1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237
|
<pre>Internet Engineering Task Force (IETF) K. Moriarty, Ed.
Request for Comments: 8018 Dell EMC
Obsoletes: <a href="./rfc2898">2898</a> B. Kaliski
Category: Informational Verisign
ISSN: 2070-1721 A. Rusch
RSA
January 2017
<span class="h1">PKCS #5: Password-Based Cryptography Specification</span>
<span class="h1">Version 2.1</span>
Abstract
This document provides recommendations for the implementation of
password-based cryptography, covering key derivation functions,
encryption schemes, message authentication schemes, and ASN.1 syntax
identifying the techniques.
This document represents a republication of PKCS #5 v2.1 from RSA
Laboratories' Public-Key Cryptography Standards (PKCS) series. By
publishing this RFC, change control is transferred to the IETF.
This document also obsoletes <a href="./rfc2898">RFC 2898</a>.
Status of This Memo
This document is not an Internet Standards Track specification; it is
published for informational purposes.
This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Not all documents
approved by the IESG are a candidate for any level of Internet
Standard; see <a href="./rfc7841#section-2">Section 2 of RFC 7841</a>.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
<a href="http://www.rfc-editor.org/info/rfc8018">http://www.rfc-editor.org/info/rfc8018</a>.
<span class="grey">Moriarty, et al. Informational [Page 1]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-2" ></span>
<span class="grey"><a href="./rfc8018">RFC 8018</a> PKCS #5 v2.1 January 2017</span>
Copyright Notice
Copyright (c) 2017 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to <a href="https://www.rfc-editor.org/bcp/bcp78">BCP 78</a> and the IETF Trust's Legal
Provisions Relating to IETF Documents
(<a href="http://trustee.ietf.org/license-info">http://trustee.ietf.org/license-info</a>) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
<span class="grey">Moriarty, et al. Informational [Page 2]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-3" ></span>
<span class="grey"><a href="./rfc8018">RFC 8018</a> PKCS #5 v2.1 January 2017</span>
Table of Contents
<a href="#section-1">1</a>. Introduction . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-4">4</a>
<a href="#section-2">2</a>. Notation . . . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-4">4</a>
<a href="#section-3">3</a>. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-5">5</a>
<a href="#section-4">4</a>. Salt and Iteration Count . . . . . . . . . . . . . . . . . . <a href="#page-7">7</a>
<a href="#section-4.1">4.1</a>. Salt . . . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-7">7</a>
<a href="#section-4.2">4.2</a>. Iteration Count . . . . . . . . . . . . . . . . . . . . . <a href="#page-9">9</a>
<a href="#section-5">5</a>. Key Derivation Functions . . . . . . . . . . . . . . . . . . <a href="#page-9">9</a>
<a href="#section-5.1">5.1</a>. PBKDF1 . . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-10">10</a>
<a href="#section-5.2">5.2</a>. PBKDF2 . . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-11">11</a>
<a href="#section-6">6</a>. Encryption Schemes . . . . . . . . . . . . . . . . . . . . . <a href="#page-13">13</a>
<a href="#section-6.1">6.1</a>. PBES1 . . . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-13">13</a>
<a href="#section-6.1.1">6.1.1</a>. PBES1 Encryption Operation . . . . . . . . . . . . . <a href="#page-13">13</a>
<a href="#section-6.1.2">6.1.2</a>. PBES1 Decryption Operation . . . . . . . . . . . . . <a href="#page-15">15</a>
<a href="#section-6.2">6.2</a>. PBES2 . . . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-15">15</a>
<a href="#section-6.2.1">6.2.1</a>. PBES2 Encryption Operation . . . . . . . . . . . . . <a href="#page-16">16</a>
<a href="#section-6.2.2">6.2.2</a>. PBES2 Decryption Operation . . . . . . . . . . . . . <a href="#page-16">16</a>
<a href="#section-7">7</a>. Message Authentication Schemes . . . . . . . . . . . . . . . <a href="#page-17">17</a>
<a href="#section-7.1">7.1</a>. PBMAC1 . . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-17">17</a>
<a href="#section-7.1.1">7.1.1</a>. PBMAC1 Generation Operation . . . . . . . . . . . . . <a href="#page-17">17</a>
<a href="#section-7.1.2">7.1.2</a>. PBMAC1 Verification Operation . . . . . . . . . . . . <a href="#page-18">18</a>
<a href="#section-8">8</a>. Security Considerations . . . . . . . . . . . . . . . . . . . <a href="#page-18">18</a>
<a href="#section-9">9</a>. Normative References . . . . . . . . . . . . . . . . . . . . <a href="#page-19">19</a>
<a href="#appendix-A">Appendix A</a>. ASN.1 Syntax . . . . . . . . . . . . . . . . . . . . <a href="#page-23">23</a>
<a href="#appendix-A.1">A.1</a>. PBKDF1 . . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-23">23</a>
<a href="#appendix-A.2">A.2</a>. PBKDF2 . . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-23">23</a>
<a href="#appendix-A.3">A.3</a>. PBES1 . . . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-25">25</a>
<a href="#appendix-A.4">A.4</a>. PBES2 . . . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-26">26</a>
<a href="#appendix-A.5">A.5</a>. PBMAC1 . . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-26">26</a>
<a href="#appendix-B">Appendix B</a>. Supporting Techniques . . . . . . . . . . . . . . . <a href="#page-27">27</a>
<a href="#appendix-B.1">B.1</a>. Pseudorandom Functions . . . . . . . . . . . . . . . . . <a href="#page-28">28</a>
<a href="#appendix-B.1.1">B.1.1</a>. HMAC-SHA-1 . . . . . . . . . . . . . . . . . . . . . <a href="#page-28">28</a>
<a href="#appendix-B.1.2">B.1.2</a>. HMAC-SHA-2 . . . . . . . . . . . . . . . . . . . . . <a href="#page-29">29</a>
<a href="#appendix-B.2">B.2</a>. Encryption Schemes . . . . . . . . . . . . . . . . . . . <a href="#page-29">29</a>
<a href="#appendix-B.2.1">B.2.1</a>. DES-CBC-Pad . . . . . . . . . . . . . . . . . . . . . <a href="#page-30">30</a>
<a href="#appendix-B.2.2">B.2.2</a>. DES-EDE3-CBC-Pad . . . . . . . . . . . . . . . . . . <a href="#page-30">30</a>
<a href="#appendix-B.2.3">B.2.3</a>. RC2-CBC-Pad . . . . . . . . . . . . . . . . . . . . . <a href="#page-30">30</a>
<a href="#appendix-B.2.4">B.2.4</a>. RC5-CBC-Pad . . . . . . . . . . . . . . . . . . . . . <a href="#page-31">31</a>
<a href="#appendix-B.2.5">B.2.5</a>. AES-CBC-Pad . . . . . . . . . . . . . . . . . . . . . <a href="#page-32">32</a>
<a href="#appendix-B.3">B.3</a>. Message Authentication Schemes . . . . . . . . . . . . . <a href="#page-33">33</a>
<a href="#appendix-B.3.1">B.3.1</a>. HMAC-SHA-1 . . . . . . . . . . . . . . . . . . . . . <a href="#page-33">33</a>
<a href="#appendix-B.3.2">B.3.2</a>. HMAC-SHA-2 . . . . . . . . . . . . . . . . . . . . . <a href="#page-33">33</a>
<a href="#appendix-C">Appendix C</a>. ASN.1 Module . . . . . . . . . . . . . . . . . . . . <a href="#page-34">34</a>
<a href="#appendix-D">Appendix D</a>. Revision History of PKCS #5 . . . . . . . . . . . . <a href="#page-38">38</a>
<a href="#appendix-E">Appendix E</a>. About PKCS . . . . . . . . . . . . . . . . . . . . . <a href="#page-39">39</a>
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-40">40</a>
Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-40">40</a>
<span class="grey">Moriarty, et al. Informational [Page 3]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-4" ></span>
<span class="grey"><a href="./rfc8018">RFC 8018</a> PKCS #5 v2.1 January 2017</span>
<span class="h2"><a class="selflink" id="section-1" href="#section-1">1</a>. Introduction</span>
This document provides recommendations for the implementation of
password-based cryptography, covering the following aspects:
- key derivation functions
- encryption schemes
- message authentication schemes
- ASN.1 syntax identifying the techniques
The recommendations are intended for general application within
computer and communications systems and, as such, include a fair
amount of flexibility. They are particularly intended for the
protection of sensitive information such as private keys as in
PKCS #8 [<a href="#ref-PKCS8" title=""Public-Key Cryptography Standards (PKCS) #8: Private-Key Information Syntax Specification Version 1.2"">PKCS8</a>] [<a href="./rfc5958" title=""Asymmetric Key Packages"">RFC5958</a>]. It is expected that application standards
and implementation profiles based on these specifications may include
additional constraints.
Other cryptographic techniques based on passwords, such as password-
based key entity authentication and key establishment protocols
[<a href="#ref-BELLOV" title=""Encrypted Key Exchange: Password-based Protocols Secure against Dictionary Attacks"">BELLOV</a>] [<a href="#ref-JABLON" title=""Strong Password-Only Authenticated Key Exchange"">JABLON</a>] [<a href="#ref-WU" title=""The Secure Remote Password protocol"">WU</a>] are outside the scope of this document.
Guidelines for the selection of passwords are also outside the scope.
This document supersedes PKCS #5 version 2.0 [<a href="./rfc2898" title=""PKCS #5: Password-Based Cryptography Specification Version 2.0"">RFC2898</a>] but includes
compatible techniques.
This document represents a republication of PKCS #5 v2.1 [<a href="#ref-PKCS5_21" title=""PKCS #5: Password-Based Encryption Standard Version 2.1"">PKCS5_21</a>]
from RSA Laboratories' Public-Key Cryptography Standards (PKCS)
series.
<span class="h2"><a class="selflink" id="section-2" href="#section-2">2</a>. Notation</span>
C ciphertext, an octet string
c iteration count, a positive integer
DK derived key, an octet string
dkLen length in octets of derived key, a positive integer
EM encoded message, an octet string
Hash underlying hash function
hLen length in octets of pseudorandom function output, a positive
integer
l length in blocks of derived key, a positive integer
<span class="grey">Moriarty, et al. Informational [Page 4]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-5" ></span>
<span class="grey"><a href="./rfc8018">RFC 8018</a> PKCS #5 v2.1 January 2017</span>
IV initialization vector, an octet string
K encryption key, an octet string
KDF key derivation function
M message, an octet string
P password, an octet string
PRF underlying pseudorandom function
PS padding string, an octet string
psLen length in octets of padding string, a positive integer
S salt, an octet string
T message authentication code, an octet string
T_1, ..., T_l, U_1, ..., U_c
intermediate values, octet strings
01, 02, ..., 08
octets with value 1, 2, ..., 8
\xor bit-wise exclusive-or of two octet strings
|| || octet length operator
|| concatenation operator
<i..j> substring extraction operator: extracts octets i through j,
0 <= i <= j
<span class="h2"><a class="selflink" id="section-3" href="#section-3">3</a>. Overview</span>
In many applications of public-key cryptography, user security is
ultimately dependent on one or more secret text values or passwords.
Since a password is not directly applicable as a key to any
conventional cryptosystem, however, some processing of the password
is required to perform cryptographic operations with it. Moreover,
as passwords are often chosen from a relatively small space, special
care is required in that processing to defend against search attacks.
