1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
|
<pre>Internet Engineering Task Force (IETF) O. Johansson
Request for Comments: 7984 Edvina AB
Updates: <a href="./rfc3263">3263</a> G. Salgueiro
Category: Standards Track Cisco Systems
ISSN: 2070-1721 V. Gurbani
Bell Labs, Nokia Networks
D. Worley, Ed.
Ariadne
September 2016
<span class="h1">Locating Session Initiation Protocol (SIP) Servers</span>
<span class="h1">in a Dual-Stack IP Network</span>
Abstract
<a href="./rfc3263">RFC 3263</a> defines how a Session Initiation Protocol (SIP)
implementation, given a SIP Uniform Resource Identifier (URI), should
locate the next-hop SIP server using Domain Name System (DNS)
procedures. As SIP networks increasingly transition from IPv4-only
to dual-stack, a quality user experience must be ensured for dual-
stack SIP implementations. This document updates the DNS procedures
described in <a href="./rfc3263">RFC 3263</a> for dual-stack SIP implementations in
preparation for forthcoming specifications for applying "Happy
Eyeballs" principles to SIP.
Status of This Memo
This is an Internet Standards Track document.
This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Further information on
Internet Standards is available in <a href="./rfc7841#section-2">Section 2 of RFC 7841</a>.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
<a href="http://www.rfc-editor.org/info/rfc7984">http://www.rfc-editor.org/info/rfc7984</a>.
<span class="grey">Johansson, et al. Standards Track [Page 1]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-2" ></span>
<span class="grey"><a href="./rfc7984">RFC 7984</a> Locating SIP Servers in IPv4/IPv6 September 2016</span>
Copyright Notice
Copyright (c) 2016 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to <a href="https://www.rfc-editor.org/bcp/bcp78">BCP 78</a> and the IETF Trust's Legal
Provisions Relating to IETF Documents
(<a href="http://trustee.ietf.org/license-info">http://trustee.ietf.org/license-info</a>) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
Table of Contents
<a href="#section-1">1</a>. Introduction . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-2">2</a>
<a href="#section-2">2</a>. Terminology . . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-3">3</a>
<a href="#section-3">3</a>. DNS Procedures in a Dual-Stack Network . . . . . . . . . . . <a href="#page-4">4</a>
<a href="#section-3.1">3.1</a>. Dual-Stack SIP UA DNS Record Lookup Procedure . . . . . . <a href="#page-4">4</a>
3.2. Indicating Address Family Preference in DNS SRV Records . 5
<a href="#section-4">4</a>. Clarification of Interaction with <a href="./rfc6724">RFC 6724</a> . . . . . . . . . <a href="#page-6">6</a>
<a href="#section-5">5</a>. Security Considerations . . . . . . . . . . . . . . . . . . . <a href="#page-7">7</a>
<a href="#section-6">6</a>. References . . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-8">8</a>
<a href="#section-6.1">6.1</a>. Normative References . . . . . . . . . . . . . . . . . . <a href="#page-8">8</a>
<a href="#section-6.2">6.2</a>. Informative References . . . . . . . . . . . . . . . . . <a href="#page-8">8</a>
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-9">9</a>
Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-10">10</a>
<span class="h2"><a class="selflink" id="section-1" href="#section-1">1</a>. Introduction</span>
The Session Initiation Protocol (SIP) [<a href="./rfc3261" title=""SIP: Session Initiation Protocol"">RFC3261</a>] and the additional
documents that extended it provide support for both IPv4 and IPv6.
However, this support does not fully extend to the highly hybridized
environments that are characteristic of the transitional migratory
phase from IPv4 to IPv6 networks. During this phase, many server and
client implementations run on dual-stack hosts. In such
environments, a dual-stack host will likely suffer greater connection
delay, and by extension an inferior user experience, than an
IPv4-only host. The need to remedy this diminished performance of
dual-stack hosts led to the development of the "Happy Eyeballs"
[<a href="./rfc6555" title=""Happy Eyeballs: Success with Dual-Stack Hosts"">RFC6555</a>] algorithm, which has since been implemented in many
protocols and applications.
