1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781
|
<pre>Internet Engineering Task Force (IETF) I. Liusvaara
Request for Comments: 8037 Independent
Category: Standards Track January 2017
ISSN: 2070-1721
<span class="h1">CFRG Elliptic Curve Diffie-Hellman (ECDH) and Signatures</span>
<span class="h1">in JSON Object Signing and Encryption (JOSE)</span>
Abstract
This document defines how to use the Diffie-Hellman algorithms
"X25519" and "X448" as well as the signature algorithms "Ed25519" and
"Ed448" from the IRTF CFRG elliptic curves work in JSON Object
Signing and Encryption (JOSE).
Status of This Memo
This is an Internet Standards Track document.
This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Further information on
Internet Standards is available in <a href="./rfc7841#section-2">Section 2 of RFC 7841</a>.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
<a href="http://www.rfc-editor.org/info/rfc8037">http://www.rfc-editor.org/info/rfc8037</a>.
Copyright Notice
Copyright (c) 2017 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to <a href="https://www.rfc-editor.org/bcp/bcp78">BCP 78</a> and the IETF Trust's Legal
Provisions Relating to IETF Documents
(<a href="http://trustee.ietf.org/license-info">http://trustee.ietf.org/license-info</a>) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
<span class="grey">Liusvaara Standards Track [Page 1]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-2" ></span>
<span class="grey"><a href="./rfc8037">RFC 8037</a> CFRG ECDH and Signatures in JOSE January 2017</span>
Table of Contents
<a href="#section-1">1</a>. Introduction . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-2">2</a>
<a href="#section-1.1">1.1</a>. Terminology . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-3">3</a>
<a href="#section-2">2</a>. Key Type "OKP" . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-3">3</a>
<a href="#section-3">3</a>. Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-4">4</a>
<a href="#section-3.1">3.1</a>. Signatures . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-4">4</a>
<a href="#section-3.1.1">3.1.1</a>. Signing . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-4">4</a>
<a href="#section-3.1.2">3.1.2</a>. Verification . . . . . . . . . . . . . . . . . . . . <a href="#page-4">4</a>
<a href="#section-3.2">3.2</a>. ECDH-ES . . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-4">4</a>
<a href="#section-3.2.1">3.2.1</a>. Performing the ECDH Operation . . . . . . . . . . . . <a href="#page-5">5</a>
<a href="#section-4">4</a>. Security Considerations . . . . . . . . . . . . . . . . . . . <a href="#page-5">5</a>
<a href="#section-5">5</a>. IANA Considerations . . . . . . . . . . . . . . . . . . . . . <a href="#page-6">6</a>
<a href="#section-6">6</a>. References . . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-8">8</a>
<a href="#section-6.1">6.1</a>. Normative References . . . . . . . . . . . . . . . . . . <a href="#page-8">8</a>
<a href="#section-6.2">6.2</a>. Informative References . . . . . . . . . . . . . . . . . <a href="#page-8">8</a>
<a href="#appendix-A">Appendix A</a>. Examples . . . . . . . . . . . . . . . . . . . . . . <a href="#page-9">9</a>
<a href="#appendix-A.1">A.1</a>. Ed25519 Private Key . . . . . . . . . . . . . . . . . . . <a href="#page-9">9</a>
<a href="#appendix-A.2">A.2</a>. Ed25519 Public Key . . . . . . . . . . . . . . . . . . . <a href="#page-9">9</a>
<a href="#appendix-A.3">A.3</a>. JWK Thumbprint Canonicalization . . . . . . . . . . . . . <a href="#page-9">9</a>
<a href="#appendix-A.4">A.4</a>. Ed25519 Signing . . . . . . . . . . . . . . . . . . . . . <a href="#page-10">10</a>
<a href="#appendix-A.5">A.5</a>. Ed25519 Validation . . . . . . . . . . . . . . . . . . . <a href="#page-11">11</a>
<a href="#appendix-A.6">A.6</a>. ECDH-ES with X25519 . . . . . . . . . . . . . . . . . . . <a href="#page-11">11</a>
<a href="#appendix-A.7">A.7</a>. ECDH-ES with X448 . . . . . . . . . . . . . . . . . . . . <a href="#page-12">12</a>
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-14">14</a>
Author's Address . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-14">14</a>
<span class="h2"><a class="selflink" id="section-1" href="#section-1">1</a>. Introduction</span>
The Internet Research Task Force (IRTF) Crypto Forum Research Group
(CFRG) selected new Diffie-Hellman algorithms ("X25519" and "X448";
[<a href="./rfc7748" title=""Elliptic Curves for Security"">RFC7748</a>]) and signature algorithms ("Ed25519" and "Ed448";
[<a href="./rfc8032" title=""Edwards-Curve Digital Signature Algorithm (EdDSA)"">RFC8032</a>]) for asymmetric key cryptography. This document defines
how to use those algorithms in JOSE in an interoperable manner.
