1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949
|
<pre>Internet Engineering Task Force (IETF) Y. Oiwa
Request for Comments: 8121 H. Watanabe
Category: Experimental H. Takagi
ISSN: 2070-1721 ITRI, AIST
K. Maeda
Individual Contributor
T. Hayashi
Lepidum
Y. Ioku
Individual Contributor
April 2017
<span class="h1">Mutual Authentication Protocol for HTTP: Cryptographic Algorithms</span>
<span class="h1">Based on the Key Agreement Mechanism 3 (KAM3)</span>
Abstract
This document specifies cryptographic algorithms for use with the
Mutual user authentication method for the Hypertext Transfer Protocol
(HTTP).
Status of This Memo
This document is not an Internet Standards Track specification; it is
published for examination, experimental implementation, and
evaluation.
This document defines an Experimental Protocol for the Internet
community. This document is a product of the Internet Engineering
Task Force (IETF). It represents the consensus of the IETF
community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Not
all documents approved by the IESG are a candidate for any level of
Internet Standard; see <a href="./rfc7841#section-2">Section 2 of RFC 7841</a>.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
<a href="http://www.rfc-editor.org/info/rfc8121">http://www.rfc-editor.org/info/rfc8121</a>.
<span class="grey">Oiwa, et al. Experimental [Page 1]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-2" ></span>
<span class="grey"><a href="./rfc8121">RFC 8121</a> HTTP Mutual Authentication: Algorithms April 2017</span>
Copyright Notice
Copyright (c) 2017 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to <a href="https://www.rfc-editor.org/bcp/bcp78">BCP 78</a> and the IETF Trust's Legal
Provisions Relating to IETF Documents
(<a href="http://trustee.ietf.org/license-info">http://trustee.ietf.org/license-info</a>) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
Table of Contents
<a href="#section-1">1</a>. Introduction ....................................................<a href="#page-2">2</a>
<a href="#section-1.1">1.1</a>. Terminology ................................................<a href="#page-3">3</a>
<a href="#section-2">2</a>. Cryptographic Overview (Non-normative) ..........................<a href="#page-3">3</a>
<a href="#section-3">3</a>. Authentication Algorithms .......................................<a href="#page-4">4</a>
<a href="#section-3.1">3.1</a>. Support Functions and Notations ............................<a href="#page-5">5</a>
<a href="#section-3.2">3.2</a>. Functions for Discrete-Logarithm Settings ..................<a href="#page-6">6</a>
<a href="#section-3.3">3.3</a>. Functions for Elliptic-Curve Settings ......................<a href="#page-7">7</a>
<a href="#section-4">4</a>. IANA Considerations .............................................<a href="#page-9">9</a>
<a href="#section-5">5</a>. Security Considerations .........................................<a href="#page-9">9</a>
<a href="#section-5.1">5.1</a>. General Implementation Considerations ......................<a href="#page-9">9</a>
<a href="#section-5.2">5.2</a>. Cryptographic Assumptions and Considerations ..............<a href="#page-10">10</a>
<a href="#section-6">6</a>. References .....................................................<a href="#page-11">11</a>
<a href="#section-6.1">6.1</a>. Normative References ......................................<a href="#page-11">11</a>
<a href="#section-6.2">6.2</a>. Informative References ....................................<a href="#page-12">12</a>
<a href="#appendix-A">Appendix A</a>. (Informative) Group Parameters for Algorithms Based
on the Discrete Logarithm .............................<a href="#page-13">13</a>
<a href="#appendix-B">Appendix B</a>. (Informative) Derived Numerical Values ................<a href="#page-16">16</a>
Authors' Addresses ................................................<a href="#page-17">17</a>
<span class="h2"><a class="selflink" id="section-1" href="#section-1">1</a>. Introduction</span>
This document specifies algorithms for use with the Mutual
authentication protocol for the Hypertext Transfer Protocol (HTTP)
[<a href="./rfc8120" title=""Mutual Authentication Protocol for HTTP"">RFC8120</a>] (hereafter referred to as the "core specification"). The
algorithms are based on augmented password-based authenticated key
exchange (augmented PAKE) techniques. In particular, it uses one of
three key exchange algorithms defined in ISO 11770-4 ("Information
technology - Security techniques - Key management - Part 4:
Mechanisms based on weak secrets") [<a href="#ref-ISO.11770-4.2006">ISO.11770-4.2006</a>] as its basis.