A general approach to password-based cryptography, as described by
Morris and Thompson [<a href="#ref-MORRIS" title=""Password security: A case history"">MORRIS</a>] for the protection of password tables,
is to combine a password with a salt to produce a key. The salt can
<span class="grey">Moriarty, et al. Informational [Page 5]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-6" ></span>
<span class="grey"><a href="./rfc8018">RFC 8018</a> PKCS #5 v2.1 January 2017</span>
be viewed as an index into a large set of keys derived from the
password and need not be kept secret. Although it may be possible
for an opponent to construct a table of possible passwords (a so-
called "dictionary attack"), constructing a table of possible keys
will be difficult, since there will be many possible keys for each
password. An opponent will thus be limited to searching through
passwords separately for each salt.
Another approach to password-based cryptography is to construct key
derivation techniques that are relatively expensive, thereby
increasing the cost of exhaustive search. One way to do this is to
include an iteration count in the key derivation technique,
indicating how many times to iterate some underlying function by
which keys are derived. A modest number of iterations (say, 1000) is
not likely to be a burden for legitimate parties when computing a
key, but will be a significant burden for opponents.
Salt and iteration count formed the basis for password-based
encryption in PKCS #5 v2.0, and are adopted here as well for the
various cryptographic operations. Thus, password-based key
derivation as defined here is a function of a password, a salt, and
an iteration count, where the latter two quantities need not be kept
secret.
From a password-based key derivation function, it is straightforward
to define password-based encryption and message authentication
schemes. As in PKCS #5 v2.0, the password-based encryption schemes
here are based on an underlying, conventional encryption scheme,
where the key for the conventional scheme is derived from the
password. Similarly, the password-based message authentication
scheme is based on an underlying conventional scheme. This
two-layered approach makes the password-based techniques modular in
terms of the underlying techniques they can be based on.
It is expected that the password-based key derivation functions may
find other applications than just the encryption and message
authentication schemes defined here. For instance, one might derive
a set of keys with a single application of a key derivation function,
rather than derive each key with a separate application of the
function. The keys in the set would be obtained as substrings of the
output of the key derivation function. This approach might be
employed as part of key establishment in a session-oriented protocol.
Another application is password checking, where the output of the key
derivation function is stored (along with the salt and iteration
count) for the purposes of subsequent verification of a password.
Throughout this document, a password is considered to be an octet
string of arbitrary length whose interpretation as a text string is
<span class="grey">Moriarty, et al. Informational [Page 6]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-7" ></span>
<span class="grey"><a href="./rfc8018">RFC 8018</a> PKCS #5 v2.1 January 2017</span>
unspecified. In the interest of interoperability, however, it is
recommended that applications follow some common text encoding rules.
ASCII and UTF-8 [<a href="./rfc3629" title=""UTF-8, a transformation format of ISO 10646"">RFC3629</a>] are two possibilities. (ASCII is a subset
of UTF-8.)
Although the selection of passwords is outside the scope of this
document, guidelines have been published [<a href="#ref-NISTSP63" title=""Electronic Authentication Guideline"">NISTSP63</a>] that may well be
taken into account.
<span class="h2"><a class="selflink" id="section-4" href="#section-4">4</a>. Salt and Iteration Count</span>
Inasmuch as salt and iteration count are central to the techniques
defined in this document, some further discussion is warranted.
<span class="h3"><a class="selflink" id="section-4.1" href="#section-4.1">4.1</a>. Salt</span>
A salt in password-based cryptography has traditionally served the
purpose of producing a large set of keys corresponding to a given
password, one of which is selected at random according to the salt.
An individual key in the set is selected by applying a key derivation
function KDF, as
DK = KDF (P, S)
where DK is the derived key, P is the password, and S is the salt.
This has two benefits:
1. It is difficult for an opponent to precompute all the keys, or
even the most likely keys, corresponding to a dictionary of
passwords. If the salt is 64 bits long, for instance, there
will be as many as 2^64 keys for each password. An opponent
is thus limited to searching for passwords after a password-
based operation has been performed and the salt is known.
2. It is unlikely that the same key will be selected twice.
Again, if the salt is 64 bits long, the chance of "collision"
between keys does not become significant until about 2^32 keys
have been produced, according to the Birthday Paradox. The
fact that collisions are unlikely addresses some concerns
about interactions between multiple uses of the same key that
may arise when using some encryption and authentication
techniques.
In password-based encryption, the party encrypting a message can gain
assurance that these benefits are realized simply by selecting a
large and sufficiently random salt when deriving an encryption key
from a password. A party generating a message authentication code
can gain such assurance in a similar fashion.
<span class="grey">Moriarty, et al. Informational [Page 7]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-8" ></span>
<span class="grey"><a href="./rfc8018">RFC 8018</a> PKCS #5 v2.1 January 2017</span>
The party decrypting a message or verifying a message authentication
code, however, cannot be sure that a salt supplied by another party
has actually been generated at random. It is possible, for instance,
that the salt may have been copied from another password-based
operation in an attempt to exploit interactions between multiple uses
of the same key. For instance, suppose two legitimate parties
exchange an encrypted message, where the encryption key is an 80-bit
key derived from a shared password with some salt. An opponent could
take the salt from that encryption and provide it to one of the
parties as though it were for a 40-bit key. If the party reveals the
result of decryption with the 40-bit key, the opponent may be able to
solve for the 40-bit key. In the case that 40-bit key is the first
half of the 80-bit key, the opponent can then readily solve for the
remaining 40 bits of the 80-bit key.
To defend against such attacks, either the interaction between
multiple uses of the same key should be carefully analyzed, or the
salt should contain data that explicitly distinguishes between
different operations. For instance, the salt might have an
additional, non-random octet that specifies whether the derived key
is for encryption, for message authentication, or for some other
operation.
Based on this, the following is recommended for salt selection:
1. If there is no concern about interactions between multiple
uses of the same key (or a prefix of that key) with the
password-based encryption and authentication techniques
supported for a given password, then the salt may be generated
at random and need not be checked for a particular format by
the party receiving the salt. It should be at least eight
octets (64 bits) long.
2. Otherwise, the salt should contain data that explicitly
distinguishes between different operations and different key
lengths, in addition to a random part that is at least eight
octets long, and this data should be checked or regenerated by
the party receiving the salt. For instance, the salt could
have an additional non-random octet that specifies the purpose
of the derived key. Alternatively, it could be the encoding
of a structure that specifies detailed information about the
derived key, such as the encryption or authentication
technique and a sequence number among the different keys
derived from the password. The particular format of the
additional data is left to the application.
<span class="grey">Moriarty, et al. Informational [Page 8]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-9" ></span>
<span class="grey"><a href="./rfc8018">RFC 8018</a> PKCS #5 v2.1 January 2017</span>
Note: If a random number generator or pseudorandom generator is not
available, a deterministic alternative for generating the salt (or
the random part of it) is to apply a password-based key derivation
function to the password and the message M to be processed. For
instance, the salt could be computed with a key derivation function
as S = KDF (P, M). This approach is not recommended if the message M
is known to belong to a small message space (e.g., "Yes" or "No"),
however, since then there will only be a small number of possible
salts.
<span class="h3"><a class="selflink" id="section-4.2" href="#section-4.2">4.2</a>. Iteration Count</span>
An iteration count has traditionally served the purpose of increasing
the cost of producing keys from a password, thereby also increasing
the difficulty of attack. Mathematically, an iteration count of c
will increase the security strength of a password by log2(c) bits
against trial-based attacks like brute force or dictionary attacks.
Choosing a reasonable value for the iteration count depends on
environment and circumstances, and varies from application to
application. This document follows the recommendations made in FIPS
Special Publication 800-132 [<a href="#ref-NISTSP132">NISTSP132</a>], which says
The iteration count shall be selected as large as possible, as
long as the time required to generate the key using the entered
password is acceptable for the users. [...] A minimum iteration
count of 1,000 is recommended. For especially critical keys, or
for very powerful systems or systems where user-perceived
performance is not critical, an iteration count of 10,000,000 may
be appropriate.
<span class="h2"><a class="selflink" id="section-5" href="#section-5">5</a>. Key Derivation Functions</span>
A key derivation function produces a derived key from a base key and
other parameters. In a password-based key derivation function, the
base key is a password, and the other parameters are a salt value and
an iteration count, as outlined in <a href="#section-3">Section 3</a>.
The primary application of the password-based key derivation
functions defined here is in the encryption schemes in <a href="#section-6">Section 6</a> and
the message authentication scheme in <a href="#section-7">Section 7</a>. Other applications
are certainly possible, hence the independent definition of these
functions.
Two functions are specified in this section: PBKDF1 and PBKDF2.
PBKDF2 is recommended for new applications; PBKDF1 is included only
for compatibility with existing applications and is not recommended
for new applications.
<span class="grey">Moriarty, et al. Informational [Page 9]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-10" ></span>
<span class="grey"><a href="./rfc8018">RFC 8018</a> PKCS #5 v2.1 January 2017</span>
A typical application of the key derivation functions defined here
might include the following steps:
1. Select a salt S and an iteration count c, as outlined in
<a href="#section-4">Section 4</a>.
2. Select a length in octets for the derived key, dkLen.
3. Apply the key derivation function to the password, the salt,
the iteration count and the key length to produce a derived
key.
4. Output the derived key.
Any number of keys may be derived from a password by varying the
salt, as described in <a href="#section-3">Section 3</a>.
<span class="h3"><a class="selflink" id="section-5.1" href="#section-5.1">5.1</a>. PBKDF1</span>
PBKDF1 applies a hash function, which shall be MD2 [<a href="./rfc1319" title=""The MD2 Message-Digest Algorithm"">RFC1319</a>], MD5
[<a href="./rfc1321" title=""The MD5 Message-Digest Algorithm"">RFC1321</a>], or SHA-1 [<a href="#ref-NIST180" title=""Secure Hash Standard (SHS)"">NIST180</a>], to derive keys. The length of the
derived key is bounded by the length of the hash function output,
which is 16 octets for MD2 and MD5 and 20 octets for SHA-1. PBKDF1
is compatible with the key derivation process in PKCS #5 v1.5
[<a href="#ref-PKCS5_15" title=""PKCS #5: Password-Based Encryption Standard Version 1.5"">PKCS5_15</a>].
PBKDF1 is recommended only for compatibility with existing
applications since the keys it produces may not be large enough for
some applications.
PBKDF1 (P, S, c, dkLen)
Options: Hash underlying hash function
Input: P password, an octet string
S salt, an octet string
c iteration count, a positive integer
dkLen intended length in octets of derived key,
a positive integer, at most 16 for MD2 or
MD5 and 20 for SHA-1
Output: DK derived key, a dkLen-octet string
Steps:
1. If dkLen > 16 for MD2 and MD5, or dkLen > 20 for SHA-1, output
"derived key too long" and stop.
<span class="grey">Moriarty, et al. Informational [Page 10]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-11" ></span>
<span class="grey"><a href="./rfc8018">RFC 8018</a> PKCS #5 v2.1 January 2017</span>
2. Apply the underlying hash function Hash for c iterations to
the concatenation of the password P and the salt S, then
extract the first dkLen octets to produce a derived key DK:
T_1 = Hash (P || S) ,
T_2 = Hash (T_1) ,
...
T_c = Hash (T_{c-1}) ,
DK = T_c<0..dkLen-1>
3. Output the derived key DK.
<span class="h3"><a class="selflink" id="section-5.2" href="#section-5.2">5.2</a>. PBKDF2</span>
PBKDF2 applies a pseudorandom function (see <a href="#appendix-B.1">Appendix B.1</a> for an
example) to derive keys. The length of the derived key is
essentially unbounded. (However, the maximum effective search space
for the derived key may be limited by the structure of the underlying
pseudorandom function. See <a href="#appendix-B.1">Appendix B.1</a> for further discussion.)
PBKDF2 is recommended for new applications.