<span class="grey">Johansson, et al. Standards Track [Page 2]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-3" ></span>
<span class="grey"><a href="./rfc7984">RFC 7984</a> Locating SIP Servers in IPv4/IPv6 September 2016</span>
This document updates the DNS lookup procedures of <a href="./rfc3263">RFC 3263</a> [<a href="./rfc3263" title=""Session Initiation Protocol (SIP): Locating SIP Servers"">RFC3263</a>]
in preparation for the specification of the application of Happy
Eyeballs to SIP. Happy Eyeballs will provide enhanced performance,
and consequently enhanced user experience, in highly hybridized dual-
stack SIP networks. The procedures described herein are such that a
dual-stack client should look up both A and AAAA records in DNS and
then select the best way to set up a network flow. The details of
how the latter is done is considered out of scope for this document.
See the Happy Eyeballs algorithm and implementation and design
considerations in <a href="./rfc6555">RFC 6555</a> [<a href="./rfc6555" title=""Happy Eyeballs: Success with Dual-Stack Hosts"">RFC6555</a>] for more information about
issues with setting up dual-stack network flows.
<a href="#section-4">Section 4</a> of this document clarifies the interaction of [<a href="./rfc3263" title=""Session Initiation Protocol (SIP): Locating SIP Servers"">RFC3263</a>]
with [<a href="./rfc6157" title=""IPv6 Transition in the Session Initiation Protocol (SIP)"">RFC6157</a>] and [<a href="./rfc6724" title=""Default Address Selection for Internet Protocol Version 6 (IPv6)"">RFC6724</a>].
<span class="h2"><a class="selflink" id="section-2" href="#section-2">2</a>. Terminology</span>
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in <a href="./rfc2119">RFC 2119</a> [<a href="./rfc2119" title=""Key words for use in RFCs to Indicate Requirement Levels"">RFC2119</a>].
<a href="./rfc3261">RFC 3261</a> [<a href="./rfc3261" title=""SIP: Session Initiation Protocol"">RFC3261</a>] defines additional terms used in this document
that are specific to the SIP domain such as "proxy", "registrar",
"redirect server", "user agent server" or "UAS", "user agent client"
or "UAC", "back-to-back user agent" or "B2BUA", "dialog",
"transaction", and "server transaction".
This document uses the term "SIP server" that is defined to include
the following SIP entities: user agent server, registrar, redirect
server, a SIP proxy in the role of user agent server, and a B2BUA in
the role of a user agent server.
While this document focuses on the dual-stack situation described in
<a href="./rfc6555">RFC 6555</a> and other documents, concerning the migration from an
IPv4-only network to a network supporting both IPv4 and IPv6, the
techniques described can be used in other situations. Possible
situations include when a device has multiple interfaces with
distinct addressing characteristics and when additional IP address
families are created in the future. This document uses the general
term "dual-stack" to include all situations where the client has
access to multiple communication methods that have distinct
addressing characteristics.
The term "address records" means the DNS records that translate a
domain name into addresses within the address family or families that
the entity supports (as A records provide IPv4 addresses and AAAA
records provide IPv6 addresses), regardless of whether the address
family was defined before or after this document was approved.
<span class="grey">Johansson, et al. Standards Track [Page 3]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-4" ></span>
<span class="grey"><a href="./rfc7984">RFC 7984</a> Locating SIP Servers in IPv4/IPv6 September 2016</span>
<span class="h2"><a class="selflink" id="section-3" href="#section-3">3</a>. DNS Procedures in a Dual-Stack Network</span>
This specification introduces two normative DNS lookup procedures.
These are designed to improve the performance of dual-stack clients
in IPv4/IPv6 networks.