<span class="grey">Oiwa, et al. Experimental [Page 2]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-3" ></span>
<span class="grey"><a href="./rfc8121">RFC 8121</a> HTTP Mutual Authentication: Algorithms April 2017</span>
To briefly summarize, the Mutual authentication protocol exchanges
four values -- K_c1, K_s1, VK_c, and VK_s -- to perform authenticated
key exchanges, using the password-derived secret pi and its
"augmented version" J(pi). This document defines the set of
functions K_c1, K_s1, and J for a specific algorithm family.
Please note that from the point of view of literature related to
cryptography, the original functionality of augmented PAKE is
separated into the functions K_c1 and K_s1 as defined in this
document, and the functions VK_c and VK_s, which are defined in
<a href="./rfc8120#section-12.2">Section 12.2 of [RFC8120]</a> as "default functions". For the purpose of
security analysis, please also refer to these functions.
<span class="h3"><a class="selflink" id="section-1.1" href="#section-1.1">1.1</a>. Terminology</span>
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in
[<a href="./rfc2119" title=""Key words for use in RFCs to Indicate Requirement Levels"">RFC2119</a>].
The term "natural numbers" refers to non-negative integers (including
zero) throughout this document.
This document treats both the input (domain) and the output
(codomain) of hash functions as octet strings. When a natural-number
output of hash function H is required, it will be notated, for
example, as INT(H(s)).
<span class="h2"><a class="selflink" id="section-2" href="#section-2">2</a>. Cryptographic Overview (Non-normative)</span>
The cryptographic primitive used in this algorithm specification is
based on a variant of augmented PAKE called "APKAS-AMP" (augmented
password-authenticated key agreement scheme, version AMP), proposed
by T. Kwon and originally submitted to [<a href="#ref-IEEE-1363.2_2008">IEEE-1363.2_2008</a>]. The
general flow of the successful exchange is shown below for
informative purposes only. The multiplicative notations are used for
group operators, and all modulus operations for finite groups (mod q
and mod r) are omitted.
<span class="grey">Oiwa, et al. Experimental [Page 3]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-4" ></span>
<span class="grey"><a href="./rfc8121">RFC 8121</a> HTTP Mutual Authentication: Algorithms April 2017</span>
C: S_c1 = random
C: K_c1 = g^(S_c1)
----- ID, K_c1 ----->
C: t_1 = H1(K_c1) S: t_1 = H1(K_c1)
S: fetch J = g^pi by ID
S: S_s1 = random
S: K_s1 = (J * K_c1^(t_1))^(S_s1)
<----- K_s1 -----
C: t_2 = H2(K_c1, K_s1) S: t_2 = H2(K_c1, K_s1)
C: z = K_s1^((S_c1 + t_2) / (S_c1 * t_1 + pi))
S: z' = (K_c1 * g^(t_2))^(S_s1)
(assumption at this point: z = z' if authentication succeeded)
C: VK_c = H4(K_c1, K_s1, z) S: VK_c' = H4(K_c1, K_s1, z')
----- VK_c ------->
S: assert(VK_c = VK_c')
C: VK_s' = H3(K_c1, K_s1, z) S: VK_s = H3(K_c1, K_s1, z')
<----- VK_s ------
C: assert(VK_s = VK_s')
Note that the concrete (binary) message formats (mapping to HTTP
messages), as well as the formal definitions of equations for the
latter two messages, are defined in the core specification [<a href="./rfc8120" title=""Mutual Authentication Protocol for HTTP"">RFC8120</a>].
The formal definitions for values corresponding to the first two
messages are defined in the following sections.
<span class="h2"><a class="selflink" id="section-3" href="#section-3">3</a>. Authentication Algorithms</span>
This document specifies one family of algorithms based on APKAS-AMP,
to be used with [<a href="./rfc8120" title=""Mutual Authentication Protocol for HTTP"">RFC8120</a>]. This family consists of four
authentication algorithms, which differ only in their underlying
mathematical groups and security parameters. These algorithms do not
add any additional parameters. The tokens for these algorithms are
as follows:
o iso-kam3-dl-2048-sha256: for the 2048-bit discrete-logarithm
setting with the SHA-256 hash function.
o iso-kam3-dl-4096-sha512: for the 4096-bit discrete-logarithm
setting with the SHA-512 hash function.
o iso-kam3-ec-p256-sha256: for the 256-bit prime-field
elliptic-curve setting with the SHA-256 hash function.
o iso-kam3-ec-p521-sha512: for the 521-bit prime-field
elliptic-curve setting with the SHA-512 hash function.