This document defines the conventions to use in the context of
[<a href="./rfc7515" title=""JSON Web Signature (JWS)"">RFC7515</a>], [<a href="./rfc7516" title=""JSON Web Encryption (JWE)"">RFC7516</a>], and [<a href="./rfc7517" title=""JSON Web Key (JWK)"">RFC7517</a>].
While the CFRG also defined two pairs of isogenous elliptic curves
that underlie these algorithms, these curves are not directly
exposed, as the algorithms laid on top are sufficient for the
purposes of JOSE and are much easier to use.
All inputs to and outputs from the Elliptic Curve Diffie-Hellman
(ECDH) and signature functions are defined to be octet strings, with
the exception of outputs of verification functions, which are
booleans.
<span class="grey">Liusvaara Standards Track [Page 2]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-3" ></span>
<span class="grey"><a href="./rfc8037">RFC 8037</a> CFRG ECDH and Signatures in JOSE January 2017</span>
<span class="h3"><a class="selflink" id="section-1.1" href="#section-1.1">1.1</a>. Terminology</span>
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [<a href="./rfc2119" title=""Key words for use in RFCs to Indicate Requirement Levels"">RFC2119</a>].
"JWS Signing Input" and "JWS Signature" are defined by [<a href="./rfc7515" title=""JSON Web Signature (JWS)"">RFC7515</a>].
"Key Agreement with Elliptic Curve Diffie-Hellman Ephemeral Static"
is defined by <a href="./rfc7518#section-4.6">Section 4.6 of [RFC7518]</a>.
The JOSE key format ("JSON Web Key (JWK)") is defined by [<a href="./rfc7517" title=""JSON Web Key (JWK)"">RFC7517</a>]
and thumbprints for it ("JSON Web Key (JWK) Thumbprint") in
[<a href="./rfc7638" title=""JSON Web Key (JWK) Thumbprint"">RFC7638</a>].
<span class="h2"><a class="selflink" id="section-2" href="#section-2">2</a>. Key Type "OKP"</span>
A new key type (kty) value "OKP" (Octet Key Pair) is defined for
public key algorithms that use octet strings as private and public
keys. It has the following parameters:
o The parameter "kty" MUST be "OKP".
o The parameter "crv" MUST be present and contain the subtype of the
key (from the "JSON Web Elliptic Curve" registry).
o The parameter "x" MUST be present and contain the public key
encoded using the base64url [<a href="./rfc4648" title=""The Base16, Base32, and Base64 Data Encodings"">RFC4648</a>] encoding.
o The parameter "d" MUST be present for private keys and contain the
private key encoded using the base64url encoding. This parameter
MUST NOT be present for public keys.
Note: Do not assume that there is an underlying elliptic curve,
despite the existence of the "crv" and "x" parameters. (For
instance, this key type could be extended to represent Diffie-Hellman
(DH) algorithms based on hyperelliptic surfaces.)
When calculating JWK Thumbprints [<a href="./rfc7638" title=""JSON Web Key (JWK) Thumbprint"">RFC7638</a>], the three public key
fields are included in the hash input in lexicographic order: "crv",
"kty", and "x".
<span class="grey">Liusvaara Standards Track [Page 3]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-4" ></span>
<span class="grey"><a href="./rfc8037">RFC 8037</a> CFRG ECDH and Signatures in JOSE January 2017</span>
<span class="h2"><a class="selflink" id="section-3" href="#section-3">3</a>. Algorithms</span>
<span class="h3"><a class="selflink" id="section-3.1" href="#section-3.1">3.1</a>. Signatures</span>
For the purpose of using the Edwards-curve Digital Signature
Algorithm (EdDSA) for signing data using "JSON Web Signature (JWS)"
[<a href="./rfc7515" title=""JSON Web Signature (JWS)"">RFC7515</a>], algorithm "EdDSA" is defined here, to be applied as the
value of the "alg" parameter.
