1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349
|
<pre>Internet Engineering Task Force (IETF) S. Deering
Request for Comments: 8200 Retired
STD: 86 R. Hinden
Obsoletes: <a href="./rfc2460">2460</a> Check Point Software
Category: Standards Track July 2017
ISSN: 2070-1721
<span class="h1">Internet Protocol, Version 6 (IPv6) Specification</span>
Abstract
This document specifies version 6 of the Internet Protocol (IPv6).
It obsoletes <a href="./rfc2460">RFC 2460</a>.
Status of This Memo
This is an Internet Standards Track document.
This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Further information on
Internet Standards is available in <a href="./rfc7841#section-2">Section 2 of RFC 7841</a>.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
<a href="http://www.rfc-editor.org/info/rfc8200">http://www.rfc-editor.org/info/rfc8200</a>.
<span class="grey">Deering & Hinden Standards Track [Page 1]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-2" ></span>
<span class="grey"><a href="./rfc8200">RFC 8200</a> IPv6 Specification July 2017</span>
Copyright Notice
Copyright (c) 2017 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to <a href="https://www.rfc-editor.org/bcp/bcp78">BCP 78</a> and the IETF Trust's Legal
Provisions Relating to IETF Documents
(<a href="http://trustee.ietf.org/license-info">http://trustee.ietf.org/license-info</a>) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
This document may contain material from IETF Documents or IETF
Contributions published or made publicly available before November
10, 2008. The person(s) controlling the copyright in some of this
material may not have granted the IETF Trust the right to allow
modifications of such material outside the IETF Standards Process.
Without obtaining an adequate license from the person(s) controlling
the copyright in such materials, this document may not be modified
outside the IETF Standards Process, and derivative works of it may
not be created outside the IETF Standards Process, except to format
it for publication as an RFC or to translate it into languages other
than English.
<span class="grey">Deering & Hinden Standards Track [Page 2]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-3" ></span>
<span class="grey"><a href="./rfc8200">RFC 8200</a> IPv6 Specification July 2017</span>
Table of Contents
<a href="#section-1">1</a>. Introduction . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-4">4</a>
<a href="#section-2">2</a>. Terminology . . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-5">5</a>
<a href="#section-3">3</a>. IPv6 Header Format . . . . . . . . . . . . . . . . . . . . . <a href="#page-6">6</a>
<a href="#section-4">4</a>. IPv6 Extension Headers . . . . . . . . . . . . . . . . . . . <a href="#page-7">7</a>
<a href="#section-4.1">4.1</a>. Extension Header Order . . . . . . . . . . . . . . . . . <a href="#page-10">10</a>
<a href="#section-4.2">4.2</a>. Options . . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-11">11</a>
<a href="#section-4.3">4.3</a>. Hop-by-Hop Options Header . . . . . . . . . . . . . . . . <a href="#page-13">13</a>
<a href="#section-4.4">4.4</a>. Routing Header . . . . . . . . . . . . . . . . . . . . . <a href="#page-14">14</a>
<a href="#section-4.5">4.5</a>. Fragment Header . . . . . . . . . . . . . . . . . . . . . <a href="#page-15">15</a>
<a href="#section-4.6">4.6</a>. Destination Options Header . . . . . . . . . . . . . . . <a href="#page-23">23</a>
<a href="#section-4.7">4.7</a>. No Next Header . . . . . . . . . . . . . . . . . . . . . <a href="#page-24">24</a>
<a href="#section-4.8">4.8</a>. Defining New Extension Headers and Options . . . . . . . <a href="#page-24">24</a>
<a href="#section-5">5</a>. Packet Size Issues . . . . . . . . . . . . . . . . . . . . . <a href="#page-25">25</a>
<a href="#section-6">6</a>. Flow Labels . . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-26">26</a>
<a href="#section-7">7</a>. Traffic Classes . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-26">26</a>
<a href="#section-8">8</a>. Upper-Layer Protocol Issues . . . . . . . . . . . . . . . . . <a href="#page-27">27</a>
<a href="#section-8.1">8.1</a>. Upper-Layer Checksums . . . . . . . . . . . . . . . . . . <a href="#page-27">27</a>
<a href="#section-8.2">8.2</a>. Maximum Packet Lifetime . . . . . . . . . . . . . . . . . <a href="#page-28">28</a>
<a href="#section-8.3">8.3</a>. Maximum Upper-Layer Payload Size . . . . . . . . . . . . <a href="#page-29">29</a>
<a href="#section-8.4">8.4</a>. Responding to Packets Carrying Routing Headers . . . . . <a href="#page-29">29</a>
<a href="#section-9">9</a>. IANA Considerations . . . . . . . . . . . . . . . . . . . . . <a href="#page-29">29</a>
<a href="#section-10">10</a>. Security Considerations . . . . . . . . . . . . . . . . . . . <a href="#page-30">30</a>
<a href="#section-11">11</a>. References . . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-32">32</a>
<a href="#section-11.1">11.1</a>. Normative References . . . . . . . . . . . . . . . . . . <a href="#page-32">32</a>
<a href="#section-11.2">11.2</a>. Informative References . . . . . . . . . . . . . . . . . <a href="#page-33">33</a>
<a href="#appendix-A">Appendix A</a>. Formatting Guidelines for Options . . . . . . . . . <a href="#page-36">36</a>
<a href="#appendix-B">Appendix B</a>. Changes Since <a href="./rfc2460">RFC 2460</a> . . . . . . . . . . . . . . . <a href="#page-39">39</a>
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-42">42</a>
Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-42">42</a>
<span class="grey">Deering & Hinden Standards Track [Page 3]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-4" ></span>
<span class="grey"><a href="./rfc8200">RFC 8200</a> IPv6 Specification July 2017</span>
<span class="h2"><a class="selflink" id="section-1" href="#section-1">1</a>. Introduction</span>
IP version 6 (IPv6) is a new version of the Internet Protocol (IP),
designed as the successor to IP version 4 (IPv4) [<a href="./rfc791" title=""Internet Protocol"">RFC791</a>]. The
changes from IPv4 to IPv6 fall primarily into the following
categories:
o Expanded Addressing Capabilities
IPv6 increases the IP address size from 32 bits to 128 bits, to
support more levels of addressing hierarchy, a much greater
number of addressable nodes, and simpler autoconfiguration of
addresses. The scalability of multicast routing is improved by
adding a "scope" field to multicast addresses. And a new type
of address called an "anycast address" is defined; it is used
to send a packet to any one of a group of nodes.
o Header Format Simplification
Some IPv4 header fields have been dropped or made optional, to
reduce the common-case processing cost of packet handling and
to limit the bandwidth cost of the IPv6 header.
o Improved Support for Extensions and Options
Changes in the way IP header options are encoded allows for
more efficient forwarding, less stringent limits on the length
of options, and greater flexibility for introducing new options
in the future.
o Flow Labeling Capability
A new capability is added to enable the labeling of sequences
of packets that the sender requests to be treated in the
network as a single flow.
o Authentication and Privacy Capabilities
Extensions to support authentication, data integrity, and
(optional) data confidentiality are specified for IPv6.
This document specifies the basic IPv6 header and the initially
defined IPv6 extension headers and options. It also discusses packet
size issues, the semantics of flow labels and traffic classes, and
the effects of IPv6 on upper-layer protocols. The format and
semantics of IPv6 addresses are specified separately in [<a href="./rfc4291" title=""IP Version 6 Addressing Architecture"">RFC4291</a>].
The IPv6 version of ICMP, which all IPv6 implementations are required
to include, is specified in [<a href="./rfc4443" title=""Internet Control Message Protocol (ICMPv6) for the Internet Protocol Version 6 (IPv6) Specification"">RFC4443</a>].
<span class="grey">Deering & Hinden Standards Track [Page 4]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-5" ></span>
<span class="grey"><a href="./rfc8200">RFC 8200</a> IPv6 Specification July 2017</span>
The data transmission order for IPv6 is the same as for IPv4 as
defined in <a href="./rfc791#appendix-B">Appendix B of [RFC791]</a>.
Note: As this document obsoletes [<a href="./rfc2460" title=""Internet Protocol, Version 6 (IPv6) Specification"">RFC2460</a>], any document referenced
in this document that includes pointers to <a href="./rfc2460">RFC 2460</a> should be
interpreted as referencing this document.
<span class="h2"><a class="selflink" id="section-2" href="#section-2">2</a>. Terminology</span>
node a device that implements IPv6.
router a node that forwards IPv6 packets not explicitly
addressed to itself. (See Note below.)
host any node that is not a router. (See Note below.)
upper layer a protocol layer immediately above IPv6. Examples are
transport protocols such as TCP and UDP, control
protocols such as ICMP, routing protocols such as OSPF,
and internet-layer or lower-layer protocols being
"tunneled" over (i.e., encapsulated in) IPv6 such as
Internetwork Packet Exchange (IPX), AppleTalk, or IPv6
itself.
link a communication facility or medium over which nodes can
communicate at the link layer, i.e., the layer
immediately below IPv6. Examples are Ethernets (simple
or bridged); PPP links; X.25, Frame Relay, or ATM
networks; and internet-layer or higher-layer "tunnels",
such as tunnels over IPv4 or IPv6 itself.
neighbors nodes attached to the same link.
interface a node's attachment to a link.
address an IPv6-layer identifier for an interface or a set of
interfaces.
packet an IPv6 header plus payload.
link MTU the maximum transmission unit, i.e., maximum packet size
in octets, that can be conveyed over a link.
path MTU the minimum link MTU of all the links in a path between
a source node and a destination node.
<span class="grey">Deering & Hinden Standards Track [Page 5]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-6" ></span>
<span class="grey"><a href="./rfc8200">RFC 8200</a> IPv6 Specification July 2017</span>
Note: it is possible for a device with multiple interfaces to be
configured to forward non-self-destined packets arriving from some
set (fewer than all) of its interfaces and to discard non-self-
destined packets arriving from its other interfaces. Such a device
must obey the protocol requirements for routers when receiving
packets from, and interacting with neighbors over, the former
(forwarding) interfaces. It must obey the protocol requirements for
hosts when receiving packets from, and interacting with neighbors
over, the latter (non-forwarding) interfaces.
<span class="h2"><a class="selflink" id="section-3" href="#section-3">3</a>. IPv6 Header Format</span>
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Version| Traffic Class | Flow Label |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Payload Length | Next Header | Hop Limit |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
+ +
| |
+ Source Address +
| |
+ +
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
+ +
| |
+ Destination Address +
| |
+ +
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Version 4-bit Internet Protocol version number = 6.