<span class="grey">Oiwa, et al. Experimental [Page 4]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-5" ></span>
<span class="grey"><a href="./rfc8121">RFC 8121</a> HTTP Mutual Authentication: Algorithms April 2017</span>
For discrete-logarithm settings, the underlying groups are the
2048-bit and 4096-bit Modular Exponential (MODP) groups defined in
[<a href="./rfc3526" title=""More Modular Exponential (MODP) Diffie-Hellman groups for Internet Key Exchange (IKE)"">RFC3526</a>]. See <a href="#appendix-A">Appendix A</a> for the exact specifications for the
groups and associated parameters. Hash function H is SHA-256 for the
2048-bit group and SHA-512 for the 4096-bit group, respectively, as
defined in FIPS PUB 180-4 [<a href="#ref-FIPS.180-4.2015">FIPS.180-4.2015</a>]. The hash iteration
count nIterPi is 16384. The representation of the parameters "kc1",
"ks1", "vkc", and "vks" is base64-fixed-number.
For the elliptic-curve settings, the underlying groups are the
elliptic curves over the prime fields P-256 and P-521, respectively,
as specified in <a href="#appendix-D.1.2">Appendix D.1.2</a> of the FIPS PUB 186-4
[<a href="#ref-FIPS.186-4.2013">FIPS.186-4.2013</a>] specification. Hash function H is SHA-256 for the
P-256 curve and SHA-512 for the P-521 curve, respectively. Cofactors
of these curves are 1. The hash iteration count nIterPi is 16384.
The representation of the parameters "kc1", "ks1", "vkc", and "vks"
is hex-fixed-number.
Note: This algorithm is based on the Key Agreement Mechanism 3 (KAM3)
as defined in <a href="#section-6.3">Section 6.3</a> of ISO/IEC 11770-4 [<a href="#ref-ISO.11770-4.2006">ISO.11770-4.2006</a>], with
a few modifications/improvements. However, implementers should
consider this document as normative, because several minor details of
the algorithm have changed and major improvements have been made.
<span class="h3"><a class="selflink" id="section-3.1" href="#section-3.1">3.1</a>. Support Functions and Notations</span>
The algorithm definitions use the support functions and notations
defined below.
Decimal notations are used for integers in this specification by
default. Integers in hexadecimal notations are prefixed with "0x".
In this document, the octet(), OCTETS(), and INT() functions are used
as defined in the core specification [<a href="./rfc8120" title=""Mutual Authentication Protocol for HTTP"">RFC8120</a>].
Note: The definition of OCTETS() is different from the function
GE2OS_x in the original ISO specification; GE2OS_x takes the shortest
representation without preceding zeros.
All of the algorithms defined in this specification use the default
functions defined in <a href="./rfc8120#section-12.2">Section 12.2 of [RFC8120]</a> for computing the
values pi, VK_c, and VK_s.
<span class="grey">Oiwa, et al. Experimental [Page 5]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-6" ></span>
<span class="grey"><a href="./rfc8121">RFC 8121</a> HTTP Mutual Authentication: Algorithms April 2017</span>
<span class="h3"><a class="selflink" id="section-3.2" href="#section-3.2">3.2</a>. Functions for Discrete-Logarithm Settings</span>
In this section, an equation (x / y mod z) denotes a natural number w
less than z that satisfies (w * y) mod z = x mod z.
For the discrete logarithm, we refer to some of the domain parameters
by using the following symbols:
o q: for "the prime" defining the MODP group.
o g: for "the generator" associated with the group.
o r: for the order of the subgroup generated by g.
The function J is defined as
J(pi) = g^(pi) mod q
The value of K_c1 is derived as
K_c1 = g^(S_c1) mod q
where S_c1 is a random integer within the range [1, r-1] and r is the
size of the subgroup generated by g. In addition, S_c1 MUST be
larger than log(q)/log(g) (so that g^(S_c1) > q).
The server MUST check the condition 1 < K_c1 < q-1 upon reception.
Let an intermediate value t_1 be
t_1 = INT(H(octet(1) | OCTETS(K_c1)))
The value of K_s1 is derived from J(pi) and K_c1 as
K_s1 = (J(pi) * K_c1^(t_1))^(S_s1) mod q
where S_s1 is a random number within the range [1, r-1]. The value
of K_s1 MUST satisfy 1 < K_s1 < q-1. If this condition is not held,
the server MUST reject the exchange. The client MUST check this
condition upon reception.
