1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
|
<pre>Internet Engineering Task Force (IETF) M. Tahhan
Request for Comments: 8204 B. O'Mahony
Category: Informational Intel
ISSN: 2070-1721 A. Morton
AT&T Labs
September 2017
<span class="h1">Benchmarking Virtual Switches in the Open Platform for NFV (OPNFV)</span>
Abstract
This memo describes the contributions of the Open Platform for NFV
(OPNFV) project on Virtual Switch Performance (VSPERF), particularly
in the areas of test setups and configuration parameters for the
system under test. This project has extended the current and
completed work of the Benchmarking Methodology Working Group in the
IETF and references existing literature. The Benchmarking
Methodology Working Group has traditionally conducted laboratory
characterization of dedicated physical implementations of
internetworking functions. Therefore, this memo describes the
additional considerations when virtual switches are implemented on
general-purpose hardware. The expanded tests and benchmarks are also
influenced by the OPNFV mission to support virtualization of the
"telco" infrastructure.
Status of This Memo
This document is not an Internet Standards Track specification; it is
published for informational purposes.
This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Not all documents
approved by the IESG are a candidate for any level of Internet
Standard; see <a href="./rfc7841#section-2">Section 2 of RFC 7841</a>.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
<a href="https://www.rfc-editor.org/info/rfc8204">https://www.rfc-editor.org/info/rfc8204</a>.
<span class="grey">Tahhan, et al. Informational [Page 1]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-2" ></span>
<span class="grey"><a href="./rfc8204">RFC 8204</a> Benchmarking vSwitches September 2017</span>
Copyright Notice
Copyright (c) 2017 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to <a href="https://www.rfc-editor.org/bcp/bcp78">BCP 78</a> and the IETF Trust's Legal
Provisions Relating to IETF Documents
(<a href="https://trustee.ietf.org/license-info">https://trustee.ietf.org/license-info</a>) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
Table of Contents
<a href="#section-1">1</a>. Introduction . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-3">3</a>
<a href="#section-1.1">1.1</a>. Requirements Language . . . . . . . . . . . . . . . . . . <a href="#page-4">4</a>
<a href="#section-1.2">1.2</a>. Abbreviations . . . . . . . . . . . . . . . . . . . . . . <a href="#page-4">4</a>
<a href="#section-2">2</a>. Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-5">5</a>
<a href="#section-3">3</a>. Benchmarking Considerations . . . . . . . . . . . . . . . . . <a href="#page-5">5</a>
<a href="#section-3.1">3.1</a>. Comparison with Physical Network Functions . . . . . . . <a href="#page-5">5</a>
<a href="#section-3.2">3.2</a>. Continued Emphasis on Black-Box Benchmarks . . . . . . . <a href="#page-6">6</a>
<a href="#section-3.3">3.3</a>. New Configuration Parameters . . . . . . . . . . . . . . <a href="#page-6">6</a>
<a href="#section-3.4">3.4</a>. Flow Classification . . . . . . . . . . . . . . . . . . . <a href="#page-8">8</a>
<a href="#section-3.5">3.5</a>. Benchmarks Using Baselines with Resource Isolation . . . <a href="#page-9">9</a>
<a href="#section-4">4</a>. VSPERF Specification Summary . . . . . . . . . . . . . . . . <a href="#page-11">11</a>
<a href="#section-5">5</a>. 3x3 Matrix Coverage . . . . . . . . . . . . . . . . . . . . . <a href="#page-18">18</a>
<a href="#section-5.1">5.1</a>. Speed of Activation . . . . . . . . . . . . . . . . . . . <a href="#page-19">19</a>
<a href="#section-5.2">5.2</a>. Accuracy of Activation . . . . . . . . . . . . . . . . . <a href="#page-19">19</a>
<a href="#section-5.3">5.3</a>. Reliability of Activation . . . . . . . . . . . . . . . . <a href="#page-19">19</a>
<a href="#section-5.4">5.4</a>. Scale of Activation . . . . . . . . . . . . . . . . . . . <a href="#page-19">19</a>
<a href="#section-5.5">5.5</a>. Speed of Operation . . . . . . . . . . . . . . . . . . . <a href="#page-19">19</a>
<a href="#section-5.6">5.6</a>. Accuracy of Operation . . . . . . . . . . . . . . . . . . <a href="#page-19">19</a>
<a href="#section-5.7">5.7</a>. Reliability of Operation . . . . . . . . . . . . . . . . <a href="#page-20">20</a>
<a href="#section-5.8">5.8</a>. Scalability of Operation . . . . . . . . . . . . . . . . <a href="#page-20">20</a>
<a href="#section-5.9">5.9</a>. Summary . . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-20">20</a>
<a href="#section-6">6</a>. Security Considerations . . . . . . . . . . . . . . . . . . . <a href="#page-21">21</a>
<a href="#section-7">7</a>. References . . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-21">21</a>
<a href="#section-7.1">7.1</a>. Normative References . . . . . . . . . . . . . . . . . . <a href="#page-21">21</a>
<a href="#section-7.2">7.2</a>. Informative References . . . . . . . . . . . . . . . . . <a href="#page-22">22</a>
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-23">23</a>
Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-24">24</a>
<span class="grey">Tahhan, et al. Informational [Page 2]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-3" ></span>
<span class="grey"><a href="./rfc8204">RFC 8204</a> Benchmarking vSwitches September 2017</span>
<span class="h2"><a class="selflink" id="section-1" href="#section-1">1</a>. Introduction</span>
The Benchmarking Methodology Working Group (BMWG) has traditionally
conducted laboratory characterization of dedicated physical
implementations of internetworking functions. The black-box
benchmarks of throughput, latency, forwarding rates, and others have
served our industry for many years. Now, Network Function
Virtualization (NFV) has the goal of transforming how internetwork
functions are implemented and therefore has garnered much attention.
A virtual switch (vSwitch) is an important aspect of the NFV
infrastructure; it provides connectivity between and among physical
network functions and virtual network functions. As a result, there
are many vSwitch benchmarking efforts but few specifications to guide
the many new test design choices. This is a complex problem and an
industry-wide work in progress. In the future, several of BMWG's
fundamental specifications will likely be updated as more testing
experience helps to form consensus around new methodologies, and BMWG
should continue to collaborate with all organizations that share the
same goal.
