>>.
[<a id="ref-SECURE-RESUMPTION">SECURE-RESUMPTION</a>]
Delignat-Lavaud, A., Bhargavan, K., and A. Pironti,
"Triple Handshakes Considered Harmful: Breaking and Fixing
Authentication over TLS", 2014 IEEE Symposium on
Security and Privacy, DOI 10.1109/SP.2014.14, March 2014,
<<a href="https://secure-resumption.com/">https://secure-resumption.com/</a>>.
[<a id="ref-SSL3-ANALYSIS">SSL3-ANALYSIS</a>]
Schneier, B. and D. Wagner, "Analysis of the SSL 3.0
protocol", In Proceedings of the Second UNIX Workshop
on Electronic Commerce, 1996,
<<a href="https://www.schneier.com/paper-ssl.pdf">https://www.schneier.com/paper-ssl.pdf</a>>.
[<a id="ref-STRONGSWAN-IKE">STRONGSWAN-IKE</a>]
Brunner, T. and A. Steffen, "IKEv2 Cipher Suites: Diffie
Hellman Groups", October 2013,
<<a href="https://wiki.strongswan.org/projects/strongswan/wiki/IKEv2CipherSuites#Diffie-Hellman-Groups">https://wiki.strongswan.org/projects/strongswan/wiki/</a>
<a href="https://wiki.strongswan.org/projects/strongswan/wiki/IKEv2CipherSuites#Diffie-Hellman-Groups">IKEv2CipherSuites#Diffie-Hellman-Groups</a>>.
<span class="grey">Gillmor Standards Track [Page 18]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-19" ></span>
<span class="grey"><a href="./rfc7919">RFC 7919</a> Negotiated FFDHE for TLS August 2016</span>
<span class="h2"><a class="selflink" id="appendix-A" href="#appendix-A">Appendix A</a>. Supported Groups Registry (Formerly "EC Named Curve</span>
Registry")
Each description below indicates the group itself, its derivation,
its expected strength (estimated roughly from guidelines in
[<a href="#ref-ECRYPTII">ECRYPTII</a>]), and whether it is recommended for use in TLS key
exchange at the given security level. It is not recommended to add
further finite field groups to the "Supported Groups Registry"; any
attempt to do so should consider <a href="#section-9.1">Section 9.1</a>.
The primes in these finite field groups are all safe primes; that is,
a prime p is a safe prime when q = (p-1)/2 is also prime. Where e is
the base of the natural logarithm and square brackets denote the
floor operation, the groups that initially populate this registry are
derived for a given bit length b by finding the lowest positive
integer X that creates a safe prime p where:
p = 2^b - 2^{b-64} + {[2^{b-130} e] + X } * 2^64 - 1
New additions of FFDHE groups to this registry may use this same
derivation (e.g., with different bit lengths) or may choose their
parameters in a different way, but they must be clear about how the
parameters were derived.
New additions of FFDHE groups MUST use a safe prime as the modulus to
enable the inexpensive peer verification described in <a href="#section-5.1">Section 5.1</a>.