PBKDF2 (P, S, c, dkLen)
Options: PRF underlying pseudorandom function (hLen
denotes the length in octets of the
pseudorandom function output)
Input: P password, an octet string
S salt, an octet string
c iteration count, a positive integer
dkLen intended length in octets of the derived
key, a positive integer, at most
(2^32 - 1) * hLen
Output: DK derived key, a dkLen-octet string
Steps:
1. If dkLen > (2^32 - 1) * hLen, output "derived key too long"
and stop.
2. Let l be the number of hLen-octet blocks in the derived key,
rounding up, and let r be the number of octets in the last
block:
l = CEIL (dkLen / hLen)
r = dkLen - (l - 1) * hLen
<span class="grey">Moriarty, et al. Informational [Page 11]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-12" ></span>
<span class="grey"><a href="./rfc8018">RFC 8018</a> PKCS #5 v2.1 January 2017</span>
Here, CEIL (x) is the "ceiling" function, i.e., the smallest
integer greater than, or equal to, x.
3. For each block of the derived key apply the function F defined
below to the password P, the salt S, the iteration count c,
and the block index to compute the block:
T_1 = F (P, S, c, 1) ,
T_2 = F (P, S, c, 2) ,
...
T_l = F (P, S, c, l) ,
where the function F is defined as the exclusive-or sum of the
first c iterates of the underlying pseudorandom function PRF
applied to the password P and the concatenation of the salt S
and the block index i:
F (P, S, c, i) = U_1 \xor U_2 \xor ... \xor U_c
where
U_1 = PRF (P, S || INT (i)) ,
U_2 = PRF (P, U_1) ,
...
U_c = PRF (P, U_{c-1}) .
Here, INT (i) is a four-octet encoding of the integer i, most
significant octet first.
4. Concatenate the blocks and extract the first dkLen octets to
produce a derived key DK:
DK = T_1 || T_2 || ... || T_l<0..r-1>
5. Output the derived key DK.
Note: The construction of the function F follows a "belt-and-
suspenders" approach. The iterates U_i are computed recursively to
remove a degree of parallelism from an opponent; they are exclusive-
ored together to reduce concerns about the recursion degenerating
into a small set of values.
<span class="grey">Moriarty, et al. Informational [Page 12]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-13" ></span>
<span class="grey"><a href="./rfc8018">RFC 8018</a> PKCS #5 v2.1 January 2017</span>
<span class="h2"><a class="selflink" id="section-6" href="#section-6">6</a>. Encryption Schemes</span>
An encryption scheme, in the symmetric setting, consists of an
encryption operation and a decryption operation, where the encryption
operation produces a ciphertext from a message under a key, and the
decryption operation recovers the message from the ciphertext under
the same key. In a password-based encryption scheme, the key is a
password.
A typical application of a password-based encryption scheme is a
private-key protection method, where the message contains private-key
information, as in PKCS #8. The encryption schemes defined here
would be suitable encryption algorithms in that context.
Two schemes are specified in this section: PBES1 and PBES2. PBES2 is
recommended for new applications; PBES1 is included only for
compatibility with existing applications and is not recommended for
new applications.
<span class="h3"><a class="selflink" id="section-6.1" href="#section-6.1">6.1</a>. PBES1</span>
PBES1 combines the PBKDF1 function (<a href="#section-5.1">Section 5.1</a>) with an underlying
block cipher, which shall be either DES [<a href="#ref-NIST46" title=""Data Encryption Standard"">NIST46</a>] or RC2 [<a href="./rfc2268" title=""A Description of the RC2(r) Encryption Algorithm"">RFC2268</a>] in
cipher block chaining (CBC) mode [<a href="#ref-NIST81" title=""DES Modes of Operation"">NIST81</a>]. PBES1 is compatible with
the encryption scheme in PKCS #5 v1.5 [<a href="#ref-PKCS5_15" title=""PKCS #5: Password-Based Encryption Standard Version 1.5"">PKCS5_15</a>].
PBES1 is recommended only for compatibility with existing
applications, since it supports only two underlying encryption
schemes, each of which has a key size (56 or 64 bits) that may not be
large enough for some applications.
<span class="h4"><a class="selflink" id="section-6.1.1" href="#section-6.1.1">6.1.1</a>. PBES1 Encryption Operation</span>
The encryption operation for PBES1 consists of the following steps,
which encrypt a message M under a password P to produce a ciphertext
C:
1. Select an eight-octet salt S and an iteration count c, as
outlined in <a href="#section-4">Section 4</a>.
2. Apply the PBKDF1 key derivation function (<a href="#section-5.1">Section 5.1</a>) to the
password P, the salt S, and the iteration count c to produce a
derived key DK of length 16 octets:
DK = PBKDF1 (P, S, c, 16)
<span class="grey">Moriarty, et al. Informational [Page 13]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-14" ></span>
<span class="grey"><a href="./rfc8018">RFC 8018</a> PKCS #5 v2.1 January 2017</span>
3. Separate the derived key DK into an encryption key K
consisting of the first eight octets of DK and an
initialization vector IV consisting of the next eight octets:
K = DK<0..7>
IV = DK<8..15>
4. Concatenate M and a padding string PS to form an encoded
message EM:
EM = M || PS
where the padding string PS consists of 8-(||M|| mod 8) octets
each with value 8-(||M|| mod 8). The padding string PS will
satisfy one of the following statements:
PS = 01, if ||M|| mod 8 = 7 ;
PS = 02 02, if ||M|| mod 8 = 6 ;
...
PS = 08 08 08 08 08 08 08 08, if ||M|| mod 8 = 0.
The length in octets of the encoded message will be a multiple
of eight, and it will be possible to recover the message M
unambiguously from the encoded message. (This padding rule is
taken from <a href="./rfc1423">RFC 1423</a> [<a href="./rfc1423" title=""Privacy Enhancement for Internet Electronic Mail: Part III: Algorithms, Modes, and Identifiers"">RFC1423</a>].)
5. Encrypt the encoded message EM with the underlying block
cipher (DES or RC2) in CBC mode under the encryption key K
with initialization vector IV to produce the ciphertext C.
For DES, the key K shall be considered as a 64-bit encoding of
a 56-bit DES key with parity bits ignored (see [<a href="#ref-NIST46" title=""Data Encryption Standard"">NIST46</a>]). For
RC2, the "effective key bits" shall be 64 bits.
6. Output the ciphertext C.
The salt S and the iteration count c may be conveyed to the party
performing decryption in an AlgorithmIdentifier value (see <a href="#appendix-A.3">Appendix</a>
<a href="#appendix-A.3">A.3</a>).
<span class="grey">Moriarty, et al. Informational [Page 14]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-15" ></span>
<span class="grey"><a href="./rfc8018">RFC 8018</a> PKCS #5 v2.1 January 2017</span>
<span class="h4"><a class="selflink" id="section-6.1.2" href="#section-6.1.2">6.1.2</a>. PBES1 Decryption Operation</span>
The decryption operation for PBES1 consists of the following steps,
which decrypt a ciphertext C under a password P to recover a message
M:
1. Obtain the eight-octet salt S and the iteration count c.
2. Apply the PBKDF1 key derivation function (<a href="#section-5.1">Section 5.1</a>) to the
password P, the salt S, and the iteration count c to produce a
derived key DK of length 16 octets:
DK = PBKDF1 (P, S, c, 16)
3. Separate the derived key DK into an encryption key K
consisting of the first eight octets of DK and an
initialization vector IV consisting of the next eight octets:
K = DK<0..7>
IV = DK<8..15>
4. Decrypt the ciphertext C with the underlying block cipher (DES
or RC2) in CBC mode under the encryption key K with
initialization vector IV to recover an encoded message EM. If
the length in octets of the ciphertext C is not a multiple of
eight, output "decryption error" and stop.
5. Separate the encoded message EM into a message M and a padding
string PS:
EM = M || PS
where the padding string PS consists of some number psLen
octets each with value psLen, where psLen is between 1 and 8.
If it is not possible to separate the encoded message EM in
this manner, output "decryption error" and stop.
6. Output the recovered message M.
<span class="h3"><a class="selflink" id="section-6.2" href="#section-6.2">6.2</a>. PBES2</span>
PBES2 combines a password-based key derivation function, which shall
be PBKDF2 (<a href="#section-5.2">Section 5.2</a>) for this version of PKCS #5, with an
underlying encryption scheme (see <a href="#appendix-B.2">Appendix B.2</a> for examples). The
key length and any other parameters for the underlying encryption
scheme depend on the scheme.
PBES2 is recommended for new applications.
<span class="grey">Moriarty, et al. Informational [Page 15]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-16" ></span>
<span class="grey"><a href="./rfc8018">RFC 8018</a> PKCS #5 v2.1 January 2017</span>
<span class="h4"><a class="selflink" id="section-6.2.1" href="#section-6.2.1">6.2.1</a>. PBES2 Encryption Operation</span>
The encryption operation for PBES2 consists of the following steps,
which encrypt a message M under a password P to produce a ciphertext
C, applying a selected key derivation function KDF and a selected
underlying encryption scheme:
1. Select a salt S and an iteration count c, as outlined in
<a href="#section-4">Section 4</a>.
2. Select the length in octets, dkLen, for the derived key for
the underlying encryption scheme.
3. Apply the selected key derivation function to the password P,
the salt S, and the iteration count c to produce a derived key
DK of length dkLen octets:
DK = KDF (P, S, c, dkLen)
4. Encrypt the message M with the underlying encryption scheme
under the derived key DK to produce a ciphertext C. (This
step may involve selection of parameters such as an
initialization vector and padding, depending on the underlying
scheme.)
5. Output the ciphertext C.
The salt S, the iteration count c, the key length dkLen, and
identifiers for the key derivation function and the underlying
encryption scheme may be conveyed to the party performing decryption
in an AlgorithmIdentifier value (see <a href="#appendix-A.4">Appendix A.4</a>).
<span class="h4"><a class="selflink" id="section-6.2.2" href="#section-6.2.2">6.2.2</a>. PBES2 Decryption Operation</span>
The decryption operation for PBES2 consists of the following steps,
which decrypt a ciphertext C under a password P to recover a message
M:
1. Obtain the salt S for the operation.
2. Obtain the iteration count c for the key derivation function.
3. Obtain the key length in octets, dkLen, for the derived key
for the underlying encryption scheme.
<span class="grey">Moriarty, et al. Informational [Page 16]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-17" ></span>
<span class="grey"><a href="./rfc8018">RFC 8018</a> PKCS #5 v2.1 January 2017</span>
4. Apply the selected key derivation function to the password P,
the salt S, and the iteration count c to produce a derived key
DK of length dkLen octets:
DK = KDF (P, S, c, dkLen)
5. Decrypt the ciphertext C with the underlying encryption scheme
under the derived key DK to recover a message M. If the
decryption function outputs "decryption error", then output
"decryption error" and stop.
6. Output the recovered message M.
<span class="h2"><a class="selflink" id="section-7" href="#section-7">7</a>. Message Authentication Schemes</span>
A message authentication scheme consists of a MAC (Message
Authentication Code) generation operation and a MAC verification
operation, where the MAC generation operation produces a MAC from a
message under a key, and the MAC verification operation verifies the
message authentication code under the same key. In a password-based
message authentication scheme, the key is a password.
One scheme is specified in this section: PBMAC1.
<span class="h3"><a class="selflink" id="section-7.1" href="#section-7.1">7.1</a>. PBMAC1</span>
PBMAC1 combines a password-based key derivation function, which shall
be PBKDF2 (<a href="#section-5.2">Section 5.2</a>) for this version of PKCS #5, with an
underlying message authentication scheme (see <a href="#appendix-B.3">Appendix B.3</a> for an
example). The key length and any other parameters for the underlying
message authentication scheme depend on the scheme.