This memo describes the contributions of the Open Platform for NFV
(OPNFV) project on Virtual Switch Performance (VSPERF)
characterization through the Danube 3.0 (fourth) release [<a href="#ref-DanubeRel">DanubeRel</a>]
to the chartered work of the BMWG (with stable references to their
test descriptions). This project has extended the current and
completed work of the BMWG IETF and references existing literature.
For example, the most often referenced RFC is [<a href="./rfc2544" title=""Benchmarking Methodology for Network Interconnect Devices"">RFC2544</a>] (which
depends on [<a href="./rfc1242" title=""Benchmarking Terminology for Network Interconnection Devices"">RFC1242</a>]), so the foundation of the benchmarking work in
OPNFV is common and strong. The recommended extensions are
specifically in the areas of test setups and configuration parameters
for the system under test.
See [<a href="#ref-VSPERFhome">VSPERFhome</a>] for more background and the OPNFV website for
general information [<a href="#ref-OPNFV" title=""OPNFV"">OPNFV</a>].
The authors note that OPNFV distinguishes itself from other open
source compute and networking projects through its emphasis on
existing "telco" services as opposed to cloud computing. There are
many ways in which telco requirements have different emphasis on
performance dimensions when compared to cloud computing: support for
and transfer of isochronous media streams is one example.
<span class="grey">Tahhan, et al. Informational [Page 3]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-4" ></span>
<span class="grey"><a href="./rfc8204">RFC 8204</a> Benchmarking vSwitches September 2017</span>
<span class="h3"><a class="selflink" id="section-1.1" href="#section-1.1">1.1</a>. Requirements Language</span>
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in
<a href="https://www.rfc-editor.org/bcp/bcp14">BCP 14</a> [<a href="./rfc2119" title=""Key words for use in RFCs to Indicate Requirement Levels"">RFC2119</a>] [<a href="./rfc8174" title=""Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words"">RFC8174</a>] when, and only when, they appear in all
capitals, as shown here.
<span class="h3"><a class="selflink" id="section-1.2" href="#section-1.2">1.2</a>. Abbreviations</span>
For the purposes of this document, the following abbreviations apply:
ACK Acknowledge
ACPI Advanced Configuration and Power Interface
BIOS Basic Input Output System
BMWG Benchmarking Methodology Working Group
CPDP Control Plane Data Plane
CPU Central Processing Unit
DIMM Dual In-line Memory Module
DPDK Data Plane Development Kit
DUT Device Under Test
GRUB Grand Unified Bootloader
ID Identification
IMIX Internet Mix
IP Internet Protocol
IPPM IP Performance Metrics
LAN Local Area Network
LTD Level Test Design
NFV Network Functions Virtualization
NIC Network Interface Card
NUMA Non-uniform Memory Access
OPNFV Open Platform for NFV
OS Operating System
PCI Peripheral Component Interconnect
PDV Packet Delay Variation
SR/IOV Single Root / Input Output Virtualization
SUT System Under Test
TCP Transmission Control Protocol
TSO TCP Segment Offload
UDP User Datagram Protocol
VM Virtual Machine
VNF Virtualised Network Function
VSPERF OPNFV vSwitch Performance Project
<span class="grey">Tahhan, et al. Informational [Page 4]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-5" ></span>
<span class="grey"><a href="./rfc8204">RFC 8204</a> Benchmarking vSwitches September 2017</span>
<span class="h2"><a class="selflink" id="section-2" href="#section-2">2</a>. Scope</span>
The primary purpose and scope of the memo is to describe key aspects
of vSwitch benchmarking, particularly in the areas of test setups and
configuration parameters for the system under test, and extend the
body of extensive BMWG literature and experience. Initial feedback
indicates that many of these extensions may be applicable beyond this
memo's current scope (to hardware switches in the NFV infrastructure
and to virtual routers, for example). Additionally, this memo serves
as a vehicle to include more detail and relevant commentary from BMWG
and other open source communities under BMWG's chartered work to
characterize the NFV infrastructure.
The benchmarking covered in this memo should be applicable to many
types of vSwitches and remain vSwitch agnostic to a great degree.
There has been no attempt to track and test all features of any
specific vSwitch implementation.
<span class="h2"><a class="selflink" id="section-3" href="#section-3">3</a>. Benchmarking Considerations</span>
This section highlights some specific considerations (from [<a href="./rfc8172" title=""Considerations for Benchmarking Virtual Network Functions and Their Infrastructure"">RFC8172</a>])
related to benchmarks for virtual switches. The OPNFV project is
sharing its present view on these areas as they develop their
specifications in the Level Test Design (LTD) document as defined by
[<a href="#ref-IEEE829" title=""IEEE Standard for Software and System Test Documentation"">IEEE829</a>].
<span class="h3"><a class="selflink" id="section-3.1" href="#section-3.1">3.1</a>. Comparison with Physical Network Functions</span>
To compare the performance of virtual designs and implementations
with their physical counterparts, identical benchmarks are needed.
BMWG has developed specifications for many physical network
functions. The BMWG has recommended reusing existing benchmarks and
methods in [<a href="./rfc8172" title=""Considerations for Benchmarking Virtual Network Functions and Their Infrastructure"">RFC8172</a>], and the OPNFV LTD expands on them as described
here. A key configuration aspect for vSwitches is the number of
parallel CPU cores required to achieve comparable performance with a
given physical device or whether some limit of scale will be reached
before the vSwitch can achieve the comparable performance level.
It's unlikely that the virtual switch will be the only application
running on the SUT, so CPU utilization, cache utilization, and memory
footprint should also be recorded for the virtual implementations of
internetworking functions. However, internally measured metrics such
as these are not benchmarks; they may be useful for the audience
(e.g., operations) to know and may also be useful if there is a
problem encountered during testing.
<span class="grey">Tahhan, et al. Informational [Page 5]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-6" ></span>
<span class="grey"><a href="./rfc8204">RFC 8204</a> Benchmarking vSwitches September 2017</span>
Benchmark comparability between virtual and physical/hardware
implementations of equivalent functions will likely place more
detailed and exact requirements on the "testing systems" (in terms of
stream generation, algorithms to search for maximum values, and their
configurations). This is another area for standards development to
appreciate; however, this is a topic for a future document.