The following key subtypes are defined here for use with EdDSA:
"crv" EdDSA Variant
Ed25519 Ed25519
Ed448 Ed448
The key type used with these keys is "OKP" and the algorithm used for
signing is "EdDSA". These subtypes MUST NOT be used for Elliptic
Curve Diffie-Hellman Ephemeral Static (ECDH-ES).
The EdDSA variant used is determined by the subtype of the key
(Ed25519 for "Ed25519" and Ed448 for "Ed448").
<span class="h4"><a class="selflink" id="section-3.1.1" href="#section-3.1.1">3.1.1</a>. Signing</span>
Signing for these is performed by applying the signing algorithm
defined in [<a href="./rfc8032" title=""Edwards-Curve Digital Signature Algorithm (EdDSA)"">RFC8032</a>] to the private key (as private key), public key
(as public key), and the JWS Signing Input (as message). The
resulting signature is the JWS Signature. All inputs and outputs are
octet strings.
<span class="h4"><a class="selflink" id="section-3.1.2" href="#section-3.1.2">3.1.2</a>. Verification</span>
Verification is performed by applying the verification algorithm
defined in [<a href="./rfc8032" title=""Edwards-Curve Digital Signature Algorithm (EdDSA)"">RFC8032</a>] to the public key (as public key), the JWS
Signing Input (as message), and the JWS Signature (as signature).
All inputs are octet strings. If the algorithm accepts, the
signature is valid; otherwise, the signature is invalid.
<span class="h3"><a class="selflink" id="section-3.2" href="#section-3.2">3.2</a>. ECDH-ES</span>
The following key subtypes are defined here for purpose of "Key
Agreement with Elliptic Curve Diffie-Hellman Ephemeral Static"
(ECDH-ES):
"crv" ECDH Function Applied
X25519 X25519
X448 X448
<span class="grey">Liusvaara Standards Track [Page 4]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-5" ></span>
<span class="grey"><a href="./rfc8037">RFC 8037</a> CFRG ECDH and Signatures in JOSE January 2017</span>
The key type used with these keys is "OKP". These subtypes MUST NOT
be used for signing.
<a href="./rfc7518#section-4.6">Section 4.6 of [RFC7518]</a> defines the ECDH-ES algorithms
"ECDH-ES+A128KW", "ECDH-ES+A192KW", "ECDH-ES+A256KW", and "ECDH-ES".
<span class="h4"><a class="selflink" id="section-3.2.1" href="#section-3.2.1">3.2.1</a>. Performing the ECDH Operation</span>
The "x" parameter of the "epk" field is set as follows:
Apply the appropriate ECDH function to the ephemeral private key (as
scalar input) and the standard base point (as u-coordinate input).
The base64url encoding of the output is the value for the "x"
parameter of the "epk" field. All inputs and outputs are octet
strings.
The Z value (raw key agreement output) for key agreement (to be used
in subsequent Key Derivation Function (KDF) as per <a href="./rfc7518#section-4.6.2">Section 4.6.2 of
[RFC7518]</a>) is determined as follows:
Apply the appropriate ECDH function to the ephemeral private key (as
scalar input) and receiver public key (as u-coordinate input). The
output is the Z value. All inputs and outputs are octet strings.
<span class="h2"><a class="selflink" id="section-4" href="#section-4">4</a>. Security Considerations</span>
Security considerations from [<a href="./rfc7748" title=""Elliptic Curves for Security"">RFC7748</a>] and [<a href="./rfc8032" title=""Edwards-Curve Digital Signature Algorithm (EdDSA)"">RFC8032</a>] apply here.
Do not separate key material from information about what key subtype
it is for. When using keys, check that the algorithm is compatible
with the key subtype for the key. To do otherwise opens the system
up to attacks via mixing up algorithms. It is particularly dangerous
to mix up signature and Message Authentication Code (MAC) algorithms.
Although for Ed25519 and Ed448, the signature binds the key used for
signing, do not assume this, as there are many signature algorithms
that fail to make such a binding. If key-binding is desired, include
the key used for signing either inside the JWS protected header or
the data to sign.