<span class="h3"><a class="selflink" id="section-3.1" href="#section-3.1">3.1</a>. Dual-Stack SIP UA DNS Record Lookup Procedure</span>
Once the transport protocol has been determined, the procedure for
discovering an IP address if the TARGET is not a numeric IP address
but the port is explicitly stated in the URI, is detailed in
<a href="./rfc3263#section-4.2">Section 4.2 of RFC 3263</a> [<a href="./rfc3263" title=""Session Initiation Protocol (SIP): Locating SIP Servers"">RFC3263</a>]. The piece relevant to this
discussion is:
If the TARGET was not a numeric IP address, but a port is present
in the URI, the client performs an A or AAAA record lookup of the
domain name. The result will be a list of IP addresses, each of
which can be contacted at the specific port from the URI and
transport protocol determined previously.
<a href="./rfc3263#section-4.2">Section 4.2 of RFC 3263</a> [<a href="./rfc3263" title=""Session Initiation Protocol (SIP): Locating SIP Servers"">RFC3263</a>] also goes on to describe the
procedure for discovering an IP address if the TARGET is not a
numeric IP address, and no port is present in the URI. The piece
relevant to this discussion is:
If no SRV records were found, the client performs an A or AAAA
record lookup of the domain name. The result will be a list of IP
addresses, each of which can be contacted using the transport
protocol determined previously, at the default port for that
transport. Processing then proceeds as described above for an
explicit port once the A or AAAA records have been looked up.
Happy Eyeballs [<a href="./rfc6555" title=""Happy Eyeballs: Success with Dual-Stack Hosts"">RFC6555</a>] documents that looking up the "A or AAAA
record" is not an effective practice for dual-stack clients and that
it can add significant connection delay and greatly degrade user
experience. Therefore, this document makes the following normative
addendum to the DNS lookup procedures in <a href="./rfc3263#section-4.2">Section 4.2 of RFC 3263</a>
[<a href="./rfc3263" title=""Session Initiation Protocol (SIP): Locating SIP Servers"">RFC3263</a>] for IPv4/IPv6 hybrid SIP networks and recommends it as a
best practice for such dual-stack networks:
The dual-stack client SHOULD look up address records for all
address families that it supports for the domain name and add the
resulting addresses to the list of IP addresses to be contacted.
A client MUST be prepared for the existence of DNS resource
records containing addresses in families that it does not support;
if such records may be returned by the client's DNS queries, such
records MUST be ignored as unusable and the supported addresses
used as specified herein.
<span class="grey">Johansson, et al. Standards Track [Page 4]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-5" ></span>
<span class="grey"><a href="./rfc7984">RFC 7984</a> Locating SIP Servers in IPv4/IPv6 September 2016</span>
<span class="h3"><a class="selflink" id="section-3.2" href="#section-3.2">3.2</a>. Indicating Address Family Preference in DNS SRV Records</span>
The Happy Eyeballs algorithm [<a href="./rfc6555" title=""Happy Eyeballs: Success with Dual-Stack Hosts"">RFC6555</a>] is particularly effective for
dual-stack HTTP client applications that have significant performance
differences between their IPv4 and IPv6 network paths. This is
because the client can initiate two TCP connections to the server,
one using IPv4 and one using IPv6, and then use the connection that
completes first. This works properly because the client can test
each route by initiating a TCP connection, but simply opening a TCP
connection to an HTTP server does not change the server's state; the
client will send the HTTP request on only one connection.
Unfortunately, in common SIP situations, it is not possible to "race"
simultaneous request attempts using two address families. If the SIP
requests are transmitted as single UDP packets, sending two copies of
the request to two different addresses risks having two copies of the
request propagating through the SIP network at the same time. The
difference between SIP and HTTP is that in SIP, the sender cannot
test a route in a non-state-changing way.
(If two copies of the same request arrive at the destination client,
the client SHOULD reject the second of them with a response code of
482 [<a href="./rfc3261" title=""SIP: Session Initiation Protocol"">RFC3261</a>]. To convey information on why the request was rejected
to the originator, the client can include a descriptive reason
phrase, for example, "Merged Request". However, issuing the 482
response is not sufficient to prevent user-visible differences in
behavior. A proxy that is upstream of the second request to arrive
at the client may (almost immediately!) serially fork the second
request to further destinations (e.g., the voicemail service for the
destination client).)