Let an intermediate value t_2 be
t_2 = INT(H(octet(2) | OCTETS(K_c1) | OCTETS(K_s1)))
The value z on the client side is derived by the following equation:
z = K_s1^((S_c1 + t_2) / (S_c1 * t_1 + pi) mod r) mod q
<span class="grey">Oiwa, et al. Experimental [Page 6]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-7" ></span>
<span class="grey"><a href="./rfc8121">RFC 8121</a> HTTP Mutual Authentication: Algorithms April 2017</span>
The value z on the server side is derived by the following equation:
z = (K_c1 * g^(t_2))^(S_s1) mod q
(Note: The original ISO specification contained a message pair
containing verification of value z along with the "transcript" of the
protocol exchange. This functionality is contained in the functions
VK_c and VK_s.)
<span class="h3"><a class="selflink" id="section-3.3" href="#section-3.3">3.3</a>. Functions for Elliptic-Curve Settings</span>
For the elliptic-curve settings, we refer to some of the domain
parameters by the following symbols:
o q: for the prime used to define the group.
o G: for the point defined with the underlying group called
"the generator".
o h: for the cofactor of the group.
o r: for the order of the subgroup generated by G.
The function P(p) converts a curve point p into an integer
representing point p, by computing x * 2 + (y mod 2), where (x, y)
are the coordinates of point p. P'(z) is the inverse of function P;
that is, it converts an integer z to a point p that satisfies
P(p) = z. If such p exists, it is uniquely defined. Otherwise,
z does not represent a valid curve point.
The operator "+" indicates the elliptic-curve group operation, and
the operation [x] * p denotes an integer-multiplication of point p:
it calculates p + p + ... (x times) ... + p. See the literature on
elliptic-curve cryptography for the exact algorithms used for those
functions (e.g., <a href="./rfc6090#section-3">Section 3 of [RFC6090]</a>; however, note that [<a href="./rfc6090" title=""Fundamental Elliptic Curve Cryptography Algorithms"">RFC6090</a>]
uses different notations). 0_E represents the infinity point. The
equation (x / y mod z) denotes a natural number w less than z that
satisfies (w * y) mod z = x mod z.
The function J is defined as
J(pi) = [pi] * G
<span class="grey">Oiwa, et al. Experimental [Page 7]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-8" ></span>
<span class="grey"><a href="./rfc8121">RFC 8121</a> HTTP Mutual Authentication: Algorithms April 2017</span>
The value of K_c1 is derived as
K_c1 = P(K_c1'), where K_c1' = [S_c1] * G
where S_c1 is a random number within the range [1, r-1]. The server
MUST check that (1) the value of received K_c1 represents a valid
curve point and (2) [h] * K_c1' is not equal to 0_E.
Let an intermediate integer t_1 be
t_1 = INT(H(octet(1) | OCTETS(K_c1)))
The value of K_s1 is derived from J(pi) and K_c1' = P'(K_c1) as
K_s1 = P([S_s1] * (J(pi) + [t_1] * K_c1'))
where S_s1 is a random number within the range [1, r-1]. The value
of K_s1 MUST represent a valid curve point and satisfy
[h] * P'(K_s1) <> 0_E. If this condition is not satisfied, the
server MUST reject the exchange. The client MUST check this
condition upon reception.
Let an intermediate integer t_2 be
t_2 = INT(H(octet(2) | OCTETS(K_c1) | OCTETS(K_s1)))
The value z on the client side is derived by the following equation:
z = P([(S_c1 + t_2) / (S_c1 * t_1 + pi) mod r] * P'(K_s1))
The value z on the server side is derived by the following equation:
z = P([S_s1] * (P'(K_c1) + [t_2] * G))
<span class="grey">Oiwa, et al. Experimental [Page 8]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-9" ></span>
<span class="grey"><a href="./rfc8121">RFC 8121</a> HTTP Mutual Authentication: Algorithms April 2017</span>
<span class="h2"><a class="selflink" id="section-4" href="#section-4">4</a>. IANA Considerations</span>
This document defines four new tokens that have been added to the
"HTTP Mutual Authentication Algorithms" registry:
+-------------------------+-----------------------------+-----------+
| Token | Description | Reference |
+-------------------------+-----------------------------+-----------+
| iso-kam3-dl-2048-sha256 | ISO-11770-4 KAM3, | <a href="./rfc8121">RFC 8121</a> |
| | 2048-bit DL | |
| | | |
| iso-kam3-dl-4096-sha512 | ISO-11770-4 KAM3, | <a href="./rfc8121">RFC 8121</a> |
| | 4096-bit DL | |
| | | |
| iso-kam3-ec-p256-sha256 | ISO-11770-4 KAM3, | <a href="./rfc8121">RFC 8121</a> |
| | 256-bit EC | |
| | | |
| iso-kam3-ec-p521-sha512 | ISO-11770-4 KAM3, | <a href="./rfc8121">RFC 8121</a> |
| | 521-bit EC | |
+-------------------------+-----------------------------+-----------+
<span class="h2"><a class="selflink" id="section-5" href="#section-5">5</a>. Security Considerations</span>
Please refer to the Security Considerations section of the core
specification [<a href="./rfc8120" title=""Mutual Authentication Protocol for HTTP"">RFC8120</a>] for algorithm-independent considerations.