If key generation or batch signature verification is performed, a
well-seeded cryptographic random number generator is REQUIRED.
Signing and non-batch signature verification are deterministic
operations and do not need random numbers of any kind.
<span class="grey">Liusvaara Standards Track [Page 5]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-6" ></span>
<span class="grey"><a href="./rfc8037">RFC 8037</a> CFRG ECDH and Signatures in JOSE January 2017</span>
The JSON Web Algorithm (JWA) ECDH-ES KDF construction does not mix
keys into the final shared secret. In key exchange, such mixing
could be a bad mistake; whereas here either the receiver public key
has to be chosen maliciously or the sender has to be malicious in
order to cause problems. In either case, all security evaporates.
The nominal security strengths of X25519 and X448 are ~126 and ~223
bits. Therefore, using 256-bit symmetric encryption (especially key
wrapping and encryption) with X448 is RECOMMENDED.
<span class="h2"><a class="selflink" id="section-5" href="#section-5">5</a>. IANA Considerations</span>
The following has been added to the "JSON Web Key Types" registry:
o "kty" Parameter Value: "OKP"
o Key Type Description: Octet string key pairs
o JOSE Implementation Requirements: Optional
o Change Controller: IESG
o Specification Document(s): <a href="./rfc8037#section-2">Section 2 of RFC 8037</a>
The following has been added to the "JSON Web Key Parameters"
registry:
o Parameter Name: "crv"
o Parameter Description: The subtype of key pair
o Parameter Information Class: Public
o Used with "kty" Value(s): "OKP"
o Change Controller: IESG
o Specification Document(s): <a href="./rfc8037#section-2">Section 2 of RFC 8037</a>
o Parameter Name: "d"
o Parameter Description: The private key
o Parameter Information Class: Private
o Used with "kty" Value(s): "OKP"
o Change Controller: IESG
o Specification Document(s): <a href="./rfc8037#section-2">Section 2 of RFC 8037</a>
o Parameter Name: "x"
o Parameter Description: The public key
o Parameter Information Class: Public
o Used with "kty" Value(s): "OKP"
o Change Controller: IESG
o Specification Document(s): <a href="./rfc8037#section-2">Section 2 of RFC 8037</a>
<span class="grey">Liusvaara Standards Track [Page 6]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-7" ></span>
<span class="grey"><a href="./rfc8037">RFC 8037</a> CFRG ECDH and Signatures in JOSE January 2017</span>
The following has been added to the "JSON Web Signature and
Encryption Algorithms" registry:
o Algorithm Name: "EdDSA"
o Algorithm Description: EdDSA signature algorithms
o Algorithm Usage Location(s): "alg"
o JOSE Implementation Requirements: Optional
o Change Controller: IESG
o Specification Document(s): <a href="./rfc8037#section-3.1">Section 3.1 of RFC 8037</a>
o Algorithm Analysis Documents(s): [<a href="./rfc8032" title=""Edwards-Curve Digital Signature Algorithm (EdDSA)"">RFC8032</a>]
The following has been added to the "JSON Web Key Elliptic Curve"
registry:
o Curve Name: "Ed25519"
o Curve Description: Ed25519 signature algorithm key pairs
o JOSE Implementation Requirements: Optional
o Change Controller: IESG
o Specification Document(s): <a href="./rfc8037#section-3.1">Section 3.1 of RFC 8037</a>
o Curve Name: "Ed448"
o Curve Description: Ed448 signature algorithm key pairs
o JOSE Implementation Requirements: Optional
o Change Controller: IESG
o Specification Document(s): <a href="./rfc8037#section-3.1">Section 3.1 of RFC 8037</a>
o Curve name: "X25519"
o Curve Description: X25519 function key pairs
o JOSE Implementation Requirements: Optional
o Change Controller: IESG
o Specification Document(s): <a href="./rfc8037#section-3.2">Section 3.2 of RFC 8037</a>
o Analysis Documents(s): [<a href="./rfc7748" title=""Elliptic Curves for Security"">RFC7748</a>]
o Curve Name: "X448"
o Curve Description: X448 function key pairs
o JOSE Implementation Requirements: Optional
o Change Controller: IESG
o Specification Document(s): <a href="./rfc8037#section-3.2">Section 3.2 of RFC 8037</a>
o Analysis Documents(s): [<a href="./rfc7748" title=""Elliptic Curves for Security"">RFC7748</a>]
<span class="grey">Liusvaara Standards Track [Page 7]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-8" ></span>
<span class="grey"><a href="./rfc8037">RFC 8037</a> CFRG ECDH and Signatures in JOSE January 2017</span>
<span class="h2"><a class="selflink" id="section-6" href="#section-6">6</a>. References</span>
<span class="h3"><a class="selflink" id="section-6.1" href="#section-6.1">6.1</a>. Normative References</span>
[<a id="ref-RFC2119">RFC2119</a>] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", <a href="https://www.rfc-editor.org/bcp/bcp14">BCP 14</a>, <a href="./rfc2119">RFC 2119</a>,
DOI 10.17487/RFC2119, March 1997,
<<a href="http://www.rfc-editor.org/info/rfc2119">http://www.rfc-editor.org/info/rfc2119</a>>.