In this common scenario, it is often necessary for a dual-stack
client to indicate a preference for either IPv4 or IPv6. A service
may use DNS SRV records to indicate such a preference for an address
family. This way, a server with a high-latency and/or low-capacity
IPv4 tunnel may indicate a preference for being contacted using IPv6.
A server that wishes to do this can use the lowest SRV priority to
publish host names that only resolve in IPv6 and the next priority
with host names that resolve in both address families.
Note that host names that have addresses in only one address family
are discouraged by [<a href="./rfc6555" title=""Happy Eyeballs: Success with Dual-Stack Hosts"">RFC6555</a>]. Such special-purpose host names SHOULD
be used only as described in this section, as targets of SRV records
for an aggregate host name, where the aggregate host name ultimately
resolves to addresses in all families supported by the client.
<span class="grey">Johansson, et al. Standards Track [Page 5]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-6" ></span>
<span class="grey"><a href="./rfc7984">RFC 7984</a> Locating SIP Servers in IPv4/IPv6 September 2016</span>
<span class="h2"><a class="selflink" id="section-4" href="#section-4">4</a>. Clarification of Interaction with <a href="./rfc6724">RFC 6724</a></span>
<a href="./rfc6157#section-5">Section 5 of [RFC6157]</a> specifies that the addresses from the address
records for a single target DNS name for a server's DNS name must be
contacted in the order specified by the source and destination
address selection algorithms defined in [<a href="./rfc6724" title=""Default Address Selection for Internet Protocol Version 6 (IPv6)"">RFC6724</a>]. The set of
addresses provided to a single invocation of the destination address
selection algorithm MUST be the address records for the target DNS
name in a single SRV record (or, if there are no SRV records, the DNS
name in the URI or derived via NAPTR) -- the destination address
selection algorithm MUST NOT reorder addresses derived from different
SRV records. Typically, destination address selection is done by
using the (relatively new) getaddrinfo() function to translate the
target DNS name into a list of IPv4 and/or IPv6 addresses in the
order in which they are to be contacted, as that function implements
[<a href="./rfc6724" title=""Default Address Selection for Internet Protocol Version 6 (IPv6)"">RFC6724</a>].
Thus, if SRV lookup on the server's DNS name is successful, the major
ordering of the complete list of destination addresses is determined
by the priority and weight fields of the SRV records (as specified in
[<a href="./rfc2782" title=""A DNS RR for specifying the location of services (DNS SRV)"">RFC2782</a>]), and the (minor) ordering among the destinations derived
from the "target" field of a single SRV record is determined by
[<a href="./rfc6724" title=""Default Address Selection for Internet Protocol Version 6 (IPv6)"">RFC6724</a>].
For example, consider a server with DNS name example.com, with TCP
transport specified. The relevant SRV records for example.com are:
_sip._tcp.example.com. 300 IN SRV 10 1 5060 sip-1.example.com.
_sip._tcp.example.com. 300 IN SRV 20 1 5060 sip-2.example.com.