<span class="h3"><a class="selflink" id="section-5.1" href="#section-5.1">5.1</a>. General Implementation Considerations</span>
o During the exchange, the value VK_s, defined in [<a href="./rfc8120" title=""Mutual Authentication Protocol for HTTP"">RFC8120</a>], MUST
only be sent when the server has received a correct (expected)
value of VK_c. This is a cryptographic requirement, as stated in
[<a href="#ref-ISO.11770-4.2006">ISO.11770-4.2006</a>].
o All random numbers used in these algorithms MUST be
cryptographically secure against forward and backward guessing
attacks.
o To prevent timing-based side-channel attacks, computation times of
all numerical operations on discrete-logarithm group elements and
elliptic-curve points MUST be normalized and made independent of
the exact values.
<span class="grey">Oiwa, et al. Experimental [Page 9]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-10" ></span>
<span class="grey"><a href="./rfc8121">RFC 8121</a> HTTP Mutual Authentication: Algorithms April 2017</span>
<span class="h3"><a class="selflink" id="section-5.2" href="#section-5.2">5.2</a>. Cryptographic Assumptions and Considerations</span>
The notes in this subsection are for those who analyze the security
of this algorithm and those who might want to make a derived work
from this algorithm specification.
o The treatment of an invalid K_s1 value in the exchange has been
changed from the method defined in the original ISO specification,
which specifies that the sender should retry with another random
S_s1 value. We specify that the exchange must be rejected. This
is due to an observation that this condition is less likely to
result from a random error caused by an unlucky choice of S_s1 but
is more likely the result of a systematic failure caused by an
invalid J(pi) value (even implying possible denial-of-service
attacks).
o The usual construction of authenticated key exchange algorithms
consists of a key exchange phase and a key verification phase. To
avoid security risks or vulnerabilities caused by mixing values
from two or more key exchanges, the latter usually involves some
kinds of exchange transactions to be verified. In the algorithms
defined in this document, such verification steps are provided in
the generalized definitions of VK_c and VK_s in [<a href="./rfc8120" title=""Mutual Authentication Protocol for HTTP"">RFC8120</a>]. If the
algorithm defined above is used in other protocols, this aspect
MUST be given careful consideration.
o The domain parameters chosen and specified in this document are
based on a few assumptions. In the discrete-logarithm setting,
q has to be a safe prime ([(q - 1) / 2] must also be prime), and
r should be the largest possible value [(q - 1) / 2]. In the
elliptic-curve setting, r has to be prime. Implementers defining
a variation of this algorithm using a different domain parameter
SHOULD be attentive to these conditions.
<span class="grey">Oiwa, et al. Experimental [Page 10]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-11" ></span>
<span class="grey"><a href="./rfc8121">RFC 8121</a> HTTP Mutual Authentication: Algorithms April 2017</span>
<span class="h2"><a class="selflink" id="section-6" href="#section-6">6</a>. References</span>
<span class="h3"><a class="selflink" id="section-6.1" href="#section-6.1">6.1</a>. Normative References</span>
[<a id="ref-FIPS.180-4.2015">FIPS.180-4.2015</a>]
National Institute of Standards and Technology, "Secure
Hash Standard (SHS)", FIPS PUB 180-4,
DOI 10.6028/NIST.FIPS.180-4, August 2015,
<<a href="http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf">http://nvlpubs.nist.gov/nistpubs/FIPS/</a>
<a href="http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf">NIST.FIPS.180-4.pdf</a>>.
[<a id="ref-FIPS.186-4.2013">FIPS.186-4.2013</a>]
National Institute of Standards and Technology, "Digital
Signature Standard (DSS)", FIPS PUB 186-4,
DOI 10.6028/NIST.FIPS.186-4, July 2013,
<<a href="http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf">http://nvlpubs.nist.gov/nistpubs/FIPS/</a>
<a href="http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf">NIST.FIPS.186-4.pdf</a>>.
[<a id="ref-RFC2119">RFC2119</a>] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", <a href="https://www.rfc-editor.org/bcp/bcp14">BCP 14</a>, <a href="./rfc2119">RFC 2119</a>,
DOI 10.17487/RFC2119, March 1997,
<<a href="http://www.rfc-editor.org/info/rfc2119">http://www.rfc-editor.org/info/rfc2119</a>>.