[<a id="ref-RFC4648">RFC4648</a>] Josefsson, S., "The Base16, Base32, and Base64 Data
Encodings", <a href="./rfc4648">RFC 4648</a>, DOI 10.17487/RFC4648, October 2006,
<<a href="http://www.rfc-editor.org/info/rfc4648">http://www.rfc-editor.org/info/rfc4648</a>>.
[<a id="ref-RFC7515">RFC7515</a>] Jones, M., Bradley, J., and N. Sakimura, "JSON Web
Signature (JWS)", <a href="./rfc7515">RFC 7515</a>, DOI 10.17487/RFC7515, May
2015, <<a href="http://www.rfc-editor.org/info/rfc7515">http://www.rfc-editor.org/info/rfc7515</a>>.
[<a id="ref-RFC7517">RFC7517</a>] Jones, M., "JSON Web Key (JWK)", <a href="./rfc7517">RFC 7517</a>,
DOI 10.17487/RFC7517, May 2015,
<<a href="http://www.rfc-editor.org/info/rfc7517">http://www.rfc-editor.org/info/rfc7517</a>>.
[<a id="ref-RFC7518">RFC7518</a>] Jones, M., "JSON Web Algorithms (JWA)", <a href="./rfc7518">RFC 7518</a>,
DOI 10.17487/RFC7518, May 2015,
<<a href="http://www.rfc-editor.org/info/rfc7518">http://www.rfc-editor.org/info/rfc7518</a>>.
[<a id="ref-RFC7638">RFC7638</a>] Jones, M. and N. Sakimura, "JSON Web Key (JWK)
Thumbprint", <a href="./rfc7638">RFC 7638</a>, DOI 10.17487/RFC7638, September
2015, <<a href="http://www.rfc-editor.org/info/rfc7638">http://www.rfc-editor.org/info/rfc7638</a>>.
[<a id="ref-RFC7748">RFC7748</a>] Langley, A., Hamburg, M., and S. Turner, "Elliptic Curves
for Security", <a href="./rfc7748">RFC 7748</a>, DOI 10.17487/RFC7748, January
2016, <<a href="http://www.rfc-editor.org/info/rfc7748">http://www.rfc-editor.org/info/rfc7748</a>>.
[<a id="ref-RFC8032">RFC8032</a>] Josefsson, S. and I. Liusvaara, "Edwards-Curve Digital
Signature Algorithm (EdDSA)", <a href="./rfc8032">RFC 8032</a>,
DOI 10.17487/RFC8032, January 2017,
<<a href="http://www.rfc-editor.org/info/rfc8032">http://www.rfc-editor.org/info/rfc8032</a>>.
<span class="h3"><a class="selflink" id="section-6.2" href="#section-6.2">6.2</a>. Informative References</span>
[<a id="ref-RFC7516">RFC7516</a>] Jones, M. and J. Hildebrand, "JSON Web Encryption (JWE)",
<a href="./rfc7516">RFC 7516</a>, DOI 10.17487/RFC7516, May 2015,
<<a href="http://www.rfc-editor.org/info/rfc7516">http://www.rfc-editor.org/info/rfc7516</a>>.