<span class="h3"><a class="selflink" id="appendix-A.1" href="#appendix-A.1">A.1</a>. ffdhe2048</span>
The 2048-bit group has registry value 256 and is calculated from the
following formula:
The modulus is:
p = 2^2048 - 2^1984 + {[2^1918 * e] + 560316 } * 2^64 - 1
<span class="grey">Gillmor Standards Track [Page 19]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-20" ></span>
<span class="grey"><a href="./rfc7919">RFC 7919</a> Negotiated FFDHE for TLS August 2016</span>
The hexadecimal representation of p is:
FFFFFFFF FFFFFFFF ADF85458 A2BB4A9A AFDC5620 273D3CF1
D8B9C583 CE2D3695 A9E13641 146433FB CC939DCE 249B3EF9
7D2FE363 630C75D8 F681B202 AEC4617A D3DF1ED5 D5FD6561
2433F51F 5F066ED0 85636555 3DED1AF3 B557135E 7F57C935
984F0C70 E0E68B77 E2A689DA F3EFE872 1DF158A1 36ADE735
30ACCA4F 483A797A BC0AB182 B324FB61 D108A94B B2C8E3FB
B96ADAB7 60D7F468 1D4F42A3 DE394DF4 AE56EDE7 6372BB19
0B07A7C8 EE0A6D70 9E02FCE1 CDF7E2EC C03404CD 28342F61
9172FE9C E98583FF 8E4F1232 EEF28183 C3FE3B1B 4C6FAD73
3BB5FCBC 2EC22005 C58EF183 7D1683B2 C6F34A26 C1B2EFFA
886B4238 61285C97 FFFFFFFF FFFFFFFF
The generator is: g = 2
The group size is: q = (p-1)/2
The hexadecimal representation of q is:
7FFFFFFF FFFFFFFF D6FC2A2C 515DA54D 57EE2B10 139E9E78
EC5CE2C1 E7169B4A D4F09B20 8A3219FD E649CEE7 124D9F7C
BE97F1B1 B1863AEC 7B40D901 576230BD 69EF8F6A EAFEB2B0
9219FA8F AF833768 42B1B2AA 9EF68D79 DAAB89AF 3FABE49A
CC278638 707345BB F15344ED 79F7F439 0EF8AC50 9B56F39A
98566527 A41D3CBD 5E0558C1 59927DB0 E88454A5 D96471FD
DCB56D5B B06BFA34 0EA7A151 EF1CA6FA 572B76F3 B1B95D8C
8583D3E4 770536B8 4F017E70 E6FBF176 601A0266 941A17B0
C8B97F4E 74C2C1FF C7278919 777940C1 E1FF1D8D A637D6B9
9DDAFE5E 17611002 E2C778C1 BE8B41D9 6379A513 60D977FD
4435A11C 30942E4B FFFFFFFF FFFFFFFF
The estimated symmetric-equivalent strength of this group is 103
bits.
Peers using ffdhe2048 that want to optimize their key exchange with a
short exponent (<a href="#section-5.2">Section 5.2</a>) should choose a secret key of at least
225 bits.
<span class="h3"><a class="selflink" id="appendix-A.2" href="#appendix-A.2">A.2</a>. ffdhe3072</span>
The 3072-bit prime has registry value 257 and is calculated from the
following formula:
The modulus is:
p = 2^3072 - 2^3008 + {[2^2942 * e] + 2625351} * 2^64 - 1
<span class="grey">Gillmor Standards Track [Page 20]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-21" ></span>
<span class="grey"><a href="./rfc7919">RFC 7919</a> Negotiated FFDHE for TLS August 2016</span>
The hexadecimal representation of p is:
FFFFFFFF FFFFFFFF ADF85458 A2BB4A9A AFDC5620 273D3CF1
D8B9C583 CE2D3695 A9E13641 146433FB CC939DCE 249B3EF9
7D2FE363 630C75D8 F681B202 AEC4617A D3DF1ED5 D5FD6561
2433F51F 5F066ED0 85636555 3DED1AF3 B557135E 7F57C935