The processing of [<a href="./rfc2782" title=""A DNS RR for specifying the location of services (DNS SRV)"">RFC2782</a>] results in this ordered list of target
domain names:
sip-1.example.com
sip-2.example.com
The address records for sip-1.example.com, as ordered by [<a href="./rfc6724" title=""Default Address Selection for Internet Protocol Version 6 (IPv6)"">RFC6724</a>],
are:
sip-1.example.com. 300 IN AAAA 2001:0db8:58:c02::face
sip-1.example.com. 300 IN AAAA 2001:0db8:c:a06::2:cafe
sip-1.example.com. 300 IN AAAA 2001:0db8:44:204::d1ce
sip-1.example.com. 300 IN A 192.0.2.45
sip-1.example.com. 300 IN A 203.0.113.109
sip-1.example.com. 300 IN A 198.51.100.24
<span class="grey">Johansson, et al. Standards Track [Page 6]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-7" ></span>
<span class="grey"><a href="./rfc7984">RFC 7984</a> Locating SIP Servers in IPv4/IPv6 September 2016</span>
And the address records for sip-2.example.com, as ordered by
[<a href="./rfc6724" title=""Default Address Selection for Internet Protocol Version 6 (IPv6)"">RFC6724</a>], are:
sip-2.example.com. 300 IN AAAA 2001:0db8:58:c02::dead
sip-2.example.com. 300 IN AAAA 2001:0db8:c:a06::2:beef
sip-2.example.com. 300 IN AAAA 2001:0db8:44:204::c0de
sip-2.example.com. 300 IN A 192.0.2.75
sip-2.example.com. 300 IN A 203.0.113.38
sip-2.example.com. 300 IN A 198.51.100.140
Thus, the complete list of destination addresses has this ordering:
2001:0db8:58:c02::face
2001:0db8:c:a06::2:cafe
2001:0db8:44:204::d1ce
192.0.2.45
203.0.113.109
198.51.100.24
2001:0db8:58:c02::dead
2001:0db8:c:a06::2:beef
2001:0db8:44:204::c0de
192.0.2.75
203.0.113.38
198.51.100.140
In particular, the destination addresses derived from
sip-1.example.com and those derived from sip-2.example.com are not
interleaved; [<a href="./rfc6724" title=""Default Address Selection for Internet Protocol Version 6 (IPv6)"">RFC6724</a>] does not operate on the complete list. This
would be true even if the two SRV records had the same priority and
were (randomly) ordered based on their weights, as the address
records of two target DNS names are never interleaved.
<span class="h2"><a class="selflink" id="section-5" href="#section-5">5</a>. Security Considerations</span>
This document introduces two new normative procedures to the existing
DNS procedures used to locate SIP servers. A client may contact
additional target addresses for a URI beyond those prescribed in
[<a href="./rfc3263" title=""Session Initiation Protocol (SIP): Locating SIP Servers"">RFC3263</a>], and/or it may contact target addresses in a different
order than prescribed in [<a href="./rfc3263" title=""Session Initiation Protocol (SIP): Locating SIP Servers"">RFC3263</a>]. Neither of these changes
introduce any new security considerations because it has always been
assumed that a client desiring to send to a URI may contact any of
its targets that are listed in DNS.
The specific security vulnerabilities, attacks, and threat models of
the various protocols discussed in this document (SIP, DNS, SRV
records, Happy Eyeballs requirements and algorithm, etc.) are well
documented in their respective specifications.
<span class="grey">Johansson, et al. Standards Track [Page 7]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-8" ></span>
<span class="grey"><a href="./rfc7984">RFC 7984</a> Locating SIP Servers in IPv4/IPv6 September 2016</span>
<span class="h2"><a class="selflink" id="section-6" href="#section-6">6</a>. References</span>
<span class="h3"><a class="selflink" id="section-6.1" href="#section-6.1">6.1</a>. Normative References</span>
[<a id="ref-RFC2119">RFC2119</a>] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", <a href="https://www.rfc-editor.org/bcp/bcp14">BCP 14</a>, <a href="./rfc2119">RFC 2119</a>,
DOI 10.17487/RFC2119, March 1997,
<<a href="http://www.rfc-editor.org/info/rfc2119">http://www.rfc-editor.org/info/rfc2119</a>>.
[<a id="ref-RFC2782">RFC2782</a>] Gulbrandsen, A., Vixie, P., and L. Esibov, "A DNS RR for
specifying the location of services (DNS SRV)", <a href="./rfc2782">RFC 2782</a>,
DOI 10.17487/RFC2782, February 2000,
<<a href="http://www.rfc-editor.org/info/rfc2782">http://www.rfc-editor.org/info/rfc2782</a>>.
[<a id="ref-RFC3263">RFC3263</a>] Rosenberg, J. and H. Schulzrinne, "Session Initiation
Protocol (SIP): Locating SIP Servers", <a href="./rfc3263">RFC 3263</a>,
DOI 10.17487/RFC3263, June 2002,
<<a href="http://www.rfc-editor.org/info/rfc3263">http://www.rfc-editor.org/info/rfc3263</a>>.