Traffic Class 8-bit Traffic Class field. See <a href="#section-7">Section 7</a>.
Flow Label 20-bit flow label. See <a href="#section-6">Section 6</a>.
Payload Length 16-bit unsigned integer. Length of the IPv6
payload, i.e., the rest of the packet
following this IPv6 header, in octets. (Note
that any extension headers (see <a href="#section-4">Section 4</a>)
present are considered part of the payload,
i.e., included in the length count.)
<span class="grey">Deering & Hinden Standards Track [Page 6]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-7" ></span>
<span class="grey"><a href="./rfc8200">RFC 8200</a> IPv6 Specification July 2017</span>
Next Header 8-bit selector. Identifies the type of header
immediately following the IPv6 header. Uses
the same values as the IPv4 Protocol field
[<a href="#ref-IANA-PN" title=""Protocol Numbers"">IANA-PN</a>].
Hop Limit 8-bit unsigned integer. Decremented by 1 by
each node that forwards the packet. When
forwarding, the packet is discarded if Hop
Limit was zero when received or is decremented
to zero. A node that is the destination of a
packet should not discard a packet with Hop
Limit equal to zero; it should process the
packet normally.
Source Address 128-bit address of the originator of the
packet. See [<a href="./rfc4291" title=""IP Version 6 Addressing Architecture"">RFC4291</a>].
Destination Address 128-bit address of the intended recipient of
the packet (possibly not the ultimate
recipient, if a Routing header is present).
See [<a href="./rfc4291" title=""IP Version 6 Addressing Architecture"">RFC4291</a>] and <a href="#section-4.4">Section 4.4</a>.
<span class="h2"><a class="selflink" id="section-4" href="#section-4">4</a>. IPv6 Extension Headers</span>
In IPv6, optional internet-layer information is encoded in separate
headers that may be placed between the IPv6 header and the upper-
layer header in a packet. There is a small number of such extension
headers, each one identified by a distinct Next Header value.
Extension headers are numbered from IANA IP Protocol Numbers
[<a href="#ref-IANA-PN" title=""Protocol Numbers"">IANA-PN</a>], the same values used for IPv4 and IPv6. When processing a
sequence of Next Header values in a packet, the first one that is not
an extension header [<a href="#ref-IANA-EH" title=""IPv6 Extension Header Types"">IANA-EH</a>] indicates that the next item in the
packet is the corresponding upper-layer header. A special "No Next
Header" value is used if there is no upper-layer header.
<span class="grey">Deering & Hinden Standards Track [Page 7]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-8" ></span>
<span class="grey"><a href="./rfc8200">RFC 8200</a> IPv6 Specification July 2017</span>
As illustrated in these examples, an IPv6 packet may carry zero, one,
or more extension headers, each identified by the Next Header field
of the preceding header:
+---------------+------------------------
| IPv6 header | TCP header + data
| |
| Next Header = |
| TCP |
+---------------+------------------------
+---------------+----------------+------------------------
| IPv6 header | Routing header | TCP header + data
| | |
| Next Header = | Next Header = |
| Routing | TCP |
+---------------+----------------+------------------------
+---------------+----------------+-----------------+-----------------
| IPv6 header | Routing header | Fragment header | fragment of TCP
| | | | header + data
| Next Header = | Next Header = | Next Header = |
| Routing | Fragment | TCP |
+---------------+----------------+-----------------+-----------------
Extension headers (except for the Hop-by-Hop Options header) are not
processed, inserted, or deleted by any node along a packet's delivery
path, until the packet reaches the node (or each of the set of nodes,
in the case of multicast) identified in the Destination Address field
of the IPv6 header.
The Hop-by-Hop Options header is not inserted or deleted, but may be
examined or processed by any node along a packet's delivery path,
until the packet reaches the node (or each of the set of nodes, in
the case of multicast) identified in the Destination Address field of
the IPv6 header. The Hop-by-Hop Options header, when present, must
immediately follow the IPv6 header. Its presence is indicated by the
value zero in the Next Header field of the IPv6 header.
NOTE: While [<a href="./rfc2460" title=""Internet Protocol, Version 6 (IPv6) Specification"">RFC2460</a>] required that all nodes must examine and
process the Hop-by-Hop Options header, it is now expected that nodes
along a packet's delivery path only examine and process the
Hop-by-Hop Options header if explicitly configured to do so.
<span class="grey">Deering & Hinden Standards Track [Page 8]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-9" ></span>
<span class="grey"><a href="./rfc8200">RFC 8200</a> IPv6 Specification July 2017</span>
At the destination node, normal demultiplexing on the Next Header
field of the IPv6 header invokes the module to process the first
extension header, or the upper-layer header if no extension header is
present. The contents and semantics of each extension header
determine whether or not to proceed to the next header. Therefore,
extension headers must be processed strictly in the order they appear
in the packet; a receiver must not, for example, scan through a
packet looking for a particular kind of extension header and process
that header prior to processing all preceding ones.
If, as a result of processing a header, the destination node is
required to proceed to the next header but the Next Header value in
the current header is unrecognized by the node, it should discard the
packet and send an ICMP Parameter Problem message to the source of
the packet, with an ICMP Code value of 1 ("unrecognized Next Header
type encountered") and the ICMP Pointer field containing the offset
of the unrecognized value within the original packet. The same
action should be taken if a node encounters a Next Header value of
zero in any header other than an IPv6 header.
Each extension header is an integer multiple of 8 octets long, in
order to retain 8-octet alignment for subsequent headers. Multi-
octet fields within each extension header are aligned on their
natural boundaries, i.e., fields of width n octets are placed at an
integer multiple of n octets from the start of the header, for n = 1,
2, 4, or 8.
A full implementation of IPv6 includes implementation of the
following extension headers:
Hop-by-Hop Options
Fragment
Destination Options
Routing
Authentication
Encapsulating Security Payload
The first four are specified in this document; the last two are
specified in [<a href="./rfc4302" title=""IP Authentication Header"">RFC4302</a>] and [<a href="./rfc4303" title=""IP Encapsulating Security Payload (ESP)"">RFC4303</a>], respectively. The current list
of IPv6 extension headers can be found at [<a href="#ref-IANA-EH" title=""IPv6 Extension Header Types"">IANA-EH</a>].
<span class="grey">Deering & Hinden Standards Track [Page 9]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-10" ></span>
<span class="grey"><a href="./rfc8200">RFC 8200</a> IPv6 Specification July 2017</span>
<span class="h3"><a class="selflink" id="section-4.1" href="#section-4.1">4.1</a>. Extension Header Order</span>
When more than one extension header is used in the same packet, it is
recommended that those headers appear in the following order:
IPv6 header
Hop-by-Hop Options header
Destination Options header (note 1)
Routing header
Fragment header
Authentication header (note 2)
Encapsulating Security Payload header (note 2)
Destination Options header (note 3)
Upper-Layer header
note 1: for options to be processed by the first destination that
appears in the IPv6 Destination Address field plus
subsequent destinations listed in the Routing header.
note 2: additional recommendations regarding the relative order of
the Authentication and Encapsulating Security Payload
headers are given in [<a href="./rfc4303" title=""IP Encapsulating Security Payload (ESP)"">RFC4303</a>].
note 3: for options to be processed only by the final destination
of the packet.
Each extension header should occur at most once, except for the
Destination Options header, which should occur at most twice (once
before a Routing header and once before the upper-layer header).
If the upper-layer header is another IPv6 header (in the case of IPv6
being tunneled over or encapsulated in IPv6), it may be followed by
its own extension headers, which are separately subject to the same
ordering recommendations.
If and when other extension headers are defined, their ordering
constraints relative to the above listed headers must be specified.
IPv6 nodes must accept and attempt to process extension headers in
any order and occurring any number of times in the same packet,
except for the Hop-by-Hop Options header, which is restricted to
appear immediately after an IPv6 header only. Nonetheless, it is
strongly advised that sources of IPv6 packets adhere to the above
recommended order until and unless subsequent specifications revise
that recommendation.
<span class="grey">Deering & Hinden Standards Track [Page 10]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-11" ></span>
<span class="grey"><a href="./rfc8200">RFC 8200</a> IPv6 Specification July 2017</span>
<span class="h3"><a class="selflink" id="section-4.2" href="#section-4.2">4.2</a>. Options</span>
Two of the currently defined extension headers specified in this
document -- the Hop-by-Hop Options header and the Destination Options
header -- carry a variable number of "options" that are type-length-
value (TLV) encoded in the following format:
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- - - - - - - - -
| Option Type | Opt Data Len | Option Data
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- - - - - - - - -
Option Type 8-bit identifier of the type of option.
Opt Data Len 8-bit unsigned integer. Length of the Option
Data field of this option, in octets.
Option Data Variable-length field. Option-Type-specific
data.
The sequence of options within a header must be processed strictly in
the order they appear in the header; a receiver must not, for
example, scan through the header looking for a particular kind of
option and process that option prior to processing all preceding
ones.
The Option Type identifiers are internally encoded such that their
highest-order 2 bits specify the action that must be taken if the
processing IPv6 node does not recognize the Option Type:
00 - skip over this option and continue processing the header.
01 - discard the packet.
10 - discard the packet and, regardless of whether or not the
packet's Destination Address was a multicast address, send an
ICMP Parameter Problem, Code 2, message to the packet's
Source Address, pointing to the unrecognized Option Type.
11 - discard the packet and, only if the packet's Destination
Address was not a multicast address, send an ICMP Parameter
Problem, Code 2, message to the packet's Source Address,
pointing to the unrecognized Option Type.
The third-highest-order bit of the Option Type specifies whether or
not the Option Data of that option can change en route to the
packet's final destination. When an Authentication header is present
<span class="grey">Deering & Hinden Standards Track [Page 11]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-12" ></span>
<span class="grey"><a href="./rfc8200">RFC 8200</a> IPv6 Specification July 2017</span>
in the packet, for any option whose data may change en route, its
entire Option Data field must be treated as zero-valued octets when
computing or verifying the packet's authenticating value.
0 - Option Data does not change en route
1 - Option Data may change en route
The three high-order bits described above are to be treated as part
of the Option Type, not independent of the Option Type. That is, a
particular option is identified by a full 8-bit Option Type, not just
the low-order 5 bits of an Option Type.
The same Option Type numbering space is used for both the Hop-by-Hop
Options header and the Destination Options header. However, the
specification of a particular option may restrict its use to only one
of those two headers.