<span class="grey">Liusvaara Standards Track [Page 8]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-9" ></span>
<span class="grey"><a href="./rfc8037">RFC 8037</a> CFRG ECDH and Signatures in JOSE January 2017</span>
<span class="h2"><a class="selflink" id="appendix-A" href="#appendix-A">Appendix A</a>. Examples</span>
To the extent possible, these examples use material taken from test
vectors of [<a href="./rfc7748" title=""Elliptic Curves for Security"">RFC7748</a>] and [<a href="./rfc8032" title=""Edwards-Curve Digital Signature Algorithm (EdDSA)"">RFC8032</a>].
<span class="h3"><a class="selflink" id="appendix-A.1" href="#appendix-A.1">A.1</a>. Ed25519 Private Key</span>
{"kty":"OKP","crv":"Ed25519",
"d":"nWGxne_9WmC6hEr0kuwsxERJxWl7MmkZcDusAxyuf2A",
"x":"11qYAYKxCrfVS_7TyWQHOg7hcvPapiMlrwIaaPcHURo"}
The hexadecimal dump of private key is:
9d 61 b1 9d ef fd 5a 60 ba 84 4a f4 92 ec 2c c4
44 49 c5 69 7b 32 69 19 70 3b ac 03 1c ae 7f 60
And of the public key is:
d7 5a 98 01 82 b1 0a b7 d5 4b fe d3 c9 64 07 3a
0e e1 72 f3 da a6 23 25 af 02 1a 68 f7 07 51 1a
<span class="h3"><a class="selflink" id="appendix-A.2" href="#appendix-A.2">A.2</a>. Ed25519 Public Key</span>
This is the public part of the previous private key (which just omits
"d"):
{"kty":"OKP","crv":"Ed25519",
"x":"11qYAYKxCrfVS_7TyWQHOg7hcvPapiMlrwIaaPcHURo"}
<span class="h3"><a class="selflink" id="appendix-A.3" href="#appendix-A.3">A.3</a>. JWK Thumbprint Canonicalization</span>
The JWK Thumbprint canonicalization of the two examples above (with a
linebreak inserted for formatting reasons) is:
{"crv":"Ed25519","kty":"OKP","x":"11qYAYKxCrfVS_7TyWQHOg7hcvPapiMlrwI
aaPcHURo"}
Which has the SHA-256 hash (in hexadecimal) of
90facafea9b1556698540f70c0117a22ea37bd5cf3ed3c47093c1707282b4b89,
which results in the base64url encoded JWK Thumbprint representation
of "kPrK_qmxVWaYVA9wwBF6Iuo3vVzz7TxHCTwXBygrS4k".
<span class="grey">Liusvaara Standards Track [Page 9]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-10" ></span>
<span class="grey"><a href="./rfc8037">RFC 8037</a> CFRG ECDH and Signatures in JOSE January 2017</span>
<span class="h3"><a class="selflink" id="appendix-A.4" href="#appendix-A.4">A.4</a>. Ed25519 Signing</span>
The JWS protected header is:
{"alg":"EdDSA"}
This has the base64url encoding of:
eyJhbGciOiJFZERTQSJ9
The payload is (text):
Example of Ed25519 signing
This has the base64url encoding of:
RXhhbXBsZSBvZiBFZDI1NTE5IHNpZ25pbmc
The JWS signing input is (a concatenation of base64url encoding of
the (protected) header, a dot, and base64url encoding of the payload)
is:
eyJhbGciOiJFZERTQSJ9.RXhhbXBsZSBvZiBFZDI1NTE5IHNpZ25pbmc
Applying the Ed25519 signing algorithm using the private key, public
key, and the JWS signing input yields the signature (hex):
86 0c 98 d2 29 7f 30 60 a3 3f 42 73 96 72 d6 1b
53 cf 3a de fe d3 d3 c6 72 f3 20 dc 02 1b 41 1e
9d 59 b8 62 8d c3 51 e2 48 b8 8b 29 46 8e 0e 41
85 5b 0f b7 d8 3b b1 5b e9 02 bf cc b8 cd 0a 02
Converting this to base64url yields:
hgyY0il_MGCjP0JzlnLWG1PPOt7-09PGcvMg3AIbQR6dWbhijcNR4ki4iylGjg5BhVsPt