<span class="h3"><a class="selflink" id="section-3.2" href="#section-3.2">3.2</a>. Continued Emphasis on Black-Box Benchmarks</span>
External observations remain essential as the basis for benchmarks.
Internal observations with a fixed specification and interpretation
will be provided in parallel to assist the development of operations
procedures when the technology is deployed.
<span class="h3"><a class="selflink" id="section-3.3" href="#section-3.3">3.3</a>. New Configuration Parameters</span>
A key consideration when conducting any sort of benchmark is trying
to ensure the consistency and repeatability of test results. When
benchmarking the performance of a vSwitch, there are many factors
that can affect the consistency of results; one key factor is
matching the various hardware and software details of the SUT. This
section lists some of the many new parameters that this project
believes are critical to report in order to achieve repeatability.
It has been the goal of the project to produce repeatable results,
and a large set of the parameters believed to be critical is provided
so that the benchmarking community can better appreciate the increase
in configuration complexity inherent in this work. The parameter set
below is assumed sufficient for the infrastructure in use by the
VSPERF project to obtain repeatable results from test to test.
Hardware details (platform, processor, memory, and network)
including:
o BIOS version, release date, and any configurations that were
modified
o Power management at all levels (ACPI sleep states, processor
package, OS, etc.)
o CPU microcode level
o Number of enabled cores
o Number of cores used for the test
o Memory information (type and size)
<span class="grey">Tahhan, et al. Informational [Page 6]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-7" ></span>
<span class="grey"><a href="./rfc8204">RFC 8204</a> Benchmarking vSwitches September 2017</span>
o Memory DIMM configurations (quad rank performance may not be the
same as dual rank) in size, frequency, and slot locations
o Number of physical NICs and their details (manufacturer, versions,
type, and the PCI slot they are plugged into)
o NIC interrupt configuration (and any special features in use)
o PCI configuration parameters (payload size, early ACK option,
etc.)
Software details including:
o OS RunLevel
o OS version (for host and VNF)
o Kernel version (for host and VNF)
o GRUB boot parameters (for host and VNF)
o Hypervisor details (type and version)
o Selected vSwitch, version number, or commit ID used
o vSwitch launch command line if it has been parameterized
o Memory allocation to the vSwitch
o Which NUMA node it is using and how many memory channels
o DPDK or any other software dependency version number or commit ID
used
o Memory allocation to a VM - if it's from Hugepages/elsewhere
o VM storage type - snapshot, independent persistent, independent
non-persistent
o Number of VMs
o Number of virtual NICs (vNICs) - versions, type, and driver
o Number of virtual CPUs and their core affinity on the host
o Number of vNICs and their interrupt configurations
<span class="grey">Tahhan, et al. Informational [Page 7]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-8" ></span>
<span class="grey"><a href="./rfc8204">RFC 8204</a> Benchmarking vSwitches September 2017</span>
o Thread affinitization for the applications (including the vSwitch
itself) on the host
o Details of resource isolation, such as CPUs designated for Host/
Kernel (isolcpu) and CPUs designated for specific processes
(taskset).
Test traffic information:
o Test duration
o Number of flows
o Traffic type - UDP, TCP, and others
o Frame Sizes - fixed or IMIX [<a href="./rfc6985" title=""IMIX Genome: Specification of Variable Packet Sizes for Additional Testing"">RFC6985</a>] (note that with
[<a href="#ref-IEEE802.1ac">IEEE802.1ac</a>], frames may be longer than 1500 bytes and up to 2000
bytes)
o Deployment Scenario - defines the communications path in the SUT
<span class="h3"><a class="selflink" id="section-3.4" href="#section-3.4">3.4</a>. Flow Classification</span>
Virtual switches group packets into flows by processing and matching
particular packet or frame header information, or by matching packets
based on the input ports. Thus, a flow can be thought of as a
sequence of packets that have the same set of header field values or
have arrived on the same physical or logical port. Performance
results can vary based on the parameters the vSwitch uses to match
for a flow. The recommended flow classification parameters for any
vSwitch performance tests are: the input port (physical or logical),
the source MAC address, the destination MAC address, the source IP
address, the destination IP address, and the Ethernet protocol type
field (although classification may take place on other fields, such
as source and destination transport port numbers). It is essential
to increase the flow timeout time on a vSwitch before conducting any
performance tests that do not intend to measure the flow setup time
(see <a href="./rfc2889#section-3">Section 3 of [RFC2889]</a>). Normally, the first packet of a
particular stream will install the flow in the virtual switch, which
introduces additional latency; subsequent packets of the same flow
are not subject to this latency if the flow is already installed on
the vSwitch.
<span class="grey">Tahhan, et al. Informational [Page 8]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-9" ></span>
<span class="grey"><a href="./rfc8204">RFC 8204</a> Benchmarking vSwitches September 2017</span>
<span class="h3"><a class="selflink" id="section-3.5" href="#section-3.5">3.5</a>. Benchmarks Using Baselines with Resource Isolation</span>
This outline describes the measurement of baselines with isolated
resources at a high level, which is the intended approach at this
time.
1. Baselines:
* Optional: Benchmark platform forwarding capability without a
vSwitch or VNF for at least 72 hours (serves as a means of
platform validation and a means to obtain the base performance
for the platform in terms of its maximum forwarding rate and
latency).
__
+--------------------------------------------------+ |
| +------------------------------------------+ | |
| | | | |
| | Simple Forwarding App | | Host
| | | | |
| +------------------------------------------+ | |
| | NIC | | |
+---+------------------------------------------+---+ __|
^ :
| |
: v
+--------------------------------------------------+
| |
| Traffic Generator |
| |
+--------------------------------------------------+
Figure 1: Benchmark Platform Forwarding Capability
<span class="grey">Tahhan, et al. Informational [Page 9]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-10" ></span>
<span class="grey"><a href="./rfc8204">RFC 8204</a> Benchmarking vSwitches September 2017</span>
* Benchmark VNF forwarding capability with direct connectivity
(vSwitch bypass, e.g., SR/IOV) for at least 72 hours (serves
as a means of VNF validation and a means to obtain the base
performance for the VNF in terms of its maximum forwarding
rate and latency). The metrics gathered from this test will
serve as a key comparison point for vSwitch bypass
technologies performance and vSwitch performance.