Individual options may have specific alignment requirements, to
ensure that multi-octet values within Option Data fields fall on
natural boundaries. The alignment requirement of an option is
specified using the notation xn+y, meaning the Option Type must
appear at an integer multiple of x octets from the start of the
header, plus y octets. For example:
2n means any 2-octet offset from the start of the header.
8n+2 means any 8-octet offset from the start of the header, plus
2 octets.
There are two padding options that are used when necessary to align
subsequent options and to pad out the containing header to a multiple
of 8 octets in length. These padding options must be recognized by
all IPv6 implementations:
Pad1 option (alignment requirement: none)
+-+-+-+-+-+-+-+-+
| 0 |
+-+-+-+-+-+-+-+-+
NOTE! the format of the Pad1 option is a special case -- it does
not have length and value fields.
The Pad1 option is used to insert 1 octet of padding into the
Options area of a header. If more than one octet of padding is
required, the PadN option, described next, should be used, rather
than multiple Pad1 options.
<span class="grey">Deering & Hinden Standards Track [Page 12]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-13" ></span>
<span class="grey"><a href="./rfc8200">RFC 8200</a> IPv6 Specification July 2017</span>
PadN option (alignment requirement: none)
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- - - - - - - - -
| 1 | Opt Data Len | Option Data
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- - - - - - - - -
The PadN option is used to insert two or more octets of padding
into the Options area of a header. For N octets of padding, the
Opt Data Len field contains the value N-2, and the Option Data
consists of N-2 zero-valued octets.
<a href="#appendix-A">Appendix A</a> contains formatting guidelines for designing new options.
<span class="h3"><a class="selflink" id="section-4.3" href="#section-4.3">4.3</a>. Hop-by-Hop Options Header</span>
The Hop-by-Hop Options header is used to carry optional information
that may be examined and processed by every node along a packet's
delivery path. The Hop-by-Hop Options header is identified by a Next
Header value of 0 in the IPv6 header and has the following format:
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Next Header | Hdr Ext Len | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +
| |
. .
. Options .
. .
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Next Header 8-bit selector. Identifies the type of header
immediately following the Hop-by-Hop Options
header. Uses the same values as the IPv4
Protocol field [<a href="#ref-IANA-PN" title=""Protocol Numbers"">IANA-PN</a>].
Hdr Ext Len 8-bit unsigned integer. Length of the
Hop-by-Hop Options header in 8-octet units,
not including the first 8 octets.
Options Variable-length field, of length such that the
complete Hop-by-Hop Options header is an
integer multiple of 8 octets long. Contains
one or more TLV-encoded options, as described
in <a href="#section-4.2">Section 4.2</a>.
The only hop-by-hop options defined in this document are the Pad1 and
PadN options specified in <a href="#section-4.2">Section 4.2</a>.
<span class="grey">Deering & Hinden Standards Track [Page 13]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-14" ></span>
<span class="grey"><a href="./rfc8200">RFC 8200</a> IPv6 Specification July 2017</span>
<span class="h3"><a class="selflink" id="section-4.4" href="#section-4.4">4.4</a>. Routing Header</span>
The Routing header is used by an IPv6 source to list one or more
intermediate nodes to be "visited" on the way to a packet's
destination. This function is very similar to IPv4's Loose Source
and Record Route option. The Routing header is identified by a Next
Header value of 43 in the immediately preceding header and has the
following format:
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Next Header | Hdr Ext Len | Routing Type | Segments Left |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
. .
. type-specific data .
. .
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Next Header 8-bit selector. Identifies the type of header
immediately following the Routing header.
Uses the same values as the IPv4 Protocol
field [<a href="#ref-IANA-PN" title=""Protocol Numbers"">IANA-PN</a>].
Hdr Ext Len 8-bit unsigned integer. Length of the Routing
header in 8-octet units, not including the
first 8 octets.
Routing Type 8-bit identifier of a particular Routing
header variant.
Segments Left 8-bit unsigned integer. Number of route
segments remaining, i.e., number of explicitly
listed intermediate nodes still to be visited
before reaching the final destination.
type-specific data Variable-length field, of format determined by
the Routing Type, and of length such that the
complete Routing header is an integer multiple
of 8 octets long.
<span class="grey">Deering & Hinden Standards Track [Page 14]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-15" ></span>
<span class="grey"><a href="./rfc8200">RFC 8200</a> IPv6 Specification July 2017</span>
If, while processing a received packet, a node encounters a Routing
header with an unrecognized Routing Type value, the required behavior
of the node depends on the value of the Segments Left field, as
follows:
If Segments Left is zero, the node must ignore the Routing header
and proceed to process the next header in the packet, whose type
is identified by the Next Header field in the Routing header.
If Segments Left is non-zero, the node must discard the packet and
send an ICMP Parameter Problem, Code 0, message to the packet's
Source Address, pointing to the unrecognized Routing Type.
If, after processing a Routing header of a received packet, an
intermediate node determines that the packet is to be forwarded onto
a link whose link MTU is less than the size of the packet, the node
must discard the packet and send an ICMP Packet Too Big message to
the packet's Source Address.
The currently defined IPv6 Routing Headers and their status can be
found at [<a href="#ref-IANA-RH" title=""Routing Types"">IANA-RH</a>]. Allocation guidelines for IPv6 Routing Headers
can be found in [<a href="./rfc5871" title=""IANA Allocation Guidelines for the IPv6 Routing Header"">RFC5871</a>].
<span class="h3"><a class="selflink" id="section-4.5" href="#section-4.5">4.5</a>. Fragment Header</span>
The Fragment header is used by an IPv6 source to send a packet larger
than would fit in the path MTU to its destination. (Note: unlike
IPv4, fragmentation in IPv6 is performed only by source nodes, not by
routers along a packet's delivery path -- see <a href="#section-5">Section 5</a>.) The
Fragment header is identified by a Next Header value of 44 in the
immediately preceding header and has the following format:
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Next Header | Reserved | Fragment Offset |Res|M|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Identification |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Next Header 8-bit selector. Identifies the initial header
type of the Fragmentable Part of the original
packet (defined below). Uses the same values
as the IPv4 Protocol field [<a href="#ref-IANA-PN" title=""Protocol Numbers"">IANA-PN</a>].
Reserved 8-bit reserved field. Initialized to zero for
transmission; ignored on reception.
<span class="grey">Deering & Hinden Standards Track [Page 15]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-16" ></span>
<span class="grey"><a href="./rfc8200">RFC 8200</a> IPv6 Specification July 2017</span>
Fragment Offset 13-bit unsigned integer. The offset, in
8-octet units, of the data following this
header, relative to the start of the
Fragmentable Part of the original packet.
Res 2-bit reserved field. Initialized to zero for
transmission; ignored on reception.
M flag 1 = more fragments; 0 = last fragment.
Identification 32 bits. See description below.
In order to send a packet that is too large to fit in the MTU of the
path to its destination, a source node may divide the packet into
fragments and send each fragment as a separate packet, to be
reassembled at the receiver.
For every packet that is to be fragmented, the source node generates
an Identification value. The Identification must be different than
that of any other fragmented packet sent recently* with the same
Source Address and Destination Address. If a Routing header is
present, the Destination Address of concern is that of the final
destination.
* "recently" means within the maximum likely lifetime of a
packet, including transit time from source to destination and
time spent awaiting reassembly with other fragments of the same
packet. However, it is not required that a source node knows
the maximum packet lifetime. Rather, it is assumed that the
requirement can be met by implementing an algorithm that
results in a low identification reuse frequency. Examples of
algorithms that can meet this requirement are described in
[<a href="./rfc7739" title=""Security Implications of Predictable Fragment Identification Values"">RFC7739</a>].
<span class="grey">Deering & Hinden Standards Track [Page 16]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-17" ></span>
<span class="grey"><a href="./rfc8200">RFC 8200</a> IPv6 Specification July 2017</span>
The initial, large, unfragmented packet is referred to as the
"original packet", and it is considered to consist of three parts, as
illustrated:
original packet:
+------------------+-------------------------+---//----------------+
| Per-Fragment | Extension & Upper-Layer | Fragmentable |
| Headers | Headers | Part |
+------------------+-------------------------+---//----------------+
The Per-Fragment headers must consist of the IPv6 header plus any
extension headers that must be processed by nodes en route to the
destination, that is, all headers up to and including the Routing
header if present, else the Hop-by-Hop Options header if present,
else no extension headers.
The Extension headers are all other extension headers that are not
included in the Per-Fragment headers part of the packet. For this
purpose, the Encapsulating Security Payload (ESP) is not
considered an extension header. The Upper-Layer header is the
first upper-layer header that is not an IPv6 extension header.
Examples of upper-layer headers include TCP, UDP, IPv4, IPv6,
ICMPv6, and as noted ESP.
The Fragmentable Part consists of the rest of the packet after the
upper-layer header or after any header (i.e., initial IPv6 header
or extension header) that contains a Next Header value of No Next
Header.
The Fragmentable Part of the original packet is divided into
fragments. The lengths of the fragments must be chosen such that the
resulting fragment packets fit within the MTU of the path to the
packet's destination(s). Each complete fragment, except possibly the
last ("rightmost") one, is an integer multiple of 8 octets long.
<span class="grey">Deering & Hinden Standards Track [Page 17]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-18" ></span>
<span class="grey"><a href="./rfc8200">RFC 8200</a> IPv6 Specification July 2017</span>
The fragments are transmitted in separate "fragment packets" as
illustrated:
original packet:
+-----------------+-----------------+--------+--------+-//-+--------+
| Per-Fragment |Ext & Upper-Layer| first | second | | last |
| Headers | Headers |fragment|fragment|....|fragment|
+-----------------+-----------------+--------+--------+-//-+--------+
fragment packets:
+------------------+---------+-------------------+----------+
| Per-Fragment |Fragment | Ext & Upper-Layer | first |
| Headers | Header | Headers | fragment |
+------------------+---------+-------------------+----------+
+------------------+--------+-------------------------------+
| Per-Fragment |Fragment| second |
| Headers | Header | fragment |
+------------------+--------+-------------------------------+
o
o
o
+------------------+--------+----------+
| Per-Fragment |Fragment| last |
| Headers | Header | fragment |
+------------------+--------+----------+
The first fragment packet is composed of:
(1) The Per-Fragment headers of the original packet, with the
Payload Length of the original IPv6 header changed to contain
the length of this fragment packet only (excluding the length
of the IPv6 header itself), and the Next Header field of the
last header of the Per-Fragment headers changed to 44.