984F0C70 E0E68B77 E2A689DA F3EFE872 1DF158A1 36ADE735
30ACCA4F 483A797A BC0AB182 B324FB61 D108A94B B2C8E3FB
B96ADAB7 60D7F468 1D4F42A3 DE394DF4 AE56EDE7 6372BB19
0B07A7C8 EE0A6D70 9E02FCE1 CDF7E2EC C03404CD 28342F61
9172FE9C E98583FF 8E4F1232 EEF28183 C3FE3B1B 4C6FAD73
3BB5FCBC 2EC22005 C58EF183 7D1683B2 C6F34A26 C1B2EFFA
886B4238 611FCFDC DE355B3B 6519035B BC34F4DE F99C0238
61B46FC9 D6E6C907 7AD91D26 91F7F7EE 598CB0FA C186D91C
AEFE1309 85139270 B4130C93 BC437944 F4FD4452 E2D74DD3
64F2E21E 71F54BFF 5CAE82AB 9C9DF69E E86D2BC5 22363A0D
ABC52197 9B0DEADA 1DBF9A42 D5C4484E 0ABCD06B FA53DDEF
3C1B20EE 3FD59D7C 25E41D2B 66C62E37 FFFFFFFF FFFFFFFF
The generator is: g = 2
The group size is: q = (p-1)/2
The hexadecimal representation of q is:
7FFFFFFF FFFFFFFF D6FC2A2C 515DA54D 57EE2B10 139E9E78
EC5CE2C1 E7169B4A D4F09B20 8A3219FD E649CEE7 124D9F7C
BE97F1B1 B1863AEC 7B40D901 576230BD 69EF8F6A EAFEB2B0
9219FA8F AF833768 42B1B2AA 9EF68D79 DAAB89AF 3FABE49A
CC278638 707345BB F15344ED 79F7F439 0EF8AC50 9B56F39A
98566527 A41D3CBD 5E0558C1 59927DB0 E88454A5 D96471FD
DCB56D5B B06BFA34 0EA7A151 EF1CA6FA 572B76F3 B1B95D8C
8583D3E4 770536B8 4F017E70 E6FBF176 601A0266 941A17B0
C8B97F4E 74C2C1FF C7278919 777940C1 E1FF1D8D A637D6B9
9DDAFE5E 17611002 E2C778C1 BE8B41D9 6379A513 60D977FD
4435A11C 308FE7EE 6F1AAD9D B28C81AD DE1A7A6F 7CCE011C
30DA37E4 EB736483 BD6C8E93 48FBFBF7 2CC6587D 60C36C8E
577F0984 C289C938 5A098649 DE21BCA2 7A7EA229 716BA6E9
B279710F 38FAA5FF AE574155 CE4EFB4F 743695E2 911B1D06
D5E290CB CD86F56D 0EDFCD21 6AE22427 055E6835 FD29EEF7
9E0D9077 1FEACEBE 12F20E95 B363171B FFFFFFFF FFFFFFFF
The estimated symmetric-equivalent strength of this group is 125
bits.
Peers using ffdhe3072 that want to optimize their key exchange with a
short exponent (<a href="#section-5.2">Section 5.2</a>) should choose a secret key of at least
275 bits.
<span class="grey">Gillmor Standards Track [Page 21]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-22" ></span>
<span class="grey"><a href="./rfc7919">RFC 7919</a> Negotiated FFDHE for TLS August 2016</span>
<span class="h3"><a class="selflink" id="appendix-A.3" href="#appendix-A.3">A.3</a>. ffdhe4096</span>
The 4096-bit group has registry value 258 and is calculated from the
following formula:
The modulus is:
p = 2^4096 - 2^4032 + {[2^3966 * e] + 5736041} * 2^64 - 1
The hexadecimal representation of p is:
FFFFFFFF FFFFFFFF ADF85458 A2BB4A9A AFDC5620 273D3CF1
D8B9C583 CE2D3695 A9E13641 146433FB CC939DCE 249B3EF9
7D2FE363 630C75D8 F681B202 AEC4617A D3DF1ED5 D5FD6561
2433F51F 5F066ED0 85636555 3DED1AF3 B557135E 7F57C935
984F0C70 E0E68B77 E2A689DA F3EFE872 1DF158A1 36ADE735
30ACCA4F 483A797A BC0AB182 B324FB61 D108A94B B2C8E3FB
B96ADAB7 60D7F468 1D4F42A3 DE394DF4 AE56EDE7 6372BB19