[<a id="ref-RFC6157">RFC6157</a>] Camarillo, G., El Malki, K., and V. Gurbani, "IPv6
Transition in the Session Initiation Protocol (SIP)",
<a href="./rfc6157">RFC 6157</a>, DOI 10.17487/RFC6157, April 2011,
<<a href="http://www.rfc-editor.org/info/rfc6157">http://www.rfc-editor.org/info/rfc6157</a>>.
[<a id="ref-RFC6724">RFC6724</a>] Thaler, D., Ed., Draves, R., Matsumoto, A., and T. Chown,
"Default Address Selection for Internet Protocol Version 6
(IPv6)", <a href="./rfc6724">RFC 6724</a>, DOI 10.17487/RFC6724, September 2012,
<<a href="http://www.rfc-editor.org/info/rfc6724">http://www.rfc-editor.org/info/rfc6724</a>>.
<span class="h3"><a class="selflink" id="section-6.2" href="#section-6.2">6.2</a>. Informative References</span>
[<a id="ref-RFC3261">RFC3261</a>] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,
A., Peterson, J., Sparks, R., Handley, M., and E.
Schooler, "SIP: Session Initiation Protocol", <a href="./rfc3261">RFC 3261</a>,
DOI 10.17487/RFC3261, June 2002,
<<a href="http://www.rfc-editor.org/info/rfc3261">http://www.rfc-editor.org/info/rfc3261</a>>.
[<a id="ref-RFC6555">RFC6555</a>] Wing, D. and A. Yourtchenko, "Happy Eyeballs: Success with
Dual-Stack Hosts", <a href="./rfc6555">RFC 6555</a>, DOI 10.17487/RFC6555, April
2012, <<a href="http://www.rfc-editor.org/info/rfc6555">http://www.rfc-editor.org/info/rfc6555</a>>.
<span class="grey">Johansson, et al. Standards Track [Page 8]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-9" ></span>
<span class="grey"><a href="./rfc7984">RFC 7984</a> Locating SIP Servers in IPv4/IPv6 September 2016</span>
Acknowledgments
The authors would like to acknowledge the support and contribution of
the SIP Forum IPv6 Working Group. This document is based on a lot of
tests and discussions at SIPit events, organized by the SIP Forum.
This document has benefited from the expertise and review feedback of
many participants of the IETF DISPATCH and SIPCORE Working Group
mailing lists as well as those on the SIP Forum IPv6 Task Group
mailing list. The authors wish to specifically call out the efforts
and express their gratitude for the detailed and thoughtful comments
and corrections of Dan Wing, Brett Tate, Rifaat Shekh-Yusef, Carl
Klatsky, Mary Barnes, Keith Drage, Cullen Jennings, Simon Perreault,
Paul Kyzivat, Adam Roach, Richard Barnes, Ben Campbell, Stefan
Winter, Spencer Dawkins, and Suresh Krishnan. Adam Roach devised the
example in <a href="#section-4">Section 4</a>.
<span class="grey">Johansson, et al. Standards Track [Page 9]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-10" ></span>
<span class="grey"><a href="./rfc7984">RFC 7984</a> Locating SIP Servers in IPv4/IPv6 September 2016</span>
Authors' Addresses
Olle E. Johansson
Edvina AB
Runbovaegen 10
Sollentuna SE-192 48
Sweden
Email: oej@edvina.net
Gonzalo Salgueiro
Cisco Systems
7200-12 Kit Creek Road
Research Triangle Park, NC 27709
United States of America
Email: gsalguei@cisco.com
Vijay K. Gurbani
Bell Labs, Nokia Networks
1960 Lucent Lane
Rm 9C-533
Naperville, IL 60563
United States of America
Email: vkg@bell-labs.com
Dale R. Worley (editor)
Ariadne Internet Services
738 Main St.
Waltham, MA 02451
United States of America
Email: worley@ariadne.com
Johansson, et al. Standards Track [Page 10]
</pre>
|