(2) A Fragment header containing:
The Next Header value that identifies the first header
after the Per-Fragment headers of the original packet.
A Fragment Offset containing the offset of the fragment,
in 8-octet units, relative to the start of the
Fragmentable Part of the original packet. The Fragment
Offset of the first ("leftmost") fragment is 0.
An M flag value of 1 as this is the first fragment.
<span class="grey">Deering & Hinden Standards Track [Page 18]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-19" ></span>
<span class="grey"><a href="./rfc8200">RFC 8200</a> IPv6 Specification July 2017</span>
The Identification value generated for the original
packet.
(3) Extension headers, if any, and the Upper-Layer header. These
headers must be in the first fragment. Note: This restricts
the size of the headers through the Upper-Layer header to the
MTU of the path to the packet's destinations(s).
(4) The first fragment.
The subsequent fragment packets are composed of:
(1) The Per-Fragment headers of the original packet, with the
Payload Length of the original IPv6 header changed to contain
the length of this fragment packet only (excluding the length
of the IPv6 header itself), and the Next Header field of the
last header of the Per-Fragment headers changed to 44.
(2) A Fragment header containing:
The Next Header value that identifies the first header
after the Per-Fragment headers of the original packet.
A Fragment Offset containing the offset of the fragment,
in 8-octet units, relative to the start of the
Fragmentable Part of the original packet.
An M flag value of 0 if the fragment is the last
("rightmost") one, else an M flag value of 1.
The Identification value generated for the original
packet.
(3) The fragment itself.
Fragments must not be created that overlap with any other fragments
created from the original packet.
<span class="grey">Deering & Hinden Standards Track [Page 19]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-20" ></span>
<span class="grey"><a href="./rfc8200">RFC 8200</a> IPv6 Specification July 2017</span>
At the destination, fragment packets are reassembled into their
original, unfragmented form, as illustrated:
reassembled original packet:
+---------------+-----------------+---------+--------+-//--+--------+
| Per-Fragment |Ext & Upper-Layer| first | second | | last |
| Headers | Headers |frag data|fragment|.....|fragment|
+---------------+-----------------+---------+--------+-//--+--------+
The following rules govern reassembly:
An original packet is reassembled only from fragment packets that
have the same Source Address, Destination Address, and Fragment
Identification.
The Per-Fragment headers of the reassembled packet consists of all
headers up to, but not including, the Fragment header of the first
fragment packet (that is, the packet whose Fragment Offset is
zero), with the following two changes:
The Next Header field of the last header of the Per-Fragment
headers is obtained from the Next Header field of the first
fragment's Fragment header.
The Payload Length of the reassembled packet is computed from
the length of the Per-Fragment headers and the length and
offset of the last fragment. For example, a formula for
computing the Payload Length of the reassembled original packet
is:
PL.orig = PL.first - FL.first - 8 + (8 * FO.last) + FL.last
where
PL.orig = Payload Length field of reassembled packet.
PL.first = Payload Length field of first fragment packet.
FL.first = length of fragment following Fragment header of
first fragment packet.
FO.last = Fragment Offset field of Fragment header of last
fragment packet.
FL.last = length of fragment following Fragment header of
last fragment packet.
The Fragmentable Part of the reassembled packet is constructed
from the fragments following the Fragment headers in each of
the fragment packets. The length of each fragment is computed
by subtracting from the packet's Payload Length the length of
the headers between the IPv6 header and fragment itself; its
<span class="grey">Deering & Hinden Standards Track [Page 20]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-21" ></span>
<span class="grey"><a href="./rfc8200">RFC 8200</a> IPv6 Specification July 2017</span>
relative position in Fragmentable Part is computed from its
Fragment Offset value.
The Fragment header is not present in the final, reassembled
packet.
If the fragment is a whole datagram (that is, both the Fragment
Offset field and the M flag are zero), then it does not need
any further reassembly and should be processed as a fully
reassembled packet (i.e., updating Next Header, adjust Payload
Length, removing the Fragment header, etc.). Any other
fragments that match this packet (i.e., the same IPv6 Source
Address, IPv6 Destination Address, and Fragment Identification)
should be processed independently.
The following error conditions may arise when reassembling fragmented
packets:
o If insufficient fragments are received to complete reassembly
of a packet within 60 seconds of the reception of the first-
arriving fragment of that packet, reassembly of that packet
must be abandoned and all the fragments that have been received
for that packet must be discarded. If the first fragment
(i.e., the one with a Fragment Offset of zero) has been
received, an ICMP Time Exceeded -- Fragment Reassembly Time
Exceeded message should be sent to the source of that fragment.
o If the length of a fragment, as derived from the fragment
packet's Payload Length field, is not a multiple of 8 octets
and the M flag of that fragment is 1, then that fragment must
be discarded and an ICMP Parameter Problem, Code 0, message
should be sent to the source of the fragment, pointing to the
Payload Length field of the fragment packet.
o If the length and offset of a fragment are such that the
Payload Length of the packet reassembled from that fragment
would exceed 65,535 octets, then that fragment must be
discarded and an ICMP Parameter Problem, Code 0, message should
be sent to the source of the fragment, pointing to the Fragment
Offset field of the fragment packet.
o If the first fragment does not include all headers through an
Upper-Layer header, then that fragment should be discarded and
an ICMP Parameter Problem, Code 3, message should be sent to
the source of the fragment, with the Pointer field set to zero.
<span class="grey">Deering & Hinden Standards Track [Page 21]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-22" ></span>
<span class="grey"><a href="./rfc8200">RFC 8200</a> IPv6 Specification July 2017</span>
o If any of the fragments being reassembled overlap with any
other fragments being reassembled for the same packet,
reassembly of that packet must be abandoned and all the
fragments that have been received for that packet must be
discarded, and no ICMP error messages should be sent.
It should be noted that fragments may be duplicated in the
network. Instead of treating these exact duplicate fragments
as overlapping fragments, an implementation may choose to
detect this case and drop exact duplicate fragments while
keeping the other fragments belonging to the same packet.
The following conditions are not expected to occur frequently but are
not considered errors if they do:
The number and content of the headers preceding the Fragment
header of different fragments of the same original packet may
differ. Whatever headers are present, preceding the Fragment
header in each fragment packet, are processed when the packets
arrive, prior to queueing the fragments for reassembly. Only
those headers in the Offset zero fragment packet are retained in
the reassembled packet.
The Next Header values in the Fragment headers of different
fragments of the same original packet may differ. Only the value
from the Offset zero fragment packet is used for reassembly.
Other fields in the IPv6 header may also vary across the fragments
being reassembled. Specifications that use these fields may
provide additional instructions if the basic mechanism of using
the values from the Offset zero fragment is not sufficient. For
example, <a href="./rfc3168#section-5.3">Section 5.3 of [RFC3168]</a> describes how to combine the
Explicit Congestion Notification (ECN) bits from different
fragments to derive the ECN bits of the reassembled packet.
<span class="grey">Deering & Hinden Standards Track [Page 22]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-23" ></span>
<span class="grey"><a href="./rfc8200">RFC 8200</a> IPv6 Specification July 2017</span>
<span class="h3"><a class="selflink" id="section-4.6" href="#section-4.6">4.6</a>. Destination Options Header</span>
The Destination Options header is used to carry optional information
that need be examined only by a packet's destination node(s). The
Destination Options header is identified by a Next Header value of 60
in the immediately preceding header and has the following format:
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Next Header | Hdr Ext Len | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +
| |
. .
. Options .
. .
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Next Header 8-bit selector. Identifies the type of header
immediately following the Destination Options
header. Uses the same values as the IPv4
Protocol field [<a href="#ref-IANA-PN" title=""Protocol Numbers"">IANA-PN</a>].
Hdr Ext Len 8-bit unsigned integer. Length of the
Destination Options header in 8-octet units,
not including the first 8 octets.
Options Variable-length field, of length such that the
complete Destination Options header is an
integer multiple of 8 octets long. Contains
one or more TLV-encoded options, as described
in <a href="#section-4.2">Section 4.2</a>.
The only destination options defined in this document are the Pad1
and PadN options specified in <a href="#section-4.2">Section 4.2</a>.
Note that there are two possible ways to encode optional destination
information in an IPv6 packet: either as an option in the Destination
Options header or as a separate extension header. The Fragment
header and the Authentication header are examples of the latter
approach. Which approach can be used depends on what action is
desired of a destination node that does not understand the optional
information:
o If the desired action is for the destination node to discard
the packet and, only if the packet's Destination Address is not
a multicast address, send an ICMP Unrecognized Type message to
the packet's Source Address, then the information may be
encoded either as a separate header or as an option in the
<span class="grey">Deering & Hinden Standards Track [Page 23]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-24" ></span>
<span class="grey"><a href="./rfc8200">RFC 8200</a> IPv6 Specification July 2017</span>
Destination Options header whose Option Type has the value 11
in its highest-order 2 bits. The choice may depend on such
factors as which takes fewer octets, or which yields better
alignment or more efficient parsing.
o If any other action is desired, the information must be encoded
as an option in the Destination Options header whose Option
Type has the value 00, 01, or 10 in its highest-order 2 bits,
specifying the desired action (see <a href="#section-4.2">Section 4.2</a>).
<span class="h3"><a class="selflink" id="section-4.7" href="#section-4.7">4.7</a>. No Next Header</span>
The value 59 in the Next Header field of an IPv6 header or any
extension header indicates that there is nothing following that
header. If the Payload Length field of the IPv6 header indicates the
presence of octets past the end of a header whose Next Header field
contains 59, those octets must be ignored and passed on unchanged if
the packet is forwarded.
<span class="h3"><a class="selflink" id="section-4.8" href="#section-4.8">4.8</a>. Defining New Extension Headers and Options</span>
Defining new IPv6 extension headers is not recommended, unless there
are no existing IPv6 extension headers that can be used by specifying
a new option for that IPv6 extension header. A proposal to specify a
new IPv6 extension header must include a detailed technical
explanation of why an existing IPv6 extension header can not be used
for the desired new function. See [<a href="./rfc6564" title=""A Uniform Format for IPv6 Extension Headers"">RFC6564</a>] for additional
background information.
Note: New extension headers that require hop-by-hop behavior must not
be defined because, as specified in <a href="#section-4">Section 4</a> of this document, the
only extension header that has hop-by-hop behavior is the Hop-by-Hop
Options header.