0B07A7C8 EE0A6D70 9E02FCE1 CDF7E2EC C03404CD 28342F61
9172FE9C E98583FF 8E4F1232 EEF28183 C3FE3B1B 4C6FAD73
3BB5FCBC 2EC22005 C58EF183 7D1683B2 C6F34A26 C1B2EFFA
886B4238 611FCFDC DE355B3B 6519035B BC34F4DE F99C0238
61B46FC9 D6E6C907 7AD91D26 91F7F7EE 598CB0FA C186D91C
AEFE1309 85139270 B4130C93 BC437944 F4FD4452 E2D74DD3
64F2E21E 71F54BFF 5CAE82AB 9C9DF69E E86D2BC5 22363A0D
ABC52197 9B0DEADA 1DBF9A42 D5C4484E 0ABCD06B FA53DDEF
3C1B20EE 3FD59D7C 25E41D2B 669E1EF1 6E6F52C3 164DF4FB
7930E9E4 E58857B6 AC7D5F42 D69F6D18 7763CF1D 55034004
87F55BA5 7E31CC7A 7135C886 EFB4318A ED6A1E01 2D9E6832
A907600A 918130C4 6DC778F9 71AD0038 092999A3 33CB8B7A
1A1DB93D 7140003C 2A4ECEA9 F98D0ACC 0A8291CD CEC97DCF
8EC9B55A 7F88A46B 4DB5A851 F44182E1 C68A007E 5E655F6A
FFFFFFFF FFFFFFFF
The generator is: g = 2
The group size is: q = (p-1)/2
<span class="grey">Gillmor Standards Track [Page 22]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-23" ></span>
<span class="grey"><a href="./rfc7919">RFC 7919</a> Negotiated FFDHE for TLS August 2016</span>
The hexadecimal representation of q is:
7FFFFFFF FFFFFFFF D6FC2A2C 515DA54D 57EE2B10 139E9E78
EC5CE2C1 E7169B4A D4F09B20 8A3219FD E649CEE7 124D9F7C
BE97F1B1 B1863AEC 7B40D901 576230BD 69EF8F6A EAFEB2B0
9219FA8F AF833768 42B1B2AA 9EF68D79 DAAB89AF 3FABE49A
CC278638 707345BB F15344ED 79F7F439 0EF8AC50 9B56F39A
98566527 A41D3CBD 5E0558C1 59927DB0 E88454A5 D96471FD
DCB56D5B B06BFA34 0EA7A151 EF1CA6FA 572B76F3 B1B95D8C
8583D3E4 770536B8 4F017E70 E6FBF176 601A0266 941A17B0
C8B97F4E 74C2C1FF C7278919 777940C1 E1FF1D8D A637D6B9
9DDAFE5E 17611002 E2C778C1 BE8B41D9 6379A513 60D977FD
4435A11C 308FE7EE 6F1AAD9D B28C81AD DE1A7A6F 7CCE011C
30DA37E4 EB736483 BD6C8E93 48FBFBF7 2CC6587D 60C36C8E
577F0984 C289C938 5A098649 DE21BCA2 7A7EA229 716BA6E9
B279710F 38FAA5FF AE574155 CE4EFB4F 743695E2 911B1D06
D5E290CB CD86F56D 0EDFCD21 6AE22427 055E6835 FD29EEF7
9E0D9077 1FEACEBE 12F20E95 B34F0F78 B737A961 8B26FA7D
BC9874F2 72C42BDB 563EAFA1 6B4FB68C 3BB1E78E AA81A002
43FAADD2 BF18E63D 389AE443 77DA18C5 76B50F00 96CF3419
5483B005 48C09862 36E3BC7C B8D6801C 0494CCD1 99E5C5BD
0D0EDC9E B8A0001E 15276754 FCC68566 054148E6 E764BEE7
C764DAAD 3FC45235 A6DAD428 FA20C170 E345003F 2F32AFB5
7FFFFFFF FFFFFFFF
The estimated symmetric-equivalent strength of this group is 150
bits.
Peers using ffdhe4096 that want to optimize their key exchange with a
short exponent (<a href="#section-5.2">Section 5.2</a>) should choose a secret key of at least
325 bits.
<span class="h3"><a class="selflink" id="appendix-A.4" href="#appendix-A.4">A.4</a>. ffdhe6144</span>
The 6144-bit group has registry value 259 and is calculated from the
following formula:
The modulus is:
p = 2^6144 - 2^6080 + {[2^6014 * e] + 15705020} * 2^64 - 1