__
+--------------------------------------------------+ __ |
| +------------------------------------------+ | | |
| | | | Host/ |
| | VNF | | Guest |
| | | | | |
| +------------------------------------------+ | __| |
| | Passthrough/SR-IOV | | Host
| +------------------------------------------+ | |
| | NIC | | |
+---+------------------------------------------+---+ __|
^ :
| |
: v
+--------------------------------------------------+
| |
| Traffic Generator |
| |
+--------------------------------------------------+
Figure 2: Benchmark VNF Forwarding Capability
* Benchmarking with isolated resources alone and with other
resources (both hardware and software) disabled; for example,
vSwitch and VM are SUT.
* Benchmarking with isolated resources alone, thus leaving some
resources unused.
* Benchmarking with isolated resources and all resources
occupied.
2. Next Steps:
* Limited sharing
* Production scenarios
* Stressful scenarios
<span class="grey">Tahhan, et al. Informational [Page 10]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-11" ></span>
<span class="grey"><a href="./rfc8204">RFC 8204</a> Benchmarking vSwitches September 2017</span>
<span class="h2"><a class="selflink" id="section-4" href="#section-4">4</a>. VSPERF Specification Summary</span>
The overall specification in preparation is referred to as a Level
Test Design (LTD) document, which will contain a suite of performance
tests. The base performance tests in the LTD are based on the
pre-existing specifications developed by the BMWG to test the
performance of physical switches. These specifications include:
o Benchmarking Methodology for Network Interconnect Devices
[<a href="./rfc2544" title=""Benchmarking Methodology for Network Interconnect Devices"">RFC2544</a>]
o Benchmarking Methodology for LAN Switching [<a href="./rfc2889" title=""Benchmarking Methodology for LAN Switching Devices"">RFC2889</a>]
o Device Reset Characterization [<a href="./rfc6201" title=""Device Reset Characterization"">RFC6201</a>]
o Packet Delay Variation Applicability Statement [<a href="./rfc5481" title=""Packet Delay Variation Applicability Statement"">RFC5481</a>]
The two most recent RFCs above ([<a href="./rfc6201" title=""Device Reset Characterization"">RFC6201</a>] and [<a href="./rfc5481" title=""Packet Delay Variation Applicability Statement"">RFC5481</a>]) are being
applied in benchmarking for the first time and represent a
development challenge for test equipment developers. Fortunately,
many members of the testing system community have engaged on the
VSPERF project, including an open source test system.
In addition to this, the LTD also reuses the terminology defined by:
o Benchmarking Terminology for LAN Switching Devices [<a href="./rfc2285" title=""Benchmarking Terminology for LAN Switching Devices"">RFC2285</a>]
It is recommended that these references be included in future
benchmarking specifications:
o Methodology for IP Multicast Benchmarking [<a href="./rfc3918" title=""Methodology for IP Multicast Benchmarking"">RFC3918</a>]
o Packet Reordering Metrics [<a href="./rfc4737" title=""Packet Reordering Metrics"">RFC4737</a>]
As one might expect, the most fundamental internetworking
characteristics of throughput and latency remain important when the
switch is virtualized, and these benchmarks figure prominently in the
specification.
When considering characteristics important to "telco" network
functions, additional performance metrics are needed. In this case,
the project specifications have referenced metrics from the IETF IP
Performance Metrics (IPPM) literature. This means that the latency
test described in [<a href="./rfc2544" title=""Benchmarking Methodology for Network Interconnect Devices"">RFC2544</a>] is replaced by measurement of a metric
derived from IPPM's [<a href="./rfc7679" title=""A One-Way Delay Metric for IP Performance Metrics (IPPM)"">RFC7679</a>], where a set of statistical summaries
will be provided (mean, max, min, and percentiles). Further metrics
planned to be benchmarked include packet delay variation as defined
by [<a href="./rfc5481" title=""Packet Delay Variation Applicability Statement"">RFC5481</a>], reordering, burst behaviour, DUT availability, DUT
<span class="grey">Tahhan, et al. Informational [Page 11]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-12" ></span>
<span class="grey"><a href="./rfc8204">RFC 8204</a> Benchmarking vSwitches September 2017</span>
capacity, and packet loss in long-term testing at the throughput
level, where some low level of background loss may be present and
characterized.
Tests have been designed to collect the metrics below:
o Throughput tests are designed to measure the maximum forwarding
rate (in frames per second, fps) and bit rate (in Mbps) for a
constant load (as defined by [<a href="./rfc1242" title=""Benchmarking Terminology for Network Interconnection Devices"">RFC1242</a>]) without traffic loss.
o Packet and frame-delay distribution tests are designed to measure
the average minimum and maximum packet (and/or frame) delay for
constant loads.
o Packet delay tests are designed to understand latency distribution
for different packet sizes and to uncover outliers over an
extended test run.
o Scalability tests are designed to understand how the virtual
switch performs with an increasing number of flows, number of
active ports, configuration complexity of the forwarding logic,
etc.
o Stream performance tests (with TCP or UDP) are designed to measure
bulk data transfer performance, i.e., how fast systems can send
and receive data through the switch.
o Control-path and data-path coupling tests are designed to
understand how closely the data path and the control path are
coupled, as well as the effect of this coupling on the performance
of the DUT (for example, delay of the initial packet of a flow).
o CPU and memory consumption tests are designed to understand the
virtual switch's footprint on the system and are conducted as
auxiliary measurements with the benchmarks above. They include
CPU utilization, cache utilization, and memory footprint.
o The so-called "soak" tests, where the selected test is conducted
over a long period of time (with an ideal duration of 24 hours but
only long enough to determine that stability issues exist when
found; there is no requirement to continue a test when a DUT
exhibits instability over time). The key performance
characteristics and benchmarks for a DUT are determined (using
short duration tests) prior to conducting soak tests. The purpose
of soak tests is to capture transient changes in performance,
which may occur due to infrequent processes, memory leaks, or the
low-probability coincidence of two or more processes. The
stability of the DUT is the paramount consideration, so
<span class="grey">Tahhan, et al. Informational [Page 12]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-13" ></span>
<span class="grey"><a href="./rfc8204">RFC 8204</a> Benchmarking vSwitches September 2017</span>
performance must be evaluated periodically during continuous
testing, and this results in use of frame rate metrics [<a href="./rfc2889" title=""Benchmarking Methodology for LAN Switching Devices"">RFC2889</a>]
instead of throughput [<a href="./rfc2544" title=""Benchmarking Methodology for Network Interconnect Devices"">RFC2544</a>] (which requires stopping traffic
to allow time for all traffic to exit internal queues), for
example.