New hop-by-hop options are not recommended because nodes may be
configured to ignore the Hop-by-Hop Options header, drop packets
containing a Hop-by-Hop Options header, or assign packets containing
a Hop-by-Hop Options header to a slow processing path. Designers
considering defining new hop-by-hop options need to be aware of this
likely behavior. There has to be a very clear justification why any
new hop-by-hop option is needed before it is standardized.
Instead of defining new extension headers, it is recommended that the
Destination Options header is used to carry optional information that
must be examined only by a packet's destination node(s), because they
provide better handling and backward compatibility.
<span class="grey">Deering & Hinden Standards Track [Page 24]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-25" ></span>
<span class="grey"><a href="./rfc8200">RFC 8200</a> IPv6 Specification July 2017</span>
If new extension headers are defined, they need to use the following
format:
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Next Header | Hdr Ext Len | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +
| |
. .
. Header-Specific Data .
. .
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Next Header 8-bit selector. Identifies the type of
header immediately following the extension
header. Uses the same values as the IPv4
Protocol field [<a href="#ref-IANA-PN" title=""Protocol Numbers"">IANA-PN</a>].
Hdr Ext Len 8-bit unsigned integer. Length of the
Destination Options header in 8-octet units,
not including the first 8 octets.
Header Specific Data Variable-length field. Fields specific to
the extension header.
<span class="h2"><a class="selflink" id="section-5" href="#section-5">5</a>. Packet Size Issues</span>
IPv6 requires that every link in the Internet have an MTU of 1280
octets or greater. This is known as the IPv6 minimum link MTU. On
any link that cannot convey a 1280-octet packet in one piece, link-
specific fragmentation and reassembly must be provided at a layer
below IPv6.
Links that have a configurable MTU (for example, PPP links [<a href="./rfc1661" title=""The Point-to-Point Protocol (PPP)"">RFC1661</a>])
must be configured to have an MTU of at least 1280 octets; it is
recommended that they be configured with an MTU of 1500 octets or
greater, to accommodate possible encapsulations (i.e., tunneling)
without incurring IPv6-layer fragmentation.
From each link to which a node is directly attached, the node must be
able to accept packets as large as that link's MTU.
It is strongly recommended that IPv6 nodes implement Path MTU
Discovery [<a href="./rfc8201" title=""Path MTU Discovery for IP version 6"">RFC8201</a>], in order to discover and take advantage of path
MTUs greater than 1280 octets. However, a minimal IPv6
implementation (e.g., in a boot ROM) may simply restrict itself to
sending packets no larger than 1280 octets, and omit implementation
of Path MTU Discovery.
<span class="grey">Deering & Hinden Standards Track [Page 25]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-26" ></span>
<span class="grey"><a href="./rfc8200">RFC 8200</a> IPv6 Specification July 2017</span>
In order to send a packet larger than a path's MTU, a node may use
the IPv6 Fragment header to fragment the packet at the source and
have it reassembled at the destination(s). However, the use of such
fragmentation is discouraged in any application that is able to
adjust its packets to fit the measured path MTU (i.e., down to 1280
octets).
A node must be able to accept a fragmented packet that, after
reassembly, is as large as 1500 octets. A node is permitted to
accept fragmented packets that reassemble to more than 1500 octets.
An upper-layer protocol or application that depends on IPv6
fragmentation to send packets larger than the MTU of a path should
not send packets larger than 1500 octets unless it has assurance that
the destination is capable of reassembling packets of that larger
size.
<span class="h2"><a class="selflink" id="section-6" href="#section-6">6</a>. Flow Labels</span>
The 20-bit Flow Label field in the IPv6 header is used by a source to
label sequences of packets to be treated in the network as a single
flow.
The current definition of the IPv6 Flow Label can be found in
[<a href="./rfc6437" title=""IPv6 Flow Label Specification"">RFC6437</a>].
<span class="h2"><a class="selflink" id="section-7" href="#section-7">7</a>. Traffic Classes</span>
The 8-bit Traffic Class field in the IPv6 header is used by the
network for traffic management. The value of the Traffic Class bits
in a received packet or fragment might be different from the value
sent by the packet's source.
The current use of the Traffic Class field for Differentiated
Services and Explicit Congestion Notification is specified in
[<a href="./rfc2474" title=""Definition of the Differentiated Services Field (DS Field) in the IPv4 and IPv6 Headers"">RFC2474</a>] and [<a href="./rfc3168" title=""The Addition of Explicit Congestion Notification (ECN) to IP"">RFC3168</a>].
<span class="grey">Deering & Hinden Standards Track [Page 26]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-27" ></span>
<span class="grey"><a href="./rfc8200">RFC 8200</a> IPv6 Specification July 2017</span>
<span class="h2"><a class="selflink" id="section-8" href="#section-8">8</a>. Upper-Layer Protocol Issues</span>
<span class="h3"><a class="selflink" id="section-8.1" href="#section-8.1">8.1</a>. Upper-Layer Checksums</span>
Any transport or other upper-layer protocol that includes the
addresses from the IP header in its checksum computation must be
modified for use over IPv6, to include the 128-bit IPv6 addresses
instead of 32-bit IPv4 addresses. In particular, the following
illustration shows the TCP and UDP "pseudo-header" for IPv6:
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
+ +
| |
+ Source Address +
| |
+ +
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
+ +
| |
+ Destination Address +
| |
+ +
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Upper-Layer Packet Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| zero | Next Header |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
o If the IPv6 packet contains a Routing header, the Destination
Address used in the pseudo-header is that of the final
destination. At the originating node, that address will be in
the last element of the Routing header; at the recipient(s),
that address will be in the Destination Address field of the
IPv6 header.
o The Next Header value in the pseudo-header identifies the
upper-layer protocol (e.g., 6 for TCP or 17 for UDP). It will
differ from the Next Header value in the IPv6 header if there
are extension headers between the IPv6 header and the upper-
layer header.
<span class="grey">Deering & Hinden Standards Track [Page 27]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-28" ></span>
<span class="grey"><a href="./rfc8200">RFC 8200</a> IPv6 Specification July 2017</span>
o The Upper-Layer Packet Length in the pseudo-header is the
length of the upper-layer header and data (e.g., TCP header
plus TCP data). Some upper-layer protocols carry their own
length information (e.g., the Length field in the UDP header);
for such protocols, that is the length used in the pseudo-
header. Other protocols (such as TCP) do not carry their own
length information, in which case the length used in the
pseudo-header is the Payload Length from the IPv6 header, minus
the length of any extension headers present between the IPv6
header and the upper-layer header.
o Unlike IPv4, the default behavior when UDP packets are
originated by an IPv6 node is that the UDP checksum is not
optional. That is, whenever originating a UDP packet, an IPv6
node must compute a UDP checksum over the packet and the
pseudo-header, and, if that computation yields a result of
zero, it must be changed to hex FFFF for placement in the UDP
header. IPv6 receivers must discard UDP packets containing a
zero checksum and should log the error.
o As an exception to the default behavior, protocols that use UDP
as a tunnel encapsulation may enable zero-checksum mode for a
specific port (or set of ports) for sending and/or receiving.
Any node implementing zero-checksum mode must follow the
requirements specified in "Applicability Statement for the Use
of IPv6 UDP Datagrams with Zero Checksums" [<a href="./rfc6936" title=""Applicability Statement for the Use of IPv6 UDP Datagrams with Zero Checksums"">RFC6936</a>].
The IPv6 version of ICMP [<a href="./rfc4443" title=""Internet Control Message Protocol (ICMPv6) for the Internet Protocol Version 6 (IPv6) Specification"">RFC4443</a>] includes the above pseudo-header
in its checksum computation; this is a change from the IPv4 version
of ICMP, which does not include a pseudo-header in its checksum. The
reason for the change is to protect ICMP from misdelivery or
corruption of those fields of the IPv6 header on which it depends,
which, unlike IPv4, are not covered by an internet-layer checksum.
The Next Header field in the pseudo-header for ICMP contains the
value 58, which identifies the IPv6 version of ICMP.
<span class="h3"><a class="selflink" id="section-8.2" href="#section-8.2">8.2</a>. Maximum Packet Lifetime</span>
Unlike IPv4, IPv6 nodes are not required to enforce maximum packet
lifetime. That is the reason the IPv4 "Time-to-Live" field was
renamed "Hop Limit" in IPv6. In practice, very few, if any, IPv4
implementations conform to the requirement that they limit packet
lifetime, so this is not a change in practice. Any upper-layer
protocol that relies on the internet layer (whether IPv4 or IPv6) to
limit packet lifetime ought to be upgraded to provide its own
mechanisms for detecting and discarding obsolete packets.
<span class="grey">Deering & Hinden Standards Track [Page 28]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-29" ></span>
<span class="grey"><a href="./rfc8200">RFC 8200</a> IPv6 Specification July 2017</span>
<span class="h3"><a class="selflink" id="section-8.3" href="#section-8.3">8.3</a>. Maximum Upper-Layer Payload Size</span>
When computing the maximum payload size available for upper-layer
data, an upper-layer protocol must take into account the larger size
of the IPv6 header relative to the IPv4 header. For example, in
IPv4, TCP's Maximum Segment Size (MSS) option is computed as the
maximum packet size (a default value or a value learned through Path
MTU Discovery) minus 40 octets (20 octets for the minimum-length IPv4
header and 20 octets for the minimum-length TCP header). When using
TCP over IPv6, the MSS must be computed as the maximum packet size
minus 60 octets, because the minimum-length IPv6 header (i.e., an
IPv6 header with no extension headers) is 20 octets longer than a
minimum-length IPv4 header.
<span class="h3"><a class="selflink" id="section-8.4" href="#section-8.4">8.4</a>. Responding to Packets Carrying Routing Headers</span>
When an upper-layer protocol sends one or more packets in response to
a received packet that included a Routing header, the response
packet(s) must not include a Routing header that was automatically
derived by "reversing" the received Routing header UNLESS the
integrity and authenticity of the received Source Address and Routing
header have been verified (e.g., via the use of an Authentication
header in the received packet). In other words, only the following
kinds of packets are permitted in response to a received packet
bearing a Routing header:
o Response packets that do not carry Routing headers.
o Response packets that carry Routing headers that were NOT
derived by reversing the Routing header of the received packet
(for example, a Routing header supplied by local
configuration).
o Response packets that carry Routing headers that were derived
by reversing the Routing header of the received packet IF AND
ONLY IF the integrity and authenticity of the Source Address
and Routing header from the received packet have been verified
by the responder.