<span class="grey">Gillmor Standards Track [Page 23]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-24" ></span>
<span class="grey"><a href="./rfc7919">RFC 7919</a> Negotiated FFDHE for TLS August 2016</span>
The hexadecimal representation of p is:
FFFFFFFF FFFFFFFF ADF85458 A2BB4A9A AFDC5620 273D3CF1
D8B9C583 CE2D3695 A9E13641 146433FB CC939DCE 249B3EF9
7D2FE363 630C75D8 F681B202 AEC4617A D3DF1ED5 D5FD6561
2433F51F 5F066ED0 85636555 3DED1AF3 B557135E 7F57C935
984F0C70 E0E68B77 E2A689DA F3EFE872 1DF158A1 36ADE735
30ACCA4F 483A797A BC0AB182 B324FB61 D108A94B B2C8E3FB
B96ADAB7 60D7F468 1D4F42A3 DE394DF4 AE56EDE7 6372BB19
0B07A7C8 EE0A6D70 9E02FCE1 CDF7E2EC C03404CD 28342F61
9172FE9C E98583FF 8E4F1232 EEF28183 C3FE3B1B 4C6FAD73
3BB5FCBC 2EC22005 C58EF183 7D1683B2 C6F34A26 C1B2EFFA
886B4238 611FCFDC DE355B3B 6519035B BC34F4DE F99C0238
61B46FC9 D6E6C907 7AD91D26 91F7F7EE 598CB0FA C186D91C
AEFE1309 85139270 B4130C93 BC437944 F4FD4452 E2D74DD3
64F2E21E 71F54BFF 5CAE82AB 9C9DF69E E86D2BC5 22363A0D
ABC52197 9B0DEADA 1DBF9A42 D5C4484E 0ABCD06B FA53DDEF
3C1B20EE 3FD59D7C 25E41D2B 669E1EF1 6E6F52C3 164DF4FB
7930E9E4 E58857B6 AC7D5F42 D69F6D18 7763CF1D 55034004
87F55BA5 7E31CC7A 7135C886 EFB4318A ED6A1E01 2D9E6832
A907600A 918130C4 6DC778F9 71AD0038 092999A3 33CB8B7A
1A1DB93D 7140003C 2A4ECEA9 F98D0ACC 0A8291CD CEC97DCF
8EC9B55A 7F88A46B 4DB5A851 F44182E1 C68A007E 5E0DD902
0BFD64B6 45036C7A 4E677D2C 38532A3A 23BA4442 CAF53EA6
3BB45432 9B7624C8 917BDD64 B1C0FD4C B38E8C33 4C701C3A
CDAD0657 FCCFEC71 9B1F5C3E 4E46041F 388147FB 4CFDB477
A52471F7 A9A96910 B855322E DB6340D8 A00EF092 350511E3
0ABEC1FF F9E3A26E 7FB29F8C 183023C3 587E38DA 0077D9B4
763E4E4B 94B2BBC1 94C6651E 77CAF992 EEAAC023 2A281BF6
B3A739C1 22611682 0AE8DB58 47A67CBE F9C9091B 462D538C
D72B0374 6AE77F5E 62292C31 1562A846 505DC82D B854338A
E49F5235 C95B9117 8CCF2DD5 CACEF403 EC9D1810 C6272B04
5B3B71F9 DC6B80D6 3FDD4A8E 9ADB1E69 62A69526 D43161C1
A41D570D 7938DAD4 A40E329C D0E40E65 FFFFFFFF FFFFFFFF
The generator is: g = 2
The group size is: q = (p-1)/2
<span class="grey">Gillmor Standards Track [Page 24]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-25" ></span>
<span class="grey"><a href="./rfc7919">RFC 7919</a> Negotiated FFDHE for TLS August 2016</span>
The hexadecimal representation of q is:
7FFFFFFF FFFFFFFF D6FC2A2C 515DA54D 57EE2B10 139E9E78
EC5CE2C1 E7169B4A D4F09B20 8A3219FD E649CEE7 124D9F7C
BE97F1B1 B1863AEC 7B40D901 576230BD 69EF8F6A EAFEB2B0
9219FA8F AF833768 42B1B2AA 9EF68D79 DAAB89AF 3FABE49A
CC278638 707345BB F15344ED 79F7F439 0EF8AC50 9B56F39A
98566527 A41D3CBD 5E0558C1 59927DB0 E88454A5 D96471FD
DCB56D5B B06BFA34 0EA7A151 EF1CA6FA 572B76F3 B1B95D8C
8583D3E4 770536B8 4F017E70 E6FBF176 601A0266 941A17B0