Additional test specification development should include:
o Request/response performance tests (with TCP or UDP), which
measure the transaction rate through the switch.
o Noisy neighbor tests, in order to understand the effects of
resource sharing on the performance of a virtual switch.
o Tests derived from examination of ETSI NFV Draft GS IFA003
requirements [<a href="#ref-IFA003" title=""Network Functions Virtualisation (NFV); Acceleration Technologies; vSwitch Benchmarking and Acceleration Specification"">IFA003</a>] on characterization of acceleration
technologies applied to vSwitches.
The flexibility of deployment of a virtual switch within a network
means that it is necessary to characterize the performance of a
vSwitch in various deployment scenarios. The deployment scenarios
under consideration are shown in the following figures:
__
+--------------------------------------------------+ |
| +--------------------+ | |
| | | | |
| | v | | Host
| +--------------+ +--------------+ | |
| | PHY Port | vSwitch | PHY Port | | |
+---+--------------+------------+--------------+---+ __|
^ :
| |
: v
+--------------------------------------------------+
| |
| Traffic Generator |
| |
+--------------------------------------------------+
Figure 3: Physical Port to Virtual Switch to Physical Port
<span class="grey">Tahhan, et al. Informational [Page 13]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-14" ></span>
<span class="grey"><a href="./rfc8204">RFC 8204</a> Benchmarking vSwitches September 2017</span>
__
+---------------------------------------------------+ |
| | |
| +-------------------------------------------+ | |
| | Application | | |
| +-------------------------------------------+ | |
| ^ : | |
| | | | | Guest
| : v | |
| +---------------+ +---------------+ | |
| | Logical Port 0| | Logical Port 1| | |
+---+---------------+-----------+---------------+---+ __|
^ :
| |
: v __
+---+---------------+----------+---------------+---+ |
| | Logical Port 0| | Logical Port 1| | |
| +---------------+ +---------------+ | |
| ^ : | |
| | | | | Host
| : v | |
| +--------------+ +--------------+ | |
| | PHY Port | vSwitch | PHY Port | | |
+---+--------------+------------+--------------+---+ __|
^ :
| |
: v
+--------------------------------------------------+
| |
| Traffic Generator |
| |
+--------------------------------------------------+
Figure 4: Physical Port to Virtual Switch to VNF to Virtual Switch to
Physical Port
<span class="grey">Tahhan, et al. Informational [Page 14]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-15" ></span>
<span class="grey"><a href="./rfc8204">RFC 8204</a> Benchmarking vSwitches September 2017</span>
__
+----------------------+ +----------------------+ |
| Guest 1 | | Guest 2 | |
| +---------------+ | | +---------------+ | |
| | Application | | | | Application | | |
| +---------------+ | | +---------------+ | |
| ^ | | | ^ | | |
| | v | | | v | | Guests
| +---------------+ | | +---------------+ | |
| | Logical Ports | | | | Logical Ports | | |
| | 0 1 | | | | 0 1 | | |
+---+---------------+--+ +---+---------------+--+__|
^ : ^ :
| | | |
: v : v _
+---+---------------+---------+---------------+--+ |
| | 0 1 | | 3 4 | | |
| | Logical Ports | | Logical Ports | | |
| +---------------+ +---------------+ | |
| ^ | ^ | | | Host
| | \-----------------/ v | |
| +--------------+ +--------------+ | |
| | PHY Ports | vSwitch | PHY Ports | | |
+---+--------------+----------+--------------+---+_|
^ :
| |
: v
+--------------------------------------------------+
| |
| Traffic Generator |
| |
+--------------------------------------------------+
Figure 5: Physical Port to Virtual Switch to VNF to Virtual Switch to
VNF to Virtual Switch to Physical Port
<span class="grey">Tahhan, et al. Informational [Page 15]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-16" ></span>
<span class="grey"><a href="./rfc8204">RFC 8204</a> Benchmarking vSwitches September 2017</span>
__
+---------------------------------------------------+ |
| | |
| +-------------------------------------------+ | |
| | Application | | |
| +-------------------------------------------+ | |
| ^ | |
| | | | Guest
| : | |
| +---------------+ | |
| | Logical Port 0| | |
+---+---------------+-------------------------------+ __|
^
|
: __
+---+---------------+------------------------------+ |
| | Logical Port 0| | |
| +---------------+ | |
| ^ | |
| | | | Host
| : | |
| +--------------+ | |
| | PHY Port | vSwitch | |
+---+--------------+------------ -------------- ---+ __|
^
|
:
+--------------------------------------------------+
| |
| Traffic Generator |
| |
+--------------------------------------------------+
Figure 6: Physical Port to Virtual Switch to VNF
<span class="grey">Tahhan, et al. Informational [Page 16]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-17" ></span>
<span class="grey"><a href="./rfc8204">RFC 8204</a> Benchmarking vSwitches September 2017</span>
__
+---------------------------------------------------+ |
| | |
| +-------------------------------------------+ | |
| | Application | | |
| +-------------------------------------------+ | |
| : | |
| | | | Guest
| v | |
| +---------------+ | |
| | Logical Port | | |
+-------------------------------+---------------+---+ __|
:
|
v __
+------------------------------+---------------+---+ |
| | Logical Port | | |
| +---------------+ | |
| : | |
| | | | Host
| v | |
| +--------------+ | |
| vSwitch | PHY Port | | |
+-------------------------------+--------------+---+ __|
:
|
v
+--------------------------------------------------+
| |
| Traffic Generator |
| |
+--------------------------------------------------+
Figure 7: VNF to Virtual Switch to Physical Port
<span class="grey">Tahhan, et al. Informational [Page 17]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-18" ></span>
<span class="grey"><a href="./rfc8204">RFC 8204</a> Benchmarking vSwitches September 2017</span>
__
+----------------------+ +----------------------+ |
| Guest 1 | | Guest 2 | |
| +---------------+ | | +---------------+ | |
| | Application | | | | Application | | |
| +---------------+ | | +---------------+ | |
| | | | ^ | |
| v | | | | | Guests
| +---------------+ | | +---------------+ | |
| | Logical Ports | | | | Logical Ports | | |
| | 0 | | | | 0 | | |
+---+---------------+--+ +---+---------------+--+__|
: ^
| |
v : _
+---+---------------+---------+---------------+--+ |
| | 1 | | 1 | | |
| | Logical Ports | | Logical Ports | | |
| +---------------+ +---------------+ | |
| | ^ | | Host
| \-----------------/ | |
| | |
| vSwitch | |
+------------------------------------------------+_|
Figure 8: VNF to Virtual Switch to VNF
A set of deployment scenario figures is available on the VSPERF "Test
Methodology" wiki page [<a href="#ref-TestTopo" title=""Test Methodology"">TestTopo</a>].