<span class="h2"><a class="selflink" id="section-9" href="#section-9">9</a>. IANA Considerations</span>
<a href="./rfc2460">RFC 2460</a> is referenced in a number of IANA registries. These
include:
o Internet Protocol Version 6 (IPv6) Parameters [<a href="#ref-IANA-6P" title=""Internet Protocol Version 6 (IPv6) Parameters"">IANA-6P</a>]
o Assigned Internet Protocol Numbers [<a href="#ref-IANA-PN" title=""Protocol Numbers"">IANA-PN</a>]
<span class="grey">Deering & Hinden Standards Track [Page 29]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-30" ></span>
<span class="grey"><a href="./rfc8200">RFC 8200</a> IPv6 Specification July 2017</span>
o ONC RPC Network Identifiers (netids) [<a href="#ref-IANA-NI" title=""ONC RPC Network Identifiers (netids)"">IANA-NI</a>]
o Network Layer Protocol Identifiers (NLPIDs) of Interest
[<a href="#ref-IANA-NL" title=""Network Layer Protocol Identifiers (NLPIDs) of Interest"">IANA-NL</a>]
o Protocol Registries [<a href="#ref-IANA-PR" title=""Protocol Registries"">IANA-PR</a>]
The IANA has updated these references to point to this document.
<span class="h2"><a class="selflink" id="section-10" href="#section-10">10</a>. Security Considerations</span>
IPv6, from the viewpoint of the basic format and transmission of
packets, has security properties that are similar to IPv4. These
security issues include:
o Eavesdropping, where on-path elements can observe the whole
packet (including both contents and metadata) of each IPv6
datagram.
o Replay, where the attacker records a sequence of packets off of
the wire and plays them back to the party that originally
received them.
o Packet insertion, where the attacker forges a packet with some
chosen set of properties and injects it into the network.
o Packet deletion, where the attacker removes a packet from the
wire.
o Packet modification, where the attacker removes a packet from
the wire, modifies it, and reinjects it into the network.
o Man-in-the-middle (MITM) attacks, where the attacker subverts
the communication stream in order to pose as the sender to
receiver and the receiver to the sender.
o Denial-of-service (DoS) attacks, where the attacker sends large
amounts of legitimate traffic to a destination to overwhelm it.
IPv6 packets can be protected from eavesdropping, replay, packet
insertion, packet modification, and MITM attacks by use of the
"Security Architecture for the Internet Protocol" [<a href="./rfc4301" title=""Security Architecture for the Internet Protocol"">RFC4301</a>]. In
addition, upper-layer protocols such as Transport Layer Security
(TLS) or Secure Shell (SSH) can be used to protect the application-
layer traffic running on top of IPv6.
There is not any mechanism to protect against DoS attacks. Defending
against these type of attacks is outside the scope of this
specification.
IPv6 addresses are significantly larger than IPv4 addresses making it
much harder to scan the address space across the Internet and even on
a single network link (e.g., Local Area Network). See [<a href="./rfc7707" title=""Network Reconnaissance in IPv6 Networks"">RFC7707</a>] for
more information.
<span class="grey">Deering & Hinden Standards Track [Page 30]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-31" ></span>
<span class="grey"><a href="./rfc8200">RFC 8200</a> IPv6 Specification July 2017</span>
IPv6 addresses of nodes are expected to be more visible on the
Internet as compared with IPv4 since the use of address translation
technology is reduced. This creates some additional privacy issues
such as making it easier to distinguish endpoints. See [<a href="./rfc7721" title=""Security and Privacy Considerations for IPv6 Address Generation Mechanisms"">RFC7721</a>] for
more information.
The design of IPv6 extension header architecture, while adding a lot
of flexibility, also creates new security challenges. As noted
below, issues relating to the Fragment extension header have been
resolved, but it's clear that for any new extension header designed
in the future, the security implications need to be examined
thoroughly, and this needs to include how the new extension header
works with existing extension headers. See [<a href="./rfc7045" title=""Transmission and Processing of IPv6 Extension Headers"">RFC7045</a>] for more
information.
This version of the IPv6 specification resolves a number of security
issues that were found with the previous version [<a href="./rfc2460" title=""Internet Protocol, Version 6 (IPv6) Specification"">RFC2460</a>] of the
IPv6 specification. These include:
o Revised the text to handle the case of fragments that are whole
datagrams (i.e., both the Fragment Offset field and the M flag
are zero). If received, they should be processed as a
reassembled packet. Any other fragments that match should be
processed independently. The Fragment creation process was
modified to not create whole datagram fragments (Fragment
Offset field and the M flag are zero). See [<a href="./rfc6946" title=""Processing of IPv6 "">RFC6946</a>] and
[<a href="./rfc8021" title=""Generation of IPv6 Atomic Fragments Considered Harmful"">RFC8021</a>] for more information.
o Removed the paragraph in <a href="#section-5">Section 5</a> that required including a
Fragment header to outgoing packets if an ICMP Packet Too Big
message reporting a Next-Hop MTU is less than 1280. See
[<a href="./rfc6946" title=""Processing of IPv6 "">RFC6946</a>] for more information.
o Changed the text to require that IPv6 nodes must not create
overlapping fragments. Also, when reassembling an IPv6
datagram, if one or more of its constituent fragments is
determined to be an overlapping fragment, the entire datagram
(and any constituent fragments) must be silently discarded.
Includes clarification that no ICMP error message should be
sent if overlapping fragments are received. See [<a href="./rfc5722" title=""Handling of Overlapping IPv6 Fragments"">RFC5722</a>] for
more information.
o Revised the text to require that all headers through the first
upper-layer header are in the first fragment. See [<a href="./rfc7112" title=""Implications of Oversized IPv6 Header Chains"">RFC7112</a>]
for more information.
<span class="grey">Deering & Hinden Standards Track [Page 31]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-32" ></span>
<span class="grey"><a href="./rfc8200">RFC 8200</a> IPv6 Specification July 2017</span>
o Incorporated the updates from [<a href="./rfc5095" title=""Deprecation of Type 0 Routing Headers in IPv6"">RFC5095</a>] and [<a href="./rfc5871" title=""IANA Allocation Guidelines for the IPv6 Routing Header"">RFC5871</a>] to remove
the description of the Routing Header type 0 (RH0), that the
allocations guidelines for Routing headers are specified in <a href="./rfc5871">RFC</a>
<a href="./rfc5871">5871</a>, and removed RH0 from the list of required extension
headers.
Security issues relating to other parts of IPv6 including addressing,
ICMPv6, Path MTU Discovery, etc., are discussed in the appropriate
specifications.
<span class="h2"><a class="selflink" id="section-11" href="#section-11">11</a>. References</span>
<span class="h3"><a class="selflink" id="section-11.1" href="#section-11.1">11.1</a>. Normative References</span>
[<a id="ref-RFC791">RFC791</a>] Postel, J., "Internet Protocol", STD 5, <a href="./rfc791">RFC 791</a>,
DOI 10.17487/RFC0791, September 1981,
<<a href="http://www.rfc-editor.org/info/rfc791">http://www.rfc-editor.org/info/rfc791</a>>.
[<a id="ref-RFC2474">RFC2474</a>] Nichols, K., Blake, S., Baker, F., and D. Black,
"Definition of the Differentiated Services Field (DS
Field) in the IPv4 and IPv6 Headers", <a href="./rfc2474">RFC 2474</a>,
DOI 10.17487/RFC2474, December 1998,
<<a href="http://www.rfc-editor.org/info/rfc2474">http://www.rfc-editor.org/info/rfc2474</a>>.
[<a id="ref-RFC3168">RFC3168</a>] Ramakrishnan, K., Floyd, S., and D. Black, "The Addition
of Explicit Congestion Notification (ECN) to IP",
<a href="./rfc3168">RFC 3168</a>, DOI 10.17487/RFC3168, September 2001,
<<a href="http://www.rfc-editor.org/info/rfc3168">http://www.rfc-editor.org/info/rfc3168</a>>.
[<a id="ref-RFC4291">RFC4291</a>] Hinden, R. and S. Deering, "IP Version 6 Addressing
Architecture", <a href="./rfc4291">RFC 4291</a>, DOI 10.17487/RFC4291, February
2006, <<a href="http://www.rfc-editor.org/info/rfc4291">http://www.rfc-editor.org/info/rfc4291</a>>.
[<a id="ref-RFC4443">RFC4443</a>] Conta, A., Deering, S., and M. Gupta, Ed., "Internet
Control Message Protocol (ICMPv6) for the Internet
Protocol Version 6 (IPv6) Specification", STD 89,
<a href="./rfc4443">RFC 4443</a>, DOI 10.17487/RFC4443, March 2006,
<<a href="http://www.rfc-editor.org/info/rfc4443">http://www.rfc-editor.org/info/rfc4443</a>>.
[<a id="ref-RFC6437">RFC6437</a>] Amante, S., Carpenter, B., Jiang, S., and J. Rajahalme,
"IPv6 Flow Label Specification", <a href="./rfc6437">RFC 6437</a>,
DOI 10.17487/RFC6437, November 2011,
<<a href="http://www.rfc-editor.org/info/rfc6437">http://www.rfc-editor.org/info/rfc6437</a>>.
<span class="grey">Deering & Hinden Standards Track [Page 32]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-33" ></span>
<span class="grey"><a href="./rfc8200">RFC 8200</a> IPv6 Specification July 2017</span>
<span class="h3"><a class="selflink" id="section-11.2" href="#section-11.2">11.2</a>. Informative References</span>
[<a id="ref-Err2541">Err2541</a>] RFC Errata, Erratum ID 2541, <a href="./rfc2460">RFC 2460</a>.
[<a id="ref-Err4279">Err4279</a>] RFC Errata, Erratum ID 4279, <a href="./rfc2460">RFC 2460</a>.
[<a id="ref-Err4657">Err4657</a>] RFC Errata, Erratum ID 4657, <a href="./rfc2460">RFC 2460</a>.
[<a id="ref-Err4662">Err4662</a>] RFC Errata, Erratum ID 4662, <a href="./rfc2460">RFC 2460</a>.
[<a id="ref-IANA-6P">IANA-6P</a>] IANA, "Internet Protocol Version 6 (IPv6) Parameters",
<<a href="https://www.iana.org/assignments/ipv6-parameters">https://www.iana.org/assignments/ipv6-parameters</a>>.