<span class="h4"><a class="selflink" id="section-7.1.1" href="#section-7.1.1">7.1.1</a>. PBMAC1 Generation Operation</span>
The MAC generation operation for PBMAC1 consists of the following
steps, which process a message M under a password P to generate a
message authentication code T, applying a selected key derivation
function KDF and a selected underlying message authentication scheme:
1. Select a salt S and an iteration count c, as outlined in
<a href="#section-4">Section 4</a>.
2. Select a key length in octets, dkLen, for the derived key for
the underlying message authentication function.
<span class="grey">Moriarty, et al. Informational [Page 17]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-18" ></span>
<span class="grey"><a href="./rfc8018">RFC 8018</a> PKCS #5 v2.1 January 2017</span>
3. Apply the selected key derivation function to the password P,
the salt S, and the iteration count c to produce a derived key
DK of length dkLen octets:
DK = KDF (P, S, c, dkLen)
4. Process the message M with the underlying message
authentication scheme under the derived key DK to generate a
message authentication code T.
5. Output the message authentication code T.
The salt S, the iteration count c, the key length dkLen, and
identifiers for the key derivation function and underlying message
authentication scheme may be conveyed to the party performing
verification in an AlgorithmIdentifier value (see <a href="#appendix-A.5">Appendix A.5</a>).
<span class="h4"><a class="selflink" id="section-7.1.2" href="#section-7.1.2">7.1.2</a>. PBMAC1 Verification Operation</span>
The MAC verification operation for PBMAC1 consists of the following
steps, which process a message M under a password P to verify a
message authentication code T:
1. Obtain the salt S and the iteration count c.
2. Obtain the key length in octets, dkLen, for the derived key
for the underlying message authentication scheme.
3. Apply the selected key derivation function to the password P,
the salt S, and the iteration count c to produce a derived key
DK of length dkLen octets:
DK = KDF (P, S, c, dkLen)
4. Process the message M with the underlying message
authentication scheme under the derived key DK to verify the
message authentication code T.
5. If the message authentication code verifies, output "correct";
else output "incorrect".
<span class="h2"><a class="selflink" id="section-8" href="#section-8">8</a>. Security Considerations</span>
Password-based cryptography is generally limited in the security that
it can provide, particularly for methods such as those defined in
this document where offline password search is possible. While the
use of salt and iteration count can increase the complexity of attack
(see <a href="#section-4">Section 4</a> for recommendations), it is essential that passwords
<span class="grey">Moriarty, et al. Informational [Page 18]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-19" ></span>
<span class="grey"><a href="./rfc8018">RFC 8018</a> PKCS #5 v2.1 January 2017</span>
are selected well, and relevant guidelines (e.g., [<a href="#ref-NISTSP63" title=""Electronic Authentication Guideline"">NISTSP63</a>]) should
be taken into account. It is also important that passwords be
protected well if stored.
In general, different keys should be derived from a password for
different uses to minimize the possibility of unintended
interactions. For password-based encryption with a single algorithm,
a random salt is sufficient to ensure that different keys will be
produced. In certain other situations, as outlined in <a href="#section-4">Section 4</a>, a
structured salt is necessary. The recommendations in <a href="#section-4">Section 4</a>
should thus be taken into account when selecting the salt value.
For information on security considerations for MD2 [<a href="./rfc1319" title=""The MD2 Message-Digest Algorithm"">RFC1319</a>], see
[<a href="./rfc6149" title=""MD2 to Historic Status"">RFC6149</a>]; for MD5 [<a href="./rfc1321" title=""The MD5 Message-Digest Algorithm"">RFC1321</a>], see [<a href="./rfc6151" title=""Updated Security Considerations for the MD5 Message-Digest and the HMAC-MD5 Algorithms"">RFC6151</a>]; and for SHA-1 [<a href="#ref-NIST180" title=""Secure Hash Standard (SHS)"">NIST180</a>],
see [<a href="./rfc6194" title=""Security Considerations for the SHA-0 and SHA-1 Message-Digest Algorithms"">RFC6194</a>].
<span class="h2"><a class="selflink" id="section-9" href="#section-9">9</a>. Normative References</span>
[<a id="ref-ANSIX952">ANSIX952</a>] ANSI, "Triple Data Encryption Algorithm Modes of
Operation", Accredited Standards Committee X9, X9.52-1998,
July 1998.
[<a id="ref-BELLOV">BELLOV</a>] Bellovin, S. and M. Merritt, "Encrypted Key Exchange:
Password-based Protocols Secure against Dictionary
Attacks", Proceedings of the IEEE Symposium on Research in
Security and Privacy, pages 72-84, IEEE Computer Society,
DOI 10.1109/RISP.1992.213269, 1992.
[<a id="ref-COCHRAN">COCHRAN</a>] Cochran, M., "Notes on the Wang et al. 2^63 SHA-1
Differential Path", Cryptology ePrint Archive: Report
2007/474, August 2008, <<a href="http://eprint.iacr.org/2007/474">http://eprint.iacr.org/2007/474</a>>.
[<a id="ref-ISO8824-1">ISO8824-1</a>]
International Organization for Standardization,
"Information technology - Abstract Syntax Notation One
(ASN.1) - Specification of basic notation", ISO/IEC
8824-1:2008, 2008.
[<a id="ref-ISO8824-2">ISO8824-2</a>]
International Organization for Standardization,
"Information technology - Abstract Syntax Notation One
(ASN.1) - Information object specification", ISO/IEC
8824-2:2008, 2008.
<span class="grey">Moriarty, et al. Informational [Page 19]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-20" ></span>
<span class="grey"><a href="./rfc8018">RFC 8018</a> PKCS #5 v2.1 January 2017</span>
[<a id="ref-ISO8824-3">ISO8824-3</a>]
International Organization for Standardization,
"Information technology - Abstract Syntax Notation One
(ASN.1) - Constraint specification", ISO/IEC 8824-3:2008,
2008.
[<a id="ref-ISO8824-4">ISO8824-4</a>]
International Organization for Standardization,
"Information technology - Abstract Syntax Notation One
(ASN.1) - Parameterization of ASN.1 specifications",
ISO/IEC 8824-4:2008, 2008.
[<a id="ref-JABLON">JABLON</a>] Jablon, D., "Strong Password-Only Authenticated Key
Exchange", ACM SIGCOMM Computer Communication Review,
Volume 26, Issue 5, DOI 10.1145/242896.242897, October
1996.
[<a id="ref-MORRIS">MORRIS</a>] Morris, R. and K. Thompson, "Password security: A case
history", Communications of the ACM, Vol. 22, Issue 11,
pages 594-597, DOI 10.1145/359168.359172, November 1979.
[<a id="ref-NIST46">NIST46</a>] National Institute of Standards and Technology (NIST),
"Data Encryption Standard", FIPS PUB 46-3, October 1999.
[<a id="ref-NIST81">NIST81</a>] National Institute of Standards and Technology (NIST),
"DES Modes of Operation", FIPS PUB 81, December 2, 1980.
[<a id="ref-NIST180">NIST180</a>] National Institute of Standards and Technology, "Secure
Hash Standard (SHS)", FIPS PUB 180-4,
DOI 10.6028/NIST.FIPS.180-4, August 2015.
[<a id="ref-NIST197">NIST197</a>] National Institute of Standards and Technology (NIST),
"Advance Encryption Standard (AES)", FIPS PUB 197,
November 2001.
[<a id="ref-NIST198">NIST198</a>] National Institute of Standards and Technology (NIST),
"The Keyed - Hash Message Authentication Code (HMAC)",
FIPS PUB 198-1, July 2008.
[<a id="ref-NISTSP63">NISTSP63</a>] National Institute of Standards and Technology (NIST),
"Electronic Authentication Guideline", NIST Special
Publication 800-63-2, DOI 10.6028/NIST.SP.800-63-2, August
2013.
<span class="grey">Moriarty, et al. Informational [Page 20]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-21" ></span>
<span class="grey"><a href="./rfc8018">RFC 8018</a> PKCS #5 v2.1 January 2017</span>
[<a id="ref-NISTSP132">NISTSP132</a>]
National Institute of Standards and Technology (NIST),
"Recommendation for Password-Based Key Derivation, Part 1:
Storage Applications", NIST Special Publication 800-132,
DOI 10.6028/NIST.SP.800-132, December 2010.
[<a id="ref-PKCS5_15">PKCS5_15</a>] RSA Laboratories, "PKCS #5: Password-Based Encryption
Standard Version 1.5", November 1993.
[<a id="ref-PKCS5_21">PKCS5_21</a>] RSA Laboratories, "PKCS #5: Password-Based Encryption
Standard Version 2.1", October 2012.
[<a id="ref-PKCS8">PKCS8</a>] Kaliski, B., "Public-Key Cryptography Standards (PKCS) #8:
Private-Key Information Syntax Specification Version 1.2",
<a href="./rfc5208">RFC 5208</a>, DOI 10.17487/RFC5208, May 2008,
<<a href="http://www.rfc-editor.org/info/rfc5208">http://www.rfc-editor.org/info/rfc5208</a>>.
[<a id="ref-RC5">RC5</a>] Rivest, R.L., "The RC5 encryption algorithm", In
Proceedings of the Second International Workshop on Fast
Software Encryption, pages 86-96, Springer-Verlag,
DOI 10.1007/3-540-60590-8_7, 1994.
[<a id="ref-RFC1319">RFC1319</a>] Kaliski, B., "The MD2 Message-Digest Algorithm", <a href="./rfc1319">RFC 1319</a>,
DOI 10.17487/RFC1319, April 1992,
<<a href="http://www.rfc-editor.org/info/rfc1319">http://www.rfc-editor.org/info/rfc1319</a>>.
[<a id="ref-RFC1321">RFC1321</a>] Rivest, R., "The MD5 Message-Digest Algorithm", <a href="./rfc1321">RFC 1321</a>,
DOI 10.17487/RFC1321, April 1992,
<<a href="http://www.rfc-editor.org/info/rfc1321">http://www.rfc-editor.org/info/rfc1321</a>>.
[<a id="ref-RFC1423">RFC1423</a>] Balenson, D., "Privacy Enhancement for Internet Electronic
Mail: Part III: Algorithms, Modes, and Identifiers",
<a href="./rfc1423">RFC 1423</a>, DOI 10.17487/RFC1423, February 1993,
<<a href="http://www.rfc-editor.org/info/rfc1423">http://www.rfc-editor.org/info/rfc1423</a>>.
[<a id="ref-RFC2040">RFC2040</a>] Baldwin, R. and R. Rivest, "The RC5, RC5-CBC, RC5-CBC-Pad,
and RC5-CTS Algorithms", <a href="./rfc2040">RFC 2040</a>, DOI 10.17487/RFC2040,
October 1996, <<a href="http://www.rfc-editor.org/info/rfc2040">http://www.rfc-editor.org/info/rfc2040</a>>.
[<a id="ref-RFC2104">RFC2104</a>] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-
Hashing for Message Authentication", <a href="./rfc2104">RFC 2104</a>,
DOI 10.17487/RFC2104, February 1997,
<<a href="http://www.rfc-editor.org/info/rfc2104">http://www.rfc-editor.org/info/rfc2104</a>>.
[<a id="ref-RFC2268">RFC2268</a>] Rivest, R., "A Description of the RC2(r) Encryption
Algorithm", <a href="./rfc2268">RFC 2268</a>, DOI 10.17487/RFC2268, March 1998,
<<a href="http://www.rfc-editor.org/info/rfc2268">http://www.rfc-editor.org/info/rfc2268</a>>.