[<a id="ref-RFC3526">RFC3526</a>] Kivinen, T. and M. Kojo, "More Modular Exponential (MODP)
Diffie-Hellman groups for Internet Key Exchange (IKE)",
<a href="./rfc3526">RFC 3526</a>, DOI 10.17487/RFC3526, May 2003,
<<a href="http://www.rfc-editor.org/info/rfc3526">http://www.rfc-editor.org/info/rfc3526</a>>.
[<a id="ref-RFC8120">RFC8120</a>] Oiwa, Y., Watanabe, H., Takagi, H., Maeda, K., Hayashi,
T., and Y. Ioku, "Mutual Authentication Protocol for
HTTP", <a href="./rfc8120">RFC 8120</a>, DOI 10.17487/RFC8120, April 2017,
<<a href="http://www.rfc-editor.org/info/rfc8120">http://www.rfc-editor.org/info/rfc8120</a>>.
<span class="grey">Oiwa, et al. Experimental [Page 11]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-12" ></span>
<span class="grey"><a href="./rfc8121">RFC 8121</a> HTTP Mutual Authentication: Algorithms April 2017</span>
<span class="h3"><a class="selflink" id="section-6.2" href="#section-6.2">6.2</a>. Informative References</span>
[<a id="ref-IEEE-1363.2_2008">IEEE-1363.2_2008</a>]
IEEE, "IEEE Standard Specifications for Password-Based
Public-Key Cryptographic Techniques", IEEE 1363.2-2008,
DOI 10.1109/ieeestd.2009.4773330,
<<a href="http://ieeexplore.ieee.org/servlet/opac?punumber=4773328">http://ieeexplore.ieee.org/servlet/</a>
<a href="http://ieeexplore.ieee.org/servlet/opac?punumber=4773328">opac?punumber=4773328</a>>.
[<a id="ref-ISO.11770-4.2006">ISO.11770-4.2006</a>]
International Organization for Standardization,
"Information technology -- Security techniques -- Key
management -- Part 4: Mechanisms based on weak secrets",
ISO Standard 11770-4, May 2006,
<<a href="http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=39723">http://www.iso.org/iso/iso_catalogue/catalogue_tc/</a>
<a href="http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=39723">catalogue_detail.htm?csnumber=39723</a>>.
[<a id="ref-RFC6090">RFC6090</a>] McGrew, D., Igoe, K., and M. Salter, "Fundamental Elliptic
Curve Cryptography Algorithms", <a href="./rfc6090">RFC 6090</a>,
DOI 10.17487/RFC6090, February 2011,
<<a href="http://www.rfc-editor.org/info/rfc6090">http://www.rfc-editor.org/info/rfc6090</a>>.
<span class="grey">Oiwa, et al. Experimental [Page 12]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-13" ></span>
<span class="grey"><a href="./rfc8121">RFC 8121</a> HTTP Mutual Authentication: Algorithms April 2017</span>
<span class="h2"><a class="selflink" id="appendix-A" href="#appendix-A">Appendix A</a>. (Informative) Group Parameters for Algorithms Based on the</span>
Discrete Logarithm
The MODP group used for the iso-kam3-dl-2048-sha256 algorithm is
defined by the following parameters:
The prime is
q = 0xFFFFFFFF FFFFFFFF C90FDAA2 2168C234 C4C6628B 80DC1CD1
29024E08 8A67CC74 020BBEA6 3B139B22 514A0879 8E3404DD
EF9519B3 CD3A431B 302B0A6D F25F1437 4FE1356D 6D51C245
E485B576 625E7EC6 F44C42E9 A637ED6B 0BFF5CB6 F406B7ED
EE386BFB 5A899FA5 AE9F2411 7C4B1FE6 49286651 ECE45B3D
C2007CB8 A163BF05 98DA4836 1C55D39A 69163FA8 FD24CF5F
83655D23 DCA3AD96 1C62F356 208552BB 9ED52907 7096966D
670C354E 4ABC9804 F1746C08 CA18217C 32905E46 2E36CE3B
E39E772C 180E8603 9B2783A2 EC07A28F B5C55DF0 6F4C52C9
DE2BCBF6 95581718 3995497C EA956AE5 15D22618 98FA0510