[<a id="ref-IANA-EH">IANA-EH</a>] IANA, "IPv6 Extension Header Types",
<<a href="https://www.iana.org/assignments/ipv6-parameters">https://www.iana.org/assignments/ipv6-parameters</a>>.
[<a id="ref-IANA-NI">IANA-NI</a>] IANA, "ONC RPC Network Identifiers (netids)",
<<a href="https://www.iana.org/assignments/rpc-netids">https://www.iana.org/assignments/rpc-netids</a>>.
[<a id="ref-IANA-NL">IANA-NL</a>] IANA, "Network Layer Protocol Identifiers (NLPIDs) of
Interest", <<a href="https://www.iana.org/assignments/nlpids">https://www.iana.org/assignments/nlpids</a>>.
[<a id="ref-IANA-PN">IANA-PN</a>] IANA, "Protocol Numbers",
<<a href="https://www.iana.org/assignments/protocol-numbers">https://www.iana.org/assignments/protocol-numbers</a>>.
[<a id="ref-IANA-PR">IANA-PR</a>] IANA, "Protocol Registries", <<a href="https://www.iana.org/protocols">https://www.iana.org/</a>
<a href="https://www.iana.org/protocols">protocols</a>>.
[<a id="ref-IANA-RH">IANA-RH</a>] IANA, "Routing Types", <<a href="https://www.iana.org/assignments/ipv6-parameters">https://www.iana.org/assignments/</a>
<a href="https://www.iana.org/assignments/ipv6-parameters">ipv6-parameters</a>>.
[<a id="ref-RFC1661">RFC1661</a>] Simpson, W., Ed., "The Point-to-Point Protocol (PPP)",
STD 51, <a href="./rfc1661">RFC 1661</a>, DOI 10.17487/RFC1661, July 1994,
<<a href="http://www.rfc-editor.org/info/rfc1661">http://www.rfc-editor.org/info/rfc1661</a>>.
[<a id="ref-RFC2460">RFC2460</a>] Deering, S. and R. Hinden, "Internet Protocol, Version 6
(IPv6) Specification", <a href="./rfc2460">RFC 2460</a>, DOI 10.17487/RFC2460,
December 1998, <<a href="http://www.rfc-editor.org/info/rfc2460">http://www.rfc-editor.org/info/rfc2460</a>>.
[<a id="ref-RFC4301">RFC4301</a>] Kent, S. and K. Seo, "Security Architecture for the
Internet Protocol", <a href="./rfc4301">RFC 4301</a>, DOI 10.17487/RFC4301,
December 2005, <<a href="http://www.rfc-editor.org/info/rfc4301">http://www.rfc-editor.org/info/rfc4301</a>>.
[<a id="ref-RFC4302">RFC4302</a>] Kent, S., "IP Authentication Header", <a href="./rfc4302">RFC 4302</a>,
DOI 10.17487/RFC4302, December 2005,
<<a href="http://www.rfc-editor.org/info/rfc4302">http://www.rfc-editor.org/info/rfc4302</a>>.
<span class="grey">Deering & Hinden Standards Track [Page 33]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-34" ></span>
<span class="grey"><a href="./rfc8200">RFC 8200</a> IPv6 Specification July 2017</span>
[<a id="ref-RFC4303">RFC4303</a>] Kent, S., "IP Encapsulating Security Payload (ESP)",
<a href="./rfc4303">RFC 4303</a>, DOI 10.17487/RFC4303, December 2005,
<<a href="http://www.rfc-editor.org/info/rfc4303">http://www.rfc-editor.org/info/rfc4303</a>>.
[<a id="ref-RFC5095">RFC5095</a>] Abley, J., Savola, P., and G. Neville-Neil, "Deprecation
of Type 0 Routing Headers in IPv6", <a href="./rfc5095">RFC 5095</a>,
DOI 10.17487/RFC5095, December 2007,
<<a href="http://www.rfc-editor.org/info/rfc5095">http://www.rfc-editor.org/info/rfc5095</a>>.
[<a id="ref-RFC5722">RFC5722</a>] Krishnan, S., "Handling of Overlapping IPv6 Fragments",
<a href="./rfc5722">RFC 5722</a>, DOI 10.17487/RFC5722, December 2009,
<<a href="http://www.rfc-editor.org/info/rfc5722">http://www.rfc-editor.org/info/rfc5722</a>>.
[<a id="ref-RFC5871">RFC5871</a>] Arkko, J. and S. Bradner, "IANA Allocation Guidelines for
the IPv6 Routing Header", <a href="./rfc5871">RFC 5871</a>, DOI 10.17487/RFC5871,
May 2010, <<a href="http://www.rfc-editor.org/info/rfc5871">http://www.rfc-editor.org/info/rfc5871</a>>.
[<a id="ref-RFC6564">RFC6564</a>] Krishnan, S., Woodyatt, J., Kline, E., Hoagland, J., and
M. Bhatia, "A Uniform Format for IPv6 Extension Headers",
<a href="./rfc6564">RFC 6564</a>, DOI 10.17487/RFC6564, April 2012,
<<a href="http://www.rfc-editor.org/info/rfc6564">http://www.rfc-editor.org/info/rfc6564</a>>.
[<a id="ref-RFC6936">RFC6936</a>] Fairhurst, G. and M. Westerlund, "Applicability Statement
for the Use of IPv6 UDP Datagrams with Zero Checksums",
<a href="./rfc6936">RFC 6936</a>, DOI 10.17487/RFC6936, April 2013,
<<a href="http://www.rfc-editor.org/info/rfc6936">http://www.rfc-editor.org/info/rfc6936</a>>.
[<a id="ref-RFC6946">RFC6946</a>] Gont, F., "Processing of IPv6 "Atomic" Fragments",
<a href="./rfc6946">RFC 6946</a>, DOI 10.17487/RFC6946, May 2013,
<<a href="http://www.rfc-editor.org/info/rfc6946">http://www.rfc-editor.org/info/rfc6946</a>>.
[<a id="ref-RFC7045">RFC7045</a>] Carpenter, B. and S. Jiang, "Transmission and Processing
of IPv6 Extension Headers", <a href="./rfc7045">RFC 7045</a>,
DOI 10.17487/RFC7045, December 2013,
<<a href="http://www.rfc-editor.org/info/rfc7045">http://www.rfc-editor.org/info/rfc7045</a>>.
[<a id="ref-RFC7112">RFC7112</a>] Gont, F., Manral, V., and R. Bonica, "Implications of
Oversized IPv6 Header Chains", <a href="./rfc7112">RFC 7112</a>,
DOI 10.17487/RFC7112, January 2014,
<<a href="http://www.rfc-editor.org/info/rfc7112">http://www.rfc-editor.org/info/rfc7112</a>>.
[<a id="ref-RFC7707">RFC7707</a>] Gont, F. and T. Chown, "Network Reconnaissance in IPv6
Networks", <a href="./rfc7707">RFC 7707</a>, DOI 10.17487/RFC7707, March 2016,
<<a href="http://www.rfc-editor.org/info/rfc7707">http://www.rfc-editor.org/info/rfc7707</a>>.
<span class="grey">Deering & Hinden Standards Track [Page 34]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-35" ></span>
<span class="grey"><a href="./rfc8200">RFC 8200</a> IPv6 Specification July 2017</span>
[<a id="ref-RFC7721">RFC7721</a>] Cooper, A., Gont, F., and D. Thaler, "Security and Privacy
Considerations for IPv6 Address Generation Mechanisms",
<a href="./rfc7721">RFC 7721</a>, DOI 10.17487/RFC7721, March 2016,
<<a href="http://www.rfc-editor.org/info/rfc7721">http://www.rfc-editor.org/info/rfc7721</a>>.
[<a id="ref-RFC7739">RFC7739</a>] Gont, F., "Security Implications of Predictable Fragment
Identification Values", <a href="./rfc7739">RFC 7739</a>, DOI 10.17487/RFC7739,
February 2016, <<a href="http://www.rfc-editor.org/info/rfc7739">http://www.rfc-editor.org/info/rfc7739</a>>.
[<a id="ref-RFC8021">RFC8021</a>] Gont, F., Liu, W., and T. Anderson, "Generation of IPv6
Atomic Fragments Considered Harmful", <a href="./rfc8021">RFC 8021</a>,
DOI 10.17487/RFC8021, January 2017,
<<a href="http://www.rfc-editor.org/info/rfc8021">http://www.rfc-editor.org/info/rfc8021</a>>.
[<a id="ref-RFC8201">RFC8201</a>] McCann, J., Deering, S., Mogul, J., and R. Hinden, "Path
MTU Discovery for IP version 6", STD 87, <a href="./rfc8201">RFC 8201</a>,
DOI 10.17487/RFC8201, July 2017,
<<a href="http://www.rfc-editor.org/info/rfc8201">http://www.rfc-editor.org/info/rfc8201</a>>.
<span class="grey">Deering & Hinden Standards Track [Page 35]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-36" ></span>
<span class="grey"><a href="./rfc8200">RFC 8200</a> IPv6 Specification July 2017</span>
<span class="h2"><a class="selflink" id="appendix-A" href="#appendix-A">Appendix A</a>. Formatting Guidelines for Options</span>
This appendix gives some advice on how to lay out the fields when
designing new options to be used in the Hop-by-Hop Options header or
the Destination Options header, as described in <a href="#section-4.2">Section 4.2</a>. These
guidelines are based on the following assumptions:
o One desirable feature is that any multi-octet fields within the
Option Data area of an option be aligned on their natural
boundaries, i.e., fields of width n octets should be placed at
an integer multiple of n octets from the start of the
Hop-by-Hop or Destination Options header, for n = 1, 2, 4, or
8.
o Another desirable feature is that the Hop-by-Hop or Destination
Options header take up as little space as possible, subject to
the requirement that the header be an integer multiple of 8
octets long.
o It may be assumed that, when either of the option-bearing
headers are present, they carry a very small number of options,
usually only one.