<span class="grey">Moriarty, et al. Informational [Page 21]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-22" ></span>
<span class="grey"><a href="./rfc8018">RFC 8018</a> PKCS #5 v2.1 January 2017</span>
[<a id="ref-RFC2898">RFC2898</a>] Kaliski, B., "PKCS #5: Password-Based Cryptography
Specification Version 2.0", <a href="./rfc2898">RFC 2898</a>,
DOI 10.17487/RFC2898, September 2000,
<<a href="http://www.rfc-editor.org/info/rfc2898">http://www.rfc-editor.org/info/rfc2898</a>>.
[<a id="ref-RFC3629">RFC3629</a>] Yergeau, F., "UTF-8, a transformation format of ISO
10646", STD 63, <a href="./rfc3629">RFC 3629</a>, DOI 10.17487/RFC3629, November
2003, <<a href="http://www.rfc-editor.org/info/rfc3629">http://www.rfc-editor.org/info/rfc3629</a>>.
[<a id="ref-RFC5652">RFC5652</a>] Housley, R., "Cryptographic Message Syntax (CMS)", STD 70,
<a href="./rfc5652">RFC 5652</a>, DOI 10.17487/RFC5652, September 2009,
<<a href="http://www.rfc-editor.org/info/rfc5652">http://www.rfc-editor.org/info/rfc5652</a>>.
[<a id="ref-RFC5958">RFC5958</a>] Turner, S., "Asymmetric Key Packages", <a href="./rfc5958">RFC 5958</a>,
DOI 10.17487/RFC5958, August 2010,
<<a href="http://www.rfc-editor.org/info/rfc5958">http://www.rfc-editor.org/info/rfc5958</a>>.
[<a id="ref-RFC6149">RFC6149</a>] Turner, S. and L. Chen, "MD2 to Historic Status",
<a href="./rfc6149">RFC 6149</a>, DOI 10.17487/RFC6149, March 2011,
<<a href="http://www.rfc-editor.org/info/rfc6149">http://www.rfc-editor.org/info/rfc6149</a>>.
[<a id="ref-RFC6151">RFC6151</a>] Turner, S. and L. Chen, "Updated Security Considerations
for the MD5 Message-Digest and the HMAC-MD5 Algorithms",
<a href="./rfc6151">RFC 6151</a>, DOI 10.17487/RFC6151, March 2011,
<<a href="http://www.rfc-editor.org/info/rfc6151">http://www.rfc-editor.org/info/rfc6151</a>>.
[<a id="ref-RFC6194">RFC6194</a>] Polk, T., Chen, L., Turner, S., and P. Hoffman, "Security
Considerations for the SHA-0 and SHA-1 Message-Digest
Algorithms", <a href="./rfc6194">RFC 6194</a>, DOI 10.17487/RFC6194, March 2011,
<<a href="http://www.rfc-editor.org/info/rfc6194">http://www.rfc-editor.org/info/rfc6194</a>>.
[<a id="ref-WANG">WANG</a>] Wang, X., Yao, A.C., and F. Yao, "Cryptanalysis on SHA-1",
presented by Adi Shamir at the rump session of CRYPTO
2005, <<a href="http://csrc.nist.gov/groups/ST/hash/documents/Wang_SHA1-New-Result.pdf">http://csrc.nist.gov/groups/ST/hash/documents/</a>
<a href="http://csrc.nist.gov/groups/ST/hash/documents/Wang_SHA1-New-Result.pdf">Wang_SHA1-New-Result.pdf</a>>.
[<a id="ref-WU">WU</a>] Wu, T., "The Secure Remote Password protocol", In
Proceedings of the 1998 Internet Society Network and
Distributed System Security Symposium, pages 97-111,
Internet Society, 1998,
<<a href="https://www.isoc.org/isoc/conferences/ndss/98/wu.pdf">https://www.isoc.org/isoc/conferences/ndss/98/wu.pdf</a>>.
<span class="grey">Moriarty, et al. Informational [Page 22]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-23" ></span>
<span class="grey"><a href="./rfc8018">RFC 8018</a> PKCS #5 v2.1 January 2017</span>
<span class="h2"><a class="selflink" id="appendix-A" href="#appendix-A">Appendix A</a>. ASN.1 Syntax</span>
This section defines ASN.1 syntax for the key derivation functions,
the encryption schemes, the message authentication scheme, and
supporting techniques. The intended application of these definitions
includes PKCS #8 and other syntax for key management, encrypted data,
and integrity-protected data. (Various aspects of ASN.1 are
specified in several ISO/IEC standards [<a href="#ref-ISO8824-1">ISO8824-1</a>] [<a href="#ref-ISO8824-2">ISO8824-2</a>]
[<a href="#ref-ISO8824-3">ISO8824-3</a>] [<a href="#ref-ISO8824-4">ISO8824-4</a>].)
The object identifier pkcs-5 identifies the arc of the OID tree from
which the OIDs (specific to PKCS #5) in this section are derived:
rsadsi OBJECT IDENTIFIER ::= {iso(1) member-body(2) us(840) 113549}
pkcs OBJECT IDENTIFIER ::= {rsadsi 1}
pkcs-5 OBJECT IDENTIFIER ::= {pkcs 5}
<span class="h3"><a class="selflink" id="appendix-A.1" href="#appendix-A.1">A.1</a>. PBKDF1</span>
No object identifier is given for PBKDF1, as the object identifiers
for PBES1 are sufficient for existing applications, and PBKDF2 is
recommended for new applications.
<span class="h3"><a class="selflink" id="appendix-A.2" href="#appendix-A.2">A.2</a>. PBKDF2</span>
The object identifier id-PBKDF2 identifies the PBKDF2 key derivation
function (<a href="#section-5.2">Section 5.2</a>).
id-PBKDF2 OBJECT IDENTIFIER ::= {pkcs-5 12}
The parameters field associated with this OID in an
AlgorithmIdentifier shall have type PBKDF2-params:
PBKDF2-params ::= SEQUENCE {
salt CHOICE {
specified OCTET STRING,
otherSource AlgorithmIdentifier {{PBKDF2-SaltSources}}
},
iterationCount INTEGER (1..MAX),
keyLength INTEGER (1..MAX) OPTIONAL,
prf AlgorithmIdentifier {{PBKDF2-PRFs}} DEFAULT
algid-hmacWithSHA1 }
<span class="grey">Moriarty, et al. Informational [Page 23]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-24" ></span>
<span class="grey"><a href="./rfc8018">RFC 8018</a> PKCS #5 v2.1 January 2017</span>
The fields of type PBKDF2-params have the following meanings:
- salt specifies the salt value or the source of the salt value.
It shall either be an octet string or an algorithm ID with an
OID in the set PBKDF2-SaltSources, which is reserved for future
versions of PKCS #5.
The salt-source approach is intended to indicate how the salt
value is to be generated as a function of parameters in the
algorithm ID, application data, or both. For instance, it may
indicate that the salt value is produced from the encoding of a
structure that specifies detailed information about the derived
key as suggested in <a href="#section-4.1">Section 4.1</a>. Some of the information may
be carried elsewhere, e.g., in the encryption algorithm ID.
However, such facilities are deferred to a future version of
PKCS #5.
In this version, an application may achieve the benefits
mentioned in <a href="#section-4.1">Section 4.1</a> by choosing a particular
interpretation of the salt value in the specified alternative.
PBKDF2-SaltSources ALGORITHM-IDENTIFIER ::= { ... }
- iterationCount specifies the iteration count. The maximum
iteration count allowed depends on the implementation. It is
expected that implementation profiles may further constrain the
bounds.
- keyLength, an optional field, is the length in octets of the
derived key. The maximum key length allowed depends on the
implementation; it is expected that implementation profiles may
further constrain the bounds. The field is provided for
convenience only; the key length is not cryptographically
protected. If there is concern about interaction between
operations with different key lengths for a given salt (see
<a href="#section-4.1">Section 4.1</a>), the salt should distinguish among the different
key lengths.
- prf identifies the underlying pseudorandom function. It shall
be an algorithm ID with an OID in the set PBKDF2-PRFs, which
for this version of PKCS #5 shall consist of id-hmacWithSHA1
(see <a href="#appendix-B.1.1">Appendix B.1.1</a>) and any other OIDs defined by the
application.
<span class="grey">Moriarty, et al. Informational [Page 24]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-25" ></span>
<span class="grey"><a href="./rfc8018">RFC 8018</a> PKCS #5 v2.1 January 2017</span>
PBKDF2-PRFs ALGORITHM-IDENTIFIER ::= {
{NULL IDENTIFIED BY id-hmacWithSHA1},
{NULL IDENTIFIED BY id-hmacWithSHA224},
{NULL IDENTIFIED BY id-hmacWithSHA256},
{NULL IDENTIFIED BY id-hmacWithSHA384},
{NULL IDENTIFIED BY id-hmacWithSHA512},
{NULL IDENTIFIED BY id-hmacWithSHA512-224},
{NULL IDENTIFIED BY id-hmacWithSHA512-256},
...
}
The default pseudorandom function is HMAC-SHA-1:
algid-hmacWithSHA1 AlgorithmIdentifier {{PBKDF2-PRFs}} ::=
{algorithm id-hmacWithSHA1, parameters NULL : NULL}
<span class="h3"><a class="selflink" id="appendix-A.3" href="#appendix-A.3">A.3</a>. PBES1</span>
Different object identifiers identify the PBES1 encryption scheme
(<a href="#section-6.1">Section 6.1</a>) according to the underlying hash function in the key
derivation function and the underlying block cipher, as summarized in
the following table:
Hash Function Block Cipher OID
MD2 DES pkcs-5.1
MD2 RC2 pkcs-5.4
MD5 DES pkcs-5.3
MD5 RC2 pkcs-5.6
SHA-1 DES pkcs-5.10
SHA-1 RC2 pkcs-5.11
pbeWithMD2AndDES-CBC OBJECT IDENTIFIER ::= {pkcs-5 1}
pbeWithMD2AndRC2-CBC OBJECT IDENTIFIER ::= {pkcs-5 4}
pbeWithMD5AndDES-CBC OBJECT IDENTIFIER ::= {pkcs-5 3}
pbeWithMD5AndRC2-CBC OBJECT IDENTIFIER ::= {pkcs-5 6}
pbeWithSHA1AndDES-CBC OBJECT IDENTIFIER ::= {pkcs-5 10}
pbeWithSHA1AndRC2-CBC OBJECT IDENTIFIER ::= {pkcs-5 11}
For each OID, the parameters field associated with the OID in an
AlgorithmIdentifier shall have type PBEParameter:
PBEParameter ::= SEQUENCE {
salt OCTET STRING (SIZE(8)),
iterationCount INTEGER }
<span class="grey">Moriarty, et al. Informational [Page 25]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-26" ></span>
<span class="grey"><a href="./rfc8018">RFC 8018</a> PKCS #5 v2.1 January 2017</span>
The fields of type PBEParameter have the following meanings:
- salt specifies the salt value, an eight-octet string.
- iterationCount specifies the iteration count.
<span class="h3"><a class="selflink" id="appendix-A.4" href="#appendix-A.4">A.4</a>. PBES2</span>
The object identifier id-PBES2 identifies the PBES2 encryption scheme
(<a href="#section-6.2">Section 6.2</a>).
id-PBES2 OBJECT IDENTIFIER ::= {pkcs-5 13}
The parameters field associated with this OID in an
AlgorithmIdentifier shall have type PBES2-params:
PBES2-params ::= SEQUENCE {
keyDerivationFunc AlgorithmIdentifier {{PBES2-KDFs}},
encryptionScheme AlgorithmIdentifier {{PBES2-Encs}} }
The fields of type PBES2-params have the following meanings:
- keyDerivationFunc identifies the underlying key derivation
function. It shall be an algorithm ID with an OID in the set
PBES2-KDFs, which for this version of PKCS #5 shall consist of
id-PBKDF2 (Appendix A.2).