<span class="h2"><a class="selflink" id="section-5" href="#section-5">5</a>. 3x3 Matrix Coverage</span>
This section organizes the many existing test specifications into the
"3x3" matrix (introduced in [<a href="./rfc8172" title=""Considerations for Benchmarking Virtual Network Functions and Their Infrastructure"">RFC8172</a>]). Because the LTD
specification ID names are quite long, this section is organized into
lists for each occupied cell of the matrix (not all are occupied;
also, the matrix has grown to 3x4 to accommodate scale metrics when
displaying the coverage of many metrics/benchmarks). The current
version of the LTD specification is available; see [<a href="#ref-LTD" title=""VSPERF Level Test Design (LTD)"">LTD</a>].
The tests listed below assess the activation of paths in the data
plane rather than the control plane.
A complete list of tests with short summaries is available on the
VSPERF "LTD Test Spec Overview" wiki page [<a href="#ref-LTDoverV" title=""LTD Test Spec Overview"">LTDoverV</a>].
<span class="grey">Tahhan, et al. Informational [Page 18]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-19" ></span>
<span class="grey"><a href="./rfc8204">RFC 8204</a> Benchmarking vSwitches September 2017</span>
<span class="h3"><a class="selflink" id="section-5.1" href="#section-5.1">5.1</a>. Speed of Activation</span>
o Activation.<a href="./rfc2889">RFC2889</a>.AddressLearningRate
o PacketLatency.InitialPacketProcessingLatency
<span class="h3"><a class="selflink" id="section-5.2" href="#section-5.2">5.2</a>. Accuracy of Activation</span>
o CPDP.Coupling.Flow.Addition
<span class="h3"><a class="selflink" id="section-5.3" href="#section-5.3">5.3</a>. Reliability of Activation</span>
o Throughput.<a href="./rfc2544">RFC2544</a>.SystemRecoveryTime
o Throughput.<a href="./rfc2544">RFC2544</a>.ResetTime
<span class="h3"><a class="selflink" id="section-5.4" href="#section-5.4">5.4</a>. Scale of Activation</span>
o Activation.<a href="./rfc2889">RFC2889</a>.AddressCachingCapacity
<span class="h3"><a class="selflink" id="section-5.5" href="#section-5.5">5.5</a>. Speed of Operation</span>
o Throughput.<a href="./rfc2544">RFC2544</a>.PacketLossRate
o Stress.<a href="./rfc2544">RFC2544</a>.0PacketLoss
o Throughput.<a href="./rfc2544">RFC2544</a>.PacketLossRateFrameModification
o Throughput.<a href="./rfc2544">RFC2544</a>.BackToBackFrames
o Throughput.<a href="./rfc2889">RFC2889</a>.MaxForwardingRate
o Throughput.<a href="./rfc2889">RFC2889</a>.ForwardPressure
o Throughput.<a href="./rfc2889">RFC2889</a>.BroadcastFrameForwarding
o Throughput.<a href="./rfc2544">RFC2544</a>.WorstN-BestN
o Throughput.Overlay.Network.<tech>.<a href="./rfc2544">RFC2544</a>.PacketLossRatio
<span class="h3"><a class="selflink" id="section-5.6" href="#section-5.6">5.6</a>. Accuracy of Operation</span>
o Throughput.<a href="./rfc2889">RFC2889</a>.ErrorFramesFiltering
o Throughput.<a href="./rfc2544">RFC2544</a>.Profile
<span class="grey">Tahhan, et al. Informational [Page 19]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-20" ></span>
<span class="grey"><a href="./rfc8204">RFC 8204</a> Benchmarking vSwitches September 2017</span>
<span class="h3"><a class="selflink" id="section-5.7" href="#section-5.7">5.7</a>. Reliability of Operation</span>
o Throughput.<a href="./rfc2889">RFC2889</a>.Soak
o Throughput.<a href="./rfc2889">RFC2889</a>.SoakFrameModification
o PacketDelayVariation.<a href="./rfc3393">RFC3393</a>.Soak
<span class="h3"><a class="selflink" id="section-5.8" href="#section-5.8">5.8</a>. Scalability of Operation</span>
o Scalability.<a href="./rfc2544">RFC2544</a>.0PacketLoss
o MemoryBandwidth.<a href="./rfc2544">RFC2544</a>.0PacketLoss.Scalability
o Scalability.VNF.<a href="./rfc2544">RFC2544</a>.PacketLossProfile
o Scalability.VNF.<a href="./rfc2544">RFC2544</a>.PacketLossRatio
<span class="h3"><a class="selflink" id="section-5.9" href="#section-5.9">5.9</a>. Summary</span>
|---------------------------------------------------------------------|
| | | | | |
| | SPEED | ACCURACY | RELIABILITY | SCALE |
| | | | | |
|---------------------------------------------------------------------|
| | | | | |
| Activation | X | X | X | X |
| | | | | |
|---------------------------------------------------------------------|
| | | | | |
| Operation | X | X | X | X |
| | | | | |
|---------------------------------------------------------------------|
| | | | | |
| De-activation| | | | |
| | | | | |
|---------------------------------------------------------------------|
<span class="grey">Tahhan, et al. Informational [Page 20]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-21" ></span>
<span class="grey"><a href="./rfc8204">RFC 8204</a> Benchmarking vSwitches September 2017</span>
<span class="h2"><a class="selflink" id="section-6" href="#section-6">6</a>. Security Considerations</span>
Benchmarking activities as described in this memo are limited to
technology characterization of a Device Under Test/System Under Test
(DUT/SUT) using controlled stimuli in a laboratory environment with
dedicated address space and the constraints specified in the sections
above.