15728E5A 8AACAA68 FFFFFFFF FFFFFFFF
The generator is
g = 2
The size of the subgroup generated by g is
r = (q - 1) / 2 =
0x7FFFFFFF FFFFFFFF E487ED51 10B4611A 62633145 C06E0E68
94812704 4533E63A 0105DF53 1D89CD91 28A5043C C71A026E
F7CA8CD9 E69D218D 98158536 F92F8A1B A7F09AB6 B6A8E122
F242DABB 312F3F63 7A262174 D31BF6B5 85FFAE5B 7A035BF6
F71C35FD AD44CFD2 D74F9208 BE258FF3 24943328 F6722D9E
E1003E5C 50B1DF82 CC6D241B 0E2AE9CD 348B1FD4 7E9267AF
C1B2AE91 EE51D6CB 0E3179AB 1042A95D CF6A9483 B84B4B36
B3861AA7 255E4C02 78BA3604 650C10BE 19482F23 171B671D
F1CF3B96 0C074301 CD93C1D1 7603D147 DAE2AEF8 37A62964
EF15E5FB 4AAC0B8C 1CCAA4BE 754AB572 8AE9130C 4C7D0288
0AB9472D 45565534 7FFFFFFF FFFFFFFF
<span class="grey">Oiwa, et al. Experimental [Page 13]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-14" ></span>
<span class="grey"><a href="./rfc8121">RFC 8121</a> HTTP Mutual Authentication: Algorithms April 2017</span>
The MODP group used for the iso-kam3-dl-4096-sha512 algorithm is
defined by the following parameters:
The prime is
q = 0xFFFFFFFF FFFFFFFF C90FDAA2 2168C234 C4C6628B 80DC1CD1
29024E08 8A67CC74 020BBEA6 3B139B22 514A0879 8E3404DD
EF9519B3 CD3A431B 302B0A6D F25F1437 4FE1356D 6D51C245
E485B576 625E7EC6 F44C42E9 A637ED6B 0BFF5CB6 F406B7ED
EE386BFB 5A899FA5 AE9F2411 7C4B1FE6 49286651 ECE45B3D
C2007CB8 A163BF05 98DA4836 1C55D39A 69163FA8 FD24CF5F
83655D23 DCA3AD96 1C62F356 208552BB 9ED52907 7096966D
670C354E 4ABC9804 F1746C08 CA18217C 32905E46 2E36CE3B
E39E772C 180E8603 9B2783A2 EC07A28F B5C55DF0 6F4C52C9
DE2BCBF6 95581718 3995497C EA956AE5 15D22618 98FA0510
15728E5A 8AAAC42D AD33170D 04507A33 A85521AB DF1CBA64
ECFB8504 58DBEF0A 8AEA7157 5D060C7D B3970F85 A6E1E4C7
ABF5AE8C DB0933D7 1E8C94E0 4A25619D CEE3D226 1AD2EE6B
F12FFA06 D98A0864 D8760273 3EC86A64 521F2B18 177B200C
BBE11757 7A615D6C 770988C0 BAD946E2 08E24FA0 74E5AB31
43DB5BFC E0FD108E 4B82D120 A9210801 1A723C12 A787E6D7
88719A10 BDBA5B26 99C32718 6AF4E23C 1A946834 B6150BDA
2583E9CA 2AD44CE8 DBBBC2DB 04DE8EF9 2E8EFC14 1FBECAA6
287C5947 4E6BC05D 99B2964F A090C3A2 233BA186 515BE7ED
1F612970 CEE2D7AF B81BDD76 2170481C D0069127 D5B05AA9
93B4EA98 8D8FDDC1 86FFB7DC 90A6C08F 4DF435C9 34063199
FFFFFFFF FFFFFFFF
The generator is
g = 2
<span class="grey">Oiwa, et al. Experimental [Page 14]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-15" ></span>
<span class="grey"><a href="./rfc8121">RFC 8121</a> HTTP Mutual Authentication: Algorithms April 2017</span>
The size of the subgroup generated by g is
r = (q - 1) / 2 =
0x7FFFFFFF FFFFFFFF E487ED51 10B4611A 62633145 C06E0E68
94812704 4533E63A 0105DF53 1D89CD91 28A5043C C71A026E
F7CA8CD9 E69D218D 98158536 F92F8A1B A7F09AB6 B6A8E122
F242DABB 312F3F63 7A262174 D31BF6B5 85FFAE5B 7A035BF6
F71C35FD AD44CFD2 D74F9208 BE258FF3 24943328 F6722D9E
E1003E5C 50B1DF82 CC6D241B 0E2AE9CD 348B1FD4 7E9267AF
C1B2AE91 EE51D6CB 0E3179AB 1042A95D CF6A9483 B84B4B36
B3861AA7 255E4C02 78BA3604 650C10BE 19482F23 171B671D
F1CF3B96 0C074301 CD93C1D1 7603D147 DAE2AEF8 37A62964
EF15E5FB 4AAC0B8C 1CCAA4BE 754AB572 8AE9130C 4C7D0288
0AB9472D 45556216 D6998B86 82283D19 D42A90D5 EF8E5D32
767DC282 2C6DF785 457538AB AE83063E D9CB87C2 D370F263