C8B97F4E 74C2C1FF C7278919 777940C1 E1FF1D8D A637D6B9
9DDAFE5E 17611002 E2C778C1 BE8B41D9 6379A513 60D977FD
4435A11C 308FE7EE 6F1AAD9D B28C81AD DE1A7A6F 7CCE011C
30DA37E4 EB736483 BD6C8E93 48FBFBF7 2CC6587D 60C36C8E
577F0984 C289C938 5A098649 DE21BCA2 7A7EA229 716BA6E9
B279710F 38FAA5FF AE574155 CE4EFB4F 743695E2 911B1D06
D5E290CB CD86F56D 0EDFCD21 6AE22427 055E6835 FD29EEF7
9E0D9077 1FEACEBE 12F20E95 B34F0F78 B737A961 8B26FA7D
BC9874F2 72C42BDB 563EAFA1 6B4FB68C 3BB1E78E AA81A002
43FAADD2 BF18E63D 389AE443 77DA18C5 76B50F00 96CF3419
5483B005 48C09862 36E3BC7C B8D6801C 0494CCD1 99E5C5BD
0D0EDC9E B8A0001E 15276754 FCC68566 054148E6 E764BEE7
C764DAAD 3FC45235 A6DAD428 FA20C170 E345003F 2F06EC81
05FEB25B 2281B63D 2733BE96 1C29951D 11DD2221 657A9F53
1DDA2A19 4DBB1264 48BDEEB2 58E07EA6 59C74619 A6380E1D
66D6832B FE67F638 CD8FAE1F 2723020F 9C40A3FD A67EDA3B
D29238FB D4D4B488 5C2A9917 6DB1A06C 50077849 1A8288F1
855F60FF FCF1D137 3FD94FC6 0C1811E1 AC3F1C6D 003BECDA
3B1F2725 CA595DE0 CA63328F 3BE57CC9 77556011 95140DFB
59D39CE0 91308B41 05746DAC 23D33E5F 7CE4848D A316A9C6
6B9581BA 3573BFAF 31149618 8AB15423 282EE416 DC2A19C5
724FA91A E4ADC88B C66796EA E5677A01 F64E8C08 63139582
2D9DB8FC EE35C06B 1FEEA547 4D6D8F34 B1534A93 6A18B0E0
D20EAB86 BC9C6D6A 5207194E 68720732 FFFFFFFF FFFFFFFF
The estimated symmetric-equivalent strength of this group is 175
bits.
Peers using ffdhe6144 that want to optimize their key exchange with a
short exponent (<a href="#section-5.2">Section 5.2</a>) should choose a secret key of at least
375 bits.
<span class="grey">Gillmor Standards Track [Page 25]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-26" ></span>
<span class="grey"><a href="./rfc7919">RFC 7919</a> Negotiated FFDHE for TLS August 2016</span>
<span class="h3"><a class="selflink" id="appendix-A.5" href="#appendix-A.5">A.5</a>. ffdhe8192</span>
The 8192-bit group has registry value 260 and is calculated from the
following formula:
The modulus is:
p = 2^8192 - 2^8128 + {[2^8062 * e] + 10965728} * 2^64 - 1
<span class="grey">Gillmor Standards Track [Page 26]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-27" ></span>
<span class="grey"><a href="./rfc7919">RFC 7919</a> Negotiated FFDHE for TLS August 2016</span>
The hexadecimal representation of p is:
FFFFFFFF FFFFFFFF ADF85458 A2BB4A9A AFDC5620 273D3CF1
D8B9C583 CE2D3695 A9E13641 146433FB CC939DCE 249B3EF9
7D2FE363 630C75D8 F681B202 AEC4617A D3DF1ED5 D5FD6561
2433F51F 5F066ED0 85636555 3DED1AF3 B557135E 7F57C935
984F0C70 E0E68B77 E2A689DA F3EFE872 1DF158A1 36ADE735
30ACCA4F 483A797A BC0AB182 B324FB61 D108A94B B2C8E3FB
B96ADAB7 60D7F468 1D4F42A3 DE394DF4 AE56EDE7 6372BB19
0B07A7C8 EE0A6D70 9E02FCE1 CDF7E2EC C03404CD 28342F61
9172FE9C E98583FF 8E4F1232 EEF28183 C3FE3B1B 4C6FAD73