The benchmarking network topology will be an independent test setup
and MUST NOT be connected to devices that may forward the test
traffic into a production network or misroute traffic to the test
management network.
Further, benchmarking is performed on a "black-box" basis and relies
solely on measurements observable external to the DUT/SUT.
Special capabilities SHOULD NOT exist in the DUT/SUT specifically for
benchmarking purposes. Any implications for network security arising
from the DUT/SUT SHOULD be identical in the lab and in production
networks.
<span class="h2"><a class="selflink" id="section-7" href="#section-7">7</a>. References</span>
<span class="h3"><a class="selflink" id="section-7.1" href="#section-7.1">7.1</a>. Normative References</span>
[<a id="ref-RFC2119">RFC2119</a>] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", <a href="https://www.rfc-editor.org/bcp/bcp14">BCP 14</a>, <a href="./rfc2119">RFC 2119</a>,
DOI 10.17487/RFC2119, March 1997,
<<a href="https://www.rfc-editor.org/info/rfc2119">https://www.rfc-editor.org/info/rfc2119</a>>.
[<a id="ref-RFC2285">RFC2285</a>] Mandeville, R., "Benchmarking Terminology for LAN
Switching Devices", <a href="./rfc2285">RFC 2285</a>, DOI 10.17487/RFC2285,
February 1998, <<a href="https://www.rfc-editor.org/info/rfc2285">https://www.rfc-editor.org/info/rfc2285</a>>.
[<a id="ref-RFC2544">RFC2544</a>] Bradner, S. and J. McQuaid, "Benchmarking Methodology for
Network Interconnect Devices", <a href="./rfc2544">RFC 2544</a>,
DOI 10.17487/RFC2544, March 1999,
<<a href="https://www.rfc-editor.org/info/rfc2544">https://www.rfc-editor.org/info/rfc2544</a>>.
[<a id="ref-RFC2889">RFC2889</a>] Mandeville, R. and J. Perser, "Benchmarking Methodology
for LAN Switching Devices", <a href="./rfc2889">RFC 2889</a>,
DOI 10.17487/RFC2889, August 2000,
<<a href="https://www.rfc-editor.org/info/rfc2889">https://www.rfc-editor.org/info/rfc2889</a>>.
[<a id="ref-RFC3918">RFC3918</a>] Stopp, D. and B. Hickman, "Methodology for IP Multicast
Benchmarking", <a href="./rfc3918">RFC 3918</a>, DOI 10.17487/RFC3918, October
2004, <<a href="https://www.rfc-editor.org/info/rfc3918">https://www.rfc-editor.org/info/rfc3918</a>>.
<span class="grey">Tahhan, et al. Informational [Page 21]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-22" ></span>
<span class="grey"><a href="./rfc8204">RFC 8204</a> Benchmarking vSwitches September 2017</span>
[<a id="ref-RFC4737">RFC4737</a>] Morton, A., Ciavattone, L., Ramachandran, G., Shalunov,
S., and J. Perser, "Packet Reordering Metrics", <a href="./rfc4737">RFC 4737</a>,
DOI 10.17487/RFC4737, November 2006,
<<a href="https://www.rfc-editor.org/info/rfc4737">https://www.rfc-editor.org/info/rfc4737</a>>.
[<a id="ref-RFC6201">RFC6201</a>] Asati, R., Pignataro, C., Calabria, F., and C. Olvera,
"Device Reset Characterization", <a href="./rfc6201">RFC 6201</a>,
DOI 10.17487/RFC6201, March 2011,
<<a href="https://www.rfc-editor.org/info/rfc6201">https://www.rfc-editor.org/info/rfc6201</a>>.
[<a id="ref-RFC6985">RFC6985</a>] Morton, A., "IMIX Genome: Specification of Variable Packet
Sizes for Additional Testing", <a href="./rfc6985">RFC 6985</a>,
DOI 10.17487/RFC6985, July 2013,
<<a href="https://www.rfc-editor.org/info/rfc6985">https://www.rfc-editor.org/info/rfc6985</a>>.
[<a id="ref-RFC7679">RFC7679</a>] Almes, G., Kalidindi, S., Zekauskas, M., and A. Morton,
Ed., "A One-Way Delay Metric for IP Performance Metrics
(IPPM)", STD 81, <a href="./rfc7679">RFC 7679</a>, DOI 10.17487/RFC7679, January
2016, <<a href="https://www.rfc-editor.org/info/rfc7679">https://www.rfc-editor.org/info/rfc7679</a>>.
[<a id="ref-RFC8174">RFC8174</a>] Leiba, B., "Ambiguity of Uppercase vs Lowercase in <a href="./rfc2119">RFC</a>
<a href="./rfc2119">2119</a> Key Words", <a href="https://www.rfc-editor.org/bcp/bcp14">BCP 14</a>, <a href="./rfc8174">RFC 8174</a>, DOI 10.17487/RFC8174,
May 2017, <<a href="https://www.rfc-editor.org/info/rfc8174">https://www.rfc-editor.org/info/rfc8174</a>>.
<span class="h3"><a class="selflink" id="section-7.2" href="#section-7.2">7.2</a>. Informative References</span>
[<a id="ref-BENCHMARK-METHOD">BENCHMARK-METHOD</a>]
Huang, L., Ed., Rong, G., Ed., Mandeville, B., and B.
Hickman, "Benchmarking Methodology for Virtualization
Network Performance", Work in Progress, <a href="./draft-huang-bmwg-virtual-network-performance-03">draft-huang-bmwg-</a>
<a href="./draft-huang-bmwg-virtual-network-performance-03">virtual-network-performance-03</a>, July 2017.