9g7sVvpAr_MuM0KAg
So the compact serialization of the JWS is (a concatenation of
signing input, a dot, and base64url encoding of the signature):
eyJhbGciOiJFZERTQSJ9.RXhhbXBsZSBvZiBFZDI1NTE5IHNpZ25pbmc.hgyY0il_MGCj
P0JzlnLWG1PPOt7-09PGcvMg3AIbQR6dWbhijcNR4ki4iylGjg5BhVsPt9g7sVvpAr_Mu
M0KAg
<span class="grey">Liusvaara Standards Track [Page 10]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-11" ></span>
<span class="grey"><a href="./rfc8037">RFC 8037</a> CFRG ECDH and Signatures in JOSE January 2017</span>
<span class="h3"><a class="selflink" id="appendix-A.5" href="#appendix-A.5">A.5</a>. Ed25519 Validation</span>
The JWS from the example above is:
eyJhbGciOiJFZERTQSJ9.RXhhbXBsZSBvZiBFZDI1NTE5IHNpZ25pbmc.hgyY0il_MGCj
P0JzlnLWG1PPOt7-09PGcvMg3AIbQR6dWbhijcNR4ki4iylGjg5BhVsPt9g7sVvpAr_Mu
M0KAg
This has 2 dots in it, so it might be valid a JWS. Base64url
decoding the protected header yields:
{"alg":"EdDSA"}
So this is an EdDSA signature. Now the key has: "kty":"OKP" and
"crv":"Ed25519", so the signature is Ed25519 signature.
The signing input is the part before the second dot:
eyJhbGciOiJFZERTQSJ9.RXhhbXBsZSBvZiBFZDI1NTE5IHNpZ25pbmc
Applying the Ed25519 verification algorithm to the public key, JWS
signing input, and the signature yields true. So the signature is
valid. The message is the base64url decoding of the part between the
dots:
Example of Ed25519 Signing
<span class="h3"><a class="selflink" id="appendix-A.6" href="#appendix-A.6">A.6</a>. ECDH-ES with X25519</span>
The public key to encrypt to is:
{"kty":"OKP","crv":"X25519","kid":"Bob",
"x":"3p7bfXt9wbTTW2HC7OQ1Nz-DQ8hbeGdNrfx-FG-IK08"}
The public key from the target key is (hex):
de 9e db 7d 7b 7d c1 b4 d3 5b 61 c2 ec e4 35 37
3f 83 43 c8 5b 78 67 4d ad fc 7e 14 6f 88 2b 4f
The ephemeral secret happens to be (hex):
77 07 6d 0a 73 18 a5 7d 3c 16 c1 72 51 b2 66 45
df 4c 2f 87 eb c0 99 2a b1 77 fb a5 1d b9 2c 2a
So the ephemeral public key is X25519(ephkey, G) (hex):
85 20 f0 09 89 30 a7 54 74 8b 7d dc b4 3e f7 5a
0d bf 3a 0d 26 38 1a f4 eb a4 a9 8e aa 9b 4e 6a
<span class="grey">Liusvaara Standards Track [Page 11]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-12" ></span>
<span class="grey"><a href="./rfc8037">RFC 8037</a> CFRG ECDH and Signatures in JOSE January 2017</span>
This is represented as the ephemeral public key value:
{"kty":"OKP","crv":"X25519",
"x":"hSDwCYkwp1R0i33ctD73Wg2_Og0mOBr066SpjqqbTmo"}
So the protected header could be, for example:
{"alg":"ECDH-ES+A128KW","epk":{"kty":"OKP","crv":"X25519",
"x":"hSDwCYkwp1R0i33ctD73Wg2_Og0mOBr066SpjqqbTmo"},
"enc":"A128GCM","kid":"Bob"}
And the sender computes the DH Z value as X25519(ephkey, recv_pub)
(hex):
4a 5d 9d 5b a4 ce 2d e1 72 8e 3b f4 80 35 0f 25
e0 7e 21 c9 47 d1 9e 33 76 f0 9b 3c 1e 16 17 42
The receiver computes the DH Z value as X25519(seckey, ephkey_pub)
(hex):
4a 5d 9d 5b a4 ce 2d e1 72 8e 3b f4 80 35 0f 25
e0 7e 21 c9 47 d1 9e 33 76 f0 9b 3c 1e 16 17 42
This is the same as the sender's value (both sides run this through
the KDF before using it as a direct encryption key or AES128-KW key).