These assumptions suggest the following approach to laying out the
fields of an option: order the fields from smallest to largest, with
no interior padding, then derive the alignment requirement for the
entire option based on the alignment requirement of the largest field
(up to a maximum alignment of 8 octets). This approach is
illustrated in the following examples:
Example 1
If an option X required two data fields, one of length 8 octets and
one of length 4 octets, it would be laid out as follows:
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Option Type=X |Opt Data Len=12|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 4-octet field |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
+ 8-octet field +
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
<span class="grey">Deering & Hinden Standards Track [Page 36]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-37" ></span>
<span class="grey"><a href="./rfc8200">RFC 8200</a> IPv6 Specification July 2017</span>
Its alignment requirement is 8n+2, to ensure that the 8-octet field
starts at a multiple-of-8 offset from the start of the enclosing
header. A complete Hop-by-Hop or Destination Options header
containing this one option would look as follows:
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Next Header | Hdr Ext Len=1 | Option Type=X |Opt Data Len=12|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 4-octet field |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
+ 8-octet field +
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Example 2
If an option Y required three data fields, one of length 4 octets,
one of length 2 octets, and one of length 1 octet, it would be laid
out as follows:
+-+-+-+-+-+-+-+-+
| Option Type=Y |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Opt Data Len=7 | 1-octet field | 2-octet field |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 4-octet field |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Its alignment requirement is 4n+3, to ensure that the 4-octet field
starts at a multiple-of-4 offset from the start of the enclosing
header. A complete Hop-by-Hop or Destination Options header
containing this one option would look as follows:
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Next Header | Hdr Ext Len=1 | Pad1 Option=0 | Option Type=Y |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Opt Data Len=7 | 1-octet field | 2-octet field |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 4-octet field |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| PadN Option=1 |Opt Data Len=2 | 0 | 0 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
<span class="grey">Deering & Hinden Standards Track [Page 37]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-38" ></span>
<span class="grey"><a href="./rfc8200">RFC 8200</a> IPv6 Specification July 2017</span>
Example 3
A Hop-by-Hop or Destination Options header containing both options X
and Y from Examples 1 and 2 would have one of the two following
formats, depending on which option appeared first:
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Next Header | Hdr Ext Len=3 | Option Type=X |Opt Data Len=12|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 4-octet field |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
+ 8-octet field +
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| PadN Option=1 |Opt Data Len=1 | 0 | Option Type=Y |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Opt Data Len=7 | 1-octet field | 2-octet field |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 4-octet field |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| PadN Option=1 |Opt Data Len=2 | 0 | 0 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Next Header | Hdr Ext Len=3 | Pad1 Option=0 | Option Type=Y |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Opt Data Len=7 | 1-octet field | 2-octet field |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 4-octet field |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| PadN Option=1 |Opt Data Len=4 | 0 | 0 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 0 | 0 | Option Type=X |Opt Data Len=12|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 4-octet field |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
+ 8-octet field +
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
<span class="grey">Deering & Hinden Standards Track [Page 38]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-39" ></span>
<span class="grey"><a href="./rfc8200">RFC 8200</a> IPv6 Specification July 2017</span>
<span class="h2"><a class="selflink" id="appendix-B" href="#appendix-B">Appendix B</a>. Changes Since <a href="./rfc2460">RFC 2460</a></span>
This memo has the following changes from <a href="./rfc2460">RFC 2460</a>.
o Removed IP Next Generation from the Abstract.
o Added text in <a href="#section-1">Section 1</a> that the data transmission order is the
same as IPv4 as defined in <a href="./rfc791">RFC 791</a>.
o Clarified the text in <a href="#section-3">Section 3</a> about decrementing the Hop Limit.
o Clarified that extension headers (except for the Hop-by-Hop
Options header) are not processed, inserted, or deleted by any
node along a packet's delivery path.
o Changed requirement for the Hop-by-Hop Options header to a "may",
and added a note to indicate what is expected regarding the
Hop-by-Hop Options header.
o Added a paragraph to <a href="#section-4">Section 4</a> to clarify how extension headers
are numbered and which are upper-layer headers.
o Added a reference to the end of <a href="#section-4">Section 4</a> to the "IPv6 Extension
Header Types" IANA registry.
o Incorporated the updates from RFCs 5095 and 5871 to remove the
description of RH0, that the allocations guidelines for routing
headers are specified in <a href="./rfc5871">RFC 5871</a>, and removed RH0 from the list
of required extension headers.
o Revised <a href="#section-4.5">Section 4.5</a> on IPv6 fragmentation based on updates from
RFCs 5722, 6946, 7112, and 8021. This includes:
- Revised the text to handle the case of fragments that are whole
datagrams (i.e., both the Fragment Offset field and the M flag
are zero). If received, they should be processed as a
reassembled packet. Any other fragments that match should be
processed independently. The revised Fragment creation process
was modified to not create whole datagram fragments (Fragment
Offset field and the M flag are zero).
- Changed the text to require that IPv6 nodes must not create
overlapping fragments. Also, when reassembling an IPv6
datagram, if one or more its constituent fragments is
determined to be an overlapping fragment, the entire datagram
(and any constituent fragments) must be silently discarded.
Includes a clarification that no ICMP error message should be
sent if overlapping fragments are received.
<span class="grey">Deering & Hinden Standards Track [Page 39]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-40" ></span>
<span class="grey"><a href="./rfc8200">RFC 8200</a> IPv6 Specification July 2017</span>
- Revised the text to require that all headers through the first
Upper-Layer header are in the first fragment. This changed the
text describing how packets are fragmented and reassembled and
added a new error case.
- Added text to the Fragment header process on handling exact
duplicate fragments.
- Updated the Fragmentation header text to correct the inclusion
of an Authentication Header (AH) and noted No Next Header case.
- Changed terminology in the Fragment header section from
"Unfragmentable Headers" to "Per-Fragment headers".
- Removed the paragraph in <a href="#section-5">Section 5</a> that required including a
Fragment header to outgoing packets if an ICMP Packet Too Big
message reports a Next-Hop MTU less than 1280.
- Changed the text to clarify MTU restriction and 8-byte
restrictions, and noted the restriction on headers in the first
fragment.
o In <a href="#section-4.5">Section 4.5</a>, added clarification noting that some fields in the
IPv6 header may also vary across the fragments being reassembled,
and that other specifications may provide additional instructions
for how they should be reassembled. See, for example, <a href="./rfc3168#section-5.3">Section 5.3
of [RFC3168]</a>.
o Incorporated the update from <a href="./rfc6564">RFC 6564</a> to add a new <a href="#section-4.8">Section 4.8</a>
that describes recommendations for defining new extension headers
and options.
o Added text to <a href="#section-5">Section 5</a> to define "IPv6 minimum link MTU".
o Simplified the text in <a href="#section-6">Section 6</a> about Flow Labels and removed
what was <a href="#appendix-A">Appendix A</a> ("Semantics and Usage of the Flow Label
Field"); instead, pointed to the current specifications of the
IPv6 Flow Label field in [<a href="./rfc6437" title=""IPv6 Flow Label Specification"">RFC6437</a>] and the Traffic Class field in
[<a href="./rfc2474" title=""Definition of the Differentiated Services Field (DS Field) in the IPv4 and IPv6 Headers"">RFC2474</a>] and [<a href="./rfc3168" title=""The Addition of Explicit Congestion Notification (ECN) to IP"">RFC3168</a>].
o Incorporated the update made by <a href="./rfc6935">RFC 6935</a> ("IPv6 and UDP Checksums
for Tunneled Packets") in <a href="#section-8">Section 8</a>. Added an exception to the
default behavior for the handling of UDP packets with zero
checksums for tunnels.
o Added instruction to <a href="#section-9">Section 9</a>, "IANA Considerations", to change
references to <a href="./rfc2460">RFC 2460</a> to this document.
<span class="grey">Deering & Hinden Standards Track [Page 40]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-41" ></span>
<span class="grey"><a href="./rfc8200">RFC 8200</a> IPv6 Specification July 2017</span>
o Revised and expanded <a href="#section-10">Section 10</a>, "Security Considerations".
o Added a paragraph to the Acknowledgments section acknowledging the
authors of the updating documents.
o Updated references to current versions and assigned references to
normative and informative.
o Made changes to resolve the errata on <a href="./rfc2460">RFC 2460</a>. These are:
Erratum ID 2541 [<a href="#ref-Err2541" title="Erratum ID 2541">Err2541</a>]: This erratum notes that <a href="./rfc2460">RFC 2460</a>
didn't update <a href="./rfc2205">RFC 2205</a> when the length of the flow label was
changed from 24 to 20 bits from <a href="./rfc1883">RFC 1883</a>. This issue was
resolved in <a href="./rfc6437">RFC 6437</a> where the flow label is defined. This
specification now references <a href="./rfc6437">RFC 6437</a>. No change is required.
Erratum ID 4279 [<a href="#ref-Err4279" title="Erratum ID 4279">Err4279</a>]: This erratum noted that the
specification doesn't handle the case of a forwarding node
receiving a packet with a zero Hop Limit. This is fixed in
<a href="#section-3">Section 3</a> of this specification.
Erratum ID 4657 [<a href="#ref-Err4657" title="Erratum ID 4657">Err4657</a>]: This erratum proposed text that
extension headers must never be inserted by any node other than
the source of the packet. This was resolved in <a href="#section-4">Section 4</a>,
"IPv6 Extension Headers".
Erratum ID 4662 [<a href="#ref-Err4662" title="Erratum ID 4662">Err4662</a>]: This erratum proposed text that
extension headers, with one exception, are not examined,
processed, modified, inserted, or deleted by any node along a
packet's delivery path. This was resolved in <a href="#section-4">Section 4</a>, "IPv6
Extension Headers".
Erratum ID 2843: This erratum is marked "Rejected". No change
was made.
<span class="grey">Deering & Hinden Standards Track [Page 41]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-42" ></span>
<span class="grey"><a href="./rfc8200">RFC 8200</a> IPv6 Specification July 2017</span>
Acknowledgments
The authors gratefully acknowledge the many helpful suggestions of
the members of the IPng Working Group, the End-to-End Protocols
research group, and the Internet community at large.
The authors would also like to acknowledge the authors of the
updating RFCs that were incorporated in this document to move the
IPv6 specification to Internet Standard. They are Joe Abley, Shane
Amante, Jari Arkko, Manav Bhatia, Ronald P. Bonica, Scott Bradner,
Brian Carpenter, P.F. Chimento, Marshall Eubanks, Fernando Gont,
James Hoagland, Sheng Jiang, Erik Kline, Suresh Krishnan, Vishwas
Manral, George Neville-Neil, Jarno Rajahalme, Pekka Savola, Magnus
Westerlund, and James Woodyatt.
Authors' Addresses
Stephen E. Deering
Retired
Vancouver, British Columbia
Canada
Robert M. Hinden
Check Point Software
959 Skyway Road
San Carlos, CA 94070
United States of America
Email: bob.hinden@gmail.com
Deering & Hinden Standards Track [Page 42]
</pre>
|