PBES2-KDFs ALGORITHM-IDENTIFIER ::=
{ {PBKDF2-params IDENTIFIED BY id-PBKDF2}, ... }
- encryptionScheme identifies the underlying encryption scheme.
It shall be an algorithm ID with an OID in the set PBES2-Encs,
whose definition is left to the application. Examples of
underlying encryption schemes are given in <a href="#appendix-B.2">Appendix B.2</a>.
PBES2-Encs ALGORITHM-IDENTIFIER ::= { ... }
<span class="h3"><a class="selflink" id="appendix-A.5" href="#appendix-A.5">A.5</a>. PBMAC1</span>
The object identifier id-PBMAC1 identifies the PBMAC1 message
authentication scheme (<a href="#section-7.1">Section 7.1</a>).
id-PBMAC1 OBJECT IDENTIFIER ::= {pkcs-5 14}
<span class="grey">Moriarty, et al. Informational [Page 26]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-27" ></span>
<span class="grey"><a href="./rfc8018">RFC 8018</a> PKCS #5 v2.1 January 2017</span>
The parameters field associated with this OID in an
AlgorithmIdentifier shall have type PBMAC1-params:
PBMAC1-params ::= SEQUENCE {
keyDerivationFunc AlgorithmIdentifier {{PBMAC1-KDFs}},
messageAuthScheme AlgorithmIdentifier {{PBMAC1-MACs}} }
The keyDerivationFunc field has the same meaning as the corresponding
field of PBES2-params (Appendix A.4) except that the set of OIDs is
PBMAC1-KDFs.
PBMAC1-KDFs ALGORITHM-IDENTIFIER ::=
{ {PBKDF2-params IDENTIFIED BY id-PBKDF2}, ... }
The messageAuthScheme field identifies the underlying message
authentication scheme. It shall be an algorithm ID with an OID in
the set PBMAC1-MACs, whose definition is left to the application.
Examples of underlying encryption schemes are given in <a href="#appendix-B.3">Appendix B.3</a>.
PBMAC1-MACs ALGORITHM-IDENTIFIER ::= { ... }
<span class="h2"><a class="selflink" id="appendix-B" href="#appendix-B">Appendix B</a>. Supporting Techniques</span>
This section gives several examples of underlying functions and
schemes supporting the password-based schemes in Sections <a href="#section-5">5</a>, <a href="#section-6">6</a>, and
7.
While these supporting techniques are appropriate for applications to
implement, none of them is required to be implemented. It is
expected, however, that profiles for PKCS #5 will be developed that
specify particular supporting techniques.
This section also gives object identifiers for the supporting
techniques. The object identifiers digestAlgorithm and
encryptionAlgorithm identify the arcs from which certain algorithm
OIDs referenced in this section are derived:
digestAlgorithm OBJECT IDENTIFIER ::= {rsadsi 2} encryptionAlgorithm
OBJECT IDENTIFIER ::= {rsadsi 3}
<span class="grey">Moriarty, et al. Informational [Page 27]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-28" ></span>
<span class="grey"><a href="./rfc8018">RFC 8018</a> PKCS #5 v2.1 January 2017</span>
<span class="h3"><a class="selflink" id="appendix-B.1" href="#appendix-B.1">B.1</a>. Pseudorandom Functions</span>
Examples of pseudorandom function for PBKDF2 (<a href="#section-5.2">Section 5.2</a>) include
HMAC with SHA-1, SHA-224, SHA-256, SHA-384, SHA-512, SHA-512/224, and
SHA-512/256. Applications may employ other schemes as well.
<span class="h4"><a class="selflink" id="appendix-B.1.1" href="#appendix-B.1.1">B.1.1</a>. HMAC-SHA-1</span>
HMAC-SHA-1 is the pseudorandom function corresponding to the HMAC
message authentication code [<a href="./rfc2104" title=""HMAC: Keyed- Hashing for Message Authentication"">RFC2104</a>] based on the SHA-1 hash
function [<a href="#ref-NIST180" title=""Secure Hash Standard (SHS)"">NIST180</a>]. The pseudorandom function is the same function
by which the message authentication code is computed, with a full-
length output. (The first argument to the pseudorandom function PRF
serves as HMAC's "key", and the second serves as HMAC's "text". In
the case of PBKDF2, the "key" is thus the password and the "text" is
the salt.) HMAC-SHA-1 has a variable key length and a 20-octet
(160-bit) output value.
Although the length of the key to HMAC-SHA-1 is essentially
unbounded, the effective search space for pseudorandom function
outputs may be limited by the structure of the function. In
particular, when the key is longer than 512 bits, HMAC-SHA-1 will
first hash it to 160 bits. Thus, even if a long derived key
consisting of several pseudorandom function outputs is produced from
a key, the effective search space for the derived key will be at most
160 bits. Although the specific limitation for other key sizes
depends on details of the HMAC construction, one should assume, to be
conservative, that the effective search space is limited to 160 bits
for other key sizes as well.
(The 160-bit limitation should not generally pose a practical
limitation in the case of password-based cryptography, since the
search space for a password is unlikely to be greater than 160 bits.)
The object identifier id-hmacWithSHA1 identifies the HMAC-SHA-1
pseudorandom function:
id-hmacWithSHA1 OBJECT IDENTIFIER ::= {digestAlgorithm 7}
The parameters field associated with this OID in an
AlgorithmIdentifier shall have type NULL. This object identifier is
employed in the object set PBKDF2-PRFs (Appendix A.2).
Note: Although HMAC-SHA-1 was designed as a message authentication
code, its proof of security is readily modified to accommodate
requirements for a pseudorandom function, under stronger assumptions.
A hash function may also meet the requirements of a pseudorandom
function under certain assumptions. For instance, the direct
<span class="grey">Moriarty, et al. Informational [Page 28]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-29" ></span>
<span class="grey"><a href="./rfc8018">RFC 8018</a> PKCS #5 v2.1 January 2017</span>
application of a hash function to the concatenation of the "key" and
the "text" may be appropriate, provided that "text" has appropriate
structure to prevent certain attacks. HMAC-SHA-1 is preferable,
however, because it treats "key" and "text" as separate arguments and
does not require "text" to have any structure.
During 2004 and 2005, there were a number of attacks on SHA-1 that
reduced its perceived effective strength against collision attacks to
62 bits instead of the expected 80 bits (e.g., Wang et al. [<a href="#ref-WANG" title=""Cryptanalysis on SHA-1"">WANG</a>],
confirmed by M. Cochran [<a href="#ref-COCHRAN" title=""Notes on the Wang et al. 2^63 SHA-1 Differential Path"">COCHRAN</a>]). However, since these attacks
centered on finding collisions between values, they are not a direct
security consideration here because the collision-resistant property
is not required by the HMAC authentication scheme.
<span class="h4"><a class="selflink" id="appendix-B.1.2" href="#appendix-B.1.2">B.1.2</a>. HMAC-SHA-2</span>
HMAC-SHA-2 refers to the set of pseudorandom functions corresponding
to the HMAC message authentication code (now a FIPS standard
[<a href="#ref-NIST198" title=""The Keyed - Hash Message Authentication Code (HMAC)"">NIST198</a>]) based on the new SHA-2 functions (FIPS 180-4 [<a href="#ref-NIST180" title=""Secure Hash Standard (SHS)"">NIST180</a>]).
HMAC-SHA-2 has a variable key length and variable output value
depending on the hash function chosen (SHA-224, SHA-256, SHA-384,
SHA-512, SHA-512/224, or SHA-512/256) -- that is, 28, 32, 48, or 64
octets.
Using the new hash functions extends the search space for the
produced keys. Where SHA-1 limits the search space to 20 octets,
SHA-2 sets new limits of 28, 32, 48, and 64 octets.
Object identifiers for HMAC are defined as follows:
id-hmacWithSHA224 OBJECT IDENTIFIER ::= {digestAlgorithm 8}
id-hmacWithSHA256 OBJECT IDENTIFIER ::= {digestAlgorithm 9}
id-hmacWithSHA384 OBJECT IDENTIFIER ::= {digestAlgorithm 10}
id-hmacWithSHA512 OBJECT IDENTIFIER ::= {digestAlgorithm 11}
id-hmacWithSHA512-224 OBJECT IDENTIFIER ::= {digestAlgorithm 12}
id-hmacWithSHA512-256 OBJECT IDENTIFIER ::= {digestAlgorithm 13}
<span class="h3"><a class="selflink" id="appendix-B.2" href="#appendix-B.2">B.2</a>. Encryption Schemes</span>
An example encryption scheme for PBES2 (<a href="#section-6.2">Section 6.2</a>) is AES-CBC-Pad.
The schemes defined in PKCS #5 v2.0 [<a href="./rfc2898" title=""PKCS #5: Password-Based Cryptography Specification Version 2.0"">RFC2898</a>], DES-CBC-Pad,
DES-EDE3-CBC-Pad, RC2-CBC-Pad, and RC5-CBC-Pad, are still supported,
but DES-CBC-Pad, DES-EDE3-CBC-Pad, RC2-CBC-Pad are now considered
legacy and should only be used for backwards compatibility reasons.
The object identifiers given in this section are intended to be
employed in the object set PBES2-Encs (Appendix A.4).
<span class="grey">Moriarty, et al. Informational [Page 29]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-30" ></span>
<span class="grey"><a href="./rfc8018">RFC 8018</a> PKCS #5 v2.1 January 2017</span>
<span class="h4"><a class="selflink" id="appendix-B.2.1" href="#appendix-B.2.1">B.2.1</a>. DES-CBC-Pad</span>
DES-CBC-Pad is single-key DES [<a href="#ref-NIST46" title=""Data Encryption Standard"">NIST46</a>] in CBC mode [<a href="#ref-NIST81" title=""DES Modes of Operation"">NIST81</a>] with the
padding operation specified in <a href="./rfc1423">RFC 1423</a> [<a href="./rfc1423" title=""Privacy Enhancement for Internet Electronic Mail: Part III: Algorithms, Modes, and Identifiers"">RFC1423</a>] (see <a href="#section-6.1.1">Section 6.1.1</a>
of this document). DES-CBC-Pad has an eight-octet encryption key and
an eight-octet initialization vector. The key is considered as a
64-bit encoding of a 56-bit DES key with parity bits ignored.
The object identifier desCBC (defined in the NIST/OSI Implementors'
Workshop agreements) identifies the DES-CBC-Pad encryption scheme:
desCBC OBJECT IDENTIFIER ::=
{iso(1) identified-organization(3) oiw(14) secsig(3)
algorithms(2) 7}
The parameters field associated with this OID in an
AlgorithmIdentifier shall have type OCTET STRING (SIZE(8)),
specifying the initialization vector for CBC mode.
<span class="h4"><a class="selflink" id="appendix-B.2.2" href="#appendix-B.2.2">B.2.2</a>. DES-EDE3-CBC-Pad</span>
DES-EDE3-CBC-Pad is three-key triple-DES in CBC mode [<a href="#ref-ANSIX952" title=""Triple Data Encryption Algorithm Modes of Operation"">ANSIX952</a>] with
the padding operation specified in <a href="./rfc1423">RFC 1423</a> [<a href="./rfc1423" title=""Privacy Enhancement for Internet Electronic Mail: Part III: Algorithms, Modes, and Identifiers"">RFC1423</a>].