<span class="h3"><a class="selflink" id="appendix-A.7" href="#appendix-A.7">A.7</a>. ECDH-ES with X448</span>
The public key to encrypt to (with a linebreak inserted for
formatting reasons) is:
{"kty":"OKP","crv":"X448","kid":"Dave",
"x":"PreoKbDNIPW8_AtZm2_sz22kYnEHvbDU80W0MCfYuXL8PjT7QjKhPKcG3LV67D2
uB73BxnvzNgk"}
The public key from the target key is (hex):
3e b7 a8 29 b0 cd 20 f5 bc fc 0b 59 9b 6f ec cf
6d a4 62 71 07 bd b0 d4 f3 45 b4 30 27 d8 b9 72
fc 3e 34 fb 42 32 a1 3c a7 06 dc b5 7a ec 3d ae
07 bd c1 c6 7b f3 36 09
The ephemeral secret happens to be (hex):
9a 8f 49 25 d1 51 9f 57 75 cf 46 b0 4b 58 00 d4
ee 9e e8 ba e8 bc 55 65 d4 98 c2 8d d9 c9 ba f5
74 a9 41 97 44 89 73 91 00 63 82 a6 f1 27 ab 1d
9a c2 d8 c0 a5 98 72 6b
<span class="grey">Liusvaara Standards Track [Page 12]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-13" ></span>
<span class="grey"><a href="./rfc8037">RFC 8037</a> CFRG ECDH and Signatures in JOSE January 2017</span>
So the ephemeral public key is X448(ephkey, G) (hex):
9b 08 f7 cc 31 b7 e3 e6 7d 22 d5 ae a1 21 07 4a
27 3b d2 b8 3d e0 9c 63 fa a7 3d 2c 22 c5 d9 bb
c8 36 64 72 41 d9 53 d4 0c 5b 12 da 88 12 0d 53
17 7f 80 e5 32 c4 1f a0
This is packed into the ephemeral public key value (a linebreak
inserted for formatting purposes):
{"kty":"OKP","crv":"X448",
"x":"mwj3zDG34-Z9ItWuoSEHSic70rg94Jxj-qc9LCLF2bvINmRyQdlT1AxbEtqIEg1
TF3-A5TLEH6A"}
So the protected header could be, for example (a linebreak inserted
for formatting purposes):
{"alg":"ECDH-ES+A256KW","epk":{"kty":"OKP","crv":"X448",
"x":"mwj3zDG34-Z9ItWuoSEHSic70rg94Jxj-qc9LCLF2bvINmRyQdlT1AxbEtqIEg1
TF3-A5TLEH6A"},"enc":"A256GCM","kid":"Dave"}
And the sender computes the DH Z value as X448(ephkey,recv_pub)
(hex):
07 ff f4 18 1a c6 cc 95 ec 1c 16 a9 4a 0f 74 d1
2d a2 32 ce 40 a7 75 52 28 1d 28 2b b6 0c 0b 56
fd 24 64 c3 35 54 39 36 52 1c 24 40 30 85 d5 9a
44 9a 50 37 51 4a 87 9d
The receiver computes the DH Z value as X448(seckey, ephkey_pub)
(hex):
07 ff f4 18 1a c6 cc 95 ec 1c 16 a9 4a 0f 74 d1
2d a2 32 ce 40 a7 75 52 28 1d 28 2b b6 0c 0b 56
fd 24 64 c3 35 54 39 36 52 1c 24 40 30 85 d5 9a
44 9a 50 37 51 4a 87 9d
This is the same as the sender's value (both sides run this through
KDF before using it as the direct encryption key or AES256-KW key).
<span class="grey">Liusvaara Standards Track [Page 13]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-14" ></span>
<span class="grey"><a href="./rfc8037">RFC 8037</a> CFRG ECDH and Signatures in JOSE January 2017</span>
Acknowledgements
Thanks to Michael B. Jones for his comments on an initial draft of
this document and editorial help.
Thanks to Matt Miller for some editorial help.
Author's Address
Ilari Liusvaara
Independent
Email: ilariliusvaara@welho.com
Liusvaara Standards Track [Page 14]
</pre>
|