D5FAD746 6D8499EB 8F464A70 2512B0CE E771E913 0D697735
F897FD03 6CC50432 6C3B0139 9F643532 290F958C 0BBD9006
5DF08BAB BD30AEB6 3B84C460 5D6CA371 047127D0 3A72D598
A1EDADFE 707E8847 25C16890 54908400 8D391E09 53C3F36B
C438CD08 5EDD2D93 4CE1938C 357A711E 0D4A341A 5B0A85ED
12C1F4E5 156A2674 6DDDE16D 826F477C 97477E0A 0FDF6553
143E2CA3 A735E02E CCD94B27 D04861D1 119DD0C3 28ADF3F6
8FB094B8 67716BD7 DC0DEEBB 10B8240E 68034893 EAD82D54
C9DA754C 46C7EEE0 C37FDBEE 48536047 A6FA1AE4 9A0318CC
FFFFFFFF FFFFFFFF
<span class="grey">Oiwa, et al. Experimental [Page 15]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-16" ></span>
<span class="grey"><a href="./rfc8121">RFC 8121</a> HTTP Mutual Authentication: Algorithms April 2017</span>
<span class="h2"><a class="selflink" id="appendix-B" href="#appendix-B">Appendix B</a>. (Informative) Derived Numerical Values</span>
This section provides several numerical values for implementing this
protocol. These values are derived from the specifications provided
in <a href="#section-3">Section 3</a>. The values shown in this section are for informative
purposes only.
+----------------+---------+---------+---------+---------+----------+
| | dl-2048 | dl-4096 | ec-p256 | ec-p521 | |
+----------------+---------+---------+---------+---------+----------+
| Size of K_c1, | 2048 | 4096 | 257 | 522 | (bits) |
| etc. | | | | | |
| | | | | | |
| hSize, size of | 256 | 512 | 256 | 512 | (bits) |
| H(...) | | | | | |
| | | | | | |
| Length of | 256 | 512 | 33 | 66 | (octets) |
| OCTETS(K_c1), | | | | | |
| etc. | | | | | |
| | | | | | |
| Length of kc1, | 344* | 684* | 66 | 132 | (octets) |
| ks1 param. | | | | | |
| values | | | | | |
| | | | | | |
| Length of vkc, | 44* | 88* | 64 | 128 | (octets) |
| vks param. | | | | | |
| values | | | | | |
| | | | | | |
| Minimum | 2048 | 4096 | 1 | 1 | |
| allowed S_c1 | | | | | |
+----------------+---------+---------+---------+---------+----------+
(The numbers marked with an "*" do not include any enclosing
quotation marks.)
<span class="grey">Oiwa, et al. Experimental [Page 16]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-17" ></span>
<span class="grey"><a href="./rfc8121">RFC 8121</a> HTTP Mutual Authentication: Algorithms April 2017</span>
Authors' Addresses
Yutaka Oiwa
National Institute of Advanced Industrial Science and Technology
Information Technology Research Institute
Tsukuba Central 1
1-1-1 Umezono
Tsukuba-shi, Ibaraki
Japan
Email: y.oiwa@aist.go.jp
Hajime Watanabe
National Institute of Advanced Industrial Science and Technology
Information Technology Research Institute
Tsukuba Central 1
1-1-1 Umezono
Tsukuba-shi, Ibaraki
Japan
Email: h-watanabe@aist.go.jp
Hiromitsu Takagi
National Institute of Advanced Industrial Science and Technology
Information Technology Research Institute
Tsukuba Central 1
1-1-1 Umezono
Tsukuba-shi, Ibaraki
Japan
Email: takagi.hiromitsu@aist.go.jp
Kaoru Maeda
Individual Contributor
Email: kaorumaeda.ml@gmail.com
Tatsuya Hayashi
Lepidum Co. Ltd.
Village Sasazuka 3, Suite #602
1-30-3 Sasazuka
Shibuya-ku, Tokyo
Japan
Email: hayashi@lepidum.co.jp
Yuichi Ioku
Individual Contributor
Email: mutual-work@ioku.org
Oiwa, et al. Experimental [Page 17]
</pre>
|