3BB5FCBC 2EC22005 C58EF183 7D1683B2 C6F34A26 C1B2EFFA
886B4238 611FCFDC DE355B3B 6519035B BC34F4DE F99C0238
61B46FC9 D6E6C907 7AD91D26 91F7F7EE 598CB0FA C186D91C
AEFE1309 85139270 B4130C93 BC437944 F4FD4452 E2D74DD3
64F2E21E 71F54BFF 5CAE82AB 9C9DF69E E86D2BC5 22363A0D
ABC52197 9B0DEADA 1DBF9A42 D5C4484E 0ABCD06B FA53DDEF
3C1B20EE 3FD59D7C 25E41D2B 669E1EF1 6E6F52C3 164DF4FB
7930E9E4 E58857B6 AC7D5F42 D69F6D18 7763CF1D 55034004
87F55BA5 7E31CC7A 7135C886 EFB4318A ED6A1E01 2D9E6832
A907600A 918130C4 6DC778F9 71AD0038 092999A3 33CB8B7A
1A1DB93D 7140003C 2A4ECEA9 F98D0ACC 0A8291CD CEC97DCF
8EC9B55A 7F88A46B 4DB5A851 F44182E1 C68A007E 5E0DD902
0BFD64B6 45036C7A 4E677D2C 38532A3A 23BA4442 CAF53EA6
3BB45432 9B7624C8 917BDD64 B1C0FD4C B38E8C33 4C701C3A
CDAD0657 FCCFEC71 9B1F5C3E 4E46041F 388147FB 4CFDB477
A52471F7 A9A96910 B855322E DB6340D8 A00EF092 350511E3
0ABEC1FF F9E3A26E 7FB29F8C 183023C3 587E38DA 0077D9B4
763E4E4B 94B2BBC1 94C6651E 77CAF992 EEAAC023 2A281BF6
B3A739C1 22611682 0AE8DB58 47A67CBE F9C9091B 462D538C
D72B0374 6AE77F5E 62292C31 1562A846 505DC82D B854338A
E49F5235 C95B9117 8CCF2DD5 CACEF403 EC9D1810 C6272B04
5B3B71F9 DC6B80D6 3FDD4A8E 9ADB1E69 62A69526 D43161C1
A41D570D 7938DAD4 A40E329C CFF46AAA 36AD004C F600C838
1E425A31 D951AE64 FDB23FCE C9509D43 687FEB69 EDD1CC5E
0B8CC3BD F64B10EF 86B63142 A3AB8829 555B2F74 7C932665
CB2C0F1C C01BD702 29388839 D2AF05E4 54504AC7 8B758282
2846C0BA 35C35F5C 59160CC0 46FD8251 541FC68C 9C86B022
BB709987 6A460E74 51A8A931 09703FEE 1C217E6C 3826E52C
51AA691E 0E423CFC 99E9E316 50C1217B 624816CD AD9A95F9
D5B80194 88D9C0A0 A1FE3075 A577E231 83F81D4A 3F2FA457
1EFC8CE0 BA8A4FE8 B6855DFE 72B0A66E DED2FBAB FBE58A30
FAFABE1C 5D71A87E 2F741EF8 C1FE86FE A6BBFDE5 30677F0D
97D11D49 F7A8443D 0822E506 A9F4614E 011E2A94 838FF88C
D68C8BB7 C5C6424C FFFFFFFF FFFFFFFF
The generator is: g = 2
<span class="grey">Gillmor Standards Track [Page 27]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-28" ></span>
<span class="grey"><a href="./rfc7919">RFC 7919</a> Negotiated FFDHE for TLS August 2016</span>
The group size is: q = (p-1)/2
The hexadecimal representation of q is:
7FFFFFFF FFFFFFFF D6FC2A2C 515DA54D 57EE2B10 139E9E78
EC5CE2C1 E7169B4A D4F09B20 8A3219FD E649CEE7 124D9F7C
BE97F1B1 B1863AEC 7B40D901 576230BD 69EF8F6A EAFEB2B0
9219FA8F AF833768 42B1B2AA 9EF68D79 DAAB89AF 3FABE49A
CC278638 707345BB F15344ED 79F7F439 0EF8AC50 9B56F39A
98566527 A41D3CBD 5E0558C1 59927DB0 E88454A5 D96471FD
DCB56D5B B06BFA34 0EA7A151 EF1CA6FA 572B76F3 B1B95D8C
8583D3E4 770536B8 4F017E70 E6FBF176 601A0266 941A17B0
C8B97F4E 74C2C1FF C7278919 777940C1 E1FF1D8D A637D6B9
9DDAFE5E 17611002 E2C778C1 BE8B41D9 6379A513 60D977FD
4435A11C 308FE7EE 6F1AAD9D B28C81AD DE1A7A6F 7CCE011C