DES-EDE3-CBC-Pad has a 24-octet encryption key and an eight-octet
initialization vector. The key is considered as the concatenation of
three eight-octet keys, each of which is a 64-bit encoding of a
56-bit DES key with parity bits ignored.
The object identifier des-EDE3-CBC identifies the DES-EDE3-CBC-Pad
encryption scheme:
des-EDE3-CBC OBJECT IDENTIFIER ::= {encryptionAlgorithm 7}
The parameters field associated with this OID in an
AlgorithmIdentifier shall have type OCTET STRING (SIZE(8)),
specifying the initialization vector for CBC mode.
Note: An OID for DES-EDE3-CBC without padding is given in ANSI X9.52
[<a href="#ref-ANSIX952" title=""Triple Data Encryption Algorithm Modes of Operation"">ANSIX952</a>]; the one given here is preferred since it specifies
padding.
<span class="h4"><a class="selflink" id="appendix-B.2.3" href="#appendix-B.2.3">B.2.3</a>. RC2-CBC-Pad</span>
RC2-CBC-Pad is the RC2 encryption algorithm [<a href="./rfc2268" title=""A Description of the RC2(r) Encryption Algorithm"">RFC2268</a>] in CBC mode
with the padding operation specified in <a href="./rfc1423">RFC 1423</a> [<a href="./rfc1423" title=""Privacy Enhancement for Internet Electronic Mail: Part III: Algorithms, Modes, and Identifiers"">RFC1423</a>].
RC2-CBC-Pad has a variable key length, from one to 128 octets, a
separate "effective key bits" parameter from one to 1024 bits that
<span class="grey">Moriarty, et al. Informational [Page 30]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-31" ></span>
<span class="grey"><a href="./rfc8018">RFC 8018</a> PKCS #5 v2.1 January 2017</span>
limits the effective search space independent of the key length, and
an eight-octet initialization vector.
The object identifier rc2CBC identifies the RC2-CBC-Pad encryption
scheme:
rc2CBC OBJECT IDENTIFIER ::= {encryptionAlgorithm 2}
The parameters field associated with OID in an AlgorithmIdentifier
shall have type RC2-CBC-Parameter:
RC2-CBC-Parameter ::= SEQUENCE {
rc2ParameterVersion INTEGER OPTIONAL,
iv OCTET STRING (SIZE(8)) }
The fields of type RC2-CBCParameter have the following meanings:
- rc2ParameterVersion is a proprietary RSA Security Inc. encoding
of the "effective key bits" for RC2. The following encodings
are defined:
Effective Key Bits Encoding
40 160
64 120
128 58
b >= 256 b
If the rc2ParameterVersion field is omitted, the "effective key bits"
defaults to 32. (This is for backward compatibility with certain
very old implementations.)
- iv is the eight-octet initialization vector.
<span class="h4"><a class="selflink" id="appendix-B.2.4" href="#appendix-B.2.4">B.2.4</a>. RC5-CBC-Pad</span>
RC5-CBC-Pad is the RC5 encryption algorithm [<a href="#ref-RC5" title=""The RC5 encryption algorithm"">RC5</a>] in CBC mode with
the padding operation specified in <a href="./rfc5652">RFC 5652</a> [<a href="./rfc5652" title=""Cryptographic Message Syntax (CMS)"">RFC5652</a>], which is a
generalization of the padding operation specified in <a href="./rfc1423">RFC 1423</a>
[<a href="./rfc1423" title=""Privacy Enhancement for Internet Electronic Mail: Part III: Algorithms, Modes, and Identifiers"">RFC1423</a>]. The scheme is fully specified in [<a href="./rfc2040" title=""The RC5, RC5-CBC, RC5-CBC-Pad, and RC5-CTS Algorithms"">RFC2040</a>]. RC5-CBC-Pad
has a variable key length, from 0 to 256 octets, and supports both a
64-bit block size and a 128-bit block size. For the former, it has
an eight-octet initialization vector, and for the latter, a 16-octet
initialization vector. RC5-CBC-Pad also has a variable number of
"rounds" in the encryption operation, from 8 to 127.
<span class="grey">Moriarty, et al. Informational [Page 31]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-32" ></span>
<span class="grey"><a href="./rfc8018">RFC 8018</a> PKCS #5 v2.1 January 2017</span>
Note: For RC5 with a 64-bit block size, the padding string is as
defined in <a href="./rfc1423">RFC 1423</a> [<a href="./rfc1423" title=""Privacy Enhancement for Internet Electronic Mail: Part III: Algorithms, Modes, and Identifiers"">RFC1423</a>]. For RC5 with a 128-bit block size,
the padding string consists of 16-(||M|| mod 16) octets each with
value 16-(||M|| mod 16).
The object identifier rc5-CBC-PAD [<a href="./rfc2040" title=""The RC5, RC5-CBC, RC5-CBC-Pad, and RC5-CTS Algorithms"">RFC2040</a>] identifies the
RC5-CBC-Pad encryption scheme:
rc5-CBC-PAD OBJECT IDENTIFIER ::= {encryptionAlgorithm 9}
The parameters field associated with this OID in an
AlgorithmIdentifier shall have type RC5-CBC-Parameters:
RC5-CBC-Parameters ::= SEQUENCE {
version INTEGER {v1-0(16)} (v1-0),
rounds INTEGER (8..127),
blockSizeInBits INTEGER (64 | 128),
iv OCTET STRING OPTIONAL }
The fields of type RC5-CBC-Parameters have the following meanings:
- version is the version of the algorithm, which shall be v1-0.
- rounds is the number of rounds in the encryption operation,
which shall be between 8 and 127.
- blockSizeInBits is the block size in bits, which shall be 64 or
128.
- iv is the initialization vector, an eight-octet string for
64-bit RC5 and a 16-octet string for 128-bit RC5. The default
is a string of the appropriate length consisting of zero
octets.
<span class="h4"><a class="selflink" id="appendix-B.2.5" href="#appendix-B.2.5">B.2.5</a>. AES-CBC-Pad</span>
AES-CBC-Pad is the AES encryption algorithm [<a href="#ref-NIST197" title=""Advance Encryption Standard (AES)"">NIST197</a>] in CBC mode
with the padding operation specified in <a href="./rfc5652">RFC 5652</a> [<a href="./rfc5652" title=""Cryptographic Message Syntax (CMS)"">RFC5652</a>].
AES-CBC-Pad has a variable key length of 16, 24, or 32 octets and has
a 16-octet block size. It has a 16-octet initialization vector.
Note: For AES, the padding string consists of 16-(||M|| mod 16)
octets each with value 16-(||M|| mod 16).
For AES, object identifiers are defined depending on key size and
operation mode. For example, the 16-octet (128-bit) key AES
encryption scheme in CBC mode would be aes128-CBC-Pad identifying the
AES-CBC-PAD encryption scheme using a 16-octet key:
<span class="grey">Moriarty, et al. Informational [Page 32]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-33" ></span>
<span class="grey"><a href="./rfc8018">RFC 8018</a> PKCS #5 v2.1 January 2017</span>
aes128-CBC-PAD OBJECT IDENTIFIER ::= {aes 2}
The AES object identifier is defined in <a href="#appendix-C">Appendix C</a>.
The parameters field associated with this OID in an
AlgorithmIdentifier shall have type OCTET STRING (SIZE(16)),
specifying the initialization vector for CBC mode.
<span class="h3"><a class="selflink" id="appendix-B.3" href="#appendix-B.3">B.3</a>. Message Authentication Schemes</span>
An example message authentication scheme for PBMAC1 (<a href="#section-7.1">Section 7.1</a>) is
HMAC-SHA-1.
<span class="h4"><a class="selflink" id="appendix-B.3.1" href="#appendix-B.3.1">B.3.1</a>. HMAC-SHA-1</span>
HMAC-SHA-1 is the HMAC message authentication scheme [<a href="./rfc2104" title=""HMAC: Keyed- Hashing for Message Authentication"">RFC2104</a>] based
on the SHA-1 hash function [<a href="#ref-NIST180" title=""Secure Hash Standard (SHS)"">NIST180</a>]. HMAC-SHA-1 has a variable key
length and a 20-octet (160-bit) message authentication code.
The object identifier id-hmacWithSHA1 (see <a href="#appendix-B.1.1">Appendix B.1.1</a>) identifies
the HMAC-SHA-1 message authentication scheme. (The object identifier
is the same for both the pseudorandom function and the message
authentication scheme; the distinction is to be understood by
context.) This object identifier is intended to be employed in the
object set PBMAC1-Macs (Appendix A.5).
<span class="h4"><a class="selflink" id="appendix-B.3.2" href="#appendix-B.3.2">B.3.2</a>. HMAC-SHA-2</span>
HMAC-SHA-2 refers to the set of HMAC message authentication schemes
[<a href="#ref-NIST198" title=""The Keyed - Hash Message Authentication Code (HMAC)"">NIST198</a>] based on the SHA-2 functions [<a href="#ref-NIST180" title=""Secure Hash Standard (SHS)"">NIST180</a>]. HMAC-SHA-2 has a
variable key length and a message authentication code whose length is
based on the hash function chosen (SHA-224, SHA-256, SHA-384,
SHA-512, SHA-512/224, or SHA-512/256) -- that is, 28, 32, 48, or 64
octets.
The object identifiers id-hmacWithSHA224, id-hmacWithSHA256,
id-hmacWithSHA384, id-hmacWithSHA512, id-hmacWithSHA512-224, and
id-hmacWithSHA512-256 (see <a href="#appendix-B.1.2">Appendix B.1.2</a>) identify the HMAC-SHA-2
schemes. The object identifiers are the same for both the
pseudorandom functions and the message authentication schemes; the
distinction is to be understood by context. These object identifiers
are intended to be employed in the object set PBMAC1-Macs (Appendix
A.5).
<span class="grey">Moriarty, et al. Informational [Page 33]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-34" ></span>
<span class="grey"><a href="./rfc8018">RFC 8018</a> PKCS #5 v2.1 January 2017</span>
<span class="h2"><a class="selflink" id="appendix-C" href="#appendix-C">Appendix C</a>. ASN.1 Module</span>
For reference purposes, the ASN.1 syntax in the preceding sections is
presented as an ASN.1 module here.
-- PKCS #5 v2.1 ASN.1 Module
-- Revised October 27, 2012
-- This module has been checked for conformance with the
-- ASN.1 standard by the OSS ASN.1 Tools
PKCS5v2-1 {
iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-5(5)
modules(16) pkcs5v2-1(2)
}
DEFINITIONS EXPLICIT TAGS ::=
BEGIN
-- ========================
-- Basic object identifiers
-- ========================
nistAlgorithms OBJECT IDENTIFIER ::= {joint-iso-itu-t(2) country(16)
us(840) organization(1)
gov(101) csor(3) 4}
oiw OBJECT IDENTIFIER ::= {iso(1) identified-organization(3) 14}
rsadsi OBJECT IDENTIFIER ::= {iso(1) member-body(2) us(840) 113549}
pkcs OBJECT IDENTIFIER ::= {rsadsi 1}
pkcs-5 OBJECT IDENTIFIER ::= {pkcs 5}
-- =======================
-- Basic types and classes
-- =======================
AlgorithmIdentifier { ALGORITHM-IDENTIFIER:InfoObjectSet } ::=
SEQUENCE {
algorithm ALGORITHM-IDENTIFIER.&id({InfoObjectSet}),
parameters ALGORITHM-IDENTIFIER.&Type({InfoObjectSet}
{@algorithm}) OPTIONAL
}
ALGORITHM-IDENTIFIER ::= TYPE-IDENTIFIER
-- ======
-- PBKDF2
-- ======
<span class="grey">Moriarty, et al. Informational [Page 34]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-35" ></span>
<span class="grey"><a href="./rfc8018">RFC 8018</a> PKCS #5 v2.1 January 2017</span>
PBKDF2Algorithms ALGORITHM-IDENTIFIER ::= {
{PBKDF2-params IDENTIFIED BY id-PBKDF2},
...