[<a id="ref-DanubeRel">DanubeRel</a>]
OPNFV, "Danube",
<<a href="https://wiki.opnfv.org/display/SWREL/Danube">https://wiki.opnfv.org/display/SWREL/Danube</a>>.
[<a id="ref-IEEE802.1ac">IEEE802.1ac</a>]
IEEE, "IEEE Standard for Local and metropolitan area
networks -- Media Access Control (MAC) Service
Definition", IEEE 802.1AC-2016,
DOI 10.1109/IEEESTD.2017.7875381, 2016,
<<a href="https://standards.ieee.org/findstds/standard/802.1AC-2016.html">https://standards.ieee.org/findstds/</a>
<a href="https://standards.ieee.org/findstds/standard/802.1AC-2016.html">standard/802.1AC-2016.html</a>>.
[<a id="ref-IEEE829">IEEE829</a>] IEEE, "IEEE Standard for Software and System Test
Documentation", IEEE 829-2008,
DOI 10.1109/IEEESTD.2008.4578383,
<<a href="http://ieeexplore.ieee.org/document/4578383/">http://ieeexplore.ieee.org/document/4578383/</a>>.
<span class="grey">Tahhan, et al. Informational [Page 22]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-23" ></span>
<span class="grey"><a href="./rfc8204">RFC 8204</a> Benchmarking vSwitches September 2017</span>
[<a id="ref-IFA003">IFA003</a>] ETSI, "Network Functions Virtualisation (NFV);
Acceleration Technologies; vSwitch Benchmarking and
Acceleration Specification", ETSI GS NFV-IFA 003 V2.1.1,
April 2016, <<a href="http://www.etsi.org/deliver/etsi_gs/NFV-IFA/001_099/003/02.01.01_60/gs_NFV-IFA003v020101p.pdf">http://www.etsi.org/deliver/etsi_gs/</a>
<a href="http://www.etsi.org/deliver/etsi_gs/NFV-IFA/001_099/003/02.01.01_60/gs_NFV-IFA003v020101p.pdf">NFV-IFA/001_099/003/02.01.01_60/</a>
<a href="http://www.etsi.org/deliver/etsi_gs/NFV-IFA/001_099/003/02.01.01_60/gs_NFV-IFA003v020101p.pdf">gs_NFV-IFA003v020101p.pdf</a>>.
[<a id="ref-LTD">LTD</a>] Tahhan, M., "VSPERF Level Test Design (LTD)",
<<a href="http://docs.opnfv.org/en/stable-danube/submodules/vswitchperf/docs/testing/developer/requirements/vswitchperf_ltd.html#">http://docs.opnfv.org/en/stable-danube/</a>
<a href="http://docs.opnfv.org/en/stable-danube/submodules/vswitchperf/docs/testing/developer/requirements/vswitchperf_ltd.html#">submodules/vswitchperf/docs/testing/developer/</a>
<a href="http://docs.opnfv.org/en/stable-danube/submodules/vswitchperf/docs/testing/developer/requirements/vswitchperf_ltd.html#">requirements/vswitchperf_ltd.html#</a>>.
[<a id="ref-LTDoverV">LTDoverV</a>] Morton, A., "LTD Test Spec Overview",
<<a href="https://wiki.opnfv.org/display/vsperf/">https://wiki.opnfv.org/display/vsperf/</a>
LTD+Test+Spec+Overview>.
[<a id="ref-OPNFV">OPNFV</a>] OPNFV, "OPNFV", <<a href="https://www.opnfv.org/">https://www.opnfv.org/</a>>.
[<a id="ref-RFC1242">RFC1242</a>] Bradner, S., "Benchmarking Terminology for Network
Interconnection Devices", <a href="./rfc1242">RFC 1242</a>, DOI 10.17487/RFC1242,
July 1991, <<a href="https://www.rfc-editor.org/info/rfc1242">https://www.rfc-editor.org/info/rfc1242</a>>.
[<a id="ref-RFC5481">RFC5481</a>] Morton, A. and B. Claise, "Packet Delay Variation
Applicability Statement", <a href="./rfc5481">RFC 5481</a>, DOI 10.17487/RFC5481,
March 2009, <<a href="https://www.rfc-editor.org/info/rfc5481">https://www.rfc-editor.org/info/rfc5481</a>>.
[<a id="ref-RFC8172">RFC8172</a>] Morton, A., "Considerations for Benchmarking Virtual
Network Functions and Their Infrastructure", <a href="./rfc8172">RFC 8172</a>,
DOI 10.17487/RFC8172, July 2017,
<<a href="https://www.rfc-editor.org/info/rfc8172">https://www.rfc-editor.org/info/rfc8172</a>>.
[<a id="ref-TestTopo">TestTopo</a>] Snyder, E., "Test Methodology",
<<a href="https://wiki.opnfv">https://wiki.opnfv</a>.org/display/vsperf/Test+Methodology>.
[<a id="ref-VSPERFhome">VSPERFhome</a>]
Tahhan, M., "VSPERF Home",
<<a href="https://wiki.opnfv">https://wiki.opnfv</a>.org/display/vsperf/VSperf+Home>.
Acknowledgements
The authors appreciate and acknowledge comments from Scott Bradner,
Marius Georgescu, Ramki Krishnan, Doug Montgomery, Martin Klozik,
Christian Trautman, Benoit Claise, and others for their reviews.
We also acknowledge the early work in [<a href="#ref-BENCHMARK-METHOD">BENCHMARK-METHOD</a>] and useful
discussion with the authors.
<span class="grey">Tahhan, et al. Informational [Page 23]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-24" ></span>
<span class="grey"><a href="./rfc8204">RFC 8204</a> Benchmarking vSwitches September 2017</span>
Authors' Addresses
Maryam Tahhan
Intel
Email: maryam.tahhan@intel.com
Billy O'Mahony
Intel
Email: billy.o.mahony@intel.com
Al Morton
AT&T Labs
200 Laurel Avenue South
Middletown, NJ 07748
United States of America
Phone: +1 732 420 1571
Fax: +1 732 368 1192
Email: acmorton@att.com
Tahhan, et al. Informational [Page 24]
</pre>
|