30DA37E4 EB736483 BD6C8E93 48FBFBF7 2CC6587D 60C36C8E
577F0984 C289C938 5A098649 DE21BCA2 7A7EA229 716BA6E9
B279710F 38FAA5FF AE574155 CE4EFB4F 743695E2 911B1D06
D5E290CB CD86F56D 0EDFCD21 6AE22427 055E6835 FD29EEF7
9E0D9077 1FEACEBE 12F20E95 B34F0F78 B737A961 8B26FA7D
BC9874F2 72C42BDB 563EAFA1 6B4FB68C 3BB1E78E AA81A002
43FAADD2 BF18E63D 389AE443 77DA18C5 76B50F00 96CF3419
5483B005 48C09862 36E3BC7C B8D6801C 0494CCD1 99E5C5BD
0D0EDC9E B8A0001E 15276754 FCC68566 054148E6 E764BEE7
C764DAAD 3FC45235 A6DAD428 FA20C170 E345003F 2F06EC81
05FEB25B 2281B63D 2733BE96 1C29951D 11DD2221 657A9F53
1DDA2A19 4DBB1264 48BDEEB2 58E07EA6 59C74619 A6380E1D
66D6832B FE67F638 CD8FAE1F 2723020F 9C40A3FD A67EDA3B
D29238FB D4D4B488 5C2A9917 6DB1A06C 50077849 1A8288F1
855F60FF FCF1D137 3FD94FC6 0C1811E1 AC3F1C6D 003BECDA
3B1F2725 CA595DE0 CA63328F 3BE57CC9 77556011 95140DFB
59D39CE0 91308B41 05746DAC 23D33E5F 7CE4848D A316A9C6
6B9581BA 3573BFAF 31149618 8AB15423 282EE416 DC2A19C5
724FA91A E4ADC88B C66796EA E5677A01 F64E8C08 63139582
2D9DB8FC EE35C06B 1FEEA547 4D6D8F34 B1534A93 6A18B0E0
D20EAB86 BC9C6D6A 5207194E 67FA3555 1B568026 7B00641C
0F212D18 ECA8D732 7ED91FE7 64A84EA1 B43FF5B4 F6E8E62F
05C661DE FB258877 C35B18A1 51D5C414 AAAD97BA 3E499332
E596078E 600DEB81 149C441C E95782F2 2A282563 C5BAC141
1423605D 1AE1AFAE 2C8B0660 237EC128 AA0FE346 4E435811
5DB84CC3 B523073A 28D45498 84B81FF7 0E10BF36 1C137296
28D5348F 07211E7E 4CF4F18B 286090BD B1240B66 D6CD4AFC
EADC00CA 446CE050 50FF183A D2BBF118 C1FC0EA5 1F97D22B
8F7E4670 5D4527F4 5B42AEFF 39585337 6F697DD5 FDF2C518
7D7D5F0E 2EB8D43F 17BA0F7C 60FF437F 535DFEF2 9833BF86
CBE88EA4 FBD4221E 84117283 54FA30A7 008F154A 41C7FC46
6B4645DB E2E32126 7FFFFFFF FFFFFFFF
<span class="grey">Gillmor Standards Track [Page 28]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-29" ></span>
<span class="grey"><a href="./rfc7919">RFC 7919</a> Negotiated FFDHE for TLS August 2016</span>
The estimated symmetric-equivalent strength of this group is 192
bits.
Peers using ffdhe8192 that want to optimize their key exchange with a
short exponent (<a href="#section-5.2">Section 5.2</a>) should choose a secret key of at least
400 bits.
Acknowledgements
Thanks to Fedor Brunner, Dave Fergemann, Niels Ferguson, Sandy
Harris, Tero Kivinen, Watson Ladd, Nikos Mavrogiannopolous, Niels
Moeller, Bodo Moeller, Kenny Paterson, Eric Rescorla, Tom Ritter,
Rene Struik, Martin Thomson, Sean Turner, and other members of the
TLS Working Group for their comments and suggestions on this
document. Any mistakes here are not theirs.
Author's Address
Daniel Kahn Gillmor
ACLU
125 Broad Street, 18th Floor
New York, NY 10004
United States of America
Email: dkg@fifthhorseman.net
Gillmor Standards Track [Page 29]
</pre>
|