}
id-PBKDF2 OBJECT IDENTIFIER ::= {pkcs-5 12}
algid-hmacWithSHA1 AlgorithmIdentifier {{PBKDF2-PRFs}} ::=
{algorithm id-hmacWithSHA1, parameters NULL : NULL}
PBKDF2-params ::= SEQUENCE {
salt CHOICE {
specified OCTET STRING,
otherSource AlgorithmIdentifier {{PBKDF2-SaltSources}}
},
iterationCount INTEGER (1..MAX),
keyLength INTEGER (1..MAX) OPTIONAL,
prf AlgorithmIdentifier {{PBKDF2-PRFs}} DEFAULT
algid-hmacWithSHA1
}
PBKDF2-SaltSources ALGORITHM-IDENTIFIER ::= { ... }
PBKDF2-PRFs ALGORITHM-IDENTIFIER ::= {
{NULL IDENTIFIED BY id-hmacWithSHA1},
{NULL IDENTIFIED BY id-hmacWithSHA224},
{NULL IDENTIFIED BY id-hmacWithSHA256},
{NULL IDENTIFIED BY id-hmacWithSHA384},
{NULL IDENTIFIED BY id-hmacWithSHA512},
{NULL IDENTIFIED BY id-hmacWithSHA512-224},
{NULL IDENTIFIED BY id-hmacWithSHA512-256},
...
}
-- =====
-- PBES1
-- =====
PBES1Algorithms ALGORITHM-IDENTIFIER ::= {
{PBEParameter IDENTIFIED BY pbeWithMD2AndDES-CBC} |
{PBEParameter IDENTIFIED BY pbeWithMD2AndRC2-CBC} |
{PBEParameter IDENTIFIED BY pbeWithMD5AndDES-CBC} |
{PBEParameter IDENTIFIED BY pbeWithMD5AndRC2-CBC} |
{PBEParameter IDENTIFIED BY pbeWithSHA1AndDES-CBC} |
{PBEParameter IDENTIFIED BY pbeWithSHA1AndRC2-CBC},
...
}
<span class="grey">Moriarty, et al. Informational [Page 35]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-36" ></span>
<span class="grey"><a href="./rfc8018">RFC 8018</a> PKCS #5 v2.1 January 2017</span>
pbeWithMD2AndDES-CBC OBJECT IDENTIFIER ::= {pkcs-5 1}
pbeWithMD2AndRC2-CBC OBJECT IDENTIFIER ::= {pkcs-5 4}
pbeWithMD5AndDES-CBC OBJECT IDENTIFIER ::= {pkcs-5 3}
pbeWithMD5AndRC2-CBC OBJECT IDENTIFIER ::= {pkcs-5 6}
pbeWithSHA1AndDES-CBC OBJECT IDENTIFIER ::= {pkcs-5 10}
pbeWithSHA1AndRC2-CBC OBJECT IDENTIFIER ::= {pkcs-5 11}
PBEParameter ::= SEQUENCE {
salt OCTET STRING (SIZE(8)),
iterationCount INTEGER
}
-- =====
-- PBES2
-- =====
PBES2Algorithms ALGORITHM-IDENTIFIER ::= {
{PBES2-params IDENTIFIED BY id-PBES2},
...
}
id-PBES2 OBJECT IDENTIFIER ::= {pkcs-5 13}
PBES2-params ::= SEQUENCE {
keyDerivationFunc AlgorithmIdentifier {{PBES2-KDFs}},
encryptionScheme AlgorithmIdentifier {{PBES2-Encs}}
}
PBES2-KDFs ALGORITHM-IDENTIFIER ::= {
{PBKDF2-params IDENTIFIED BY id-PBKDF2},
...
}
PBES2-Encs ALGORITHM-IDENTIFIER ::= { ... }
-- ======
-- PBMAC1
-- ======
PBMAC1Algorithms ALGORITHM-IDENTIFIER ::= {
{PBMAC1-params IDENTIFIED BY id-PBMAC1},
...
}
id-PBMAC1 OBJECT IDENTIFIER ::= {pkcs-5 14}
PBMAC1-params ::= SEQUENCE {
keyDerivationFunc AlgorithmIdentifier {{PBMAC1-KDFs}},
<span class="grey">Moriarty, et al. Informational [Page 36]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-37" ></span>
<span class="grey"><a href="./rfc8018">RFC 8018</a> PKCS #5 v2.1 January 2017</span>
messageAuthScheme AlgorithmIdentifier {{PBMAC1-MACs}}
}
PBMAC1-KDFs ALGORITHM-IDENTIFIER ::= {
{PBKDF2-params IDENTIFIED BY id-PBKDF2},
...
}
PBMAC1-MACs ALGORITHM-IDENTIFIER ::= { ... }
-- =====================
-- Supporting techniques
-- =====================
digestAlgorithm OBJECT IDENTIFIER ::= {rsadsi 2}
encryptionAlgorithm OBJECT IDENTIFIER ::= {rsadsi 3}
SupportingAlgorithms ALGORITHM-IDENTIFIER ::= {
{NULL IDENTIFIED BY id-hmacWithSHA1} |
{OCTET STRING (SIZE(8)) IDENTIFIED BY desCBC} |
{OCTET STRING (SIZE(8)) IDENTIFIED BY des-EDE3-CBC} |
{RC2-CBC-Parameter IDENTIFIED BY rc2CBC} |
{RC5-CBC-Parameters IDENTIFIED BY rc5-CBC-PAD}, |
{OCTET STRING (SIZE(16)) IDENTIFIED BY aes128-CBC-PAD} |
{OCTET STRING (SIZE(16)) IDENTIFIED BY aes192-CBC-PAD} |
{OCTET STRING (SIZE(16)) IDENTIFIED BY aes256-CBC-PAD},
...
}
id-hmacWithSHA1 OBJECT IDENTIFIER ::= {digestAlgorithm 7}
id-hmacWithSHA224 OBJECT IDENTIFIER ::= {digestAlgorithm 8}
id-hmacWithSHA256 OBJECT IDENTIFIER ::= {digestAlgorithm 9}
id-hmacWithSHA384 OBJECT IDENTIFIER ::= {digestAlgorithm 10}
id-hmacWithSHA512 OBJECT IDENTIFIER ::= {digestAlgorithm 11}
id-hmacWithSHA512-224 OBJECT IDENTIFIER ::= {digestAlgorithm 12}
id-hmacWithSHA512-256 OBJECT IDENTIFIER ::= {digestAlgorithm 13}
desCBC OBJECT IDENTIFIER ::= {oiw secsig(3) algorithms(2) 7}
des-EDE3-CBC OBJECT IDENTIFIER ::= {encryptionAlgorithm 7}
rc2CBC OBJECT IDENTIFIER ::= {encryptionAlgorithm 2}
RC2-CBC-Parameter ::= SEQUENCE {
rc2ParameterVersion INTEGER OPTIONAL,
iv OCTET STRING (SIZE(8))
}
<span class="grey">Moriarty, et al. Informational [Page 37]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-38" ></span>
<span class="grey"><a href="./rfc8018">RFC 8018</a> PKCS #5 v2.1 January 2017</span>
rc5-CBC-PAD OBJECT IDENTIFIER ::= {encryptionAlgorithm 9}
RC5-CBC-Parameters ::= SEQUENCE {
version INTEGER {v1-0(16)} (v1-0),
rounds INTEGER (8..127),
blockSizeInBits INTEGER (64 | 128),
iv OCTET STRING OPTIONAL
}
aes OBJECT IDENTIFIER ::= { nistAlgorithms 1 }
aes128-CBC-PAD OBJECT IDENTIFIER ::= { aes 2 }
aes192-CBC-PAD OBJECT IDENTIFIER ::= { aes 22 }
aes256-CBC-PAD OBJECT IDENTIFIER ::= { aes 42 }
END
<span class="h2"><a class="selflink" id="appendix-D" href="#appendix-D">Appendix D</a>. Revision History of PKCS #5</span>
Versions 1.0 - 1.3
Versions 1.0 - 1.3 were distributed to participants in RSA Data
Security Inc.'s Public-Key Cryptography Standards meetings in
February and March 1991.
Version 1.4
Version 1.4 was part of the June 3, 1991 initial public release of
PKCS. Version 1.4 was published as NIST/OSI Implementors'
Workshop document SEC-SIG-91-20.
Version 1.5
Version 1.5 incorporated several editorial changes, including
updates to the references and the addition of a revision history.
Version 2.0
Version 2.0 incorporates major editorial changes in terms of the
document structure, and introduces the PBES2 encryption scheme,
the PBMAC1 message authentication scheme, and independent
password-based key derivation functions. This version continues
to support the encryption process in version 1.5.
<span class="grey">Moriarty, et al. Informational [Page 38]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-39" ></span>
<span class="grey"><a href="./rfc8018">RFC 8018</a> PKCS #5 v2.1 January 2017</span>
Version 2.1
This document transfers PKCS #5 into the IETF and includes some
minor changes from the authors for this submission.
o Introduces AES/CBC as an encryption scheme for PBES2 and HMAC
with the hash functions SHA-224, SHA-256, SHA-384, SHA-512,
SHA-512/224, and SHA-512/256 as pseudorandom functions for
PBKDF2 and message authentication schemes for PBMAC1.
o Changes references for PKCS #5 to <a href="./rfc2898">RFC 2898</a> and for PKCS #8 to
RFCs 5208 and 5898.
o Incorporates corrections of two editorial errata reported on
PKCS #5 [<a href="./rfc2898" title=""PKCS #5: Password-Based Cryptography Specification Version 2.0"">RFC2898</a>].
o Added security considerations for MD2, MD5, and SHA-1.
<span class="h2"><a class="selflink" id="appendix-E" href="#appendix-E">Appendix E</a>. About PKCS</span>
The Public-Key Cryptography Standards are specifications produced by
RSA Laboratories in cooperation with secure systems developers
worldwide for the purpose of accelerating the deployment of public-
key cryptography. First published in 1991 as a result of meetings
with a small group of early adopters of public-key technology, the
PKCS documents have become widely referenced and implemented.
Contributions from the PKCS series have become part of many formal
and de facto standards, including ANSI X9 documents, PKIX, Secure
Electronic Transaction (SET), S/MIME, and SSL.
Further development of most PKCS documents occurs through the IETF.
Suggestions for improvement are welcome.
<span class="grey">Moriarty, et al. Informational [Page 39]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-40" ></span>
<span class="grey"><a href="./rfc8018">RFC 8018</a> PKCS #5 v2.1 January 2017</span>
Acknowledgements
This document is based on a contribution of RSA Laboratories, the
research center of RSA Security Inc.
RC2 and RC5 are trademarks of EMC Corporation.
Authors' Addresses
Kathleen M. Moriarty (editor)
Dell EMC
176 South Street
Hopkinton, MA 01748
United States of America
Email: Kathleen.Moriarty@Dell.com
Burt Kaliski
Verisign
12061 Bluemont Way
Reston, VA 20190
United States of America
Email: bkaliski@verisign.com
URI: <a href="http://verisignlabs.com">http://verisignlabs.com</a>
Andreas Rusch
RSA
345 Queen Street
Brisbane, QLD 4000
Australia
Email: andreas.rusch@rsa.com
Moriarty, et al. Informational [Page 40]
</pre>
|